Добрый день, Коллеги. Важное сообщение, просьба принять участие. Музей Ферсмана ищет помощь для реставрационных работ в помещении. Подробности по ссылке

Автор(ы):Никитин А.А.
Издание:Недра, Москва, 1986 г., 342 стр., УДК: 550.83:519.2
Язык(и)Русский
Теоретические основы обработки геофизической информации.

Обработка геофизической информации — важнейший этап ана‘ лиза экспериментальных данных всех методов разведочной геофизики. Основой получения геофизической информации (геофизических данных) являются измерения. Измерение — это нахождение значения физической величины опытным путем с помощью специальных технических средств. В разведочной геофизике предметом измерения являются физические свойства горных пород и физические поля, создаваемые горными породами. Техническими средствами их измерения служат аналоговые и цифровые приборы. Результат измерения представляет собой число, выраженное в соответствующих физических единицах измерения. Это число — элемент измерительной информации. Иначе говоря, геофизическая информация — это измерительная информация, доставляющая количественные сведения о каком-либо физическом свойстве, физическом поле или явлении геологической среды, геологического объекта. Объем геофизической информации непрерывно растет, что определяется как увеличением объемов геофизических работ, так и повсеместным переходом на цифровую регистрацию физических полей. Этот переход обусловлен преимуществами цифровой аппаратуры по сравнению с аналоговой, основные из которых: 1) высокая точность и быстродействие; 2) возможность выдачи результатов измерений непосредственно в ЭВМ; 3) безошибочный перенос дискретных сигналов из одних запоминающих устройств в другие и передача информации на большие расстояния; 4) многократное усиление и воспроизведение дискретных сигналов без потери информации; 5) способность работать в системах автоматического контроля и управления. Цель обработки геофизических данных — извлечение полезной информации из результатов измерений (наблюдений) отдельных геофизических методов и их комплексов. В отличие от первичной обработки исходных данных, включающей определение координат точек наблюдений, введение различных поправок (в частности, уравнивание опорной сети в гравиразведке), увязку наблюдений по площади съемки, обработка исправленных данных (перед проведением количественной интерпретации) решает задачи преобразования, фильтрации и анализа с целью подавления помех, выделения и разделения полезных сигналов (аномалий). Количественная интерпретация выделенных путем обработки сигналов сводится к количественной оценке геометрических и физических параметров источников аномалий. Если методика и методы количественной интерпретации геофизических аномалий существенно зависят от регистрируемого физического поля.

Редактор(ы):Добрынин В.М.
Издание:Недра, Москва, 1988 г., 476 стр., УДК: 550.832(031), ISBN: 5-247-00024-2
Язык(и)Русский
Интерпретация результатов геофизических исследований нефтяных и газовых скважин. Справочник

Приведены сведения об основных приемах индивидуальной и комплексной интерпретации результатов различных методов геофизических исследований скважин на стадиях разведки, подсчета запасов, проектирования и контроля за разработкой нефтяных и газовых месторождений. Описаны автоматизированные системы обработки и интерпретации данных ГИС. Рассмотрены вопросы оценки погрешностей результатов-измерений и интерпретации.

Для геофизиков, специалистов в области промысловой геологии, бурения скважин и проектирования разработки нефтяных и газовых месторождений

Издание:Недра, Москва, 1977 г., 150 стр., УДК: (550.83:622.241):553.981/982
Язык(и)Русский
Изучение карбонатных коллекторов методами промысловой геофизики

Проблемы, связанные с изучением нефтяных залежей, приуроченных к карбонатным коллекторам, в настоящее время уже не являются совершенно новыми [1,6,9,12, 37, 46, 70, 87, 105, 112, 114]. Однако при выделении коллекторов, оценках характера их насыщения и подсчетных параметров постоянно возникают трудности. Их причиной является сложное строение коллекторов, в которых наряду с межзерновыми порами почти всегда присутствуют трещины и каверны, составляющие иногда значительную долю эффективного порового пространства и способствующие, как правило, формированию глубокой зоны проникновения фильтрата бурового раствора.

Издание:316 стр.
Язык(и)Русский
Геофизические методы определения параметров нефтегазовых коллекторов

В настоящее время геофизические методы определения коллекторских свойств и нефтегазонасыщения горных пород часто используются при подсчете запасов нефти и газа. По данным промысловой геофизики могут быть определены следующие параметры: 1) эффективная мощность; 2) положение водонефтяного (ВНК), газоводяного (ГВК), газонефтяного (ГНК) и текущих контактов на различных этапах разработки месторождения; 3) коэффициент пористости для большинства продуктивных объектов (за исключением отдельных типов сложных коллекторов); 4) коэффициент нефтегазонасыщения для всех коллекторов, кроме трещинно-кавернозных.

Автор(ы):Торопов И.В.
Издание:25 стр.
Язык(и)Русский
Геофизические работы при поисках и разведке

Электрические свойства пород инфильтрационных месторождений положены в основу существующих методик определения фильтрационных характеристик, поэтому их изучение требует особой тщательности и начинается с момента подготовки площадей  к проведению специализированных поисковых работ. Известно, что каждая литологическая разность осадочных образований представляет многофазную среду от свойств  отдельных  компонент которой и зависит общее удельное и кажущееся электрическое сопротивление, Твердый, минеральный скелет, преимущественно кварц-полевошпатового состава - один из составляющих этой многофазной системы, оказывает меньшее влияние на величину электрического сопротивления пород, чем остальные фазы; глинистое и карбонатное вещество, заполняющее межпоровое пространство скелета, а также минерализация пластовых вод, пропитывающих осадочные отложения. Влияние газовой составляющей полностью влагонасыщенных осадочных отложений на электрическое сопротивление пород очень ничтожно. Если  говорить о кажущемся электрическом сопротивлении литологических разностей пород геологического разреза, то в целом оно изменяется в сравнительно небольшом диапазоне  от 2-3 0мм до 60-80 0мм, иногда до 200 0мм, однако сильно зависит от минерализации пластовых вод,  которая, как уже отмечалось ранее, может изменяться от 0,5 г/л до 6,0 г/л. Количество, состав цемента и сцементированность пород также оказывает заметное воздействие на кажущееся электрическое сопротивление. С увеличением глинистости пород оно уменьшается, становясь минимальным 3-8 0мм у глин. Алевролиты, в зависимости от степени их запесоченности и присутствия карбонатного вещества, характеризуются значениями ρк от 6 до 25 0мм. Наиболее широким диапазоном изменения кажущихся электрических сопротивлений обладают рыхлые пески, на ρк которых очень сильное влияние  оказывает примесь глинистого вещества (общая глинистость) и минерализация пластовых вод. Обычно их сопротивление изменяется от 10 до 40 0мм. Наиболее высокие ρк у «чистых» песков, межпоровое пространство которых заполнено пресной, пластовой водой. Грубообломочные несцементированные осадочные образования.

Издание 2
Автор(ы):Lowrie W.
Издание:Cambridge University Press, New York, 2007 г., 384 стр., ISBN: 978-0-521-85902-8
Язык(и)Английский
Fundamentals of geophysics / Основы геофизики

In the ten years that have passed since the publication of the first edition of this textbook exciting advances have taken place in every discipline of geophysics. Computer-based improvements in technology have led the way, allowing more sophistication in the acquisition and processing of geophysical data. Advances in mass spectrometry have made it possible to analyze minute samples of matter in exquisite detail and have contributed to an improved understanding of the origin of our planet and the evolution of the solar system. Space research has led to better

Редактор(ы):Bhattacharyya P., Chakrabarti B.K.
Издание:Springer, 2006 г., 525 стр., ISBN: 0075-8450
Язык(и)Английский
Modelling Critical and Catastrophic Phenomena in Geoscience / Моделирование критических и катастрофических явлений в геологии

Geophysics, or physics modelling of geological phenomena, is as old and as established as geoscience itself. The statistical physics modelling of various geophysical phenomena, earthquake in particular, is comparatively recent. This book intends to cover these recent developments in modelling various geophysical phenomena, including the imposing classic phenomenon of earthquakes, employing various statistical physical ideas and techniques. This first book on statistical physics modelling of geophysical phenomena contains extensive reviews by almost all the leading experts in the field and should be widely useful to the graduate students and researchers in geoscience and statistical physics. It grew out of the lecture notes from a workshop on “Models of Earthquakes: Physics Approaches”, held in Saha Institute of Nuclear Physics, Kolkata, under the auspices of its Centre for Applied Mathematics and Computational Science in December 2005. The book is divided in four parts. In the first part, tutorial materials are

Автор(ы):Anderson D.L.
Издание:Blackwell, 1989 г., 379 стр., ISBN: 0-86543-335-0
Язык(и)Английский
Theory of the Earth / Теория Земли

The maturing of the Earth sciences has led to a fragmentation into subdisciplines which speak imperfectly to one another. Some of these subdisciplines are field geology, petrology, mineralogy, geochemistry, geodesy and seismology, and these in turn are split into even finer units. The science has also expanded to include the planets and even the cosmos. The practitioners in each of these fields tend to view the Earth in a completely different way. Discoveries in one field diffuse only slowly into the consciousness of a specialist in another. In spite of the fact that there is only one Earth, there are probably more Theories of the Earth than there are of astronomy, particle physics or cell biology where there arc uncountable samples of each object. Even where there is cross-talk among disciplines, it is usually as noisy as static. Too often, one discipline’s unproven assumptions or dogmas are treated as firm boundary conditions for a theoretician in a slightly overlapping area. The data of each subdiscipline are usually consistent with a range of hypotheses. The possibilities can be narrowed considerably as more and more diverse data are brought to bear on a particular problem.

Автор(ы):Akasofu S.
Издание:Springer, 2002 г., 274 стр., ISBN: 1402006853
Язык(и)Английский
Exploring the Secrets of the Aurora / Исследуя тайны северного сияния

My purpose in writing this book is to describe my own experiences, from my graduate student days in the 1950s to the present (2001). when I came upon phenomena or facts that did not support the prevailing ideas and theories, or even contradicted them. In some instances, the encounters began with nothing more than the naive questions I posed as a graduate student to my professors regarding a well-established fact: others were the result of questions my graduate students asked me. Essentially, this is an account of my personal encounters with some of the ideas and theories that once prevailed but were later eliminated in the history of auroral science. I believe that young researchers becoming successful as scientists depends on how they deal with new phenomena or facts that do not fit established theories. One cannot be a researcher unless he/she can encounter such a problem. This is because such ;ui encounter is the very first step for new progress. When encountering such problems, some may put the discordant facts on the shelf or sweep them under the rug. so to speak, at least for a while. Others may try hard to find a way to make new facts fit into prevailing ideas by modifying or improving them. Yet others may try to establish a new idea, scheme, or theory by adapting their findings and those of others, but abandoning the prevailing interpretation of the phenomena or facts. It has been my experience that it is the people in this last group who produce epoch-making progress in science. The choice of what to do when facing this situation is not easy and depends on many factors, lirst of all. researchers have to know where they stand at that point in the history of their scientific discipline. It is therefore crucial to have a deep historical knowledge of the background of a prevailing idea or the established interpretation of a phenomenon. To choose a course of action without knowing the background would be like starting to run in the dark without a sense of direction or of the surroundings. Unfortunately. I see too many young scientists doing just that, particularly those who believe that technological advance is everything. Often, a mentor provides the history, not necessarily in a classroom setting, but through daily interactions. I was fortunate to have a very good mentor. Sydney Chapman, who guided me during my early days.

Издание:Недра, Москва, 1993 г., 319 стр., УДК: 622.235
Язык(и)Русский
Геомеханика крупномасштабных взрывов

Значительные механические напряжения, достигаемые в среде при подземных взрывах, вызывают ряд явлений, каждое из которых в зависимости от конкретной практической задачи представляет определенный интерес. При этом деформирование и разрушение массива горных пород являются наиболее значимыми проявлениями взрывного воздействия.Возможность прогнозирования и управления действием подземного взрыва в первую очередь связана с учетом особенностей строения реальной геофизической среды. Структурную неоднородность следует рассматривать в качестве одной из наиболее важных характеристик массивов горных пород, определяющих основные особенности их деформирования при внешних динамических возмущениях. Неоднородность, провляющаяся в виде естественных структурных нарушений и зон ослабления прочности (тектонические разломы, линеаменты*, трещины разного уровня, слоистость и т.п.), помимо геометрических характеристик структурного строения (размер и форма блоков) определяет деформационные, прочностные и фильтрационные свойства массивов горных пород, которые играют важную роль в формировании отклика среды на внешнее воздействие.История образования и развития каждого породного массива определяет конкретную иерархию структурных нарушений и, как следствие, - его блочную структуру 154]. Реальный породный массив как геофизическая среда изначально характеризуется структурной неоднородностью в широком диапазоне характерных размеров: от 10 м (дефекты кристаллической решетки породообразующих минералов) до 106 м (протяженность наиболее крупных тектонических разрывов) [55). Это определяет не только широкий спектр размеров структурных элементов, но также особенности механического действия подземного взрыва на разных расстояниях от источника.

Ленты новостей
2435.64