
Rock Quality Designation (RQD)

A measure of rock mass integrity based on the condition of core samples.

Rock Quality Designation (RQD)

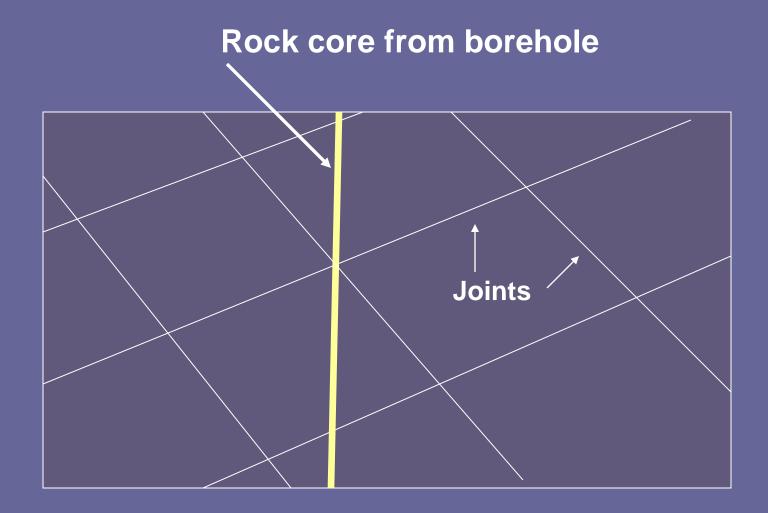
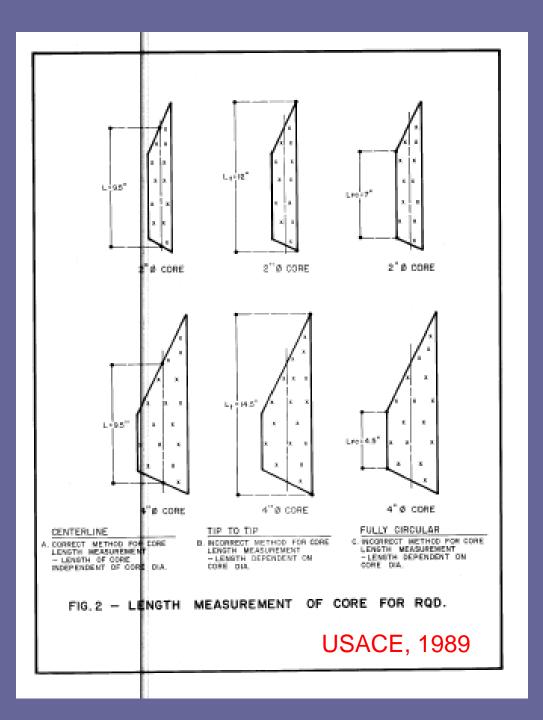

Rock Mass Rating (RMR)

Table 4.19 Geomechanics Classification Parameters, Ranges, Ratings, and Classes

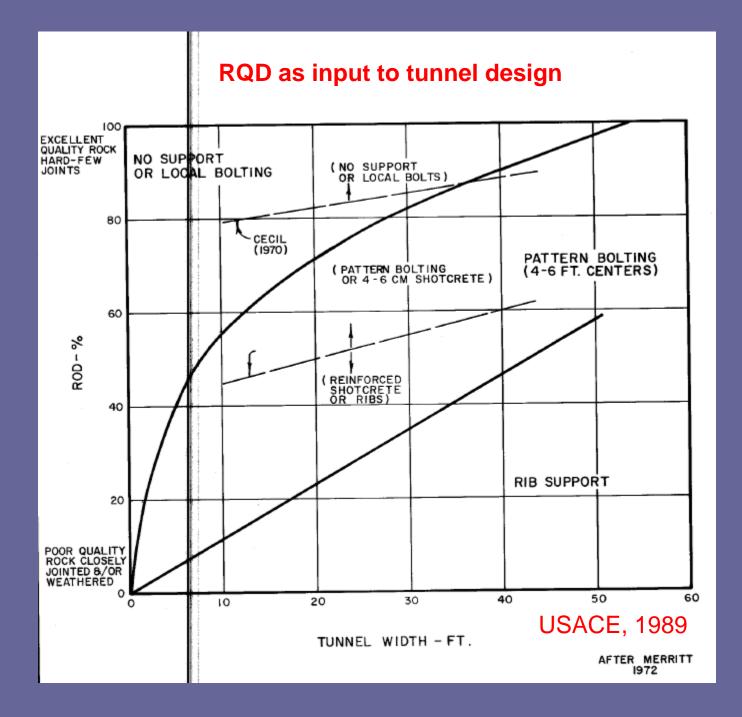
		a. Classifica	ation Parameters	and Their Ratings		
1	USC of intact rock	>200 MPa	100-200 MPa	50-100 MPa	25–50 MPa	<25 MPa
	Rating	10	5	2	1	0
2	Drill-core quality RQD	90% to 100%	75% to 90%	50% to 75%	25% to 50%	<25% or highly weathered
	Rating	20	17	14	8	3
3	Spacing of joints	>3 m	1-3 m	0.3–1 m	50-300 mm	<50 mm
	Rating	30	25	20	10	5
4	Strike and dip orientations of joints	Very favorable	Favorable	Fair	Unfavorable	Very unfavorable
	Rating	15	13	10	6	3
5	Condition of joints	Very tight: separation < 0.1 mm Not continuous		Tight: <1 mm and continuous No gouge	Open: 1–5 mm Continuous Gouge <5 mm	Open >5 mm Continuous Gouge >5 mm
	Rating	15		10	5	0
6	Groundwater inflow (per 10 m of tunnel length)	None		<25 I/min	25-125 I/min	> 125 I/min
	Rating	10		8	5	2


	b. Rock-M	ass Classes and I	heir Ratings		
Class No.	I	H	111	IV	V
Description of class	Very good rock	Good rock	Fair rock	Poor rock	Very poor rock
Total rating	100 ← 90	90 ← 70	70 ← 50	50 ← 25	<25

Source: Modified from Bieniawski, 1974.

General Guidelines for Determining RQD

- Valid for NX core (2-inch diameter) or greater.
- Length measured along <u>centerline</u> of core.
- Slightly or moderately weathered core <u>that cannot</u> <u>be hand broken</u> should be counted if >4".
- Pieces of core obviously broken to fit into core box do not count as separate pieces.
- Unrecovered core is assumed to be < 4".



Issues with RQD

- Problems with core breakage / loss common in schistose rocks and interbedded argillaceous and harder rocks (sound familiar?).
- Larger-diameter core and longer coring runs are generally helpful with the above.
- RQD ignores joint orientation and continuity.
- RQD simple, inexpensive, and reproducible.
- RQD is not a stand-alone design parameter !

RQD Correlations

- Tunneling (original use of RQD).
- Modulus of Elasticity (E).
- Seismic velocity.
- Joint volume (J_v)
- Fracture frequency
- Input to rock mass rating

Deformation of a Rock Mass

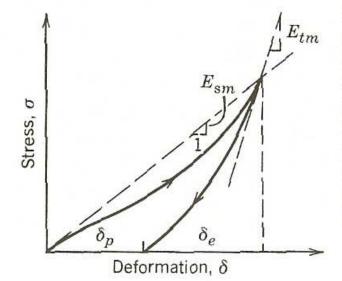
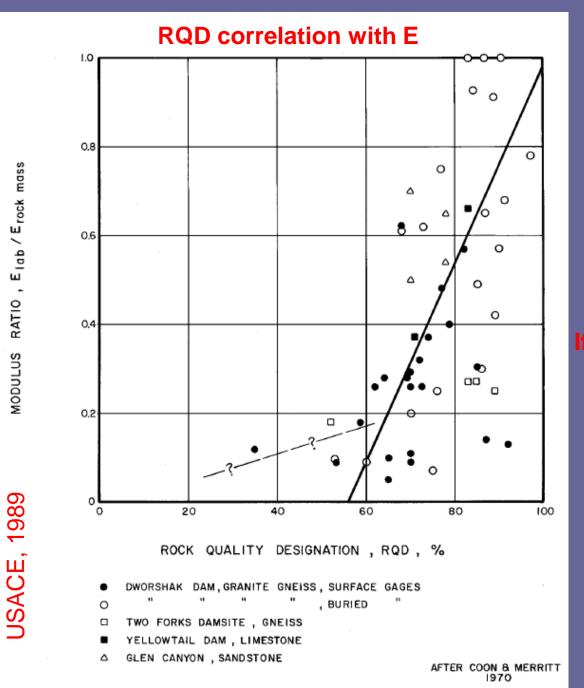
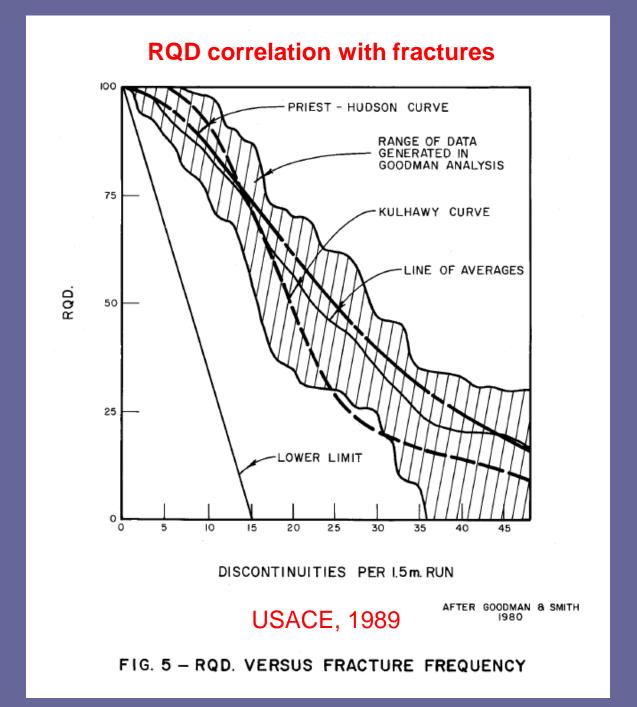



Figure 4.43 Typical stress-strain relationships for a rock mass where $E_{sm} =$ secant modulus, $E_{tm} =$ tangent modulus, $\delta_{p_s} =$ plastic deformation and $\delta_e =$ elastic deformation. (Reprinted with permission from Proc. 8th Symp. on Rock Mechanics — Failure and Breakage of Rock, D. U. Deere et al., Design of Surface and Near-Surface Construction in Rock, 1967, Am. Inst. Min. Metall. & Pet. Eng.)

How is this response to stress different than that of intact rock?

RATIO , Elab / Erock mass


MODULUS

Example application:

If my dam is overtopped during flooding, How much will foundation rock flex underneath dam?

RQD correlation with seismic velocity

	TABLE 3								
CORRELATIONS OF MODULUS RATIO WITH RQD AND VELOCITY INDEX									
<u>Classification</u> Very Poor Poor Fair Good Excellent	ROD 0 - 25 25 - 50 50 - 75 75 - 90 90 - 100 USACE	Velocity <u>Index</u> 0-0.20 0.20-0.40 0.40-0.60 0.60-0.80 0.80-1.00 E, 1989	Modulus Ratio <u>E_{rock-mass}/E_{lab-}</u> < 0.20 < 0.20-0.50 0.50-0.80 0.80-1.00						

Estimates of RQD

$RQD = 115 - 3.3 (J_v)$

 $J_{v} = \frac{\Sigma \text{ Discontinuities}}{m^{3}}$

Palmström (1982)

The Dalles, OR