Добрый день, Коллеги. Важное сообщение, просьба принять участие. Музей Ферсмана ищет помощь для реставрационных работ в помещении. Подробности по ссылке
Environmental magnetism is a relatively new science. It essentially grew out of numerous interdisciplinary studies involving sediments in British lakes, but soon expanded to include sediments in other natural archives that also retain records of past global changes. Prominent among these are marine sediments, windblown deposits on land, and the thin layer of soil covering much of the continents. The materials residing in these various settings are of two main types: one transported in from elsewhere, the other created in situ. Material flux takes place in the hydrosphere, the atmosphere, and the cryosphere, the most important agents being rivers, ocean currents, ground water, wind, rain, snow, glaciers, ice sheets, and icebergs. We will be looking at examples of all of these. <...>
The year 2000 ushered in a major sunspot maximum period. Occurring every eleven years, spectacular sporadic solar outbursts of particles and fields bombard our Earth's space and continue at a high level for several years. In this time of majestic auroras and satellite-destroying magnetic storms, global interest focuses upon the curious Earth magnetism that guides the solar particles, with fields that penetrate our environment and affect our lives. <...>
Magnetism is one of the most pervasive features of the Universe, with planets, stars and entire galaxies all having associated magnetic fields. All of these fields are generated by the motion of electrically conducting fluids, via the so-called dynamo effect. The basics of this effect are almost trivial to explain: moving an electrical conductor through a magnetic field induces an emf (Faraday’s law), which generates electric currents (Ohm’s law), which have associated magnetic fields (Ampere’s law). The hope is then that with the right combination of flows and fields the induced field will reinforce the original field, leading to (exponential) field amplification <...>
Geology is the study of the Earth in all its aspects except those that are now considered to be separate sciences of the Earth, like geophysics and meteorology. It concerns the materials of which the Earth is made, and the processes that operate on them. Very many of these processes are physical, and their understanding involves an understanding of the underlying physics. The raindrop that falls and makes its contribution to erosion is first created by condensation, falls under the influence of gravity, is held together by surface tension, reaches its terminal velocity as a result of friction long before hitting the Earth, has potential energy during its fall, and kinetic energy that is converted to mechanical energy and work when it strikes the Earth. <...>
Geomagnetism has always been at the forefront among the various branches of geophysics. At the end of the 16th century William Gilbert determined that the Earth is a big magnet, implying that it has a magnetic field; in the 1830s Carl Friedrich Gauss was able to formulate a procedure to measure the field completely and analyzed its characteristics with the spherical harmonic analysis, a method still used in the era of satellites and computers. Nevertheless, as recently as in the sixties, geophysics textbooks devoted only a thin chapter to geomagnetism, and limited their discussion mostly to prospecting methods, while many geologists’ curriculum practically left it out altogether. The essential contribution provided by the study of ocean floor magnetic anomalies and by paleomagnetism in the development of global tectonic models, made geomagnetism popular in the geological community, which nonetheless continued, and still continues, to view it as a highly specialist discipline. <...>
The scale invariance of geological phenomena is one of the first concepts taught to a student of geology. It is pointed out that an object that defines the scale, i.e., a coin, a rock hammer, a person, must be included whenever a photograph of a geological feature is taken. Without the scale it is often impossible to determine whether the photograph covers 10 cm or 10 km. For example, self-similar folds occur over this range of scales.
Geophysical methods are based on studying the propagation of the different physical fields within the earth’s interior. One of the most widely used fields in geophysics is the electromagnetic field generated by natural or artificial (controlled) sources. Electromagnetic methods comprise one of the three principle technologies in applied geophysics (the other two being seismic methods and potential field methods). In this book the author presents both the foundations and the most recent achievements of electromagnetic geophysical methods in the framework of a unified systematic exposition.
Современный этап развития мировой экономики характеризуется началом крупномасштабного освоения природных ресурсов Мирового океана. В России, в первую очередь, это относится к изысканиям и разработкам нефтегазовых месторождений на континентальном шельфе. Основной объем предстоящих работ приходится на шельф арктических и дальневосточных морей. В ближайшей перспективе в качестве основных районов рассматривается шельф Охотского, Баренцева и Карского морей.