Добрый день, Коллеги. Важное сообщение, просьба принять участие. Музей Ферсмана ищет помощь для реставрационных работ в помещении. Подробности по ссылке
Общие черты металлогении восточной части Балтийского щита Разрывные нарушения и их роль в размещении рудных полезных ископаемых восточной части Балтийского щита Докембрийские углеродсодержащие сланцы восточной части Балтийского щита и их рудная специализация Геологические предпосылки прогнозирования в поисков месторождений монокварцево-конгломератозого типа
The structure of the book is in many ways traditional, going from strain (Chapters 2 and 3) to stress (Chapters 4 and 5) and via rheology (Chapter 6) to brittle deformation (Chapters 7–10). Of these, Chapter 2 contains some material that would be too detailed and advanced for some students and classes, but selective reading is possible. Then, after a short introduction to the microscale structures and processes that distinguish crystal-plastic from brittle deformation (Chapter 11), ductile deformation structures such as folding, boudinage, foliations and shear zones are discussed (Chapters 12–16). Three consecutive chapters then follow that are founded on the three principal tectonic regimes (Chapters 17–19) before salt tectonics and restoration principles are presented (Chapters 20 and 21). A final chapter, where links to metamorphic petrology as well as stratigraphy are drawn, rounds off the book, and suggests that structural geology and tectonics largely rely on other disciplines. The chapters do not have to be read in numerical order, and most chapters can be used individually.
This introduction chapter of the book provides a summary of its nine key chapters. Structural geology and tectonics has progressively become more quantitative. To keep the pace, instructors of these subjects need to upgrade their teaching contents. This book presents issues related to (i) evaluation system of students using the peers, (ii) use of new instruments in measuring structural data from rocks, (iii) paleomagnetic studies in tectonics, (iv) sub-surface structural interpretations required in industries, (v) field studies in structural geology, (vi) interdisciplinary aspects of structural geology, (vii) teaching structural geology and tectonics in Indian context, (viii) conducting practical classes in structural geology with map interpretations and (ix) and simple geomechanical problems and solutions. <...>
Drawing is one of the elementary human abilities. It requires practice. But one must not draw with the skill of a Leonardo da Vinci or an Albrecht Dürer to be able to create drawings that are informative, aesthetic, and a joy to others. The drawing of geological objects is at a level that anyone can reach with a little practice and by following a few rules (Figure 1.1).<...>
Structural geology deals with the deformation of rocks. After their formation, sedimentary and igneous rocks may remain undisturbed or are deformed to different degrees. A volume of rock may change shape, rotate bodily, fracture or be displaced from one place to another. Such changes may be visible to us, for example, by the tilting of horizontal strata, by development of folds in originally planar beds, by distortion of pebbles, fossils and mineral grains in rocks and by the fragmented character of an originally continuous bed. If these features are in a large scale, their three-dimensional forms are not visible to us; they can be studied only on the eroded surface of the earth. One of the primary objectives of structural geology is to determine three-dimensional forms of these structures mainly from observations on the surface. The first step of structural analysis of an area is to study the geometry of the structures, i.e. to study their morphology and orientation (or attitude), both by direct observation of small structures in the outcrop and by reconstruction of large structures <...>
This chapter is concerned with the orientations of lines and planes. The structural elements that we measure in the field are mostly lines and planes, and manipulating these elements on paper or on a computer screen helps us visualize and analyze geologic structures in three dimensions. In this chapter we will examine several graphical and mathematical techniques for solving apparent-dip problems. Each technique is appropriate in certain circumstances. The examination of various approaches to solving such problems serves as a good introduction to the techniques of solving structural problems in general. Finally, many of these problems are designed to help you visualize structural relations in three dimensions, a critical skill for the structural geologist. <...>
This part of the book introduces the fundamental tools of structural geology. The first four chapters are designed to accustom students to visualizing the attitude, location, and dimensions of geologic structures. (Appendix 1 outlines elementary aspects of maps and cross sections and thus provides an optional introduction to these chapters). We discuss how to measure and describe lines and planes, how to use a compass, how to create and interpret contour maps, how to cakulate the attitude of planes from point data, and how to calculate the thickness and depth of layers.
Analyses of geological structures from field exposure of rocks have been one of the important and intriguing disciplines in (applied) Earth Sciences. Since the 1990s, especially after the boom of three‐dimensional seismic technologies, reflection seismic data in two and three dimensions have become the modern ‘field’ for geologists.
Публикуемая работа В.В.Бронгулеева «Мелкая складчатость платформы» представляет большой интерес как оригинальное исследование своеобразных тектонических проявлений на Русской платформе. Достаточно полная и обстоятельная сводка по вопросам распространения и морфологии малых складок, до последнего времени весьма слабо изученных, и критика разнообразных гипотез их возникновения представляют существенную и наиболее ценную часть этого труда.
В работе рассматривается происхождение складчатости на при-мерах строения древних и молодых платформ, краевых прогибов и геосинклинальных областей. Доказывается, что все пликативные дислокации образовались в аллохтонных пластинах в результате горизонтального сжатия, которое испытывали слоистые комплексы пород. Работа является теоретическим исследованием, имеющим важное практическое значение. Установленные, в ней закономерности формирования складок позволяют существенно повысить эффективность поисково-разведочных работ на нефть, газ, руды и другие полезные ископаемые