Добрый день, Коллеги. Важное сообщение, просьба принять участие. Музей Ферсмана ищет помощь для реставрационных работ в помещении. Подробности по ссылке
Orogenic gold deposits localized in carbonaceous sedimentary (black-shale) complexes are major contributors to worldwide balance of gold extracted from the crust, though there is a limited consensus about the role of host sedimentary rocks, involvement of external (i.e., magma-derived) fluids and brittle deformations into ore remobilization and transport. This paper presents the original results of mineralogical, petrographic and isotopegeochemical
studies of rocks and ores from the large Krasniy gold deposit (Baikal-Patom plateau, southern Siberian craton) given in comparison with the thoroughly studied giant Sukhoi Log deposit, with both deposits hosted by the Neoproterozoic carbonaceous metasedimentary rocks.
Modern isotope geochemistry is a rapidly expanding field that has a part to play in a broad range of Earth and planetary sciences – from extra-solar-system processes to environmental geoscience. This new edition of a popular textbook is completely updated and places more emphasis on the uses of radiogenic isotopes in environmental Earth science.
Questions about the geochemistry of manganese, the regularities of the distribution of manganese deposits, znd the composition of manganese ores and conditions of their formation have been treated in an extensive scientific literature, consisting of over 5000 titles. Among them are commonly known works by V.I. Vernadskii, A.E. Fersman, A.G. Betekhtin, N.S. Shatskii, N.M. Strakhov, and S. Roy. Substantial contributions to the explanation of the nature of manganese-ore deposits have been provided by the research of I.M. Varentsov, J.B. Maynard, K.F. Park, J. Ostwald, B. Bolton, F. Veber, N. Beukes, J. Gutzmer, G.S. Dzotsenidze, D.G. Sapozhnikov, E.A. Sokolova, L.E. Schterenberg, and many other Russian and international researchers.
В книге впервые подробно рассматривается неоднородность состава литосферной части верхней мантии, астеносферы и подстилающих ее слоев, а также земной коры на базе изотопных, геохимических и геофизических данных; дается новая оценка распространенности редкоземельных элементов, тория, урана, калия, рубидия, стронция и других элементов и их баланса в системе мантия—кора; обосновывается различие состава Земли и хондритов. Рассмотрены также происхождение важнейших типов магматических пород, время и условия становления их мантийных и коровых источников, эволюция мантийного и корового магматизма.
Jeder Atomkern eines chemischen Elementes hat die gleiche Ordnungszahl Z – bedingt durch die Zahl der Protonen. Verschiedene Kernarten desselben Elementes unterscheiden sich in der Anzahl der Neutronen N und damit in der Massenzahl A = Z + N. Solche verschiedenen Kerne eines Elementes bezeichnet man als Isotope. Kernarten ohne Beziehung zu einem Element werden Nuklide genannt, von denen 264 stabil sind. Isobare sind Nuklide mit identischer Massenzahl und gehören damit also verschiedenen Elementen an.
Книга посвящена рассмотрению сущности, особенностей и возможностей масс-спектрометрии изотопных отношений для определения изотопного состава легких элементов неорганических и органических соединений разных классов с исключительно высокой точностью и воспроизводимостью результатов. Специфичность метода заключается в том, что он позволяет выявлять фундаментальные процессы, происходящие в биологических, экологических и геологических системах, раскрывать тонкие особенности протекания многих физико-химических процессов и химических превращений. Часто информация на основе определения изотопного состава легких элементов не может быть получена с помощью других методов. Масс-спектрометрия изотопных отношений нашла широкое применение в биологии, экологии, медицине, криминалистике, археологии, геохимии, геологии и в оценке качества пищевых продуктов. Для химиков-аналитиков, биохимиков и геохимиков.
Trace-element data for mid-ocean ridge basalts (MORBs) and ocean island basalts (OIB) are used to formulate chemical systematics for oceanic basalts. The data suggest that the order of trace-element incompatibility in oceanic basalts is Cs ~ Rb (-~ Tl) = Ba(= W) > Th > U ~ Nb = Ta ~ K > La > Ce = Pb > Pr (~ Mo) ~- Sr > P --~ Nd (> F) > Zr = Hf = Sm > Eu ~ Sn (~ Sb) ~ Ti > Dy ~ (Li) > Ho = Y > Yb. This rule works in general and suggests that the overall fractionation processes operating during magma generation and evolution are relatively simple, involving no significant change in the environment of formation for MORBs and OIBs. In detail, minor differences in element ratios correlate with the isotopic characteristics of different types of OIB components (HIMU, EM, MORB). These systematics are interpreted in terms of partial-melting conditions, variations in residual mineralogy, involvement of subducted sediment, recycling of oceanic lithosphere and processes within the low velocity zone. Niobium data indicate that the mantle sources of MORB and OIB are not exact complementary reservoirs to the continental crust. Subduction of oceanic crust or separation of refractory eclogite material from the former oceanic crust into the lower mantle appears to be required. The negative europium anomalies observed in some EM-type OIBs and the systematics of their key element ratios suggest the addition of a small amount (~<1% or less) of subducted sediment to their mantle sources. However, a general lack of a crustal signature in OIBs indicates that sediment recycling has not been an important process in the convecting mantle, at least not in more recent times (~<2 Ga). Upward migration of silica-undersaturated melts from the low velocity zone can generate an enriched reservoir in the continental and oceanic lithospheric mantle. We propose that the HIMU type (eg St Helena) OIB component can be generated in this way. This enriched mantle can be re-introduced into the convective mantle by thermal erosion of the continental lithosphere and by the recycling of the enriched oceanic lithosphere back into the mantle.
In this book we decided to attach the permil sign (‰) to all Li isotopic quantities. One way of viewing stable isotopes denoted by δ is that the arithmetic sets the results as being part-per-thousand quantities, so to place the ‰ on a value is redundant. However, this implies a certain familiarity from the reader. Our decision regarding the ‰ in this volume was guided by the potential that the audience may include those not so steeped in the thinking of stable isotopes. This calls to mind a historical note regarding Li isotopes. Readers of the early literature on the subject (beginning with Chan in 1987) will find papers that use δ6Li. Prior to 2000, using the now-accepted δ7Li notation was viewed as an unwanted usurpation by at least one prominent geochemist. Nevertheless, being clear is important, and although δ7Li was not the first notation employed, it follows stable isotope convention. We find that students have a hard enough time understanding isotope geochemistry, so to oppose the notation used in virtually all systems (positive values are isotopically heavier than negative values) invites confusion. Hence, our use of the ‰ is a further step to make this compilation clear for all.
Представлены современные тенденции в развитии изотопной геохимии, космохимии и геохронологии. Особое внимание уделяется изучению уран-свинцовой системы в цирконах с точки зрения её использования в докембрии. Обсуждаются вопросы, касающиеся совершенствования техники и методов изотопного анализа, образования и эволюции вещества Земли в раннем докембрии.
Сборник содержит статьи, посвященные важнейшим геохимическим аспектам. Рассмотрены общие закономерности эволюции земной коры, динамическая модель геохимического цикла, особенности разделения и геохимии изотопов отдельных элементов – азота, кислорода, серы, углерода, стронция – в эндогенных и экзогенных процессах, геохимические особенности биогенных комплексов металлов и общие закономерности фотосинтетических реакций в биосфере, методические вопросы масс-спектральных исследований. Ряд статей посвящен планетологическим проблемам – исследованию геохимии газов, истории формирования поверхности Луны