Содержание: 3.1. Явление Гиббса. Сущность явления Гиббса. Параметры эффекта. Последствия для практики. 3.2. Весовые функции. Нейтрализация явления Гиббса. Основные весовые функции. Литература.
Большинство методов анализа и обработки данных представляют собой или имеют в своем составе операцию свертки множества данных s(k) с функцией оператора свертки h(n). Как множество данных s(k), так и оператор h(n), выполняющий определенную задачу обработки данных и реализующий определенную частотную передаточную функцию системы (фильтра), могут быть бесконечно большими. Практика цифровой обработки имеет дело только с ограниченными множествами данных (k = 0,1,2,…,K) и коэффициентов оператора (n = 0,1,2,…,N или n = -N,…,1,0,1,…,N для двусторонних операторов). В общем случае, эти ограниченные множества "вырезаются" из бесконечных множеств s(k) и h(n), что равносильно умножению этих множеств на прямоугольную функцию с единичным амплитудным значением, которую называют естественным временным окном или естественной весовой функцией. Учитывая, что произведение функций отображается в спектральной области сверткой их фурье-образов, это может весьма существенно сказаться как на спектральных характеристиках функций, так и на результатах их последующих преобразований и обработки. Основное назначение рассматриваемых в данной теме весовых функций - сведение к минимуму нежелательных эффектов усечения функций.