Добрый день, Коллеги. Важное сообщение, просьба принять участие. Музей Ферсмана ищет помощь для реставрационных работ в помещении. Подробности по ссылке
Kashmir valley is a northwest-southeast directed, Neogene-Quaternary tectonic basin in the NW Himalaya. Due to the active tectonic set-up in and around this basin, this region has been struck by various destructive earthquakes (Ambraseys and Douglas, 2004). The October 8, 2005 Kashmir earthquake (Mw 7.6) was the most recent earthquake that shook the region.
Fifty years have now passed since Graham (1954) published his seminal paper advocating the use of anisotropy of magnetic susceptibility (AMS) as a rapid and sensitive petrofabric tool. During these five decades, Graham's 'underexploited' method has become standard, and AMS and related techniques are now routinely applied to characterizing fabrics in a wide variety of geological materials (e.g. the GEOREF database lists over 500 journal publications with 'magnetic anisotropy' as keywords).
Soil response to seismic motion (cyclic dynamic loading) depends on the mechanical properties of the soil. Soil behavior under various conditions of loading is defined by one or the other of its mechanical properties. In conditions of heavy loading, soils can exhibit dynamic instability, when their deformability and the probability of destruction increase.
Dynamic properties of soils have been investigated since the 1900s and addressed in a number of renowned studies of K. Terzaghi, N.M. Gersevanov, V.A. Florin, Ya.I. Frenkel, M. Biot, and others. A qualitatively higher level of the research has been reached in the late 1960s and early 1970s after the catastrophic earthquakes of 1964 in Anchorage (Alaska) and Niigata (Japan) and the 1971 earthquake in California.
Часть II "Руководства" содержит лабораторные работы, ориентированные на освоение студентами навыков решения интерпретационных задач сейсморазведки. Как и часть I, оно предназначено для студентов специальностей 0103 и 0105 и является учебным материалом к курсам "Общий курс геофизических методов", "Полевая геофизика" и "Сейсморазведка". Руководство предназначено для студентов специальностей 0103 и 0105
This book discusses how—by analysis of the physical felds and processes within and on the Earth—we learn how old the Earth is, about its internal structure and external form, and about the causes and properties of its magnetic and temperature felds. What will not be discussed are the geophysical survey methods for characterizing the upper crust that are used to explore for mineral ore deposits and hydrocarbon reservoirs; specialized textbooks should be consulted for these.
Michael S. Zhdanov Editorial for Special Issue “Geophysics for Mineral Exploration” Jianfei Fu, Sanshi Jia and Ende Wang Combined Magnetic, Transient Electromagnetic, and Magnetotelluric Methods to Detect a BIF-Type Concealed Iron Ore Body: A Case Study in Gongchangling Iron Ore Concentration Area, Southern Liaoning Province, China Fouzan A. Alfouzan, Abdulrahman M. Alotaibi, Leif H. Cox and Michael S. Zhdanov Spectral Induced Polarization Survey with Distributed Array System for Mineral Exploration: Case Study in Saudi Arabia
Настоящий курс лекций, обязательный для студентов геофизиков геологического факультета МГУ, базируется в основном на журнальной литературе. В нем впервые сведены воедино и систематизированы главнейшие достижения по кинематике рефрагированных волн в вертикально-неодронодных средах.
Рассмотрены общие свойства колебательных процессов, происходящих в радиотехнических, механических и других системах, а также различные методы их изучения. Большое внимание уделено рассмотрению параметрических, автоколебательных и других нелинейных систем. Изучение данных колебательных систем проведено известными методами теории колебаний без подробного изложения и обоснования самих методов. По наиболее важным темам приведены задачи для самостоятельного решения.
Предназначено для студентов электротехнических направлений и специальностей технических вузов.
High-pressure mineral physics is a field that is strongly driven by the development of new technology. Fifty years ago, when experimentally achievable pressures were limited to just 25 GPa, little was known about the mineralogy of the Earth’s lower mantle. Silicate perovskite, the likely dominant mineral of the deep Earth, was identified only when the high-pressure techniques broke the pressure barrier of 25 GPa in the 1970s. However, as the maximum achievable pressure reached beyond 1 Megabar (100 GPa) and even to the pressure of Earth’s core on minute samples, new discoveries were increasingly fostered by the development of new analytical techniques and improvements in sensitivity and precision of existing techniques.