This study was undertaken to characterize the mineral paragenesis and metal zoning at the property scale, evaluate the potential sources of ore-related metals, quantify the relationship between intensity of alteration and gold grade, and propose a comprehensive genetic model for the Carlin-type Au deposits at the southern part of the Goldstrike property, Nevada.
Mineralogy, textural relationships, whole-rock composition, and spatial distribution of the studied samples revealed two types of gold ore: Ore I and II. The former, which is hosted by the Roberts Mountains and Rodeo Creek Formations, and the Wispy, Planar, and Upper Mud units of the Popovich Formation, is the most abundant and widespread in the property. Ore I is characterized by intense hydrothermal alteration (e.g., carbonate dissolution, silicification, and precipitation of pyrite) and high amounts of trace elements (e.g., Ag, As, Au, Ba, Cd, Cu, Hg, Mo, Ni, S, Sb, Se, Te, Tl, and Zn). On the other hand, Ore II, which is hosted in the Wispy, Planar, and Soft Sediment Deformation units of the Popovich Formation, is mainly confined to the central-north-northwest portion of the Screamer deposit and is weakly altered with low concentration of trace elements. Both Ores I and II contain similar average concentrations of Au in whole rock (14 and 19 g/t Au, respectively) and in pyrite (290 and 540 ppm, respectively); however, auriferous pyrite from Ore I has higher trace element (As, Ag, Cu, Hg, Ni, Sb, Se, and Tl)/Au ratios than Ore II.