The purpose of this communication is to summarize and make available a large amount of data on the content of major and minor elements in the host rocks and ores of the Carlin gold deposit and to show the changes in the abundance of these elements as a result of hydrothermal mineralization and subsequent oxidation. Other aspects of the study of minor elements in the Carlin deposit, including the correlation between elements in various types of ore and the influence of geologic features on spatial distribution, will be presented in a later paper. The Carlin gold deposit is located about 33 miles northwest of Elko, Nevada (Fig. 1).
The deposit is characterized by large disseminated replacement-type ore bodies in the upper beds of the Silurian Roberts Mountains Formation. Several of these ore bodies are currently exposed in the West, Main, and East Pit areas of the mine. Although detailed information on the depth of gold deposition and the geometry of individual ore bodies cannot be disclosed (by agreement with Newmont Mining Corporation), the host rocks have been hydro-thermally altered in some parts of the deposit to a depth of 800+ feet. Small amounts of gold are scattered throughout this depth, and larger amounts, concentrated in several zones, make up the ore bodies.
The host rocks for the ore bodies are dark- to medium-gray, thin-bedded, siliceous, argillaceous, dolomitic limestones. Mineralogically the rocks are made up of large and widely varying amounts of calcite, dolomite, illite, and quartz, plus minor kaolin, montmorillonite( ?), chlorite, K-feldspar, plagioclase, pyrite, zircon, barite, rutile, sphene, and carbonaceous materials. Complete chemical analyses of the fresh carbonate rocks are given by Hausen (1967), Hausen and Kerr (1968), and Radtke and Scheiner (1970).