Добрый день, Коллеги. Важное сообщение, просьба принять участие. Музей Ферсмана ищет помощь для реставрационных работ в помещении. Подробности по ссылке
Conventionally, geochemical exploration for gold is based on the assumptions that (1) gold is chemically inert in surficial environments; (2) gold occurs mainly in discrete grains; and (3) gold is transferred by mechanical means to form clastic dispersion halos and dispersion trains. Consequently, the commonly adopted methodology has been (1) to determine gold in heavy mineral concentrates; (2) to use large samples in order to improve the reproducibility of gold analyses; (3) to use high detection limits and thresholds; and (4) to determine total gold contents and pathfinder elements in the samples. However, these methods are not always successful in locating gold deposits, and they have limited application in the search for buried or blind deposits.
In China, studies of the distribution and migration of particulate and ultrafine gold indicated that (1) gold is active and mobile in surficial environments; (2) gold occurs not only as discrete grains, but also as ultrafine particles and other complex forms; and (3) regional low-concentration gold anomalies as well as local anomalies over buried gold deposits originate from ultrafine gold and other complex forms of gold. The methodology developed in China for regional and local geochemical gold exploration is based on this experience. Results of investigations around two gold deposits in China are presented.
Включение в традиционную схему отработки золоторудных месторождений процесса подготовки техногенных месторождений формирует принципиально новый подход к решению проблемы рационального использования недр. Данное стратегическое направление позволит существенно укрепить сырьевую базу действующих предприятий и активизировать инвестиции на вовлечение в оборот коренных месторождений золота.
A rapid field method for gold analysis in geochemical exploration has been developed. Cold extraction of Au, at room temperature, using a mixture of sodium bromide, sulphuric acid, hydrogen peroxide is performed; the technique has the advantage of avoiding the irritating odour of commonly used aqua regia digestion. Polyurethane foam is used to concentrate gold from solution. After desorption of Au using mixed reagents (0.5% Na2S03-NaCl solution at pH 8), two sequential procedures, depending on the concentration, are followed for the determination of gold. (1) A 1 mL portion of desorbed solution is used to form Au-TMK-DBS (Thio Micher's Ketone and dodecyl benzene sodium sulphonate) ternary complex. Concentrations below 20 ng/g Au are determined by visual colour comparison of the organic layer with a series of standards. (2) If the concentration is greater than 20 ng/g Au, a complexation reaction using the same reagents is followed by fibre-optic colorimetry. The method is rapid and simple, and the tiresome operation of ashing the foam is avoided. The limit of detection is 0.5 ng/g Au and eighty determinations can be made in one working day. The method could be used for rapid follow-up of rock sample or in situ drill core analyses. About 600 samples from 5 gold districts were tested by this method. The results are very satisfactory.
The Bulletin lode-gold deposit is within the northernmost part of the Norseman-Wiluna greenstone belt in me Archaean Yilgarn Block, Western Australia. It is located within a brittle-ductile shear zone and hosted by tholeiitic metavolcanic rocks. Syn-metamorphic wallrock alteration envelops the gold mineralisation and is pervasive throughout the entire shear zone and extends up to 150 m into the undeformed wallrocks. Alteration is characterised by the sequence of distal chlorite-calcite, intermediate calcite-dolomite, outer proximal sericite and inner proximal dolomite-sericite zones. The thickness of the alteration envelope, and the occurrence of dolomite in the alteration sequence, can be used as a rough guide to the width, extent and grade of gold mineralisation, because a positive correlation exists between these variables. Mass transfer evaluations indicate that chemical changes related to the wallrock alteration are similar in all host rocks: in general, Ag, As, Au, Ba, C02, K, Rb, S, Sb, Те and W are enriched, Na and Y are depleted, and Al, Cr, Cu, Fe, Mg, Mn, Nb, Ni, P, Se, V, Zn and Zr are immobile, while Ca, Si and Sr show only minor or negligible relative changes. The degree of mobility of each component increases with proximity to gold mineralisation. The largest potential exploration targets are possibly defined by regional As (>6 ppm) and Sb (>0.6 ppm) anomalies. These anomalies, if real, extend laterally for > 150 m from the mineralised shear zone into areas of apparently unaltered rocks. Anomalies defined by Те (> 10 ppb), W (>0.6 ppm), carbonation indices, local enrichment of Sb (>2.0 ppm) and As (>28 ppm), and potassic alteration indices also form significant exploration targets extending beyond the HJB shear zone and the Au anomaly (>6 ppb) and, locally, into apparently unaltered rock. Gold, itself, has a restricted dispersion, with an anomaly extending for 1-35 m from ore, and being restricted to within the shear zone itself. Amongst individual geochemical parameters, only As and Sb define significant, consistent and smooth trends (vectors) when laterally approaching the ore. However, the respective dimensions of individual geochenucal anomalies can be used as an extensive, though stepwise, vector towards ore
This paper describes a soil extraction method developed to investigate the different chemistries of Au in various soils in the Yilgarn Craton. The extraction solution is 1 M sodium bicarbonater0.1 M potassium iodide, saturated with CO2 and adjusted to pH 7.4 with hydrochloric acid. A soil : solution ratio of 1 : 2 Žg : ml. is used. Two different methods were used: Ž1. net iodide-extractable Au, with solutions analysed directly for Au; Ž2. gross iodide-soluble Au, where activated carbon is added to the mixture and the carbon analysed at the end of the extraction, thus providing a measure of all Au dissolved during the extraction Žincluding that readsorbed during the net extraction.. Depending on the extraction conditions, there may be appreciable readsorption of Au, particularly for organic-rich ŽG50%. and Fe-rich lateritic soils Ž)80%.. This readsorption is enhanced by pulverizing to -75 mm. Consequently, for simple extractions longer than 1 day, pulverized soils give lower apparent Au solubility than do unpulverized soils. Unpulverized carbonate-rich soils show high Au solubilities and little Žoften -20%. readsorption, and consequently show high net iodide-solubilities. These readsorption phenomena could affect other methods used in exploration and should be thoroughly investigated before incorrect conclusions are drawn. The readsorption problems are removed by adding activated carbon to the extraction mixtures; the carbon adsorbs Au as it is dissolved from the sample and is subsequently analysed. However, different soil types still show distinctly different Au solubilities, which should be recognized for interpretation of extraction results. Again, this effect should be tested for other extraction techniques. A more intractable problem may be that biological cycling of the Au through plants and other organisms appears to cause high Au solubilities in many soils. This effect may obscure any potential ‘mineralization signature’ that is being tested by selective extractions, and could cause problems for any extraction method, no matter how well designed
Рассмотрены существующие концепции возникновения зональности в гидротермальных рудно-метасоматических системах. Основное внимание уделено дискуссионным физико-гидродинамическим аспектам их формирования Изложена авторская точка зрения на механизм образования зонально построенных аномальных структур геохимических полей. Предложена гипотеза возникновения и функционирования сероводородного барьера при образовании гидротермальных месторождений.
Обосновано положение о формировании крупных и гигантских эндогенных месторождений золота (и комплексных золото-платиновых объектов) в блоках активного проявления плюмтектоники, палеодиапиризма, рифтогенеза, мантийно-корового метасоматизма. Показано, что внутримантийный метасоматизм приводил к перераспределению и выносу благородных металлов из глубинных дунитов, перидотитов, подверженных объемной амфиболизации под воздействием нагретых флюидов. Возникавшие внутримантийные магмо-термофлюидные динамические системы, несущие благородные металлы, обеспечивали образование крупных и гигантских рудных объектов в земной коре. При отсутствии признаков проникновения глубинных расплавов и термофлюидопотоков в коровые зоны рудолокализации могли возникать лишь убогие и средние по запасам металлов месторождения.
С позиций тектоники литосферных плит рассмотрена минерагения трёх мегазон Южного Урала: Западной, Центральной (Магнитогорской) и Восточной. Выделены и охарактеризованы рудные пояса (с запада на восток): 1) стратиформных месторождений, 2) хромитовый, 3) колчеданный, 4) золоторудный, 5) молибден-меднопорфировый и 6) железорудный скарново-магнетитовый. Образование колчеданных месторождений связывается с процессами субдукции, определившими зональность в распределении магматических комплексов и руд различного состава: поперечную - в островных дугах и продольную - в задуговых бассейнах. Предложена геодинамическая модель развития минерагении региона на рифтогенной предокеанической (Э-О), океанической (01-2), островодужной (03-D3) и коллизионный (С1-Р) стадиях.
Современная структура Гайского месторождения определяется надвигом, по которому рудовме-щающая андезидацит-риодацит-дацитовая вулканическая постройка сорвана с базальтового основания и перемещена с востока на запад. В висячем крыле надвиг сопровождается серией взбросов, расчленивших рудоносные породы на блоки. Формирование структуры месторождения происходило в 3 этапа: I и II этапы сопровождались рудообразованием, III этап - преобразованием рудных тел. Зональность в распределении Cu, Zn, Au и Ag в рудах рассмотрена авторами по серии разрезов, пересекающих всё рудное поле, построенных по данным опробования сотрудниками Гайского ГОКа. Установлена зональность нескольких типов. На I этапе рудообразования: 1) вертикальная по мощности, заключающаяся в смене снизу вверх пиритовых руд - халькопирит-пиритовыми и халькопирит-сфалерит-пиритовыми, одноактная и ритмичная (стратиформная); 2) латеральная, заключающаяся в смене указанных типов руд к флангам рудных тел; 3) латеральная с обратным порядком смены типов руд, характерная для рудоподводящих каналов. На II этапе: 4) обогащение крутопадающих рудных тел по восстанию цветными и благородными металлами. На III этапе преобразования месторождения: 5) формирование оторочек борнитовой ассоциации. Эмпирические данные и построение сплайн-моделей позволили установить бимодальное распределение Au в рудах, выраженное в концентрации его в ранних – пиритовой и пирит-халькопиритовой ассоциациях и наиболее поздних - полиметаллической и борнитовой ассоциациях. Содержания Ag последовательно возрастали от ранних к поздним стадиям рудообразования.