Добрый день, Коллеги. Важное сообщение, просьба принять участие. Музей Ферсмана ищет помощь для реставрационных работ в помещении. Подробности по ссылке

Поиск по книгам
Выпуск 90
Автор(ы):Parry W.T., Paula N.Wilson
Издание:Economic geology, 1995 г., 20 стр.
Язык(и)Английский
Characterization and dating of argillic alteration in the Mercur gold district, Utah

The Mercur gold district of north-central Utah includes several sediment-hosted disseminated gold deposits which are located in the lower member of the Mississippian Great Blue Limestone. Argillic alteration of host limestone consists of illite (R3 illite-smectite <10% S) + kaolinite + quartz ± Fe oxides or pyrite. Argillized limestone has identical clay mineralogy in both oxidized and unoxidized rock. Unlike some other sediment-hosted disseminated gold deposits, variations in the Kubler index and illite/kaolinite ratios show no spatial relationship to faults or to gold distribution within the mineralized areas.

Выпуск 92
Автор(ы):David A.Mako
Издание:Economic geology, 1997 г., 2 стр.
Язык(и)Английский
Characterization and dating of argillic alteration in the Mercur gold district, Utah - a discussion

Wilson and Parry (1995) present data pertaining to clay alteration and K-Ar age dates for samples from the Mercur gold district. Their data record a wide spread of K-Ar ages for illite ranging from 98.4 to 226 Ma. They estimate the age of gold mineralization to be between 140 and 160 Ma and explain the wide range of ages as functions of partial thermal resetting of the clay minerals and the distance from the hydrothermal conduits. Morris and Tooker (1996) in their discussion of this paper, point out that a Mesozoic age for gold mineralization at Mercur is incompatible with several lines of long-standing regional geologic evidence that suggest a Tertiary age. In their reply, Wilson and Parry (1996) defend their position for a Mesozoic age of mineralization in part by relying on new 40Ar/39Ar age data and the fact that none of the 22 age dates is Tertiary. Although the research by Wilson and Parry may represent a good study of samples in the laboratory, there are several tenuous assumptions and contradictions of the geologic observations at Mercur that must be addressed.

Автор(ы):Parry W.T., Paula N.Wilson
Издание:Economic geology, 1996 г., 3 стр.
Язык(и)Английский
Characterization and dating of argillic alteration in the Mercur gold district, Utah—a reply

We would like to extend our appreciation to Morris and Tooker for their comments, discussion, and additional information that they provide pertaining to the geologic environment of the Mercur gold district, Utah. Their review of the characteristics of the Sevier orogenic belt are particularly relevant; however, such characteristics must be interpreted within the context of the additional geologic events of the region, which include the Jurassic compressional event that has been described from northern Utah and western Nevada. For this purpose, we offer the following reply.

Morris and Tooker have two main points of disagreement with our paper. First, they find the range of K-Ar ages we reported as disturbing and indicate that they date neither tectonic, hydrothermal, nor gold mineralization events; and second, they contend that all mineralized structures at Mercur must be younger than Late Cretaceous in age.

Автор(ы):Bernadin B.Z.P.
Издание:2008 г., 142 стр.
Язык(и)Английский
Characterization des sols lateritiques utilises en construction routiere: le cas de la region de L'agnéby (Côté D'ivoire) / Характеристика латеритных почв, используемых в дорожном строительстве: пример региона Аньеби (кот-Д'Ивуар)

L’étude des sols latéritiques de la région de l’Agnéby en Côte d’Ivoire a été effectuée sur les données géotechniques des rapports d’étude de dix sections de routes construites en utilisant des graveleux latéritiques dans la structure de chaussée. Ces donné escomportaient des courbes granulométriques, des limites de consistance pour la fraction fine, des résultats d’essais Proctor modifié et d’essais CBR.

Издание 3
Автор(ы):Mazor E.
Издание:Marcel Dekker Inc, 2004 г., 469 стр., ISBN: 0-8247-4704-6
Язык(и)Английский
Chemical and isotopic groundwater hydrology /  Химическая и изотопная гидрология подземных вод

Groundwater is a vital resource in steadily increasing demand by man, but man threatens its quality and mishandles the available quantity. In order to properly manage the resource, we have to study it in detail, recognize its properties, and understand its dynamics—in large-scale regions as well as in every locally studied system.
Chemical and isotopic hydrology are tailored to these challenges, and the hydrochemist has a key role as a consultant to the groundwater developers and managers, decision-makers, and environmental quality authorities

Автор(ы):McDonough W.F., Sun S.
Издание:The Geological Society Special Publication, 1989 г., 34 стр.
Язык(и)Английский
Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes / Химическая и изотопная систематика океанических базальтов: влияние на состав мантии и мантийные процессы

Trace-element data for mid-ocean ridge basalts (MORBs) and ocean island basalts (OIB) are used to formulate chemical systematics for oceanic basalts. The data suggest that the order of trace-element incompatibility in oceanic basalts is Cs ~ Rb (-~ Tl) = Ba(= W) > Th > U ~ Nb = Ta ~ K > La > Ce = Pb > Pr (~ Mo) ~- Sr > P --~ Nd (> F) > Zr = Hf = Sm > Eu ~ Sn (~ Sb) ~ Ti > Dy ~ (Li) > Ho = Y > Yb. This rule works in general and suggests that the overall fractionation processes operating during magma generation and evolution are relatively simple, involving no significant change in the environment of formation for MORBs and OIBs.
In detail, minor differences in element ratios correlate with the isotopic characteristics of different types of OIB components (HIMU, EM, MORB). These systematics are interpreted in terms of partial-melting conditions, variations in residual mineralogy, involvement of subducted sediment, recycling of oceanic lithosphere and processes within the low velocity zone. Niobium data indicate that the mantle sources of MORB and OIB are not exact complementary reservoirs to the continental crust. Subduction of oceanic crust or separation of refractory eclogite material from the former oceanic crust into the lower mantle appears to be required. The negative europium anomalies observed in some EM-type OIBs and the systematics of their key element ratios suggest the addition of a small amount (~<1% or less) of subducted sediment to their mantle sources. However, a general lack of a crustal signature in OIBs indicates that sediment recycling has not been an important process in the convecting mantle, at least not in more recent times (~<2 Ga). Upward migration of silica-undersaturated melts from the low velocity zone can generate an enriched reservoir in the continental and oceanic lithospheric mantle. We propose that the HIMU type (eg St Helena) OIB component can be generated in this way. This enriched mantle can be re-introduced into the convective mantle by thermal erosion of the continental lithosphere and by the recycling of the enriched oceanic lithosphere back into the mantle.

Редактор(ы):Metcalfe R., Rochelle C.A.
Издание:The Geological Society of London, 1999 г., 295 стр., ISBN: 1-86239-040-1
Язык(и)Английский
Chemical containment of waste in the geosphere / Химическая консервация отходов в геосфере

The aim of this introductory paper is to highlight those underlying chemical principles that are common to all forms of waste management by geological means, and that rely to some extent upon chemical containment. Until recently, chemical processes were usually considered mainly because they can affect the physical performance of engineered containment systems. However, in recent years, many researchers have recognized that chemical processes themselves can offer containment to wastes. Thus, it is no longer possible to view physical and chemical containment processes separately. The containment system can be optimized only if both the engineered and natural barriers are considered together, and if the engineered barrier system is designed taking the features of the geosphere into account. However, there has been relatively little reliance upon the geosphere itself as a chemical barrier. It is concluded that the potential for chemical containment should be considered in all forms of geological waste management. Even if the chemical barrier function of the geosphere is not relied upon to meet safety targets, the confidence of regulators and public alike will be enhanced if it can be demonstrated that the geosphere at the site functions as a chemical barrier. <...>

Издание 3
Автор(ы):Gill R.
Издание:Wiley Blackwell, 2015 г., 287 стр., ISBN: 978-0-470-65665-5
Язык(и)Английский
Chemical fundamentals of geology and environmental geoscience / Химические основы геологии и геонауки об окружающей среде

Many Earth science departments today recruit significant numbers of environmental geoscience students alongside mainstream geology or Earth science students. This student-led change in academic emphasis suggests that a successor to Chemical Fundamentals of Geology will meet the needs of students better if it covers the chemical foundations of environmental Earth science as well as geology. The shift in the emphasis of this new edition is reflected in its expanded title. <...>

Автор(ы):Dillon J., Tosunoglu C., Watson R.
Издание:Royal Society of Chemistry, 1993 г., 57 стр., ISBN: 1–870343–24–7
Язык(и)Английский
Chemistry and the environment / Химия и окружающая среда

Acid rain is used loosely to describe both acidic gases in the atmosphere and, more precisely, rain, mist or snow containing acid compounds of sulphur and nitrogen. Two main gases contribute to the formation of acid rain: sulphur(IV) oxide (SO2), produced by burning fossil fuels which contain sulphur, such as coal and oil; and oxides of nitrogen (NOx), which are formed when anything is burnt. The formation of acids from these gases and the way in which they move through the atmosphere are also affected by other pollutants, including ozone. The main sources of sulphur dioxide and oxides of nitrogen are power stations which burn fossil fuels, other large industrial combustion plants and motor vehicles <...>

867.35