
     
Next: About this document ... Up: Table of Contents 

PVI -- TABLE OF CONTENTS
Preface (ps 161K) 
Introduction (ps 295K) 
Convolution and Spectra (ps 471K) (src 199K) 

SAMPLED DATA AND Z-TRANSFORMS 
Linear superposition 
Convolution with Z-transform 
Dissecting systems by factoring 
Convolution equation and program 
Negative time 

FOURIER SUMS 
Superposition of sinusoids 
Sampled time and Nyquist frequency 
Fourier sum 

FOURIER AND Z-TRANSFORM 
Unit circle 
Differentiator 
Gaussian examples 
Complex roots 
Inverse Z-transform 

CORRELATION AND SPECTRA 
Spectra in terms of Z-transforms 
Two ways to compute a spectrum 
Common signals 
Spectra of complex-valued signals 
Time-domain conjugate 
Spectral transfer function 
Crosscorrelation 
Matched filtering 

Discrete Fourier transform (ps 529K) (src 114K) 

FT AS AN INVERTIBLE MATRIX 
The Nyquist frequency 
Laying out a mesh 
The comb function 
Undersampled field data 

INVERTIBLE SLOW FT PROGRAM 
The slow FT code 
Truncation problems 
FT by Z-transform 

SYMMETRIES 
Plot interpretation 
Convolution in the frequency domain 

SETTING UP THE FAST FOURIER TRANSFORM 
Shifted spectra 

TWO-DIMENSIONAL FT 
Basics of two-dimensional Fourier transform 
Signs in Fourier transforms 
Examples of 2-D FT 



HOW FAST FOURIER TRANSFORM WORKS 
References 

Z-plane, causality, and feedback (ps 567K) (src 350K) 

LEAKY INTEGRATION 
Plots 
Two poles 

SMOOTHING WITH BOX AND TRIANGLE 
Smoothing with a rectangle 
Smoothing with a triangle 

CAUSAL INTEGRATION FILTER 
The accuracy of causal integration 
Examples of causal integration 
Symmetrical double integral 
Nonuniqueness of the integration operator 

DAMPED OSCILLATION 
Narrow-band filters 
Polynomial division 
Spectrum of a pole 
Rational filters 

INSTABILITY 
Anticausality 
Inverse filters 
The unit circle 
The mapping between Z and complex frequency 
The meaning of divergence 
Boundedness 
Causality and the unit circle 

MINIMUM-PHASE FILTERS 
Mechanical interpretation 
Laurent expansion 

INTRODUCTION TO ALL-PASS FILTERS 
Notch filter 

PRECISION EXHAUSTION 
MY FAVORITE WAVELET 
IMPEDANCE FILTERS 

Univariate problems (ps 640K) (src 100K) 

INSIDE AN ABSTRACT VECTOR 
SEGREGATING P AND S CROSSTALK 

Two univariate problems 
The physics of crosstalk 
Failure of straightforward methods 

Failure of independence assumption 
Solution by weighting functions 

A nonlinear-estimation method 
Clarity of nonlinear picture 
Nonuniqueness and instability 
Estimating the noise variance 
Colored noise 

Noise as strong as signal 
Spectral weighting function 
Flame out 

References 
HOW TO DIVIDE NOISY SIGNALS 

Dividing by zero smoothly 
Damped solution 



Example of deconvolution with a known wavelet 
Deconvolution with an unknown filter 
Explicit model for noise 
A self-fulfilling prophecy? 

NONSTATIONARITY 
DIP PICKING WITHOUT DIP SCANNING 

The plane-wave destructor 
Moving windows for nonstationarity 

Adjoint operators (ps 569K) (src 65K) 

FAMILIAR OPERATORS 
Transient convolution 
Zero padding is the transpose of truncation. 
Product of operators 
Convolution end effects 
Kirchhoff modeling and migration 
Migration defined 

ADJOINT DEFINED: DOT-PRODUCT TEST 
What is an adjoint operator? 

NORMAL MOVEOUT AND OTHER MAPPINGS 
Nearest-neighbor interpolation 
A family of nearest-neighbor interpolations 

Looping over input space 
Looping over output space 

Formal inversion 
Nearest-neighbor NMO 
Stack 
Pseudoinverse to nearest-neighbor NMO 
Null space and inconsistency 
NMO with linear interpolation 

DERIVATIVE AND INTEGRAL 
Adjoint derivative 

CAUSAL INTEGRATION RECURSION 
Readers’ guide 

UNITARY OPERATORS 
Meaning of B’B 
Unitary and pseudounitary transformation 
Pseudounitary NMO with linear interpolation 

VELOCITY SPECTRA 
INTRODUCTION TO TOMOGRAPHY 

Units 
STOLT MIGRATION 
References 

Model fitting by least squares (ps 475K) (src 82K) 

MULTIVARIATE LEAST SQUARES 
Inverse filter example 
Normal equations 
Differentiation by a complex vector 
Time domain versus frequency domain 

Unknown filter 
Unknown input: deconvolution with a known filter 

ITERATIVE METHODS 
Method of random directions and steepest descent 
Conditioning the gradient 
Why steepest descent is so slow 
Conjugate gradient 



Magic 
Conjugate-gradient theory for programmers 
First conjugate-gradient program 
Preconditioning 

INVERSE NMO STACK 
MARINE DEGHOSTING 

Synthetics 
CG METHODOLOGY 

Programming languages and this book 
References 

Time-series analysis (ps 782K) (src 66K) 

SHAPING FILTER 
Source waveform and multiple reflections 
Shaping a ghost to a spike 

SYNTHETIC DATA FROM FILTERED NOISE 
Gaussian signals versus sparse signals 
Random numbers into a filter 
Random numbers into the seismic spectral band 

THE ERROR FILTER FAMILY 
Prediction-error filters on synthetic data 
PE filters on field data 
Prediction-error filter output is white. 
Proof that PE filter output is white 
Nonwhiteness of gapped PE-filter output 
Postcoloring versus prewhitening 

BLIND DECONVOLUTION 
WEIGHTED ERROR FILTERS 

Automatic gain control 
Gain before or after convolution 
Meet the Toeplitz matrix 
Setting up any weighted CG program 

CALCULATING ERROR FILTERS 
Stabilizing technique 

INTERPOLATION ERROR 
Blind all-pass deconvolution 

Missing-data restoration (ps 579K) (src 142K) 

INTRODUCTION TO ALIASING 
Relation of missing data to inversion 
My model of the world 

MISSING DATA IN ONE DIMENSION 
Missing-data program 

MISSING DATA AND UNKNOWN FILTER 
Objections to interpolation error 
Packing both missing data and filter into a CG vector 
Spectral preference and training data 
Summary of 1-D missing-data restoration 
2-D interpolation before aliasing 

2-D INTERPOLATION BEYOND ALIASING 
Interpolation with spatial predictors 
Refining both t and x with a spatial predictor 
The prediction form of a two-dip filter 
The regression codes 
Zapping the null space with envelope scaling 
Narrow-band data 

A FULLY TWO-DIMENSIONAL PE FILTER 



The hope method 
An alternative principle for 2-D interpolation 

TOMOGRAPHY AND OTHER APPLICATIONS 
Clash in philosophies 
An aside on theory-of-constraint equations 

References 

Hyperbola tricks (ps 620K) (src 39K) 

PIXEL-PRECISE VELOCITY SCANNING 
Smoothing in velocity 
Rho filter 

GEOMETRY-BASED DECON 
A model with both signature and reverberation 

Reverberation 
Signature 

Regressing simultaneously before and after NMO 
A model for convolution both before and after NMO 
Heavy artillery 

References 

Spectrum and phase (ps 694K) (src 144K) 

HILBERT TRANSFORM 
A Z-transform view of Hilbert transformation 
The quadrature filter 
The analytic signal 
Instantaneous envelope 
Instantaneous frequency 

SPECTRAL FACTORIZATION 
The exponential of a causal is causal. 
Finding a causal wavelet from a prescribed spectrum 
Why the causal wavelet is minimum-phase 
Pathological examples 
Relation of amplitude to phase 

A BUTTERWORTH-FILTER COOKBOOK 
Butterworth-filter finding program 
Examples of Butterworth filters 

PHASE DELAY AND GROUP DELAY 
Phase delay 
Group delay 
Group delay as a function of the FT 
Observation of dispersive waves 
Group delay of all-pass filters 

PHASE OF A MINIMUM-PHASE FILTER 
Phase of a single root 
Phase of a rational filter 

ROBINSON’S ENERGY-DELAY THEOREM 
FILTERS IN PARALLEL 

Resolution and random signals (ps 655K) (src 45K) 

TIME-FREQUENCY RESOLUTION 
A misinterpretation of the uncertainty principle 
Measuring the time-bandwidth product 
The uncertainty principle in physics 
Gabor’s proof of the uncertainty principle 



My rise-time proof of the uncertainty principle 
Proof by way of the dual problem 

FT OF RANDOM NUMBERS 
Bandlimited noise 

TIME-STATISTICAL RESOLUTION 
Ensemble 
Expectation and variance 
Probability and independence 
Sample mean 
Variance of the sample mean 

SPECTRAL FLUCTUATIONS 
Paradox: large n vs. the ensemble average 
An example of the bandwidth/reliability tradeoff 
Spectral estimation 

CROSSCORRELATION AND COHERENCY 
Correlation 
Coherency 
The covariance matrix of multiple signals 
Bispectrum 

SMOOTHING IN TWO DIMENSIONS 
Tent smoothing 
Gaussian mounds 
Speed of 2-D Gaussian smoothing 

PROBABILITY AND CONVOLUTION 
THE CENTRAL-LIMIT THEOREM 

Entropy and Jensen inequality (ps 328K) (src 6K) 

THE JENSEN INEQUALITY 
Examples of Jensen inequalities 

RELATED CONCEPTS 
Prior and posterior distributions 
Jensen average 
Additivity of envelope entropy to spectral entropy 

Seplib and SEP software (ps 345K) (src 9K) 
The Zplane program (ps 293K) (src 10K) 

OPERATORS 
SCALARS 
FILTERS, SIGNALS, AND THEIR TRANSFORMS 
MATRICES AND VECTORS 
CHANGES FROM FGDP 

  

About this document ... 

     
Next: About this document ... Up: Table of Contents 



Stanford Exploration Project
10/21/1998 





1

FREEWARE, COPYRIGHT, LICENSE, AND CREDITS

This disk contains freeware from many authors. Freeware is software you can copy
and give away. But it is restricted in other ways. Please see author’s copyrights and
“public licenses” along with their programs.

As you saw on the copyright page and will find in the electronic files, my electronic
book is copyrighted. However, the programs I wrote that display the book and its
figures are available to you under the GNU public license (see below). I have signed
over copyright of the book text to a traditional book publisher1; however, I did not
grant them the electronic rights. I license you, the general public, to make electronic
copies of the entire book provided that you do not remove or alter this licensing
statement. Please respect the publisher’s legal rights and do not make paper copies
from your copy of the electronic book.

We (you and I) are indebted to many people who have generously contributed
software to the public good. I’ll mention here only those outside the Stanford Uni-
versity research group whose contributions are widely used and on which we deeply
depend:

TEX Don Knuth, Stanford University
LATEX Leslie Lamport, Stanford Research Institute
ratfor77 Ozan Yigit, Arizona, and Wes Bauske, IBM
ratfor90 Bob Clapp
dvips Tomas Rokicki, Stanford University

I feel sure the list of valuable contributors is much longer. I am afraid I may have
overlooked the names of some, and others have modestly omitted leaving their name
and copyright.

My electronic book is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

My electronic book is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 675 Massachusetts
Ave., Cambridge, MA 02139, USA.

1Blackwell Scientific Publications, 3 Cambridge Center, Cambridge, MA 02142



2

PREFACE TO THE ELECTRONIC BOOK

Reproducibility

Each figure caption is followed by an [R] or an [NR] which denotes Reproducible or
Not Reproducible. To actually burn and rebuild the illustrations you will need to
have “seplib” installed at your site.

SEP software

Contained on the CD-ROM distribution are two interactive programs, ed1D and
Zplane. I originally wrote these programs in Sunview, an interactive software de-
velopment platform from Sun Microsystems. Fortunately, Steve Cole converted them
to the X Window system, using the X toolkit and Xlib graphics, so they are now
available on machines from many manufacturers. Unfortunately, in 1998, we do not
have them compiled for our main machines at SEP, linux PC’s and SGI.

Acknowledgement

This textbook itself was updated in minor ways since the 1991 CD-ROM was pro-
duced. The electronic document, however, is greatly enhanced through systems im-
provements made by Martin Karrenbach, Steve Cole, and Dave Nichols. Most of the
features described in this preface were absent or incomplete in 1991.



A note to the reader

In many branches of engineering and science there is a substantial computational
element. Earth-imaging seismology is one of these. In taking up computational
problems we should abandon books, journals, and reports and replace them with
electronic documents that can be used to recreate any print document, including its
figures, from its underlying data and computations. Today, few published results are
reproducible in any practical sense. To verify them requires almost as much effort as
it took to create them originally. After a time, authors are often unable to reproduce
their own results! For these reasons, many people ignore most of the literature. In
the past this scandalous waste of time and energy may have been justified by the
high cost and incompatibility of data-processing machines. But with standards for
Fortran, C, UNIX,1 LATEX, Postscript,2 Xwindow,3 CD-ROM, and shirt-pocket-sized
two-gigabyte tapes, there is no longer any excuse for nonreproducible research. It is
time to plunge into this new era.

This paper book of 300 pages presents theory implemented by sixty subroutines,
all included in the book, which in turn made the book’s 150 figures. Behind the
paper book are about seventy figure-making directories, a large volume of Stanford
Exploration Project utility software, and some real datasets you can experiment with
if you have access to the electronic form of the book. I made nearly all of the figures
myself. Even without the electronic book, from the printed subroutines only, you
should be able to produce results similar to mine and, beyond this, use the subroutines
in your own work.

If you have access to the electronic form of this book, you can read it from a
computer screen and press the buttons in the figure captions to rebuild and redisplay
the figures. Some of the figures are in color, some are interactive, and some are
movies. But this is not the goal of the electronic book. Its goal is to enable you
to reproduce all my figures with reasonable ease, to change parameters, to try other
datasets, to modify the programs, and to experiment with the theoretical concepts.

I could have written the programs in this book in vanilla Fortran or C and suffered
the verbosity and blemishes of these languages. Instead I chose to write the programs
in a Fortran dialect that, like mathematics, is especially suited to the exposition of

1AT&T
2Adobe Systems, Inc.
3Massachusetts Institute of Technology

1



2

technical concepts. At Stanford we translate these programs to Fortran automatically
by passing them first through a home-made processor named sat, which overcomes
Fortran’s inability to create temporary arrays of arbitrary dimension, and second
through AT&T’s Ratfor (Rational Fortran) preprocessor. If you wish, a program
called f2c, freely available from AT&T, will translate the Fortran to C.

My goal in writing the programs in this book was not to write the best possible
code with the clearest possible definitions of inputs and outputs. That would be
a laudable goal for a reference work such as Numerical Recipes (Press et al.). In-
stead, I present a full mathematical analysis with simple and concise code along with
meaningful examples of its use. I use the code as others might use pseudocode—to
exemplify and clarify the concepts. These programs, which also made the book’s
figures, are not guaranteed to be free of errors. Since the word processor and the
compiler got the programs from the same place, however, there can be no errors of
transcription.

Why another book?

I decided to write this book for five reasons. First, seismologists and explorationists,
as well as many others in science and engineering, share the ability to synthesize
the data implied by any physical model. They have much to learn, however, about
“inverse modeling,” that is, given the data, the process of finding the most appropriate
model. This task is also called “model fitting,” words that hardly hint at the ingenuity
that can be brought to bear. There is no shortage of books about least-squares
regression, also called “inversion.” These books provide a wide range of mathematical
concepts—often too many, and often with no real examples. In my teaching and
research I have found that people are mostly limited, not by lack of theory, but by
failure to recognize where elementary theory is applicable. To cite an example, “zero
padding” is a tiny bit of technology used nearly everywhere, but few people seem to
recognize its mathematical adjoint and so are ill prepared to invoke (A′A)−1A′d or
set up a conjugate-gradient optimization. Therefore, a keystone chapter of this book
shows how adjoint operators can be a simple byproduct of any modeling operator.
In summary, the first reason I am writing this book is to illuminate the concept of
“adjoint operator” by examining many examples.

The second reason for writing the book is to present the conjugate-gradient opti-
mization algorithm in the framework of many examples. The inversion theory found in
most textbooks, while appearing generally applicable, really is not. Matrix inversions
and singular-value decompositions are limited in practice to matrices of dimension less
than about one thousand. But practical problems come in all dimensions, from one to
many millions (when the operator is a multidimensional wave equation). Conjugate-
gradient methods—only beginning to find routine use in geophysics—point the way
to overcoming this dimensionality problem. As in the case of inversion, many books
describe the conjugate-gradient method, but the method is not an end in itself. The
heart of this book is the many examples that are set up in the conjugate-gradient



3

framework. Setting up the problems is where ingenuity is required. Solving them is
almost routine—especially using the subroutine library in this book.

My third reason for writing the book is much narrower. Seismogram deconvolution—
by far the largest use of geophysical inversion theory—is in a state of disarray. I see
serious discrepancies between theory and practice (as do others). I believe the dis-
array stems from a tendency to cling to a large body of old quasi-analytic theory.
This theory had a place in my first book, Fundamentals of Geophysical Data Process-
ing, but I have omitted it here. It can be replaced by a simpler and less restrictive
numerical approach.

My fourth reason for writing the book is to illuminate the place of missing seismo-
grams. Much data is analyzed assuming that missing data is equivalent to zero-valued
data. I show how to handle the problem in a better way.

Finally, I am writing this book to illuminate the subtitle, Processing versus In-
version, by which I mean the conflicting approaches of practitioners and academics
to earth soundings analysis.

This book should be readable by anyone with a bachelor’s degree in engineering
or physical science. It is easier for students to use than my first book, Fundamentals
of Geophysical Data Processing. It is written at about the level of my second book,
Imaging the Earth’s Interior.

Organization

Page numbers impose a one-dimensional organization on any book. I placed basic
things early in the book, important things in the middle of the book, and theoretical,
less frequently used things at the end. Within chapters and sections, this book answers
the questions what and how before it answers why. I chose to avoid a strictly logical
organization because that would result in too much math at the beginning and too
long a delay before the reader encountered applications. Thus, you may read about a
single subject at different points in the book. It is not organized like an encyclopedia
but is ordered for learning. For reference, please make use of the index.

Dedication

I am especially indebted to all those students who complained that I did not give
enough examples in my classes. (Even with access to the book in its present form,
they still complain about this, so there is work left to do.)



4

Acknowledgements

In this book, as in my previous book, Imaging the Earth’s Interior, I owe a great
deal to the many students at the Stanford Exploration Project. The local computing
environment from my previous book is still a benefit, and for this I thank Stew Levin,
Dave Hale, and Richard Ottolini. In preparing this book I am specially indebted to
Joe Dellinger for his development of the intermediate graphics language vplot that
I used for all the figures. I am also very grateful to Kamal Al-Yahya for converting
my thinking from the troff typesetting language to LATEX, for setting up the initial
structure of the book in LATEX, and for the conversion program tr2tex (which he made
publicly available and which is already widely used) that I needed to salvage my older
materials. I have benefited from helpful suggestions by Bill Harlan and Gilles Darche.
Biondo Biondi, Dave Nichols, and I developed the saw and sat Fortran preprocessors.
Dave Nichols found the cake document maintenance system, adapted it to our local
needs, and taught us all how to use it, thereby giving us a machine-independent
software environment. Martin Karrenbach implemented the caption pushbuttons and
had many ideas for integrating the paper book with the interactive book. Steve
Cole adapted vplot to Postscript and X, redesigned xtex for Sun computers, and
generously offered assistance in all areas. Mark Chackerian prepared the first CD-
ROM of the electronic book and gave assistance with LATEX. I am thankful to my
editor, JoAnn Heydron, for careful work, to Joe Stefani for detecting typographical
errors in mathematics, and to Diane Lau for office assistance.

Jon Claerbout
Stanford University
most final revisions in 1992
(electronic media keep changing)



Introduction

Prospecting for petroleum is a four-step process: (1) echo soundings are recorded;
(2) they are analyzed for reflections; (3) the reflections are interpreted as a geological
model; and (4) the prospect is tested by drilling. The first two stages, data acqui-
sition and analysis, are on a worldwide basis a multibillion-dollar-per-year activity.
This book describes only the echo soundings analysis. Together with my 1985 book,
Imaging the Earth’s Interior, it provides a complete introduction to echo soundings
analysis.

The subtitle of this book, Processing versus Inversion, places the book equidistant
from two approaches, one generally practical and industrial and the other generally
theoretical and academic. This book shows how the two approaches are related and
contribute to each other.

Adjoint processing defined

“Data processing” in earth soundings analysis could mean anything anybody does
to seismic data. A narrower definition is those processes that are routinely applied
in industry, such as those described in Oz Yilmaz’s book, Seismic Data Processing.
As we will see in chapter ?? of this book, much of echo soundings analysis can be
interpreted as the adjoint of seismogram modeling. Here we use the word “adjoint” in
the mathematical sense to mean the complex conjugate of the matrix transpose. Not
all processes can be accurately characterized as the adjoint to seismogram modeling,
but many can, including normal moveout, stacking, migration, dip moveout, and
more. Since these are the heavyweights of the industry, the simple word “processing”
can almost be understood to stand for “processing by adjoint modeling.” As we will
see, such processing applied to perfect data generally gives an imperfect result. This
imperfection leads thoughtful people to the concept of inversion.

Inversion defined

Principles of physics allow us to calculate synthetic data from earth models. Such
calculations are said to solve “forward” problems. In real life we are generally inter-
ested in the reverse calculation, i.e., computing earth models from data. This reverse

5



6

calculation is called “inversion.” The word “inversion” is derived from “matrix in-
version.” Despite its association with the well-known and well-defined mathematical
task of matrix inversion, echo sounding inversion is not simple and is often ill defined.
Inversion promises to give us an earth model from our data despite the likelihood
that our data is inaccurate and incomplete. This promise goes too far. Inversion
applied to perfect data, however, can give a perfect result, which makes inversion
more appealing academically than processing by adjoint modeling.

Processing versus inversion

Practical people often regard inversion theorists with suspicion, much as one might
regard those gripped by an exotic religion. There is not one theory of inversion of
seismic data, but many—maybe more theories than theoreticians. The inventors of
these theories are all ingenious, and some are illustrious, but many ignore the others’
work. How can this be science or engineering? The diversity of viewpoint arises
from the many practical problems that need to be solved, from the various ways that
noise can be modeled, from the incompleteness of data, and above all, from the many
approaches to simplifying the underlying model.

Practitioners too are a diverse group of shrewd and talented people, many illus-
trious in their highly competitive industry. As a group they have the advantage of
the “real world” as a helpful arbitrator. Why do they prefer a adjoint operator when
the correct answer, almost by definition, stems from the inverse? Adjoint process-
ing requires no more than the data one has actually collected. It requires no noise
model, never uses divisions so cannot divide by zero, and often uses only additions
(no subtractions) so cannot amplify small differences. Anyone taking the first step
beyond adjoint processing loses these supports. Unfortunately, adjoint operators han-
dle missing data as if it were zero-valued data. This is obviously wrong and is known
to limit resolution.

I hope to illuminate the gaps between theory and practice which are the heart
and soul of exploration seismology, as they are of any living science.

Fortunately there is a middle way between adjoint processing and inversion, and
this book is a guide to it. Adjoint processing and inversion stand at opposite ends
of the spectrum of philosophies of data processing, but, as we will see in chapter ??,
adjoint processing is also the first step of inversion. Whether the second and any
subsequent steps are worthwhile depends on circumstances.

The theme of this book is not developed in an abstract way but instead is drawn
from the details of many examples: normal moveout, stacking, velocity analysis,
several kinds of migration, missing data, tomography, deconvolution, and weighted
deconvolution. Knowing how processing relates to inversion suggests different oppor-
tunities in each case.



7

Linear inverse theory

In mathematical statistics is a well-established theory called “linear inverse the-
ory.” “Geophysical inverse theory” is similar, with the additions that (1) vari-
ables can be sample points from a continuum, and (2) physical problems are often
intractable without linearization. Once I imagined a book that would derive tech-
niques used in industry from general geophysical inverse theory. After thirty years of
experience I can report to you that very few techniques in routine practical use arise
directly from the general theory! There are many reasons for this, and I have chosen
to sprinkle them throughout discussion of the applications themselves rather than
attempt a revision to the general theory. I summarize here as follows: the computing
requirements of the general theory are typically unrealistic since they are proportional
to the cube of a huge number of variables, which are sample values representing a
continuum. Equally important, the great diversity of spatial and temporal aspects
of data and residuals (statistical nonstationarity) is impractical to characterize in
general terms.

Our route

Centrally, this book teaches how to recognize adjoint operators in physical processes
(chapter ??), and how to use those adjoints in model fitting (inversion) using least-
squares optimization and the technique of conjugate gradients (chapter ??).

First, however, we review convolution and spectra (chapter ??) discrete Fourier
transforms (chapter ??), and causality and the complex Z = eiω plane (chapter ??),
where poles are the mathematically forbidden points of zero division. In chapter ??
we travel widely, from the heaven of theoretically perfect results through a life of
practical results including poor results, sinking to the purgatory of instability, and
finally arriving at the “big bang” of zero division. Chapter ?? is a collection of
solved problems with a single unknown that illustrates the pitfalls and opportunities
that arise from weighting functions, zero division, and nonstationarity. Thus we are
prepared for the keystone chapter, chapter ??, where we learn to recognize the relation
of the linear operators we studied in chapters 1–3 to their adjoints, and to see how
computation of these adjoints is a straightforward adjunct to direct computation.
Also included in chapter ?? are interpolation, smoothing, and most of the many
operators that populate the world of exploration seismology. Thus further prepared,
we pass easily through the central theoretical concepts of least-squares optimization,
basic NMO stack, and deconvolution applications in chapter ??.

In chapter ?? we see the formulation and solution of many problems in time-series
analysis, prediction, and interpolation and learn more about mathematical formula-
tions that control stability. Chapter ?? shows how missing data can be estimated. Of
particular interest is a nonstationary world model where, locally in time and space,
the wave field fits the model of a small number of plane waves. Here we find “magical”
results: data that is apparently undersampled (spatially aliased) is recovered.



8

Hyperbolas are the reflection seismologist’s delight. My book Imaging the Earth’s
Interior could almost have been named Hyperbolas and the Earth. That book includes
many techniques for representing and deforming hyperbolas, especially using various
representations of the wave equation. Here I repeat a minimal part of that lore in
chapter ??. My goal is now to marry hyperbolas to the conjugate-gradient model-
fitting theme of this book.

Having covered a wide range of practical problems, we turn at last to more theo-
retical ones: spectra and phase (chapter ??), and sample spectra of random numbers
(chapter ??). I have begun revising three theoretical chapters from my first book,
Fundamentals of Geophysical Data Processing (hereinafter referred to as FGDP),
which is still in print. Since these revisions are not yet very extensive, I am excluding
the revised chapters from the current copy of this book. (My 1985 book, Imaging the
Earth’s Interior (hereinafter referred to as IEI), deserves revision in the light of the
conjugacy methods developed here, but that too lies in the future.)

Finally, every academic is entitled to some idiosyncrasies, and I find Jensen in-
equalities fascinating. These have an unproved relationship to practical echo analysis,
but I include them anyway in a brief concluding chapter.

0.1 References

Claerbout, J.F., 1985, Fundamentals of geophysical data processing: Blackwell Sci-
entific Publications.

Claerbout, J.F., 1985, Imaging the earth’s interior: Blackwell Scientific Publications.

Press, W.H. et al., 1989, Numerical recipes: the art of scientific computing: Cam-
bridge University Press.

Yilmaz, O., 1987, Seismic data processing: Society of Exploration Geophysicists.



Chapter 1

Convolution and Spectra

In human events, the word “convoluted” implies complexity. In science and engi-
neering, “convolution” refers to a combining equation for signals, waves, or images.
Although the combination may be complex, the convolution equation is an elemen-
tary one, ideally suited to be presented at the beginning of my long book on dissecting
observations. Intimately connected to convolution are the concepts of pure tones and
Fourier analysis.

Time and space are ordinarily thought of as continuous, but for the purposes of
computer analysis we must discretize these axes. This is also called “sampling” or
“digitizing.” You might worry that discretization is a practical evil that muddies
all later theoretical analysis. Actually, physical concepts have representations that
are exact in the world of discrete mathematics. In the first part of this book I will
review basic concepts of convolution, spectra, and causality, while using and teaching
techniques of discrete mathematics. By the time we finish with chapter 3, I think you
will agree with me that many subtle concepts are easier in the discrete world than in
the continuum.

1.1 SAMPLED DATA AND Z-TRANSFORMS

Consider the idealized and simplified signal in Figure 1.1. To analyze such an observed

Figure 1.1: A continuous signal
sampled at uniform time intervals.
(Press button for trivial interac-
tion with plot.) cs-triv1 [ER]

signal in a computer, it is necessary to approximate it in some way by a list of numbers.
The usual way to do this is to evaluate or observe b(t) at a uniform spacing of points

1



2 CHAPTER 1. CONVOLUTION AND SPECTRA

in time, call this discretized signal bt. For Figure 1.1, such a discrete approximation
to the continuous function could be denoted by the vector

bt = (. . . 0, 0, 1, 2, 0, −1, −1, 0, 0, . . .) (1.1)

Naturally, if time points were closer together, the approximation would be more
accurate. What we have done, then, is represent a signal by an abstract n-dimensional
vector.

Another way to represent a signal is as a polynomial, where the coefficients of the
polynomial represent the value of bt at successive times. For example,

B(Z) = 1 + 2Z + 0Z2 − Z3 − Z4 (1.2)

This polynomial is called a “Z-transform.” What is the meaning of Z here? Z
should not take on some numerical value; it is instead the unit-delay operator. For
example, the coefficients of ZB(Z) = Z + 2Z2 − Z4 − Z5 are plotted in Figure 1.2.

Figure 1.2: The coefficients
of ZB(Z) are the shifted ver-
sion of the coefficients of B(Z).
cs-triv2 [ER]

Figure 1.2 shows the same waveform as Figure 1.1, but now the waveform has been
delayed. So the signal bt is delayed n time units by multiplying B(Z) by Zn. The
delay operator Z is important in analyzing waves simply because waves take a certain
amount of time to move from place to place.

Another value of the delay operator is that it may be used to build up more
complicated signals from simpler ones. Suppose bt represents the acoustic pressure
function or the seismogram observed after a distant explosion. Then bt is called the
“impulse response.” If another explosion occurred at t = 10 time units after the
first, we would expect the pressure function y(t) depicted in Figure 1.3. In terms of
Z-transforms, this pressure function would be expressed as Y (Z) = B(Z)+Z10B(Z).

Figure 1.3: Response to two ex-
plosions. cs-triv3 [ER]

1.1.1 Linear superposition

If the first explosion were followed by an implosion of half-strength, we would have
B(Z) − 1

2
Z10B(Z). If pulses overlapped one another in time (as would be the case



1.1. SAMPLED DATA AND Z-TRANSFORMS 3

if B(Z) had degree greater than 10), the waveforms would simply add together in
the region of overlap. The supposition that they would just add together without
any interaction is called the “linearity” property. In seismology we find that—
although the earth is a heterogeneous conglomeration of rocks of different shapes and
types—when seismic waves travel through the earth, they do not interfere with one
another. They satisfy linear superposition. The plague of nonlinearity arises from
large amplitude disturbances. Nonlinearity is a dominating feature in hydrodynamics,
where flow velocities are a noticeable fraction of the wave velocity. Nonlinearity
is absent from reflection seismology except within a few meters from the source.
Nonlinearity does not arise from geometrical complications in the propagation path.
An example of two plane waves superposing is shown in Figure 1.4.

Figure 1.4: Crossing plane waves
superposing viewed on the left as
“wiggle traces” and on the right
as “raster.” cs-super [ER]

1.1.2 Convolution with Z-transform

Now suppose there was an explosion at t = 0, a half-strength implosion at t = 1,
and another, quarter-strength explosion at t = 3. This sequence of events determines
a “source” time series, xt = (1,−1

2
, 0, 1

4
). The Z-transform of the source is X(Z) =

1− 1
2
Z+ 1

4
Z3. The observed yt for this sequence of explosions and implosions through

the seismometer has a Z-transform Y (Z), given by

Y (Z) = B(Z)− Z

2
B(Z) +

Z3

4
B(Z)

=

(
1− Z

2
+
Z3

4

)
B(Z)

= X(Z)B(Z) (1.3)

The last equation shows polynomial multiplication as the underlying basis of time-
invariant linear-system theory, namely that the output Y (Z) can be expressed as the
input X(Z) times the impulse-response filter B(Z). When signal values are insignif-
icant except in a “small” region on the time axis, the signals are called “wavelets.”



4 CHAPTER 1. CONVOLUTION AND SPECTRA

There are many examples of linear systems. The one of most interest to us is
wave propagation in the earth. A simpler example, around which a vast literature
exists, is electronic filters. A cascade of filters is formed by taking the output of
one filter and plugging it into the input of another. Suppose we have two linear filters
characterized by B(Z) and C(Z). Then the question arises, illustrated in Figure 1.5,
as to whether the two combined filters are equivalent.

Figure 1.5: Two equivalent filter-
ing systems. cs-commute [NR]

The use of Z-transforms makes it obvious that these two systems are equivalent,
since products of polynomials commute, i.e.,

Y1(Z) = [X(Z)B(Z)]C(Z) = XBC

Y2(Z) = [X(Z)C(Z)]B(Z) = XCB = XBC (1.4)

1.1.3 Dissecting systems by factoring

Consider a system with an impulse response (2,−1,−1). Its Z-transform is B(Z) =
2−Z−Z2. This polynomial can be factored into 2−Z−Z2 = (2+Z) (1−Z). Thus
our original filter could be thought of as a cascade of two filters, (2, 1) and (1,−1).
Either of the two filters could be applied first and the other second: the output would
be the same. Since any polynomial can be factored, any impulse response can be
simulated by a cascade of two-term filters (impulse responses whose Z-transforms are
linear in Z).

1.1.4 Convolution equation and program

What do we actually do in a computer when we multiply two Z-transforms together?
The filter 2 + Z would be represented in a computer by the storage in memory of
the coefficients (2, 1). Likewise, for 1−Z, the numbers (1,−1) would be stored. The
polynomial multiplication program should take these inputs and produce the sequence
(2,−1,−1). Let us see how the computation proceeds in a general case, say

X(Z)B(Z) = Y (Z) (1.5)

(x0 + x1Z + x2Z
2 + · · ·) (b0 + b1Z + b2Z

2) = y0 + y1Z + y2Z
2 + · · · (1.6)

Identifying coefficients of successive powers of Z, we get

y0 = x0b0

y1 = x1b0 + x0b1



1.1. SAMPLED DATA AND Z-TRANSFORMS 5

y2 = x2b0 + x1b1 + x0b2 (1.7)

y3 = x3b0 + x2b1 + x1b2

y4 = x4b0 + x3b1 + x2b2

= · · · · · · · · · · · · · · · · · ·

In matrix form this looks like

y0

y1

y2

y3

y4

y5

y6


=



x0 0 0
x1 x0 0
x2 x1 x0

x3 x2 x1

x4 x3 x2

0 x4 x3

0 0 x4



 b0

b1

b2

 (1.8)

The following equation, called the “convolution equation,” carries the spirit of the
group shown in (1.7):

yk =
Nb∑
i=0

xk−ibi (1.9)

To be correct in detail when we associate equation (1.9) with the group (1.7), we
should also assert that either the input xk vanishes before k = 0 or Nb must be ad-
justed so that the sum does not extend before x0. These end conditions are expressed
more conveniently by defining j = k − i in equation (1.9) and eliminating k getting

yj+i =
Nb∑
i=0

xjbi (1.10)

A convolution program based on equation (1.10) including end effects on both ends,
is convolve().

# convolution: Y(Z) = X(Z) * B(Z)
#
subroutine convolve( nb, bb, nx, xx, yy )
integer nb # number of coefficients in filter
integer nx # number of coefficients in input

# number of coefficients in output will be nx+nb-1
real bb(nb) # filter coefficients
real xx(nx) # input trace
real yy(1) # output trace
integer ib, ix, iy, ny
ny = nx + nb -1
call null( yy, ny)
do ib= 1, nb

do ix= 1, nx
yy( ix+ib-1) = yy( ix+ib-1) + xx(ix) * bb(ib)

return; end

Some details of the Ratfor programming language are given in an appendix, along
with the subroutine zero() on page 294, which erases the space for the output.



6 CHAPTER 1. CONVOLUTION AND SPECTRA

1.1.5 Negative time

Notice that X(Z) and Y (Z) need not strictly be polynomials; they may contain both
positive and negative powers of Z, such as

X(Z) = · · ·+ x−2

Z2
+
x−1

Z
+ x0 + x1Z + · · · (1.11)

Y (Z) = · · ·+ y−2

Z2
+
y−1

Z
+ y0 + y1Z + · · · (1.12)

The negative powers of Z in X(Z) and Y (Z) show that the data is defined before
t = 0. The effect of using negative powers of Z in the filter is different. Inspection
of (1.9) shows that the output yk that occurs at time k is a linear combination of
current and previous inputs; that is, (xi, i ≤ k). If the filter B(Z) had included
a term like b−1/Z, then the output yk at time k would be a linear combination of
current and previous inputs and xk+1, an input that really has not arrived at time k.
Such a filter is called a “nonrealizable” filter, because it could not operate in the
real world where nothing can respond now to an excitation that has not yet occurred.
However, nonrealizable filters are occasionally useful in computer simulations where
all the data is prerecorded.

1.2 FOURIER SUMS

The world is filled with sines and cosines. The coordinates of a point on a spinning
wheel are (x, y) = (cos(ωt + φ), sin(ωt + φ)), where ω is the angular frequency of
revolution and φ is the phase angle. The purest tones and the purest colors are
sinusoidal. The movement of a pendulum is nearly sinusoidal, the approximation
going to perfection in the limit of small amplitude motions. The sum of all the tones
in any signal is its “spectrum.”

Small amplitude signals are widespread in nature, from the vibrations of atoms to
the sound vibrations we create and observe in the earth. Sound typically compresses
air by a volume fraction of 10−3 to 10−6. In water or solid, the compression is typically
10−6 to 10−9. A mathematical reason why sinusoids are so common in nature is that
laws of nature are typically expressible as partial differential equations. Whenever
the coefficients of the differentials (which are functions of material properties) are
constant in time and space, the equations have exponential and sinusoidal solutions
that correspond to waves propagating in all directions.

1.2.1 Superposition of sinusoids

Fourier analysis is built from the complex exponential

e−iωt = cosωt− i sinωt (1.13)



1.2. FOURIER SUMS 7

A Fourier component of a time signal is a complex number, a sum of real and imagi-
nary parts, say

B = <B + i=B (1.14)

which is attached to some frequency. Let j be an integer and ωj be a set of frequencies.
A signal b(t) can be manufactured by adding a collection of complex exponential
signals, each complex exponential being scaled by a complex coefficient Bj, namely,

b(t) =
∑
j

Bj e
−iωjt (1.15)

This manufactures a complex-valued signal. How do we arrange for b(t) to be
real? We can throw away the imaginary part, which is like adding b(t) to its complex
conjugate b(t), and then dividing by two:

< b(t) =
1

2

∑
j

(Bj e
−iωjt + B̄j e

iωjt) (1.16)

In other words, for each positive ωj with amplitude Bj , we add a negative −ωj with
amplitude B̄j (likewise, for every negative ωj ...). The Bj are called the “frequency
function,” or the “Fourier transform.” Loosely, the Bj are called the “spectrum,”
though technically, and in this book, the word “spectrum” should be reserved for the

product B̄jBj . The words “amplitude spectrum” universally mean
√
B̄jBj .

In practice, the collection of frequencies is almost always evenly spaced. Let j be
an integer ω = j ∆ω so that

b(t) =
∑
j

Bj e
−i(j∆ω)t (1.17)

Representing a signal by a sum of sinusoids is technically known as “inverse Fourier
transformation.” An example of this is shown in Figure 1.6.

1.2.2 Sampled time and Nyquist frequency

In the world of computers, time is generally mapped into integers too, say t = n∆t.
This is called “discretizing” or “sampling.” The highest possible frequency expressible
on a mesh is (· · · , 1,−1,+1,−1,+1,−1, · · ·), which is the same as eiπn. Setting
eiωmaxt = eiπn, we see that the maximum frequency is

ωmax =
π

∆t
(1.18)

Time is commonly given in either seconds or sample units, which are the same when
∆t = 1. In applications, frequency is usually expressed in cycles per second, which is
the same as Hertz, abbreviated Hz. In computer work, frequency is usually specified
in cycles per sample. In theoretical work, frequency is usually expressed in radians
where the relation between radians and cycles is ω = 2πf . We use radians because,
otherwise, equations are filled with 2π’s. When time is given in sample units, the
maximum frequency has a name: it is the “Nyquist frequency,” which is π radians
or 1/2 cycle per sample.



8 CHAPTER 1. CONVOLUTION AND SPECTRA

Figure 1.6: Superposition of two sinusoids. (Press button to activate program ed1D.
See appendix for details.) cs-cosines [NR]

1.2.3 Fourier sum

In the previous section we superposed uniformly spaced frequencies. Now we will
superpose delayed impulses. The frequency function of a delayed impulse at time
delay t0 is eiωt0 . Adding some pulses yields the “Fourier sum”:

B(ω) =
∑
n

bn e
iωtn =

∑
n

bn e
iωn∆t (1.19)

The Fourier sum transforms the signal bt to the frequency function B(ω). Time will
often be denoted by t, even though its units are sample units instead of physical
units. Thus we often see bt in equations like (1.19) instead of bn, resulting in an
implied ∆t = 1.

1.3 FOURIER AND Z-TRANSFORM

The frequency function of a pulse at time tn = n∆t is eiωn∆t = (eiω∆t)n. The factor
eiω∆t occurs so often in applied work that it has a name:

Z = eiω∆t (1.20)

With this Z, the pulse at time tn is compactly represented as Zn. The variable Z
makes Fourier transforms look like polynomials, the subject of a literature called



1.3. FOURIER AND Z-TRANSFORM 9

“Z-transforms.” The Z-transform is a variant form of the Fourier transform that is
particularly useful for time-discretized (sampled) functions.

From the definition (1.20), we have Z2 = eiω2∆t, Z3 = eiω3∆t, etc. Using these
equivalencies, equation (1.19) becomes

B(ω) = B(ω(Z)) =
∑
n

bn Z
n (1.21)

1.3.1 Unit circle

In this chapter, ω is a real variable, so Z = eiω∆t = cosω∆t+ i sinω∆t is a complex
variable. It has unit magnitude because sin2 + cos2 = 1. As ω ranges on the real axis,
Z ranges on the unit circle |Z| = 1. In chapter 3 we will see how the definition (1.20)
also applies for complex values of ω.

1.3.2 Differentiator

A particularly interesting factor is (1 − Z), because the filter (1,−1) is like a time
derivative. The time-derivative filter destroys zero frequency in the input signal.
The zero frequency is (· · · , 1, 1, 1, · · ·) with a Z-transform (· · ·+Z2 +Z3 +Z4 + · · ·).
To see that the filter (1− Z) destroys zero frequency, notice that (1− Z)(· · ·+Z2 +
Z3 +Z4 + · · ·) = 0. More formally, consider output Y (Z) = (1−Z)X(Z) made from
the filter (1−Z) and any input X(Z). Since (1−Z) vanishes at Z = 1, then likewise
Y (Z) must vanish at Z = 1. Vanishing at Z = 1 is vanishing at frequency ω = 0
because Z = exp(iω∆t) from (1.20). Now we can recognize that multiplication of two
functions of Z or of ω is the equivalent of convolving the associated time functions.

Multiplication in the frequency domain is convolution in the time domain.

A popular mathematical abbreviation for the convolution operator is an asterisk:
equation (1.9), for example, could be denoted by yt = xt∗bt. I do not disagree with
asterisk notation, but I prefer the equivalent expression Y (Z) = X(Z)B(Z), which
simultaneously exhibits the time domain and the frequency domain.

The filter (1−Z) is often called a “differentiator.” It is displayed in Figure 1.7.

The letter “z” plotted at the origin in Figure 1.7 denotes the root of 1 − Z at
Z = 1, where ω = 0. Another interesting filter is 1 + Z, which destroys the highest
possible frequency (1,−1, 1,−1, · · ·), where ω = π.

A root is a numerical value for which a polynomial vanishes. For example, 2 −
Z − Z2 = (2 + Z) (1 − Z) vanishes whenever Z = −2 or Z = 1. Such a root is
also called a “zero.” The fundamental theorem of algebra says that if the highest
power of Z in a polynomial is ZN , then the polynomial has exactly N roots, not
necessarily distinct. As N gets large, finding these roots requires a sophisticated



10 CHAPTER 1. CONVOLUTION AND SPECTRA

Figure 1.7: A discrete representation of the first-derivative operator. The filter (1,−1)
is plotted on the left, and on the right is an amplitude response, i.e., |1−Z| versus ω.
(Press button to activate program Zplane. See appendix for details.) cs-ddt [NR]

computer program. Another complication is that complex numbers can arise. We
will soon see that complex roots are exactly what we need to design filters that
destroy any frequency.

1.3.3 Gaussian examples

The filter (1 + Z)/2 is a running average of two adjacent time points. Applying this
filter N times yields the filter (1 + Z)N/2N . The coefficients of the filter (1 + Z)N

are generally known as Pascal’s triangle. For large N the coefficients tend to a
mathematical limit known as a Gaussian function, exp(−α(t − t0)2), where α and
t0 are constants that we will determine in chapter 11. We will not prove it here, but
this Gaussian-shaped signal has a Fourier transform that also has a Gaussian shape,
exp(−βω2). The Gaussian shape is often called a “bell shape.” Figure 1.8 shows an
example for N ≈ 15. Note that, except for the rounded ends, the bell shape seems a
good fit to a triangle function. Curiously, the filter (.75 + .25Z)N also tends to the

Figure 1.8: A Gaussian approximated by many powers of (1 + Z). cs-gauss [NR]

same Gaussian but with a different t0. A mathematical theorem (discussed in chapter
11) says that almost any polynomial raised to the N-th power yields a Gaussian.



1.3. FOURIER AND Z-TRANSFORM 11

In seismology we generally fail to observe the zero frequency. Thus the idealized
seismic pulse cannot be a Gaussian. An analytic waveform of longstanding popular-
ity in seismology is the second derivative of a Gaussian, also known as a “Ricker
wavelet.” Starting from the Gaussian and putting two more zeros at the origin with
(1− Z)2 = 1− 2Z + Z2 produces this old, favorite wavelet, shown in Figure 1.9.

Figure 1.9: Ricker wavelet. cs-ricker [NR]

1.3.4 Complex roots

We have seen how a simple two-term filter can destroy the zero frequency or the
Nyquist frequency. When we try to destroy any other frequency, we run into a new
difficulty—we will see complex-valued signals. Let Z0 take the complex value
Z0 = eiω0 , where ω0 is real. Further, choose ω0 = π/2 and as a result Z0 = i. So
the filter (1 − Z/Z0) = (1 + iZ) has the complex coefficients (1, i), and its output is
a complex-valued signal. Naturally this is annoying, because we usually prefer a real
output signal.

The way to avoid complex-valued signals is to handle negative frequency −ω0

the same way we handle ω0. To do this we use a filter with two roots, one at ω0

and one at −ω0. The filter (1 + iZ)(1 − iZ) = 1 + Z2 has real-valued time-domain
coefficients, namely, (1, 0, 1). The factor (1 + iZ) vanishes when Z = i or ω = π/2,
and (1− iZ) vanishes at ω = −π/2. Notice what happens when the filter (1, 0, 1) is
convolved with the time series bt = (· · · 1, 0,−1, 0, 1, 0,−1, · · ·): the output is zero at
all times. This is because bt is a sinusoid at the half-Nyquist frequency π/2, and the
filter (1, 0, 1) has zeros at plus and minus half-Nyquist.

Let us work out the general case for a root anywhere in the complex plane. Let
the root Z0 be decomposed into its real and imaginary parts:

Z0 = x+ iy = <Z0 + i=Z0 (1.22)

and let the root be written in a polar form:

Z0 =
eiω0

ρ
(1.23)



12 CHAPTER 1. CONVOLUTION AND SPECTRA

where ω0 and ρ are constants that can be derived from the constants <Z0 and =Z0

and vice versa. The conjugate root is Z0 = e−iω0/ρ. The combined filter is(
1− Z

Z0

) (
1− Z

Z0

)
= 1−

(
1

Z 0
+

1

Z0

)
Z +

Z2

Z0Z0

(1.24)

= 1 − 2ρ cosω0 Z + ρ2Z2 (1.25)

So the convolutional coefficients of this filter are the real values (1,−2ρ cosω0, ρ
2).

Taking ρ = 1, the filter completely destroys energy at frequency ω0. Other values of
ρ near unity suppress nearby frequencies without completely destroying them.

Recall that to keep the filter response real, any root on the positive ω-axis must
have a twin on the negative ω-axis. In the figures I show here, the negative axis is not
plotted, so we must remember the twin. Figure 1.10 shows a discrete approximation
to the second derivative. It is like (1− Z)2, but since both its roots are in the same

Figure 1.10: Approximation to the second difference operator (1,−2, 1). cs-ddt2
[NR]

place at Z = 1, I pushed them a little distance apart, one going to positive frequencies
and one to negative.

1.3.5 Inverse Z-transform

Fourier analysis is widely used in mathematics, physics, and engineering as a Fourier
integral transformation pair:

B(ω) =
∫ +∞

−∞
b(t) eiωt dt (1.26)

b̄(t) =
∫ +∞

−∞
B(ω) e−iωt dω (1.27)

These integrals correspond to the sums we are working with here except for some
minor details. Books in electrical engineering redefine eiωt as e−iωt. That is like
switching ω to −ω. Instead, we have chosen the sign convention of physics, which
is better for wave-propagation studies (as explained in IEI). The infinite limits on



1.3. FOURIER AND Z-TRANSFORM 13

the integrals result from expressing the Nyquist frequency in radians/second as
π/∆t. Thus, as ∆t tends to zero, the Fourier sum tends to the integral. When
we reach equation (1.31) we will see that if a scaling divisor of 2π is introduced into
either (1.26) or (1.27), then b(t) will equal b̄(t).

The Z-transform is always easy to make, but the Fourier integral could be difficult
to perform, which is paradoxical, because the transforms are really the same. To make
a Z-transform, we merely attach powers of Z to successive data points. When we
have B(Z), we can refer to it either as a time function or a frequency function. If
we graph the polynomial coefficients, then it is a time function. It is a frequency
function if we evaluate and graph the polynomial B(Z = eiω) for various frequencies
ω.

If the Z-transform amounts to attaching powers of Z to successive points of a time
function, then the inverse Z-transform must be merely identifying coefficients of
various powers of Z with different points in time. How can this mere “identification
of coefficients” be the same as the apparently more complicated operation of inverse
Fourier integration? Let us see. The inverse Fourier integral (1.27) for integer
values of time is

bt =
1

2π

∫ +π

−π
B(ω) e−iωt dω (1.28)

Substituting (1.21) into (1.28), we get

bt =
1

2π

∫ π

−π
(· · ·+ b−1e

−iω + b0 + b1e
+iω + · · ·) e−iωt dω (1.29)

Since sinusoids have as much area above the axis as below, the integration of einω

over −π ≤ ω < +π gives zero unless n = 0, that is,

1

2π

∫ π

−π
einω dω =

1

2π

∫ π

−π
(cosnω + i sinnω) dω

=

{
1 if n = 0
0 if n = non-zero integer

(1.30)

Of all the terms in the integrand (1.29), we see from (1.30) that only the term with
bt will contribute to the integral; all the rest oscillate and cancel. In other words, it is
only the coefficient of Z to the zero power that contributes to the integral, so (1.29)
reduces to

bt =
1

2π

∫ +π

−π
bt e

−i0 dω (1.31)

This shows how inverse Fourier transformation is just like identifying coefficients of
powers of Z. It also shows why the scale factor in equation (1.28) is 2π.

EXERCISES:

1 Let B(Z) = 1 + Z + Z2 + Z3 + Z4. Graph the coefficients of B(Z) as a function
of the powers of Z. Graph the coefficients of [B(Z)]2.



14 CHAPTER 1. CONVOLUTION AND SPECTRA

2 As ω moves from zero to positive frequencies, where is Z and which way does it
rotate around the unit circle, clockwise or counterclockwise?

3 Identify locations on the unit circle of the following frequencies: (1) the zero
frequency, (2) the Nyquist frequency, (3) negative frequencies, and (4) a frequency
sampled at 10 points per wavelength.

4 Given numerical constants <Z0 and =Z0, derive ω0 and ρ.

5 Sketch the amplitude spectrum of Figure 1.9 from 0 to 4π.

1.4 CORRELATION AND SPECTRA

The spectrum of a signal is a positive function of frequency that says how much
of each tone is present. The Fourier transform of a spectrum yields an interesting
function called an “autocorrelation,” which measures the similarity of a signal to
itself shifted.

1.4.1 Spectra in terms of Z-transforms

Let us look at spectra in terms of Z-transforms. Let a spectrum be denoted S(ω),
where

S(ω) = |B(ω)|2 = B(ω)B(ω) (1.32)

Expressing this in terms of a three-point Z-transform, we have

S(ω) = (b̄0 + b̄1e
−iω + b̄2e

−i2ω)(b0 + b1e
iω + b2e

i2ω) (1.33)

S(Z) =

(
b̄0 +

b̄1

Z
+
b̄2

Z2

)
(b0 + b1Z + b2Z

2) (1.34)

S(Z) = B
(

1

Z

)
B(Z) (1.35)

It is interesting to multiply out the polynomial B̄(1/Z) with B(Z) in order to examine
the coefficients of S(Z):

S(Z) =
b̄2b0

Z2
+

(b̄1b0 + b̄2b1)

Z
+ (b̄0b0 + b̄1b1 + b̄2b2) + (b̄0b1 + b̄1b2)Z + b̄0b2Z

2

S(Z) =
s−2

Z2
+
s−1

Z
+ s0 + s1Z + s2Z

2 (1.36)

The coefficient sk of Zk is given by

sk =
∑
i

b̄ibi+k (1.37)

Equation (1.37) is the autocorrelation formula. The autocorrelation value sk at lag
10 is s10. It is a measure of the similarity of bi with itself shifted 10 units in time.



1.4. CORRELATION AND SPECTRA 15

In the most frequently occurring case, bi is real; then, by inspection of (1.37), we see
that the autocorrelation coefficients are real, and sk = s−k.

Specializing to a real time series gives

S(Z) = s0 + s1

(
Z +

1

Z

)
+ s2

(
Z2 +

1

Z2

)
(1.38)

S(Z(ω)) = s0 + s1(eiω + e−iω) + s2(ei2ω + e−i2ω) (1.39)

S(ω) = s0 + 2s1 cosω + 2s2 cos 2ω (1.40)

S(ω) =
∑
k

sk cos kω (1.41)

S(ω) = cosine transform of sk (1.42)

This proves a classic theorem that for real-valued signals can be simply stated as
follows:

For any real signal, the cosine transform of the autocorrelation equals the mag-
nitude squared of the Fourier transform.

1.4.2 Two ways to compute a spectrum

There are two computationally distinct methods by which we can compute a spec-
trum: (1) compute all the sk coefficients from (1.37) and then form the cosine sum
(1.41) for each ω; and alternately, (2) evaluate B(Z) for some value of Z on the unit
circle, and multiply the resulting number by its complex conjugate. Repeat for many
values of Z on the unit circle. When there are more than about twenty lags, method
(2) is cheaper, because the fast Fourier transform discussed in chapter 9 can be used.

1.4.3 Common signals

Figure 1.11 shows some common signals and their autocorrelations. Figure 1.12
shows the cosine transforms of the autocorrelations. Cosine transform takes us from
time to frequency and it also takes us from frequency to time. Thus, transform
pairs in Figure 1.12 are sometimes more comprehensible if you interchange time and
frequency. The various signals are given names in the figures, and a description of
each follows:

cos The theoretical spectrum of a sinusoid is an impulse, but the sinusoid was trun-
cated (multiplied by a rectangle function). The autocorrelation is a sinusoid
under a triangle, and its spectrum is a broadened impulse (which can be shown
to be a narrow sinc-squared function).

sinc The sinc function is sin(ω0t)/(ω0t). Its autocorrelation is another sinc function,
and its spectrum is a rectangle function. Here the rectangle is corrupted slightly



16 CHAPTER 1. CONVOLUTION AND SPECTRA

Figure 1.11: Common signals and one side of their autocorrelations. cs-autocor
[ER]

Figure 1.12: Autocorrelations and their cosine transforms, i.e., the (energy) spectra
of the common signals. cs-spectra [ER]



1.4. CORRELATION AND SPECTRA 17

by “Gibbs sidelobes,” which result from the time truncation of the original
sinc.

wide box A wide rectangle function has a wide triangle function for an autocor-
relation and a narrow sinc-squared spectrum.

narrow box A narrow rectangle has a wide sinc-squared spectrum.

twin Two pulses.

2 boxes Two separated narrow boxes have the spectrum of one of them, but this
spectrum is modulated (multiplied) by a sinusoidal function of frequency, where
the modulation frequency measures the time separation of the narrow boxes.
(An oscillation seen in the frequency domain is sometimes called a “quefrency.”)

comb Fine-toothed-comb functions are like rectangle functions with a lower Nyquist
frequency. Coarse-toothed-comb functions have a spectrum which is a fine-
toothed comb.

exponential The autocorrelation of a transient exponential function is a double-
sided exponential function. The spectrum (energy) is a Cauchy function,
1/(ω2 + ω2

0). The curious thing about the Cauchy function is that the am-
plitude spectrum diminishes inversely with frequency to the first power; hence,
over an infinite frequency axis, the function has infinite integral. The sharp
edge at the onset of the transient exponential has much high-frequency energy.

Gauss The autocorrelation of a Gaussian function is another Gaussian, and the
spectrum is also a Gaussian.

random Random numbers have an autocorrelation that is an impulse surrounded
by some short grass. The spectrum is positive random numbers. For more
about random signals, see chapter 11.

smoothed random Smoothed random numbers are much the same as random num-
bers, but their spectral bandwidth is limited.

1.4.4 Spectra of complex-valued signals

The spectrum of a signal is the magnitude squared of the Fourier transform of the
function. Consider the real signal that is a delayed impulse. Its Z-transform is simply
Z; so the real part is cosω, and the imaginary part is sinω. The real part is thus an
even function of frequency and the imaginary part an odd function of frequency.
This is also true ofZ2 and any sum of powers (weighted by real numbers), and thus it is
true of any time function. For any real signal, therefore, the Fourier transform has an
even real part RE and an imaginary odd part IO. Taking the squared magnitude gives
(RE+iIO)(RE−iIO)= (RE)2 + (IO)2. The square of an even function is obviously
even, and the square of an odd function is also even. Thus, because the spectrum of a



18 CHAPTER 1. CONVOLUTION AND SPECTRA

real-time function is even, its values at plus frequencies are the same as its values at
minus frequencies. In other words, no special meaning should be attached to negative
frequencies. This is not so of complex-valued signals.

Although most signals which arise in applications are real signals, a discussion of
correlation and spectra is not mathematically complete without considering complex-
valued signals. Furthermore, complex-valued signals arise in many different con-
texts. In seismology, they arise in imaging studies when the space axis is Fourier
transformed, i.e., when a two-dimensional function p(t, x) is Fourier transformed over
space to P (t, kx). More generally, complex-valued signals arise where rotation occurs.
For example, consider two vector-component wind-speed indicators: one pointing
north, recording nt, and the other pointing west, recording wt. Now, if we make a
complex-valued time series vt = nt + iwt, the magnitude and phase angle of the com-
plex numbers have an obvious physical interpretation: +ω corresponds to rotation in
one direction (counterclockwise), and (−ω) to rotation in the other direction. To see
why, suppose nt = cos(ω0t + φ) and wt = − sin(ω0t + φ). Then vt = e−i(ω0t+φ). The
Fourier transform is

V (ω) =
∫ +∞

−∞
e−i(ω0t+φ)eiωtdt (1.43)

The integrand oscillates and averages out to zero, except for the frequency ω = ω0.
So the frequency function is a pulse at ω = ω0:

V (ω) = δ(ω − ω0)e−iφ (1.44)

Conversely, if wt were sin(ω0t + φ), then the frequency function would be a pulse at
−ω0, meaning that the wind velocity vector is rotating the other way.

1.4.5 Time-domain conjugate

A complex-valued signal such as eiω0t can be imagined as a corkscrew, where
the real and imaginary parts are plotted on the x- and y-axes, and time t runs down
the axis of the screw. The complex conjugate of this signal reverses the y-axis and
gives the screw an opposite handedness. In Z-transform notation, the time-domain
conjugate is written

B(Z) = b0 + b1e
iω + b2e

i2ω + · · · (1.45)

Now consider the complex conjugate of a frequency function. In Z-transform notation
this is written

B(ω) = B
(

1

Z

)
= b0 + b1e

−iω + b2e
−i2ω + · · · (1.46)

To see that it makes a difference in which domain we take a conjugate, contrast the
two equations (1.45) and (1.46). The function B( 1

Z
)B(Z) is a spectrum, whereas the

function bt bt is called an “envelope function.”



1.4. CORRELATION AND SPECTRA 19

For example, given complex-valued bt vanishing for t < 0, the composite filter
B(Z)B̄(Z) is a causal filter with a real time function, whereas the filter B(Z)B̄(1/Z)
is noncausal and also a real-valued function of time. (The latter filter would turn out
to be symmetric in time only if all bt were real.)

You might be tempted to think that Z = 1/Z, but that is true only if ω is real,
and often it is not. Chapter 3 is largely devoted to exploring the meaning of complex
frequency.

1.4.6 Spectral transfer function

Filters are often used to change the spectra of given data. With input X(Z), filters
B(Z), and output Y (Z), we have Y (Z) = B(Z)X(Z) and the Fourier conjugate
Y (1/Z) = B(1/Z)X(1/Z). Multiplying these two relations together, we get

Y Y = (BB)(XX) (1.47)

which says that the spectrum of the input times the spectrum of the filter equals the
spectrum of the output. Filters are often characterized by the shape of their spectra;
this shape is the same as the spectral ratio of the output over the input:

BB =
Y Y

XX
(1.48)

1.4.7 Crosscorrelation

The concept of autocorrelation and spectra is easily generalized to crosscorrela-
tion and cross-spectra. Consider two Z-transforms X(Z) and Y (Z). The cross-
spectrum C(Z) is defined by

C(Z) = X
(

1

Z

)
Y (Z) (1.49)

The crosscorrelation function is the coefficients ck. If some particular coefficient ck
in C(Z) is greater than any of the others, then it is said that the waveform xt most
resembles the waveform yt if either xt or yt is delayed k time units with respect to
the other.

1.4.8 Matched filtering

Figure 1.13 shows a deep-water seismogram where the bottom is unusually hard.
The second signal is the wavelet that results from windowing about the first water-
bottom reflection. Notice that the wavelet has a comparatively simple spectrum, its
principal feature being that it vanishes at low frequencies and high frequencies. The



20 CHAPTER 1. CONVOLUTION AND SPECTRA

Figure 1.13: Example of matched filtering with water-bottom reflection. Top shows
signals and bottom shows corresponding spectra. The result was time shifted to best
align with the input. cs-match [ER]

input has a spectrum that is like that of the wavelet, but multiplied by a fine-toothed
comb reminiscent of “cmb5” in Figure 1.12.

“Matched filtering” is crosscorrelating with a wavelet. Equivalently, it is con-
volving with the time-reversed wavelet. Matched filtering uses Y (Z) = F (1/Z)X(Z)
instead of Y (Z) = F (Z)X(Z). The third signal in Figure 1.13 shows the data cross-
correlated with the sea-floor reflection. Notice that the output sea-floor reflection is
symmetric like an autocorrelation function. Later bounces are crosscorrelations,
but they resemble the autocorrelation. Ideally, alternate water-bottom reflections
have alternating polarities. From the figure you can see that matched filtering
makes this idealization more apparent. An annoying feature of the matched filter is
that it is noncausal, i.e., there is an output before there is an input. You can see this
in Figure 1.13 just before the water-bottom reflection.

EXERCISES:

1 Suppose a wavelet is made up of complex numbers. Is the autocorrelation relation
sk = s−k true? Is sk real or complex? Is S(ω) real or complex?

2 If concepts of time and frequency are interchanged, what does the meaning of
spectrum become?

3 Suggest a reason why the spectrum of the wavelet in Figure 1.13 contains more
low-frequency energy than the whole seismogram.



1.4. CORRELATION AND SPECTRA 21

4 Suggest a reason why the spectrum of the wavelet in Figure 1.13 contains more
high-frequency energy than the whole seismogram.



312 CHAPTER 1. CONVOLUTION AND SPECTRA



Index

Z-transform, 2, 9
Z-transform

and Fourier transform, 8
inverse, 13

amplitude spectrum, 7
autocorrelation, 14, 15, 19, 20

cascade of filters, 4
Cauchy function, 17
comb, 17, 19
commute, 4
complex plane, 11
complex-valued signal, 7, 11, 18
conjugate signal in time-domain, 18
convolution, 1, 9
convolve subroutine, 5
corkscrew, 18
cross-spectrum, 19
crosscorrelate, 19, 20

deep-water seismogram, 19
differentiate, 9
digitizing, 1
double-sided exponential, 17

envelope, 18
even function, 17
exponential, 17
exponential

double-sided, 17

factor, 4
filter, 3
filter

matched, 19
nonrealizable, 6

Fourier integral, 12
Fourier integral

inverse, 13
Fourier sum, 8, 13
Fourier transform, 8
Fourier transform

and Z-transform, 8

Gaussian, 10, 17
Gibbs sidelobes, 15

Hertz, 7
Hz, 7

impulse response, 2
inverse Z-transform, 13

linearity, 3

matched filter, 19
mesh, 7

negative frequency, 11
nonlinearity, 3
nonrealizable, 6
Nyquist frequency, 7, 13

odd function, 17

Pascal’s triangle, 10
plane wave, 3
polarity, 20
polynomial multiplication, 3

quefrency, 17

radian, 7, 13
random, 17
realizable, 6
rectangle function, 17
Ricker wavelet, 11
root, 9
root

313



314 INDEX

two, 11

sampling, 1
sign convention, 12
signal

complex-valued, 18
sinc, 15
spectral ratio, 19
spectrum, 7, 14, 17
spectrum

amplitude, 7
cross, 19

subroutine
convolve, convolve, 5

superpose, 2, 3, 8

time-domain conjugate, 18

unit-delay operator, 2

wavelet, 3
wavelet

Ricker, 11

zero, 9
zero frequency, 9, 11



22



Chapter 2

Discrete Fourier transform

Happily, Fourier sums are exactly invertible: given the output, the input can be
quickly found. Because signals can be transformed to the frequency domain, manip-
ulated there, and then returned to the time domain, convolution and correlation can
be done faster. Time derivatives can also be computed with more accuracy in the fre-
quency domain than in the time domain. Signals can be shifted a fraction of the time
sample, and they can be shifted back again exactly. In this chapter we will see how
many operations we associate with the time domain can often be done better in the
frequency domain. We will also examine some two-dimensional Fourier transforms.

2.1 FT AS AN INVERTIBLE MATRIX

A Fourier sum may be written

B(ω) =
∑
t

bt e
iωt =

∑
t

bt Z
t (2.1)

where the complex value Z is related to the real frequency ω by Z = eiω. This Fourier
sum is a way of building a continuous function of ω from discrete signal values bt in
the time domain. In this chapter we will study the computational tricks associated
with specifying both time and frequency domains by a set of points. Begin with an
example of a signal that is nonzero at four successive instants, (b0, b1, b2, b3). The
transform is

B(ω) = b0 + b1Z + b2Z
2 + b3Z

3 (2.2)

The evaluation of this polynomial can be organized as a matrix times a vector, such
as 

B0

B1

B2

B3

 =


1 1 1 1
1 W W 2 W 3

1 W 2 W 4 W 6

1 W 3 W 6 W 9



b0

b1

b2

b3

 (2.3)

23



24 CHAPTER 2. DISCRETE FOURIER TRANSFORM

Observe that the top row of the matrix evaluates the polynomial at Z = 1, a point
where also ω = 0. The second row evaluates B1 = B(Z = W = eiω0), where ω0 is
some base frequency. The third row evaluates the Fourier transform for 2ω0, and the
bottom row for 3ω0. The matrix could have more than four rows for more frequencies
and more columns for more time points. I have made the matrix square in order to
show you next how we can find the inverse matrix. The size of the matrix in (1.3) is
N = 4. If we choose the base frequency ω0 and hence W correctly, the inverse matrix
will be 

b0

b1

b2

b3

 = 1/N


1 1 1 1
1 1/W 1/W 2 1/W 3

1 1/W 2 1/W 4 1/W 6

1 1/W 3 1/W 6 1/W 9



B0

B1

B2

B3

 (2.4)

Multiplying the matrix of (1.4) with that of (1.3), we first see that the diagonals
are +1 as desired. To have the off diagonals vanish, we need various sums, such as
1+W+W 2 +W 3 and 1+W 2+W 4 +W 6, to vanish. Every element (W 6, for example,
or 1/W 9) is a unit vector in the complex plane. In order for the sums of the unit
vectors to vanish, we must ensure that the vectors pull symmetrically away from the
origin. A uniform distribution of directions meets this requirement. In other words,
W should be the N-th root of unity, i.e.,

W =
N
√

1 = e2πi/N (2.5)

The lowest frequency is zero, corresponding to the top row of (1.3). The next-to-
the-lowest frequency we find by setting W in (1.5) to Z = eiω0 . So ω0 = 2π/N ; and
for (1.4) to be inverse to (1.3), the frequencies required are

ωk =
(0, 1, 2, . . . , N − 1) 2π

N
(2.6)

2.1.1 The Nyquist frequency

The highest frequency in equation (1.6), ω = 2π(N − 1)/N , is almost 2π. This
frequency is twice as high as the Nyquist frequency ω = π. The Nyquist frequency
is normally thought of as the “highest possible” frequency, because eiπt, for integer t,
plots as (· · · , 1,−1, 1,−1, 1,−1, · · ·). The double Nyquist frequency function, ei2πt, for
integer t, plots as (· · · , 1, 1, 1, 1, 1, · · ·). So this frequency above the highest frequency
is really zero frequency! We need to recall that B(ω) = B(ω − 2π). Thus, all the
frequencies near the upper end of the range (1.6) are really small negative frequencies.
Negative frequencies on the interval (−π, 0) were moved to interval (π, 2π) by the
matrix form of Fourier summation.

Figure 1.1 shows possible arrangements for distributing points uniformly around
the unit circle. Those circles labeled “even” and “odd” have even and odd numbers
of points on their perimeters. Zero frequency is the right edge of the circles, and



2.1. FT AS AN INVERTIBLE MATRIX 25

Figure 2.1: Possible arrange-
ments of uniformly spaced fre-
quencies. Nyquist frequency is at
the left edge of the circles and
zero frequency at the right edge.
dft-circles [ER]

Nyquist frequency is the left edge. Those circles labeled “nyq=1” have a point at the
Nyquist frequency, and those labeled “nyq=0” do not.

Rewriting equations (1.3) and (1.4) with different even values of N leads to ar-
rangements like the upper left circle in Figure 1.1. Rewriting with odd values of N
leads to arrangements like the lower right circle. Although the “industry standard”
is the upper-left arrangement, the two right-side arrangements are appealing for two
reasons: the Nyquist frequency is absent, and its time-domain equivalent, the jump
from large positive time to large negative time (a philosophical absurdity), is also
absent. We will be testing and evaluating all four arrangements in Figure 1.5.

2.1.2 Laying out a mesh

In theoretical work and in programs, the definition Z = eiω∆t is often simplified to
∆t = 1, leaving us with Z = eiω. How do we know whether ω is given in radians per
second or radians per sample? We may not invoke a cosine or an exponential unless
the argument has no physical dimensions. So where we see ω without ∆t, we know
it is in units of radians per sample.

In practical work, frequency is typically given in cycles or Hertz, f , rather than
radians, ω (where ω = 2πf). Here we will now switch to f . We will design a computer
mesh on a physical object (such as a waveform or a function of space). We often
take the mesh to begin at t = 0, and continue till the end tmax of the object, so the
time range trange = tmax. Then we decide how many points we want to use. This will
be the N used in the discrete Fourier-transform program. Dividing the range by the
number gives a mesh interval ∆t.

Now let us see what this choice implies in the frequency domain. We custom-
arily take the maximum frequency to be the Nyquist, either fmax = .5/∆t Hz or
ωmax = π/∆t radians/sec. The frequency range frange goes from −.5/∆t to .5/∆t. In
summary:



26 CHAPTER 2. DISCRETE FOURIER TRANSFORM

• ∆t = trange/N is time resolution.

• frange = 1/∆t = N/trange is frequency range.

• ∆f = frange/N = 1/trange is frequency resolution.

In principle, we can always increase N to refine the calculation. Notice that increasing
N sharpens the time resolution (makes ∆t smaller) but does not sharpen the frequency
resolution ∆f , which remains fixed. Increasing N increases the frequency range, but
not the frequency resolution.

What if we want to increase the frequency resolution? Then we need to choose
trange larger than required to cover our object of interest. Thus we either record
data over a larger range, or we assert that such measurements would be zero. Three
equations summarize the facts:

∆t frange = 1 (2.7)

∆f trange = 1 (2.8)

∆f ∆t =
1

N
(2.9)

Increasing range in the time domain increases resolution in the frequency domain
and vice versa. Increasing resolution in one domain does not increase resolution
in the other.

2.1.3 The comb function

Consider a constant function of time. In the frequency domain, it is an impulse at
zero frequency. The comb function is defined to be zero at alternate time points.
Multiply this constant function by the comb function. The resulting signal contains
equal amounts of two frequencies; half is zero frequency, and half is Nyquist frequency.
We see this in the second row in Figure 1.2, where the Nyquist energy is in the middle
of the frequency axis. In the third row, 3 out of 4 points are zeroed by another comb.
We now see something like a new Nyquist frequency at half the Nyquist frequency
visible on the second row.

2.1.4 Undersampled field data

Figure 1.3 shows a recording of an airgun along with its spectrum. The original
data is sampled at an interval of 4 milliseconds, which is 250 times per second. Thus,
the Nyquist frequency 1/(2∆t) is 125 Hz. Negative frequencies are not shown,
since the amplitude spectrum at negative frequency is identical with that at positive
frequency. Think of extending the top row of spectra in Figure 1.3 to range from



2.1. FT AS AN INVERTIBLE MATRIX 27

Figure 2.2: A zero-frequency func-
tion and its cosine transform.
Successive rows show increas-
ingly sparse sampling of the zero-
frequency function. dft-comb
[NR]

Figure 2.3: Raw data is shown on the top left, of about a half-second duration. Right
shows amplitude spectra (magnitude of FT). In successive rows the data is sampled
less densely. dft-undersample [ER]



28 CHAPTER 2. DISCRETE FOURIER TRANSFORM

minus 125 Hz to plus 125 Hz. Imagine the even function of frequency centered at
zero frequency—we will soon see it. In the second row of the plot, I decimated the
data to 8 ms. This drops the Nyquist frequency to 62.5 Hz. Energy that was at −10
Hz appears at 125−10 Hz in the second row spectrum. The appearance of what were
formerly small negative frequencies near the Nyquist frequency is called “folding” of
the spectrum. In the next row the data is sampled at 16 ms intervals, and in the last
row at 32 ms intervals. The 8 ms sampling seems OK, whereas the 32 ms sampling
looks poor. Study how the spectrum changes from one row to the next.

The spectrum suffers no visible harm in the drop from 4 ms to 8 ms. The 8 ms
data could be used to construct the original 4 ms data by transforming the 8 ms data
to the frequency domain, replacing values at frequencies above 125/2 Hz by zero, and
then inverse transforming to the time domain.

(Airguns usually have a higher frequency content than we see here. Some high-
frequency energy was removed by the recording geometry, and I also removed some
when preparing the data.)

2.2 INVERTIBLE SLOW FT PROGRAM

Because Fourier sums are exactly invertible, some other things we often require can
be done exactly by doing them in the frequency domain.

Typically, signals are real valued. But the programs in this chapter are for
complex-valued signals. In order to use these programs, copy the real-valued sig-
nal into a complex array, where the signal goes into the real part of the complex
numbers; the imaginary parts are then automatically set to zero.

There is no universally correct choice of scale factor in Fourier transform: choice
of scale is a matter of convenience. Equations (1.3) and (1.4) mimic the Z-transform,
so their scaling factors are convenient for the convolution theorem—that a product
in the frequency domain is a convolution in the time domain. Obviously, the scaling
factors of equations (1.3) and (1.4) will need to be interchanged for the complementary
theorem that a convolution in the frequency domain is a product in the time domain.
I like to use a scale factor that keeps the sums of squares the same in the time domain
as in the frequency domain. Since I almost never need the scale factor, it simplifies
life to omit it from the subroutine argument list. When a scaling program is desired,
we can use a simple one like scale() on page ??. Complex-valued data can be scaled
with scale() merely by doubling the value of n.

Fourier transform is just one of many transforms discussed in this book. In the case
of most other transforms, the number of output values is different than the number
of inputs. In addition, inverse transforms (and conjugate transforms), which will also
be represented in code included in this book, transform in reverse, outputs to inputs.
Finally, we will eventually combine transformations by addition or concatenation
(one occurring after the other). All these considerations are expressed in the simple



2.2. INVERTIBLE SLOW FT PROGRAM 29

program adjnull(), which erases output before we begin. adjnull() may seem like
too trivial a function to put in a library routine, but at last count, 15 other routines
in this book use it.

subroutine adjnull( adj, add, x, nx, y, ny )
integer ix, iy, adj, add, nx, ny
real x( nx), y( ny )
if( add == 0 )

if( adj == 0 )
do iy= 1, ny

y(iy) = 0.
else

do ix= 1, nx
x(ix) = 0.

return; end

2.2.1 The slow FT code

The slowft() routine exhibits features found in many physics and engineering pro-
grams. For example, the time-domain signal (which I call “tt()”), has nt values
subscripted, from tt(1) to tt(nt). The first value of this signal tt(1) is located
in real physical time at t0. The time interval between values is dt. The value of
tt(it) is at time t0+(it-1)*dt. I do not use “if” as a pointer on the frequency
axis because if is a keyword in most programming languages. Instead, I count along
the frequency axis with a variable named ie.

subroutine slowft( adj, add, nyq, t0,dt,nt,tt, f0,df, nf,ff)
integer it,ie, adj, add, nyq, nt, nf
complex cexp, cmplx, tt(nt), ff(nf)
real pi2, freq, time, scale, t0,dt, f0,df
call adjnull( adj, add, tt,2*nt, ff,2*nf)

pi2= 2. * 3.14159265; scale = 1./sqrt( 1.*nt)
df = (1./dt) / nf

if( nyq>0)
f0 = - .5/dt

else
f0 = - .5/dt + df/2.

do ie = 1, nf { freq= f0 + df*(ie-1)
do it = 1, nt { time= t0 + dt*(it-1)

if( adj == 0 )
ff(ie)= ff(ie) + tt(it) * cexp(cmplx(0., pi2*freq*time)) * scale

else
tt(it)= tt(it) + ff(ie) * cexp(cmplx(0.,-pi2*freq*time)) * scale

}}
return; end

The total frequency band is 2π radians per sample unit or 1/∆t Hz. Dividing the
total interval by the number of points nf gives ∆f . We could choose the frequencies
to run from 0 to 2π radians/sample. That would work well for many applications,



30 CHAPTER 2. DISCRETE FOURIER TRANSFORM

but it would be a nuisance for applications such as differentiation in the frequency
domain, which require multiplication by −iω including the negative frequencies as
well as the positive. So it seems more natural to begin at the most negative frequency
and step forward to the most positive frequency. Next, we must make a confusing
choice.

Refer to Figure 1.1. We could begin the frequency axis at the negative Nyquist,
−.5/∆tHz; then we would finish one point short of the positive Nyquist. This is shown
on the left two circles in Figure 1.1. Alternately, for the right two circles we could
shift by half a mesh interval, so the points would straddle the Nyquist frequency.
To do this, the most negative frequency would have to be −.5/∆t + ∆f/2 Hz. In
routine slowft() and in the test results, “nyq=1” is a logical statement that the
Nyquist frequency is in the dataset. Oppositely, if the Nyquist frequency is interlaced
by the given frequencies, then nyq=0. Finally, the heart of the program is to compute
either a Fourier sum, or its inverse, which uses the complex conjugate.

The routine ftlagslow() below simply transforms a signal to the Fourier domain,
multiplies by exp(iωt0), where t0 is some desired time lag, and then inverse transforms
to the time domain. Notice that if the negative Nyquist frequency is present, it is
treated as the average of the negative and positive Nyquist frequencies. If we do not
take special care to do this, we will be disappointed to find that the time derivative
of a real-time function develops an imaginary part.

subroutine ftlagslow( nyq, lag, t0,dt, n1, ctt)
integer nyq, n1, ie
real lag, t0, dt, f0, df, freq
complex ctt(n1), cexp, cmplx
temporary complex cff(n1)

call slowft( 0, 0, nyq, t0, dt, n1, ctt, f0, df, n1, cff)

do ie= 1, n1 { freq= f0 + (ie-1)*df
if( ie==1 && nyq > 0)

cff(1) = cff(1) * cos( 2.*3.14159265 * freq * lag )
else

cff(ie) = cff(ie) * cexp( cmplx(0., 2.*3.14159265 * freq * lag))
}

call slowft( 1, 0, nyq, t0, dt, n1, ctt, f0, df, n1, cff)

return; end

Figure 1.4 shows what happens when an impulse is shifted by various fractions of
a sample unit with subroutine ftlagslow(). Notice that during the delay, the edges
of the signals ripple—this is sometimes called the “Gibbs ripple.” You might find
these ripples annoying, but it is not easy to try to represent an impulse halfway
between two mesh points. You might think of doing so with (.5, .5), but that lacks
the high frequencies of an ideal impulse.

The routine ftderivslow() below is the Fourier-domain routine for computing a
time derivative by multiplying in the frequency domain by −iω.



2.2. INVERTIBLE SLOW FT PROGRAM 31

Figure 2.4: An impulse function
delayed various fractions of a mesh
point. Pushbutton for interaction
(experimental). dft-delay [ER]

subroutine ftderivslow( nyq, t0,dt, ntf, ctt, cdd)
integer nyq, ntf, ie
real t0,dt,f0,df, freq
complex ctt(ntf), cdd(ntf), cmplx
temporary complex cff(ntf)
call slowft( 0, 0, nyq, t0, dt, ntf, ctt, f0, df, ntf, cff)

do ie= 1, ntf { freq= f0+(ie-1)*df
cff(ie) = cff(ie) * cmplx( 0., - 2. * 3.141549265 * freq )
}

if( nyq > 0 ) # if( omega0 == -pi/dt)
cff(1) = 0.

call slowft( 1, 0, nyq, t0, dt, ntf, cdd, f0, df, ntf, cff)
return; end

2.2.2 Truncation problems

When real signals are transformed to the frequency domain, manipulated there, and
then transformed back to the time domain, they will no longer be completely real.
There will be a tiny noise in the imaginary part due to numerical roundoff. The size
of the imaginary part, theoretically zero, is typically about 10−6 of the real part. This
is also about the size of the error on the real part of a signal after inverse transform.
It is almost always much smaller than experimental errors and is of little consequence.
As a check, I viewed these near-zero imaginary parts, but I do not show them here.

A more serious error is a relative one of about 1/N on an N-point signal. This
arises from insufficient care in numerical analysis, especially associated with the ends
of the time or frequency axis. To show end effects, I will print some numbers
resulting from processing very short signals with slowft() on page 7. Below I show
first the result that a transform followed by an inverse transform gives the original
signal. I display this for both even and odd lengths of data, and for the two Nyquist
arrangements as well.



32 CHAPTER 2. DISCRETE FOURIER TRANSFORM

Inversion: You should see (2,1,0,0)
nyq=0 2.00 1.00 0.00 0.00
nyq=1 2.00 1.00 0.00 0.00
nyq=0 2.00 1.00 0.00 0.00 0.00
nyq=1 2.00 1.00 0.00 0.00 0.00

Second, I display the result of a test of the convolution theorem by convolving
(2, 1) with (1,−1). We see that the scale factor varies with the data size because we
are using the energy-conserving FT, instead of equations (1.3) and (1.4). No problems
yet.

Convolution theorem: Proportional to (0,2,-1,-1,0,0,0,0)
nyq=0 0.00 0.89 -0.45 -0.45 0.00
nyq=1 0.00 0.89 -0.45 -0.45 0.00
nyq=0 0.00 0.82 -0.41 -0.41 0.00 0.00
nyq=1 0.00 0.82 -0.41 -0.41 0.00 0.00

The third test is delaying a signal by two samples using ftlagslow() on page 8.
Here the interesting question is what will happen at the ends of the data sample.
Sometimes what shifts off one end shifts back in the other end: then the signal space
is like the perimeter of a circle. Surprisingly, another aggravating possibility exists.
What shifts off one end can return in the other end with opposite polarity. When
this happens, a figure like 1.4 looks much rougher because of the discontinuity at the
ends. Even if there is no physical signal at the ends, the ripple we see in Figure 1.4
reaches the ends and worsens. (Recall that nyq=1 means the Nyquist frequency is
included in the spectrum, and that nyq=0 means it is interlaced.)

Delay tests:
In 11.0 12.0 13.0 14.0 15.0 16.0 17.0
Out n=7 nyq=0 16.0 17.0 11.0 12.0 13.0 14.0 15.0
Out n=7 nyq=1 -16.0 -17.0 11.0 12.0 13.0 14.0 15.0
Out n=6 nyq=0 -15.0 -16.0 11.0 12.0 13.0 14.0
Out n=6 nyq=1 15.0 16.0 11.0 12.0 13.0 14.0

The fourth test is to do a time derivative in the frequency domain with subroutine
ftderivslow() on page 8. Here we do not have quite so clear an idea of what to
expect. The natural position for a time derivative is to interlace the original data
points. When we make the time derivative by multiplying in the frequency domain
by −iω, however, the derivative does not interlace the original mesh, but is on the
same mesh. The time derivative of the small pulse we see here is the expected doublet
aligned on the original mesh, and it has some unexpected high-frequency ripple that
drops off slowly. The ripple resembles that on a pulse shifted half a mesh point, as in
Figure 1.4. It happens that this rippling signal is an accurate representation of the
derivative in many examples where such mesh alignment is needed, so (as with time
shift) the ripple is worth having. Here again, we notice that there is an unfortunate
transient on the ends of the data on two of the tests. But in two of the four tests
below, the transient is so huge that it overwhelms the derivative of the small pulse in
the middle of the signal.



2.2. INVERTIBLE SLOW FT PROGRAM 33

Derivative tests:
In 10.0 10.0 10.0 10.0 12.0 10.0 10.0 10.0 10.0
Out n=9 nyq=0 -0.7 0.8 -1.1 2.0 0.0 -2.0 1.1 -0.8 0.7
Out n=9 nyq=1 13.5 -5.1 2.0 0.7 0.0 -0.7 -2.0 5.1 -13.5
Out n=8 nyq=0 13.2 -5.7 3.5 -1.9 3.9 -6.6 7.6 -14.8
Out n=8 nyq=1 0.0 0.3 -0.8 1.9 0.0 -1.9 0.8 -0.3

Examining all the tests, we conclude that if the data has an even number of points,
it is best to include the Nyquist frequency in the frequency-domain representation.
If the data has an odd number of points, it is better to exclude the Nyquist frequency
by interlacing it. A more positive way of summarizing our results is that the zero
frequency should always be present. Given this conclusion, the next question is
whether we should choose to use an even or an odd number of points.

The disadvantage of an even number of data values is that the programs that
do frequency-domain manipulations will always need to handle Nyquist as a special
case. The value at the Nyquist frequency must be handled as if half of it were at
plus Nyquist and the other half at minus Nyquist. The Nyquist aggravation will
get worse in two dimensions, where we have corners as well as edges. Figure 1.5

Figure 2.5: Evaluation of vari-
ous arrangements of frequencies.
dft-circeval [ER]

reproduces the four arrangements in Figure 1.1 along with a one-word summary of
the suitability of each arrangement: “standard” for the standard arrangement, “risky”
for arrangements that have end effects that are likely to be undesirable, and “best” for
the arrangement that involves no risky end effects and no pesky Nyquist frequency.

Later in this chapter we will see the importance of using a fast FT program—one
which is orders of magnitude faster than slowft() on page 7. Unfortunately, among
fast FT programs, I could not find one for an odd-length transform that is suitable
for printing here, since odd-length FT programs seem to be many pages in length.
So further applications in this book will use the even-length program. As a result,
we will always need to fuss with the Nyquist frequency, making use of the frequency
arrangement labeled “standard” and not that labeled “best.”



34 CHAPTER 2. DISCRETE FOURIER TRANSFORM

A discrete Fourier-transform program designed for an odd number of points would
make applications somewhat simpler. Alas, there seems to be no program for odd-
length transforms that is both simple and fast.

2.2.3 FT by Z-transform

The program slowft() is unnecessarily slow, requiring us to compute a complex
exponential at each step. By reorganizing easily using the Z-transform, the compu-
tational load can be reduced by about a factor of five (from a complex exponential
to a complex multiply) at every step.

For simplicity we consider a signal that is only four points long:

B(ω) = b0 + b1Z + b2Z
2 + b3Z

3 (2.10)

Reorganizing the polynomial (1.10) by nesting gives

B(ω) = b0 + Z(b1 + Z(b2 + Z(b3))) (2.11)

A subroutine for evaluating B(ω) in this way is polyft().

# Fourier transform by polynomial evaluation.
subroutine polyft( nt,tt, nw,cww )
integer nt # number of points in the time domain
integer nw # number of points in the fourier transform
real tt(nt) # sampled function of time
complex cww(nw) # sampled fourier transform

integer it, iw
real omega
complex cz, cw
do iw= 1, nw {

omega = 3.14159265 * (iw-1.) / ( nw-1.)
cz = cexp( cmplx( 0., omega ) )
cw = tt(nt)
do it= nt-1, 1, -1 # loop runs backwards

cw = cw * cz + tt(it)
cww(iw) = cw
}

return; end

2.3 SYMMETRIES

Next we examine odd/even symmetries to see how they are affected in Fourier
transform. The even part et of a signal bt is defined as

et =
bt + b−t

2
(2.12)



2.3. SYMMETRIES 35

The odd part is

ot =
bt − b−t

2
(2.13)

By adding (1.12) and (1.13), we see that a function is the sum of its even and odd
parts:

bt = et + ot (2.14)

Consider a simple, real, even signal such as (b−1, b0, b1) = (1, 0, 1). Its transform
Z + 1/Z = eiω + e−iω = 2 cosω is an even function of ω, since cosω = cos(−ω).

Consider the real, odd signal (b−1, b0, b1) = (−1, 0, 1). Its transform Z − 1/Z =
2i sinω is imaginary and odd, since sinω = − sin(−ω).

Likewise, the transform of the imaginary even function (i, 0, i) is the imaginary
even function i2 cosω. Finally, the transform of the imaginary odd function (−i, 0, i)
is real and odd.

Let r and i refer to real and imaginary, e and o to even and odd, and lower-case
and upper-case letters to time and frequency functions. A summary of the symmetries
of Fourier transform is shown in Figure 1.6.

Figure 2.6: Odd functions swap
real and imaginary. Even func-
tions do not get mixed up with
complex numbers. dft-reRE
[NR]

More elaborate signals can be made by adding together the three-point functions
we have considered. Since sums of even functions are even, and so on, the diagram
in Figure 1.6 applies to all signals. An arbitrary signal is made from these four parts
only, i.e., the function has the form bt = (re + ro)t + i(ie + io)t. On transformation of
bt, each of the four individual parts transforms according to the table.

Most “industry standard” methods of Fourier transform set the zero frequency as
the first element in the vector array holding the transformed signal, as implied by
equation (1.3). This is a little inconvenient, as we saw a few pages back. The Nyquist
frequency is then the first point past the middle of the even-length array, and the
negative frequencies lie beyond. Figure 1.7 shows an example of an even function
as it is customarily stored.

2.3.1 Plot interpretation

Now we will get away from the ends and think about what is in the middle of signals.
Figure 1.7 shows even functions in both time and frequency domains. This figure was



36 CHAPTER 2. DISCRETE FOURIER TRANSFORM

Figure 2.7: Even functions as customarily stored by “industry standard” FT pro-
grams. dft-even [NR]

computed with the matrix equations (1.3) and (1.4). Displaying both the left and
right halves of each function wastes half the paper; equivalently, for a fixed amount
of paper, it wastes half the resolution. Typically, only the left half of each function
is displayed. Accepting this form of display, we receive a bonus: each figure can be
interpreted in two more ways.

Since imaginary parts are not shown, they are arbitrary. If you see only half of
an axis, you cannot tell whether the function is even or odd or neither. A frequently
occurring function is the “causal” function, i.e., the function that vanishes for t < 0.
Its even part cancels its odd part on t < 0. The ro transforms to an IO, which, being
imaginary, is not shown.

The third interpretation of these displays is that the frequency function is one-
sided, and the time signal is complex. Such signals are called “analytic signals.”
For analytic signals, RE extinguishes RO at negative ω, and the imaginary even part,
ie, is not displayed.

In summary, plots that show only half the axes can be correctly interpreted in
three ways:

left side right side
even[<f(t)] even[<F (ω)]
< causal(t) <F (ω)
<f(t) < OneSided(ω)

How can we compute these invisible imaginary parts? Their computation is called
“Hilbert transform.” Briefly, the Hilbert transform takes a cosinusoidal signal (like
the real part of the FT of a delayed impulse, i.e., <eiωt0) and converts it to a sinusoidal
signal of the same amplitude (like the imaginary part of a delayed impulse, =eiωt0).



2.4. SETTING UP THE FAST FOURIER TRANSFORM 37

2.3.2 Convolution in the frequency domain

Let Y (Z) = X(Z)B(Z). The coefficients yt can be found from the coefficients xt and
bt by convolution in the time domain or by multiplication in the frequency domain.
For the latter, we would evaluate both X(Z) and B(Z) at uniform locations around
the unit circle, i.e., compute Fourier sums Xk and Bk from xt and bt. Then we would
form Ck = XkBk for all k, and inverse Fourier transform to yt. The values yt come out
the same as by the time-domain convolution method, roughly that of our calculation
precision (typically four-byte arithmetic or about one part in 10−6). The only way
in which you need to be cautious is to use zero padding greater than the combined
lengths of xt and bt.

An example is shown in Figure 1.8. It is the result of a Fourier-domain compu-
tation which shows that the convolution of a rectangle function with itself gives a
triangle. Notice that the triangle is clean—there are no unexpected end effects.

Figure 2.8: Top shows a rectan-
gle transformed to a sinc. Bot-
tom shows the sinc squared,
back transformed to a triangle.
dft-box2triangle [NR]

Because of the fast method of Fourier transform described next, the frequency-
domain calculation is quicker when both X(Z) and B(Z) have more than roughly 20
coefficients. If either X(Z) or B(Z) has less than roughly 20 coefficients, then the
time-domain calculation is quicker.

2.4 SETTING UP THE FAST FOURIER TRANSFORM

Typically we Fourier transform seismograms about a thousand points long. Under
these conditions another Fourier summation method works about a hundred times
faster than those already given. Unfortunately, the faster Fourier transform program
is not so transparently clear as the programs given earlier. Also, it is slightly less
flexible. The speedup is so overwhelming, however, that the fast program is always
used in routine work.

Flexibility may be lost because the basic fast program works with complex-valued
signals, so we ordinarily convert our real signals to complex ones (by adding a zero
imaginary part). More flexibility is lost because typical fast FT programs require the
data length to be an integral power of 2. Thus geophysical datasets often have zeros
appended (a process called “zero padding”) until the data length is a power of 2.
From time to time I notice clumsy computer code written to deduce a number that
is a power of 2 and is larger than the length of a dataset. An answer is found by



38 CHAPTER 2. DISCRETE FOURIER TRANSFORM

rounding up the logarithm to base 2. The more obvious and the quicker way to get
the desired value, however, is with the simple Fortran function pad2().

integer function pad2( n )
integer n
pad2 = 1
while( pad2 < n )

pad2 = pad2 * 2
return; end

How fast is the fast Fourier transform method? The answer depends on the size
of the data. The matrix times vector operation in (1.3) requires N2 multiplications
and additions. That determines the speed of the slow transform. For the fast method
the number of adds and multiplies is proportional to N log2N . Since 210 = 1024, the
speed ratio is typically 1024/10 or about 100. In reality, the fast method is not quite
that fast, depending on certain details of overhead and implementation. In 1987 I
tested the three programs on a 1024-point real signal and found times

slowft 153s
polyft 36s
ftu .7s

Below is ftu(), a version of the fast Fourier transform program. There are
many versions of the program—I have chosen this one for its simplicity. Considering
the complexity of the task, it is remarkable that no auxiliary memory vectors are
required; indeed, the output vector lies on top of the input vector. To run this
program, your first step might be to copy your real-valued signal into a complex-
valued array. Then append enough zeros to fill in the remaining space.

subroutine ftu( signi, nx, cx )
# complex fourier transform with unitary scaling
#
# 1 nx signi*2*pi*i*(j-1)*(k-1)/nx
# cx(k) = -------- * sum cx(j) * e
# sqrt(nx) j=1 for k=1,2,...,nx=2**integer
#
integer nx, i, j, k, m, istep, pad2
real signi, scale, arg
complex cx(nx), cmplx, cw, cdel, ct
if( nx != pad2(nx) ) call erexit(’ftu: nx not a power of 2’)
scale = 1. / sqrt( 1.*nx)
do i= 1, nx

cx(i) = cx(i) * scale
j = 1; k = 1
do i= 1, nx {

if (i<=j) { ct = cx(j); cx(j) = cx(i); cx(i) = ct }
m = nx/2
while (j>m && m>1) { j = j-m; m = m/2 } # "&&" means .AND.
j = j+m



2.4. SETTING UP THE FAST FOURIER TRANSFORM 39

}
repeat {

istep = 2*k; cw = 1.; arg = signi*3.14159265/k
cdel = cmplx( cos(arg), sin(arg))
do m= 1, k {

do i= m, nx, istep
{ ct=cw*cx(i+k); cx(i+k)=cx(i)-ct; cx(i)=cx(i)+ct }

cw = cw * cdel
}

k = istep
if(k>=nx) break
}

return; end

The following two lines serve to Fourier transform a vector of 1024 complex-valued
points, and then to inverse Fourier transform them back to the original data:

call ftu( 1., 1024, cx)

call ftu( -1., 1024, cx)

An engineering reference given at the end of this chapter contains many other
versions of the FFT program. One version transforms real-valued signals to complex-
valued frequency functions in the interval 0 ≤ ω < π. Others that do not transform
data on top of itself may be faster with specialized computer architectures.

EXERCISES:

1 Consider an even time function that is constant for all frequencies less than ω0

and zero for all frequencies above ω0. What is the rate of decay of amplitude with
time for this function?

2 Waves spreading from a point source decay in energy as the area on a sphere. The
amplitude decays as the square root of energy. This implies a certain decay in
time. The time-decay rate is the same if the waves reflect from planar interfaces.
To what power of time t do the signal amplitudes decay? For waves backscattered
to the source from point reflectors, energy decays as distance to the minus fourth
power. What is the associated decay with time?

2.4.1 Shifted spectra

Customarily, FT programs store frequencies in the interval 0 ≤ ω < 2π. In some
applications the interval −π ≤ ω < π is preferable, and here we will see how this shift
in one domain can be expressed as a product in the other domain. First we examine



40 CHAPTER 2. DISCRETE FOURIER TRANSFORM

shifting by matrix multiplication. A single unit shift, wrapping the end value around
to the beginning, is 

B3

B0

B1

B2

 =


. . . 1
1 . . .
. 1 . .
. . 1 .



B0

B1

B2

B3

 (2.15)

You might recognize that equation (1.15) convolves a wavelet with a delayed impulse,
where the bottom of the matrix is wrapped back in to the top to keep the output the
same length as the input. For this 4× 4 matrix, shifting one more point does the job
of switching the high and low frequencies:

B2

B3

B0

B1

 =


. . 1 .
. . . 1
1 . . .
. 1 . .



B0

B1

B2

B3

 (2.16)

We are motivated to seek an algebraic identity for the 4×4 matrix which represents the
fact that convolution in the time domain is multiplication in the frequency domain.
To this end we will look at the converse theorem, that multiplication in the time
domain does shifting in the frequency domain. On the left of equation (1.17) is the
operation that first transforms from time to frequency and then swaps high and low
frequencies. On the right is the operation that weights in the time domain, and then
Fourier transforms. To verify the equation, multiply the matrices and simplify with
W 4 = 1 to throw out all powers greater than 3.
. . 1 .
. . . 1
1 . . .
. 1 . .




1 1 1 1
1 W W 2 W 3

1 W 2 W 4 W 6

1 W 3 W 6 W 9

 =


1 1 1 1
1 W W 2 W 3

1 W 2 W 4 W 6

1 W 3 W 6 W 9




1 . . .
. W 2 . .
. . W 4 .
. . . W 6


(2.17)

For an FT matrix of arbitrary size N , the desired shift isN/2, so values at alternate
points in the time axis are multiplied by −1. A subroutine for that purpose is fth().

# FT a vector in a matrix, with first omega = - pi
#
subroutine fth( adj,sign, m1, n12, cx)
integer i, adj, m1, n12
real sign
complex cx(m1,n12)
temporary complex temp(n12)
do i= 1, n12

temp(i) = cx(1,i)
if( adj == 0) { do i= 2, n12, 2

temp(i) = -temp(i)
call ftu( sign, n12, temp)



2.5. TWO-DIMENSIONAL FT 41

}
else { call ftu( -sign, n12, temp)

do i= 2, n12, 2
temp(i) = -temp(i)

}
do i= 1, n12

cx(1,i) = temp(i)
return; end

To Fourier transform a 1024-point complex vector cx(1024) and then inverse trans-
form it, you would

call fth( 0, 1., 1, 1024, 1, cx)

call fth( 1, 1., 1, 1024, 1, cx)

You might wonder about the apparent redundancy of using both the argument conj
and the argument sign. Having two arguments instead of one allows us to define the
forward transform for a time axis with the opposite sign as the forward transform
for a space axis. The subroutine fth() is somewhat cluttered by the inclusion of
a frequently needed practical feature—namely, the facility to extract vectors from a
matrix, transform the vectors, and then restore them into the matrix.

2.5 TWO-DIMENSIONAL FT

The program fth() is set up so that the vectors transformed can be either rows or
columns of a two-dimensional array. To see how this works, recall that in Fortran a
matrix allocated as (n1,n2) can be subscripted as a matrix (i1,i2) or as a long vec-
tor (i1 + n1*(i2-1),1), and call sub(x(i1,i2)) passes the subroutine a pointer
to the (i1,i2) element. To transform an entire axis, the subroutines ft1axis() and
ft2axis() are given. For a two-dimensional FT, we simply call both ft1axis() and
ft2axis() in either order.

# 1D Fourier transform on a 2D data set along the 1-axis
#
subroutine ft1axis( adj, sign1, n1,n2, cx)
integer i2, adj, n1,n2
complex cx(n1,n2)
real sign1
do i2= 1, n2

call fth( adj, sign1, 1,n1, cx(1,i2))
return; end

# 1D Fourier transform on a 2D data set along the 2-axis
#
subroutine ft2axis( adj, sign2, n1,n2, cx)



42 CHAPTER 2. DISCRETE FOURIER TRANSFORM

integer i1, adj, n1,n2
complex cx(n1,n2)
real sign2
do i1= 1, n1

call fth( adj, sign2, n1,n2, cx(i1,1))
return; end

I confess that there are faster ways to do things than those I have shown you
above. When we are doing many FTs, for example, the overhead calculations done
the first time should be saved for use on subsequent FTs, as in the subroutine rocca()
included in IEI. Further, manufacturers of computers for heavy numerical use gener-
ally design special FT codes for their architecture. Although the basic fast FT used
here ingeniously stores its output on top of its input, that feature is not compatible
with vectorizing architectures.

2.5.1 Basics of two-dimensional Fourier transform

Before going any further, let us review some basic facts about two-dimensional
Fourier transform. A two-dimensional function is represented in a computer as
numerical values in a matrix, whereas a one-dimensional Fourier transform in a com-
puter is an operation on a vector. A 2-D Fourier transform can be computed by a
sequence of 1-D Fourier transforms. We can first transform each column vector of the
matrix and then each row vector of the matrix. Alternately, we can first do the rows
and later do the columns. This is diagrammed as follows:

p(t, x) ←→ P (t, kx)xy xy
P (ω, x) ←→ P (ω, kx)

The diagram has the notational problem that we cannot maintain the usual con-
vention of using a lower-case letter for the domain of physical space and an upper-case
letter for the Fourier domain, because that convention cannot include the mixed ob-
jects P (t, kx) and P (ω, x). Rather than invent some new notation, it seems best to
let the reader rely on the context: the arguments of the function must help name the
function.

An example of two-dimensional Fourier transforms on typical deep-ocean
data is shown in Figure 1.9. In the deep ocean, sediments are fine-grained and deposit
slowly in flat, regular, horizontal beds. The lack of permeable rocks such as sand-
stone severely reduces the potential for petroleum production from the deep ocean.
The fine-grained shales overlay irregular, igneous, basement rocks. In the plot of
P (t, kx), the lateral continuity of the sediments is shown by the strong spectrum at
low kx. The igneous rocks show a kx spectrum extending to such large kx that the



2.5. TWO-DIMENSIONAL FT 43

Figure 2.9: A deep-marine dataset p(t, x) from Alaska (U.S. Geological Survey) and
the real part of various Fourier transforms of it. Because of the long traveltime
through the water, the time axis does not begin at t = 0. dft-plane4 [ER]



44 CHAPTER 2. DISCRETE FOURIER TRANSFORM

deep data may be somewhat spatially aliased (sampled too coarsely). The plot of
P (ω, x) shows that the data contains no low-frequency energy. The dip of the sea
floor shows up in (ω, kx)-space as the energy crossing the origin at an angle.

Altogether, the two-dimensional Fourier transform of a collection of seis-
mograms involves only twice as much computation as the one-dimensional Fourier
transform of each seismogram. This is lucky. Let us write some equations to estab-
lish that the asserted procedure does indeed do a 2-D Fourier transform. Say first that
any function of x and t may be expressed as a superposition of sinusoidal functions:

p(t, x) =
∫ ∫

e−iωt+ikxx P (ω, kx) dω dkx (2.18)

The double integration can be nested to show that the temporal transforms are done
first (inside):

p(t, x) =
∫

ei kxx
[∫

e−iωt P (ω, kx) dω
]
dkx

=
∫

ei kxx P (t, kx) dkx

The quantity in brackets is a Fourier transform over ω done for each and every
kx. Alternately, the nesting could be done with the kx-integral on the inside. That
would imply rows first instead of columns (or vice versa). It is the separability of
exp(−iωt + i kxx) into a product of exponentials that makes the computation this
easy and cheap.

2.5.2 Signs in Fourier transforms

In Fourier transforming t-, x-, and z-coordinates, we must choose a sign convention
for each coordinate. Of the two alternative sign conventions, electrical engineers
have chosen one and physicists another. While both have good reasons for their
choices, our circumstances more closely resemble those of physicists, so we will use
their convention. For the inverse Fourier transform, our choice is

p(t, x, z) =
∫ ∫ ∫

e−iωt+ ikxx+ ikzz P (ω, kx, kz) dω dkx dkz (2.19)

For the forward Fourier transform, the space variables carry a negative sign, and time
carries a positive sign.

Let us see the reasons why electrical engineers have made the opposite choice,
and why we go with the physicists. Essentially, engineers transform only the time
axis, whereas physicists transform both time and space axes. Both are simplifying
their lives by their choice of sign convention, but physicists complicate their time
axis in order to simplify their many space axes. The engineering choice minimizes
the number of minus signs associated with the time axis, because for engineers, d/dt
is associated with iω instead of, as is the case for us and for physicists, with −iω.



2.5. TWO-DIMENSIONAL FT 45

We confirm this with equation (1.19). Physicists and geophysicists deal with many
more independent variables than time. Besides the obvious three space axes are their
mutual combinations, such as midpoint and offset.

You might ask, why not make all the signs positive in equation (1.19)? The reason
is that in that case waves would not move in a positive direction along the space axes.
This would be especially unnatural when the space axis was a radius. Atoms, like
geophysical sources, always radiate from a point to infinity, not the other way around.
Thus, in equation (1.19) the sign of the spatial frequencies must be opposite that of
the temporal frequency.

The only good reason I know to choose the engineering convention is that we might
compute with an array processor built and microcoded by engineers. Conflict of sign
convention is not a problem for the programs that transform complex-valued time
functions to complex-valued frequency functions, because there the sign convention
is under the user’s control. But sign conflict does make a difference when we use
any program that converts real-time functions to complex frequency functions. The
way to live in both worlds is to imagine that the frequencies produced by such a
program do not range from 0 to +π as the program description says, but from 0 to
−π. Alternately, we could always take the complex conjugate of the transform, which
would swap the sign of the ω-axis.

2.5.3 Examples of 2-D FT

An example of a two-dimensional Fourier transform of a pulse is shown in Fig-
ure 1.10. Notice the location of the pulse. It is closer to the time axis than the

Figure 2.10: A broadened pulse (left) and the real part of its FT (right).
dft-ft2dofpulse [ER]

frequency axis. This will affect the real part of the FT in a certain way (see exer-



46 CHAPTER 2. DISCRETE FOURIER TRANSFORM

cises). Notice the broadening of the pulse. It was an impulse smoothed over time
(vertically) by convolution with (1,1) and over space (horizontally) with (1,4,6,4,1).
This will affect the real part of the FT in another way.

Another example of a two-dimensional Fourier transform is given in Figure 1.11.
This example simulates an impulsive air wave originating at a point on the x-axis.
We see a wave propagating in each direction from the location of the source of the
wave. In Fourier space there are also two lines, one for each wave. Notice that there
are other lines which do not go through the origin; these lines are called “spatial
aliases.” Each actually goes through the origin of another square plane that is not
shown, but which we can imagine alongside the one shown. These other planes are
periodic replicas of the one shown.

Figure 2.11: A simulated air wave (left) and the amplitude of its FT (right).
dft-airwave [ER]

EXERCISES:

1 Write ftlag() starting from ftlagslow() and fth().

2 Most time functions are real. Their imaginary part is zero. Show that this means
that F (ω, k) can be determined from F (−ω,−k).

3 What would change in Figure 1.10 if the pulse were moved (a) earlier on the t-
axis, and (b) further on the x-axis? What would change in Figure 1.10 if instead
the time axis were smoothed with (1,4,6,4,1) and the space axis with (1,1)?

4 What would Figure 1.11 look like on an earth with half the earth velocity?

5 Numerically (or theoretically) compute the two-dimensional spectrum of a plane
wave [δ(t−px)], where the plane wave has a randomly fluctuating amplitude: say,



2.6. HOW FAST FOURIER TRANSFORM WORKS 47

rand(x) is a random number between ±1, and the randomly modulated plane wave
is [(1 + .2 rand(x)) δ(t− px)].

6 Explain the horizontal “layering” in Figure 1.9 in the plot of P (ω, x). What
determines the “layer” separation? What determines the “layer” slope?

2.6 HOW FAST FOURIER TRANSFORM WORKS

A basic building block in the fast Fourier transform is called “doubling.” Given
a series (x0, x1, . . . , xN−1) and its sampled Fourier transform (X0, X1, . . . , XN−1), and
another series (y0, y1, . . . , yN−1) and its sampled Fourier transform (Y0, Y1, . . . , YN−1),
there is a trick to find easily the transform of the interlaced double-length series

zt = (x0, y0, x1, y1, . . . , xN−1, yN−1) (2.20)

The process of doubling is used many times during the computing of a fast Fourier
transform. As the word “doubling” might suggest, it will be convenient to suppose
that N is an integer formed by raising 2 to some integer power. Suppose N = 8 =
23. We begin by dividing our eight-point series into eight separate series, each of
length one. The Fourier transform of each of the one-point series is just the point.
Next, we use doubling four times to get the transforms of the four different two-point
series (x0, x4), (x1, x5), (x2, x6), and (x3, x7). We use doubling twice more to get
the transforms of the two different four-point series (x0, x2, x4, x6) and (x1, x3, x5, x7).
Finally, we use doubling once more to get the transform of the original eight-point
series (x0, x1, x2, . . . , x7). It remains to look into the details of the doubling process.
Let

V = ei2π/2N = W 1/2 (2.21)

V N = eiπ = −1 (2.22)

By definition, the transforms of two N-point series are

Xk =
N−1∑
j=0

xjV
2jk (k = 0, 1, . . . , N − 1) (2.23)

Yk =
N−1∑
j=0

yjV
2jk (k = 0, 1, . . . , N − 1) (2.24)

Likewise, the transform of the interlaced series zj = (x0, y0, x1, y1, . . . , xN−1, yN−1) is

Zk =
2N−1∑
l=0

zlV
lk (k = 0, 1, . . . , 2N − 1) (2.25)

To make Zk from Xk and Yk, we require two separate formulas, one for k = 0, 1, . . .,
N − 1, and the other for k = N , N + 1, . . ., 2N − 1. Start from the sum

Zk =
2N−1∑
l=0

zlV
lk (k = 0, 1, . . . , N − 1) (2.26)



48 CHAPTER 2. DISCRETE FOURIER TRANSFORM

and then split the sum into two parts, noting that xj multiplies even powers of V ,
and yj multiplies odd powers:

Zk =
N−1∑
j=0

xjV
2jk + V k

N−1∑
j=0

yjV
2jk (2.27)

= Xk + V kYk (2.28)

We obtain the last half of the Zk by

Zk =
2N−1∑
l=0

zlV
lk (k = N,N + 1, . . . , 2N − 1) (2.29)

=
2N−1∑
l=0

zlV
l(m+N) (k −N = m = 0, 1, . . . , N − 1) (2.30)

=
2N−1∑
l=0

zlV
lm(V N)

l
(2.31)

=
2N−1∑
l=0

zlV
lm(−1)l (2.32)

=
N−1∑
j=0

xjV
2jm − V m

N−1∑
j=0

yjV
2jm (2.33)

= Xm − V mYm (2.34)

Zk = Xk−N − V k−NYk−N (k = N,N + 1, . . . , 2N − 1) (2.35)

The subroutine ftu() on page 16 does not follow this analysis in detail.

If you would like some industrial grade FFT programs, search the web for ”prime
factor FFT”.

2.7 References

Special issue on fast Fourier transform, June 1969: IEEE Trans. on Audio and Elec-
troacoustics (now known as IEEE Trans. on Acoustics, Speech, and Signal Pro-
cessing), AU-17, entire issue (66-172).



312 CHAPTER 2. DISCRETE FOURIER TRANSFORM



Index

adjnull subroutine, 7
airgun, 4
analytic signal, 14

basement rock, 20

causal, 14
comb, 4

delay, 10
doubling, 25

end effect, 9
even function, 13

fast Fourier transform, 16
fold, 6
Fortran, 19
Fourier sum, 1
Fourier transform, 15
Fourier transform

discrete, 1
fast, 16, 25
two-dimensional, 20, 22, 23

ft1axis subroutine, 19
ft2axis subroutine, 19
ftderivslow subroutine, 8
fth subroutine, 18
ftlagslow subroutine, 8
ftu subroutine, 16

Gibbs ripple, 8

Hertz, 3
Hilbert transform, 14

inverse Fourier transform, 17

mesh, 3, 10

negative frequency, 8

Nyquist frequency, 2, 4, 11
Nyquist frequency

straddle, 8

odd-length transform, 11

pad2 subroutine, 16
polarity, 10
polyft subroutine, 12
precision, 15

resolution, 4
ripple, 8

scale factor, 6
sign convention, 22
slowft subroutine, 7
spatial alias, 22, 24
straddle, 8
subroutine

adjnull, erase output, 7
ft1axis, FT 1-axis, 19
ft2axis, FT 2-axis, 19
ftderivslow, Fourier derivative, 8
fth, FT, Hale style, 18
ftlagslow, shift fractional interval,

8
ftu, unitary FT, 16
pad2, round up to power of two, 16
polyft, FT by polynomial mult.,

12
slowft, slow FT, 7

symmetry, 12

transient, 10

unit circle, 2

zero pad, 15

313



Chapter 3

Z-plane, causality, and feedback

All physical systems share the property that they do not respond before they are
excited. Thus the impulse response of any physical system is a one-sided time func-
tion (it vanishes before t = 0). In system theory such a filter function is called
“realizable” or “causal.” In wave propagation this property is associated with
causality in that no wave may begin to arrive before it is transmitted. The lag-time
point t = 0 plays a peculiar and an important role. Thus many subtle matters can
be more clearly understood with sampled time than with continuous time. When a
filter responds at and after lag time t = 0, we say the filter is realizable or causal.
The word “causal” is appropriate in physics, where stress causes instantaneous strain
and vice versa, but one should return to the less pretentious words “realizable” or
“one-sided” when using filter theory to describe economic or social systems where
simultaneity is different from cause and effect.

The other new concept in this chapter is “feedback.” Ordinarily a filter produces
its output using only past inputs. A filter using feedback uses also its past outputs.
After digesting the feedback concept, we will look at a wide variety of filter types, at
what they are used for, and at how to implement them.

First a short review: the Z-transform of an arbitrary, time-discretized signal xt is
defined by

X(Z) = · · · + x−2 Z
−2 + x−1 Z

−1 + x0 + x1 Z + x2 Z
2 + · · · (3.1)

In chapter 1 we saw that (1.1) can be understood as a Fourier sum (where Z = eiω).
It is not necessary for Z to take on numerical values, however, in order for the ideas
of convolution and correlation to be useful. In chapter 1 we defined Z to be the unit
delay operator. Defined thus, Z2 delays two time units. Expressions like X(Z)B(Z)
and X(Z) B̄(1/Z) are useful because they imply convolution and crosscorrelation of
the time-domain coefficients. Here we will be learning how to interpret 1/A(Z) as a
feedback filter, i.e., as a filter that processes not only past inputs, but past outputs.
We will see that this approach brings with it interesting opportunities as well as subtle
pitfalls.

49



50 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

3.1 LEAKY INTEGRATION

The convolution equation (1.9)

yk =
∑
i=0

xk−i bi (3.2)

says that the present output is created entirely from present and past values of the
input. Now we will include past values of the output. The simplest example is
numerical integration, such as

yt = yt−1 + xt (3.3)

Notice that when xt = (0, 0, 0, 1, 0, 0, · · ·), yt = (0, 0, 0, 1, 1, 1, 1, · · ·), which shows that
the integral of an impulse is a step.

A kind of deliberately imperfect integration used in numerical work is called
“leaky integration.” The name derives from the analogous situation of electri-
cal circuits, where the voltage on a capacitor is the integral of the current: in real
life, some of the current leaks away. An equation to model leaky integration is

yt = ρ yt−1 + xt (3.4)

where ρ is a constant that is slightly less than plus one. Notice that if ρ were greater
than unity, the output of (1.4) would grow with time instead of decaying. A program
for this simple operation is leak(). I use this program so frequently that I wrote it so
the output could be overlaid on the input. leak() uses a trivial subroutine, copy()
on page 294, for copying.

subroutine leak( rho, n, xx, yy)
integer i, n; real xx(n), yy(n), rho
temporary real tt( n)
call null( tt, n)
tt(1) = xx(1)
do i= 2, n

tt(i) = rho * tt(i-1) + xx(i)
call copy( n, tt, yy)
return; end

Let us see what Z-transform equation is implied by (1.4). Move the y terms to
the left:

yt − ρ yt−1 = xt (3.5)

Given the Z-transform equation

(1− ρZ) Y (Z) = X(Z) (3.6)



3.1. LEAKY INTEGRATION 51

notice that (1.5) can be derived from (1.6) by finding the coefficient of Zt. Thus
we can say that the output Y (Z) is derived from the input X(Z) by the polynomial
division

Y (Z) =
X(Z)

1− ρZ (3.7)

Therefore, the effective filter B(Z) in Y (Z) = B(Z)X(Z) is

B(Z) =
1

1− ρZ = 1 + ρZ + ρ2Z2 + ρ3Z3 + · · · (3.8)

The left side of Figure 1.1 shows a damped exponential function that consists of the
coefficients ρt seen in equation (1.8). The spectrum of bt is defined by B̄(1/Z)B(Z).

Figure 3.1: Left is the impulse response of leaky integration. Right is the amplitude
1/|1− ρZ| in the Fourier domain. zp-leak [NR]

The amplitude spectrum is the square root of the spectrum. It can be abbrevi-
ated by |B(Z)|. The amplitude spectrum is plotted on the right side of Figure 1.1.
Ordinary integration has a Fourier response 1/(−iω) that blows up at ω = 0. Leaky
integration smooths off the infinite value at ω = 0. Thus in the figure, the amplitude
spectrum looks like |1/ω|, except that it is not ∞ at ω = 0.

3.1.1 Plots

A pole is a place in the complex plane where a filter B(Zp) becomes infinity. This
occurs where a denominator vanishes. For example, in equation (1.8) we see that
there is one pole and it is located at Zp = 1/ρ. In plots like Figure 1.1, a pole
location is denoted by a “p” and a zero location by a “z.” I chose to display the pole
and zero locations in the ω0-plane instead of in the Z0-plane. Thus real frequencies
run along the horizontal axis instead of around the circle of |Z| = 1. I further chose
to superpose the complex ω0-plane on the graph of |F (ω)| versus ω. This enables us
to correlate the pole and zero locations to the spectrum. I plotted (<ω0,−=ω0) in
order that the ω and <ω0 axes would coincide. As we will see later, some poles give
stable filters and some poles give unstable filters. At the risk of some confusion, I
introduced the minus sign to put the stable poles atop the positive spectrum. Since



52 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

we will never see a negative spectrum and we will rarely see an unstable pole, this
economizes on paper (or maximizes resolution for a fixed amount of paper).

In Figure 1.1, moving the “p” down toward the horizontal axis would cause a
slower time decay and a sharper frequency function.

3.1.2 Two poles

Integration twice is an operation with two poles. Specifically,

1

(1− Z)2
= (1+Z+Z2+Z3+· · ·)(1+Z+Z2+Z3+· · ·) = 1+2Z+3Z2+4Z3+5Z4+· · ·

(3.9)
Notice that the signal is (1, 2, 3, · · ·), which is a discrete representation of the function
f(t) = t step(t). Figure 1.2 shows the result when the two integrations are leaky
integrations. We see the signal begin as t but then drop off under some weight that

Figure 3.2: A cascade of two leaky integrators. zp-leak2 [NR]

looks exponential. A second time-derivative filter (−iω)2 has an amplitude spectrum
|ω2|. Likewise, a second integration has an amplitude spectrum |1/ω2|, which is about
what we see in Figure 1.2, except that at ω = 0 leaky integration has rounded off the
∞.

Instead of allowing two poles to sit on top of each other (which would look like
just one pole), I moved the pole slightly off <ω = 0 so that <ω > 0. As in Figure ??,
another pole is included (but not shown) at negative frequency. This extra pole is
required to keep the signal real. Of course the two poles are very close to each other.
The reason I chose to split them this way is to prepare you for filters where the poles
are far apart.

EXERCISES:

1 Show that multiplication by (1 − Z) in discretized time is analogous to time
differentiation in continuous time. Show that dividing by (1−Z) is analogous to
integration. What are the limits on the integral?



3.2. SMOOTHING WITH BOX AND TRIANGLE 53

2 A simple feedback operation is yt = (1−ε)yt−1 +xt. Give a closed-form expression
for the output yt if xt is an impulse. Estimate the decay time τ of your solution
(the time it takes for yt to drop to e−1y0)? For small ε, say = 0.1, .001, or 0.0001,
what is τ?

3 Find an analytic expression for the plot on the right side of Figure 1.1 as a function
of ω. Show that it is like 1/|ω|.

4 In continuous time, the signal analogous to that in Figure 1.2 is te−t. What is
the analogous frequency function?

3.2 SMOOTHING WITH BOX AND TRIANGLE

Simple “smoothing” is a common application of filtering. A smoothing filter is one
with all positive coefficients. On the time axis, smoothing is often done with a single-
pole damped exponential function. On space axes, however, people generally prefer
a symmetrical function. We will begin with rectangle and triangle functions. When
the function width is chosen to be long, then the computation time can be large, but
recursion can shorten it immensely.

3.2.1 Smoothing with a rectangle

The inverse of any polynomial reverberates forever, although it might drop off fast
enough for any practical need. On the other hand, a rational filter can suddenly drop
to zero and stay there. Let us look at a popular rational filter, the rectangle or “box
car”:

1− Z5

1− Z = 1 + Z + Z2 + Z3 + Z4 (3.10)

The filter (1.10) gives a moving average under a rectangular window. This is a basic
smoothing filter. A clever way to apply it is to move the rectangle by adding a new
value at one end while dropping an old value from the other end. This approach
is formalized by the polynomial division algorithm, which can be simplified because
so many coefficients are either one or zero. To find the recursion associated with
Y (Z) = X(Z)(1 − Z5)/(1 − Z), we identify the coefficient of Zt in (1 − Z)Y (Z) =
X(Z)(1− Z5). The result is

yt = yt−1 + xt − xt−5 (3.11)

This approach boils down to the program boxconv() on page 5, which is so fast it is
almost free!

subroutine boxconv( nb, nx, xx, yy)
# inputs: nx, xx(i), i=1,nx the data
# nb the box length



54 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

# output: yy(i),i=1,nx+nb-1 smoothed data
integer nx, ny, nb, i
real xx(nx), yy(1)
temporary real bb(nx+nb)
if( nb < 1 || nb > nx) call erexit(’boxconv’) # "||" means .OR.
ny = nx+nb-1
do i= 1, ny

bb(i) = 0.
bb(1) = xx(1)
do i= 2, nx

bb(i) = bb(i-1) + xx(i) # make B(Z) = X(Z)/(1-Z)
do i= nx+1, ny

bb(i) = bb(i-1)
do i= 1, nb

yy(i) = bb(i)
do i= nb+1, ny

yy(i) = bb(i) - bb(i-nb) # make Y(Z) = B(Z)*(1-Z**nb)
do i= 1, ny

yy(i) = yy(i) / nb
return; end

Its last line scales the output by dividing by the rectangle length. With this scaling,
the zero-frequency component of the input is unchanged, while other frequencies are
suppressed.

Let us examine the pole and zero locations in equation (1.10). The denominator
vanishes at Z = 1, so the filter has a pole at zero frequency. Smoothing something is
like boosting frequencies near the zero frequency. The numerator vanishes at the five
roots of unity, i.e., Z = ei2πn/5. These five locations are uniformly spaced around the
unit circle. Any sinusoid at exactly one of these frequencies is exactly destroyed by
this filter, because such a sinusoid has an integer number of wavelengths under the
boxcar. An exception is the zero frequency, where the root at Z = 1 is canceled by a
pole at the same location. This cancellation is the reason the right-hand side ends at
the fourth power—there is no infinite series of higher powers.

3.2.2 Smoothing with a triangle

Triangle smoothing is rectangle smoothing done twice. For a mathematical descrip-
tion of the triangle filter, we simply square equation (1.10). Convolving a rectangle
function with itself many times yields a result that mathematically tends towards a
Gaussian function. Despite the sharp corner on the top of the triangle function, it
has a shape that is remarkably similar to a Gaussian, as we can see by looking at
Figure 11.2.

With filtering, end effects can be a nuisance. Filtering increases the length
of the data, but people generally want to keep input and output the same length
(for various practical reasons). This is particularly true when filtering a space axis.
Suppose the five-point signal (1, 1, 1, 1, 1) is smoothed using the boxconv() program



3.2. SMOOTHING WITH BOX AND TRIANGLE 55

with the three-point smoothing filter (1, 1, 1)/3. The output is 5 + 3− 1 points long,
namely, (1, 2, 3, 3, 3, 2, 1)/3. We could simply abandon the points off the ends, but
I like to fold them back in, getting instead (1 + 2, 3, 3, 3, 1 + 2). An advantage of
the folding is that a constant-valued signal is unchanged by the smoothing. This is
desirable since a smoothing filter is a low-pass filter which naturally should pass the
lowest frequency ω = 0 without distortion. The result is like a wave reflected by
a zero-slope end condition. Impulses are smoothed into triangles except near the
boundaries. What happens near the boundaries is shown in Figure 1.3. Note that at

Figure 3.3: Edge effects when
smoothing an impulse with a tri-
angle function. Inputs are spikes
at various distances from the edge.
zp-triend [ER]

the boundary, there is necessarily only half a triangle, but it is twice as tall.

Figure 1.3 was derived from the routine triangle().

# Convolve with triangle
#
subroutine triangle( nr, m1, n12, uu, vv)
# input: nr rectangle width (points) (Triangle base twice as wide.)
# input: uu(m1,i2),i2=1,n12 is a vector of data.
# output: vv(m1,i2),i2=1,n12 may be on top of uu
integer nr,m1,n12, i,np,nq
real uu( m1, n12), vv( m1, n12)
temporary real pp(n12+nr-1), qq(n12+nr+nr-2), tt(n12)
do i=1,n12 { qq(i) = uu(1,i) }
if( n12 == 1 )

call copy( n12, qq, tt)
else {

call boxconv( nr, n12, qq, pp); np = nr+n12-1
call boxconv( nr, np , pp, qq); nq = nr+np-1
do i= 1, n12

tt(i) = qq(i+nr-1)
do i= 1, nr-1 # fold back near end

tt(i) = tt(i) + qq(nr-i)
do i= 1, nr-1 # fold back far end

tt(n12-i+1) = tt(n12-i+1) + qq(n12+(nr-1)+i)
}

do i=1,n12 { vv(1,i) = tt(i) }
return; end



56 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

I frequently use this program, so it is cluttered with extra features. For example,
the output can share the same location as the input. Further, since it is commonly
necessary to smooth along the 2-axis of a two-dimensional array, there are some
Fortran-style pointer manipulations to allow the user to smooth either the 1-axis or
the 2-axis. For those of you unfamiliar with Fortran matrix-handling tricks, I include
below another routine, triangle2(), that teaches how a two-dimensional array can
be smoothed over both its 1-axis and its 2-axis. Some examples of two-dimensional
smoothing are given in chapter 11.

# smooth by convolving with triangle in two dimensions.
#
subroutine triangle2( rect1, rect2, n1, n2, uu, vv)
integer i1,i2, rect1, rect2, n1, n2
real uu(n1,n2), vv(n1,n2)
temporary real ss(n1,n2)
do i1= 1, n1

call triangle( rect2, n1, n2, uu(i1,1), ss(i1,1))
do i2= 1, n2

call triangle( rect1, 1, n1, ss(1,i2), vv(1,i2))
return; end

EXERCISES:

1 The Fourier transform of a rectangle function is sin(αt)/αt, also known as a “sinc”
function. In terms of α, how wide is the rectangle function?

2 Express Z−2 +Z−1 +1+Z+Z2 in the ω-domain. This is a discrete representation
of a rectangle function. Identify the ways in which it is similar to and different
from the sinc function.

3 Explain the signal second from the bottom in Figure 1.3.

4 Sketch the spectral response of the subroutine triangle() on page 7.

3.3 CAUSAL INTEGRATION FILTER

Begin with a function in discretized time xt. The Fourier transform with the substi-
tution Z = eiω∆t is the Z-transform

X(Z) = · · ·+ x−2 Z
−2 + x−1 Z

−1 + x0 + x1 Z + x2 Z
2 + · · · (3.12)

Define −iω̂ (which will turn out to be an approximation to −iω) by

1

−iω̂∆t
=

1

2

1 + Z

1 − Z
(3.13)



3.3. CAUSAL INTEGRATION FILTER 57

Define another signal yt with Z-transform Y (Z) by applying the operator to X(Z):

Y (Z) =
1

2

1 + Z

1 − Z
X(Z) (3.14)

Multiply both sides by (1− Z):

(1 − Z) Y (Z) =
1

2
(1 + Z) X(Z) (3.15)

Equate the coefficient of Zt on each side:

yt − yt−1 =
xt + xt−1

2
(3.16)

Taking xt to be an impulse function, we see that yt turns out to be a step function,
that is,

xt = · · · 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, · · · (3.17)

yt = · · · 0, 0, 0, 0, 0, 1

2
, 1, 1, 1, 1, 1, 1, · · · (3.18)

So yt is the discrete-domain representation of the integral of xt from minus infinity
to time t. The operator (1 + Z)/(1− Z) is called the “bilinear transform.”

3.3.1 The accuracy of causal integration

The accuracy of the approximation of ω̂ to ω can be seen by dividing the top and
bottom of equation (1.13) by

√
Z and substituting Z = eiω∆t:

− i ω̂∆t

2
=

1 − Z

1 + Z
(3.19)

− i ω̂∆t

2
=

1/
√
Z −

√
Z

1/
√
Z +

√
Z

= − i sin ω∆t
2

cos ω∆t
2

= − i tan
ω∆t

2
(3.20)

ω̂∆t

2
= tan

ω∆t

2
(3.21)

ω̂ ≈ ω (3.22)

This is a valid approximation at low frequencies.

3.3.2 Examples of causal integration

The integration operator has a pole at Z = 1, which is exactly on the unit circle
|Z| = 1. The implied zero division has paradoxical implications (page 22) that are



58 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

easy to avoid by introducing a small positive number ε and defining ρ = 1 − ε. The
integration operator becomes

I(Z) =
1

2

1 + ρZ

1 − ρZ
(3.23)

I(Z) =
1

2
(1 + ρZ)

[
1 + ρZ + (ρZ)2 + (ρZ)3 + · · ·

]
I(Z) =

1

2
+ ρZ + (ρZ)2 + (ρZ)3 + · · · (3.24)

Because ρ is less than one, this series converges for any value of Z on the unit circle.
If ε had been slightly negative instead of positive, a converging expansion could have
been carried out in negative powers of Z. A plot of I(Z) is found in Figure 1.4.

Figure 3.4: A leaky causal-integration operator I. zp-cint [NR]

Just for fun I put random noise into an integrator to see an economic simulation,
shown in Figure 1.5. With ρ = 1, the difference between today’s price and tomorrow’s
price is a random number. Thus the future price cannot be predicted from the past.
This curve is called a “random walk.”

Figure 3.5: Random numbers into an integrator. zp-price [NR]



3.3. CAUSAL INTEGRATION FILTER 59

3.3.3 Symmetrical double integral

The two-sided leaky integral commonly arises as an even function, which is an
ordinary leaky integral in one direction followed by another in the opposite direction.
We will see also that the single leaky integral need not be causal; it could be an odd
function.

The causal-integration operator flows one direction in time. Anticausal integra-
tion flows the other. Causal integration followed by anticausal integration makes a
symmetrical smoothing operation, frequently used on the horizontal space axis. Since
the idea of integration is generally associated with a long decay constant, and since
data is generally limited in space, particular attention is usually given to the side
boundaries. The simplest side boundaries are zero values, but these are generally
rejected because people do not wish to assume data is zero beyond where it is mea-
sured. The most popular side conditions are not much more complicated, however.
These are zero-slope side boundaries like those shown in Figure 1.6. I habitually

Figure 3.6: Pulses at various
distances from a side boundary
smoothed with two-sided leaky in-
tegration and zero-slope side con-
ditions. Beyond the last value
at the edge is a theoretical value
that is the same as the edge value.
zp-leakend [ER]

smoothed with damped exponentials, but I switched to triangles after I encountered
several examples where the exponential tails decreased too slowly.

The analysis for double-sided damped leaky integration with zero-slope bound-
aries is found in my previous books and elsewhere, so here I will simply state the result
and leave you with a working program. This kind of integration arises in the numerical
solution of wave equations. Mathematically, it means solving (δxx−α)V (x) = U(x) for
V (x) given U(x). In the limit of small α, the operation is simply double integration.
Nonzero α makes it leaky integration. The operation looks like the Helmholtz
equation of physics but is not, because we take α > 0 for damped solutions, whereas
the Helmholtz equation typically takes α < 0 for oscillating wave solutions. Figure 1.6
was created with leaky(), which performs the smoothing task using a double-sided
exponential response with a decay to amplitude e−1 in a given distance. It invokes
the routine tris(), a solver of tridiagonal simultaneous equations, which is explained
in FGDP.

# keyword: tridiagonal smoothing on 1-axis or 2-axis



60 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

subroutine leaky( distance, m1, n12, uu, vv )
integer i, m1, n12
real distance # input: 1. < distance < infinity
real uu(m1,n12) # data in is the vector (uu( 1, i), i=1,n12)
real vv(m1,n12) # data out is the vector (vv( 1, i), i=1,n12)
real a, b, dc, side
temporary real vecin( n12), vecout( n12)
a = - (1.-1./distance); b = 1.+a*a; dc = b+a+a
a = a/dc; b = b/dc; side = a + b
do i= 1,n12 { vecin(i) = uu(1,i)}
if( distance<=1.|| n12==1) {call copy( n12, vecin, vecout)}
else {call tris( n12, side, a, b, a, side, vecin, vecout)}
do i= 1,n12 { vv(1,i) = vecout(i) }
return; end

# tridiagonal simultaneous equations as in FGDP and IEI
#
subroutine tris( n, endl, a, b, c, endr, d, t )
integer i, n
real endl, a, b, c, endr, d(n), t(n)
temporary real e(n), f(n), deni(n)
if( n == 1) { t(1) = d(1) / b; return }
e(1) = - a / endl
do i= 2, n-1 {

deni(i) = 1. / ( b + c * e(i-1) )
e(i) = - a * deni(i)
}

f(1) = d(1) / endl
do i= 2, n-1

f(i) = (d(i) - c * f(i-1)) * deni(i)
t(n) = ( d(n) - c * f(n-1) ) / ( endr + c * e(n-1) )
do i= n-1, 1, -1

t(i) = e(i) * t(i+1) + f(i)
return; end

It is convenient to refer to the symmetrical double integration operator as δxx,
where the superscripts denote integration, in contrast to the usual subscripts, which
denote differentiation. Since differentiation is widely regarded as an odd operator,
it is natural also to define the odd integration operator δx = δxxx .

3.3.4 Nonuniqueness of the integration operator

Integration can be thought of as 1/(−iω). The implied division by zero at ω = 0
warns us that this filter is not quite normal. For example, 1/(−iω) appears to be
an imaginary, antisymmetric function of ω. This implies that the time function is
the real antisymmetric signum function, namely, sgn(t) = t/|t|. The signum is not
usually thought of as an integration operator, but by adding a constant we have a step
function, and that is causal integration. By subtracting a constant we have anticausal
integration. We can play games with the constant because it is at zero frequency that
the definition contains zero division.



3.4. DAMPED OSCILLATION 61

EXERCISES:

1 Show that the mean of the input of leaky() is the mean of the output, which
demonstrates that the gain of the filter is unity at zero frequency.

3.4 DAMPED OSCILLATION

In polynomial multiplication, zeros of filters indicate frequencies where outputs will
be small. Likewise, in polynomial division, zeros indicate frequencies where outputs
will be large.

3.4.1 Narrow-band filters

It seems we can represent a sinusoid by Z-transforms by setting a pole on the unit
circle. Taking Zp = eiω0 , we have the filter

B(Z) =
1

1− Z/Z0
=

1

1− Ze−iω0
= 1 + Ze−iω0 + Z2e−i2ω0 + · · · (3.25)

The signal bt seems to be the complex exponential e−iω0t, but it is not quite that
because bt is “turned on” at t = 0, whereas e−iω0t is nonzero at negative time.

Now, how can we make a real-valued sinusoid starting at t = 0? Just as with
zeros, we need to complement the pole at +ωp by one at −ωp. The resulting signal
bt is shown on the left in Figure 1.7. On the right is a graphical attempt to plot the
impulse function of dividing by zero at ω = ω0.

Figure 3.7: A pole on the real axis (and its mate at negative frequency) gives an
impulse function at that frequency and a sinusoidal function in time. zp-sinus [NR]

Next, let us look at a damped case like leaky integration. Let Zp = eiω0/ρ and
|ρ| < 1. Then 1/Zp = ρe−iω0 . Define

B(Z) =
1

A(Z)
=

1

1− Z/Zp
= 1 +

Z

Zp
+

(
Z

Zp

)2

+ · · · (3.26)



62 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

B(Z) = 1 + Zρe−iω0 + Z2ρ2e−i2ω0 + · · · (3.27)

The signal bt is zero before t = 0 and is ρte−iω0t after t = 0. It is a damped sinusoidal
function with amplitude decreasing with time as ρt. We can readily recognize this as
an exponential decay

ρt = et log ρ ≈ e−t(1−ρ) (3.28)

where the approximation is best for values of ρ near unity.

The wavelet bt is complex. To have a real-valued time signal, we need another
pole at the negative frequency, say Zp. So the composite denominator is

A(Z) =

(
1− Z

Zp

) (
1− Z

Zp

)
= 1− Zρ2 cosω0 + ρ2Z2 (3.29)

Multiplying the two poles together as we did for roots results in the plots of
1/A(Z) in Figure 1.8. Notice the “p” in the figure. It indicates the location of the

Figure 3.8: A damped sinusoidal function of time transforms to a pole near the real
ω-axis, i.e., just outside the unit circle in the Z-plane. zp-dsinus [NR]

pole Zp but is shown in the ω0-plane, where Zp = eiω0 . Pushing the “p” left and right
will lower and raise the resonant frequency. Pushing it down and up will raise and
lower the duration of the resonance.

EXERCISES:

1 How far from the unit circle are the poles of 1/(1 − .1Z + .9Z2)? What is the
decay time of the filter and its resonant frequency?

3.4.2 Polynomial division

Convolution with the coefficients bt of B(Z) = 1/A(Z) is a narrow-banded filtering
operation. If the pole is chosen very close to the unit circle, the filter bandpass
becomes very narrow, and the coefficients of B(Z) drop off very slowly. A method



3.4. DAMPED OSCILLATION 63

exists of narrow-band filtering that is much quicker than convolution with bt. This is
polynomial division by A(Z). We have for the output Y (Z):

Y (Z) = B(Z) X(Z) =
X(Z)

A(Z)
(3.30)

Multiply both sides of (1.30) by A(Z):

X(Z) = Y (Z) A(Z) (3.31)

For definiteness, let us suppose that the xt and yt vanish before t = 0. Now identify
coefficients of successive powers of Z to get

x0 = y0a0

x1 = y1a0 + y0a1

x2 = y2a0 + y1a1 + y0a2 (3.32)

x3 = y3a0 + y2a1 + y1a2

x4 = y4a0 + y3a1 + y2a2

= · · · · · · · · · · · · · · · · · ·

Let Na be the highest power of Z in A(Z). The k-th equation (where k > Na) is

yka0 +
Na∑
i=1

yk−iai = xk (3.33)

Solving for yk, we get

yk =
xk −

Na∑
i=1

yk−iai

a0

(3.34)

Equation (1.34) may be used to solve for yk once yk−1, yk−2, · · · are known. Thus the
solution is recursive. The value of Na is only 2, whereas Nb is technically infinite
and would in practice need to be approximated by a large value. So the feedback
operation (1.34) is much quicker than convolving with the filter B(Z) = 1/A(Z).
A program for the task is given below. Data lengths such as na in the program
polydiv() include coefficients of all Na powers of Z as well as 1 = Z0, so na =
Na + 1.

# polynomial division feedback filter: Y(Z) = X(Z) / A(Z)
#
subroutine polydiv( na, aa, nx, xx, ny, yy )
integer na # number of coefficients of denominator
integer nx # length of the input function
integer ny # length of the output function
real aa(na) # denominator recursive filter
real xx(nx) # input trace
real yy(ny) # output trace, as long as input trace.



64 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

integer ia, iy
do iy= 1, ny

if( iy <= nx)
yy(iy) = xx(iy)

else
yy(iy) = 0.

do iy= 1, na-1 { # lead-in terms
do ia= 2, iy

yy(iy) = yy(iy) - aa(ia) * yy(iy-ia+1)
yy(iy) = yy(iy) / aa(1)
}

do iy= na, ny { # steady state
do ia= 2, na

yy(iy) = yy(iy) - aa(ia) * yy(iy-ia+1)
yy(iy) = yy(iy) / aa(1)
}

return; end

3.4.3 Spectrum of a pole

Now that we have seen the single-pole filter and the pole-pair filter in both the time
domain and the frequency domain, let us find their analytical expressions. Taking
the pole to be Zp = eiω0/ρ, we have

A(Z) = 1− Z

Zp
= 1− ρ

eiω0
eiω = 1− ρei(ω−ω0) (3.35)

The complex conjugate is

A
(

1

Z

)
= 1− ρe−i(ω−ω0) (3.36)

The spectrum of a pole filter is the inverse of

A
(

1

Z

)
A(Z) = (1− ρe−i(ω−ω0)) (1− ρei(ω−ω0))

= 1 + ρ2 − ρ(e−i(ω−ω0) + ei(ω−ω0))

= 1 + ρ2 − 2ρ cos(ω − ω0)

= 1 + ρ2 − 2ρ+ 2ρ[1− cos (ω − ω0)]

= (1− ρ)2 + 4ρ sin2 ω − ω0

2
(3.37)

With the definition of a small ε = 1− ρ > 0, inverting gives

B
(

1

Z

)
B(Z) ≈ 1

ε2 + 4 sin2 ω−ω0

2

(3.38)

Specializing to frequencies close to ω0, where the denominator is small and the func-
tion is large, gives

B
(

1

Z

)
B(Z) ≈ 1

ε2 + (ω − ω0)2
(3.39)



3.4. DAMPED OSCILLATION 65

This is called a “narrow-band filter” because in the Fourier domain the function
is large only in a narrow band of frequencies. Setting BB to half its peak value of
1/ε2, we find a half-bandwidth of ∆ω/2 = |ω − ω0| = ε. The damping time constant
∆t of the damped sinusoid bt is shown in the exercises following this section to be
∆t = 1/ε.

Naturally we want a real-time function, so we multiply the filter 1/(1 − Z/Zp)
times 1/(1− Z/Z̄p). The resulting time function is real because conjugate poles are
like the conjugate roots. The spectrum of the conjugate factor 1/(1 − Z/Z̄p) is like
(1.38), except that ω0 is replaced by −ω0. Multiplying the response (1.38) by itself
with −ω0 yields the symmetric function of ω displayed on the right in Figure 1.9.

Figure 3.9: A pole near the real axis gives a damped sinusoid in time on the left. On
the right is 1/|A(ω)| for ω real. zp-disappoint [NR]

You might be disappointed if you intend to apply the filter of Figure 1.9 as a
narrow-band filter. Notice that the passband is asymmetric and that it passes the
zero frequency. Equation (1.38) is symmetric about ω0, but taking the product with
its image about −ω0 has spoiled the symmetry. Should we be concerned about this
“edge effect”? The answer is yes, whenever we handle real data. For real data, ∆t
is usually small enough. Recall that ωradians/sample = ωradians/sec∆t. Consider a pole
at a particular ωradians/sec: decreasing ∆t pushes ωradians/sample towards zero, which is
where a pole and its mate at negative frequency create the asymmetrical response
shown in Figure 1.9.

So in practice we might like to add a zero at zero frequency and at the Nyquist
frequency, i.e., (1 − Z)(1 + Z), as shown in Figure 1.10. Compare Figure 1.10 and
1.9. If the time functions were interchanged, could you tell the difference between
the figures? There are two ways to distinguish them. The most obvious is that the
zero-frequency component is made evident in the time domain by the sum of the filter
coefficients (theoretically, F (Z = 1)). A more subtle clue is that the first half-cycle
of the wave in Figure 1.10 is shorter than in Figure 1.9; hence, it contains extra high
frequency energy, which we can see in the spectrum.



66 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

Figure 3.10: Poles at ±ω0; a root at ω = 0 and another root at ω = π. zp-symdsin
[NR]

EXERCISES:

1 Sketch the function in equation (1.38) over the range −π <= ω <= π, taking
care to distinguish it from Figure 1.9.

2 Figure 1.9 shows a bump around ω0 that does not look symmetric because it is
the product of equation (1.38) with a frequency-reversed copy. Consider the sum
[1/(1 − Z/Zp)] + [1/(1 − Z/Z̄p)]. Is the time filter real? Where are its poles
and zeros? How will its amplitude as a function of frequency compare with the
amplitude of Figure 1.9? Will the bump look more symmetric?

3.4.4 Rational filters

A general model for filtering includes both convolution (numerator Z-transforms) and
feedback filtering (denominator Z-transforms):

Y (Z) =
B(Z)

A(Z)
X(Z) (3.40)

There are a variety of ways to implement equation (1.40) in a computer. We could
do the polynomial division X(Z)/A(Z) first and then multiply (convolve) with B(Z),
or we could do the multiplication first and the division later. Alternately, we could
do them simultaneously if we identified coefficients of A(Z)Y (Z) = B(Z)X(Z) and
solved for recursive equations, as we did for (1.34).

The rational filter is more powerful than either a purely numerator filter or a
purely denominator filter because, like its numerator part, the rational filter can easily
destroy any frequency totally, and, like its denominator part, it can easily enhance
any frequency without limit. Finite-difference solutions of differential equations often
appear as rational filters.



3.5. INSTABILITY 67

EXERCISES:

1 Consider equation (1.40). What time-domain recurrence (analogous to equation
(1.34)) is implied?

3.5 INSTABILITY

Consider the example B(Z) = 1− Z/2. The inverse

A(Z) =
1

1− Z
2

= 1 +
Z

2
+
Z2

4
+
Z3

8
+ · · · (3.41)

can be found by a variety of familiar techniques, such as (1) polynomial division, (2)
Taylor’s power-series formula, or (3) the binomial theorem. In equation (1.41) we
see that there are an infinite number of filter coefficients, but because they drop off
rapidly, approximation in a computer presents no difficulty.

We are not so lucky with the filter B(Z) = 1− 2Z. Here we have

A(Z) =
1

1− 2Z
= 1 + 2Z + 4Z2 + 8Z3 + 16Z4 + 32Z5 + · · · (3.42)

The coefficients of this series increase without bound. This is called “instability.”
The outputs of the filter A(Z) depend infinitely on inputs of the infinitely distant past.
(Recall that the present output of A(Z) is a0 times the present input x1, plus a1 times
the previous input xt−1, etc., so an represents memory of n time units earlier.) This
example shows that some filters B(Z) will not have useful inverses A(Z) determined
by polynomial division. Two sample plots of divergence are given in Figure 1.11.

For the filter 1−Z/Z0 with a single zero, the inverse filter has a single pole at the
same location. We have seen a stable inverse filter when the pole |Zp| > 1 exceeds
unity and instability when the pole |Zp| < 1 is less than unity. Occasionally we
see complex-valued signals. Stability for wavelets with complex coefficients is as
follows: if the solution value Z0 of B(Z0) = 0 lies inside the unit circle in the
complex plane, then 1/B(Z) will have coefficients that blow up; and if the root lies
outside the unit circle, then the inverse 1/B(Z) will be bounded.

3.5.1 Anticausality

Luckily, unstable filters can be made stable as follows:

1

1− 2Z
= − 1

2Z

1

1− 1
2Z

= − 1

2Z

(
1 +

1

2Z
+

1

(2Z)2
+ · · ·

)
(3.43)

Equation (1.43) is a series expansion in 1/Z—in other words, a series about infinity.
It converges from |Z| =∞ all the way in to a circle of radius |Z| = 1/2. This means



68 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

Figure 3.11: Top: the growing time function of a pole inside the unit circle at zero
frequency. Bottom: at a nonzero frequency. Where the time axis is truncated, the
signals are growing, and they will increase indefinitely. zp-diverge [NR]

that the inverse converges on the unit circle where it must, if the coefficients are to
be bounded. In terms of filters, it means that the inverse filter must be one of those
filters that responds to future inputs. Hence, although it is not physically realizable,
it may be used in computer simulation.

Examining equations (1.42) and (1.43), we see that the filter 1/(1 − 2Z) can be
expanded into powers of Z in (at least) two different ways. Which one is correct?
The theory of complex variables shows that, given a particular numerical value of
Z, only one of the sums (1.42) or (1.43) will be finite. We must use the finite one,
and since we are interested in Fourier series, we want the numerical value |Z| = 1 for
which the first series diverges and the second converges. Thus the only acceptable
filter is anticausal.

The spectra plotted in Figure 1.11 apply to the anticausal expansion. Obviously
the causal expansion, which is unbounded, has an infinite spectrum.

We saw that a polynomial B(Z) of degree N may be factored into N subsystems,
and that the ordering of subsystems is unimportant. Suppose we have factored B(Z)
and found that some of its roots lie outside the unit circle and some lie inside. We
first invert the outside roots with equation (1.41) and then invert the inside roots
with equation (1.43). If there are any roots exactly on the unit circle, then we have
a special case in which we can try either inverse, but neither may give a satisfactory
result in practice. Implied zero division is nature’s way of telling us that what we are
trying to do cannot be done that way (if at all).



3.5. INSTABILITY 69

3.5.2 Inverse filters

Let bt denote a filter. Then at is its “inverse filter” if the convolution of at with bt
is an impulse function. Filters are said to be inverse to one another if their Fourier
transforms are inverse to one another. So in terms of Z-transforms, the filter A(Z)
is said to be inverse to the signal of B(Z) if A(Z)B(Z) = 1. What we have seen so
far is that the inverse filter can be stable or unstable depending on the location of
its poles. Likewise, if B(Z) is a filter, then A(Z) is a usable filter inverse to B(Z), if
A(Z)B(Z) = 1 and if A(Z) does not have coefficients that tend to infinity.

Another approach to inverse filters lies in the Fourier domain. There a filter
inverse to bt is the at made by taking the inverse Fourier transform of 1/B(Z(ω)). If
B(Z) has its zeros outside the unit circle, then at will be causal; otherwise not. In
the Fourier domain the only danger is dividing by a zero, which would be a pole on
the unit circle. In the case of Z-transforms, zeros should not only be off the circle but
also outside it. So the ω-domain seems safer than the Z-domain. Why not always
use the Fourier domain? The reasons we do not always inverse filter in the ω-domain,
along with many illustrations, are given in chapter 7.

3.5.3 The unit circle

What is the meaning of a pole? We will see that the location of poles determines
whether filters are stable (have finite output) or unstable (have unbounded output).
Considering both positive and negative values of ρ, we find that stability is associated
with |ρ| < 1. The pole |ρ| < 1 happens to be real, but we will soon see that poles are
complex more often than not. In the case of complex poles, the condition of stability
is that they all should satisfy |Zp| > 1. In the complex Z-plane, this means that all
the poles should be outside a circle of unit radius, the so-called unit circle.

3.5.4 The mapping between Z and complex frequency

We are familiar with the fact that real values of ω correspond to complex values of
Z = eiω. Now let us look at complex values of ω:

Z = <Z + i=Z = ei(<ω+i=ω) = e−=ω ei<ω = amplitude eiphase

(3.44)
Thus, when =ω > 0, |Z| < 1. In words, we transform the upper half of the ω-plane
to the interior of the unit circle in the Z-plane. Likewise, the stable region for poles
is the lower half of the ω-plane, which is the exterior of the unit circle. Figure 1.12
shows the transformation. Some engineering books choose a different sign convention
(Z = e−iω), but I selected the sign convention of physics.



70 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

Figure 3.12: Left is the complex ω-plane with axes (x, y) = (<ω0,=ω0). Right is the
Z-plane with axes (x, y) = (<Z0,=Z0). The words “Convergent” and “Divergent”
are transformed by Z = eiω. zp-Z [ER]

3.5.5 The meaning of divergence

To prove that one equals zero, take an infinite series such as 1, −1, +1, −1, +1, . . .,
group the terms in two different ways, and add them as follows:

(1− 1) + (1− 1) + (1− 1) + · · · = 1 + (−1 + 1) + (−1 + 1) + · · ·
0 + 0 + 0 + · · · = 1 + 0 + 0 + · · ·

0 = 1

Of course this does not prove that one equals zero: it proves that care must be
taken with infinite series. Next, take another infinite series in which the terms may be
regrouped into any order without fear of paradoxical results. For example, let a pie
be divided into halves. Let one of the halves be divided in two, giving two quarters.
Then let one of the two quarters be divided into two eighths. Continue likewise. The
infinite series is 1/2, 1/4, 1/8, 1/16, . . .. No matter how the pieces are rearranged,
they should all fit back into the pie plate and exactly fill it.

The danger of infinite series is not that they have an infinite number of terms but
that they may sum to infinity. Safety is assured if the sum of the absolute values of
the terms is finite. Such a series is called “absolutely convergent.”

3.5.6 Boundedness

Given different numerical values for Z, we can ask whether X(Z) is finite or infinite.
Numerical values of Z of particular interest are Z = +1, Z = −1, and all those
complex values of Z which are unit magnitude, say |Z| = 1 or Z = eiω, where ω is the
real Fourier transform variable. When ω is the variable, the Z-transform is a Fourier
sum.

We can restrict our attention to those signals ut that have a finite amount of energy



3.6. MINIMUM-PHASE FILTERS 71

by demanding that U(Z) be finite for all values of Z on the unit circle |Z| = 1. Filter
functions always have finite energy.

3.5.7 Causality and the unit circle

The most straightforward way to say that a filter is causal is to say that its time-
domain coefficients vanish before zero lag, that is, ut = 0 for t < 0. Another way to
say this is U(Z) is finite for Z = 0. At Z = 0, the Z-transform would be infinite if
the coefficients u−1, u−2, etc., were not zero.

For a causal function, each term in U(Z) will be smaller if Z is taken to be inside
the circle |Z| < 1 rather than on the rim |Z| = 1. Thus, convergence at Z = 0
and on the circle |Z| = 1 implies convergence everywhere inside the unit circle. So
boundedness combined with causality means convergence in the unit circle.

Convergence at Z = 0 but not on the circle |Z| = 1 would refer to a causal
function with infinite energy, a case of no practical interest. What function converges
on the circle, at Z = ∞, but not at Z = 0 ? What function converges at all three
places, Z = 0, Z = ∞, and |Z| = 1 ?

3.6 MINIMUM-PHASE FILTERS

Let bt denote a filter. Then at is its inverse filter if the convolution of at with bt is an
impulse function. In terms of Z-transforms, an inverse is simply defined by A(Z) =
1/B(Z). Whether the filter A(Z) is causal depends on whether it is finite everywhere
inside the unit circle, or really on whether B(Z) vanishes anywhere inside the circle.
For example, B(Z) = 1 − 2Z vanishes at Z = 1/2. There A(Z) = 1/B(Z) must be
infinite, that is to say, the series A(Z) must be nonconvergent at Z = 1/2. Thus,
as we have just seen, at is noncausal. A most interesting case, called “minimum
phase,” occurs when both a filter B(Z) and its inverse are causal. In summary,

causal: |B(Z)| <∞ for |Z| ≤ 1
causal inverse: |1/B(Z)| <∞ for |Z| ≤ 1
minimum phase: both above conditions

The reason the interesting words “minimum phase” are used is given in chapter 10.

3.6.1 Mechanical interpretation

Because of the stringent conditions on minimum-phase wavelets, you might wonder
whether they can exist in nature. A simple mechanical example should convince you
that minimum-phase wavelets are plentiful: denote the stress (pressure) in a material



72 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

by xt, and denote the strain (volume change) by yt. Physically, we can specify either
the stress or the strain, and nature gives us the other. So obviously the stress in
a material may be expressed as a linear combination of present and past strains.
Likewise, the strain may be deduced from present and past stresses. Mathematically,
this means that the filter that relates stress to strain and vice versa has all poles and
zeros outside the unit circle. Of the minimum-phase filters that model the physical
world, many conserve energy too. Such filters are called “impedances” and are
described further in FGDP and IEI, especially IEI.

3.6.2 Laurent expansion

Given an unknown filter B(Z), to understand its inverse, we need to factor B(Z) into
two parts: B(Z) = Bout(Z)Bin(Z), where Bout contains all the roots outside the unit
circle and Bin contains all the roots inside. Then the inverse of Bout is expressed as
a Taylor series about the origin, and the inverse of Bin is expressed as a Taylor series
about infinity. The final expression for 1/B(Z) is called a “Laurent expansion”
for 1/B(Z), and it converges on a ring including the unit circle. Cases with zeros
exactly on the unit circle present special problems. For example, the differentiation
filter (1−Z) is the inverse of integration, but the converse is not true, because of the
additive constant of integration.

EXERCISES:

1 Find the filter that is inverse to (2 − 5Z + 2Z2). You may just drop higher-
order powers of Z, but an exact expression for the coefficients of any power of Z
is preferable. (Partial fractions is a useful, though not a necessary, technique.)
Sketch the impulse response.

2 Describe a general method for determining A(Z) and B(Z) from a Taylor series
of B(Z)/A(Z) = C0 + C1Z + C2Z

2 + · · · + C∞Z
∞, where B(Z) and A(Z) are

polynomials of unknown degree n and m, respectively. Work out the case C(Z) =
1
2
− 3

4
Z− 3

8
Z2− 3

16
Z3− 3

32
Z4−· · ·. Do not try this problem unless you are familiar

with determinants. (hint: identify coefficients of B(Z) = A(Z)C(Z).)

3.7 INTRODUCTION TO ALL-PASS FILTERS

An “all-pass filter” is a filter whose spectral magnitude is unity. Given an input
X(Z) and an output Y (Z), we know that the spectra of the two are the same, i.e.,
X̄(1/Z)X(Z) = Ȳ (1/Z)Y (Z). The existence of an infinitude of all-pass filters tells
us that an infinitude of wavelets can have the same spectrum. Wave propagation
without absorption is modeled by all-pass filters. All-pass filters yield a waveform
distortion that can be corrected by methods discussed in chapter 10.



3.7. INTRODUCTION TO ALL-PASS FILTERS 73

The simplest example of an all-pass filter is the delay operator Z = eiω itself. Its
phase as a function of ω is simply ω.

A less trivial example of phase distortion can be constructed from a single root
Zr, where Zr is an arbitrary complex number. The ratio of any complex number to
its complex conjugate, say (x + iy)/(x − iy), is of unit magnitude, because, taking
x + iy = ρeiφ and x − iy = ρe−iφ, the ratio is |ei2φ|. Thus, given a minimum-phase
filter B(ω), we can take its conjugate and make an all-pass filter P (Z) from the ratio
P (Z) = B(ω)/B(ω). A simple case is

B(ω) = 1− Z

Zr
(3.45)

B(ω) = 1− 1

ZZr
(3.46)

The all-pass filter B/B is not causal because of the presence of 1/Z in B. We can
repair that by multiplying by another all-pass operator, namely, Z. The resulting
causal all-pass filter is

P (Z) =
ZB(1/Z)

B(Z)
=

Z − 1
Zr

1− Z
Zr

(3.47)

Equation (1.47) can be raised to higher powers to achieve a stronger frequency-
dispersion effect. Examples of time-domain responses of various all-pass filters are
shown in Figure 1.13.

Figure 3.13: Examples of causal
all-pass filters with real poles and
zeros. These have high frequencies
at the beginning and low frequen-
cies at the end. zp-disper [ER]

The denominator of equation (1.47) tells us that we have a pole at Zr. Let this
location be Zr = eiω0/ρ. The numerator vanishes at

Z = Z0 =
1

Zr

= ρ eiω0 (3.48)

In conclusion, the pole is outside the unit circle, and the zero is inside. They face one
another across the circle at the phase angle ω0.



74 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

The all-pass filter (1.47) outputs a complex-valued signal, however. To see real
outputs, we must handle the negative frequencies in the same way as the positive ones.
The filter (1.47) should be multiplied by another like itself but with ω0 replaced by
−ω0; i.e., with Zr replaced by Zr. The result of this procedure is shown in Figure 1.14.

Figure 3.14: All-pass filter with a complex pole-zero pair. The pole and zero are at
equal logarithmic distances from the unit circle. zp-allpass [NR]

A general form for an all-pass filter is P (Z) = ZNA(1/Z)/A(Z), where A(Z) is an
arbitrary minimum-phase filter. That this form is valid can be verified by checking
that P (1/Z)P (Z) = 1.

EXERCISES:

1 Verify that P (1/Z)P (Z) = 1 for the general form of an all-pass filter P (Z) =
ZNA(1/Z)/A(Z).

2 Given an all-pass filter

P (Z) =
d+ eZ + fZ2

1 + bZ + cZ2

with poles at Zp = 2 and Zp = 3, what are b, c, d, e, and f?

3.7.1 Notch filter

A “notch filter” rejects a narrow frequency band and leaves the rest of the spectrum
little changed. The most common example is 60-Hz noise from power lines. Another
is low-frequency ground roll. Such filters can easily be made using a slight variation
on the all-pass filter. In the all-pass filter, the pole and zero have equal (logarithmic)
relative distances from the unit circle. All we need to do is put the zero closer to
the circle. Indeed, there is no reason why we should not put the zero right on the
circle: then the frequency at which the zero is located is exactly canceled from the



3.7. INTRODUCTION TO ALL-PASS FILTERS 75

spectrum of input data. Narrow-band filters and sharp cutoff filters should be used
with caution. An ever-present penalty for using such filters is that they do not decay
rapidly in time. Although this may not present problems in some applications, it will
certainly do so in others. Obviously, if the data-collection duration is shorter than
or comparable to the impulse response of the narrow-band filter, then the transient
effects of starting up the experiment will not have time to die out. Likewise, the
notch should not be too narrow in a 60-Hz rejection filter. Even a bandpass filter (an
example of which, a Butterworth filter, is implemented in chapter 10) has a certain
decay rate in the time domain which may be too slow for some experiments. In radar
and in reflection seismology, the importance of a signal is not related to its strength.
Late arriving echoes may be very weak, but they contain information not found in
earlier echoes. If too sharp a frequency characteristic is used, then filter resonance
from early strong arrivals may not have decayed enough by the time the weak late
echoes arrive.

A curious thing about narrow-band reject filters is that when we look at their
impulse responses, we always see the frequency being rejected! For example, look at
Figure 1.15. The filter consists of a large spike (which contains all frequencies) and
then a sinusoidal tail of polarity opposite to that of the frequency being rejected.

Figure 3.15: Top: a zero on the real frequency axis and a pole just above it give
a notch filter; i.e., the zeroed frequency is rejected while other frequencies are little
changed. Bottom: the notch has been broadened by moving the pole further away
from the zero. (This notch is at 60 Hz, assuming ∆t = .002 s.) zp-notch2 [NR]

The vertical axis in the complex frequency plane in Figure 1.15 is not exactly=ω0.
Instead it is something like the logarithm of =ω0. The logarithm is not precisely
appropriate either because zeros may be exactly on the unit circle. I could not
devise an ideal theory for scaling =ω0, so after some experimentation, I chose =ω0 =
−(1 + y2)/(1 − y2), where y is the vertical position in a window of vertical range
0 < y < 1. Because of the minus sign, the outside of the unit circle is above the <ω0

axis, and the inside of the unit circle is below it.



76 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

EXERCISES:

1 Find a three-term real feedback filter to reject 59-61 Hz on data that is sampled
at 500 points/s. (Try for about 50% rejection at 59 and 61.) Where are the poles?
What is the decay time of the filter?

3.8 PRECISION EXHAUSTION

As we reach the end of this chapter on poles and feedback filtering, we might be
inclined to conclude that all is well if poles are outside the unit circle and that they
may even come close to the circle. Further, if we accept anticausal filtering, poles can
be inside the unit circle as well.

Reality is more difficult. Big trouble can arise from just a modest clustering of
poles at a moderate distance from the unit circle. This is shown in Figure 1.16,
where the result is completely wrong. The spectrum should look like the spectrum in

Figure 3.16: A pathological failure when poles cluster too much. This situation
requires more than single-word precision. zp-path [NR]

Figure 1.8 multiplied by itself about six or seven times, once for each pole. The effect
of such repetitive multiplication is to make the small spectral values become very
small. When I added the last pole to Figure 1.16, however, the spectrum suddenly
became rough. The time response now looks almost divergent. Moving poles slightly
creates very different plots. I once had a computer that crashed whenever I included
one too many poles.

To understand this, notice that the peak spectral values in Figure 1.16 come
from the minimum values of the denominator. The denominator will not go to a
properly small value if the precision of its terms is not adequate to allow them to
extinguish one another. Repetitive multiplication has caused the dynamic range (the
range between the largest and smallest amplitudes as a function of frequency) of
single-precision arithmetic, about 106.

When single-word precision becomes a noticeable problem, the obvious path is to
choose double precision. But considering that most geophysical data has a precision



3.9. MY FAVORITE WAVELET 77

of less than one part in a hundred, and only rarely do we see precision of one part in a
thousand, we can conclude that the failure of single-word precision arithmetic, about
one part in 10−6, is more a sign of conceptual failure than of numerical precision
inadequacy.

If an application arises for which you really need an operator that raises a poly-
nomial to a high degree, you may be able to accomplish your goal by applying the
operator in stages. Say, for example, you need the all-pass filter (.2−Z)100/(1−.2Z)100.
You should be able to apply this filter in a hundred stages of (.2− Z)/(1− .2Z), or
maybe in ten stages of (.2− Z)10/(1− .2Z)10.

Other ways around this precision problem are suggested by reflection-coefficient
modeling in a layered earth, described in FGDP.

3.9 MY FAVORITE WAVELET

I will describe my favorite wavelet for seismic modeling, shown in Figure 1.17. Of
course the ideal wavelet is an impulse, but the wavelet I describe is intended to mimic
real life. I use some zeros at high frequency to force continuity in the time domain

Figure 3.17: My favorite wavelet for seismic modeling. zp-favorite [NR]

and a zero at the origin to suppress zero frequency. I like to simulate the suppression
of low-frequency ground roll, so I put another zero not at the origin, but at a low
frequency. Theory demands a conjugate pair for this zero; effectively, then, there
are three roots that suppress low frequencies. I use some poles to skew the passband
toward low frequencies. These poles also remove some of the oscillation caused by the
three zeros. (Each zero is like a derivative and causes another lobe in the wavelet.)



78 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

There is a trade-off between having a long low-frequency tail and having a rapid
spectral rise just above the ground roll. The trade-off is adjustable by repositioning
the lower pole. The time-domain wavelet shows its high frequencies first and its low
frequencies only later. I like this wavelet better than the Ricker wavelet (second
derivative of a Gaussian). My wavelet does not introduce as much signal delay. It
looks like an impulse response from the physical world.

3.10 IMPEDANCE FILTERS

Impedance filters are a special class of minimum-phase filters that model energy-
conserving devices and media. The real part of the Fourier transform of an impedance
filter is positive. Impedances play a basic role in mathematical physics. There are
simple ways of making complicated mechanical systems from simple ones, and cor-
responding mathematical rules allow construction of complicated impedances from
simple ones. Also, impedances can be helpful in stabilizing numerical calculations.
Logically, a chapter on impedance filters belongs here, but I have little to add to
what is already found in FGDP and IEI. FGDP describes the impedance concept
in sampled time and its relation to special matrices called “Toeplitz” matrices. IEI
describes impedances in general as well as their role in physical modeling and imaging
with the wave equation.



312 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK



Index

all-pass filter, 24
amplitude spectrum, 3
anticausal, 19

bilinear transform, 9
boundary, zero-slope, 11
box car, 5
boxconv subroutine, 5

causal, 1, 19, 23
complex-valued signal, 19, 26

differentiate, 12
divergence, 22

end effect, 6

feedback, 1, 15
filter

all-pass, 24
impedance, 30
narrow-band, 13, 17
notch, 26
rational, 18

fold, 7

Gaussian, 6

Helmholtz equation, 11

impedance, 24, 30
instability, 19
integration

accuracy, 9
causal, 8
leaky, 2, 11
numerical, 2
two-sided leaky, 11

inverse filter, 21

Laurent expansion, 24

leak subroutine, 2
leaky integration, 2, 11
leaky subroutine, 11

minimum phase, 23

narrow-band filter, 17
notch filter, 26

pole, 3, 4
polydiv subroutine, 15
polynomial division, 15
precision, 28

random walk, 10
rational filter, 18
realizable, 1
recursive, 15

signal , complex-valued19
signum, 12
smoothing, 5
spectrum

amplitude, 3
subroutine

boxconv, convolve w. rectangle, 5
leaky, tridiagonal smoothing, 11
leak, leaky integration, 2
polydiv, polynomial division, 15
triangle2, conv. w. tri. in 2D, 8
triangle, conv. with triangle, 7
tris, tridiagonal equations, 12

Toeplitz, 30
triangle smoothing, 6
triangle subroutine, 7
triangle2 subroutine, 8
tris subroutine, 12

unit circle, 9, 19, 21

313



314 INDEX

zero, 3, 13
zero slope, 7, 11



Chapter 4

Univariate problems

This chapter looks at problems in which there is just one unknown. These “univariate”
problems illustrate some of the pitfalls, alternatives, and opportunities in data analy-
sis. Following our study of univariate problems we move on, in the next five chapters,
to problems with multiple unknowns (which obscure the pitfalls, alternatives, and
opportunities).

4.1 INSIDE AN ABSTRACT VECTOR

In engineering, a vector has three scalar components which correspond to the three
dimensions of the space in which we live. In least-squares data analysis, a vector
is a one-dimensional array that can contain many different things. Such an array
is an “abstract vector.” For example, in earthquake studies, the vector might
contain the time an earthquake began as well as its latitude, longitude, and depth.
Alternately, the abstract vector might contain as many components as there are
seismometers, and each component might be the onset time of an earthquake. In
signal analysis, the vector might contain the values of a signal at successive instants
in time or, alternately, a collection of signals. These signals might be “multiplexed”
(interlaced) or “demultiplexed” (all of each signal preceding the next). In image
analysis, the one-dimensional array might contain an image, which could itself be
thought of as an array of signals. Vectors, including abstract vectors, are usually
denoted by boldface letters such as p and s. Like physical vectors, abstract vectors
are orthogonal when their dot product vanishes: p · s = 0. Orthogonal vectors are
well known in physical space; we will also encounter them in abstract vector space.

4.2 SEGREGATING P AND S CROSSTALK

Signals can be contaminated by other signals, and images can be contaminated by
other images. This contamination is called “crosstalk.” An everyday example in

79



80 CHAPTER 4. UNIVARIATE PROBLEMS

seismology is the mixing of pressure waves and shear waves. When waves come
straight up, vertical detectors record their pressure-wave component, and horizontal
detectors record their shear-wave component. Often, however, waves do not come
exactly straight up. In these cases, the simple idealization is contaminated and there
is crosstalk. Here we study a simplified form of this signal-corruption problem, as
given by the equations

v = p + αs + n (4.1)

h = s + α′p + n′ (4.2)

where v and h represent vertical and horizontal observations of earth motion, p and s
represent theoretical pressure and shear waves, n and n′ represent noises, and α and α′

are the cross-coupling parameters. You can think of v, h, p, s, n and n′ as collections
of numbers that can be arranged into a signal or into an image. Mathematically, they
are abstract vectors. In our notation, boldface v represents the vector as a whole,
and italic v represents any single component in it. (Traditionally, a component is
denoted by vi.)

Two univariate problems

Communication channels tend to mix information in the way equations (1.1) and
(1.2) do. This is “crosstalk.” Everything on the right sides of equations (1.1)
and (1.2) is unknown. This problem can be formulated in an elaborate way with
estimation theory. Here we will postpone the general theory and leap to guess that
the pressure-wave field p will be some linear combination of v and h, and the shear-
wave component s will be something similar:

p = v − αh (4.3)

s = h − α′v (4.4)

We will understand the crosstalk question to ask us to find the constant value of α
and of α′. Although I will describe only the mathematics of finding α, each figure
will show you the results of both estimations, by including one part for α and one
part for α′. The results for α and α′ differ, as you will see, because of differences in
p and s.

The physics of crosstalk

Physically, the value of α depends on the angle of incidence, which in turn depends
critically on the soil layer. The soil layer is generally ill defined, which is why it is
natural to take α as an unknown. In real life α should be time-dependent, but we
will ignore this complication.



4.2. SEGREGATING P AND S CROSSTALK 81

4.2.1 Failure of straightforward methods

The conventional answer to the crosstalk question is to choose α so that p = v− αh
has minimum power. The idea is that since adding one signal p to an independent
signal s is likely to increase the power of p, removing as much power as possible may
be a way to separate the independent components. The theory proceeds as follows.
Minimize the dot product

Energy = p · p = (v − αh) · (v − αh) (4.5)

by differentiating the energy with respect to α, and set the derivative to zero. This
gives

α =
v · h
h · h (4.6)

Likewise, minimizing (s · s) yields α′ = (h · v)/(v · v).

In equation (1.5) the “fitting function” is h, because various amounts of h can
be subtracted to minimize the power in the residual (v − αh). Let us verify the
well-known fact that after the energy is minimized, the residual is orthogonal to
the fitting function. Take the dot product of the fitting function h and the residual
(v − αh), and insert the optimum value of α from equation (1.6):

h · (v− αh) = h · v − αh · h
= 0

Results for both p and s are shown in Figure 1.1. At first it is hard to believe the

Figure 4.1: Left shows two panels, a “Pressure Wave” contaminated by crosstalk from
“Shear” and vice versa. Right shows a least-squares attempt to remove the crosstalk.
It is disappointing to see that the crosstalk has become worse. uni-uniform [ER]

result: the crosstalk is worse on the output than on the input. Our eyes are drawn to
the weak signals in the open spaces, which are obviously unwanted new crosstalk. We
do not immediately notice that the new crosstalk has a negative polarity. Negative
polarity results when we try to extinguish the strong positive polarity of the main



82 CHAPTER 4. UNIVARIATE PROBLEMS

signal. Since the residual misfit is squared, our method tends to ignore small residuals
and focus attention on big ones: hence the wide-scale growth of small residuals.

The least-squares method is easy to oversimplify, and it is not unusual to see it give
disappointing results. Real-life data are generally more complicated than artificial
data like the data used in these examples. It is always a good idea to test programs
on such synthetic data since the success or failure of a least-squares method may
not be apparent if the method is applied to real data without prior testing.

Failure of independence assumption

The example in Figure 1.1 illustrates a pitfall of classical inversion theory. Had p
not overlapped s, the crosstalk would have been removed perfectly. We were not
interested in destroying p with s, and vice versa. This result was just an accidental
consequence of their overlap, which came to dominate the analysis because of the
squaring in least squares. Our failure could be attributed to a tacit assumption that
since p and s are somehow “independent,” they can be regarded as orthogonal, i.e.,
that p · s = 0. But the (potential) physical independence of p and s does nothing
to make a short sample of p and s orthogonal. Even vectors containing random
numbers are unlikely to be orthogonal unless the vectors have an infinite number of
components. Perhaps if the text were as long as the works of Shakespeare . . . .

4.2.2 Solution by weighting functions

Examining Figure 1.1, we realize that our goals were really centered in the quiet
regions. We need to boost the importance of those quiet regions in the analysis.
What we need is a weighting function. Denote the i-th component of a vector
with the subscript i, say vi. When we minimize the sums of squares of vi − αhi, the
weighting function for the i-th component is

wi =
1

v2
i + σ2

(4.7)

and the minimization itself is

min
α

[∑
i

wi(vi − αhi)2

]
(4.8)

To find α′, the weighting function would be w = 1/(h2 + σ2).

The detailed form of these weighting functions is not important here. The form
I chose is somewhat arbitrary and may be far from optimal. The choice of the
constant σ is discussed on page 6. What is more important is the idea that in-
stead of minimizing the sum of errors themselves, we are minimizing something like
the sum of relative errors. Weighting makes any region of the data plane as im-
portant as any other region, regardless of whether a letter (big signal) is present



4.2. SEGREGATING P AND S CROSSTALK 83

or absent (small signal). It is like saying a zero-valued signal is just as impor-
tant as a signal with any other value. A zero-valued signal carries information.

When signal strength varies over a large range, a nonuniform weighting function
should give better regressions. The task of weighting-function design may require
some experimentation and judgment.

A nonlinear-estimation method

What I have described above represents my first iteration. It can be called a “linear-
estimation method.” Next we will try a “nonlinear-estimation method” and see
that it works better. If we think of minimizing the relative error in the residual, then
in linear estimation we used the wrong divisor—that is, we used the squared data v2

where we should have used the squared residual (v − αh)2. Using the wrong divisor
is roughly justified when the crosstalk α is small because then v2 and (v − αh)2

are about the same. Also, at the outset the residual was unknown, so we had no
apparent alternative to v2, at least until we found α. Having found the residual, we
can now use it in a second iteration. A second iteration causes α to change a bit, so
we can try again. I found that, using the same data as in Figure 1.1, the sequence
of iterations converged in about two iterations. Figure 1.2 shows the results of the

Figure 4.2: Comparison of weighting methods. Left shows crosstalk as badly removed
by uniformly weighted least squares. Middle shows crosstalk removed by deriving a
weighting function from the input data. Right shows crosstalk removed by deriving a
weighting function from the fitting residual. Press button for movie over iterations.
uni-reswait [ER]

various weighting methods. Mathematical equations summarizing the bottom row of
this figure are:

left : min
α

∑
i

(vi − αhi)2 (4.9)

middle : min
α0

∑
i

1

v2
i + σ2

(vi − α0hi)
2 (4.10)

right : limn→∞ min
αn

∑
i

1

(vi − αn−1hi)2 + σ2
(vi − αnhi)2 (4.11)



84 CHAPTER 4. UNIVARIATE PROBLEMS

For the top row of the figure, these equations also apply, but v and h should be
swapped.

Clarity of nonlinear picture

You should not have any difficulty seeing on the figure that the uniform weight leaves
the most crosstalk, the nonuniform weights of the linear-estimation method leave less
crosstalk, and the nonlinear-estimation method leaves no visible crosstalk. If you
cannot see this, then I must blame the method of reproduction of the figures, because
the result is clear on the originals, and even clearer on the video screen from which
the figure is derived. On the video screen the first iteration is clearly inferior to the
result of a few more iterations, but on the printed page these different results are not
so easy to distinguish.

Nonuniqueness and instability

We cannot avoid defining σ2, because without it, any region of zero signal would get
an infinite weight. This is likely to lead to undesirable performance: in other words,
although with the data of Figure 1.2 I found rapid convergence to a satisfactory
answer, there is no reason that this had to happen. The result could also have
failed to converge, or it could have converged to a nonunique answer. This unreliable
performance is why academic expositions rarely mention estimating weights from the
data, and certainly do not promote the nonlinear-estimation procedure. We have seen
here how important these are, however.

I do not want to leave you with the misleading impression that convergence in a
simple problem always goes to the desired answer. With the program that made these
figures, I could easily have converged to the wrong answer merely by choosing data
that contained too much crosstalk. In that case both images would have converged
to s. Such instability is not surprising, because when α exceeds unity, the meanings
of v and h are reversed.

Estimating the noise variance

Choosing σ2 is a subjective matter; or at least how we choose σ2 could be the subject of
a lengthy philosophical analysis. Perhaps that is why so much of the literature ignores
this question. Without any firm theoretical basis, I chose |σ| to be approximately the
noise level. I estimated this as follows.

The simplest method of choosing σ2 is to find the average v2 in the plane and then
choose some arbitrary fraction of it, say 10% of the average. Although this method
worked in Figure 1.2, I prefer another. I chose σ2 to be the median value of v2. (In
other words, we conceptually prepare a list of the numbers v2; then we sort the list



4.2. SEGREGATING P AND S CROSSTALK 85

from smallest to largest; and finally we choose the value in the middle. In reality,
median calculation is quicker than sorting.)

Notice that Figure 1.2 uses more initial crosstalk than Figure 1.1. Without the
extra crosstalk I found that the first iteration worked so well, the second one was not
needed. Thus I could not illustrate the utility of nonlinear estimation without more
crosstalk.

Colored noise

I made the noise in Figure 1.2 and 1.3 from random numbers that I filtered spatially
to give a lateral coherence on a scale something like the size of a letter—which is
somewhat larger than a line (which makes up the letter) width. The noise looks like
paper mottling. The spectral color (spatial coherence) of the noise does not affect
the results much, if at all. In other words, independent random numbers of the same
amplitude yield results that are about the same. I chose this particular noise color to
maximize the chance that noise can be recognized on a poor reproduction. We can see
on Figure 1.2 that the noise amplitude is roughly one-third of the signal amplitude.
This data thus has a significant amount of noise, but since the signal is bigger than
the noise, we should really call this “good” data.

Next we will make the noise bigger than the signal and see that we can still solve
the problem. We will need more powerful techniques, however.

4.2.3 Noise as strong as signal

First we will make the problem tougher by boosting the noise level to the point where
it is comparable to the signal. This is shown in Figure 1.3. Notice that the attempt

Figure 4.3: Left: data with crosstalk. Right: residuals after attempted crosstalk
removal using uniform weights. uni-neqs [ER]

to remove crosstalk is only partly successful. Interestingly, unlike in Figure 1.1,



86 CHAPTER 4. UNIVARIATE PROBLEMS

the crosstalk retains its original polarity, because of the strong noise. Imagine that
the noise n dominated everything: then we would be minimizing something like
(nv − αnh) · (nv − αnh). Assuming the noises were uncorrelated and sample sizes
were infinite, then nv · nh = 0, and the best α would be zero. In real life, samples
have finite size, so noises are unlikely to be more than roughly orthogonal, and the
predicted α in the presence of strong noise is a small number of random polarity.
Rerunning the program that produced Figure 1.3 with different random noise seeds
produced results with significantly more and significantly less estimated crosstalk.
The results are dominated more by the noise than the difference between p and s.
More about random fluctuations with finite sample sizes will follow in chapter 11.

4.2.4 Spectral weighting function

Since we humans can do a better job than the mathematical formulation leading up
to Figure 1.3, we naturally want to consider how to reformulate our mathematics to
make it work better. Apparently, our eyes sense the difference between the spatial
spectra of the signals and the noise. Visually, we can suppress the noise because of
its noticeably lower frequency. This suggests filtering the data to suppress the noise.

On the filtered data with the noise suppressed, we can estimate the crosstalk
parameter α. Of course, filtering the noise will filter the signal too, but we need not
display the filtered data, only use it to estimate α. That estimated α is applied to
the raw (unfiltered) data and presented as “the answer.”

Of course, we may as well display both filtered and unfiltered data and label
them accordingly. We might prefer unfiltered noisy images or we might prefer filtered
images with less noise. Seismograms present a similar problem. Some people think
they prefer to look at a best image of the earth’s true velocity, impedance, or whatever,
while others prefer to look at a filtered version of the same, especially if the filter is
known and the image is clearer.

Here I chose a simple filter to suppress the low-frequency noise. It may be far
from optimal. (What actually is optimal is a question addressed in chapters 7 and 8.)
For simplicity, I chose to apply the Laplacian operator ∂2

∂x2 + ∂2

∂y2 to the images to
roughen them, i.e., to make them less predictable. The result is shown in Figure 1.4.
The bottom rows are the roughened images. On the left is the input data. Although
the crosstalk is visible on both the raw images and the filtered images, it seems more
clearly visible on the filtered images. “Visibility” is not the sole criterion here because
the human eye can be an effective filter device too. There can be no doubt that the
crosstalk has larger amplitude (above the background noise) on the filtered images.
This larger amplitude is what is important in the dot-product definition of α. So
the bottom panels of filtered data are used to compute α, and the top panels are
computed from that α. Finally, notice that the unfiltered data looks somewhat worse
after crosstalk removal. This is because the combination of v and h contains noise
from each.



4.3. REFERENCES 87

Figure 4.4: Estimation on spatially filtered signals. Top: unfiltered signal with
crosstalk. Bottom: filtered signal with crosstalk. Left: input data. Center: residual
using uniform weights. Right: residual using inverse-signal weights. uni-rufn [ER]

4.2.5 Flame out

The simple crosstalk problem illustrates many of the features of general modeling
and inversion (finding models that fit data). We have learned the importance of
weighting functions—not just their amplitudes, but also their spectral amplitudes.
Certainly we have known for centuries, from the time of Gauss (see Strang, 1986),
that the “proper” weighting function is the “inverse covariance matrix” of the noise
(a generalized relative error, that is, involving the relative amplitudes and relative
spectra), formally defined in chapter 11. I do not know that anyone disagrees with
Gauss’s conclusion, but in real life, it is often ignored. It is hard to find the covariance
matrix: we set out to measure a mere scalar (α), and Gauss tells us we need to figure
out a matrix first! It is not surprising that our illustrious statisticians and geophysical
theoreticians often leave this stone unturned. As we have seen, different weighting
functions can yield widely different answers. Any inverse theory that does not tell us
how to choose weighting functions is incomplete.

4.3 References

Aki, K., and Richards, P.G., 1980, Quantitative seismology: theory and methods,
vol. 2: W. H. Freeman.

Backus, G.E., and Gilbert, J.F., 1967, Numerical applications of a formalism for
geophysical inverse problems: Geophys. J. R. astr. Soc., 13, 247-276.



88 CHAPTER 4. UNIVARIATE PROBLEMS

Gauss, K.F.: see Strang, 1986.

Menke, W., 1989, Geophysical data analysis: discrete inverse theory, rev. ed.: Aca-
demic Press, Inc.

Strang, G., 1986, Introduction to applied mathematics, p. 144: Wellesley-Cambridge
Press.

Tarantola, A., 1987, Inverse problem theory: methods for data fitting and model
parameter estimation: Elsevier.

4.4 HOW TO DIVIDE NOISY SIGNALS

Another univariate statistical problem arises in Fourier analysis, where we seek a
“best answer” at each frequency, then combine all the frequencies to get a best signal.
Thus emerges a wide family of interesting and useful applications. However, Fourier
analysis first requires us to introduce complex numbers into statistical estimation.

Multiplication in the Fourier domain is convolution in the time domain. Fourier-
domain division is time-domain deconvolution. In chapter 3 we encountered the
polynomial-division feedback operation X(Z) = Y (Z)/F (Z). This division is chal-
lenging when F has observational error. By switching from the Z-domain to the
ω-domain we avoid needing to know if F is minimum phase. The ω-domain has pit-
falls too, however. We may find for some real ω that F (Z(ω)) vanishes, so we cannot
divide by that F . Failure erupts if zero division occurs. More insidious are the poor
results we obtain when zero division is avoided by a near miss.

4.4.1 Dividing by zero smoothly

Think of any real numbers x, y, and f and any program containing x = y/f . How
can we change the program so that it never divides by zero? A popular answer is to
change x = y/f to x = yf/(f 2 +ε2), where ε is any tiny value. When |f | >> |ε|, then
x is approximately y/f as expected. But when the divisor f vanishes, the result is
safely zero instead of infinity. The transition is smooth, but some criterion is needed
to choose the value of ε. This method may not be the only way or the best way to
cope with zero division, but it is a good way, and it permeates the subject of signal
analysis.

To apply this method in the Fourier domain, suppose X, Y , and F are complex
numbers. What do we do then with X = Y/F? We multiply the top and bottom by
the complex conjugate F , and again add ε2 to the denominator. Thus,

X(ω) =
F (ω) Y (ω)

F (ω)F (ω) + ε2
(4.12)



4.4. HOW TO DIVIDE NOISY SIGNALS 89

Now the denominator must always be a positive number greater than zero, so division
is always safe.

In preparing figures with equation (1.12), I learned that it is helpful to recast
the equation in a scaled form. First replace ε2, which has physical units of |F |2, by
ε2 = λσ2

F , where λ is a dimensionless parameter and σ2
F is the average value of FF .

Then I rescaled equation (1.12) to

X(ω) =
F (ω) Y (ω)

F (ω)F (ω) + λσ2
F

(2 + λ/2)σF (4.13)

The result is that the scale of X is independent of the scale of F and the scale of
λ. This facilitates plotting X over a range of those parameters. I found the 2s in
the expression by experimentation. Of course, if the plotting software you are using
adjusts a scale factor to fill a defined area, then the scaling may be unimportant.
Equation (1.13) ranges continuously from inverse filtering with X = Y/F to filtering
with X = FY , which is called “matched filtering.” Notice that for any complex
number F , the phase of 1/F equals the phase of F , so all these filters have the same
phase.

The filter F is called the “matched filter.” If nature created Y by random bursts of
energy into F , then building X from Y and F by choosing λ =∞ in equation (1.13)
amounts to X = Y F which crosscorrelates F with the randomly placed copies of
F that are in Y .

4.4.2 Damped solution

Equation (1.12) is the solution to an optimization problem that arises in many ap-
plications. Now that we know the solution, let us formally define the problem. First,
we will solve a simpler problem with real values: we will choose to minimize the
quadratic function of x:

Q(x) = (fx− y)2 + ε2x2 (4.14)

The second term is called a “damping factor” because it prevents x from going to
±∞ when f → 0. Set dQ/dx = 0, which gives

0 = f(fx− y) + ε2x (4.15)

This yields the earlier answer x = fy/(f 2 + ε2).

With Fourier transforms, the signal X is a complex number at each frequency ω.
So we generalize equation (1.14) to

Q(X̄,X) = (FX − Y )(FX − Y ) + ε2X̄X = (X̄F̄ − Ȳ )(FX − Y ) + ε2X̄X
(4.16)



90 CHAPTER 4. UNIVARIATE PROBLEMS

To minimize Q we could use a real-values approach, where we express X = u + iv
in terms of two real values u and v and then set ∂Q/∂u = 0 and ∂Q/∂v = 0. The
approach we will take, however, is to use complex values, where we set ∂Q/∂X = 0
and ∂Q/∂X̄ = 0. Let us examine ∂Q/∂X̄ :

∂Q(X̄,X)

∂X̄
= F̄ (FX − Y ) + ε2X = 0 (4.17)

The derivative ∂Q/∂X is the complex conjugate of ∂Q/∂X̄ . So if either is zero, the
other is too. Thus we do not need to specify both ∂Q/∂X = 0 and ∂Q/∂X̄ = 0. I
usually set ∂Q/∂X̄ equal to zero. Solving equation (1.17) for X gives equation (1.12).

4.4.3 Example of deconvolution with a known wavelet

The top trace of Figure 1.5 shows a marine reflection seismic trace from northern
Scandinavia. Its most pronounced feature is a series of multiple reflections from the
ocean bottom seen at .6 second intervals. These reflections share a similar waveshape
that alternates in polarity. The alternation of polarity (which will be more apparent
after deconvolution) results from a negative reflection coefficient at the ocean
surface (where the acoustic pressure vanishes). The spectrum of the top trace has
a comb pattern that results from the periodicity of the multiples. In Figure 1.5,

Figure 4.5: The signals on the top correspond to the spectra on the bottom. The top
signal is a marine seismogram 4 seconds long. A wavelet windowed between 0.5 s and
1 s was used to deconvolve the signal with various values of λ. (Adapted from Bill
Harlan, by personal communication.) uni-dekon [ER]

I let the input trace be Y and chose the filter F by extracting (windowing) from
Y the water-bottom reflection, as shown in the second trace. The spectrum of the



4.4. HOW TO DIVIDE NOISY SIGNALS 91

windowed trace is like that of the input trace except that the comb modulation is
absent (see chapter 9 for the reason for the appearance of the comb). The trace labeled
“matched” in Figure 1.5 is the input after matched filtering, namely Y F . The trace
labeled “damped” shows the result of a value of λ = .03, my best choice. The wavelets
are now single pulses, alternating in polarity. The trace labeled “inverse” is actually
not the inverse, but the result of a too small damping factor λ = .001. The inverse
trace is noisy at high frequencies. Notice how the spectral bandwidth increases from
the matched to the damped to the undamped. Increasing noise (bad) is associated
with sharpening of the pulse (good).

Bill Harlan and I each experimented with varying λ with frequency but did not
obtain results interesting enough to show.

Another example of deconvolution with a known wavelet which is more typical
and less successful is shown in Figure 1.6. Here a filter designed in a window on the
water-bottom reflection of a single signal fails to succeed in compressing the wavelets
of multiple reflections on the same trace. It also fails to compress the water-bottom
reflection of a nearby trace. We need more sophisticated methods for finding the
appropriate filter.

Figure 4.6: Division by water-bottom wavelet. uni-crete [ER]

4.4.4 Deconvolution with an unknown filter

Equation (1.12) solves Y = XF for X, giving the solution for what is called “the
deconvolution problem with a known wavelet F .” We can also use Y = XF when
the filter F is unknown, but the input X and output Y are given. Here stabilization
might not be needed but would be necessary if the input and output did not fill the



92 CHAPTER 4. UNIVARIATE PROBLEMS

frequency band. Taking derivatives as above, but with respect to F instead of X,
gives again equation (1.12) with X and F interchanged:

F (ω) =
X(ω) Y (ω)

X(ω)X(ω) + ε2
(4.18)

4.4.5 Explicit model for noise

In all the signal analysis above there was no explicit model for noise, but implicitly
the idea of noise was there. Now we will recognize it and solve explicitly for it. This
leads to what is called “linear-estimation theory.” Instead of simply Y = FX, we
add noise N(ω) into the defining equation:

Y (ω) = F (ω)X(ω) +N(ω) (4.19)

To proceed we need to define the “variance” (described more fully in chapter 11) as

σ2
X =

1

n

n∑
j=1

X̄(ωj)X(ωj) (4.20)

and likewise the noise variance σ2
N .

The general linear-estimation method minimizes something that looks like a sum
of relative errors:

Q(X,N) =
X̄ X

σ2
X

+
N̄ N

σ2
N

(4.21)

Notice that the variances put both terms of the sum into the same physical units. I
have not derived equation (1.21) but stated it as reasonable: from it we will derive
reasonable answers which we have already seen. The rationale for the minimization
of (1.21) is that we want the noise to be small, but because we must guard against
zero division in X = Y/F , we ask for X to be small too. Actually, by introducing
equation (1.19), we have abandoned the model X = Y/F and replaced it with the
model X = (Y − N)/F . Thus, instead of thinking of falsifying F to avoid dividing
by zero in X = Y/F , we now think of finding N so the numerator in (Y − N)/X
vanishes wherever the denominator does.

By introducing (1.19) into (1.21) we can eliminate either N or X. Eliminating N ,
we have

Q(X) =
X̄ X

σ2
X

+
(FX − Y )(FX − Y )

σ2
N

(4.22)

Minimizing Q(X) by setting its derivative by X̄ to zero gives

0 =
X

σ2
X

+
F̄ (FX − Y )

σ2
N

(4.23)

X =
F̄ Y

F̄F +
σ2
N

σ2
X

(4.24)



4.4. HOW TO DIVIDE NOISY SIGNALS 93

Equation (1.24) is the same as equation (1.12), except that it gives us a numerical
interpretation of the value of ε in equation (1.12).

We can find an explicit equation for the noise in terms of the data and filter by
substituting equation (1.24) into equation (1.19) and solving for N .

4.4.6 A self-fulfilling prophecy?

Equation (1.24) and its surrounding theory are easily misunderstood and misused.
I would like to show you a pitfall. Equation (1.24) expresses the answer to the
deconvolution problem, but does so in terms of the unknowns σ2

N and σ2
X . Given

an initial estimate of σ2
N/σ

2
X , we see that equation (1.24) gives us X and (1.19)

gives N , so that we can compute σ2
N and σ2

X . Presumably these computed values
are better than our initial guesses. In statistics, the variances in equation (1.24) are
called “priors,” and it makes sense to check them, and even more sense to correct
them. From the corrected values we should be able to iterate, further improving the
corrections. Equation (1.24) applies for each of the many frequencies, and there is
only a single unknown, the ratio σ2

N/σ
2
X . Hence it seems as if we have plenty of

information, and the bootstrapping procedure might work. A pessimist might call
this bootstrapping a self-fulfilling prophecy, but we will see. What do you think?

Truth is stranger than fiction. I tried bootstrapping the variances. With my first
starting value for the ratio σ2

N/σ
2
X , iterating led to the ratio being infinite. Another

starting value led to the ratio being zero. All starting values led to zero or infinity.
Eventually I deduced that there must be a metastable starting value. Perhaps the
metastable value is the appropriate one, but I lack a rationale to assert it. It seems
we cannot bootstrap the variances because the solutions produced do not tend to the
correct variance, nor is the variance ratio correct. Philosophically, we can be thankful
that these results failed to converge, since this outcome prevents us from placing a
false confidence in the bootstrapping procedure.

The variance of the solution to a least-squares problem is not usable to bootstrap
to a better solution.

I conclude that linear-estimation theory, while it appears to be a universal guide
to practice, is actually incomplete. Its incompleteness grows even more significant in
later chapters, when we apply least squares to multivariate problems where the scalar
σ2
x becomes a matrix. We continue our search for “universal truth” by studying more

examples.

EXERCISES:

1 Using the chain rule for differentiation, verify that ∂Q/∂u = 0 and ∂Q/∂v = 0 is
equivalent to ∂Q/∂x̄, where x = u+ iv.



94 CHAPTER 4. UNIVARIATE PROBLEMS

2 Write code to verify the instability in estimating the variance ratio.

4.5 NONSTATIONARITY

Frequencies decrease with time; velocities increase with depth. Reverberation periods
change with offset; dips change with location. Still, we often find it convenient to
presume that the relevant statistical aspects of data remain constant over a large
domain. In mathematical statistics this is called a “stationarity” assumption. To
assume stationarity is to enjoy a simplicity in analysis that has limited applicability
in the real world. To avoid seduction by the stationarity assumption we will solve
here a problem in which stationarity is obviously an unacceptable presumption. We
will gain skill in and feel comfortable with the computer techniques of estimation
in moving windows. The first requirement is to learn reliable ways of limiting the
potentially destructive effects of the edges of windows.

The way to cope with spatial (or temporal) variation in unknown parameters is
to estimate them in moving windows. Formulating the estimation might require
special shrewdness so that window edges do not strongly affect the result.

To illustrate computation technique in a nonstationary environment, I have chosen
the problem of dip estimation. Before we take up this problem, however, we will
examine a generic program for moving a window around on a wall of data. The
window-moving operation is so cluttered that the first example of it simply counts the
number of windows that hit each point of the wall. Inspecting subroutine nonstat()

on page 16 we first notice that the 1-axis is handled identically with the 2-axis.
(Ratfor makes this more obvious than Fortran could.) Notice the bottom of the
loops where variables (e1,e2) which will be the ends of the windows are jumped along
in steps of (j1,j2). Then notice the tops of the loops where processing terminates
when the ends of the windows pass the ends of the wall. Also at the tops of the loops,
the window count (k1,k2) is incremented, and the starting points of each window
are defined as the window ends (e1,e2) minus their widths (w1,w2).

# slide a window around on a wall of data. Count times each data point used.
#
subroutine nonstat( n1,n2, w1,w2, j1,j2, count)
integer n1,n2 # size of data wall
integer w1,w2 # size of window
integer j1,j2 # increments for jumping along the wall
integer s1,s2, e1,e2 # starting and ending points of window on wall
integer k1,k2 # output math size of array of windows
integer i1,i2
real count( n1,n2)
call null( count, n1*n2)
k2=0; e2=w2; while( e2<=n2) { k2=k2+1; s2=e2-w2+1
k1=0; e1=w1; while( e1<=n1) { k1=k1+1; s1=e1-w1+1

do i1= s1, e1 {



4.5. NONSTATIONARITY 95

do i2= s2, e2 {
count(i1,i2) = count(i1,i2) + 1.
}}

e1=e1+j1 }
e2=e2+j2 }

return; end

A sample result is shown in Figure 1.7. Since window widths do not match
window jumps, the count is not a constant function of space. We see ridges where
the rectangles overlapped a little. Likewise, since the windows were not fitted to the
wall, some data values near the end of each axis failed to be used in any window.
Next we address the problem of splicing together data processing outputs derived

Figure 4.7: Sample output of
nonstat() with n1=100, w1=20,
j1=15, n2=50, w2=20, j2=8.
uni-nonstat [ER]

in each window. This could be done with rectangle weights derived from count in
subroutine nonstat() but it is not much more difficult to patch together triangle
weighting functions as shown in subroutine nonstat2() on page 17.

# slide a window around on a wall of data. Triangle weighting.
#
subroutine nonstat2( n1,n2, w1,w2, j1,j2, data, output, weight)
integer n1,n2, w1,w2, j1,j2, s1,s2, e1,e2, k1,k2, i1,i2
real data(n1,n2), output(n1,n2), weight(n1,n2), triangle1, triangle2, shape
temporary real window(w1,w2), winout(w1,w2)
call null( weight, n1*n2)
call null( output, n1*n2)
k2=0; e2=w2; while( e2<=n2) { k2=k2+1; s2=e2-w2+1
k1=0; e1=w1; while( e1<=n1) { k1=k1+1; s1=e1-w1+1

do i1= 1, w1 {
do i2= 1, w2 { window(i1,i2) = data(s1+i1-1,s2+i2-1)

}}
do i1= 1, w1 { # Trivial data processing
do i2= 1, w2 { winout(i1,i2) = window(i1,i2)

}}
do i1= s1, e1 { triangle1= amax1(0., 1. - abs(i1-.5*(e1+s1)) / (.5*w1))
do i2= s2, e2 { triangle2= amax1(0., 1. - abs(i2-.5*(e2+s2)) / (.5*w2))

shape = triangle1 * triangle2
output(i1,i2) = output(i1,i2) + shape * winout(i1-s1+1,i2-s2+1)
weight(i1,i2) = weight(i1,i2) + shape
}}

e1=e1+j1 }
e2=e2+j2 }

do i1= 1, n1 {
do i2= 1, n2 { if( weight(i1,i2) > 0. )



96 CHAPTER 4. UNIVARIATE PROBLEMS

output(i1,i2) = output(i1,i2) / weight(i1,i2)
}}

return; end

Triangles allow for a more gradual transition from one window to another. In nonstat2(),
data is first pulled from the wall to the window. Next should be the application-
specific operation on the data that processes the data window into an output window.
(This output is often a residual image of a least squares procedure). To avoid getting
into many application-specific details, here we simply copy the input data window
to the output window. Next we devise some triangular weighting functions. These
are used to weight the output window as it is copied onto the wall of accumulating
weighted outputs. Simultaneously, at each point on the wall, the sum of all applied
weights is accumulated. Finally, the effect of weight shape and window overlap is
compensated for by dividing the value at each point on the wall of outputs by the
sum of weights at that point. Figure 1.7 applies nonstat2() to constant data. As
expected, the output is also constant, except at edges where it is zero because no
windows overlap the input data. The flattness of the output means that in practice
we may allow window overlap greater or less than the triangle half width. Notice that
five ridges in Figure 1.7 correspond to five valleys in Figure 1.8.

Figure 4.8: Sample output of nonstat2() with same parameters as Figure 1.7. Left
is weight(n1,n2) and right is output(n1,n2) for constant data. The flattness of the
output means that in practice we may allow window overlap greater or less than the
triangle half width. uni-nstri [ER]

In a typical application, there is one more complication. The filter outputs in each
window are shorter than the input data because the filters themselves may not run
over the edges else there would be truncation transients. Thus some of the values of
the output in each window are undefined. The application-specific filter program may
leave these values undefined or it may set them to zero. If they come out zeros, it is
safe to add them in to the wall of outputs, but care must be taken that the window
weight that is normally accumulated on the wall of weights is omitted. There is one
final complication for those of you who plan to be really meticulous. The triangles



4.6. DIP PICKING WITHOUT DIP SCANNING 97

designed in nonstat2() on page 17 taper to zero just beyond the ends of the window
of data. They should taper to zero just beyond the ends of the window of outputs.

4.6 DIP PICKING WITHOUT DIP SCANNING

“Picking” is the process of identifying dipping seismic events. Here we will do
something like picking, but in a continuum; i.e., dips will be picked continuously and
set on a uniform mesh. Customarily, dip picking is done by scanning two-dimensional
data along various dips. We will see that our method, based on the “plane-wave
destructor operator,” does not have its resolution limited by the spatial extent of a
dip scan.

4.6.1 The plane-wave destructor

A plane wave in a wave field u(t, x) = u(t− px) with stepout p can be extinguished
with a partial differential operator, which we write as a matrix A, where

0 ≈ v(t, x) =

(
∂

∂x
+ pi

∂

∂t

)
u(t, x) (4.25)

0 ≈ v = A u (4.26)

The parameter p is called the “wavenumber” or “Snell parameter,” and |p| can take
on any value less than 1/v, where v is the medium velocity. The angle of propagation
of the wave is sin θ = pv.

We need a method of discretization that allows the mesh for du/dt to overlay
exactly du/dx. To this end I chose to represent the t-derivative by

du

dt
≈ 1

2

(
u(t+ ∆t, x)− u(t, x)

∆t

)
+

1

2

(
u(t+ ∆t, x+ ∆x)− u(t, x+ ∆x)

∆t

)
(4.27)

and the x-derivative by an analogous expression with t and x interchanged. Now the
difference operator δx+piδt is a two-dimensional filter that fits on a 2×2 differencing
star. As a matrix operation, this two-dimensional convolution is denoted A. (More
details about finite differencing can be found in IEI.)

The program wavekill1() applies the operator aδx+pδt, which can be specialized
to the operators δx, δt, δx + piδt.

# vv = (aa Dx + pp Dt) uu
#
subroutine wavekill1( aa, pp, n1,n2,uu, vv )
integer i1,i2, n1,n2
real aa, pp, s11, s12, s21, s22, uu(n1,n2), vv( n1-1, n2-1)
s11 = -aa-pp; s12 = aa-pp



98 CHAPTER 4. UNIVARIATE PROBLEMS

s21 = -aa+pp; s22 = aa+pp
call null( vv,(n1-1)*(n2-1))
do i1= 1, n1-1 { # vv is one point shorter than uu on both axes.
do i2= 1, n2-1 {

vv(i1,i2) = vv(i1,i2) +
uu(i1 ,i2) * s11 + uu(i1 ,i2+1) * s12 +
uu(i1+1,i2) * s21 + uu(i1+1,i2+1) * s22

}}
return; end

I carefully arranged the side boundaries so that the filter never runs off the sides of
the data. Thus the output is shorter than the input by one point on both the t-axis
and the x-axis. The reason for using these side boundaries is that large datasets can
be chopped into independent sections without the boundaries themselves affecting
the result. By chopping a large dataset into sections, we can handle curved events as
piecewise linear.

When only one wave is present and the data is adequately sampled, then finding
the best value of p is a single-parameter, linear least-squares problem. Let x be an
abstract vector whose components are values of ∂u/∂x taken on a mesh in (t, x).
Likewise, let t contain ∂u/∂t. Since we want x + p t ≈ 0, we minimize the quadratic
function of p,

Q(p) = (x + p t) · (x + p t) (4.28)

by setting to zero the derivative. We get

p = − x · t
t · t (4.29)

Since data will not always fit the model very well, it may be helpful to have some
way to measure how good the fit is. I suggest

C2 = 1 − (x + p t) · (x + p t)

x · x (4.30)

which, on inserting p = −(x · t)/(t · t), leads to C, where

C =
x · t√

(x · x)(t · t)
(4.31)

is known as the “normalized correlation.” The program for this calculation is
straightforward. I named the program puck() to denote picking on a continuum.

# measure coherency and dip, and compute residual res = (Dx + p Dt) uu
#
subroutine puck ( n1, n2, uu, coh, pp, res )
integer i1, i2, n1, n2
real uu(n1,n2), res(n1,n2), xx, xt, tt, coh, pp
temporary real dx(n1,n2-1), dt(n1-1,n2-1)
call wavekill1( 1., 0., n1,n2 , uu, dx)



4.6. DIP PICKING WITHOUT DIP SCANNING 99

call wavekill1( 0., 1., n1,n2 , uu, dt)
xx = 1.e-30; tt = 1.e-30; xt = 0.
do i1= 1, n1-1 {
do i2= 1, n2-1 {

xt = xt + dt(i1,i2) * dx(i1,i2)
tt = tt + dt(i1,i2) * dt(i1,i2)
xx = xx + dx(i1,i2) * dx(i1,i2)
}}

coh = sqrt((xt/tt)*(xt/xx))
pp = - xt/tt
call wavekill1( 1., pp, n1,n2 , uu, res)
return; end

Finally and parenthetically, an undesirable feature of the plane-wave destructor
method is that the residual v has no particular relation to the data u, unlike in
time-series analysis—see chapter 7. Another disadvantage, well known to people who
routinely work with finite-difference solutions to partial differential equations, is that
for short wavelengths a difference operator is not the same as a differential operator;
thereby the numerical value of p is biased.

4.6.2 Moving windows for nonstationarity

Wavefronts generally curve. But a curved line viewed only over a small range is
barely distinguishable from a straight line. A straight-line wavefront is much easier
to manage than a curved one. If we think of the slope of the line as a parameter
estimated statistically, then it is a nonstationary variable—it varies from place to
place. So we can work with curved wavefronts by working in a small window that is
moved around. The main thing to beware of about small windows is that unless we
are very careful, their side boundaries may bias the result.

The puck() method was designed to be ignorant of side boundaries: it can be
applied in a small window and the window moved freely around the data. A strength
of the puck() method is that the window can be smaller than a wavelength—it can
be merely two traces wide. A sample based on synthetic data is shown in Figures 1.9
through 1.11. The synthetic data in 1.9 mimics a reflection seismic field profile,
including one trace that is slightly delayed as if recorded on a patch of unconsolidated
soil. Notice a low level of noise in the synthetic data.

Figure 1.10 shows the residual. The residual is small in the central region of the
data; it is large where there is spatial aliasing; and it is large at the transient onset
of the signal. The residual is rough because of the noise in the signal, because it is
made from derivatives, and because the synthetic data was made by nearest-neighbor
interpolation. Notice that the residual is not particularly large for the delayed trace.

Figure 1.11 shows the dips. The most significant feature of this figure is the sharp
localization of the dips surrounding the delayed trace. Other methods based on wave
or Fourier concepts might lead us to conclude that the aperture must be large to



100 CHAPTER 4. UNIVARIATE PROBLEMS

Figure 4.9: Input synthetic data.
uni-puckin [ER]

Figure 4.10: Residuals, i.e.,
an evaluation of Ux + pUt.
uni-residual [ER]

Figure 4.11: Output values of p
are shown by the slope of short
line segments. uni-puckout [ER]



4.6. DIP PICKING WITHOUT DIP SCANNING 101

resolve a wide range of angles. Here we have a narrow aperture (two traces), but the
dip can change rapidly and widely.

Subroutine slider() on page 23 below shows the code that generated Figure 1.9
through 1.11.

# slide a window around on a wall of data measuring coherency, dip, residual
#
subroutine slider( n1,n2, w1,w2, k1,k2, data, coh, pp, res)
integer i1,i2, n1,n2, w1,w2, k1,k2, s1,s2, e1,e2
integer p1,p2 # number of subwindows is p1*p2
real data(n1,n2) # input
real res(n1,n2) # outputs. math size (n1-1,n2-1)
real pp(n1,n2), coh(n1,n2) # outputs defined at pp( 1..p1, 1..p2)
temporary real count( n1,n2)
temporary real window(w1,w2), tres(w1-1,w2-1)
call null( count, n1*n2)
call null( res, n1*n2)
p2=0; e2=w2; while( e2<=n2) { p2=p2+1; s2=e2-w2+1
p1=1; e1=w1; while( e1<=n1) { p1=p1+1; s1=e1-w1+1

do i1 = 1, w1 {
do i2 = 1, w2 { window(i1,i2) = data(i1+s1-1,i2+s2-1)

}}
call null( tres, (w1-1)*(w2-1))
call puck ( w1, w2, window, coh(p1,p2), pp(p1,p2), tres)
do i1= s1, e1-1 {
do i2= s2, e2-1 {

res( i1,i2) = res(i1,i2) + tres( i1-s1+1, i2-s2+1)
count(i1,i2) = count(i1,i2) + 1.
}}

e1=e1+k1 }
e2=e2+k2 }

do i2= 1, n2-1 {
do i1= 1, n1-1 { if( count(i1,i2) > 0. )

res(i1,i2) = res(i1,i2) / count(i1,i2)
}}

return; end

A disadvantage of the puck() method is that the finite-difference operator is
susceptible to spatial aliasing as well as to distortions at spatial frequencies that are
high but not yet aliased. This suggests a logical step—estimating missing interlaced
traces—which we take up in chapter 8.

EXERCISES:

1 It is possible to reject two dips with the operator

(∂x + p1∂t)(∂x + p2∂t) (4.32)

This is equivalent to(
∂2

∂x2
+ a

∂2

∂x∂t
+ b

∂2

∂t2

)
u(t, x) = v(t, x) ≈ 0 (4.33)



102 CHAPTER 4. UNIVARIATE PROBLEMS

where u is the input signal and v is the output signal. Show how to solve for a
and b by minimizing the energy in v.

2 Given a and b from the previous exercise, what are p1 and p2?



312 CHAPTER 4. UNIVARIATE PROBLEMS



Index

abstract vector, 1, 2

bandwidth, 13

color, 7
comb, 12
correlation

normalized, 20
covariance matrix, 9
crosscorrelate, 11
crosstalk, 1, 2

damping, 11
deconvolution, 13
deconvolution

known wavelet, 12
dip, 16

filter
inverse, 11
matched, 11

fitting function, 3

Gauss, 9

Harlan, 12, 13

inverse filter, 11

Laplacian, 8
linear-estimation, 5, 14, 15

matched filter, 11
median, 6
metastable, 15
multiplex, 1

noise, 14
nonlinear-estimation, 5
nonstat subroutine, 16
nonstat2 subroutine, 17

orthogonal, 1, 3

picking, 19
piecewise linear, 20
pitfall, 4, 15
plane-wave destructor, 19
polarity, 12
pressure wave, 2
puck subroutine, 20

reflection coefficient, 12
relative error, 4, 14
residual, 3, 21

shear wave, 2
slider subroutine, 23
Snell parameter, 19
soil, 21
spatial alias, 21
spectrum

spatial, 8
stationarity, 16
subroutine

nonstat2, moving window, 17
nonstat, moving window, 16
puck, picking on continuum, 20
slider, dip pick, 23
wavekill1, zap plane wave, 19

synthetic data, 4

univariate, 1

variance, 6, 14

wavekill1 subroutine, 19
weighting function, 4

zero divide, 10

313



Chapter 5

Adjoint operators

A great many of the calculations we do in science and engineering are really matrix
multiplication in disguise. The first goal of this chapter is to unmask the disguise
by showing many examples. Second, we will illuminate the meaning of the adjoint
operator (matrix transpose) in these many examples.

Geophysical modeling calculations generally use linear operators that predict data
from models. Our usual task is to find the inverse of these calculations, i.e., to find
models (or make maps) from the data. Logically, the adjoint is the first step and a part
of all subsequent steps in this inversion process. Surprisingly, in practice the adjoint
sometimes does a better job than the inverse! This is because the adjoint operator
tolerates imperfections in the data and does not demand that the data provide full
information.

Using the methods of this chapter, you will find that once you grasp the relation-
ship between operators in general and their adjoints, you can have the adjoint just
as soon as you have learned how to code the modeling operator.

If you will permit me a poet’s license with words, I will offer you the following
table of operators and their adjoints:

matrix multiply conjugate-transpose matrix multiply
convolution crosscorrelation
stretching squeezing
zero padding truncation
causal integration anticausal integration
add functions do integrals
plane-wave superposition slant stack / beam forming
superposing on a curve summing along a curve
upward continuation downward continuation
diffraction modeling imaging by migration
hyperbola modeling CDP stacking
ray tracing tomography

103



104 CHAPTER 5. ADJOINT OPERATORS

The left column above is often called “modeling,” and the adjoint operators on
the right are often used in “data processing.”

When the adjoint operator is not an adequate approximation to the inverse, then
you apply the techniques of fitting and optimization which require iterative use of the
modeling operator and its adjoint.

The adjoint operator is sometimes called the “back projection” operator because
information propagated in one direction (earth to data) is projected backward (data to
earth model). With complex-valued operators the transpose and complex conjugate
go together and in Fourier analysis, taking the complex conjugate of exp(iωt) reverses
the sense of time. Still assuming poetic license, I will say that adjoint operators undo
the time and phase shifts of modeling operators. The inverse operator does this
too, but it also divides out the color. For example, with linear interpolation high
frequencies are smoothed out, so inverse interpolation must restore them. You can
imagine the possibilities for noise amplification. That is why adjoints are safer than
inverses. But nature determines in each application what is the best operator to use,
whether to stop after the adjoint, to go the whole way to the inverse, or to stop
part-way.

We will see that computation of the adjoint is a straightforward adjunct to the
computation itself, and the computed adjoint should be, and generally can be, exact
(within machine precision). If the application’s operator is computed in an approxi-
mate way, we will see that it is natural and best to compute the adjoint with adjoint
approximations. Much later in this chapter is a formal definition of adjoint operator.
Throughout the chapter we handle an adjoint operator as a matrix transpose, but we
hardly ever write down any matrices or their transposes. Instead, we always prepare
two subroutines, one that performs y = Ax and another that performs x̃ = A′y,
so we need a test that the two subroutines really embody the essential aspects of
matrix transposition. Although the test is an elegant and useful test and is itself a
fundamental definition, curiously, that definition helps us not one bit in constructing
adjoint operators, so I postpone the formal definition of adjoint until after we have
seen many examples.

5.1 FAMILIAR OPERATORS

The operation yi =
∑
j bijxj is multiplication of a matrix B times a vector x. The

adjoint operation is x̃j =
∑
i bijyi. The operation adjoint to multiplying by a matrix

is multiplying by the transposed matrix (unless the matrix has complex elements, in
which case we need the complex-conjugated transpose). The following pseudocode
does matrix multiplication y = Bx and multiplication by the transpose matrix x̃ =
B′y:



5.1. FAMILIAR OPERATORS 105

if operator itself
then erase y

if adjoint
then erase x

do iy = 1, ny {
do ix = 1, nx {

if operator itself
y(iy) = y(iy) + b(iy,ix) × x(ix)

if adjoint
x(ix) = x(ix) + b(iy,ix) × y(iy)

}}

Notice that the “bottom line” in the program is that x and y are simply interchanged.
The above example is a prototype of many to follow, so observe carefully the similar-
ities and differences between the operation and its adjoint.

A formal program for matrix multiply and its adjoint is found below. The first
step is erasing the output. That may seem like too trivial a function to put in a
separate library routine, but, at last count, 15 other routines in this book use the
output-erasing subroutine adjnull() below.

subroutine adjnull( adj, add, x, nx, y, ny )
integer ix, iy, adj, add, nx, ny
real x( nx), y( ny )
if( add == 0 )

if( adj == 0 )
do iy= 1, ny

y(iy) = 0.
else

do ix= 1, nx
x(ix) = 0.

return; end

The subroutine matmult() on page 3 for matrix multiply and its adjoint exhibits a
style that we will use repeatedly.

# matrix multiply and its adjoint
#
subroutine matmult( adj, bb, nx,x, ny,y)
integer ix, iy, adj, nx, ny
real bb(ny,nx), x(nx), y(ny)
call adjnull( adj, 0, x,nx, y,ny)
do ix= 1, nx {
do iy= 1, ny {

if( adj == 0 )
y(iy) = y(iy) + bb(iy,ix) * x(ix)

else



106 CHAPTER 5. ADJOINT OPERATORS

x(ix) = x(ix) + bb(iy,ix) * y(iy)
}}

return; end

5.1.1 Transient convolution

When the matrix has a special form, such as

y1

y2

y3

y4

y5

y6

y7


=



b1 0 0 0 0
b2 b1 0 0 0
b3 b2 b1 0 0
0 b3 b2 b1 0
0 0 b3 b2 b1

0 0 0 b3 b2

0 0 0 0 b3




x1

x2

x3

x4

x5

 (5.1)

then the matrix multiplication and transpose multiplication still fit easily in the same
computational framework. The operation Bx convolves bt with xt, whereas the oper-
ation B′y crosscorrelates bt with yt. I will leave it to you to verify the pseudocode

do ix = 1, nx {
do ib = 1, nb {

iy = ib + ix – 1
if operator itself (convolution)

y(iy) = y(iy) + b(ib) × x(ix)
if adjoint (correlation)

x(ix) = x(ix) + b(ib) × y(iy)
}}

Again, notice that the “bottom line” in the program is that x and y are simply
interchanged.

Equation (1.1) could be rewritten as

y1

y2

y3

y4

y5

y6

y7


=



x1 0 0
x2 x1 0
x3 x2 x1

x4 x3 x2

x5 x4 x3

0 x5 x4

0 0 x5



 b1

b2

b3

 (5.2)

which we abbreviate by y = Xb. So we can choose between y = Xb and y = Bx.
In one case the output y is dual to the filter b, and in the other case the output y



5.1. FAMILIAR OPERATORS 107

is dual to the input x. In applications, sometimes we will solve for b and sometimes
for x; so sometimes we will use equation (1.2) and sometimes (1.1).

The program contran() on page 5 can be used with either equation (1.1) or
equation (1.2), because the calling program can swap the xx and bb variables. The
name contran() denotes convolution with “transpose” and with “transient” end
effects.

# Convolve and correlate (adjoint convolve).
#
subroutine contran( adj, add, nx, xx, nb, bb, yy)
integer ix, ib, ny, adj, add, nx, nb
real xx(nx) # input signal
real bb(nb) # filter (or output crosscorrelation)
real yy(nx+nb-1) # filtered signal (or second input signal)
ny = nx + nb - 1 # length of filtered signal
call adjnull( adj, add, bb, nb, yy, ny)
do ib= 1, nb {
do ix= 1, nx {

if( adj == 0 )
yy( ib+ix-1) = yy( ib+ix-1) + xx( ix) * bb(ib)

else
bb( ib) = bb( ib) + xx( ix) * yy( ib+ix-1)

}}
return; end

5.1.2 Zero padding is the transpose of truncation.

Surrounding a dataset by zeros (zero padding) is adjoint to throwing away the
extended data (truncation). Let us see why this is so. Set a signal in a vector x,
and then make a longer vector y by adding some zeros at the end of x. This zero
padding can be regarded as the matrix multiplication

y =

[
I
0

]
x (5.3)

The matrix is simply an identity matrix I above a zero matrix 0. To find the transpose
to zero padding, we now transpose the matrix and do another matrix multiply:

x̃ =
[

I 0
]

y (5.4)

So the transpose operation to zero padding data is simply truncating the data back
to its original length.

5.1.3 Product of operators

We will look into details of Fourier transformation elsewhere. Here we use it as an
example of any operator containing complex numbers. For now, we can think of



108 CHAPTER 5. ADJOINT OPERATORS

Fourier transform as a square matrix F. We denote the complex-conjugate transpose
(or adjoint) matrix with a prime, i.e., F′. The adjoint arises naturally whenever we
consider energy. The statement that Fourier transforms conserve energy is y′y = x′x
where y = Fx. Substituting gives F′F = I which shows that the inverse matrix to
Fourier transform happens to be the complex conjugate of the transpose of F.

With Fourier transforms, zero padding and truncation are particularly preva-
lent. Most programs transform a dataset of length of 2n, whereas dataset lengths
are often of length m × 100. The practical approach is therefore to pad given data
with zeros. Padding followed by Fourier transformation F can be expressed in matrix
algebra as

Program = F

[
I
0

]
(5.5)

According to matrix algebra, the transpose of a product, say AB = C, is the product
C′ = B′A′ in reverse order. So the adjoint program is given by

Program′ =
[

I 0
]

F′ (5.6)

Thus the adjoint program truncates the data after the inverse Fourier transform.

5.1.4 Convolution end effects

In practice, filtering generally consists of three parts: (1) convolution, (2) shifting
to some preferred time alignment, and (3) truncating so the output has the same
length as the input. An adjoint program for this task, is easily built from an earlier
program. We first make a simple time-shift program advance().

# signal advance: y(iy) = x(iy+jump)
#
subroutine advance( adj, add, jump, nx, xx, ny, yy)
integer ix, iy, adj, add, jump, nx, ny
real xx(nx), yy(ny)
call adjnull( adj, add, xx,nx, yy,ny)
do iy= 1, ny {

ix = iy + jump
if( ix >= 1 )

if( ix <= nx )
if( adj == 0 )

yy( iy) = yy( iy) + xx( ix)
else

xx( ix) = xx( ix) + yy( iy)
}

return; end

Although the code is bulky for such a trivial program, it is easy to read, works for
any size of array, and works whether the shift is positive or negative. Since filtering
ordinarily delays, the advance() routine generally compensates.



5.1. FAMILIAR OPERATORS 109

Merging advance() with the earlier program contran() according to the trans-
pose rule (AB)′ = B′A′, we get contrunc().

# Convolve, shift, and truncate output.
#
subroutine contrunc( conj, add, lag, np,pp, nf,ff, nq,qq)
integer ns, conj, add, lag, np, nf, nq
real pp(np) # input data
real ff(nf) # filter (output at ff(lag))
real qq(nq) # filtered data
temporary real ss( np+nf-1)
ns = np + nf - 1
if( conj == 0 ) {

call contran( 0, 0, np,pp, nf,ff, ss)
call advance( 0, add, lag-1, ns,ss, nq,qq)

}
else { call advance( 1, 0, lag-1, ns,ss, nq,qq)

call contran( 1, add, np,pp, nf,ff, ss)
}

return; end

For a symmetrical filter, a lag parameter half of the filter length would be specified.
The output of a minimum-phase filter is defined to be at the beginning of the filter,
ff(1), so then lag=1. The need for an adjoint filtering program will be apparent
later, when we design filters for prediction and interpolation. The program variable
add happens to be useful when there are many signals. Our first real use of add will
be found in the subroutine stack1() on page 19.

Another goal of convolution programs is that zero data not be assumed beyond
the interval for which the data is given. This can be important in filter design and
spectral estimation, when we do not want the truncation at the end of the data to
have an effect. Thus the output data is shorter than the input signal. To meet this
goal, I prepared subroutine convin().

# Convolve and correlate with no assumptions off end of data.
#
subroutine convin( adj, add, nx, xx, nb, bb, yy)
integer ib, iy,ny, adj, add, nx, nb
real xx(nx) # input signal
real bb(nb) # filter (or output crosscorrelation)
real yy(nx-nb+1) # filtered signal (or second input signal)
ny = nx - nb + 1 # length of filtered signal
if( ny < 1 ) call erexit(’convin() filter output negative length.’)
call adjnull( adj, add, bb, nb, yy, ny)
if( adj == 0 )

do iy= 1, ny {
do ib= 1, nb {

yy( iy) = yy( iy) + bb(ib) * xx( iy-ib+nb)
}}

else
do ib= 1, nb {



110 CHAPTER 5. ADJOINT OPERATORS

do iy= 1, ny {
bb( ib) = bb( ib) + yy(iy) * xx( iy-ib+nb)
}}

return; end

By now you are probably tired of looking at so many variations on convolution;
but convolution is the computational equivalent of ordinary differential equations,
its applications are vast, and end effects are important. The end effects of the
convolution programs are summarized in Figure 1.1.

Figure 5.1: Example of convolu-
tion end effects. From top to bot-
tom: (1) input; (2) filter; (3) out-
put of convin(); (4) output of
contrunc() with no lag (lag=1);
and (5) output of contran().
conj-conv [ER]

5.1.5 Kirchhoff modeling and migration

Components of a vector can be summed into a scalar. The adjoint is taking the
scalar and distributing it out to a vector (also called “scattering” or “spraying”).
Alternately, values to be summed can come from a trajectory in a plane, such as a
hyperbolic trajectory.

When reflectors in the earth are dipping, or broken into point scatterers, time-
to-depth conversion is not simply a stretching of the time axis. Modeling is done
in a variety of ways, one of which is to model each point in the depth (x, z)-plane
by a hyperbola in the data (x, t)-plane. The adjoint operation consumes much com-
puter power in the petroleum-prospecting industry and is called “migration.” Many
migration methods exist, most of which are taken up in IEI, but that book does not
describe the adjoint property I discuss below.

Hyperbola superposition is the adjoint to hyperbola recognition by summing along
hyperbolas. The summing is called “Kirchhoff migration” or “imaging,” and the
spraying is called “Kirchhoff modeling.” The name comes from Kirchhoff’s diffraction
integral.

In the pseudocode below, the parameter ih refers to the separation of a point on
a hyperbola from its top at ix. Ignoring “if index off data” tests, I show Kirchhoff
modeling and migration in the pseudocode following:



5.1. FAMILIAR OPERATORS 111

do iz = 1,nz
do ix = 1,nx

do ih = –25, 25
it = sqrt( iz∗iz + ih∗ih )/velocity
ig = ix + ih
if not adjoint

zz(iz,ix) = zz(iz,ix) + tt(it,ig) # imaging
if adjoint

tt(it,ig) = tt(it,ig) + zz(iz,ix) # modeling

We can speed up the program by moving the ix loop to the inside of the square root
and interpolation overheads.

5.1.6 Migration defined

“Migration” is a word in widespread use in reflection seismology to define any data-
processing program that converts a data plane to an image. IEI offers several de-
scriptive definitions of migration. Here I offer you a mathematical definition of a
migration operator: given any (diffraction) modeling operator B, its adjoint B′

defines a migration operator. This raises the interesting question, what is the inverse
to B, and how does it differ from the adjoint B′?

An adjoint operator is not the same as an inverse operator. Most people think of
migration as the inverse of modeling, but mathematically it is the adjoint of modeling.
In many wave-propagation problems, B−1 and B′ are nearly the same. A formula for
B−1 (from (1.14)) is B−1 = (B′B)−1B′. So the difference between B′ and B−1 is in
the factor B′B. Theoreticians that work in the continuum find something like B′B
in the form of a weighting function in the physical domain or a weighting function in
the spectral domain or both. Since it is merely a weighting function, it is not very
exciting to practitioners who are accustomed to weighting functions in both domains
for other purposes, principally for enhancing data display. Indeed, it could be a pitfall
to introduce the weighting function of inversion, because it could interfere with the
data display. The opportunity that I see for inversion lies in practice where B′B is
quite far from an identity matrix for another reason—that data is not a continuum
and has aliasing, truncation, and noise.

A curious aspect of migration arises from the reflection amplitude versus offset
(AVO) along the hyperbola. The effect of changing AVO is to change the dip filter-
ing. Notice that effort expended to get the correct AVO in the modeling operator
affects the migration operator (the adjoint) without necessarily making it closer to
the inverse. It is a pitfall to imagine that carefully constructing the correct am-
plitude versus offset in a diffraction operator will make the corresponding migration
operator more effective. The question of whether an inverse operator is better than



112 CHAPTER 5. ADJOINT OPERATORS

an adjoint has no simple answer; its answer depends on circumstances. So the phrase
“true amplitude migration” has questionable meaning.

You might look at the Kirchhoff migration code above and ask, what is the mod-
elling matrix that is transposed? We don’t see it. We started by defining “adjoint
operator” as the transpose of a matrix, but now we seem to be defining it by a certain
programming style. The abstract vector for Kirchhoff migration is packed with data
values from a two-dimensional (t, x)-plane. The abstract matrix is hard to visual-
ize. How can we know whether we have defined the adjoint operator correctly? The
answer is given next by the dot-product test.

5.2 ADJOINT DEFINED: DOT-PRODUCT TEST

There is a huge gap between the conception of an idea and putting it into practice.
During development, things fail far more often than not. Often, when something fails,
many tests are needed to track down the cause of failure. Maybe the cause cannot
even be found. More insidiously, failure may be below the threshold of detection and
poor performance suffered for years. I find the dot-product test to be an extremely
valuable checkpoint.

Conceptually, the idea of matrix transposition is simply a′ij = aji. In practice,
however, we often encounter matrices far too large to fit in the memory of any com-
puter. Sometimes it is also not obvious how to formulate the process at hand as a
matrix multiplication. What we find in practice is that an application and its adjoint
amounts to two subroutines. The first subroutine amounts to the matrix multiplica-
tion Ax. The adjoint subroutine computes A′y, where A′ is the transpose matrix.
In a later chapter we will be solving huge sets of simultaneous equations. Then both
subroutines are required. We are doomed from the start if the practitioner provides
an inconsistent pair of subroutines. The dot product test is a simple test for verifying
that the two subroutines are adjoint to each other.

The associative property of linear algebra says that we do not need parentheses
in a vector-matrix-vector product like y′Ax because we get the same result no mat-
ter where we put the parentheses. They serve only to determine the sequence of
computation. Thus,

y′(Ax) = (y′A)x (5.7)

y′(Ax) = (A′y)′x (5.8)

(In general, the matrix is not square.) For the dot-product test, load the vectors x
and y with random numbers. Compute the vector ỹ = Ax using your program for A,
and compute x̃ = A′y using your program for A′. Inserting these into equation (1.8)
gives you two scalars that should be equal.

y′(Ax) = y′ỹ = x̃′x = (A′y)′x (5.9)



5.2. ADJOINT DEFINED: DOT-PRODUCT TEST 113

The left and right sides of this equation will be computationally equal only if the
program doing A′ is indeed adjoint to the program doing A (unless the random
numbers do something miraculous).

I tested (1.9) on many operators and was surprised and delighted to find that it
is often satisfied to an accuracy near the computing precision. More amazing is that
on some computers, equation (1.9) was sometimes satisfied down to and including the
least significant bit. I do not doubt that larger rounding errors could occur, but so
far, every time I encountered a relative discrepancy of 10−5 or more, I was later able
to uncover a conceptual or programming error. Naturally, when I do dot-product
tests, I scale the implied matrix to a small dimension in order to speed things along,
and to be sure that boundaries are not overwhelmed by the much larger interior.

Do not be alarmed if the operator you have defined has truncation errors. Such
errors in the definition of the original operator should be identically matched by
truncation errors in the adjoint. If your code passes the dot-product test, then
you really have coded the adjoint operator. In that case, you can take advantage of
the standard methods of mathematics to obtain inverse operators.

We can speak of a continuous function f(t) or a discrete one ft. For continuous
functions we use integration, and for discrete ones we use summation. In formal
mathematics the dot-product test defines the adjoint operator, except that the sum-
mation in the dot product may need to be changed to an integral. The input or the
output or both can be given either on a continuum or in a discrete domain. So the
dot-product test y′ỹ = x̃′x could have an integration on one side of the equal sign
and a summation on the other. Linear-operator theory is rich with concepts, but I
will not develop it here. I assume that you studied it before you came to read this
book, and that it is my job to show you how to use it.

5.2.1 What is an adjoint operator?

In mathematics the word “adjoint” has three meanings. One of them, the so-called
Hilbert adjoint, is the one generally found in Physics and Engineering and it is the
one used in this book. In Linear Algebra is a different matrix, called the adjugate
matrix. It is a matrix whose elements are signed cofactors (minor determinants). For
invertible matrices, this matrix is the determinant times the inverse matrix. It is
computable without ever using division, so potentially the adjugate can be useful in
applications where an inverse matrix cannot. Unfortunately, the adjugate matrix is
sometimes called the adjoint matrix particularly in the older literature. Because of the
confusion of multiple meanings of the word adjoint, in the first printing of this book
I avoided the use of the word, substituting the definition, “conjugate transpose”.
Unfortunately this was often abbreviated to “conjugate” which caused even more
confusion.



114 CHAPTER 5. ADJOINT OPERATORS

EXERCISES:

1 Suppose a linear operator A has its input in the discrete domain and its output in
the continuum. How does the operator resemble a matrix? Describe the operator
A′ which has its output in the discrete domain and its input in the continuum.
To which do you apply the words “scales and adds some functions,” and to which
do you apply the words “does a bunch of integrals”? What are the integrands?

2 Examine the end effects in the programs contran() and convin(). Interpret
differences in the adjoints.

3 An operator is “self-adjoint” if it equals its adjoint. Only square matrices can
be self-adjoint. Prove by a numerical test that subroutine leaky() on page 59
is self-adjoint.

4 Prove by a numerical test that the subroutine triangle() on page 55, which
convolves with a triangle and then folds boundary values back inward, is self-
adjoint.

5.3 NORMAL MOVEOUT AND OTHER MAPPINGS

Many times we simply deform or stretch a wave field or a map. A curious mapping
I once made was a transformation of world topography (including ocean depth).
Great circles play an important role in global surface-wave propagation because
waves travel on the great circles. In my transformed map, the great circle from
Stanford University to the east is plotted as an equator on a Mercator projection.
North at Stanford is plotted vertically as usual. Figure 1.2 shows it.

Deformations can either stretch or shrink or both, and different practical problems
arise in each of these cases.

5.3.1 Nearest-neighbor interpolation

Deformations begin from the task of selecting a value val from an array vec(ix),

ix=1,nx. The points of the array are at locations x = x0+dx*(ix-1). Given the
location x of the desired value we backsolve for ix. In Fortran, conversion of a real
value to an integer is done by truncating the fractional part of the real value. To get
rounding up as well as down, we add a half before conversion to an integer, namely
ix=int(1.5+(x-x0)/dx). This gives the nearest neighbor. The adjoint to extracting
a value from a vector is putting it back. A convenient subroutine for nearest-neighbor
interpolation is spot0().

# Nearest neighbor interpolation, essentially: val = vec( 1.5 + (t-t0)/dt)
#
subroutine spot0( adj, add, nt,t0,dt, t, val, vec )



5.3. NORMAL MOVEOUT AND OTHER MAPPINGS 115

Figure 5.2: The world as Gerhardus Mercator might have drawn it if he had lived at
Stanford University. Press button for movie (and be patient). conj-great [NR]

integer it, adj, add, nt
real t0,dt, t, val, vec( nt)
call adjnull( adj, add, val, 1, vec, nt)
it = 1.5 + (t-t0) / dt
if( 0 < it && it <= nt)

if( adj == 0 ) # add value onto vector
vec( it) = vec( it) + val

else # take value from vector
val = val + vec( it)

return; end

Recall subroutine advance() on page 6. For jump==0 its matrix equivalent is an
identity matrix. For other values of jump, the identity matrix has its diagonal shifted
up or down. Now examine subroutine spot0() on page 12 and think about its matrix
equivalent. Since its input is a single value and its output is a vector, that means its
matrix is a column vector so the adjoint operator is a row vector. The vector is all
zeros except for somewhere where there is a “1”.

5.3.2 A family of nearest-neighbor interpolations

Let an integer k range along a survey line, and let data values xk be packed into a
vector x. (Each data point xk could also be a seismogram.) We plan to resample
the data more densely, say from 4 to 6 points. For illustration, I follow a crude



116 CHAPTER 5. ADJOINT OPERATORS

nearest-neighbor interpolation scheme by sprinkling ones along the diagonal of a
rectangular matrix that is

y = B x (5.10)

where 

y1

y2

y3

y4

y5

y6


=



1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1




x1

x2

x3

x4

 (5.11)

The interpolated data is simply y = (x1, x2, x2, x3, x4, x4). The matrix multiplica-
tion (1.11) would not be done in practice. Instead there would be a loop running over
the space of the outputs y that picked up values from the input.

Looping over input space

The obvious way to program a deformation is to take each point from the input space
and find where it goes on the output space. Naturally, many points could land in the
same place, and then only the last would be seen. Alternately, we could first erase
the output space, then add in points, and finally divide by the number of points that
ended up in each place. The biggest aggravation is that some places could end up
with no points. This happens where the transformation stretches. There we need to
decide whether to interpolate the missing points, or simply low-pass filter the output.

Looping over output space

The alternate method that is usually preferable to looping over input space is that our
program have a loop over the space of the outputs, and that each output find its input.
The matrix multiply of (1.11) can be interpreted this way. Where the transformation
shrinks is a small problem. In that area many points in the input space are ignored,
where perhaps they should somehow be averaged with their neighbors. This is not a
serious problem unless we are contemplating iterative transformations back and forth
between the spaces.

We will now address interesting questions about the reversibility of these defor-
mation transforms.

5.3.3 Formal inversion

We have thought of equation (1.10) as a formula for finding y from x. Now consider
the opposite problem, finding x from y. Begin by multiplying equation (1.11) by the



5.3. NORMAL MOVEOUT AND OTHER MAPPINGS 117

transpose matrix to define a new quantity x̃:


x̃1

x̃2

x̃3

x̃4

 =


1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1





y1

y2

y3

y4

y5

y6


(5.12)

Obviously, x̃ is not the same as x, but at least these two vectors have the same
dimensionality. This turns out to be the first step in the process of finding x from y.
Formally, the problem is

y = B x (5.13)

And the formal solution to the problem is

x = (B′B)−1 B′ y (5.14)

Formally, we verify this solution by substituting (1.13) into (1.14).

x = (B′B)−1 (B′B) x = Ix = x (5.15)

In applications, the possible nonexistance of an inverse for the matrix (B′B) is always
a topic for discussion. For now we simply examine this matrix for the interpolation
problem. We see that it is diagonal:

B′B =


1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1





1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1


=


1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2

 (5.16)

So, x̃1 = x1; but x̃2 = 2x2. To recover the original data, we need to divide x̃ by the
diagonal matrix B′B. Thus, matrix inversion is easy here.

Equation (1.14) has an illustrious reputation, which arises in the context of “least
squares.” Least squares is a general method for solving sets of equations that have
more equations than unknowns.

Recovering x from y using equation (1.14) presumes the existence of the inverse
of B′B. As you might expect, this matrix is nonsingular when B stretches the
data, because then a few data values are distributed among a greater number of
locations. Where the transformation squeezes the data, B′B must become singular,
since returning uniquely to the uncompressed condition is impossible.

We can now understand why an adjoint operator is often an approximate inverse.
This equivalency happens in proportion to the nearness of the matrix B′B to an
identity matrix. The interpolation example we have just examined is one in which
B′B differs from an identity matrix merely by a scaling.



118 CHAPTER 5. ADJOINT OPERATORS

5.3.4 Nearest-neighbor NMO

Normal-moveout correction (NMO) is a geometrical correction of reflection data
that stretches the time axis so that data recorded at nonzero separation x0 of shot and
receiver, after stretching, appears to be at x0 = 0. See Figure 1.3. NMO correction

Figure 5.3: A sound emitter at
location s on the earth’s surface
z = 0, and rays from a hori-
zontal reflector at depth z reflect-
ing back to surface locations xi.
conj-geometry [ER]

is roughly like time-to-depth conversion with the equation v2t2 = z2 + x2
0. After

the data at x0 is stretched from t to z, it should look like stretched data from any
other x (assuming plane horizontal reflectors, etc.). In practice, z is not used; rather,
traveltime depth τ is used, where τ = z/v; so t2 = τ2 + x2

0/v
2.

To show how surfaces deform under moveout correction, I took a square of text
and deformed it according to the NMO correction equation and its inverse. This
is shown in Figure 1.4. The figure assumes a velocity of unity, so the asymptotes

Figure 5.4: Roughly, NMO takes each panel to the one on its right. conj-frazer
[ER]

of the hyperbolas lie at 45◦. The main thing to notice is that NMO stretches
information at wide offsets and early time, whereas modeling, its inverse, squeezes it.
More precisely, starting from the center panel, adjoint NMO created the left panel,
and NMO created the right panel. Notice that adjoint NMO throws away data at
late time, whereas NMO itself throws away data at early time. Otherwise, adjoint
NMO in this example is the same as inverse NMO.

Normal moveout is a linear operation. This means that data can be decomposed
into any two parts, early and late, high frequency and low, smooth and rough, steep
and shallow dip, etc.; and whether the two parts are NMO’ed either separately or
together, the result is the same, i.e., N(a + b) = Na + Nb.



5.3. NORMAL MOVEOUT AND OTHER MAPPINGS 119

Figure 1.5 shows a marine dataset before and after NMO correction at the water
velocity. You can notice that the wave packet reflected from the ocean bottom is
approximately a constant width on the raw data. After NMO, however, this waveform
broadens considerably—a phenomenon known as “NMO stretch.”

Figure 5.5: Marine data moved
out with water velocity. In-
put on the left, output on the
right. Press button for movie
sweeping through velocity (actu-
ally through slowness squared).
conj-stretch [ER]

The NMO transformation N is representable as a square matrix. The matrix N
is a (τ, t)-plane containing all zeros except an interpolation operator centered along
the hyperbola. The dots in the matrix below are zeros. The input signal xt is put
into the vector x. (This xt should not be confused with the x0 denoting distance in
the hyperbola t2 = τ2 + x2

0/v
2.) The output vector y—i.e., the NMO’ed signal—is

simply (x6, x6, x6, x7, x7, x8, x8, x9, x10, 0). In real life, the subscript would go up to
about one thousand instead of merely to ten.

y = Nx =



y1

y2

y3

y4

y5

y6

y7

y8

y9

y10



=



. . . . . 1 . . . .

. . . . . 1 . . . .

. . . . . 1 . . . .

. . . . . . 1 . . .

. . . . . . 1 . . .

. . . . . . . 1 . .

. . . . . . . 1 . .

. . . . . . . . 1 .

. . . . . . . . . 1

. . . . . . . . . .





x1

x2

x3

x4

x5

x6

x7

x8

x9

x10



(5.17)

You can think of the matrix as having a horizontal t-axis and a vertical τ -axis. The
1’s in the matrix are arranged on the hyperbola t2 = τ2+x2

0/v
2. The transpose matrix

defining some x̃ from y gives pseudodata x̃ from the zero-offset (or stack) model y,



120 CHAPTER 5. ADJOINT OPERATORS

namely,

x̃ = N′y =



x̃1

x̃2

x̃3

x̃4

x̃5

x̃6

x̃7

x̃8

x̃9

x̃10



=



. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .
1 1 1 . . . . . . .
. . . 1 1 . . . . .
. . . . . 1 1 . . .
. . . . . . . 1 . .
. . . . . . . . 1 .





y1

y2

y3

y4

y5

y6

y7

y8

y9

y10


(5.18)

A program for nearest-neighbor normal moveout as defined by equations (1.17)
and (1.18) is nmo1(). Because of the limited alphabet of programming languages, I
used the keystroke z to denote τ .

subroutine nmo1( adj, add, slow, x, t0, dt, n,zz, tt )
integer it, iz, adj, add, n
real xs, t , z, slow(n), x, t0, dt, zz(n), tt(n), wt
call adjnull( adj, add, zz,n, tt,n)
do iz= 1, n { z = t0 + dt*(iz-1)

xs = x * slow(iz)
t = sqrt ( z * z + xs * xs) + 1.e-20
wt = z/t * (1./sqrt(t)) # weighting function
it = 1 + .5 + (t - t0) / dt
if( it <= n )

if( adj == 0 )
tt(it) = tt(it) + zz(iz) * wt

else
zz(iz) = zz(iz) + tt(it) * wt

}
return; end

5.3.5 Stack

Typically, many receivers record every shot. Each seismogram can be transformed
by NMO and the results all added. This is called “stacking” or “NMO stacking.”
The adjoint to this operation is to begin from a model that is identical to the near-
offset trace and spray this trace to all offsets. There is no “official” definition of
which operator of an operator pair is the operator itself and which is the adjoint. On
the one hand, I like to think of the modeling operation itself as the operator. On
the other hand, the industry machinery keeps churning away at many processes that
have well-known names, so I often think of one of them as the operator. Industrial
data-processing operators are typically adjoints to modeling operators.

Figure 1.6 illustrates the operator pair, consisting of spraying out a zero-offset
trace (the model) to all offsets and the adjoint of the spraying, which is stacking.



5.3. NORMAL MOVEOUT AND OTHER MAPPINGS 121

The moveout and stack operations are in subroutine stack1().

subroutine stack1( adj, add, slow, t0,dt, x0,dx, nt,nx, stack, gather)
integer ix, adj, add, nt,nx
real x, slow(nt), t0,dt, x0,dx, stack(nt), gather(nt,nx)
call adjnull( adj, add, stack,nt, gather,nt*nx)
do ix= 1, nx {

x = x0 + dx * (ix-1)
call nmo1( adj, 1, slow, x, t0,dt, nt, stack, gather(1,ix))
}

return; end

Let S denote NMO, and let the stack be defined by invoking stack1() with the
conj=0 argument. Then S′ is the modeling operation defined by invoking stack1()

with the conj=1 argument. Figure 1.6 illustrates both. Notice the roughness on the

Figure 5.6: Top is a model trace
m. Center shows the spraying to
synthetic traces, S′m. Bottom is
the stack of the synthetic data,
SS′m. conj-stack [ER]

waveforms caused by different numbers of points landing in one place. Notice also
the increase of AVO as the waveform gets compressed into a smaller space. Finally,
notice that the stack is a little rough, but the energy is all in the desired time window.

We notice a contradiction of aspirations. On the one hand, an operator has smooth
outputs if it “loops over output space” and finds its input where-ever it may. On the
other hand, it is nice to have modeling and processing be exact adjoints of each other.
Unfortunately, we cannot have both. If you loop over the output space of an operator,
then the adjoint operator has a loop over input space and a consequent roughness of
its output.

Unfortunately, the adjoint operator N′ defined by the subroutine nmo1() on
page 18 is not a good operator for seismogram modeling—notice the roughness of
the synthetic seismograms in Figure 1.6. This roughness is not an inevitable conse-
quence of nearest-neighbor interpolation. It is a consequence of defining the NMO
program as a loop over the output space τ . Instead, we can define inverse NMO as a
loop over its output space, which is not τ but t. This is done in imo1() on page 19.

subroutine imo1( adj, add, xs, t0, dt, nt, zz, tt )
integer adj, add, nt, it, iz



122 CHAPTER 5. ADJOINT OPERATORS

real t0, dt, zz(nt), tt(nt), t, xs, zsquared
call adjnull( adj, add, zz,nt, tt,nt)
do it= 1, nt { t = t0 + dt*(it-1)

zsquared = t * t - xs * xs
if ( zsquared >= 0.) { iz = 1.5 + (sqrt( zsquared) - t0) /dt

if ( iz > 0 ) { if( adj == 0 )
tt(it) = tt(it) + zz(iz)

else
zz(iz) = zz(iz) + tt(it)

}
}

}
return; end

# inverse moveout and spray into a gather.
#
subroutine imospray( adj, add, slow, x0,dx, t0,dt, nx,nt, stack, gather)
integer ix, adj, add, nx,nt
real xs, slow, x0,dx, t0,dt, stack(nt), gather( nt,nx)
call adjnull( adj, add, stack,nt, gather, nt*nx)
do ix= 1, nx {

xs = (x0 + dx * (ix-1)) * slow
call imo1( adj, 1, xs, t0, dt, nt, stack, gather(1,ix))
}

return; end

5.3.6 Pseudoinverse to nearest-neighbor NMO

Examine the matrix N′N:

N′N =



. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . 3 . . . .

. . . . . . 2 . . .

. . . . . . . 2 . .

. . . . . . . . 1 .

. . . . . . . . . 1



(5.19)

Any mathematician will say that equation (1.19) is not invertible because the zeros on
the diagonal make it singular. But as a geophysicist, you know better. Our inverse,



5.3. NORMAL MOVEOUT AND OTHER MAPPINGS 123

called a “pseudoinverse,” is

(N′N)−1 =



. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . 1
3

. . . .
. . . . . . 1

2
. . .

. . . . . . . 1
2

. .
. . . . . . . . 1 .
. . . . . . . . . 1



(5.20)

We could write code for inverse NMO, which is an easy task, or we could try to write
code for inverse NMO and stack, which has no clean solution known to me. Instead,
we move to other topics.

5.3.7 Null space and inconsistency

The normal-moveout transformation is a textbook example of some of the pathologies
of simultaneous equation solving. Reexamine equation (1.17), thinking of it as a set
of simultaneous equations for xi given yi. First, (1.17) shows that there may exist a
set of yi for which no solution xi is possible—any set containing y10 6= 0, for example.
This is an example of inconsistency in simultaneous equations. Second, there are
x vectors that satisfy Nx = 0, so any number of such vectors can be added into any
solution and it remains a solution. These solutions are called the “null space.” Here
these solutions are the arbitrary values of x1, x2, x3, x4, and x5 that obviously leave y
unaffected. Typical matrices disguise their inconsistencies and null spaces better than
does the NMO transformation. To make such a transformation, we could start from
the NMO transformation and apply any coordinate transformation to the vectors x
and y.

EXERCISES:

1 A succession of normal-moveout operators is called “cascaded NMO.” Consider
NMO from time t′′ to traveltime depth t′ by t′′2 = t′2 +x2/v2

2, followed by another
NMO transform which uses the transformation equation t′2 = t2 + x2/v2

1. Show
that the overall transformation is another NMO transformation. What is its
velocity? Notice that cascaded NMO can be used to correct an NMO velocity.
Thus it can be called residual velocity analysis or residual normal moveout.



124 CHAPTER 5. ADJOINT OPERATORS

5.3.8 NMO with linear interpolation

NMO with linear interpolation implies that the matrix N is a two-band matrix.
Each row has exactly two elements that interpolate between two elements on the
input. I will sketch the appearance of the matrix, using the letters a and b for the
elements. Each a and b is different numerically, but on a given row, a+ b = 1.

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10



=



. . . . a b . . . .

. . . . a b . . . .

. . . . a b . . . .

. . . . . a b . . .

. . . . . a b . . .

. . . . . . a b . .

. . . . . . a b . .

. . . . . . . a b .

. . . . . . . . a b

. . . . . . . . . a





x1

x2

x3

x4

x5

x6

x7

x8

x9

x10



(5.21)

Here the matrix N′N is tridiagonal, but I am going to let you work out the details by
yourself. The original data can be recovered by solving the tridiagonal system. This
method can be used to program an invertible NMO or to program an invertible trace
interpolation. I do not want to clutter this book with the many details. Instead, I
present spot1(), a convenient subroutine for linear interpolation that can be used in
many applications.

# Nearest neighbor interpolation would do this: val = vec( 1.5 + (t-t0)/dt)
# This is the same but with _linear_ interpolation.
#
subroutine spot1( adj, add, nt,t0,dt, t, val, vec )
integer it, itc, adj, add, nt
real tc, fraction, t0,dt, t, val, vec(nt)
call adjnull( adj, add, val, 1, vec,nt)
tc = (t-t0) / dt
itc = tc
it = 1 + itc; fraction = tc - itc
if( 1 <= it && it < nt)

if( adj == 0) { # add value onto vector
vec(it ) = vec(it ) + (1.-fraction) * val
vec(it+1) = vec(it+1) + fraction * val
}

else # take value from vector
val = val + (1.-fraction) * vec(it) + fraction * vec(it+1)

return; end

5.4 DERIVATIVE AND INTEGRAL

Differentiation and integration are very basic operations. Their adjoints are best
understood when they are represented in the sampled-time domain, rather than the



5.4. DERIVATIVE AND INTEGRAL 125

usual time continuum.

5.4.1 Adjoint derivative

Given a sampled signal, its time derivative can be estimated by convolution with the
filter (1,−1)/∆t. This could be done with any convolution program. For example if
we choose to ignore end effects we might select convin() on page 7. This example
arises so frequently that I display the matrix multiply below:


y1

y2

y3

y4

y5

 =


−1 1 . . . .
. −1 1 . . .
. . −1 1 . .
. . . −1 1 .
. . . . −1 1





x1

x2

x3

x4

x5

x6


(5.22)

The filter impulse response is seen in any column in the middle of the matrix, namely
(1,−1). In the transposed matrix the filter impulse response is time reversed to
(−1, 1). So, mathematically, we can say that the adjoint of the time derivative op-
eration is the negative time derivative. This corresponds also to the fact that the
complex conjugate of −iω is iω. We can also speak of the adjoint of the boundary
conditions: we might say the adjoint of “no boundary condition” is “specified value”
boundary conditions.

Banded matrices like in (1.21) and (1.22) arise commonly, and subroutines like
convin() on page 7 are awkward and over-general because they sum with a do loop
where a mere statement of the two terms is enough. This is illustrated in subroutine
ruffen1(). Notice the adjoint calculation resembles that in spot1() on page 22.

subroutine ruffen1( adj, n, xx, yy )
integer i, adj, n
real xx(n), yy( n-1)
call adjnull( adj, 0, xx,n, yy, n-1)
do i= 1, n-1 {

if( adj == 0 )
yy(i) = yy(i) + xx(i+1) - xx(i)

else {
xx(i+1) = xx(i+1) + yy(i)
xx(i ) = xx(i ) - yy(i)
}

}
return; end



126 CHAPTER 5. ADJOINT OPERATORS

5.5 CAUSAL INTEGRATION RECURSION

Causal integration is defined as

y(t) =
∫ t

−∞
x(t) dt (5.23)

Sampling the time axis gives a matrix equation which we should call causal summa-
tion, but we often call it causal integration.

y0

y1

y2

y3

y4

y5

y6

y7

y8

y9



=



1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1





x0

x1

x2

x3

x4

x5

x6

x7

x8

x9



(5.24)

(In some applications the 1 on the diagonal is replaced by 1/2.) Causal integration is
the simplest prototype of a recursive operator. The coding is trickier than operators
we considered earlier. Notice when you compute y5 that it is the sum of 6 terms, but
that this sum is more quickly computed as y5 = y4 +x5. Thus equation (1.24) is more
efficiently thought of as the recursion

yt = yt−1 + xt for increasing t (5.25)

(which may also be regarded as a numerical representation of the differential equation
dy/dt = x.)

When it comes time to think about the adjoint, however, it is easier to think
of equation (1.24) than of (1.25). Let the matrix of equation (1.24) be called C.
Transposing to get C′ and applying it to y gives us something back in the space of
x, namely x̃ = C′y. From it we see that the adjoint calculation, if done recursively,
needs to be done backwards like

x̃t−1 = x̃t + yt−1 for decreasing t (5.26)

We can sum up by saying that the adjoint of causal integration is anticausal integra-
tion.

A subroutine to do these jobs is causint() on page 24. The code for anticausal
integration is not obvious from the code for integration and the adjoint coding tricks
we learned earlier. To understand the adjoint, you need to inspect the detailed form
of the expression x̃ = C′y and take care to get the ends correct.



5.5. CAUSAL INTEGRATION RECURSION 127

# causal integration (1’s on diagonal)
#
subroutine causint( adj, add, n,xx, yy )
integer i, n, adj, add; real xx(n), yy(n )
temporary real tt( n)
call adjnull( adj, add, xx,n, yy,n )
if( adj == 0){ tt(1) = xx(1)

do i= 2, n
tt(i) = tt(i-1) + xx(i)

do i= 1, n
yy(i) = yy(i) + tt(i)

}
else { tt(n) = yy(n)

do i= n, 2, -1
tt(i-1) = tt(i) + yy(i-1)

do i= 1, n
xx(i) = xx(i) + tt(i)

}
return; end

Figure 5.7: in1 is an input pulse.
C in1 is its causal integral. C’

in1 is the anticausal integral of
the pulse. in2 is a separated
doublet. Its causal integration
is a box and its anticausal inte-
gration is the negative. CC in2

is the double causal integral of
in2. How can a triangle be built?
conj-causint [ER]

Later we will consider equations to march wavefields up towards the earth’s sur-
face, a layer at a time, an operator for each layer. Then the adjoint will start from
the earth’s surface and march down, a layer at a time, into the earth.

EXERCISES:

1 Modify the calculation in Figure 1.7 to make a triangle waveform on the bottom
row.

5.5.1 Readers’ guide

Now we have completed our discussion of most of the essential common features of
adjoint operators. You can skim forward to the particular operators of interest to you
without fear of missing anything essential.



128 CHAPTER 5. ADJOINT OPERATORS

5.6 UNITARY OPERATORS

The nicest operators are unitary. Let us examine the difference between a unitary
operator and a nonunitary one.

5.6.1 Meaning of B’B

A matrix operation like B′B arises whenever we travel from one space to another
and back again. The inverse of this matrix arises when we ask to return from the
other space with no approximations. In general, B′B can be complicated beyond
comprehension, but we have seen some recurring features. In some cases this matrix
turned out to be a diagonal matrix which is a scaling function in the physical domain.
With banded matrices, the B′B matrix is also a banded matrix, being tridiagonal for
B operators of both (1.22) and (1.21). The banded matrix for the derivative operator
(1.22) can be thought of as the frequency domain weighting factor ω2. We did not
examine B′B for the filter operator, but if you do, you will see that the rows (and the
columns) of B′B are the autocorrelation of the filter. A filter in the time domain
is simply a weighting function in the frequency domain.

The tridiagonal banded matrix for linearly-interpolated NMO is somewhat more
complicated to understand, but it somehow represents the smoothing inherent to the
composite process of NMO followed by adjoint NMO, so although we may not fully
understand it, we can think of it as some multiplication in the spectral domain as well
as some rescaling in the physical domain. Since B′B clusters on the main diagonal,
it never has a “time-shift” behavior.

5.6.2 Unitary and pseudounitary transformation

A so-called unitary transformation U conserves energy. In other words, if v = Ux,
then x′x = v′v, which requires U′U = I. Imagine an application where the transfor-
mation seems as if it should not destroy information. Can we arrange it to conserve
energy? The conventional inversion

y = Bx (5.27)

x = (B′B)−1B′y (5.28)

can be verified by direct substitution. Seeking a more symmetrical transformation
between y and x than the one above, we define

U = B(B′B)−1/2 (5.29)

and the transformation pair

v = Ux (5.30)

x = U′v (5.31)



5.7. VELOCITY SPECTRA 129

where we can easily verify that x′x = v′v by direct substitution. In practice, it would
often be found that v is a satisfactory substitute for y, and further that the unitary
property is often a significant advantage.

Is the operator U unitary? It would not be unitary for NMO, because equa-
tion (1.19) is not invertible. Remember that we lost (x1, x2, x3, x4, and x5) in (1.17).
U is unitary, however, except for lost points, so we call it “pseudounitary.” A trip
into and back from the space of a pseudounitary operator is like a pass through a band-
pass filter. Something is lost the first time, but no more is lost if we do it again. Thus,
x 6= U′Ux, but U′Ux = U′U(U′Ux) for any x. Furthermore, (U′U)2 = U′U, but
U′U 6= I. In mathematics the operators U′U and UU′ are called “idempotent” op-
erators. Another example of an idempotent operator is that of subroutine advance()

on page 6

5.6.3 Pseudounitary NMO with linear interpolation

It is often desirable to work with transformations that are as nearly unitary as pos-
sible, i.e., their transpose is their pseudoinverse. These transformations are pseu-
dounitary. Let us make NMO with linear interpolation into a pseudounitary trans-
formation. We need to factor the tridiagonal matrix N′N = T into bidiagonal parts,
T = B′B. One such factorization is the well-known Cholesky decomposition;
which is like spectral factorization. (We never really need to look at square roots of
matrices). Then we will define pseudounitary NMO as U = NB−1. To confirm
the unitary property, we check that U′U = B′−1N′N B−1 = B′−1B′BB−1 = I. An
all-pass filter is a ratio of two terms, both with the same color, the denominator
minimum phase, and the numerator not. Analogously, in U = NB−1, the numerator
time shifts, and the denominator corrects the numerator’s color.

EXERCISES:

1 Explain why normal moveout is not generally invertible where velocity depends
on depth.

2 What adaptations should be made to equation (1.17) to make it pseudounitary?

3 Extend subroutine wavekill1() on page 97 to include the adjoint considering
the wave input to be dual to its output (not considering the filter to be dual to
the output).

5.7 VELOCITY SPECTRA

An important transformation in exploration geophysics is from data as a function of
shot-receiver offset to data as a function of apparent velocity. To go from offset to



130 CHAPTER 5. ADJOINT OPERATORS

velocity, the transformation sums along hyperbolas of many velocities. The adjoint
is a superposition of hyperbolas of all the different velocities. Pseudocode for these
transformations is

do v
do τ

do x

t =
√
τ2 + x2/v2

if hyperbola superposition
data(t, x)= data(t, x) + vspace(τ, v)

else if velocity analysis
vspace(τ, v)=vspace(τ, v)+data(t, x)

5.8 INTRODUCTION TO TOMOGRAPHY

Tomography is the reconstruction of a function from line integrals through the func-
tion. Tomography has become a routine part of medicine, and an experimental part
of earth sciences. For illustration, a simple arrangement is well-to-well tomography.
A sound source can be placed at any depth in one well and receivers placed at any
depth in another well. At the sender well, we have sender depths s, and at the re-
ceiver well, we have receiver depths g. Our data is a table t(s, g) of traveltimes from
s to g. The idea is to try to map the area between the wells. We divide the area
between wells into cells in (x, z)-space. The map could be one of material velocities
or one of absorptivity. The traveltime of a ray increases by adding the slownesses
of cells traversed by the ray. Our model is a table s(x, z) of slownesses in the plane
between wells. (Alternately, the logarithm of the amplitude of the ray is a summation
of absorptivities of the cells traversed.) The pseudocode is

do s = range of sender locations
do g = range of receiver locations

z = z(s) # depth of sender.
θ = θ(s,g) # ray take-off angle.
do x = range from senders to receivers.

z = z + ∆x tan θ # ray tracing
if modeling

tsg = tsg + sxz ∆x/ cos θ
else tomography

sxz = sxz + tsg ∆x/ cos θ

In the pseudocode above, we assumed that the rays were straight lines. The problem



5.9. STOLT MIGRATION 131

remains one of linear operators even if the rays curve, making ray tracing more com-
plicated. If the solution s(x, z) is used to modify the ray tracing then the problem
becomes nonlinear, requiring the complexities of nonlinear optimization theory.

5.8.1 Units

Notice that the physical units of an operator (such as the meters or feet implied by
∆x) are the same as the physical units of the adjoint operator. The units of an inverse
operator, however, are inverse to the units of the original operator. Thus it is hard
to imagine that an adjoint operator could ever be a satisfactory approximation to
the inverse. We know, however, that adjoints often are a satisfactory approximation
to an inverse, which means then that either (1) such operators do not have physical
units, or (2) a scaling factor in the final result is irrelevant. With the tomographic
operator, the adjoint is quite far from the inverse so practicioners typically work from
the adjoint toward the inverse.

Some operators are arrays with different physical units for different array elements.
For these operators the adjoint is unlikely to be a satisfactory approximation to the
inverse since changing the units changes the adjoint. A way to bring all components
to the same units is to redefine each member of data space and model space to be
itself divided by its variance. Alternately, again we can abandon the idea of finding
immediate utility in the adjoint of an operator and and we could progress from the
adjoint toward the inverse.

EXERCISES:

1 Show how to adapt tomography for “fat” rays of thickness Nz points along the
z-axis.

5.9 STOLT MIGRATION

NMO is based on the quadratic equation v2t2 = z2 + x2 (as explained in IEI). Stolt
migration is based on the quadratic equation ω2/v2 = k2

z+k2
x, which is the dispersion

relation of the scalar wave equation. Stolt migration is NMO in the Fourier domain
(see IEI). Denote the Fourier transform operator by F and the Stolt operator by S,
where

S = F′N F (5.32)

A property of matrix adjoints is (A B C)′ = C′B′A′. We know the transpose
of NMO, and we know that the adjoint of Fourier transformation is inverse Fourier
transformation. So

S′ = F′N′F (5.33)



132 CHAPTER 5. ADJOINT OPERATORS

We see then that the transpose to Stolt modeling is Stolt migration. (There are a
few more details with Stolt’s Jacobian.)

5.10 References

Nolet, G., 1985, Solving or resolving inadequate and noisy tomographic systems: J.
Comp. Phys., 61, 463-482.

Thorson, J.R., 1984, Velocity stack and slant stack inversion methods: Ph.D. thesis,
Stanford University.



312 CHAPTER 5. ADJOINT OPERATORS



Index

adjnull subroutine, 3
adjoint, 1, 2, 6, 11, 18
adjoint operator, 11
adjoint truncation errors, 11
adjugate, 11
advance subroutine, 6
all-pass filter, 27
amplitude versus offset, 9
autocorrelation, 26
AVO, 9, 19

back projection, 2

cascaded NMO, 21
causint subroutine, 24
Cholesky decomposition, 27
contran subroutine, 5
contrunc subroutine, 7
convin subroutine, 7
convolution, 4, 6
crosscorrelate, 4

diffraction, 9
dot-product test, 10, 11

end effect, 8

great circles, 12

idempotent, 27
imaging, 8
imo1 subroutine, 19
imospray subroutine, 20
inconsistency, 21
interpolation, nearest-neighbor, 14
inversion, 1

Jacobian, 30

Kirchhoff, 8

least squares, 15
linear interpolation, 22

matmult subroutine, 3
matrix multiply, 2
migration, 8, 9
migration, Stolt, 29
modeling, 2, 9

nearest-neighbor interpolation, 14
nearest-neighbor normal moveout, 18
NMO, 16
NMO cascade, 21
NMO pseudounitary, 27
NMO stack, 18
NMO stretch, 16
nmo1 subroutine, 18
normal moveout, 16
null space, 21

operator, 1
operator, adjoint, 11

pitfall, 9
processing, 2
pseudocode, 2
pseudoinverse, 21
pseudounitary, 27
pseudounitary NMO, 27

ruffen1 subroutine, 23

scatter, 8
self-adjoint, 12
shifting, 6
shrink, 14
spectrum

velocity, 27
spot0 subroutine, 12

313



314 INDEX

spot1 subroutine, 22
spray, 8
stack, 18
stack1 subroutine, 19
Stolt migration, 29
stretch, 14
subroutine

adjnull, erase output, 3
advance, time shift, 6
causint, causal integral, 24
contran, transient convolution, 5
contrunc, convolve and truncate, 7
convin, convolve internal, 7
imo1, inverse moveout, 19
imospray, inverse NMO spray, 20
matmult, matrix multiply, 3
nmo1, normal moveout, 18
ruffen1, first difference, 23
spot0, nearest-neighbor, 12
spot1, linear interp, 22
stack1, NMO stack, 19

tomography, 1, 28
transpose matrix, 15
traveltime depth, 16
triangle, 12
truncation, 5–7, 11

unitary, 26

velocity spectrum, 27

zero pad, 5, 6



Chapter 6

Model fitting by least squares

The first level of computer use in science and engineering is “modeling.” Beginning
from physical principles and design ideas, the computer mimics nature. After this,
the worker looks at the result and thinks a while, then alters the modeling program
and tries again. The next, deeper level of computer use is that the computer itself
examines the results of modeling and reruns the modeling job. This deeper level
is variously called “fitting” or “inversion.” The term “processing” is also used,
but it is broader, including the use of adjoint operators (as discussed in chapter 5).
Usually people are more effective than computers at fitting or inversion, but some
kinds of fitting are more effectively done by machines. A very wide range of methods
comes under the heading of “least squares,” and these methods are the topic of this
chapter and chapters 7 through ??.

A part of basic education in mathematics is the fitting of scattered points on a
plane to a straight line. That is a simple example of inversion, a topic so grand
and broad that some people think of learning to do inversion as simply “learning.”
Although I will be drawing many examples from my area of expertise, namely, earth
soundings analysis, the methods presented here are much more widely applicable.

6.1 MULTIVARIATE LEAST SQUARES

As described at the beginning of chapter 4, signals and images will be specified here
by numbers packed into abstract vectors. We consider first a hypothetical application
with one data vector d and two fitting vectors b1 and b2. Each fitting vector is also
known as a “regressor.” Our first task is to try to approximate the data vector d by
a scaled combination of the two regressor vectors. The scale factors x1 and x2 should
be chosen so that the model matches the data, i.e.,

d ≈ b1x1 + b2x2 (6.1)

For example, if I print the characters “P” and “b” on top of each other, I get “Pb,”
which looks something like an image of the letter “B.” This is analogous to d ≈

133



134 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

b1 + b2. More realistically, d could contain a sawtooth function of time, and b1 and
b2 could be sinusoids. Still more realistically, d could be an observed 2-D wave field,
and b1 and b2 could be theoretical data in two parts, where the contribution of each
part is to be learned by fitting. (One part could be primary reflections and the other
multiple reflections.)

Notice that we could take the partial derivative of the data in (1.1) with respect
to an unknown, say x1, and the result is the regressor b1.

The partial derivative of all data with respect to any model parameter gives a
regressor. A regressor is a column in the partial-derivative matrix.

Equation (1.1) is often expressed in the more compact mathematical matrix no-
tation d ≈ Bx, but in our derivation here we will keep track of each component
explicitly and use mathematical matrix notation to summarize the final result. Fit-
ting the data d to its two theoretical components can be expressed as minimizing the
length of the residual vector r, where

r = d− b1x1 − b2x2 (6.2)

So we construct a sum of squares (also called a “quadratic form”) of the components
of the residual vector by using a dot product:

Q(x1, x2) = r · r (6.3)

= (d− b1x1 − b2x2) · (d− b1x1 − b2x2) (6.4)

The gradient of Q(x1, x2)/2 is defined by its two components:

∂Q

∂x1
= −b1 · (d− b1x1 − b2x2)− (d− b1x1 − b2x2) · b1 (6.5)

∂Q

∂x2
= −b2 · (d− b1x1 − b2x2)− (d− b1x1 − b2x2) · b2 (6.6)

Setting these derivatives to zero and using (b1 · b2) = (b2 · b1) etc., we get

(b1 · d) = (b1 · b1)x1 + (b1 · b2)x2 (6.7)

(b2 · d) = (b2 · b1)x1 + (b2 · b2)x2 (6.8)

which two equations we can use to solve for the two unknowns x1 and x2. Writing
this expression in matrix notation, we have[

(b1 · d)
(b2 · d)

]
=

[
(b1 · b1) (b1 · b2)
(b2 · b1) (b2 · b2)

] [
x1

x2

]
(6.9)

It is customary to use matrix notation without dot products. For this we need some
additional definitions. To clarify these definitions, I choose the number of components



6.1. MULTIVARIATE LEAST SQUARES 135

in the vectors b1, b2, and d to be three. Thus I can explicitly write a matrix B in
full as

B = [b1 b2] =

 b11 b12

b21 b22

b31 b32

 (6.10)

Likewise, the transposed matrix B′ is defined by

B′ =

[
b11 b21 b31

b12 b22 b32

]
(6.11)

The matrix in equation (1.9) contains dot products. Matrix multiplication is an
abstract way of representing the dot products:

[
(b1 · b1) (b1 · b2)
(b2 · b1) (b2 · b2)

]
=

[
b11 b21 b31

b12 b22 b32

]  b11 b12

b21 b22

b31 b32

 (6.12)

Thus, equation (1.9) without dot products is

[
b11 b21 b31

b12 b22 b32

]  d1

d2

d3

 =

[
b11 b21 b31

b12 b22 b32

]  b11 b12

b21 b22

b31 b32

 [ x1

x2

]
(6.13)

which has the matrix abbreviation

B′d = (B′ B)x (6.14)

Equation (1.14) is the classic result of least-squares fitting of data to a collection of
regressors. Obviously, the same matrix form applies when there are more than two
regressors and each vector has more than three components. Equation (1.14) leads to
an analytic solution for x using an inverse matrix. To solve formally for the unknown
x, we premultiply by the inverse matrix (B′ B)−1:

x = (B′ B)−1 B′d (6.15)

Equation (1.15) is the central result of least-squares analysis. We see it every-
where.

Equation (1.12) is an example of what is called a “covariance matrix.” Such ma-
trices usually need to be inverted, and in equation (1.15) you already see an example
of the occurrence of an inverse covariance matrix. Any description of an applica-
tion of least-squares fitting will generally include some discussion of the covariance
matrix—how it will be computed, assumed, or estimated, and how its inverse will
be found or approximated. In chapter 4 we found the need to weight residuals by
the inverse of their scale. That was our first example of the occurrence of an inverse
covariance matrix—although in that case the matrix size was only 1 × 1.



136 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

In our first manipulation of matrix algebra, we move around some parentheses in
(1.14):

B′d = B′ (Bx) (6.16)

Moving the parentheses implies a regrouping of terms or a reordering of a compu-
tation. You can verify the validity of moving the parentheses by writing (1.16) in
full as the set of two equations it represents. Equation (1.14) led to the “analytic”
solution (1.15). In a later section on conjugate gradients, we will see that equation
(1.16) expresses better than (1.15) the philosophy of computation.

Notice how equation (1.16) invites us to cancel the matrix B′ from each side. We
cannot do that of course, because B′ is not a number, nor is it a square matrix with
an inverse. If you really want to cancel the matrix B′, you may, but the equation is
then only an approximation that restates our original goal (1.1):

d ≈ Bx (6.17)

A speedy problem solver might ignore the mathematics covering the previous page,
study his or her application until he or she is able to write the statement of wishes
(1.17) = (1.1), premultiply by B′, replace ≈ by =, getting (1.14), and take (1.14) to
a simultaneous equation-solving program to get x.

The formal literature does not speak of “statement of wishes” but of “regression,”
which is the same concept. In a regression, there is an abstract vector called the
residual r = d − Bx whose components should all be small. Formally this is often
written as:

min
x
||d−Bx|| (6.18)

The notation above with two pairs of vertical lines looks like double absolute value,
but we can understand it as a reminder to square and sum all the components. This
notation is more explicit about what is being minimized, but I often find myself
sketching out applications in the form of a “statement of wishes,” which I call a
“regression.”

6.1.1 Inverse filter example

Let us take up a simple example of time-series analysis. Given the input, say
(· · · , 0, 0, 2, 1, 0, 0, · · ·), to some filter, say f = (f0, f1), then the output is necessarily
c = (2f0, f0 + 2f1, f1). To design an inverse filter, we would wish to have c come out
as close as possible to (1, 0, 0). So the statement of wishes (1.17) is

 1
0
0

 ≈

 2 0
1 2
0 1

 [
f0

f1

]
(6.19)



6.1. MULTIVARIATE LEAST SQUARES 137

The method of solution is to premultiply by the matrix B′, getting

[
2 1 0
0 2 1

]  1
0
0

 =

[
2 1 0
0 2 1

]  2 0
1 2
0 1

 [ f0

f1

]
(6.20)

Thus, [
2
0

]
=

[
5 2
2 5

] [
f0

f1

]
(6.21)

and the inverse filter comes out to be[
f0

f1

]
=

1

21

[
5 −2
−2 5

] [
2
0

]
=

[
10
21

− 4
21

]
(6.22)

Inserting this value of (f0, f1) back into (1.19) yields the actual output (20
21
,+ 2

21
,− 4

21
),

which is not a bad approximation to (1, 0, 0).

6.1.2 Normal equations

The basic least-squares equations are often called the “normal” equations. The
word “normal” means perpendicular. We can rewrite equation (1.16) to emphasize
the perpendicularity. Bring both terms to the left, and recall the definition of the
residual r from equation (1.2):

B′(d−Bx) = 0 (6.23)

B′r = 0 (6.24)

Equation (1.24) says that the residual vector r is perpendicular to each row in the
B′ matrix. These rows are the fitting functions. Therefore, the residual, after it
has been minimized, is perpendicular to the fitting functions.

6.1.3 Differentiation by a complex vector

Complex numbers frequently arise in physical problems, particularly with Fourier
series. Let us extend the multivariable least-squares theory to the use of complex-
valued unknowns x. First recall how complex numbers were handled with single-
variable least squares, i.e., as in the discussion leading up to equation (??). Use
prime, such as x′, to denote the complex conjugate of the transposed vector x. Now
write the positive quadratic form as

Q(x′,x) = (Bx− d)′(Bx− d) = (x′B′ − d′)(Bx− d) (6.25)

In chapter 4 (after equation (4.16)), we minimized a quadratic form Q(X̄,X) by
setting to zero both ∂Q/∂X̄ and ∂Q/∂X. We noted that only one of ∂Q/∂X̄ and



138 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

∂Q/∂X is necessary because they are conjugates of each other. Now take the deriva-
tive of Q with respect to the (possibly complex, row) vector x′. Notice that ∂Q/∂x′ is
the complex conjugate transpose of ∂Q/∂x. Thus, setting one to zero sets the other
also to zero. Setting ∂Q/∂x′ = 0 gives the normal equations:

0 =
∂Q

∂x′
= B′(Bx− d) (6.26)

The result is merely the complex form of our earlier result (1.14). Therefore, differ-
entiating by a complex vector is an abstract concept, but it gives the same set of
equations as differentiating by each scalar component, and it saves much clutter.

6.1.4 Time domain versus frequency domain

Equation (??) is a frequency-domain quadratic form that we minimized by varying
a single parameter, a Fourier coefficient. Now we will look at the same problem in
the time domain. The time domain offers new flexibility with boundary conditions,
constraints, and weighting functions. The notation will be that a filter ft has input
xt and output yt. In Fourier space this is Y = XF . There are two problems to look
at, unknown filter F and unknown input X.

Unknown filter

Given inputs and outputs, the problem of finding an unknown filter appears to be
overdetermined, so we write y ≈ Xf where the matrix X is a matrix of downshifted
columns like (1.19). Thus the quadratic form to be minimized is a restatement of
equation (1.25) using filter definitions:

Q(f ′, f) = (Xf − y)′(Xf − y) (6.27)

The solution f is found just as we found (1.26), and it is the set of simultaneous
equations 0 = X′(Xf − y).

Unknown input: deconvolution with a known filter

For the unknown input problem we put the known filter ft in a matrix of downshifted
columns F. Our statement of wishes is now to find xt so that y ≈ Fx. We can
expect to have trouble finding unknown filter inputs xt when we are dealing with
certain kinds of filters, such as bandpass filters. If the output is zero in a frequency
band, we will never be able to find the input in that band and will need to prevent
xt from diverging there. We do this by the statement that we wish 0 ≈ εx, where ε
is a parameter that is small and whose exact size will be chosen by experimentation.
Putting both wishes into a single, partitioned matrix equation gives[

0
0

]
≈

[
r1

r2

]
=

[
y
0

]
−

[
F
ε I

]
x (6.28)



6.1. MULTIVARIATE LEAST SQUARES 139

To minimize the residuals r1 and r2, we can minimize the scalar r′r = r′1r1 + r′2r2.
This is

Q(x′,x) = (Fx− y)′(Fx− y) + ε2x′x

= (x′F′ − y′)(Fx− y) + ε2x′x (6.29)

We have already solved this minimization in chapter 4 in the frequency domain (be-
ginning from equation (4.16)).

Formally the solution is found just as with equation (1.26), but this solution looks
unappealing in practice because there are so many unknowns and because the problem
can be solved much more quickly in the Fourier domain. To motivate ourselves to
solve this problem in the time domain, we need either to find an approximate solution
method that is much faster, or to discover that constraints or time-variable weighting
functions are required in some applications.

EXERCISES:

1 Try other lags in (1.19) such as (0, 1, 0)′ and (0, 0, 1)′. Which works best? Why?

2 Using matrix algebra, what value of x minimizes the quadratic form Q(x) =
(y − Ax)′M−1

nn(y − Ax) + (x − x0)′M−1
xx (x − x0)? In applications, x0 is called

the prior model, Mxx its covariance matrix, and Mnn the noise covariance
matrix.

3 Let y(t) constitute a complex-valued function at successive integer values of t.
Fit y(t) to a least-squares straight line y(t) ≈ α + βt, where α = αr + iαt and
β = βr + iβt. Do it two ways: (a) assume αr, αt, βi, and βr are four independent
variables, and (b) assume α, ᾱ, β, and β̄ are independent variables. (Leave the
answer in terms of sn =

∑
t t
n.)

4 Ocean tides fit sinusoidal functions of known frequencies quite accurately. Asso-
ciated with the tide is an earth tilt. A complex time series can be made from the
north-south tilt plus

√
−1 times the east-west tilt. The observed complex time

series can be fitted to an analytical form
∑N
j=1Aje

iωjt. Find the set of equations
which can be solved for the Aj that gives the best fit of the formula to the data.
Show that some elements of the normal equation matrix are sums that can be
summed analytically.

5 The general solution to Laplace’s equation in cylindrical coordinates (r, θ) for a
potential field P which vanishes at r =∞ is given by

P (r, θ) = <
∞∑
m=0

Am
eimθ

rm+1

Find the potential field surrounding a square object at the origin which is at
unit potential. Do this by finding N of the coefficients Am by minimizing the



140 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

squared difference between P (r, θ) and unity integrated around the square. Give
the answer in terms of an inverse matrix of integrals. Which coefficients Am
vanish exactly by symmetry?

6.2 ITERATIVE METHODS

The solution time for simultaneous linear equations grows cubically with the number
of unknowns. There are three regimes for solution; which one is applicable depends on
the number of unknowns n. For n three or less, we use analytical methods. We also
sometimes use analytical methods on matrices of size 4×4 if the matrix contains many
zeros. For n < 500 we use exact numerical methods such as Gauss reduction. A 1988
vintage workstation solves a 100× 100 system in a minute, but a 1000× 1000 system
requires a week. At around n = 500, exact numerical methods must be abandoned
and iterative methods must be used.

An example of a geophysical problem with n > 1000 is a missing seismogram.
Deciding how to handle a missing seismogram may at first seem like a question of
missing data, not excess numbers of model points. In fitting wave-field data to a
consistent model, however, the missing data is seen to be just more unknowns. In
real life we generally have not one missing seismogram, but many. Theory in 2-
D requires that seismograms be collected along an infinite line. Since any data-
collection activity has a start and an end, however, practical analysis must choose
between falsely asserting zero data values where data was not collected, or implicitly
determining values for unrecorded data at the ends of a survey.

A numerical technique known as the “conjugate-gradient method” (CG) works
well for all values of n and is our subject here. As with most simultaneous equation
solvers, an exact answer (assuming exact arithmetic) is attained in a finite number
of steps. And if n is too large to allow n3 computations, the CG method can be
interrupted at any stage, the partial result often proving useful. Whether or not a
partial result actually is useful is the subject of much research; naturally, the results
vary from one application to the next.

The simple form of the CG algorithm covered here is a sequence of steps. In each
step the minimum is found in the plane given by two vectors: the gradient vector
and the vector of the previous step.

6.2.1 Method of random directions and steepest descent

Let us minimize the sum of the squares of the components of the residual vector
given by

residual = data space − transform model space (6.30)



6.2. ITERATIVE METHODS 141

 R
 =

 Y
 −

 A


 x

 (6.31)

Fourier-transformed variables are often capitalized. Here we capitalize vectors trans-
formed by the A matrix. A matrix such as A is denoted by boldface print.

A contour plot is based on an altitude function of space. The altitude is the dot
product R ·R. By finding the lowest altitude we are driving the residual vector R as
close as we can to zero. If the residual vector R reaches zero, then we have solved the
simultaneous equations Y = Ax. In a two-dimensional world the vector x has two
components, (x1, x2). A contour is a curve of constant R ·R in (x1, x2)-space. These
contours have a statistical interpretation as contours of uncertainty in (x1, x2), given
measurement errors in Y .

Starting from R = Y −Ax, let us see how a random search direction can be used
to try to reduce the residual. Let g be an abstract vector with the same number of
components as the solution x, and let g contain arbitrary or random numbers. Let
us add an unknown quantity α of vector g to vector x, thereby changing x to x+αg.
The new residual R+ dR becomes

R+ dR = Y −A(x+ αg) (6.32)

= Y −Ax− αAg (6.33)

= R− αG (6.34)

We seek to minimize the dot product

(R+ dR) · (R+ dR) = (R− αG) · (R− αG) (6.35)

Setting to zero the derivative with respect to α gives

α =
(R ·G)

(G ·G)
(6.36)

Geometrically and algebraically the new residual R+ = R − αG is perpendicular to
the “fitting function” G. (We confirm this by substitution leading to R+ ·G = 0.)

In practice, random directions are rarely used. It is more common to use the
gradient vector. Notice also that a vector of the size of x is

g = A′R (6.37)

Notice also that this vector can be found by taking the gradient of the size of the
residuals:

∂

∂x′
R ·R =

∂

∂x′
(Y ′ − x′A′) (Y − A x) = −A′ R (6.38)

Descending by use of the gradient vector is called “the method of steepest descent.”



142 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

6.2.2 Conditioning the gradient

Often people do calculations by the method of steepest descent without realizing it.
Often a result is improved in a single step, or with a small number of steps, many fewer
than the number needed to achieve convergence. This is especially true with images
where the dimensionality is huge and where a simple improvement to the adjoint
operator is sought. Three-dimensional migration is an example. In these cases it may
be worthwhile to make some ad hoc improvements to the gradient that acknowledge
the gradient will be a perturbation to the image x and so should probably have an
amplitude and spectrum like that of x. A more formal mathematical discussion of
preconditioning is on page 14.

6.2.3 Why steepest descent is so slow

Before we can understand why the conjugate-gradient method is so fast, we need
to see why the steepest-descent method is so slow. The process of selecting α is
called “line search,” but for a linear problem like the one we have chosen here, we
hardly recognize choosing α as searching a line. A more graphic understanding of the
whole process is possible in a two-dimensional space where the vector of unknowns x
has just two components, x1 and x2. Then the size of the residual vector R · R can
be displayed with a contour plot in the plane of (x1, x2). Visualize a contour map of
a mountainous terrain. The gradient is perpendicular to the contours. Contours and
gradients are curved lines. In the steepest-descent method we start at a point and
compute the gradient direction at that point. Then we begin a straight-line descent
in that direction. The gradient direction curves away from our direction of travel, but
we continue on our straight line until we have stopped descending and are about to
ascend. There we stop, compute another gradient vector, turn in that direction, and
descend along a new straight line. The process repeats until we get to the bottom,
or until we get tired.

What could be wrong with such a direct strategy? The difficulty is at the stopping
locations. These occur where the descent direction becomes parallel to the contour
lines. (There the path becomes horizontal.) So after each stop, we turn 90◦, from
parallel to perpendicular to the local contour line for the next descent. What if the
final goal is at a 45◦ angle to our path? A 45◦ turn cannot be made. Instead of moving
like a rain drop down the centerline of a rain gutter, we move along a fine-toothed
zigzag path, crossing and recrossing the centerline. The gentler the slope of the rain
gutter, the finer the teeth on the zigzag path.

6.2.4 Conjugate gradient

In the conjugate-gradient method, not a line, but rather a plane, is searched.
A plane is made from an arbitrary linear combination of two vectors. One vector



6.2. ITERATIVE METHODS 143

will be chosen to be the gradient vector, say g. The other vector will be chosen to
be the previous descent step vector, say s = xj − xj−1. Instead of α g we need a
linear combination, say αg+βs. For minimizing quadratic functions the plane search
requires only the solution of a two-by-two set of linear equations for α and β. The
equations will be specified here along with the program. (For nonquadratic functions
a plane search is considered intractable, whereas a line search proceeds by bisection.)

6.2.5 Magic

Some properties of the conjugate-gradient approach are well known but hard to ex-
plain. D. G. Luenberger’s book, Introduction to Linear and Nonlinear Programming,
is a good place to look for formal explanations of this magic. (His book also provides
other forms of the conjugate-gradient algorithm.) Another helpful book is Strang’s
Introduction to Applied Mathematics. Known properties follow:

1. The conjugate-gradient method gets the exact answer (assuming exact
arithmetic) in n descent steps (or less), where n is the number of unknowns.

2. Since it is helpful to use the previous step, you might wonder why not use
the previous two steps, since it is not hard to solve a three-by-three set of
simultaneous linear equations. It turns out that the third direction does not
help: the distance moved in the extra direction is zero.

6.2.6 Conjugate-gradient theory for programmers

Define the solution, the solution step (from one iteration to the next), and the gradient
by

X = A x (6.39)

Sj = A sj (6.40)

Gj = A gj (6.41)

A linear combination in solution space, say s+g, corresponds to S+G in the conjugate
space, because S + G = As + Ag = A(s + g). According to equation (1.31), the
residual is

R = Y − A x = Y − X (6.42)

The solution x is obtained by a succession of steps sj, say

x = s1 + s2 + s3 + · · · (6.43)

The last stage of each iteration is to update the solution and the residual:

solution update: x ← x + s
residual update: R ← R − S



144 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

The gradient vector g is a vector with the same number of components as the
solution vector x. A vector with this number of components is

g = A′ R = gradient (6.44)

G = A g = conjugate gradient (6.45)

The gradient g in the transformed space is G, also known as the “conjugate gradi-
ent.”

The minimization (1.35) is now generalized to scan not only the line with α, but
simultaneously another line with β. The combination of the two lines is a plane:

Q(α, β) = (R− αG− βS) · (R− αG− βS) (6.46)

The minimum is found at ∂Q/∂α = 0 and ∂Q/∂β = 0, namely,

0 = G · (R− αG− βS) (6.47)

0 = S · (R− αG− βS) (6.48)

The solution is[
α
β

]
=

1

(G ·G)(S · S)− (G · S)2

[
(S · S) −(S ·G)
−(G · S) (G ·G)

] [
(G ·R)
(S ·R)

]
(6.49)

6.2.7 First conjugate-gradient program

The conjugate-gradient program can be divided into two parts: an inner part
that is used almost without change over a wide variety of applications, and an outer
part containing the initializations. Since Fortran does not recognize the difference
between upper- and lower-case letters, the conjugate vectors G and S in the pro-
gram are denoted by gg and ss. The inner part of the conjugate-gradient task is in
subroutine cgstep().

# A step of conjugate-gradient descent.
#
subroutine cgstep( iter, n, x, g, s, m, rr, gg, ss)
integer i, iter, n, m
real x(n), rr(m) # solution, residual
real g(n), gg(m) # gradient, conjugate gradient
real s(n), ss(m) # step, conjugate step
real dot, sds, gdg, gds, determ, gdr, sdr, alfa, beta
if( iter == 0 ) {

do i= 1, n
s(i) = 0.

do i= 1, m
ss(i) = 0.

if( dot(m,gg,gg)==0 ) call erexit(’cgstep: grad vanishes identically’)
alfa = dot(m,gg,rr) / dot(m,gg,gg)



6.2. ITERATIVE METHODS 145

beta = 0.
}

else { # search plane by solving 2-by-2
gdg = dot(m,gg,gg) # G . (R - G*alfa - S*beta) = 0
sds = dot(m,ss,ss) # S . (R - G*alfa - S*beta) = 0
gds = dot(m,gg,ss)
determ = gdg * sds - gds * gds + (.00001 * (gdg * sds) + 1.e-15)
gdr = dot(m,gg,rr)
sdr = dot(m,ss,rr)
alfa = ( sds * gdr - gds * sdr ) / determ
beta = (-gds * gdr + gdg * sdr ) / determ
}

do i= 1, n # s = model step
s(i) = alfa * g(i) + beta * s(i)

do i= 1, m # ss = conjugate
ss(i) = alfa * gg(i) + beta * ss(i)

do i= 1, n # update solution
x(i) = x(i) + s(i)

do i= 1, m # update residual
rr(i) = rr(i) - ss(i)

return; end

real function dot( n, x, y )
integer i, n; real val, x(n), y(n)
val = 0.; do i=1,n { val = val + x(i) * y(i) }
dot = val; return; end

This program was used to produce about 50 figures in this book. The first example
of its use is the solution of the 5 × 4 set of simultaneous equations below. Observe
that the “exact” solution is obtained in the last step. Since the data and answers are
integers, it is quick to check the result manually.

y transpose
3.00 3.00 5.00 7.00 9.00

A transpose
1.00 1.00 1.00 1.00 1.00
1.00 2.00 3.00 4.00 5.00
1.00 0.00 1.00 0.00 1.00
0.00 0.00 0.00 1.00 1.00

for iter = 0, 4
x 0.43457383 1.56124675 0.27362058 0.25752524
res 0.73055887 -0.55706739 -0.39193439 0.06291389 0.22804642
x 0.51313990 1.38677311 0.87905097 0.56870568
res 0.22103608 -0.28668615 -0.55250990 0.37106201 0.10523783
x 0.39144850 1.24044561 1.08974123 1.46199620
res 0.27836478 0.12766024 -0.20252618 0.18477297 -0.14541389
x 1.00001717 1.00006616 1.00001156 2.00000978
res -0.00009474 -0.00014952 -0.00022683 -0.00029133 -0.00036907
x 0.99999994 1.00000000 1.00000036 2.00000000
res -0.00000013 -0.00000003 0.00000007 0.00000018 -0.00000015

Initialization of the conjugate-gradient method typically varies from one ap-
plication to the next, as does the setting up of the transformation and its adjoint.



146 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

The problem above was set up with the matmul() program given in chapter 5. The
program cgmeth() below initializes a zero solution and the residual of a zero solution.

# setup of conjugate gradient descent, minimize SUM rr(i)**2
# nx
# rr(i) = yy(i) - sum aaa(i,j) * x(j)
# j=1
subroutine cgmeth( nx,x, nr,yy,rr, aaa, niter)
integer i, iter, nx, nr, niter
real x(nx), yy(nr), rr(nr), aaa(nr,nx)
temporary real dx(nx), sx(nx), dr(nr), sr(nr)
do i= 1, nx

x(i) = 0.
do i= 1, nr

rr(i) = yy(i)
do iter= 0, niter {

call matmult( 1, aaa, nx,dx, nr,rr) # dx= dx(aaa,rr)
call matmult( 0, aaa, nx,dx, nr,dr) # dr= dr(aaa,dx)
call cgstep( iter, nx, x,dx,sx, _

nr,rr,dr,sr) # x=x+s; rr=rr-ss
}

return; end

Then it loops over iterations, invoking matrix multiply, conjugate transpose multiply,
and the conjugate-gradient stepper. In subroutine cgmeth(), the variable dx is like
g in equation (1.44), and the variable dr is like G in equation (1.45).

6.2.8 Preconditioning

Like steepest descent, CG methods can be accelerated if a nonsingular matrix M with
known inverse can be found to approximate A. Then, instead of solving Ax ≈ y,
we solve M−1Ax ≈M−1y = c, which should converge much faster since M−1A ≈ I.
This is called “preconditioning.”

In my experience the matrix M is rarely available, except in the crude approxi-
mation of scaling columns, so the unknowns have about equal magnitude. As with
signals and images, spectral balancing should be helpful.

EXERCISES:

1 Remove lines from the conjugate-gradient program to convert it to a program that
solves simultaneous equations by the method of steepest descent. Per iteration,
how many dot products are saved, and how much is the memory requirement
reduced?



6.3. INVERSE NMO STACK 147

2 A precision problem can arise with the CG method when many iterations are re-
quired. What happens is that R drifts away from Ar and X drifts away from Ax.
Revise the program cgmeth() to restore consistency every twentieth iteration.

6.3 INVERSE NMO STACK

Starting from a hypothetical, ideal, zero-offset model, Figure 5.6 shows synthetic data
and the result of adjoint modeling (back projection), which reconstructs an imperfect
model. Inversion should enable us to reconstruct the original model. Let us see how
back projection can be upgraded towards inversion.

Unfortunately, the adjoint operator N′ defined by the subroutine nmo1() on
page 120 is not a good operator for seismogram modeling—notice the roughness of
the synthetic seismograms in Figure 5.6. This roughness is not an inevitable conse-
quence of nearest-neighbor interpolation. It is a consequence of defining the NMO
program as a loop over the output space τ . Instead, we can define inverse NMO as a
loop over its output space, which is not τ but t. This is done in imo1() on page 121
and imospray() on page 122.

If we plan an upgrade from back projection towards inversion, we must be aware
that the accuracy of the original modeling operator can become an issue.

Figure 6.1: Top is a model trace
m. Next are the synthetic data
traces, d = Mm. Then, labeled
niter=0 is the stack, a result
of processing by adjoint modeling.
Increasing values of niter show x
as a function of iteration count in
the regression d ≈ Mx. (Carlos
Cunha-Filho) ls-invstack [ER]

The new seismograms at the bottom of Figure 1.1 show the first four iterations
of conjugate-gradient inversion. You see the original rectangle-shaped waveform re-
turning as the iterations proceed. Notice also on the stack that the early and late
events have unequal amplitudes, but after iteration they are equal, as they began.
Mathematically, we can denote the top trace as the model m, the synthetic data
signals as d = Mm, and the stack as M′d. The conjugate-gradient algorithm solves
the regression d ≈ Mx by variation of x, and the figure shows x converging to m.
Since there are 256 unknowns in m, it is gratifying to see good convergence occurring
after the first four iterations. The CG subroutine used is invstack(), which is just



148 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

like cgmeth() on page 14 except that the matrix-multiplication operator matmul()

on the current page has been replaced by imospray() on page 122. Studying the
program, you can deduce that, except for a scale factor, the output at niter=0 is
identical to the stack M′d. All the signals in Figure 1.1 are intrinsically the same
scale.

# NMO stack by inverse of forward modeling
#
subroutine invstack( nt,model,nx,gather,rr,t0,x0,dt,dx,slow,niter)
integer it, ix, iter, nt, nx, niter
real t0,x0,dt,dx,slow, gather(nt,nx), rr(nt,nx), model(nt)
temporary real dmodel(nt), smodel(nt), dr(nt,nx), sr(nt,nx)
do it= 1, nt

model(it) = 0.0
do it= 1, nt

do ix= 1, nx
rr(it,ix) = gather(it,ix)

do iter = 0, niter {
call imospray( 1,0,slow,x0,dx,t0,dt,nx,nt,dmodel,rr) # nmo-stack
call imospray( 0,0,slow,x0,dx,t0,dt,nx,nt,dmodel,dr) # modeling
call cgstep(iter, nt, model, dmodel, smodel, _

nt*nx, rr, dr, sr)
}

return; end

This simple inversion is inexpensive. Has anything been gained over conventional
stack? First, though we used nearest-neighbor interpolation, we managed to preserve
the spectrum of the input, apparently all the way to the Nyquist frequency. Second,
we preserved the true amplitude scale without ever bothering to think about (1)
dividing by the number of contributing traces, (2) the amplitude effect of NMO
stretch, or (3) event truncation.

With depth-dependent velocity, wave fields become much more complex at wide
offset. NMO soon fails, but wave-equation forward modeling offers interesting oppor-
tunities for inversion.

6.4 MARINE DEGHOSTING

The marine ghost presents a problem that is essentially insoluble; but because it is
always with us, we need to understand how to do the best we can with it. Even if an
airgun could emit a perfect impulse, the impulse would reflect from the nearby water
surface, thereby giving a second pulse of opposite polarity. The energy going down
into the earth is therefore a doublet when we would prefer a single pulse. Likewise,
hydrophones see the upcoming wave once coming up, and an instant later they see
the wave with opposite polarity reflecting from the water surface. Thus the combined
system is effectively a second derivative wavelet (1,−2, 1) that is convolved with
signals of interest. Our problem is to remove this wavelet by deconvolution. It



6.4. MARINE DEGHOSTING 149

is an omnipresent problem and is cleanly exposed on marine data where the water
bottom is hard and deep.

Theoretically, a double integration of the second derivative gives the desired pulse.
A representation in the discrete time domain is the product of (1−Z)2 with 1+2Z+
3Z2 + 4Z3 + 5Z4 + · · ·, which is 1. Double integration amounts to spectral division
by −ω2. Mathematically the problem is that −ω2 vanishes at ω = 0. In practice
the problem is that dividing by ω2 where it is small amplifies noises at those low
frequencies. (Inversion theorists are even more frustrated because they are trying to
create something like a velocity profile, roughly a step function, and they need to
do something like a third integration.) Old nuts like this illustrate the dichotomy
between theory and practice.

Chapter 4 provides a theoretical solution to this problem in the Fourier domain.
Here we will express the same concepts in the time domain. Define as follows:

yt Given data.
bt Known filter.
xt Excitation (to be found).
nt = yt − xt∗bt Noise: data minus filtered excitation.

With Z-transforms the problem is given by Y (Z) = B(Z)X(Z)+N(Z). Our primary
wish is N ≈ 0. Our secondary wish is that X not be infinity as X = Y/B threatens.
This second wish is expressed as εX ≈ 0 and is called “stabilizing” or “damping.”
In the Fourier domain the wishes are

Y ≈ BX (6.50)

0 ≈ εX (6.51)

The formal expression of the regression is

min
X

( ||Y −BX|| + ε2||X|| ) (6.52)

In the time domain the regression is much more explicit:

y0

y1

y2

y3

y4

y5

y6

0
0
0
0
0
0
0



≈



1 . . . . . .
−2 1 . . . . .

1 −2 1 . . . .
. 1 −2 1 . . .
. . 1 −2 1 . .
. . . 1 −2 1 .
. . . . 1 −2 1
ε . . . . . .
. ε . . . . .
. . ε . . . .
. . . ε . . .
. . . . ε . .
. . . . . ε .
. . . . . . ε





x0

x1

x2

x3

x4

x5

x6


(6.53)



150 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

where “·” denotes a zero. Since it is common to add εI to an operator to stabilize it,
I prepared subroutine ident() for this purpose. It is used so frequently that I coded
it in a special way to allow the input and output to overlie one another.

subroutine ident( adj, add, epsilon, n, pp, qq )
integer i, adj, add, n
real epsilon, pp(n), qq(n) # equivalence (pp,qq) OK
if( adj == 0 ) {

if( add == 0 ) { do i=1,n { qq(i) = epsilon * pp(i) } }
else { do i=1,n { qq(i) = qq(i) + epsilon * pp(i) } }
}

else { if( add == 0 ) { do i=1,n { pp(i) = epsilon * qq(i) } }
else { do i=1,n { pp(i) = pp(i) + epsilon * qq(i) } }
}

return; end

We can use any convolution routine we like, but for simplicity, I selected contrunc()

so the output would be the same length as the input. The two operators ident() and
contrunc() could be built into a new operator. I found it easier to simply cascade
them in the deghosting subroutine deghost() below.

# deghost: min |rrtop| = | y - bb (contrunc) xx |
# x |rrbot| | 0 - epsilon I xx |
subroutine deghost( eps, nb,bb, n, yy, xx, rr, niter)
integer iter, nb, n, niter
real bb(nb), yy(n), eps # inputs. typically bb=(1,-2,1)
real xx(n), rr(n+n) # outputs.
temporary real dx(n), sx(n), dr(n+n), sr(n+n)
call zero( n, xx)
call copy( n, yy, rr(1 )) # top half of residual
call zero( n , rr(1+n)) # bottom of residual
do iter= 0, niter {

call contrunc(1,0,1,nb,bb, n,dx,n,rr); call ident(1,1,eps, n,dx,rr(1+n))
call contrunc(0,0,1,nb,bb, n,dx,n,dr); call ident(0,0,eps, n,dx,dr(1+n))
call cgstep( iter, n,xx,dx,sx, _

n+n,rr,dr,sr)
}

return; end

6.4.1 Synthetics

I made some synthetic marine data and added 5% noise. This, along with an at-
tempted deconvolution, is shown in Figure 1.2. The plot in Figure 1.2 is for the value
of ε that I subjectively regarded as best. The result is pleasing because the doublets
tend to be converted to impulses. Unfortunately, the low-frequency noise in xt is
significantly stronger than that in yt, as expected.

Taking ε larger will decrease ||X|| but increase the explicit noise ||Y −BX||. To
decrease the explicit noise, I chose a tiny value of ε = .001. Figure 1.3 shows the



6.4. MARINE DEGHOSTING 151

Figure 6.2: Top is the synthetic
data yt. Middle is the deconvolved
data xt. Bottom is the noise nt.
This choice of ε = .2 gave my pre-
ferred result. ls-syn+.2 [ER]

result. The explicit noise nt appears to vanish, but the low-frequency noise implicit
to the deconvolved output xt has grown unacceptably.

Figure 6.3: As before, the signals
from top to bottom are yt, xt, and
nt. Choosing a small ε = .001
forces the noise mostly into the
output xt. Thus the noise is es-
sentially implicit. ls-syn+.001
[ER]

Finally, I chose a larger value of ε = .5 to allow more noise in the explicit nt, hoping
to get a lower noise implicit to xt. Figure 1.4 shows the result. Besides the growth
of the explicit noise (which is disturbingly correlated to the input), the deconvolved
signal has the same unfortunate wavelet on it that we are trying to remove from the
input.

Results of a field-data test shown in Figure 1.5 do not give reason for encourage-
ment.

In conclusion, all data recording has an implicit filter, and this filter is arranged
to make the data look good. Application of a theoretical filter, such as ω−2, may
achieve some theoretical goals, but it does not easily achieve practical goals.



152 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

Figure 6.4: Noise essentially ex-
plicit. ε = .5. ls-syn+.5 [ER]

Figure 6.5: Field-data test. As
before, the signals from top
to bottom are yt, xt, and nt.
ls-field+.3 [ER]



6.5. CG METHODOLOGY 153

EXERCISES:

1 The (1,−2, 1) signature is an oversimplification. In routine operations the hy-
drophones are at a depth of 7-10 meters and the airgun is at a depth of 5-6 meters.
Assuming a sampling rate of .004 s (4 milliseconds) and a water velocity of 1500
m/s, what should the wavelet be?

2 Rerun the figures with the revised wavelet of the previous exercise.

6.5 CG METHODOLOGY

The conjugate-gradient method is really a family of methods. Mathematically these
algorithms all converge to the answer in n (or fewer) steps where there are n unknowns.
But the various methods differ in numerical accuracy, treatment of underdetermined
systems, accuracy in treating ill-conditioned systems, space requirements, and num-
bers of dot products. I will call the method I use in this book the “book3” method. I
chose it for its clarity and flexibility. I caution you, however, that among the various
CG algorithms, it may have the least desirable numerical properties.

The “conjugate-gradient method” was introduced by Hestenes and Stiefel
in 1952. A popular reference book, “Numerical Recipes,” cites an algorithm that is
useful when the weighting function does not factor. (Weighting functions are not easy
to come up with in practice, and I have not found any examples of nonfactorable
weighting functions yet.) A high-quality program with which my group has had
good experience is the Paige and Saunders LSQR program. A derivative of the LSQR
program has been provided by Nolet. A disadvantage of the book3 method is that it
uses more auxiliary memory vectors than other methods. Also, you have to tell the
book3 program how many iterations to make.

There are a number of nonlinear optimization codes that reduce to CG in the
limit of a quadratic function.

According to Paige and Saunders, accuracy can be lost by explicit use of vectors
of the form A′Ax, which is how the book3 method operates. An algorithm with
better numerical properties, invented by Hestenes and Stiefel, can be derived by
algebraic rearrangement. This rearrangement (adapted from Paige and Saunders by
Lin Zhang) for the problem Ax ≈ Y is

• Set x = 0, R = Y , g = A′Y , s = g and γ− = ‖g‖2.

• For each iteration, repeat the following:

S = As

α = γ−/‖S‖2

x = x+ αs



154 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

R = R− αS
g = A′R

γ = ‖g‖2

β = γ/γ−

γ− = γ

s = g + βs

where ‖v‖ stands for the L2 norm of vector v. A program that implements this algo-
rithm in a manner consistent with a blending of cgmeth() on page 14 and cgstep()

on page 12 is hestenes().

subroutine hestenes( nx,x, nr,yy,rr, aaa, niter)
integer i, iter, nx, nr, niter
real alpha, beta, gamma, gammam
real dot
real x(nx), yy(nr), rr(nr), aaa(nr,nx)
temporary real g(nx), s(nx), ss(nr)
do i= 1, nx

x(i) = 0.
do i= 1, nr

rr(i) = yy(i)
call matmult( 1, aaa, nx,g, nr,yy)
do i= 1, nx

s(i) = g(i)
gammam = dot(nx,g,g)
do iter= 0, niter {

call matmult( 0, aaa, nx,s, nr,ss)
alpha = gammam / dot(nr,ss,ss)
do i = 1, nx

x(i) = x(i) + alpha*s(i)
do i = 1, nr

rr(i) = rr(i) - alpha*ss(i)
call matmult( 1, aaa, nx,g, nr,rr)
gamma = dot(nx,g,g)
beta = gamma / gammam
gammam = gamma
do i = 1, nx

s(i) = g(i) + beta*s(i)
}

return; end

I have not used the Hestenes and Stiefel version of the CG method for the tutorial
programs in this book because I wish to isolate features of geophysical analysis from
features of solution by the CG method. The blending of geophysical features with
solution details is worsened by the combination of Fortran and this improved version
of the CG algorithm.



6.5. CG METHODOLOGY 155

6.5.1 Programming languages and this book

A valuable goal is to isolate the CG solving program from all physical aspects of the
linear operator. We wish to abstract the CG solver, to put it in a compiled subroutine
library where we can feed it inputs and get back the outputs, and never again to
see the internals of how it works (like the fast Fourier transform). Unfortunately,
the primitive nature of the Fortran-Ratfor language does not appear to allow this
abstraction. The reason is that the CG program needs to call your linear operator
routine and, to do this, it needs to know not only the name of your routine but how
to supply its arguments. (I recall from years ago a Fortran where subroutines could
have several entry points. This might help.) Thus, everywhere in this book where
I solve a model-fitting problem, we must see some of the inner workings of CG. To
keep this from becoming too objectionable, I found the nonstandard CG method we
have been using and coupled it with Bill Harlan’s idea of isolating its inner workings
into cgstep(). Because of this we can see complete code for many examples, and the
code is not awfully cluttered. Unfortunately, my CG is not Hestenes’ CG.

In many of the Fortran codes you see in this book it is assumed that the abstract
vector input and vector output correspond to physical one-dimensional arrays. In real
life, these abstract vectors are often matrices, or matrices in special forms, such as
windows on a wall of data (nonpacked arrays), and they may contain complex num-
bers. Examining equation (1.53), we notice that the space of residuals for a damped
problem is composed of two parts, the residual of the original problem and a part εx
the size of the unknowns. These two parts are packed, somewhat uncomfortably, into
the abstract residual vector.

A linear operator really consists of (at least) four subroutines, one for applying
the operator, one for its adjoint, one for a dot product in the space of inputs, and
one for a dot product in the space of outputs. Modern programming theory uses the
terms “data abstraction” and “object-oriented programming (OOP)” to describe
methods and languages that are well suited to the problems we are facing here. The
linear-operator object is what the CG solver needs to be handed, along with an
instance of the input abstract vector and a pointer to space for the output vector.
(The linear-operator object, after it is created, could also be handed to a universal
dot-product test routine. With Fortran I write a separate dot-product test program
for each operator.)

Another abstraction that Fortran cannot cope with is this: the CG program must
allocate space for the gradient and past-steps vectors. But the detailed form of these
abstract vectors should not be known to the CG program. So the linear-operator
object requires four more routines (called “methods” in OOP) that the CG routine
uses to allocate and free memory (to create and destroy objects from the physical
space of inputs and outputs). In this way OOP allows us to isolate concepts, so that
each concept need only be expressed once. A single version of a concept can thus be
reused without being replicated in a form blended with other concepts.

As I am going along generating examples for this book, and as the examples



156 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

get more complicated, I am wondering just where I will drop the idea of exhibiting
complete codes. Obviously, if I switched from Fortran to a more modern language,
such as C++, I could get further. The disadvantages of C++ are that I am not
experienced in it, few of my readers will know it, and its looping statements are
cluttered and do not resemble mathematics. Instead of do i=1,n, C and C++ use
for( i=0; i<=n; i++). It would be fun to do the coding in a better way, but for
now, I am having more fun identifying new problems to solve.

6.6 References

Gill, P.E., Murray, W., and Wright, M.H., 1981, Practical optimization: Academic
Press.

Gorlen, K.E., Orlow, S.M., and Plexico, P.S., 1990, Data abstraction and object-
oriented programming in C++: J. Wiley.

Hestenes, M.R., and Stiefel, E., 1952, Methods of conjugate gradients for solving
linear systems: J. Res. Natl. Bur. Stand., 49, 409-436.

Luenberger, D.G., 1973, Introduction to linear and nonlinear programming: Addison-
Wesley.

Nolet, G., 1985, Solving or resolving inadequate and noisy tomographic systems: J.
Comp. Phys., 61, 463-482.

Paige, C.C., and Saunders, M.A., 1982a, LSQR: an algorithm for sparse linear equa-
tions and sparse least squares: Assn. Comp. Mach. Trans. Mathematical Soft-
ware, 8, 43-71.

Paige, C.C., and Saunders, M.A., 1982b, Algorithm 583, LSQR: sparse linear equa-
tions and least squares problems: Assn. Comp. Mach. Trans. Mathematical
Software, 8, 195-209.

Press, W.H. et al., 1989, Numerical recipes: the art of scientific computing: Cam-
bridge University Press.

Strang, G., 1986, Introduction to applied mathematics: Wellesley-Cambridge Press.



312 CHAPTER 6. MODEL FITTING BY LEAST SQUARES



Index

airgun, 16

back projection, 15
book3, 21

C++, 24
CG, 8, 21, 22
cgmeth subroutine, 14
cgstep subroutine, 12
conjugate gradient, 12
conjugate-gradient method, 8, 10, 11,

13, 21
conjugate-gradient program, 12
contour, 9
covariance matrix, 3, 7

damping, 17
deconvolution, 16
deghost subroutine, 18
differentiate

by a complex vector, 5

fitting, 1
fitting function, 5
Fortran, 12, 22–24

ghost, 16
gradient, 9

Harlan, 23
Hestenes, 21, 22, 24
hestenes subroutine, 22
hydrophone, 16

ident subroutine, 18
inverse filter, 5
inversion, 1, 15
invstack subroutine, 16
iterative method, 8

languages, programming, 23
least squares, 1
least squares, central equation of, 3
line search, 10

modeling, 1

nonlinear optimization, 21
normal, 5

object-oriented programming, 23
OOP, 23

partial derivative, 2
polarity, 16
preconditioning, 14
processing, 1
programming languages, 23

quadratic form, 2, 5, 7

Ratfor, 23
regression, 4, 17
regressor, 1, 2
residual, 5, 8

signature, 21
stack, 15
steepest descent, 9, 10
subroutine

cgmeth, demonstrate CG, 14
cgstep, one step of CG, 12
deghost, deghost by CG, 18
hestenes, classic CG, 22
ident, identity operator, 18
invstack, inversion stacking, 16

time-series analysis, 4

weighting function
nonfactorable, 21

313



Chapter 7

Time-series analysis

In chapter 5 we learned about many operators and how adjoints are a first approx-
imation to inverses. In chapter 6 we learned how to make inverse operators from
adjoint operators by the least-squares (LS) method using conjugate gradients (CG).
The many applications of least squares to the convolution operator constitute the sub-
ject known as “time-series analysis.” In this chapter we examine applications of
time-series analysis to reflection seismograms. These applications further illuminate
the theory of least squares in the area of weighting functions and stabilization.

In the simplest applications, solutions can be most easily found in the frequency
domain. When complications arise, it is better to use the time domain, directly
applying the convolution operator and the method of least squares.

A first complicating factor in the frequency domain is a required boundary in the
time domain, such as that between past and future, or requirements that a filter be
nonzero in a stated time interval. Another factor that attracts us to the time domain
rather than the Fourier domain is weighting functions. As we saw in the beginning of
chapter 6 weighting functions are appropriate whenever a signal or image amplitude
varies from place to place. Most of the literature on time-series analysis applies
to the limited case of uniform weighting functions. Such time series are said to be
“stationary.” This means that their statistical properties do not change in time. In
real life, particularly in the analysis of echos, signals are never stationary in time and
space. A stationarity assumption is a reasonable starting assumption, but we should
know how to go beyond it so we can take advantage of the many opportunities that
do arise. In order of increasing difficulty in the frequency domain are the following
complications:

1. A time boundary such as between past and future.

2. More time boundaries such as delimiting a filter.

3. Nonstationary signal, i.e., time-variable weighting.

4. Time-axis stretching such as normal moveout.

157



158 CHAPTER 7. TIME-SERIES ANALYSIS

We will not have difficulty with any of these complications here because we
will stay in the time domain and set up and solve optimization problems using the
conjugate-gradient method. Thus we will be able to cope with great complexity in
problem formulation and get the right answer without approximations. By contrast,
analytic or partly analytic methods can be more economical, but they generally solve
somewhat different problems than those given to us by nature.

7.1 SHAPING FILTER

A shaping filter is a simple least-squares filter that converts one waveform to another.
Shaping filters arise in a variety of contexts. In the simplest context, predicting one
infinitely long time series from another, the shaping filter can be found in the Fourier
domain.

7.1.1 Source waveform and multiple reflections

Figure 1.1 shows some reflection seismic data recorded at nearly vertical incidence
from an arctic ice sheet. Apparently the initial waveform is somewhat complex,

Figure 7.1: Some of the inner offset seismograms from Arctic dataset 24 (Yilmaz and
Cumro). tsa-wz24 [NR]

but the water-bottom reflection does not complicate it further. You can confirm this
by noticing the water-bottom multiple reflection, i.e., the wave that bounces first
from the water bottom, then from the water surface, and then a second time from



7.1. SHAPING FILTER 159

the water bottom. This multiple reflection is similar to but has polarity opposite
to the shape of the primary water-bottom reflection. (The opposite polarity results
from the reflection at the ocean surface, where the acoustic pressure, the sum of the
downgoing wave plus the upgoing wave, vanishes.)

Other data in water of similar depth shows a different reflection behavior. The
bottom gives back not a single reflection, but a train of reflections. Let this train of
reflections from the ocean floor be denoted by F (Z). Instead of looking like −F (Z),
the first multiple reflection can look like −F (Z)2. The ray sketch in Figure 1.2
shows a simple multiple reflection. There is only one water-bottom path, but there

Figure 7.2: Water bottom soft-
mud multiple (left) and similar
travel times to mudstone (center
and right). tsa-peg [NR]

are two paths to a slightly deeper layer. I will call the first arrival the soft-mud arrival
and the second one the mudstone arrival. If these two arrivals happen to have the
same strength, an expression for F (Z) is 1 +Z. The expression for the first multiple
is −F (Z)2 = −(1 + Z)2 = −1 + 2Z − Z2 where the 2Z represents the two paths in
Figure 1.2. The waveform of the second water bottom multiple is (1 − Z)3 in which
the mudstone would be three times as strong as the soft mud. In the nth wave train
the mudstone is n times as strong as the soft mud. Figure 1.3 is a textbook quality
example of this simple concept.

Figures 1.3 and 1.1 illustrate how arctic data typically contrasts with data from
temperate or tropic regions. The arctic water-bottom reflection is generally hard,
indicating that the bottom is in a constant state of erosion from the scraping of the
ice floes and the carrying away of sediments by the bottom currents. In temperate
and tropical climates, the bottom is often covered with soft sediments: the top layer
is unconsolidated mud, and deeper layers are mud consolidated into mudstone.

Now we devise a simple mathematical model for the multiple reflections in Fig-
ures 1.1 and 1.3. There are two unknown waveforms, the source waveform S(Z)
and the ocean-floor reflection F (Z). The water-bottom primary reflection P (Z) is
the convolution of the source waveform with the water-bottom response; so P (Z) =
S(Z)F (Z). The first multiple reflection M(Z) sees the same source waveform, the
ocean floor, a minus one for the free surface, and the ocean floor again. Thus the
observations P (Z) and M(Z) as functions of the physical parameters are

P (Z) = S(Z)F (Z) (7.1)

M(Z) = −S(Z)F (Z)2 (7.2)



160 CHAPTER 7. TIME-SERIES ANALYSIS

Figure 7.3: Two displays of a common-shot collection of seismograms from offshore
Crete (Yilmaz and Cumro dataset 30). Top display is called “raster” and bottom
display “wiggle.” Raw data scaled by t2. tsa-wz30 [NR]



7.1. SHAPING FILTER 161

In Figure 1.1 it appears that F (Z) is nearly an impulse, whereas Figure 1.3 is dom-
inated by the nonimpulsive aspect of F (Z). Algebraically the solutions of equations
(1.1) and (1.2) are

F (Z) = −M(Z)/P (Z) (7.3)

S(Z) = −P (Z)2/M(Z) (7.4)

These solutions can be computed in the Fourier domain. The difficulty is that
the divisors in equations (1.3) and (1.4) can be zero, or small. This difficulty can be
attacked by using a positive number ε to stabilize it. Equation (1.3), for example,
could be written

F (Z) = − M(Z)P (1/Z)

P (Z)P (1/Z) + ε
(7.5)

We can easily understand what this means as ε tends to infinity, where, because
of the 1/Z, the matched filter has a noncausal response. Thus, although the ε
stabilization seems nice, it apparently produces a nonphysical model. For ε large or
small, the time-domain response could turn out to be of much greater duration than
is physically reasonable. This should not happen with perfect data, but in real life,
data always has a limited spectral band of good quality.

Functions that are rough in the frequency domain will be long in the time domain.
This suggests making a short function in the time domain by local smoothing in the
frequency domain. Let the notation < · · · > denote smoothing by local averaging.
Thus we can specify filters whose time duration is not unreasonably long by revising
equation (1.5) to

F (Z) = − < M(Z)P (1/Z) >

< P (Z)P (1/Z) + ε >
(7.6)

where it remains to specify the method and amount of smoothing.

These time-duration difficulties do not arise in a time-domain formulation. First
express (1.3) and (1.4) as

P (Z)F (Z) ≈ −M(Z) (7.7)

M(Z)S(Z) ≈ −P (Z)2 (7.8)

To imagine these in the time domain, refer back to equation (??). Think of Pf ≈ m
where f is a column vector containing the unknown sea-floor filter, m is a column
vector containing the portion of a seismogram in Figure 1.1 labeled “multiple,” and
P is a matrix of down-shifted columns, each column being the same as the signal
labeled “primary” in Figure 1.1. The time-domain solutions are called “shaping
filters.” For a simple filter of two coefficients, f0 and f1, we solved a similar problem,
equation (6.19), theoretically. With longer filters we use numerical methods.

In the time domain it is easy and natural to limit the duration and location of
the nonzero coefficients in F (Z) and S(Z). The required program for this task is
shaper(), which operates like cgmeth() on page 146 and invstack() on page 148
except that the operator needed here is contran() on page 107.



162 CHAPTER 7. TIME-SERIES ANALYSIS

# shaping filter
# minimize SUM rr(i)**2 by finding ff and rr where
#
# rr = yy - xx (convolve) ff
#
subroutine shaper( nf,ff, nx,xx, ny, yy, rr, niter)
integer i, iter, nf, nx, ny, niter
real ff(nf), xx(nx), yy(ny), rr(ny)
temporary real df(nf), dr(ny), sf(nf), sr(ny)
if( ny != nx+nf-1) call erexit(’data length error’)
do i= 1, nf

ff(i) = 0.
do i= 1, ny

rr(i) = yy(i)
do iter= 0, niter {

call contran( 1, 0, nx,xx, nf,df, rr) # df=xx*rr
call contran( 0, 0, nx,xx, nf,df, dr) # dr=xx*df
call cgstep( iter, nf,ff,df,sf, ny,rr,dr,sr) # rr=rr-dr; ff=ff+df
}

return; end

The goal of finding the filters F (Z) and S(Z) is to best model the multiple reflec-
tions so that they can be subtracted from the data, enabling us to see what primary
reflections have been hidden by the multiples. An important practical aspect is merg-
ing the analysis of many seismograms (see exercises).

Typical data includes not only that shown in Figures 1.1 and 1.3, but also wider
source-receiver separation, as well as many other nearby shots and their receivers.
Corrections need to be made for hyperbolic traveltime resulting from lateral separa-
tion between shot and receiver. Diffractions are a result of lateral imperfections in
the generally flat sea floor. The spatial aspects of this topic are considered at great
length in IEI. We will investigate them here in only a limited way.

7.1.2 Shaping a ghost to a spike

An exasperating problem in seismology is the “ghost” problem, in which a waveform
is replicated a moment after it occurs because of a strong nearby reflection. In marine
seismology the nearby reflector is the sea surface. Because the sea surface is near both
the airgun and the hydrophones, it creates two ghosts. Upgoing and downgoing
waves at the sea surface have opposite polarity because their pressures combine to
zero at the surface. Thus waves seen in the hydrophone encounter the ghost operator
gt = (1, 0, 0, · · · ,−1) twice, once for the surface near the source and once for the
surface near the hydrophone. The number of zeros is typically small, depending on
the depth of the device. The sound receivers can be kept away from surface-water
wave noise by positioning them deeper, but that extends the ghost delay; and as we
will see, this particular ghost is very hard to eliminate by processing. For simplicity,
let us analyze just one of the two ghosts. Take it to be G(Z) = 1−Z2. Theoretically,
the inverse is of infinite duration, namely, (1, 0, 1, 0, 1, 0, 1, 0, 1, · · ·).



7.2. SYNTHETIC DATA FROM FILTERED NOISE 163

Since an infinitely long operator is not satisfactory, I used the program shaper()

above to solve a least-squares problem for an antighost operator of finite duration.
Since we know that the least-squares method abhors large errors and thus tends to
equalize them, we should be able to guess the result.

The filter (.9, .0, .8, .0, .7, .0, .6, .0, .5, .0, .4, .0, .3, .0, .2, .0, .1), when convolved with
(1, 0,−1), produces the desired spike (impulse) along with equal squared errors of
.01 at each output time. Thus, the least-squares filter has the same problem as the
analytical one—it is very long. This disappointment can be described in the Fourier
domain by the many zeros in the spectrum of (1, 0,−1). Since we cannot divide by
zero, we should not try to divide by 1−Zn, which has zeros uniformly distributed on
the unit circle. The method of least squares prevents disaster, but it cannot perform
miracles.

I consider ghosts to be a problem in search of a different solution. Ghosts also
arise when seismograms are recorded in a shallow borehole. As mentioned, the total
problem generally includes many waveforms propagating in more than one direction;
thus it is not as one-dimensional as it may appear in Figures 1.3 and 1.1, in which I
did not display the wide-offset signals.

EXERCISES:

1 What inputs to subroutine shaper() on page 5 give the filter (.9, 0, .8, · · · .1)
mentioned above?

2 Figure 1.1 shows many seismograms that resemble each other but differ in the x
location of the receiver. Sketch the overdetermined simultaneous equations that
can be used to find the best-fitting source function S(Z), where Mx(Z)S(Z) ≈
Px(Z)2 for various x.

3 Continue solving the previous problem by defining a contranx() subroutine that
includes several signals going through the same filter. In order to substitute your
contranx() into shaper() on page 5 to replace contran() on page 107, you will
need to be sure that the output and the filter are adjoint (not the output and the
input). Suggestion: define real xx(nt,nx), etc.

7.2 SYNTHETIC DATA FROM FILTERED NOISE

A basic way to describe the random character of signals is to model them by putting
random numbers into a filter. Practical work often consists of the reverse: deducing
the filter and deconvolving it to see the input.



164 CHAPTER 7. TIME-SERIES ANALYSIS

7.2.1 Gaussian signals versus sparse signals

Most theoretical work is based on random numbers from a Gaussian probability
function. The basic theoretical model is that at every time point a Gaussian random
number is produced. In real life we do observe such signals, but we also observe signals
with less frequent noise bursts. Such signals, called “sparse signals” or “bursty
signals,” can be modeled in many ways, two of which are (1) that many points can
have zero value (or a value that is smaller than expected from a Gaussian); and (2)
that the Gaussian probability function describes the many smaller values, but some
larger values also occur from time to time.

It turns out that the Gaussian probability function generates more cryptic signals
than any other probability function. It also turns out that theory is best developed for
the Gaussian case. Thus, Gaussian theory, which is the most pessimistic, tends to be
applied to both Gaussian and sparser data. Sparse signals derive from diverse models,
and usually there is not enough information to establish a convincing model. In
practical work, “non-Gaussian” generally means “sparser than Gaussian.” Figure 1.4
illustrates random signals from a Gaussian probability function and a sparser signal
made by cubing the random numbers that emerge from a Gaussian random-number
generator.

Figure 7.4: Left are random numbers from a Gaussian probability function. (The
random numbers are connected by lines.) Right, the random numbers are cubed,
making a signal in which large spikes are sparser. tsa-spikes [ER]

7.2.2 Random numbers into a filter

Figure 1.5 shows random numbers fed through leaky integration and the resulting
spectral amplitude. The output spectral amplitude of an integrator should be |ω|−1,
but the decay constant in the leaky integrator gives instead the amplitude (ω2 +
ε2)−1/2. Since the random numbers are sparse, you can see damped exponents in the
data itself. This enables us to confirm the direction of the time axis. If the random



7.2. SYNTHETIC DATA FROM FILTERED NOISE 165

Figure 7.5: Left is sparse random noise passed through a leaky integrator. Right is
the amplitude spectrum of the output. tsa-leaky [ER]

numbers had been Gaussian, the spectrum would be the same, but we would be able
neither to see the damped exponents nor detect the direction of time.

7.2.3 Random numbers into the seismic spectral band

Figure 1.6 shows synthetic data designed to look like real seismic noise. Here some

Figure 7.6: Left is Gaussian random noise passed through Butterworth filters to simu-
late the seismic passband. Right is the amplitude spectrum of the output. tsa-band
[ER]

Gaussian random numbers were passed into a filter to simulate the seismic passband.
Two five-term Butterworth filters (see chapter 10) were used, a highcut at .4 of the
Nyquist and a lowcut at .1 of the Nyquist.



166 CHAPTER 7. TIME-SERIES ANALYSIS

7.3 THE ERROR FILTER FAMILY

A simple regression for a prediction filter (f1, f2) is
x2

x3

x4

x5

 ≈


x1 x0

x2 x1

x3 x2

x4 x3


[
f1

f2

]
(7.9)

Notice that each row in this equation says that xt fits a linear combination of x at
earlier times; hence the description of f as a “prediction” filter. The error in the
prediction is simply the left side minus the right side. Rearranging the terms, we get

0
0
0
0

 ≈


x2 x1 x0

x3 x2 x1

x4 x3 x2

x5 x4 x3


 1
−f1

−f2

 (7.10)

We have already written programs for regressions like (1.9). Regressions like (1.10),
however, often arise directly in practice. They are easier to solve directly than by
transforming them to resemble (1.9).

Multiple reflections are predictable. It is the unpredictable part of a signal, the
prediction residual, that contains the primary information. The output of the filter
(1,−f1,−f2) is the unpredictable part of the input. This filter is a simple example of
a “prediction-error” (PE) filter. It is one member of a family of filters called “error
filters.”

The error-filter family are filters with one coefficient constrained to be unity and
various other coefficients constrained to be zero. Otherwise, the filter coefficients are
chosen to have minimum power output. Names for various error filters follow:

(1, a1, a2, a3, · · · , an) prediction-error (PE) filter
(1, 0, 0, a3, a4, · · · , an) gapped PE filter with a gap of 2
(a−m, · · · , a−2, a−1, 1, a1, a2, a3, · · · , an) interpolation-error (IE) filter
(a−m, · · · , a−4, a−3, 0, 0, 1, 0, 0, a3, a4, · · · , an) a gapped IE filter

A program for computing all the error filters will be presented after we examine
a collection of examples.

7.3.1 Prediction-error filters on synthetic data

The idea of using a gap in a prediction filter is to relax the goal of converting realistic
signals into perfect impulses. Figure 1.7 shows synthetic data, sparse noise into a leaky
integrator, and deconvolutions with prediction-error filters. Theoretically, the filters



7.3. THE ERROR FILTER FAMILY 167

Figure 7.7: Deconvolution of leaky integrator signals with PE filters of various
prediction-gap sizes. Inputs and outputs on alternate traces. Gap size increases
from left to right. tsa-dleak [NR]

should turn out to be 1 − (.9Z)gap. Varying degrees of success are achieved by the
filters obtained on the different traces, but overall, the results are good.

To see what happens when an unrealistic deconvolution goal is set for prediction
error, we can try to compress a wavelet that is resistant to compression—for example,
the impulse response of a Butterworth bandpass filter. The perfect filter to compress
any wavelet is its inverse. But a wide region of the spectrum of a Butterworth filter
is nearly zero, so any presumed inverse must require nearly dividing by that range
of zeros. Compressing a Butterworth filter is so difficult that I omitted the random
numbers used in Figure 1.7 and applied prediction error to the Butterworth response
itself, in Figure 1.8. Thus, we have seen that gapped PE filters sometimes are able

Figure 7.8: Butterworth de-
convolution by prediction error.
tsa-dbutter [NR]

to compress a wavelet, and sometimes are not. In real life, resonances arise in the
earth’s shallow layers; and as we will see, the resonant filters can be shortened by PE
filters.

7.3.2 PE filters on field data

Figure 1.9 is a nice illustration of the utility of prediction-error filters. The input



168 CHAPTER 7. TIME-SERIES ANALYSIS

Figure 7.9: Data from offshore Texas (extracted from Yilmaz and Cumro dataset 14).
Wiggle display above and raster below. Inputs above outputs. Filters displayed on
the right. tsa-wz14 [NR]



7.3. THE ERROR FILTER FAMILY 169

is quasi-sinusoidal, which indicates that PE filtering should be successful. Indeed,
some events are uncovered that probably would not have been identified on the input.
In this figure, a separate problem is solved for each trace, and the resulting filter is
shown on the right.

7.3.3 Prediction-error filter output is white.

The most important property of a prediction-error filter is that its output tends
to a white spectrum. No matter what the input to this filter, its output tends to
whiteness as the number of the coefficients n → ∞ tends to infinity. Thus, the PE
filter adapts itself to the input by absorbing all its color. If the input is already
white, the aj coefficients vanish. The PE filter is frustrated because with a white
input it can predict nothing, so the output is the same as the input. Thus, if we were
to cascade one PE filter after another, we would find that only the first filter does
anything. If the input is a sinusoid, it is exactly predictable by a three-term recurrence
relation, and all the color is absorbed by a three-term PE filter (see exercises). The
power of a PE filter is that a short filter can often extinguish, and thereby represent
the information in, a long filter.

That the output spectrum of a PE filter is white is very useful. Imagine the
reverberation of the soil layer, highly variable from place to place, as the resonance
between the surface and deeper consolidated rocks varies rapidly with surface location
as a result of geologically recent fluvial activity. The spectral color of this erratic
variation on surface-recorded seismograms is compensated for by a PE filter. Of
course, we do not want PE-filtered seismograms to be white, but once they all have
the same spectrum, it is easy to postfilter them to any desired spectrum.

Because the PE filter has an output spectrum that is white, the filter itself has
a spectrum that is inverse to the input. Indeed, an effective mechanism of spectral
estimation, developed by John P. Burg and described in FGDP, is to compute a PE
filter and look at the inverse of its spectrum.

Another interesting property of the PE filter is that it is minimum phase. The
best proofs of this property are found in FGDP. These proofs assume uniform weight-
ing functions.

7.3.4 Proof that PE filter output is white

1 The basic idea of least-squares fitting is that the residual is orthogonal to the fitting
functions. Applied to the PE filter, this idea means that the output of a PE filter
is orthogonal to lagged inputs. The orthogonality applies only for lags in the past
because prediction knows only the past while it aims to the future. What we want

1I would like to thank John P. Burg for this proof.



170 CHAPTER 7. TIME-SERIES ANALYSIS

to show is different, namely, that the output is uncorrelated with itself (as opposed
to the input) for lags in both directions; hence the output spectrum is white.

We are given a signal yt and filter it by

xt = yt −
∑
τ>0

aτyt−τ (7.11)

We found aτ by setting to zero d(
∑
x2
t )/daτ :∑

t

xtyt−τ = 0 for τ > 0 (7.12)

We interpret this to mean that the residual is orthogonal to the fitting function, or
the present PE filter output is orthogonal to its past inputs, or one side of the cross-
correlation vanishes. Taking an unlimited number of time lags and filter coefficients,
the crosscorrelation vanishes not only for τ > 0 but for larger values, say τ + s where
τ ≥ 0 and s > 0. In other words, the future PE filter outputs are orthogonal to
present and past inputs:∑

t

xt+syt−τ = 0 for τ ≥ 0 and s > 0 (7.13)

Recall that if r · u = 0 and r · v = 0, then r · (a1u ± a2v) = 0 for any a1 and a2. So
for any aτ we have∑

t

xt+s(yt ± aτyt−τ ) = 0 for τ ≥ 0 and s > 0 (7.14)

and for any linear combination we have∑
t

xt+s(yt −
∑
τ>0

aτyt−τ ) = 0 for τ ≥ 0 and s > 0 (7.15)

Therefore, substituting from (1.11), we get∑
t

xt+sxt = 0 for s > 0 (7.16)

which is an autocorrelation function and must be symmetric. Thus,∑
t

xt+sxt = 0 for s 6= 0 (7.17)

Since the autocorrelation of the prediction-error output is an impulse, its spectrum
is white. This has many interesting philosophical implications, as we will see next.

7.3.5 Nonwhiteness of gapped PE-filter output

When a PE filter is constrained so that a few near-zero-lag coefficients are zero, the
output no longer tends to be white as the number of coefficients in the filter tends



7.3. THE ERROR FILTER FAMILY 171

to infinity. If f1, the filter coefficient of Z = eiω∆t, vanishes, then F (ω) lacks the slow
variation in ω that this term provides. It lacks just the kind of spectral variation that
could boost weak near-Nyquist noises up to the strength of the main passband. With
such variation made absent by the constraint, the growth of Nyquist-region energy is
no longer a necessary byproduct of PE filtering.

Figure 1.10 illustrates a PE filter with a long gap. (The gap was chosen to be a

Figure 7.10: Data from offshore Canada (extracted from Yilmaz and Cumro dataset
27) processed by gapped prediction error. Inputs above outputs; filters displayed on
the right. Nicely suppressed multiples appear in boxes. Badly suppressed multiples
are shown above diagonal lines. tsa-wz27 [NR]

little less than the water depth.) This example nicely shows the suppression of some
multiple reflections, but unfortunately I do not see that any primary reflections have
been uncovered. Because the prediction gap is so long, the filter causes no visible
change to the overall spectrum. Notice how much more the spectrum was broadened
by the filter with a shorter gap in Figure 1.9. The theoretical association of prediction
gap width with spectral broadening is examined next. Another interesting feature of
Figure 1.10, which we will investigate later, is a geometrical effect. This shows up as
poor multiple removal on and above the diagonal lines and happens because of the
nonzero separation of the sound source and receiver.



172 CHAPTER 7. TIME-SERIES ANALYSIS

7.3.6 Postcoloring versus prewhitening

The output of a PE filter, as we know, is white (unless it is gapped), but people do
not like to look at white signals. Signals are normally sampled at adequate density,
which means that they are small anywhere near the Nyquist frequency. There is
rarely energy above the half-Nyquist and generally little but marine noises above the
quarter-Nyquist. To avoid boosting these noises, the ungapped PE filter is generally
altered or accompanied by other filters. Three common approaches follow:

• Use a gapped filter.

• Deconvolve, then apply a filter with the desired spectrum S(ω).

• Prefilter the input with S(ω)−1, then deconvolve with an ungapped PE filter,
and finally postfilter with S(ω).

The last process is called “prewhitening” for some complicated reasons: the idea
seems to be that the prefilter removes known color so that the least-squares coefficients
are not “wasted” on predicting what is already known. Thus the prefilter spectrum
S(ω)−1 is theoretically the inverse of the prior estimate of the input spectrum. In
real life, that is merely an average of estimates from other data. If the desired output
spectrum does not happen to be S(ω), it does not matter, since any final display filter
can be used. Although this is a nice idea, I have no example to illustrate it.

There is also the question of what phase the postfilter should have. Here are some
cautions against the obvious two choices:

• Zero phase: a symmetrical filter has a noncausal response.

• Causal: if a later step of processing is to make a coherency analysis for velocity
versus time, then the effective time will be more like the signal maximum than
the first break.

Since the postfilter is broadband, its phase is not so important as that of the decon-
volution operator, which tries to undo the phase of a causal and resonant earth.

7.4 BLIND DECONVOLUTION

The prediction-error filter solves the “blind-deconvolution” problem. So far
little has been said about the input data to the PE filter. A basic underlying model
is that the input data results from white noise into a filter, where the filter is some
process in nature. Since the output of the PE filter is white, it has the same spectrum
as the original white noise. The natural hypothesis is that the filter in nature is the
inverse of our PE filter. Both filters are causal, and their amplitude spectra are



7.4. BLIND DECONVOLUTION 173

mutually inverse. Theoretically, if the model filter were minimum phase, then its
inverse would be causal, and it would be our PE filter. But if the model filter were
an all-pass filter, or had an all-pass filter as a factor, then its inverse would not be
causal, so it could not be our PE filter.

Figure 7.11: Spectra of random
numbers, a filter, and the output
of the filter. tsa-model [ER]

The blind-deconvolution problem can be attacked without PE filters by going to
the frequency domain. Figure 1.11 shows sample spectra for the basic model. We see
that the spectra of the random noise are random-looking. In chapter 11 we will study
random noise more thoroughly; the basic fact important here is that the longer the
random time signal is, the rougher is its spectrum. This applies to both the input and
the output of the filter. Smoothing the very rough spectrum of the input makes it tend
to a constant; hence the common oversimplification that the spectrum of random
noise is a constant. Since for Y (Z) = F (Z)X(Z) we have |Y (ω)| = |F (ω)||X(ω)|, the
spectrum of the output of random noise into a filter is like the spectrum of the filter,
but the output spectrum is jagged because of the noise. To estimate the spectrum of
the filter in nature, we begin with data (like the output in Figure 1.11) and smooth its
spectrum, getting an approximation to that of the filter. For blind deconvolution
we simply apply the inverse filter. The simplest way to get such a filter is to inverse
transform the smoothed amplitude spectrum of the data to a time function. This
time-domain wavelet will be a symmetrical signal, but in real life the wavelet should
be causal. Chapter 10 shows a Fourier method, called the “Kolmogoroff method,”
for finding a causal wavelet of a given spectrum. Chapter 11 shows that the length
of the Kolmogoroff wavelet depends on the amount of spectral smoothing, which in
this chapter is like the ratio of the data length to the filter length.

In blind deconvolution, Fourier methods determine the spectrum of the un-
known wavelet. They seem unable to determine the wavelet’s phase by measure-
ments, however—only to assert it by theory. We will see that this is a limitation of
the “stationarity” assumption, that signal strengths are uniform in time. Where
signal strengths are nonuniform, better results can be found with weighting functions
and time-domain methods. In Figure 1.14 we will see that the all-pass filter again
becomes visible when we take the trouble to apply appropriate weights.



174 CHAPTER 7. TIME-SERIES ANALYSIS

7.5 WEIGHTED ERROR FILTERS

What I have described above is “industrial standard” material. A great many com-
panies devote much human and computer energy to it. Now we will see what new
opportunities are promised by a formulation that includes weighting functions.

7.5.1 Automatic gain control

Echos get weaker with time, though the information content is unrelated to the signal
strength. Echos also vary in strength as different materials are encountered by the
outgoing wave. Programs for echo analysis typically divide the data by a scaling factor
that is a smoothed average of the signal strength. This practice is nearly universal,
although it is fraught with hazards. An example of automatic gain control (AGC)
is to compute the divisor by forming the absolute value of the signal strength and
then smoothing with the program triangle() on page 55 or the program leaky() on
page 59. Pitfalls are the strange amplitude behavior surrounding the water bottom,
and the overall loss of information contained in amplitudes. Personally, I have found
that the gain function t2 nearly always eliminates the need for AGC on raw field data,
but I have no doubt that AGC is occasionally needed. (A theoretical explanation for
t2 is given in IEI.)

7.5.2 Gain before or after convolution

It is a common but questionable practice to apply AGC to echo soundings before
filter analysis. A better practice is first to analyze according to the laws of physics
and only at the last stage to apply gain functions for purposes of statistical estimation
and final display. Here we will examine correct and approximate ways of setting up
deconvolution problems with gain functions. Then we will use CG to solve the proper
formulation.

Solving problems in the time domain offers an advantage over the frequency do-
main because in the time domain it is easy to control the interval where the solution
should exist. Another advantage of the time domain arises when weighting functions
are appropriate. I have noticed that people sometimes use Fourier solutions inappro-
priately, forcing themselves to use uniform weighting when another weighting would
work better. Since we look at echos, it is unavoidable that we apply gain functions.
Weighting is always justified on the process outputs, but it is an approximation of
unknown validity on the data that is input to those processes. I will clarify this ap-
proximation by an equation with two filter points and an output of four time points.
In real-life applications, the output is typically 1000-2000 points and the filter 5-50



7.5. WEIGHTED ERROR FILTERS 175

points. The valid formulation of a filtering problem is
0
0
0
0

 ≈


w1 0 0 0
0 w2 0 0
0 0 w3 0
0 0 0 w4




d1

d2

d3

d4

 −

x1 0
x2 x1

x3 x2

0 x3


[
f1

f2

] (7.18)

The weights wt are any positive numbers we choose. Typically the wt are chosen so
that the residual components are about equal in magnitude.

If, instead, the weighting function is applied to the inputs, we have an approxi-
mation that is somewhat different:

0
0
0
0

 ≈


w1d1

w2d2

w3d3

w4d4

 −

w1x1 0
w2x2 w1x1

w3x3 w2x2

0 w3x3


[
f1

f2

]
(7.19)

Comparing the weighted output-residual equation (1.18) to the weighted input-data
equation (1.19), we note that their right-hand columns do not match. The right-hand
column in (1.18) is (0, w2x1, w3x2, w4x3)′ but in (1.19) is (0, w1x1, w2x2, w3x3)′. The
matrix in (1.19) is a simple convolution, so some fast solution methods are applicable.

7.5.3 Meet the Toeplitz matrix

The solution to any least-squares problem proceeds explicitly or implicitly by finding
the inverse to a covariance matrix. Recall the basic filtering equation (??),

y1

y2

y3

y4

y5

y6

y7


=



x1 0 0
x2 x1 0
x3 x2 x1

x4 x3 x2

x5 x4 x3

0 x5 x4

0 0 x5



 f1

f2

f3

 (7.20)

which we can abbreviate by y = Xf . To gain some understanding of your cultural
heritage in time-series analysis, form the covariance matrix X′X,

X′X =

 s0 s1 s2

s1 s0 s1

s2 s1 s0

 (7.21)

where the elements st are lags of the autocorrelation of xt. This covariance matrix
is an example of a Toeplitz matrix. When an application is formulated in the
frequency domain, you may encounter a spectrum as a divisor. When the same



176 CHAPTER 7. TIME-SERIES ANALYSIS

application is formulated in the time domain, you will see an autocorrelation matrix
that needs inversion.

The Toeplitz matrix is highly structured. Whereas an n×n matrix could contain
n2 different elements, the Toeplitz matrix contains only n elements that are different
from each other. When computers had limited memory, this memory savings was im-
portant. Also, there are techniques for solving least-squares problems with Toeplitz
covariance matrices that are much faster than those for solving problems with arbi-
trary matrices. The effort for arbitrary matrices is proportional to n3, whereas for
Toeplitz matrices it is n2. These advantages of Toeplitz matrices were once over-
whelming, although now they are rarely significant. But because old methods linger
on, we need to decide if they are warranted. Recall that we wrote three convolu-
tion programs, contran() on page 107, contrunc() on page 109, and convin() on
page 109. You can verify that a Toeplitz matrix arises only in the first of these. The
other two represent different ways of handling boundaries. Let W be a diagonal ma-
trix of weighting functions. You can also verify that the covariance matrix B′WB is
not Toeplitz. Thus, Toeplitz matrices only arise with uniform weighting and transient
boundary conditions. If the only tool you have is a hammer, then everything you see
starts to look like a nail. In earlier days, and by inertia even today, convolution
applications tend to be formulated as uniformly weighted with transient boundaries.
This is a pitfall.

Toeplitz matrices are associated with elegant mathematics and rapid numerical
solutions. Applications that are solvable by standard methods have historically
been cast in Toeplitz form by imposing simplifying assumptions. This is risky.

The approximation (1.19) becomes reasonable when the weights are slowly vari-
able, i.e., when wt is a slowly variable function of t. In practice, I think the approxi-
mation is often justified for slow t2 gain but questionable for automatic gains that are
faster. Compared to Toeplitz methods of solving equation (1.19), the CG method of
solving (1.18) is slower. Here we are going to see how to solve the problem correctly.
If you want to solve the correct problem rapidly, perhaps you can do so by solving
the approximate problem first by a quasi-analytic method and then doing a few steps
of CG.

7.5.4 Setting up any weighted CG program

Equation (1.18) is of the form 0 ≈ W(d − Bf). This can be converted to a new
problem without weights by defining a new data vector Wd and a new operator WB
simply by carrying W through the parentheses to 0 ≈Wd − (WB)f . Convolution
followed by weighting is implemented in subroutine wcontrunc() on page 20.

# filter and weight.
#
subroutine wcontrunc( adj, add, ww, lag, nx, xx, nf,ff, nn,yy )



7.6. CALCULATING ERROR FILTERS 177

integer i, adj, add, lag, nx, nf, nn
real ww(nn), xx(nx), ff(nf), yy(nn)
temporary real ss(nn)
call adjnull( adj, add, ff,nf, yy,nn)
if( adj == 0) { call contrunc( 0,0, lag, nx,xx, nf,ff, nn,ss)

do i= 1, nn
yy(i) = yy(i) + ss(i) * ww(i)

}
else { do i= 1, nn

ss(i) = yy(i) * ww(i)
call contrunc( 1,1, lag, nx,xx, nf,ff, nn,ss)
}

return; end

7.6 CALCULATING ERROR FILTERS

The error in prediction (or interpolation) is often more interesting than the prediction
itself. When the predicted component is removed, leaving the unpredictable, the
residual is the prediction error. Let us see how the program shaper() can be used to
find an interpolation-error filter like (f−2, f−1, 1, f1, f2). The statement of wishes is

0
0
0
0
0
0
0
0
0
0



≈



.

.
x1

x2

x3

x4

x5

x6

.

.



+



x1 . . .
x2 x1 . .
x3 x2 . .
x4 x3 x1 .
x5 x4 x2 x1

x6 x5 x3 x2

. x6 x4 x3

. . x5 x4

. . x6 x5

. . . x6




f−2

f−1

f1

f2

 (7.22)

Taking the column vector of xt to the other side of the equation gives the form required
by previous CG programs. After solving this system for (f−2, f−1, f1, f2), we insert
the “1” to make the IE filter (f−2, f−1, 1, f1, f2), which, applied to the data xt, gives
the desired IE output.

Notice that the matrix in (1.22) is almost convolution. It would be convolution
if the central column were not absent. I propose that you not actually solve the sys-
tem (1.22). Instead I will show you a more general solution that uses the convolution
operator itself. That way you will not need to write programs for the many “almost”
convolution operators arising from the many PE and IE filters with their various gaps
and lags.

The conjugate-gradient program here is a combination of earlier CG programs
and the weighting methods we must introduce now:



178 CHAPTER 7. TIME-SERIES ANALYSIS

• We need to constrain a filter coefficient to be unity, which we can do by initial-
izing it to unity and then allowing no changes to it.

• We may wish to constrain some other filter coefficients to be zero (gapping) by
initializing them to zero and allowing no changes to them.

• We may want the output to occur someplace other than off-end prediction.
Thus we will specify a time lag that denotes the predicted or interpolated time
point. The program contrunc() on page 109 is designed for this.

Incorporating all these features into shaper(), we get iner().

# weighted interpolation-error filter
#
subroutine iner( nf,f, nr,yy,rr, ww, niter, lag, gap1, gapn)
integer i, iter, nf, nr, niter, lag, gap1, gapn
real f(nf), yy(nr), rr(nr), ww(nr)
temporary real df(nf), sf(nf), dr(nr), wr(nr), sr(nr)
if( lag < gap1 || lag > gapn ) call erexit(’input fails gap1<=lag<=gapn’)
do i= 1, nf

f(i) = 0.
f(lag) = 1. # set output lag
call wcontrunc( 0,0, ww, lag, nr,yy, nf, f, nr,wr)
call scaleit( -1., nr,wr) # negative
do iter= 0, niter {

call wcontrunc( 1,0, ww, lag, nr,yy, nf,df, nr,wr) # df=yy*wr
do i= gap1, gapn

df(i) = 0. # constrained lags
call wcontrunc( 0,0, ww, lag, nr,yy, nf,df, nr,dr) # dr=yy*df
call cgstep( iter, nf, f,df,sf, _

nr,wr,dr,sr ) # f=f+df
}

call contrunc( 0,0, lag, nr,yy, nf,f, nr,rr) # unweighted res
return; end

For a filter of the form (1, f1, f2, · · · , fn−1), we would specify lag=1, gap1=1, gapn=1.
For a filter of the form (1, 0, f2, · · · , fn−1), we would specify lag=1, gap1=1, gapn=2.
For a filter of the form (f−2, f−1, 1, f1, f2), we would specify nf=5, lag=3, gap1=3,

gapn=3.

This program uses the convolution program contrunc(), which is handy in prac-
tice because its output has the same length as its input. This convenience is partly
offset by the small danger that significant output energy in the “start up” and “off
end” zones could be truncated. Specifically, that energy would be in the top two and
bottom two rows of equation (1.22).

7.6.1 Stabilizing technique

Theory for stabilizing least squares, using equations (??) and (??), was described
earlier in this book. I installed this stabilization, along with the filter determinations



7.6. CALCULATING ERROR FILTERS 179

discussed in this chapter, but as I expected, stabilization in this highly overdetermined
application showed no advantages. Nevertheless, it is worth seeing how stabilization
is implemented, particularly since the changes to the program calling iner() make
for more informative plots.

The input data is modified by appending a zero-padded impulse at the data’s
end. The output will contain the filter impulse response in that region. The spike
size is chosen to be compatible with the data size, for the convenience of the plotting
programs. The weighting function in the appended region is scaled according to
how much stabilization is desired. Figure 1.12 shows the complete input and residual.

Figure 7.12: Data from the North Sea (extracted from Yilmaz and Cumro dataset
33) processed by prediction error. Rightmost box is weighted according to the desired
stabilization. The truncation event is weighted by zero. tsa-wz33 [NR]

It also illustrates the problem that output data flows beyond the length of the input
data because of the nonzero length of the filter. This extra output is undoubtedly
affected by the truncation of the data, and its energy should not be part of the energy
minimization. Therefore it is weighted by zero.



180 CHAPTER 7. TIME-SERIES ANALYSIS

EXERCISES:

1 Given a sinusoidal function xt = cos(ωt+φ), a three-term recurrence relationship
predicts xt from the previous two points, namely, xt = a1xt−1 + a2xt−2. Find a1

and a2 in terms of ω∆t. hint: See chapter 3. (Notice that the coefficients depend
on ω but not φ.)

2 Figure 1.9 has a separate filter for each trace. Consider the problem of finding
a single filter for all the traces. What is the basic operator and its adjoint?
Assemble these operators using subroutine contrunc() on page 109.

3 Examine the filters on Figure 1.12. Notice that, besides the pulse at the wa-
ter depth, another weak pulse occurs at double that depth. Suggest a physical
mechanism. Suggest a mechanism relating to computational approximations.

7.7 INTERPOLATION ERROR

Interpolation-error filters have the form (a−m, · · · , a−2, a−1, 1, a1, a2, a3, · · · , an),
where the at coefficients are adjusted to minimize the power in the filter output.
IE filters have the strange characteristic that if the input spectrum is S(ω), then
the output spectrum will tend to S(ω)−1. Thus these filters tend to turn poles into
zeros and vice versa. To see why IE filters invert the spectrum of the input, we
only need recall the basic premise of least-squares methods, that the residual (the
output) is orthogonal to the fitting function (the input at all lags except the zero
lag). Thus, the crosscorrelation of the input and the output is an impulse. This can
only happen if their spectra are inverses, which is a disaster for the overall appearance
of a seismogram. Such drastic spectral change can be controlled in a variety of ways,
as is true with PE filters, but with IE filters there seems to be little experience to
build on besides my own. Figure 1.13 illustrates an interpolation-error result where
gapping has been used to limit the color changes. I also chose the gap to condense
the wavelet. You judge whether the result is successful. Notice also a high-frequency
arrival after the diagonal lines: this shows that the IE filters are boosting very high
frequencies despite the gapping.

7.7.1 Blind all-pass deconvolution

A well-established theoretical concept that leads to unwarranted pessimism is the idea
that blind deconvolution cannot find an all-pass filter. If we carefully examine
the analysis leading to that conclusion, we will find lurking the assumption that the
weighting function used in the least-squares estimation is uniform. And when this
assumption is wrong, so is our conclusion, as Figure 1.14 shows. Recall that the
inverse to an all-pass filter is its time reverse. The reversed shape of the filter is seen
on the inputs where there happen to be isolated spikes.



7.7. INTERPOLATION ERROR 181

Figure 7.13: Data from the North Sea (extracted from Yilmaz and Cumro dataset
33) processed by interpolation error. Inputs above outputs. Filters displayed on the
right. tsa-wz33ie [NR]

Figure 7.14: Four independent trials of deconvolution of sparse noise into an all-pass
filter. Alternate lines are input and output. tsa-dallpass [NR]



182 CHAPTER 7. TIME-SERIES ANALYSIS

Let us see what theory predicts cannot be done, and then I will tell you how I did
it. If you examine the unweighted least-squares error-filter programs, you will notice
that the first calculation is the convolution operator and then its transpose. This
takes the autocorrelation of the input and uses it as a gradient search direction. Take
a white input and pass it through a phase-shift filter; the output autocorrelation
is an impulse function. This function vanishes everywhere except for the impulse
itself, which is constrained against rescaling. Thus the effective gradient is zero. The
solution, an impulse filter, is already at hand, so a phase-shift filter seems unfindable.

On the other hand, if the signal strength of the input varies, we should be balancing
its expectation by weighting functions. This is what I did in Figure 1.14. I chose
a weighting function equal to the inverse of the absolute value of the output of the
filter plus an ε. Since the weighting function depends on the output, the process is
iterative. The value of ε chosen was 20% of the maximum signal value.

Since the iteration is a nonlinear procedure, it might not always work. A well-
established body of theory says it will not work with Gaussian signals, and Fig-
ure 1.15 is consistent with that theory.

Figure 7.15: Failure of blind all-pass deconvolution for Gaussian signals. The top
signal is based on Gaussian random numbers. Lower signals are based on successive
integer powers of Gaussian signals. Filters (on the right) fail for the Gaussian case,
but improve as signals become sparser. tsa-dgauss [NR]

In Figure 1.13, I used weighting functions roughly inverse to the envelope of the
signal, taking a floor for the envelope at 20% of the signal maximum. Since weighting
functions were used, the filters need not have turned out to be symmetrical about
their centers, but the resulting asymmetry seems to be small.



312 CHAPTER 7. TIME-SERIES ANALYSIS



Index

AGC, 18
airgun, 6
all-pass filter, 17, 24
arctic, 2
autocorrelation, 14, 19
automatic gain control, 18

blind deconvolution, 16, 17, 24
Burg, 13
bursty signal, 8
Butterworth filter, 11

causal, 16
color, 13
convolution, 21
covariance matrix, 19

deconvolution, 11
deconvolution

blind, 17
blind decon of all-pass filter, 24

FGDP, 13
filter

interpolation-error, 10, 21, 24
prediction, 10
prediction-error, 10

gap, 10, 15, 21, 24
Gaussian, 8, 26
ghost, 6

hydrophone, 6

ice, 2
IE filter, 21
iner subroutine, 22
interpolation-error filter, 10, 24

lag, 21

leaky integration, 8
least squares, stabilizing, 22

matched filter, 5
minimum phase, 13
mudstone, 3
multiple reflection, 2, 3, 10

nonlinear, 26

PE filter, 13, 15
pitfall, 20
polarity, 3
prediction filter, 10
prediction-error filter, 10, 11, 13, 16
prewhitening, 16

random, 8

shaper subroutine, 5
shaping filters, 5
signal

sparse, 8
soil, 13
sparse signal, 8
spectrum, 17
spike, 7
stabilize, 5
stationarity, 1, 17
subroutine

iner, interpolation error, 22
shaper, shaping filter, 5
wcontrunc, weight and convlv, 20

time-series analysis, 1
Toeplitz, 19
truncation, 23

wcontrunc subroutine, 20
weighting function, 1, 23

313



314 INDEX

white, 13, 14, 16

zero phase, 16



Chapter 8

Missing-data restoration

A brief summary of chapters 5 and 6 is that “the answer” is the solution to an
inversion problem—a series of steps with many pitfalls. Practitioners often stop
after the first step, while academics quibble about the convergence, i.e., the last
steps. Practitioners might stop after one step to save effort, to save risk, or because
the next step is not obvious. Here we study a possible second step—replacing the
zero-valued data presumed by any adjoint operator with more reasonable values.

A great many processes are limited by the requirement to avoid spatial aliasing—
that no wavelength should be shorter than twice the sampling interval on the data
wave field. This condition forces costly expenditures in 3-D reflection data acqui-
sition and yields a mathematical dichotomy between data processing in exploration
seismology and data processing in earthquake seismology.

The simple statement of the spatial Nyquist requirement oversimplifies real life.
Recently, S. Spitz (1991) showed astonishing results that seem to violate the Nyquist
requirement. In fact they force us to a deeper understanding of it. In this chapter
we will discuss many new opportunities that promise much lower data-acquisition
costs and should also reduce the conceptual gap between exploration and earthquake
seismology.

8.1 INTRODUCTION TO ALIASING

In its simplest form, the Nyquist condition says that we can have no frequencies higher
than two points per wavelength. In migration, this is a strong constraint on data
collection. It seems there is no escape. Yet, in applications dealing with a CMP gather
(such as in Figure 5.5 or 5.6), we see data with spatial frequencies that exceed Nyquist
and we are not bothered, because after NMO, these frequencies are OK. Nevertheless,
such data is troubling because it breaks many of our conventional programs, such as
downward continuation with finite differences or with Fourier transforms. (No one
uses focusing for stacking.) Since NMO defies the limitation imposed by the simple

183



184 CHAPTER 8. MISSING-DATA RESTORATION

statement of the Nyquist condition, we revise the condition to say that the real
limitation is on the spectral bandwidth, not on the maximum frequency. Mr. Nyquist
does not tell us where that bandwidth must be located. Further, it seems that precious
bandwidth need not be contiguous. The signal’s spectral band can be split into pieces
and those pieces positioned in different places. Fundamentally, the issue is whether
the total bandwidth exceeds Nyquist. Noncontiguous Nyquist bands are depicted in
Figure 1.1.

Figure 8.1: Hypothetical spatial
frequency bands. Top is typi-
cal. Middle for data skewed with
τ = t − px. Bottom depicts data
with wave arrivals from three di-
rections. mis-nytutor [ER]

Noncontiguous bandwidth arises naturally with two-dimensional data where there
are several plane waves present. There the familiar spatial Nyquist limitation over-
simplifies real life because the plane waves link time and space.

The spatial Nyquist frequency need not limit the analysis of seismic data because
the plane-wave model links space with time.

8.1.1 Relation of missing data to inversion

We take data space to be a uniform mesh on which some values are given and some are
missing. We rarely have missing values on a time axis, but commonly have missing
values on a space axis, i.e., missing signals. Missing signals (traces) happen occasion-
ally for miscellaneous reasons, and they happen systematically because of aliasing
and truncation. The aliasing arises for economic reasons—saving instrumentation
by running receivers far apart. Truncation arises at the ends of any survey, which, like
any human activity, must be finite. Beyond the survey lies more hypothetical data.
The traces we will find for the missing data are not as good as real observations,
but they are closer to reality than supposing unmeasured data is zero valued. Mak-
ing an image with a single application of an adjoint modeling operator amounts to
assuming that data vanishes beyond its given locations. Migration is an example of
an economically important process that makes this assumption. Dealing with missing
data is a step beyond this. In inversion, restoring missing data reduces the need
for arbitrary model filtering.



8.2. MISSING DATA IN ONE DIMENSION 185

8.1.2 My model of the world

In your ears now are sounds from various directions. From moment to moment
the directions change. Momentarily, a single direction (or two) dominates. Your ears
sample only two points in x-space. Earthquake data is a little better. Exploration data
is much better and sometimes seems to satisfy the Nyquist requirement, especially
when we forget that the world is 3-D.

We often characterize data from any region of (t, x)-space as “good” or “noisy”
when we really mean it contains “few” or “many” plane-wave events in that region.
For noisy regions there is no escaping the simple form of the Nyquist limitation. For
good regions we may escape it. Real data typically contains both kinds of regions.
Undersampled data with a broad distribution of plane waves is nearly hopeless. Un-
dersampled data with a sparse distribution of plane waves is prospective. Consider
data containing a spherical wave. The angular bandwidth in a plane-wave decompo-
sition appears huge until we restrict attention to a small region of the data. (Actually
a spherical wave contains very little information compared to an arbitrary wave field.)
It can be very helpful in reducing the local angular bandwidth if we can deal effec-
tively with tiny pieces of data as we did in chapter 4. If we can deal with tiny pieces
of data, then we can adapt to rapid spatial and temporal variations. This chapter will
show such tiny windows of data. We will begin with missing-data problems in one
dimension. Because these are somewhat artificial, we will move on to two dimensions,
where the problems are genuine.

8.2 MISSING DATA IN ONE DIMENSION

A method for restoring missing data is to ensure that the restored data, after
specified filtering, has minimum energy. Specifying the filter chooses the interpolation
philosophy. Generally the filter is a “roughening” filter. When a roughening filter
goes off the end of smooth data, it typically produces a big end transient. Minimizing
energy implies a choice for unknown data values at the end, to minimize the transient.
We will examine five cases and then make some generalizations.

A method for restoring missing data is to ensure that the restored data, after
specified filtering, has minimum energy.

Let m denote a missing value. The dataset on which the examples are based is
(· · · ,m,m, 1,m, 2, 1, 2,m,m, · · ·). Using subroutine miss1() on page 6, values were
found to replace the missing m values so that the power in the filtered data is mini-
mized. Figure 1.2 shows interpolation of the dataset with 1−Z as a roughening filter.
The interpolated data matches the given data where they overlap.

Figures 1.2–1.6 illustrate that the rougher the filter, the smoother the interpolated
data, and vice versa. Let us switch our attention from the residual spectrum to the



186 CHAPTER 8. MISSING-DATA RESTORATION

Figure 8.2: Top is given data.
Middle is given data with in-
terpolated values. Missing val-
ues seem to be interpolated by
straight lines. Bottom shows the
filter (1,−1), whose output has
minimum power. mis-mlines
[ER]

Figure 8.3: Top is the same in-
put data as in Figure 1.2. Mid-
dle is interpolated. Bottom shows
the filter (−1, 2,−1). The missing
data seems to be interpolated by
parabolas. mis-mparab [ER]

Figure 8.4: Top is the same in-
put. Middle is interpolated. Bot-
tom shows the filter (1,−3, 3,−1).
The missing data is very smooth.
It shoots upward high off the right
end of the observations, appar-
ently to match the data slope
there. mis-mseis [ER]

Figure 8.5: The filter
(−1,−1, 4,−1,−1) gives in-
terpolations with stiff lines. They
resemble the straight lines of Fig-
ure 1.2, but they project through
a cluster of given values instead
of projecting to the nearest given
value. Thus, this interpolation
tolerates noise in the given data
better than the interpolation
shown in Figure 1.4. mis-msmo
[ER]



8.2. MISSING DATA IN ONE DIMENSION 187

Figure 8.6: Bottom shows the fil-
ter (1, 1). The interpolation is
rough. Like the given data it-
self, the interpolation has much
energy at the Nyquist frequency.
But unlike the given data, it
has little zero-frequency energy.
mis-moscil [ER]

residual itself. The residual for Figure 1.2 is the slope of the signal (because the
filter 1 − Z is a first derivative), and the slope is constant (uniformly distributed)
along the straight lines where the least-squares procedure is choosing signal values.
So these examples confirm the idea that the least-squares method abhors large
values (because they are squared). Thus, least squares tend to distribute uniformly
residuals in both time and frequency to the extent the constraints allow.

This idea helps us answer the question, what is the best filter to use? It suggests
choosing the filter to have an amplitude spectrum that is inverse to the spectrum we
want for the interpolated data. A systematic approach is given in the next section,
but I will offer a simple subjective analysis here. Looking at the data, I see that all
points are positive. It seems, therefore, that the data is rich in low frequencies; thus
the filter should contain something like (1 − Z), which vanishes at zero frequency.
Likewise, the data seems to contain Nyquist frequency, so the filter should contain
(1 +Z). The result of using the filter (1−Z)(1 +Z) = 1−Z2 is shown in Figure 1.7.
This is my best subjective interpolation based on the idea that the missing data
should look like the given data. The interpolation and extrapolations are so good
that you can hardly guess which data values are given and which are interpolated.

Figure 8.7: Top is the same as in
Figures 1.2 to 1.6. Middle is inter-
polated. Bottom shows the filter
(1, 0,−1), which comes from the
coefficients of (1−Z)(1+Z). Both
the given data and the interpo-
lated data have significant energy
at both zero and Nyquist frequen-
cies. mis-mbest [ER]

8.2.1 Missing-data program

There are two ways to code the missing-data estimation, one conceptually simple
and the other leading to a concise program. Begin with a given filter f and create



188 CHAPTER 8. MISSING-DATA RESTORATION

a shifted-column matrix F, as in equation ??. The problem is that 0 ≈ Fd where
d is the data. The columns of F are of two types, those that multiply missing data
values and those that multiply known data values. Suppose we reorganize F into two
collections of columns: Fm for the missing data values, and Fk for the known data
values. Now, instead of 0 ≈ Fd, we have 0 ≈ Fmdm + Fkdk or −Fkdk ≈ Fmdm.
Taking −Fkdk = y, we have simply an overdetermined set of simultaneous equations
like y ≈ Ax, which we solved with cgmeth() on page 146.

The trouble with this approach is that it is awkward to program the partitioning
of the operator into the known and missing parts, particularly if the application of
the operator uses arcane techniques, such as those used by the fast Fourier transform
operator or various numerical approximations to differential or partial differential
operators that depend on regular data sampling. Even for the modest convolution
operator, we already have a library of convolution programs that handle a variety of
end effects, and it would be much nicer to use the library as it is rather than recode
it for all possible geometrical arrangements of missing data values. Here I take the
main goal to be the clarity of the code, not the efficiency or accuracy of the solution.
(So, if your problem consumes too many resources, and if you have many more known
points than missing ones, maybe you should solve y ≈ Fmx and ignore what I suggest
below.)

How then can we mimic the erratically structured Fm operator using the F op-
erator? When we multiply any vector into F, we must be sure that the vector has
zero-valued components to hit the columns of F that correspond to missing data.
When we look at the result of multiplying the adjoint F′ into any vector, we must be
sure to ignore the output at the rows corresponding to the missing data. As we will
see, both of these criteria can be met using a single loop.

The missing-data program begins by loading the negative-filtered known data into
a residual. Missing data should try to reduce this residual. The iterations proceed
as in cgmeth() on page 146, invstack() on page 148, deghost() on page 150,
shaper() on page 161, and iner() on page 178. The new ingredient in the missing-
data subroutine miss1() on page 6 is the simple constraint that the known data
cannot be changed. Thus, after the gradient is computed, the components that
correspond to known data values are set to zero.

# fill in missing data on 1-axis by minimizing power out of a given filter.
#
subroutine miss1( na, a, np, p, copy, niter)
integer iter, ip, nr, na, np, niter
real p(np) # in: known data with zeros for missing values.

# out: known plus missing data.
real copy(np) # in: copy(ip) vanishes where p(ip) is a missing value.
real a(na) # in: roughening filter
temporary real dp(np),sp(np), r(np+na-1),dr(np+na-1),sr(np+na-1)
nr = np+na-1

call contran( 0, 0, na,a, np, p, r) # r = a*p convolution
call scaleit ( -1., nr, r) # r = -r

do iter= 0, niter { # niter= number missing or less



8.3. MISSING DATA AND UNKNOWN FILTER 189

call contran( 1, 0, na,a, np,dp, r) # dp(a,r) correlation
do ip= 1, np

if( copy(ip) != 0.) # missing data where copy(ip)==0
dp(ip) = 0. # can’t change known data

call contran( 0, 0, na,a, np,dp, dr) # dr=a*dp convolution
call cgstep( iter, np,p,dp,sp, nr,r,dr,sr) # p=p+dp; r=r-dr
}

return; end

That prevents changes to the known data by motion any distance along the gradient.
Likewise, motion along previous steps cannot perturb the known data values. Hence,
the CG method (finding the minimum power in the plane spanned by the gradient
and the previous step) leads to minimum power while respecting the constraints.

EXERCISES:

1 Figure 1.2–1.6 seem to extrapolate to vanishing signals at the side boundaries.
Why is that so, and what could be done to leave the sides unconstrained in that
way?

2 Compare Figure 1.7 to the interpolation values you expect for the filter (1, 0,−.5).

3 Indicate changes to miss1() on page 6 for missing data in two dimensions.

4 Suppose the call in miss1() on page 6 was changed from contran() on page 107
to convin() on page 109. Predict the changed appearance of Figure 1.2.

5 Suppose the call in miss1() was changed from contran() on page 107 to convin()
on page 109. What other changes need to be made?

6 Show that the interpolation curve in Figure 1.3 is not parabolic as it appears, but
cubic. (hint: Show that (∇2)′∇2u = 0.)

7 Verify by a program example that the number of iterations required with simple
constraints is the number of free parameters.

8.3 MISSING DATA AND UNKNOWN FILTER

Recall the missing-data figures beginning with Figure 1.2. There the filters were
taken as known, and the only unknowns were the missing data. Now, instead of
having a predetermined filter, we will solve for the filter along with the missing data.
The principle we will use is that the output power is minimized while the filter is
constrained to have one nonzero coefficient (else all the coefficients would go to zero).
We will look first at some results and then see how they were found.

In Figure 1.8 the filter is constrained to be of the form (1, a1, a2). The result is



190 CHAPTER 8. MISSING-DATA RESTORATION

Figure 8.8: Top is known data.
Middle includes the interpolated
values. Bottom is the filter with
the leftmost point constrained to
be unity and other points cho-
sen to minimize output power.
mis-missif [ER]

pleasing in that the interpolated traces have the same general character as the given
values. The filter came out slightly different from the (1, 0,−1) that I suggested for
Figure 1.7 based on a subjective analysis. Curiously, constraining the filter to be of
the form (a−2, a−1, 1) in Figure 1.9 yields the same interpolated missing data as in
Figure 1.8. I understand that the sum squared of the coefficients of A(Z)P (Z) is
the same as that of A(1/Z)P (Z), but I do not see why that would imply the same
interpolated data.

Figure 8.9: The filter here had its
rightmost point constrained to be
unity—i.e., this filtering amounts
to backward prediction. The in-
terpolated data seems to be iden-
tical, as with forward prediction.
mis-backwards [ER]

8.3.1 Objections to interpolation error

In any data interpolation or extrapolation, we want the extended data to behave like
the original data. And, in regions where there is no observed data, the extrapolated
data should drop away in a fashion consistent with its spectrum determined from
the known region. We will see that a filter like (a−2, a−1, 1, a1, a2) fails to do the job.
We need to keep an end value constrained to “1,” not the middle value.

In chapter 7 we learned about the interpolation-error filter (IE filter), a filter
constrained to be “+1” near the middle and consisting of other coefficients chosen to
minimize the power out. The basic fact about the IE filter is that the spectrum out
tends to the inverse of the spectrum in, so the spectrum of the IE filter tends to the
inverse squared of the spectrum in. The IE filter is thus not a good weighting function
for a minimization, compared to the prediction-error (PE) filter, whose spectrum is
inverse to the input. To confirm these concepts, I prepared synthetic data consisting
of a fragment of a damped exponential, and off to one side of it an impulse function.
Most of the energy is in the damped exponential. Figure 1.10 shows that the spectrum



8.3. MISSING DATA AND UNKNOWN FILTER 191

and the extended data are about what we would expect. From the extrapolated
data, it is impossible to see where the given data ends. For comparison, I prepared

Figure 8.10: Top is synthetic data
with missing data represented by
zeros. Middle includes the inter-
polated values. Bottom is the fil-
ter, a prediction-error filter which
may look symmetric but is not
quite. mis-exp [ER]

Figure 1.11. It is the same as Figure 1.10, except that the filter is constrained in
the middle. Notice that the extended data does not have the spectrum of the given
data—the wavelength is much shorter. The boundary between real data and extended
data is not nearly as well hidden as in Figure 1.10.

Figure 8.11: Top is synthetic data
with missing data represented by
zeros. Middle includes the inter-
polated values. Bottom is the fil-
ter, an interpolation-error filter.
mis-center [ER]

Next I will pursue some esoteric aspects of one-dimensional missing-data problems.
You might prefer to jump forward to section 1.4, where we tackle two-dimensional
analysis.

8.3.2 Packing both missing data and filter into a CG vector

Now let us examine the theory and coding behind the above examples. Define a
roughening filter A(Z) and a data signal P (Z) at some stage of interpolation. The
regression is 0 ≈ A(Z)P (Z) where the filter A(Z) has at least one coefficient con-
strained to be nonzero and the data contains both known and missing values. Think



192 CHAPTER 8. MISSING-DATA RESTORATION

of perturbations ∆A and ∆P . We neglect the nonlinear term ∆A∆P as follows:

0 ≈ (A + ∆A)(P + ∆P ) (8.1)

0 ≈ AP + P ∆A + A∆P + ∆A∆P (8.2)

−AP ≈ P ∆A + A∆P (8.3)

To make a program such as miss1() on page 6, we need to pack both unknowns
into a single vector x() = (∆P,∆A) before calling the conjugate-gradient program.
Likewise, the resulting filter and data coming out must be unpacked. Also, the
gradient now has two contributions, one from A∆P and one from P ∆A, and these
must be combined. The program missif(), which makes Figures 1.8 through 1.11,
effectively combines miss1() on page 6 and iner() on page 178. A new aspect
is that, to avoid accumulation of errors from the neglect of the nonlinear product
∆A∆P , the residual is recalculated inside the iteration loop instead of only once at
the beginning.

# MISSIF -- find MISSing Input data and Filter on 1-axis by min power out.
#
subroutine missif( na, lag, aa, np, pp, known, niter)
integer iter, na, lag, np, niter, nx, ax, px, ip, nr
real pp(np) # input: known data with zeros for missing values.

# output: known plus missing data.
real known(np) # known(ip) vanishes where p(ip) is a missing value.
real aa(na) # input and output: roughening filter
temporary real x(np+na), g(np+na), s(np+na)
temporary real rr(np+na-1), gg(np+na-1), ss(np+na-1)
nr= np+na-1; nx= np+na; px=1; ax=1+np;
call copy( np, pp, x(px))
call copy( na, aa, x(ax))
if( aa(lag) == 0. ) call erexit(’missif: a(lag)== 0.’)
do iter= 0, niter {

call contran( 0, 0, na,aa, np, pp, rr)
call scaleit ( -1., nr, rr)
call contran( 1, 0, na,aa, np, g(px), rr)
call contran( 1, 0, np,pp, na, g(ax), rr)
do ip= 1, np

if( known(ip) != 0)
g( ip) = 0.

g( lag+np) = 0.
call contran( 0, 0, na,aa, np, g(px), gg)
call contran( 0, 1, np,pp, na, g(ax), gg)
call cgstep( iter, nx, x, g, s, nr, rr, gg, ss)
call copy( np, x(px), pp)
call copy( na, x(ax), aa)
}

return; end

There is a danger that missif() might converge very slowly or fail if aa() and
pp() are much out of scale with each other, so be sure you input them with about
the same scale. I really should revise the code, perhaps to scale the “1” in the filter
to the data, perhaps to equal the square root of the sum of the data values.



8.3. MISSING DATA AND UNKNOWN FILTER 193

8.3.3 Spectral preference and training data

I tried using the missif() program to interlace data—i.e., to put new data values
between each given value. This did not succeed. The interlaced missing values began
equaling zero and remained zero. Something is missing from the problem formulation.

This paragraph describes only the false starts I made toward the solution. It seems
that the filter should be something like (1,−2, 1), because that filter interpolates on
straight lines and is not far from the feedback coefficients of a damped sinusoid. (See
equation (??).) So I thought about different ways to force the solution to move in that
direction. Traditional linear inverse theory offers several suggestions; I puzzled
over these before I found the right one. First, I added the obvious stabilizations
λ2

1||p|| and λ2
2||a||, but they simply made the filter and the interpolated data smaller.

I thought about changing the identity matrix in λI to a diagonal matrix ||Λ3p|| or
||Λ4a||. Using Λ4, I could penalize the filter at even-valued lags, hoping that it
would become nonzero at odd lags, but that did not work. Then I thought of using
λ2

5||p − p||, λ2
6||a − a||, Λ2

7||p − p||, and Λ2
8||a − a||, which would allow freedom of

choice of the mean and variance of the unknowns. In that case, I must supply the
mean and variance, however, and doing that seems as hard as solving the problem
itself. Suddenly, I realized the answer. It is simpler than anything above, yet formally
it seems more complicated, because a full inverse covariance matrix of the unknown
filter is implicitly supplied.

I found a promising new approach in the stabilized minimization

min
P,A

(||PA|| + λ9||P0A|| + λ10||PA0|| ) (8.4)

where P0 and A0 are like given priors. But they are not prior estimates of P and
A because the phases of P0 and A0 are irrelevant, washing out in the squaring. If
we specify large values for λ, the overall problem becomes more linear, so P0 and A0

give a way to impose uniqueness in a nonlinear case where uniqueness is otherwise
unknown. Then, of course, the λ values can be reduced to see where the nonlinear
part ||PA|| is leading.

The next question is, what are the appropriate definitions for P0 and A0? Do we
need both P0 and A0, or is one enough? We will come to understand P0 and A0 better
as we study more examples. Simple theory offers some indications, however. It seems
natural that P0 should have the spectrum that we believe to be appropriate for P .
We have little idea about what to expect for A, except that its spectrum should be
roughly inverse to P .

To begin with, I think of P0 as a low-pass filter, indicating that data is normally
oversampled. Likewise, A0 should resemble a high-pass filter. When we turn to two-
dimensional problems, I will guess first that P0 is a low-pass dip filter, and A0 a
high-pass dip filter.

Returning to the one-dimensional signal-interlacing problem, I take A0 = 0 and
choose P0 to be a different dataset, which I will call the “training data.” It is a



194 CHAPTER 8. MISSING-DATA RESTORATION

small, additional, theoretical dataset that has no missing values. Alternately, the
training data could come from a large collection of observed data that is without
missing parts. Here I simply chose the short signal (1, 1) that is not interlaced by
zeros. This gives the fine solution we see in Figure 1.12.

Figure 8.12: Left shows that data will not interlace without training data. Right
shows data being interlaced because of training data. mis-priordata [ER]

To understand the coding implied by the optimization (1.4), it is helpful to write
the linearized regression. The training signal P0 enters as a matrix of shifted columns
of the training signal, say T; and the high-pass filter A0 also appears as shifted
columns in a matrix, say H. The unknowns A and P appear both in the matrices A
and P and in vectors a and p. The linearized regression is −Pa

−Hp
−Ta

 ≈

 A P
H 0
0 T

 [
∆p
∆a

]
(8.5)

The top row restates equation (1.3). The middle row says that 0 = H(p + ∆p),
and the bottom row says that 0 = T(a + ∆a). A program that does the job is
misfip() on page 12. It closely resembles missif() on page 10.

# MISFIP --- find MISsing peF and Input data on 1-axis using Prior data.
#
subroutine misfip( nt,tt, na,aa, np,pp,known, niter)
integer nt, na, ip,np, npa, nta, nx,nr, iter,niter, ax, px, qr, tr
real pp(np), known(np), aa(na) # same as in missif()
real tt(nt) # input: prior training data set.
temporary real x(np+na), g(np+na), s(np+na)
temporary real rr(np+na-1 +na+nt-1), gg(np+na-1 +na+nt-1), ss(np+na-1 +na+nt-1)
npa= np+na-1; nta= nt+na-1 # lengths of outputs of filtering
nx = np+na; nr= npa+nta # length of unknowns and residuals
px=1; qr=1; ax=1+np; tr=1+npa # pointers
call zero( na, aa); aa(1) = 1.
call copy( np, pp, x(px))
call copy( na, aa, x(ax))
do iter= 0, niter {



8.3. MISSING DATA AND UNKNOWN FILTER 195

call contran( 0, 0, na,aa, np, pp, rr(qr))
call contran( 0, 0, na,aa, nt, tt, rr(tr)) # extend rr with train
call scaleit( -1., nr, rr )
call contran( 1, 0, na,aa, np, g(px), rr(qr))
call contran( 1, 0, np,pp, na, g(ax), rr(qr))
call contran( 1, 1, nt,tt, na, g(ax), rr(tr))
do ip= 1, np { if( known(ip) != 0) { g( ip+(px-1)) = 0. } }

g( 1 +(ax-1)) = 0.
call contran( 0, 0, na,aa, np, g(px), gg(qr))
call contran( 0, 1, np,pp, na, g(ax), gg(qr))
call contran( 0, 0, nt,tt, na, g(ax), gg(tr))
call cgstep( iter, nx, x, g, s, nr, rr, gg, ss)
call copy( np, x(px), pp)
call copy( na, x(ax), aa)
}

return; end

The new computations are the lines containing the training data tt. (I omitted the
extra clutter of the high-pass filter hh because I did not get an interesting example
with it.) Compared to missif() on page 10, additional clutter arises from pointers
needed to partition the residual and the gradient abstract vectors into three parts,
the usual one for ||PA|| and the new one for ||P0A|| (and potentially ||PA0||).

You might wonder why we need another program when we could use the old
program and simply append the training data to the observed data. We will encounter
some applications where the old program will not be adequate. These involve the
boundaries of the data. (Recall that, in chapter 4, when seismic events changed their
dip, we used a two-dimensional wave-killing operator and were careful not to convolve
the operator over the edges.) Imagine a dataset that changes with time (or space).
Then P0 might not be training data, but data from a large interval, while P is data
in a tiny window that is moved around on the big interval. These ideas will take
definite form in two dimensions.

8.3.4 Summary of 1-D missing-data restoration

Now I will summarize our approach to 1-D missing-data restoration in words that will
carry us towards 2-D missing data. First we noticed that, given a filter, minimizing
the output power will find missing input data regardless of the volume missing or its
geometrical complexity. Second, we experimented with various filters and saw that
the prediction-error filter is an appropriate choice, because data extensions into
regions without data tend to have the spectrum inverse to the PE filter, which (from
chapter 7) is inverse to the known data. Thus, the overall problem is perceived as
a nonlinear one, involving the product of unknown filter coefficients and unknown
data. It is well known that nonlinear problems are susceptible to multiple solutions;
hence the importance of the stabilization method described, which enables us to
ensure a reasonable solution.



196 CHAPTER 8. MISSING-DATA RESTORATION

8.3.5 2-D interpolation before aliasing

A traditional method of data interpolation on a regular mesh is a four-step procedure:
(1) set zero values at the points to be interpolated; (2) Fourier transform; (3) set to
zero the high frequencies; and (4) inverse transform. This is a fine method and is
suitable for many applications in both one dimension and higher dimensions. Where
the method falls down is where more is needed than simple interlacing—for example,
when signal values are required beyond the ends of the data sample. The simple
Fourier method of interlacing also loses its applicability when known data is irregularly
distributed. An example of an application in two dimensions of the methodology of
this section is given in the section on tomography beginning on page 30.

8.4 2-D INTERPOLATION BEYOND ALIASING

I have long marveled at the ability of humans to interpolate seismic data containing
mixtures of dips where spatial frequencies exceed the Nyquist limits. These limits
are hard limits on migration programs. Costly field-data-acquisition activities are
designed with these limits in mind. I feared this human skill of going beyond the
limit was deeply nonlinear and beyond reliable programming. Now, however, I have
obtained results comparable in quality to those of S. Spitz, and I am doing so in a way
that seems reliable—using two-stage, linear least squares. First we will look at some
results and then examine the procedure. Before this program can be applied to field
data for migration, remember that the data must be broken into many overlapping
tiles of about the size shown here and the results from each tile pieced together.

Figure 8.13: Left is five signals, each showing three arrivals. Using the data shown on
the left (and no more), the signals have been interpolated. Three new traces appear
between each given trace as shown on the right. mis-lace3 [ER]

Figure 1.13 shows three plane waves recorded on five channels and the interpolated
data. Both the original data and the interpolated data can be described as “beyond
aliasing” because on the input data the signal shifts exceed the signal duration. The



8.4. 2-D INTERPOLATION BEYOND ALIASING 197

calculation requires only a few seconds of a “two-stage least-squares” method, where
the first stage estimates an inverse covariance matrix of the known data, and the
second uses it to estimate the missing traces. Actually, a 2-D prediction-error
filter is estimated, and the inverse covariance matrix, which amounts to the PE filter
times its adjoint, is not needed explicitly.

Figure 8.14: Two plane waves and their interpolation. mis-lace2 [ER]

Let us now examine a case with minimal complexity. Figure 1.14 shows two plane
waves recorded on three channels. That is the minimum number of channels required
to distinguish two superposing plane waves. Notice on the interpolated data that the
original traces are noise-free, but the new traces have acquired a low level of noise.
This will be dealt with later.

Figure 1.15 shows the same calculation in the presence of noise on the original
data. We see that the noisy data is interpolatable just as was the noise-free data, but
now we can notice the organization of the noise. It has the same slopes as the plane
waves. This was also true on the earlier figures (Figure 1.13 and 1.14), as is more
apparent if you look at the page from various grazing angles. To display the slopes
more clearly, Figure 1.15 is redisplayed in a raster mode in Figure 1.16.

Figure 8.15: Interpolating noisy plane waves. mis-lacenoise [ER]



198 CHAPTER 8. MISSING-DATA RESTORATION

Figure 8.16: Interpolating noisy plane waves. mis-laceras [ER]

8.4.1 Interpolation with spatial predictors

A two-dimensional filter is a small plane of numbers that is convolved over a big
data plane of numbers. One-dimensional convolution can use the mathematics of
polynomial multiplication, such as Y (Z) = X(Z)F (Z), whereas two-dimensional
convolution can use something like Y (Z1, Z2) = X(Z1, Z2)F (Z1, Z2). Polynomial
mathematics is appealing, but unfortunately it implies transient edge conditions,
whereas here we need different edge conditions, such as those of the dip-rejection filters
discussed in Chapter 4, which were based on simple partial differential equations. Here
we will examine spatial prediction-error filters (2-D PE filters) and see that they
too can behave like dip filters.

The typesetting software I am using has no special provisions for two-dimensional
filters, so I will set them in a little table. Letting “·” denote a zero, we denote a
two-dimensional filter that can be a dip-rejection filter as

a b c d e
· · 1 · · (8.6)

where the coefficients (a, b, c, d, e) are to be estimated by least squares in order to
minimize the power out of the filter. (In the table, the time axis runs horizontally, as
on data displays.)

Fitting the filter to two neighboring traces that are identical but for a time shift,
we see that the filter (a, b, c, d, e) should turn out to be something like (−1, 0, 0, 0, 0)
or (0, 0,−.5,−.5, 0), depending on the dip (stepout) of the data. But if the two
channels are not fully coherent, we expect to see something like (−.9, 0, 0, 0, 0) or
(0, 0,−.4,−.4, 0). For now we will presume that the channels are fully coherent.



8.4. 2-D INTERPOLATION BEYOND ALIASING 199

8.4.2 Refining both t and x with a spatial predictor

Having determined a 2-D filter, say on the original data mesh, we can now interlace
both t and x and expect to use the identical filter. This is because slopes are preserved
if we replace (∆t,∆x) by (∆t/2,∆x/2). Everyone knows how to interpolate data on
the time mesh, so that leaves the job of interpolation on the space mesh: in (1.6) the
known (a, b, c, d, e) can multiply a known trace, and then the “1” can multiply the
interlaced and unknown trace. It is then easy to minimize the power out by defining
the missing trace to be the negative of that predicted by the filter (a, b, c, d, e) on the
known trace. (The spatial interpolation problem seems to be solved regardless of the
amount of the signal shift. A “spatial aliasing” issue does not seem to arise.) It is
nice to think of the unknowns being under the “1” and the knowns being under the
(a, b, c, d, e), but the CG method has no trouble working backwards too.

After I became accustomed to using the CG method, I stopped thinking that
the unknown data is that which is predicted, and instead began to think that the
unknown data is that which minimizes the power out of the prediction filter. I ignored
the question of which data values are known and which are unknown. This thinking
enables a reformulation of the problem, so that interpolation on the time axis is an
unnecessary step. This is the way all my programs work. Think of the filter that
follows as applied on the original coarse-mesh data:

a · b · c · d · e
· · · · · · · · ·
· · · · 1 · · · ·

(8.7)

The first stage is to use CG to find (a, b, c, d, e) in (1.7). For the second stage, we
assert that the same values (a, b, c, d, e) found from (1.7) can be used in (1.6), and we
use CG a second time to find the missing data values. A wave field interpolated this
way is shown in Figure 1.17. Figures 1.13 to 1.16 were made with filters that had
more rows than (1.7), for reasons we will discuss next.

Figure 8.17: Two signals with one dip. mis-lace1 [ER]



200 CHAPTER 8. MISSING-DATA RESTORATION

8.4.3 The prediction form of a two-dip filter

Now we handle two dips simultaneously. The following filter destroys a wave that is
sloping down to the right:

−1 · ·
· · 1

(8.8)

The next filter destroys a wave that is sloping less steeply down to the left:

· −1
1 · (8.9)

Convolving the above two filters together, we get

· 1 · ·
−1 · · −1
· · 1 ·

(8.10)

The 2-D filter (1.10) destroys waves of both slopes. Given appropriate interlacing,
the filter (1.10) destroys the data in Figure 1.14 both before and after interpolation.
To find filters such as (1.10), I adjust coefficients to minimize the power out of filters
like

v w x y z
a b c d e
· · 1 · ·

(8.11)

A filter of this shape is suitable for figures like 1.14 and 1.15.

Let us examine the Fourier domain for this filter. The filter (1.10) was transformed
to the Fourier domain; it was multiplied by its conjugate; the square root was taken;
and contours are plotted at near-zero magnitudes in Figure 1.18. The slanting straight
lines have slopes at the two dips that are destroyed by the filters. Noticing the broad
lows where the null lines cross, we might expect to see energy at this temporal and
spatial frequency, but I have not noticed any.

Figure 8.18: Magnitude of two-
dimensional Fourier transform of
the 2-D filter contoured at .01 and
at .1. mis-fk2dip [ER]



8.4. 2-D INTERPOLATION BEYOND ALIASING 201

# CINJOF --- Convolution INternal with Jumps. Output and FILTER are adjoint.
#
subroutine cinjof( adj, add, jump, n1,n2,xx, nb1,nb2,bb, yy)
integer adj, add, jump, n1,n2, nb1,nb2 # jump subsamples data
real xx( n1,n2), bb( nb1,nb2), yy( n1,n2)
integer y1,y2, x1,x2, b1, b2, ny1, ny2
call adjnull( adj, add, bb, nb1*nb2, yy, n1*n2)
ny1 = n1 - (nb1-1) * jump; if( ny1<1 ) call erexit(’cinjof: ny1<1’)
ny2 = n2 - (nb2-1); if( ny2<1 ) call erexit(’cinjof: ny2<1’)
if( adj == 0 )

do b2=1,nb2 { do y2=1,ny2 { x2 = y2 - (b2-nb2)
do b1=1,nb1 { do y1=1,ny1 { x1 = y1 - (b1-nb1) * jump

yy(y1,y2) = yy(y1,y2) + bb(b1,b2) * xx(x1,x2)
}} }}

else
do b2=1,nb2 { do y2=1,ny2 { x2 = y2 - (b2-nb2)
do b1=1,nb1 { do y1=1,ny1 { x1 = y1 - (b1-nb1) * jump

bb(b1,b2) = bb(b1,b2) + yy(y1,y2) * xx(x1,x2)
}} }}

return; end

In practice, wavefronts have curvature, so we will estimate the 2-D filters in many
small windows on a wall of data. Therefore, to eliminate edge effects, I designed the
2-D filter programs starting from the 1-D internal convolution program convin() on
page 109. The subroutine for two-dimensional filtering is cinjof() on page 19. The
adjoint operation included in this subroutine is exactly what we need for estimating
the filter.

A companion program, cinloi(), is essentially the same as cinjof(), except that
in cinloi() the other adjoint is used (for unknown input instead of unknown filter),
and there is no need to interlace the time axis. A new feature of cinloi() is that
it arranges for the output residuals to come out directly on top of their appropriate
location on the original data. In other words, the output of the filter is at the “1.”
Although the edge conditions in this routine are confusing, it should be obvious that
xx(,) is aligned with yy(,) at bb(lag1,lag2).

# CINLOI --- Convolution INternal with Lags. Output is adjoint to INPUT.
#
subroutine cinloi( adj, add, lag1,lag2,nb1,nb2,bb, n1,n2, xx, yy)
integer adj, add, lag1,lag2,nb1,nb2, n1,n2 # lag=1 causal
real bb(nb1,nb2), xx(n1,n2), yy(n1,n2)
integer y1,y2, x1,x2, b1,b2
call adjnull( adj, add, xx,n1*n2, yy,n1*n2 )
if( adj == 0 )

do b2=1,nb2 { do y2= 1+nb2-lag2, n2-lag2+1 { x2= y2 - b2 + lag2
do b1=1,nb1 { do y1= 1+nb1-lag1, n1-lag1+1 { x1= y1 - b1 + lag1

yy(y1,y2) = yy(y1,y2) + bb(b1,b2) * xx(x1,x2)
}} }}

else
do b2=1,nb2 { do y2= 1+nb2-lag2, n2-lag2+1 { x2= y2 - b2 + lag2
do b1=1,nb1 { do y1= 1+nb1-lag1, n1-lag1+1 { x1= y1 - b1 + lag1



202 CHAPTER 8. MISSING-DATA RESTORATION

xx(x1,x2) = xx(x1,x2) + bb(b1,b2) * yy(y1,y2)
}} }}

return; end

8.4.4 The regression codes

The programs for the two-dimensional prediction-error filter and missing data resem-
ble those for one dimension. I simplified the code by not trying to pack the unknowns
and residuals tightly in the abstract vectors. Because of this, it is necessary to be
sure those abstract vectors are initialized to zero. (Otherwise, the parts of the ab-
stract vector that are not initialized could contribute to the result when cgstep() on
page 144 evaluates dot products on abstract vectors.) The routine pe2() on page 20
finds the 2-D PE filter.

# Find spatial prediction-error filter.
#
subroutine pe2( eps, a1,a2,aa, n1,n2 ,pp, rr, niter, jump)
integer a1,a2, n1,n2, niter, jump
integer i1, iter, midpt, r12, a12
real aa( a1 , a2), pp( n1 , n2), rr( n1 , n2 * 2), eps
temporary real da( a1, a2), dr( n1, n2 * 2)
temporary real sa( a1, a2), sr( n1, n2 * 2)
r12 = n1 * n2
a12 = a1 * a2
call null( aa, a12); call null( rr, 2 * r12)
call null( da, a12); call null( dr, 2 * r12)
midpt = (a1+1) / 2
aa( midpt, 1 ) = 1.

call cinjof( 0, 0, jump, n1,n2,pp, a1,a2,aa, rr )
call ident ( 0, 0, eps, a12, aa, rr(1,n2+1) )
call scaleit ( -1., 2*r12, rr )

do iter= 0, niter {
call cinjof( 1, 0, jump, n1,n2,pp, a1,a2,da, rr )
call ident ( 1, 1, eps, a12, da, rr(1,n2+1) )
do i1= 1, a1 { da(i1, 1) = 0. }
call cinjof( 0, 0, jump, n1,n2,pp, a1,a2,da, dr )
call ident ( 0, 0, eps, a12, da, dr(1,n2+1) )
call cgstep( iter, a12, aa,da,sa, _

2*r12, rr,dr,sr )
}

return; end

This routine is the two-dimensional equivalent of finding the filter A(Z) so that 0 ≈
R(Z) = P (Z)A(Z). We coded the 1-D problem in iner() on page 178. In pe2(),
however, I did not bother with the weighting functions. A further new feature of
pe2() is that I added λI capability (where λ is eps) by including the call to ident()

on page 150, so that I could experiment with various forms of filter stabilization.
(This addition did not seem to be helpful.)



8.4. 2-D INTERPOLATION BEYOND ALIASING 203

Given the 2-D PE filter, the missing data is found with miss2() on page 21, which
is the 2-D equivalent of miss1() on page 6.

# fill in missing data in 2-D by minimizing power out of a given filter.
#
subroutine miss2( lag1,lag2, a1,a2, aa, n1,n2, ww, pp, known, rr, niter)
integer i1,i2,iter, lag1,lag2, a1,a2, n1,n2, niter, n12
real pp( n1, n2) # in: known data with zeros for missing values

# out: known plus missing data.
real known( n1, n2) # in: known(ip) vanishes where pp(ip) is missing
real ww( n1, n2) # in: weighting function on data pp
real aa( a1, a2) # in: roughening filter
real rr( n1, n2*2) # out: residual
temporary real dp( n1, n2), dr( n1, n2*2)
temporary real sp( n1, n2), sr( n1, n2*2)
n12 = n1 * n2; call null( rr, n12*2)
call null( dp, n12); call null( dr, n12*2)

call cinloi( 0, 0, lag1,lag2,a1,a2,aa, n1,n2, pp, rr )
call diag ( 0, 0, ww, n12, pp, rr(1,n2+1))
call scaleit (-1., 2*n12, rr )

do iter= 0, niter {
call cinloi( 1, 0, lag1,lag2,a1,a2,aa, n1,n2, dp, rr )
call diag ( 1, 1, ww, n12, dp, rr(1,n2+1))
do i1= 1, n1 {
do i2= 1, n2 { if( known(i1,i2) != 0.) dp(i1,i2) = 0.

}}
call cinloi( 0, 0, lag1,lag2,a1,a2,aa, n1,n2, dp, dr )
call diag ( 0, 0, ww, n12, dp, dr(1,n2+1))
call cgstep( iter, n12, pp,dp,sp, _

2*n12, rr,dr,sr )
}

return; end

We will soon see that stabilization is more critical in miss2() than in pe2(). Further-
more, miss2() must be stabilized with a weighting function, here ww(,), which
is why I used the diagonal matrix multiplier diag() rather than the identity matrix
I used in deghost() on page 150 and pe2() on page 20. Subroutine diag() is used
so frequently that I coded it in a special way to allow the input and output to overlie
one another.

subroutine diag( adj, add, lambda,n, pp, qq)
integer i, adj, add, n # equivalence (pp,qq) OK
real lambda(n), pp(n), qq(n)
if( adj == 0 ) {

if( add == 0 ) { do i=1,n { qq(i) = lambda(i) * pp(i) } }
else { do i=1,n { qq(i) = qq(i) + lambda(i) * pp(i) } }
}

else { if( add == 0 ) { do i=1,n { pp(i) = lambda(i) * qq(i) } }
else { do i=1,n { pp(i) = pp(i) + lambda(i) * qq(i) } }
}

return; end



204 CHAPTER 8. MISSING-DATA RESTORATION

8.4.5 Zapping the null space with envelope scaling

Here we will see how to remove the small noise we are seeing in the interpolated
outputs. The filter (1.10) obviously destroys the input in Figure 1.14. On the output
interpolated data, the filter-output residuals (not shown) were all zeros despite the
small noises. The filter totally extinguishes the small noise on the outputs because the
noise has the same stepout (slope) as the signals. The noise is absent from the original
traces, which are interlaced. How can dipping noises exist on the interpolated traces
but be absent from the interlaced data? The reason is that one dip can interfere with
another to cancel on the known, noise-free traces. The filter (1.10) destroys perfect
output data as well as the noisy data in Figure 1.14. Thus, there is more than one
solution to the problem. This is the case in linear equation solving whenever there is
a null space. Since we manufactured many more data points than we originally had,
we should not be surprised by the appearance of a null space. When only a single
dip is present, the null space should vanish because the dip vanishes on the known
traces, having no other dips to interfere with it there. Confirm this by looking back
at Figure 1.17, which contains no null-space noise. This is good news, because in real
life, in any small window of seismic data, a single-dip model is often a good model.

If we are to eliminate the null-space noises, we will need some criterion in addition
to stepout. One such criterion is amplitude: the noise events are the small ones. Before
using a nonlinear method, we should be sure, however, that we have exploited the full
power of linear methods. Information in the data is carried by the envelope functions,
and these envelopes have not been included in the analysis so far. The envelopes can
be used to make weighting functions. These weights are not weights on residuals,
as in the routine iner() on page 178. These are weights on the solution. The λI
stabilization in routine pe2() on page 20 applied uniform weights using the subroutine
ident() on page 150, as has been explained. Here we simply apply variable weights
Λ using the subroutine diag() on page 22. The weights themselves are the inverse
of the envelope of input data (or the output of a previous iteration). Where the
envelope is small lies a familiar problem, which I approached in a familiar way—by
adding a small constant. The result is shown in Figure 1.19. The top row is the same
as Figure 1.13. The middle row shows the improvement that can be expected from
weighting functions based on the inputs. So the middle row is the solution to a linear
interpolation problem. Examining the envelope function on the middle left, we can
see that it is a poor approximation to the envelope of the output data, but that is to
be expected because it was estimated by smoothing the absolute values of the input
data (with zeros on the unknown traces). The bottom row is a second stage of the
process just described, where the new weighting function is based on the result in the
middle row. Thus the bottom row is a nonlinear operation on the data.

When interpolating data, the number of unknowns is large. Here each row of data
is 75 points, and there are 20 rows of missing data. So, theoretically, 1500 iterations
might be required. I was getting good results with 15 conjugate-gradient iterations
until I introduced weighting functions; then the required number of iterations jumped



8.4. 2-D INTERPOLATION BEYOND ALIASING 205

Figure 8.19: Top left is input. Top right is the interpolation with uniform weights. In
the middle row are the envelope based on input data and the corresponding interpo-
lated data. For the bottom row, the middle-row solution was used to design weights
from which a near-perfect solution was derived. mis-wlace3 [ER]



206 CHAPTER 8. MISSING-DATA RESTORATION

to about a hundred. The calculation takes seconds (unless the silly computer starts
to underflow; then it takes me 20 times longer.)

I believe the size of the dynamic range in the weighting function has a controlling
influence on the number of iterations. Before I made Figure 1.19, I got effectively the
same result, and more quickly, using another method, which I abandoned because its
philosophical foundation was crude. I describe this other method here only to keep
alive the prospect of exploring the issue of the speed of convergence. First I moved the
“do iter” line above the already indented lines to allow for the nonlinearity of the
method. After running some iterations with Λ = 0 to ensure the emergence of some
big interpolated values, I turned on Λ at values below a threshold. In the problem
at hand, convergence speed is not important economically but is of interest because
we have so little guidance as to how we can alter problem formulation in general to
increase the speed of convergence.

8.4.6 Narrow-band data

Spitz’s published procedure is to Fourier transform time to (ω, x), where, following
Canales, he computes prediction filters along x for each ω. Spitz offers the insight that
for a dipping event with stepout p = kx/ω, the prediction filter at trace separation ∆x
at frequency ω0 should be identical to the prediction filter at trace separation ∆x/2 at
frequency 2ω0. There is trouble unless both ω0 and 2ω0 have reasonable signal-to-noise
ratio. So a spectral band of good-quality data is required. It is not obvious that the
same limitation applies to the interlacing procedure that I have been promoting, but
I am certainly suspicious, and the possibility deserves inspection. Figure 1.20 shows
a narrow-banded signal that is properly interpolated, giving an impressive result. It
is doubtful that an observant human could have done as well. I found, however, that
adding 10% noise caused the interpolation to fail.

Figure 8.20: Narrow-banded signal (left) with interpolation (right). mis-lacenarrow
[ER]

On further study of Figure 1.20 I realized that it was not a stringent enough test.



8.5. A FULLY TWO-DIMENSIONAL PE FILTER 207

The signals obviously contain zero frequency, so they are not narrow-band in the
sense of containing less than an octave. Much seismic data is narrow-band.

I have noticed that aspects of these programs are fragile. Allowing filters to be
larger than they need to be to fit the waves at hand (i.e., allowing excess channels)
can cause failure. We could continue to study the limitations of these programs. In-
stead, I will embark on an approach similar to the 1-D missif() on page 10 program.
That program is fundamentally nonlinear and so somewhat risky, but it offers us
the opportunity to drop the idea of interlacing the filter. Interlacing is probably the
origin of the requirement for good signal-to-noise ratio over a wide spectral band.
Associated with interlacing is also a nagging doubt about plane waves that are im-
perfectly predictable from one channel to the next. When such data is interlaced,
the PE filter really should change to account for the interlacing. Interlacing the PE
filter is too simple a model. We can think of interlacing as merely the first guess in
a nonlinear problem.

8.5 A FULLY TWO-DIMENSIONAL PE FILTER

The prediction-error filters we dealt with above are not genuinely two-dimensional
because Fourier transform over time would leave independent, 1-D, spatial PE filters
for each temporal frequency. What is a truly two-dimensional prediction-error
filter?1 This is a question we should answer in our quest to understand resonant
signals aligned along various dips. Figure 1.11 shows that an interpolation-error filter
is no substitute for a PE filter in one dimension. So we need to use special care in
properly defining a 2-D PE filter. Recall the basic proof in chapter 7 (page ??) that the
output of a PE filter is white. The basic idea is that the output residual is uncorrelated
with the input fitting functions (delayed signals); hence, by linear combination, the
output is uncorrelated with the past outputs (because past outputs are also linear
combinations of past inputs). This is proven for one side of the autocorrelation, and
the last step in the proof is to note that what is true for one side of the autocorrelation
must be true for the other. Therefore, we need to extend the idea of “past” and
“future” into the plane to divide the plane into two halves. Thus I generally take a
2-D PE filter to be of the form

a a a a a a a
a a a a a a a
a a a a a a a
a a a a a a a
· · · 1 a a a
· · · · · · ·

(8.12)

where “·” marks the location of a zero element and a marks the location of an element
that is found by minimizing the output power. Notice that for each a, there is a point

1I am indebted to John P. Burg for some of these ideas.



208 CHAPTER 8. MISSING-DATA RESTORATION

mirrored across the “1” at the origin, and the mirrored point is not in the filter.
Together, all the a locations and their mirrors cover the plane. Obviously the plane
can be bisected in other ways, but this way seems a natural one for the processes
we have in mind. The three-dimensional prediction-error filter which embodies
the same concept is shown in Figure 1.21.

Figure 8.21: Three-dimensional
prediction-error filter.
mis-3dpef [NR]

1

Can “short” filters be used? Experience shows that a significant detriment to
whitening with a PE filter is an underlying model that is not purely a polynomial
division because it has a convolutional (moving average) part. The convolutional part
is especially troublesome when it involves serious bandlimiting, as does convolution
with bionomial coefficients (for example, the Butterworth filter, discussed in chapter
10). When bandlimiting occurs, it seems best to use a gapped PE filter. I have
some limited experience with 2-D PE filters that suggests using a gapped form like

a a a a a a a a a
a a a a a a a a a
a a a a a a a a a
a a a a a a a a a
· · · 1 · · a a a

(8.13)

With this kind of PE filter, the output traces are uncorrelated with each other, and
the output plane is correlated with itself only for a short distance (the length of the
gap) on the time axis.

EXERCISES:

1 Recall Figure 4.4. Explain how to do the job properly.

8.5.1 The hope method

We have examined the two-stage linear method of missing-data restoration, which
calls for solving for a filter, interlacing it, and then solving for the missing data. I



8.5. A FULLY TWO-DIMENSIONAL PE FILTER 209

believe that method, with its interlacing, is unsuitable for data with a narrow spectral
signal-to-noise ratio, such as we often encounter in practice. It would indeed be nice
to be able to work with such data.

Recall equation (1.4):

min
P,A

(||PA|| + λ9||P0A|| + λ10||PA0|| )

Now we hope to solve the trace-interlace problem directly from this optimization.
Without the training data P0 and the high-pass filter A0, however, the trace-interlace
problem is highly nonlinear, and, as in the case of the one-dimensional problem, I
found I was unable to descend to a satisfactory solution. Therefore, we must think
about what the training data and prior filter might be. Our first guess might be that
P0 is a low-pass dip filter and A0 is a high-pass dip filter. Several representations for
low- and high-pass dip filters are described in IEI. I performed a few tests with them
but was not satisfied with the results.

Another possibility is that P0 should be the solution as found by the interlacing
method. Time did not allow me to investigate this promising idea.

Still another possibility is that these problems are so easy to solve (requiring
workstation compute times of a few seconds only) that we should abandon traditional
optimization methods and use simulated annealing (Rothman, 1985).

All the above ideas are hopeful. A goal of this study is to define and characterize
the kinds of problems that we think should be solvable. A simple example of a
dataset that I believe should be amenable to interpolation, even with substantial
noise, is shown in Figure 1.22. I have not worked with this case yet.

Figure 8.22: Narrow-banded data
that skilled humans can readily in-
terpolate. mis-alias [ER]

To prepare the way, and to perform my preliminary (but unsatisfactory) tests, I
prepared subroutine hope(), the two-dimensional counterpart to missif() on page 10
and misfip() on page 12.

subroutine hope( gap, h1,h2,hh, t1,t2,tt, a1,a2,aa, p1,p2,pp, known, niter)
integer h1,h2,h12, t1,t2,t12, a1,a2,a12, p1,p2,p12
integer i, gap, iter, niter, midpt, nx,nr, px,ax, qr,tr,hr



210 CHAPTER 8. MISSING-DATA RESTORATION

real hh(h1,h2), tt(t1,t2), aa(a1,a2), pp(p1*p2), known(p1*p2), dot
temporary real x( p1*p2 +a1*a2), rr( p1*p2 +p1*p2 +t1*t2)
temporary real g( p1*p2 +a1*a2), gg( p1*p2 +p1*p2 +t1*t2)
temporary real s( p1*p2 +a1*a2), ss( p1*p2 +p1*p2 +t1*t2)
p12 = p1*p2; a12 = a1*a2; t12 = t1*t2; h12= h1*h2;
nx = p12 + a12; px= 1; ax= 1+p12
nr = p12 + p12 + t12; qr= 1; hr= 1+p12; tr= 1+p12+p12
call zero( a12, aa); midpt= a1/2; aa( midpt, 1 ) = sqrt( dot( p12,pp,pp))
call zero( nx, x); call zero( nr, rr); call copy( p12, pp, x(px))
call zero( nx, g); call zero( nr, gg); call copy( a12, aa, x(ax))
do iter= 0, niter {

call cinloi( 0, 0, midpt,1, a1,a2,aa, p1,p2,pp, rr(qr))
call cinloi( 0, 0, midpt,1, h1,h2,hh, p1,p2,pp, rr(hr))
call cinloi( 0, 0, midpt,1, a1,a2,aa, t1,t2,tt, rr(tr))
call scaleit ( -1., nr, rr )
call cinloi( 1, 0, midpt,1, a1,a2,aa, p1,p2,g(px), rr(qr))
call cinlof( 1, 0, midpt,1, p1,p2,pp, a1,a2,g(ax), rr(qr))
call cinloi( 1, 1, midpt,1, h1,h2,hh, p1,p2,g(px), rr(hr))
call cinlof( 1, 1, midpt,1, t1,t2,tt, a1,a2,g(ax), rr(tr))
do i= 1, p12 { if( known(i) != 0.) g( i + (px-1)) = 0.}
do i= 1, midpt+gap { g( i + (ax-1)) = 0.}
call cinloi( 0, 0, midpt,1, a1,a2,aa, p1,p2,g(px), gg(qr))
call cinlof( 0, 1, midpt,1, p1,p2,pp, a1,a2,g(ax), gg(qr))
call cinloi( 0, 0, midpt,1, h1,h2,hh, p1,p2,g(px), gg(hr))
call cinlof( 0, 0, midpt,1, t1,t2,tt, a1,a2,g(ax), gg(tr))
call cgstep( iter, nx, x, g, s, _

nr, rr,gg,ss )
call copy( p12, x(px), pp)
call copy( a12, x(ax), aa)
}

return; end

I found the jump-and-interlace 2-D convolution cinjof() on page 19 unsuitable
here because it does not align its output consistently with the aligning convolution
cinloi() on page 20. So I wrote an aligning convolution identical with cinloi()

except that the filter is the adjoint. It is called cinlof().

# CINLOF --- Convolution INternal with Lags. Output is adjoint to FILTER.
#
subroutine cinlof( adj, add, lag1,lag2, n1,n2,xx, nb1,nb2,bb, yy)
integer adj, add, lag1,lag2, n1,n2, nb1,nb2
real xx(n1,n2), bb(nb1,nb2), yy(n1,n2)
integer y1,y2, x1,x2, b1, b2
call adjnull( adj, add, bb,nb1*nb2, yy,n1*n2)
if( adj == 0 )

do b2=1,nb2 { do y2= 1+nb2-lag2, n2-lag2+1 { x2= y2 - b2 + lag2
do b1=1,nb1 { do y1= 1+nb1-lag1, n1-lag1+1 { x1= y1 - b1 + lag1

yy(y1,y2) = yy(y1,y2) + bb(b1,b2) * xx(x1,x2)
}} }}

else
do b2=1,nb2 { do y2= 1+nb2-lag2, n2-lag2+1 { x2= y2 - b2 + lag2
do b1=1,nb1 { do y1= 1+nb1-lag1, n1-lag1+1 { x1= y1 - b1 + lag1

bb(b1,b2) = bb(b1,b2) + yy(y1,y2) * xx(x1,x2)



8.6. TOMOGRAPHY AND OTHER APPLICATIONS 211

}} }}
return; end

8.5.2 An alternative principle for 2-D interpolation

In principle, missing traces can be determined to simplify (ω, k)-space. Consider
a wave field P composed of several linear events in (t, x)-space. A contour plot
of energy in (ω, k)-space would show energy concentrations along lines of various
p = k/ω, much like Figure 1.18. Let the energy density be E = PP . Along contours
of constant E, we should also see p = dk/dω. The gradient vector (∂E/∂ω, ∂E/∂k)
is perpendicular to the contours. Thus the dot product of the vector (ω, k) with the
gradient should vanish. I propose to solve the regression that the dot product of
the vector (ω, k) with the gradient of the log energy be zero, or, formally,

0 ≈ ω
< P ∂

∂ω
P

PP
+ k
< P ∂

∂k
P

PP
(8.14)

The variables in the regression are the values of the missing traces. Obviously, the
numerator and the denominator should be smoothed in small windows in the (ω, k)-
plane. This makes conceptual sense but does not fit well with the idea of small
windows in (t, x)-space. It should be good for some interesting discussions, though.
For example, in Figure 1.18, what will happen where event lines cross? Is this formu-
lation adequate there? Also, how should the Nyquist limitation on total bandwidth
be expressed?

8.6 TOMOGRAPHY AND OTHER APPLICATIONS

Medical tomography avoids a problem that is unavoidable in earth-science tomogra-
phy. In medicine it is not difficult to surround the target with senders and receivers.
In earth science it is nearly impossible. It is well known that our reconstructions
tend to be indeterminate along the dominant ray direction. Customarily, the in-
determinacy is resolved by minimizing power in a roughened image. The roughening
filter should be inverse in spectrum to the desired image spectrum. Unfortunately,
that spectrum is unknown and arbitrary. Perhaps we can replace this arbitrary image
smoothing by something more reasonable in the space of the missing data.

Recall the well-to-well tomography problem in chapter 5. Given a sender at depth
zs in one well, a receiver at depth zg in the other well, and given traveltimes tk(zs, zg),
the rays are predominantly horizontal. Theory says we need some rays around the
vertical. Imagine the two vertical axes of the wells being supplemented by two hori-
zontal axes, one connecting the tops of the wells and one connecting the bottoms, with
missing data traveltimes tm(xs, xg). From any earth model, tk and tm are predicted.
But what principles can give us tm from tk? Obviously something like we used in
Figures 1.2–1.6. Data for the tomographic problem is two-dimensional, however: let



212 CHAPTER 8. MISSING-DATA RESTORATION

the source location be measured as the distance along the perimeter of a box, where
the two sides of the box are the two wells. Likewise, receivers may be placed along the
perimeter. Analogous to the midpoint and offset axes of surface seismology (see IEI),
we have midpoint and offset along the perimeter. Obviously there are discontinuities
at the corners of the box, and everything is not as regular as in medical imaging,
where sources and receivers are on a circle and their positions measured by angles.
The box gives us a plane in which to lay out the data, not just the recorded data, but
all the data that we think is required to represent the image. To fill in the missing
data we can minimize the power out of some two-dimensional filter, say, for example,
the Laplacian filter ∂2

s + ∂2
g . This would give us the two-dimensional equivalent of

Figures 1.2–1.6.

Alas, this procedure cannot produce information where none was recorded. But
it should yield an image that is not overwhelmed by the obvious heterogeneity of the
data-collection geometry.

The traditional approach of “geophysical inverse theory” requires the inverse
of the model covariance matrix. How is this to be found using our procedure? How
are we to cope with the absence of rays in certain directions? Notice that whatever the
covariance matrix may be, the resolution is very different in different parts of the
model: it is better near the wells, best halfway down near a well, and worst halfway
between the wells, especially near the top and bottom. How can this information
be quantified in the model’s inverse covariance matrix? This is a hard question,
harder than the problem that we would solve if we were given the matrix. Most
people simply give up and let the inverse covariance be a roughening operator like a
Laplacian, constant over space.

With the filling of data space, will it still be necessary to smooth the model ex-
plicitly (by minimizing energy in a roughened model)? Mathematically, the question
is one of the “completeness” of the data space. I believe there are analytic solutions
well known in medical imaging that prove that a circle of data is enough information
to specify completely the image. Thus, we can expect that little or no arbitrary im-
age smoothing is required to resolve the indeterminacy—it should be resolved by the
assertion that statistics gathered from the known data are applicable to the missing
data.

I suggest, therefore, that every data space be augmented until it has the dimen-
sionality and completeness required to determine a solution. If this cannot be done
fully, it should still be done to the fullest extent feasible.

The covariance matrix of the residual in data space (missing and observed)
seems a reasonable thing to estimate—easier than the covariance matrix of the model.
I think the model covariance matrix should not be thought of as a covariance matrix
of the solution, but as a chosen interpolation function for plotting the solution.



8.6. TOMOGRAPHY AND OTHER APPLICATIONS 213

8.6.1 Clash in philosophies

One philosophy of geophysical data analysis called “inverse theory” says that miss-
ing data is irrelevant. According to this philosophy, a good geophysical model only
needs to fit the real data, not interpolated or extrapolated data, so why bother with
interpolated or extrapolated data? Even some experienced practitioners belong to
this school of thought. My old friend Boris Zavalishin says, “Do not trust the data
you have not paid for.”

I can justify data interpolation in both human and mathematical terms. In human
terms, the solution to a problem often follows from the adjoint operator, where the
data space has enough known values. With a good display of data space, people often
apply the adjoint operator in their minds. Filling the data space prevents distraction
and confusion. The mathematical justification is that inversion methods are notorious
for slow convergence. Consider that matrix-inversion costs are proportional to the
cube of the number of unknowns. Computers balk when the number of unknowns
goes above one thousand; and our images generally have millions. By extending the
operator (which relates the model to the data) to include missing data, we can hope
for a far more rapid convergence to the solution. On the extended data, perhaps the
adjoint alone will be enough. Finally, we are not falsely influenced by the “data not
paid for” if we adjust it so that there is no residual between it and the final model.

8.6.2 An aside on theory-of-constraint equations

A theory exists for general constraints in quadratic form minimization. I have not
found the theory to be useful in any application I have run into so far, but it should
come in handy for writing erudite theoretical articles.

Constraint equations are an underdetermined set of equations, say d = Gx (the
number of components in x exceeds that in d), which must be solved exactly while
some other set is solved in the least-squares sense, say y ≈ Bx. This is formalized
as

min
x
{QC(x) = lim

ε→0
[(y−Bx)′(y −Bx) +

1

ε
(d−Gx)′(d−Gx)]} (8.15)

In my first book (FGDP: see page 113), I minimized QC by power series, letting
x = x(0) + εx(1), and hence QC = Q(0) + εQ(1) + · · ·. I minimized both Q(0) and
Q(1) with respect to x(0) and x(1). After a page of algebra, this approach leads to the
system of equations [

B′B G′

G 0

] [
x
λ

]
=

[
B′y
d

]
(8.16)

where x(1) has been superseded by the variable λ = Gx(1), which has fewer compo-
nents than x(1), and where x(0) has simply been replaced by x. The second of the
two equations shows that the constraints are satisfied. But it is not obvious from
equation (1.16) that (1.15) is minimized.



214 CHAPTER 8. MISSING-DATA RESTORATION

The great mathematician Lagrange apparently looked at the result, equation (1.16),
and realized that he could arrive at it far more simply by extremalizing the following
quadratic form:

QL(x, λ) = (y−Bx)′(y −Bx) + (d−Gx)′λ+ λ′(d−Gx) (8.17)

We can quickly verify that Lagrange was correct by setting to zero the derivatives with
respect to x′ and λ′. Naturally, everyone prefers to handle constraints by Lagrange’s
method. Unfortunately, Lagrange failed to pass on to the teachers of this world an
intuitive reason why extremalizing (1.17) gives the same result as extremalizing (1.15).
Lagrange’s quadratic form is not even positive definite (that is, it cannot be written
as something times its adjoint). In honor of Lagrange, the variables λ have come to
be known as Lagrange multipliers.

8.7 References

Canales, L.L., 1984, Random noise reduction: 54th Ann. Internat. Mtg., Soc. Explor.
Geophys., Expanded Abstracts, 525-527.

Rothman, D., 1985, Nonlinear inversion, statistical mechanics, and residual statics
estimation: Geophysics, 50, 2784-2798

Spitz, S., 1991, Seismic trace interpolation in the F-X domain: Geophysics, 56,
785-794.



312 CHAPTER 8. MISSING-DATA RESTORATION



Index

abstract vector, 20
alias, 2, 14

cinjof subroutine, 19
cinlof subroutine, 29
cinloi subroutine, 20
constraint, 5, 6, 32
contour, 29
convolution, two-dimensional, 16
covariance matrix, 11, 14, 30, 31
curvature, 19

diag subroutine, 22
dip, 18, 22

edge, 16
envelope, 23
extrapolation, 5

filter
2-D prediction-error, 14, 25
3-D prediction-error, 26
prediction-error, gapped, 27
two dimensional, 16
two-dimensional, 17

gap, 27
geophysical inverse theory, 30
gradient, 7, 10
gradient vector, 29

hope subroutine, 28

indeterminate, 30
interlace, 11, 17
interpolation, 5
interpolation-error filter, 8
inverse theory, 31
inversion, 2

Lagrange multiplier, 32
least squares, 32
least-squares method, 5
linear inverse theory, 11
linearized regression, 12

mean, 11
mesh, 17
migration, 2
misfip subroutine, 12
miss1 subroutine, 6
miss2 subroutine, 21
missif subroutine, 10
missing data, 2, 3

nonlinear, 10, 11, 14, 22, 23, 25, 27
null space, 22

pack, 10, 20
pe2 subroutine, 20
pitfall, 1
plane wave, 14
polynomial multiplication, 16
prediction-error filter, 13
prediction-error filter

2-D, 14, 26
3-D, 26
gapped, 27
spatial, 17

quadratic form, 32

regression, 29
regression

linearized, 12
residual, 6, 31
Rothman, 27, 32

simulated annealing, 27

313



314 INDEX

spatial alias, 1
spectrum, 8
Spitz, 1, 14, 33
stabilize, 11, 22
stacking, 1
subroutine

cinjof, 2-D convolution, 19
cinlof, 2-D convolution, 29
cinloi, 2-D convolution, 20
diag, diagonal matrix, 22
hope, 2-D nonlinear missing data,

28
misfip, miss. data w. training, 12
miss1, 1-D missing data, 6
miss2, 2-D missing data, 21
missif, missing input and filter, 10
pe2, 2-D prediction error, 20

tomography, 30
training data, 12
truncation, 2
two-dimensional filter, 16, 17

uniqueness, 11

variance, 11

weighting function, 22, 23
white, 26



Chapter 9

Hyperbola tricks

In exploration seismology much attention is given to all aspects of hyperbolas. My
previous book (IEI) is filled with hyperbola lore, especially wave-equation solution
methodology. That book, however, only touches questions of hyperbolas arising in
least-squares problems. I wish I could say this chapter organizes everything better,
but in reality it is a miscellaneous collection of additional material in which hyperbolas
are exploited with due regard to operator conjugacy and least squares.

9.1 PIXEL-PRECISE VELOCITY SCANNING

Traditionally, velocity scanning is done by the loop structure given in chapter 5, in
which the concept of a velocity transform was introduced. This structure is

do v

do tau

do x

t = sqrt( tau**2 + (x/v)**2 )

velo( tau, v) = velo( tau, v) + data( t, x)

These loops transform source-receiver offset x to velocity v in much the same way
as Fourier analysis transforms time to frequency. Here we will investigate a new
alternative that gives conceptually the same result but differs in practical ways. It is
to transform with the following loop structure:

do tau

do t = tau, tmax

do x

v = sqrt( x**2 / ( t**2 - tau**2 ))

velo( tau, v) = velo( tau, v) + data( t, x)

215



216 CHAPTER 9. HYPERBOLA TRICKS

Notice that t =
√
τ2 + (x/v)2 in the conventional code is algebraically equivalent to

v = x/
√
t2 − τ2 in the new code. The traditional method finds one value for each

point in output space, whereas the new method uses each point of the input space
exactly once.

The new method, which I have chosen to call the “pixel-precise method,” differs
from the traditional one in cost, smoothing, accuracy, and truncation. The cost of
traditional velocity scanning is proportional to the product NtNxNv of the lengths of
the axes of time, offset, and velocity. The cost of the new method is proportional to
the product N2

t Nx/2. Normally Nt/2 > Nv, so the new method is somewhat more
costly than the traditional one, but not immensely so, and in return we can have all
the (numerical) resolution we wish in velocity space at no extra cost. The verdict is
not in yet on whether the new method is better than the old one in routine practice,
but the reasoning behind the new method teaches many lessons. Not examined here is
the smooth envelope (page ??) that is a postprocess to conventional velocity scanning.

Figure 9.1: A typical hyperbola
crossing a typical mesh. Notice
that the curve is represented by
multiple time points for each x.
hyp-lineint [NR]

Certain facts about aliasing must be borne in mind as one defines any velocity scan.
A first concern arises because typical hyperbolas crossing a typical mesh encounter
multiple points on the time axis for each point on the space axis. This is shown in
Figure 1.1. An aliasing problem will be experienced by any program that selects only
one signal value for each x instead of the multiple points that are shown. The extra
boxes complicate traditional velocity scanning. Many programs ignore it without
embarrassment only because low-velocity events contain only shallow information
about the earth. (A cynical view is that field operations tend to oversample in
offset space because of this limitation in some velocity programs.) A significant
improvement is made by summing all the points in boxes. A still more elaborate
analysis (which we will not pursue here) is to lay down a hyperbola on a mesh and
interpolate a line integral from the traces on either side of the line.

A second concern arises from the sampling in velocity space. Traditionally peo-
ple question whether to sample velocity uniformly in velocity, slowness, or slowness



9.1. PIXEL-PRECISE VELOCITY SCANNING 217

squared. Difficulty arises first on the widest-offset trace. When jumping from one
velocity to the next, the time on the wide-offset trace should not jump so far that it
leaves a gap, as shown in Figure 1.2.

Figure 9.2: Too large an in-
terval in velocity will leave a
gap between the hyperbolic scans.
hyp-deltavel [NR]

With the new method there is no chance of missing a point on the wide-offset
trace. For each depth τ , every point below τ in the input-data space (including the
wide-offset trace) is summed exactly once into velocity space (whether that space is
discretized uniformly in velocity or slowness). Also, the inner trace enters only once.

The new method also makes many old interpolation issues irrelevant. New ques-
tions arise, however. The (t, x)-position of the input data is exact, as is τ . Interpola-
tion becomes a question only on v. Since velocity scanning in this way is independent
of the number of points in velocity, we could sample densely and use nearest-neighbor
interpolation (or any other form of interpolation). A disadvantage is that some points
in (τ, v)-space may happen to get no input data, especially if we refine v too much.

The result of the new velocity transformation is shown in Figure 1.3. The figure
includes some scaling that will be described later. The code that generated Figure 1.3
is just like the pseudocode above except that it parameterizes velocity in uniform
samples of inverse velocity squared, s = v−2. A small advantage of using s-space
instead of v-space is that the trajectories we see in (τ, s)-space are readily recognized
as parabolas, namely τ2 = t2 − x2s, where each parabola comes from a particular
point in (t, x).

To exhibit all the artifacts as clearly as possible, I changed all signal values to their
signed square roots before plotting brightness. This has the effect of making the plots
look noisier than they really are. I also chose ∆t to be unrealistically large to enable
you to see each point. The synthetic input data was made with nearest-neighbor
NMO. Notice that resulting timing irregularities in the input are also present in the
reconstruction. This shows a remarkable precision.

Balancing the pleasing result of Figure 1.3 is the poor result from the same pro-
gram shown in Figure 1.4. The new figure shows that points in velocity space map



218 CHAPTER 9. HYPERBOLA TRICKS

Figure 9.3: Offset to slowness squared and back to offset. hyp-vspray1 [NR]

to bits of hyperbolas in offset space—not to entire hyperbolas. It also shows that
small-offset points become sparsely dotted lines in velocity space.

The problem of hyperbolas being present only discontinuously is solvable by smear-
ing over any axis, t, x, τ , or v, but we would prefer intelligent smoothing over the
appropriate axis.

9.1.1 Smoothing in velocity

To get smoother results I took the time axis to be continuous and the signal value at
(t, x) to be distributed between the two points t− = t−∆t/2 and t+ = t+ ∆t/2. The
two time points t± and the x-value are mapped to two slownesses s±. The signal from
the (t, x)-pixel is sprayed into the horizontal line (τ, s±). To enable you to reproduce
the result, I include the vspray() subroutine.

subroutine vspray( adj, nt,dt,t0, nx,dx,x0, tx, ns,ds,s0, zs)
integer adj, it, nt, iz, nz, ix, nx, is, ns, isp, ism
real tx(nt,nx), zs(nt,ns), scale
real z,dz,z0, t,dt,t0, x,dx,x0, s,ds,s0, sm,sp, xm,xp, tm,tp
nz=nt; dz=dt; z0=t0;
call adjnull( adj, 0, tx, nt*nx, zs, nz*ns)
if( adj == 0) { do ix=1,nx; call halfdif ( 1, nt, tx(1,ix), tx(1,ix) )}
do iz= 1, nz { z = z0 + dz*(iz-1)



9.1. PIXEL-PRECISE VELOCITY SCANNING 219

Figure 9.4: Slowness squared to offset and back to slowness squared. hyp-vspray2
[NR]

do ix= 1, nx { x = x0 + dx*(ix-1)
do it= iz, nt { t = t0 + dt*(it-1)

tm = t-dt/2; xm = x
tp = t+dt/2; xp = x
sm = (tm**2 -z**2)/xp**2; ism = 1.5+(sm-s0)/ds
sp = (tp**2 -z**2)/xm**2; isp = 1.5+(sp-s0)/ds
if( ism<2 ) next
if( isp>ns) next
scale = sqrt( t / (1.+isp-ism) ) / ( abs(x) + abs(dx)/2.)
do is= ism, isp {

if( adj == 0)
zs(iz ,is) = zs(iz ,is) + tx(it ,ix) * scale

else
tx(it ,ix) = tx(it ,ix) + zs(iz ,is) * scale

}
} } }

if( adj != 0) { do ix=1,nx; call halfdif ( 0, nt, tx(1,ix), tx(1,ix) )}
return; end

Figure 1.5 shows the result for the same inputs as used in Figures 1.3 and 1.4.



220 CHAPTER 9. HYPERBOLA TRICKS

Figure 9.5: Horizontal line method. Compare the left to Figure 1.3 and the right to
1.4. hyp-vspray4 [ER]

9.1.2 Rho filter

Notice the dark halo around the reconstruction in Figure 1.3. It was suppressed in
Figure 1.5 by the subroutine halfdifa(). Recall that slant-stack inversion (see IEI
for an example) requires an |ω| filter. Without doing any formal analysis I guessed
that the same filter would be helpful here because the dark halo has a strong spectral
component at ω = 0 which would be extinguished by an |ω| filter. The |ω| filter is
sometimes called a “rho filter.” Because of the close relation of slant-stack inversion
to wave propagation and causality, I found it appealing to factor |ω| into a causal√
−iω part and an anticausal

√
iω part. I applied a causal

√
−iω after generating the

(t, x)-space and an anticausal
√
iω before making the (τ, v−2)-space. I implemented

the causality by taking the square root of a Fourier domain representation of causal
differentiation, namely,

√
1− Z. I show this in subroutine halfdifa().

# Half order causal derivative. OK to equiv(xx,yy)
#
subroutine halfdifa( adj, add, n, xx, yy )
integer n2, i, adj, add, n
real omega, xx(n), yy(n)
complex cz, cv(4096)
n2=1; while(n2<n) n2=2*n2; if( n2 > 4096) call erexit(’halfdif memory’)
do i= 1, n2 { cv(i) = 0.}
do i= 1, n

if( adj == 0) { cv(i) = xx(i)}
else { cv(i) = yy(i)}

call adjnull( adj, add, xx,n, yy,n)
call ftu( +1., n2, cv)

do i= 1, n2 {



9.2. GEOMETRY-BASED DECON 221

omega = (i-1.) * 2.*3.14159265 / n2
cz = csqrt( 1. - cexp( cmplx( 0., omega)))
if( adj != 0) cz = conjg( cz)
cv(i) = cv(i) * cz
}

call ftu( -1., n2, cv)
do i= 1, n

if( adj == 0) { yy(i) = yy(i) + cv(i)}
else { xx(i) = xx(i) + cv(i)}

return; end

Notice also that vspray() includes a scaling variable named scale. I have not
developed a theory for this scale factor, but if you omit it, amplitudes in the recon-
structions will be far out of amplitude balance with the input.

9.2 GEOMETRY-BASED DECON

In chapter 7 deconvolution was considered to be a one-dimensional problem. We
ignored spatial issues. The one-dimensional approach seems valid for waves from a
source and to a receiver in the same location, but an obvious correction is required
for shot-to-receiver spatial offset. A first approach is to apply normal-moveout correc-
tion to the data before deconvolution. Previous figures have applied a t2 amplitude
correction to the deconvolution input. (Simple theory suggests that the amplitude
correction should be t, not t2, but experimental work, summarized along with more
complicated theory in IEI, suggests t2.) Looking back to Figure ??, we see that the
quality of the deconvolution deteriorated with offset. To test the idea that deconvo-
lution would work better after normal moveout, I prepared Figure 1.6. Looking in
the region of Figure 1.6 outlined by a rectangle, we can conclude that NMO should
be done before deconvolution. The trouble with this conclusion is that data comes in
many flavors. On the wider offsets of any data (such as Figure ??), it can be seen that
NMO destroys the wavelet. A source of confusion is that the convolutional model can
occur in two different forms from two separate physical causes, as we will see next.

9.2.1 A model with both signature and reverberation

Convolution occurs in data modeling both before and after moveout correction. Two
different deconvolution processes that deal with the two ways convolution occurs are
called “designature” and “dereverberation.”

Reverberation

Reverberation is the multiple bouncing of waves between layers. Waves at vertical
incidence in a water layer over the earth can develop clear, predictable, periodic echos.



222 CHAPTER 9. HYPERBOLA TRICKS

Figure 9.6: Data from Yilmaz and Cumro dataset 27 after t2 gain illustrates decon-
volution working better after NMO. hyp-wz27nmo [NR]



9.2. GEOMETRY-BASED DECON 223

FGDP gives a detailed theory for this. At nonzero shot-to-geophone offset, the perfect
periodicity is destroyed, i.e., multiple reflections no longer have a uniform reverber-
ation period. In a model earth with velocity constant in depth, normal-moveout
correction restores the uniform reverberation period. Mathematical techniques for
dealing with reverberation in the presence of depth-variable velocity are described in
considerable detail in IEI.

Signature

Seismic “signature” is defined to be a convolutional filtering on impulse-source data.
This convolution models the nonimpulsive nature of real sources. Imagine the oscil-
lation of a marine airgun’s bubble. On land, the earth’s near surface can have a
very slow velocity. There Snell’s law will bend all rays to very near vertical incidence.
Mathematically, such reverberations in such layers are indistinguishable from source
signature. For example, in California the near-surface soils often have a velocity
near the air velocity (340 m/s) that grades toward the water velocity (1500 m/s). A
buried shot typically has a free-surface reflection ghost whose time delay is virtually
independent of angle. Thus the ghost is more like signature than multiple.

Synthetic data in Figure 1.7 shows the result of convolution before and after
NMO. An event labeled “G” marks the tail-end of the source signature. The main

Figure 9.7: Example of convo-
lution before and after NMO.
The raw data shows a uniform
primary-to-tail interval, while the
NMO’ed data shows uniform mul-
tiple reverberation. The letters F ,
G, and V are adjustable param-
eters in the interactive program
controlling water depth, signature
tail, and velocity. hyp-deep
[NR]

idea illustrated by the figure is that some events are equally spaced before NMO, while
other events are equally spaced after NMO. We will see that proper deconvolution
requires a delicious mixture of NMO and deconvolution principles.

Figure 1.7 happens to have a short time constant with the signature and a longer
one with the reverberation. The time constants would be reversed in water shallow
compared with the gun’s quieting time. This is shown in Figure 1.8. This figure
shows an interesting interference pattern that could also show up in amplitude versus
offset studies.



224 CHAPTER 9. HYPERBOLA TRICKS

Figure 9.8: Model in water shal-
low compared to gun quieting
time. hyp-shallow [NR]

9.2.2 Regressing simultaneously before and after NMO

Before launching into a complicated theory for suppressing both reverberation and
signature, let us make some guesses. Let d denote an original data panel like the
left sides of Figure 1.7 and 1.8, and let d̄ be moved out like the right sides of those
figures. If we had only signature to contend with, we might formulate the problem
as d ≈ ∑

i αixi, where the xi are delayed versions of the data, containing d(t − i),
and where the αi are the scaling coefficients to be found. If we had only reverberation
to contend with, we might formulate the problem as d̄ ≈ ∑

i ᾱix̄i, where the x̄i are
delayed versions of the moved-out data, and the ᾱi are more unknowns. To suppress
both signature and reverberation simultaneously, we need to express both “statements
of wishes” in the same domain, either moved out or not. Letting N be the moveout
operator, and choosing the moved-out domain, we write the statement of wishes as

d̄ ≈
∑
i

ᾱix̄i +
∑
i

αiNxi (9.1)

Why not estimate the filters sequentially instead of simultaneously? What fails
if we first process raw data by blind deconvolution for the source signature, then do
NMO, and finally do blind deconvolution again for reverberation?

At vertical incidence, both filters are convolutional, and they are indistinguish-
able. At vertical incidence, doing a stage of deconvolution for each process leads to
nonsensical answers. Whichever stage is applied first will absorb all the color in the
data, leaving nothing for the second stage. The color will not be properly distributed
between the stages. In principle, at nonzero offset the information is present to dis-
tinguish between the stages, but the first stage will always tend to absorb the color
attributable to both. A simpler expression of the same concept arises when we are
regressing two theoretical signals against some data. If the regressors are orthogonal,



9.2. GEOMETRY-BASED DECON 225

such as a mean value and a sinusoid, then we tend to get the same result regardless of
the order in which we subtract them from the signal. If the regressors resemble one
another, as a mean can resemble a trend, then they must be estimated simultaneously.

9.2.3 A model for convolution both before and after NMO

Here we will develop a formal theory for (1.1). By formalizing the theory, we will see
better how it can be made more precise, and how the wishes expressed by (1.1) are a
linearization of a nonlinear theory.

For a formal model, we will need definitions. Simple multiple reflections are
generated by 1/(1 + cZn), where c is a reflection coefficient and Zn is the two-way
traveltime to the water bottom. We will express reflectivity as an unspecified filter
R(Z), so the reverberation operator as a whole is 1/(1 + R(Z)), where R(Z) is like
the adjustable coefficients in a gapped filter. This form is partly motivated by the
idea that 1 > |R|. Taking xt to denote the reflection coefficients versus depth or the
multiple-free seismogram, and taking yt to denote the one-dimensional seismogram
with multiples, we find that the relation between them is conveniently expressed with
Z-transforms as Y (Z) = X(Z)/(1 +R(Z)).

Likewise, we will express the source signature not as a convolution but as an inverse
polynomial (so designature turns into convolution). Suppose that source signature as
a whole is given by the operator 1/(1 + S(Z)). The final data D(Z) is related to the
impulse-source seismogram Y (Z) by D(Z) = Y (Z)/(1 + S(Z)).

The trouble with the definitions above is that they are in the Fourier domain.
Since we are planning to mix in the NMO operator, which stretches the time axis, we
will need to reexpress everything in the time domain. Instead of X(Z) = Y (Z)(1 +
R(Z)) and Y (Z) = D(Z)(1 + S(Z)), we will use shifted-column matrices to denote
convolution. Thus our two convolutions can be written as

x = (I + R)y (9.2)

y = (I + S)d (9.3)

where I is an identity matrix. Combining these two, we have a transformation from the
data to the reflection coefficients for a one-dimensional seismogram. Departures from
one-dimensionality arise from NMO and from spherical divergence of amplitude.
Simple theory (energy distributed on the area of an expanding sphere) suggests that
the scaling factor t converts the amplitude of y to x. So we define a matrix T to be
a diagonal with the weight t distributed along it.

We need also to include the time shifts of NMO. In chapter 5 we saw that NMO
is a matrix in which the diagonal line is changed to a hyperbola. Denote this matrix
by N. Let y0 be the result of attempting to generate a zero-offset signal from a signal
at any other offset by correcting for divergence and moveout:

y0 = NTy (9.4)



226 CHAPTER 9. HYPERBOLA TRICKS

The NMO operator can be interpreted in two ways, depending on whether we
plan to find one filter for all offsets, or one for each. In other words, we can decide if
we want one set of earth reflection coefficients applicable to all offsets, or if we want
a separate reflection coefficient at each offset. From chapter 7 we recall that the more
central question is whether to include summation over offset in the NMO operator.
If we choose to include summation, then the adjoint sprays the same one-dimensional
seismogram out to each offset at the required moveout. This choice determines if we
have one filter for each offset, or if we use the same filter at all offsets.

Equation (1.2) actually refers only to zero offset. Thus it means x = (I + R)y0.
Merging this with equations (1.3) and (1.4) gives

x = (I + R)NT(I + S)d (9.5)

x = NTd + RNTd + NTSd + RNTSd (9.6)

Now it is time to think about what is known and what is unknown. The unknowns
will be the reverberation operators R and S. Since we can only solve nonlinear prob-
lems by iteration, we linearize by dropping the term that is the product of unknowns,
namely, the last term in (1.6). This is justified if the unknowns are small, and they
might be small, since they are predictions. Otherwise, we must iterate, which is the
usual solution to a nonlinear problem by a sequence of linearizations. The lineariza-
tion is

x = (NTd + RNTd + NTSd). (9.7)

When a product of Z-transforms is expressed with a shifted-column matrix, we have
a choice of which factor to put in the matrix and which in the vector. The unknown
belongs in the vector so that simultaneous equations can be the end result. We need,
therefore, to rearrange the capital and lower-case letters in (1.7) to place all unknowns
in vectors. Also, besides the original data d, we will be regressing on processed data
d̄, defined by

d̄ = NTd (9.8)

Equation (1.7) thus becomes

x = d̄ + D̄r + NTDs (9.9)

Now the unknowns are vectors.

Recall that the unknowns are like prediction filters. Everything in x that is
predictable by r and s is predicted in an effort to minimize the power in x. During
the process we can expect x to tend to whiteness. Thus our statement of wishes is

0 ≈ d̄ + D̄r + NTDs (9.10)

Equation (1.10) is about the same as (1.1). To see this, associate −r with ᾱ and
associate −s with α. To make (1.10) look more like a familiar overdetermined system,
I write it as

d̄ ≈
[
−D̄ −NTD

] [ r
s

]
(9.11)



9.2. GEOMETRY-BASED DECON 227

Some years ago I tested this concept on a small selection of data, including Yilmaz
and Cumro dataset 27, used in Figure 1.6. The signature waveform of this dataset
was hardly measurable, and almost everything was in the reverberation. Thus, results
nearly equal to Figure 1.6 could be obtained by omitting the deconvolution before
NMO. Although I was unable to establish by field-data trials that simultaneous de-
convolution is necessary, I feel that theory and synthetic studies would show that it
is.

9.2.4 Heavy artillery

In Figure 1.6, we can see that events remain which look suspiciously like multiple
reflections. Careful inspection of the data (rapid blinking on a video screen) convinced
me that the problem lay in imperfect modeling of depth-variable velocity. It is not
enough to use a depth-variable velocity in the NMO (a constant velocity was used in
Figure 1.6), because primary and multiple reflections have different velocities at the
same time. I used instead a physical technique called “diffraction” (explained in detail
in IEI) to make the regressors. Instead of simply shifting on the time axis, diffraction
shifts on the depth axis, which results in subtle changes in hyperbola curvature.

Figure 9.9: Left is the original data. Next is the result of using NMO in the re-
gressors. Next, the result of downward continuation in the regressors. On the right,
velocity scans were also used. Rectangles outline certain or likely multiple reflections.
hyp-veld [NR]

The downward-continuation result is significantly better than the NMO result,
but it does contain some suspicious reflections (boxed). My final effort, shown on



228 CHAPTER 9. HYPERBOLA TRICKS

the right, includes the idea that the data contains random noise which could be win-
dowed away in velocity space. To understand how this was done, recall that the
basic model is d ≈ ∑

i αixi, where d is the left panel, αi are constants determined
by least squares, and xi are the regressors, which are panels like d but delayed and
diffracted. Let V denote an operator that transforms to velocity space. Instead
of solving the regression d ≈ ∑

i αixi, I solved the regression Vd ≈ ∑
i αiVxi and

used the resulting values of αi in the original (t, x)-space. (Mathematically, I did
the same thing when making Figure ??.) This procedure offers the possible advan-
tage that a weighting function can be used in the velocity space. Applying all these
ideas, we see that a reflector remains which looks more like a multiple than a primary.

A regression (d ≈ ∑i αixi) can be done in any space. You must be able to transfer
into that space (that is, to make Vd and Vxi) but you do not need to be able to
transform back from that space (you do not need V−1). You should find the αi
in whatever space you are able to define the most meaningful weighting function.

A proper “industrial strength” attack on multiple reflections involves all the meth-
ods discussed above, wave-propagation phenomena described in IEI, and judicious
averaging in the space of source and receiver distributions.

9.3 References

Claerbout, J.F., 1986, Simultaneous pre-normal moveout and post-normal moveout
deconvolution: Geophysics, 51, 1341-1354.



312 CHAPTER 9. HYPERBOLA TRICKS



Index

airgun, 9

causality, 6

deconvolution, 7
deconvolution

geometry based, 7
dereverberation, 7
designature, 7
differentiate, 6
divergence, 11
divergence

amplitude, 11

filter
rho, 6

halfdifa subroutine, 6
halo, 6
hyperbola, 1

mesh, 2
multiple, 7

NMO with multiple regression, 10

pixel precise, 2
pixel-precise, 2
pseudocode, 1

rho filter, 6

seismogram
multiple-free, 11
one-dimensional, 11

slant stack, 6
soil, 9
subroutine

halfdifa, half-order derivative, 6
vspray, velocity spectrum, 4

vspray subroutine, 4

313



Chapter 10

Spectrum and phase

In this chapter we will examine

• 90◦ phase shift, analytic signal, and Hilbert transform.

• spectral factorization, i.e., finding a minimum-phase wavelet to fit any spectrum.

• a “cookbook” for Butterworth causal bandpass filters.

• phase delay, group delay, and beating.

• where the name “minimum phase” came from.

• what minimum phase implies for energy delay.

10.1 HILBERT TRANSFORM

Chapter 9 explains that many plots in this book have various interpretations. Super-
ficially, the plot pairs represent cosine transforms of real even functions. But since
the functions are even, their negative halves are not shown. An alternate interpreta-
tion of the plot pairs is that one signal is real and causal. This is illustrated in full
detail in Figure 1.1. Half of the values in Figure 1.1 convey no information: these
are the zero values at negative time, and the negative frequencies of the FT. In other
words, the right half of Figure 1.1 is redundant, and is generally not shown. Like-
wise, the bottom plot, which is the imaginary part, is generally not shown, because
it is derivable in a simple way from given information. Computation of the unseen
imaginary part is called “Hilbert transform.” Here we will investigate details and
applications of the Hilbert transform. These are surprisingly many, including 90◦

phase-shift filtering, envelope functions, the instantaneous frequency function, and
relating amplitude spectra to phase spectra.

Ordinarily a function is specified entirely in the time domain or entirely in the
frequency domain. The Fourier transform then specifies the function in the other

229



230 CHAPTER 10. SPECTRUM AND PHASE

Figure 10.1: Both positive and
negative times and frequencies of
a real causal response (top) and
real (mid) and imaginary (bot-
tom) parts of its FT. spec-intro
[NR]

domain. The Hilbert transform arises when half the information is in the time
domain and the other half is in the frequency domain. (Algebraically speaking, any
fractional part could be given in either domain.)

10.1.1 A Z-transform view of Hilbert transformation

Let xt be an even function of t. The definition Z = eiω gives Z−n +Zn = 2 cosωn; so

X(Z) = · · ·+ x1Z
−1 + x0 + x1Z + x2Z

2 + · · · (10.1)

X(Z) = x0 + 2x1 cosω + 2x2 cos 2ω + · · · (10.2)

Now make up a new function Y (Z) by replacing cosine by sine in (1.2):

Y (Z) = 2x1 sinω + 2x2 sin 2ω + · · · (10.3)

Recalling that Z = cosω + i sinω, we see that all the negative powers of Z cancel
from X(Z) + iY (Z), giving a causal C(Z):

C(Z) =
1

2
[X(Z) + iY (Z)] =

1

2
x0 + x1Z + x2Z

2 + · · · (10.4)

Thus, for plot pairs, the causal response is ct, the real part of the FT is equation (1.2),
and the imaginary part not usually shown is given by equation (1.3).

10.1.2 The quadrature filter

Beginning with a causal response, we switched cosines and sines in the frequency
domain. Here we do so again, except that we interchange the time and frequency
domains, getting a more physical interpretation.



10.1. HILBERT TRANSFORM 231

A filter that converts sines into cosines is called a “90◦ phase-shift filter” or a
“quadrature filter.” More specifically, if the input is cos(ωt+ φ1), then the output
should be cos(ωt + φ1 − π/2). An example is given in Figure 1.2. Let U(Z) denote

Figure 10.2:
with quadrature filter yields
phase-shifted signal (bot-
tom). ] Input (top) filtered
with quadrature filter yields
phase-shifted signal (bottom).
spec-hilb0 [NR]

the Z-transform of a real signal input and Q(Z) denote a quadrature filter. Then the
output signal is

V (Z) = Q(Z) U(Z) (10.5)

Let us find the numerical values of qt. The time-derivative operation has the
90◦ phase-shifting property we need. The trouble with a differentiator is that higher
frequencies are amplified with respect to lower frequencies. Recall the FT and take
its time derivative:

b(t) =
∫
B(ω)e−iωtdω (10.6)

db

dt
=

∫
−iωB(ω)e−iωtdω (10.7)

Thus we see that time differentiation corresponds to the weight factor −iω in the
frequency domain. The weight −iω has the proper phase but the wrong amplitude.
The desired weight factor is

Q(ω) =
−iω
|ω| = −i sgnω (10.8)

where sgn is the “signum” or “sign” function. Let us transform Q(ω) into the
domain of sampled time t = n:

qn =
1

2π

∫ π

−π
Q(ω)e−iωndω (10.9)

=
i

2π

∫ 0

−π
e−iωndω − i

2π

∫ π

0
e−iωndω

=
i

2π

 e−iωn
−in

∣∣∣∣∣
0

−π
−e
−iωn

−in

∣∣∣∣∣
π

0


=

1

2πn
(−1 + e+inπ + e−inπ − 1)

=

{
0 for n even
−2
πn

for n odd
(10.10)



232 CHAPTER 10. SPECTRUM AND PHASE

Examples of filtering with qn are given in Figure 1.2 and 1.3.

Since qn does not vanish for negative n, the quadrature filter is nonrealizable
(that is, it requires future inputs to create its present output). If we were discussing
signals in continuous time rather than sampled time, the filter would be of the form
1/t, a function that has a singularity at t = 0 and whose integral over positive t is
divergent. Convolution with the filter coefficients qn is therefore painful because the
infinite sequence drops off slowly. Convolution with the filter qt is called “Hilbert
transformation.”

Figure 10.3: A Hilbert-transform pair. spec-hilb [NR]

10.1.3 The analytic signal

The so-called analytic signal can be constructed from a real-valued time series ut
and itself 90◦ phase shifted, i.e., vt can be found using equation (1.5). The analytic
signal is gt, where

G(Z) = U(Z) + iV (Z) = [1 + iQ(Z)] U(Z) (10.11)

In the time domain, the filter [1 + iQ(Z)] is δt + iqt, where δt is an impulse function
at time t = 0. The filter 1 + iQ(Z) = 1 + ω/|ω| vanishes for negative ω. Thus it
is a real step function in the frequency domain. The values all vanish at negative
frequency.

We can guess where the name “analytic signal” came from if we think back
to Z-transforms and causal functions. Causal functions are free of poles inside the
unit circle, so they are “analytic” there. Their causality is the Fourier dual to the
one-sidedness we see here in the frequency domain.

A function is “analytic” if it is one-sided in the dual (Fourier) domain.



10.1. HILBERT TRANSFORM 233

10.1.4 Instantaneous envelope

The quadrature filter is often used to make the envelope of a signal. The envelope

signal can be defined by et =
√
u2
t + v2

t . Alternatively, with the analytic signal

gt = ut + ivt, the squared envelope is e2
t = gtḡt.

A quick way to accomplish the 90◦ phase-shift operation is to use Fourier trans-
formation. Begin with ut + i · 0, and transform it to the frequency domain. Then
multiply by the step function. Finally, inverse transform to get gt = ut + ivt, which
is equivalent to (δt + iqt) ∗ ut.

Figure 10.4: Left is a field profile. Middle is the unsmoothed envelope function.
Right is the smoothed envelope. The vertical axis is time and the horizontal axis
is space. Independent time-domain calculations are done at each point in space.
spec-envelope [ER]

Sinusoids have smooth envelope functions, but that does not mean real seis-
mograms do. Figure 1.4 gives an example of a field profile and unsmoothed and
smoothed envelopes. Before smoothing, the stepout (alignment) of the reflections
is quite clear. In the practical world, alignment is considered to be a manifestation
of phase. An envelope should be a smooth function, such as might be used to scale
data without altering its phase. Hence the reason for smoothing the envelope.

If you are interested in wave propagation, you might recognize the possibility
of using analytic signals. Energy stored as potential energy is 90◦ out of phase
with kinetic energy, so ut might represent scaled pressure while vt represents scaled
velocity. Then w̄twt is the instantaneous energy. (The scales are the square root
of compressibility and the square root of density.)



234 CHAPTER 10. SPECTRUM AND PHASE

10.1.5 Instantaneous frequency

The phase φt of a complex-valued signal gt = ut+ivt is defined by φt = arctan(vt/ut).
The instantaneous frequency is dφ/dt. Before forming the derivative, recall the
definition of a complex logarithm of g:

g = reiφ

ln g = ln |r|+ ln eiφ

= ln |r|+ iφ
(10.12)

Hence, φ = = ln g. The instantaneous frequency is

ωinstantaneous =
dφ

dt
= =d

dt
ln g(t) = =1

g

dg

dt
(10.13)

For a signal that is a pure sinusoid, such as g(t) = g0e
iωt, equation (1.13) clearly gives

the right answer. When various frequencies are simultaneously present, we can hope
that (1.13) gives a sensible average.

Trouble can arise in (1.13) when the denominator g gets small, which happens
whenever the envelope of the signal gets small. This difficulty can be overcome by
careful smoothing. Rationalize the denominator by multiplying by the conjugate
signal, and then smooth locally a little (as indicated by the summation sign below):

ω̂smoothed = =
∑

ḡ(t) d
dt
g(t)∑

ḡ(t) g(t)
(10.14)

(Those of you who have studied quantum mechanics may recognize the notion of
“expectation of an operator.” You will also see why the wave probability function of
quantum physics must be complex valued: as a consequence of the analytic signal
eliminating negative frequencies from the average. If the negative frequencies were
not eliminated, then the average frequency would be zero.)

What range of times should be smoothed in equation (1.14)? Besides the nature
of the data, the appropriate smoothing depends on the method of representing d

dt
. To

prepare a figure, I implemented d
dt

by multiplying by −iω. (This is more accurate than
finite differences at high frequencies, but has the disadvantage that the discontinuity
in slope at the Nyquist frequency gives an extended transient in the time domain.)
The result is shown in Figure 1.5. Inspection of the figure shows that smoothing is
even more necessary for instantaneous frequency than for envelopes, and this is not
surprising because the presence of d

dt
makes the signal rougher. Particularly notice

times in the range 400-512 where the sinusoids are truncated. There the unsmoothed
instantaneous frequency becomes a large rapid oscillation near the Nyquist frequency.
This roughness is nicely controlled by (1, 2, 1) smoothing.

It is gratifying to see that a spike added to the sinusoids (at point 243) causes a
burst of high frequency. Also interesting to notice is where an oscillation approaches
the axis and then turns away just before or just after crossing the axis.



10.1. HILBERT TRANSFORM 235

Figure 10.5: A sum of three sinusoids (top), unsmoothed instantaneous frequency
(middle), and smoothed instantaneous frequency (bottom). spec-node [NR]

Figure 10.6: A field profile (left), instantaneous frequency smoothed only with (1,2,1)
(middle), and smoothed more heavily (right). spec-frequency [ER]



236 CHAPTER 10. SPECTRUM AND PHASE

An example of instantaneous frequency applied to field data is shown in Fig-
ure 1.6.

The instantaneous-frequency idea can also be applied to the space axis. This
will be more easily understood by readers familiar with the methodology of imaging
and migration. Instead of temporal frequency ω = dφ/dt, we compute the spatial
frequency kx = dφ/dx. Figure 1.7 gives an example. Analogously, we could make
plots of local dip kx/ω.

Figure 10.7: A field profile (left), kx smoothed over x only (center), and smoothed
over t and x (right). spec-kx [ER]

EXERCISES:

1 Let ct be a causal complex-valued signal. How does X(Z) change in equation
(1.2), and how must Y (Z) in equation (1.3) be deduced from X(Z)?

2 Figure 1.3 shows a Hilbert-transform pair, the real and imaginary parts of the
Fourier transform of a causal response. Describe the causal response.

3 Given Y (Z) = Q(Z)X(Z), prove that the envelope of yt is the same as the
envelope of xt.

4 Using partial fractions, convolve the waveform

2

π

(
. . . ,−1

5
, 0,−1

3
, 0,−1, 0, 1, 0,

1

3
, 0,

1

5
, . . .

)
with itself. What is the interpretation of the fact that the result is (. . . , 0, 0,−1, 0, 0, . . .)?
(hint: π2/8 = 1 + 1

9
+ 1

25
+ 1

49
+ . . ..)



10.2. SPECTRAL FACTORIZATION 237

5 Using the fast-Fourier-transform matrix, we can represent the quadrature filter
Q(ω) by the column vector

−i(0, 1, 1, 1, . . . , 0,−1,−1,−1, . . . ,−1)′

Multiply this vector into the inverse-transform matrix to show that the transform
is proportional to (cosπk/N)/(sinπk/N). What is the scale factor? Sketch the
scale factor for k � N , indicating the limit N →∞. (hint: 1+x+x2+. . .+xN =
(1− xN+1)/(1− x).)

10.2 SPECTRAL FACTORIZATION

The “spectral factorization” problem arises in a variety of physical contexts. It is
this: given a spectrum, find a minimum-phase wavelet that has that spectrum. We
will see how to make this wavelet, and we will recognize that it is unique. (It is unique
except for a trivial aspect. The negative of any wavelet has the same spectrum as the
wavelet, and, more generally, any wavelet can be multiplied by any complex number
of unit magnitude, such as ±i, etc.)

First consider the simpler problem in which the wavelet need not be causal. We can
easily find a symmetric wavelet with any spectrum (which by definition is an energy
or power). We simply take the square root of the spectrum—this is the amplitude
spectrum. We then inverse transform the amplitude spectrum to the time domain,
and we have a symmetric wavelet with the desired spectrum.

The prediction-error filter discussed in chapter 7 is theoretically obtainable by
spectral factorization of an inverse spectrum. The Kolmogoroff method of spectral
factorization, which we will be looking at here, is much faster than the time-domain,
least-squares methods considered in chapter 7 and the least-squares methods given
in FGDP. Its speed motivates its widespread practical use.

Figure 10.8: Left are given wavelets, and right are minimum-phase equivalents.
spec-mpsamples [NR]

Some simple examples of spectral factorization are given in Figure 1.8. For all
but the fourth signal, the spectrum of the minimum-phase wavelet clearly matches



238 CHAPTER 10. SPECTRUM AND PHASE

that of the input. Wavelets are shifted to t = 0 and turned backwards. In the fourth
case, the waveshape changes into a big pulse at zero lag. As the Robinson theorem
introduced on page 26 suggests, minimum-phase wavelets tend to decay rapidly after
a strong onset. I imagined that hand-drawn wavelets with a strong onset would rarely
turn out to be perfectly minimum-phase, but when I tried it, I was surprised at how
easy it seemed to be to draw a minimum-phase wavelet. This is shown on the bottom
of Figure 1.8.

To begin understanding spectral factorization, notice that the polar form of any
complex number puts the phase into the exponential, i.e., x+iy = |r|eiφ = eln |r|+iφ. So
we look first into the behavior of exponentials and logarithms of Fourier transforms.

10.2.1 The exponential of a causal is causal.

Begin with a causal response ct and its associated C(Z). The Z-transform C(Z)
could be evaluated, giving a complex value for each real ω. This complex value could
be exponentiated to get another value, say

B(Z(ω)) = eC(Z(ω)) (10.15)

Next, we could inverse transform B(Z(ω)) back to bt. We will prove the amazing fact
that bt must be causal too.

First notice that if C(Z) has no negative powers of Z, then C(Z)2 does not either.
Likewise for the third power or any positive integer power, or sum of positive integer
powers. Now recall the basic power-series definition of the exponential function:

ex = 1 + x+
x2

2
+

x3

2 · 3 +
x4

2 · 3 · 4 +
x5

2 · 3 · 4 · 5 + · · · (10.16)

Including equation (1.15) gives the exponential of a causal:

B(Z) = eC(Z) = 1 + C(Z) +
C(Z)2

2
+
C(Z)3

2 · 3 +
C(Z)4

2 · 3 · 4 + · · · (10.17)

Each term in the infinite series corresponds to a causal response, so the sum, bt, is
causal. (If you have forgotten the series for the exponential function, then recall that
the solution to dy/dx = y is the definition of the exponential function y(x) = ex,
and that the power series satisfies the differential equation term by term, so it must
be the exponential too. The factorials in the denominators assure us that the power
series always converges, i.e., it is finite for any finite x.)

Putting one polynomial into another or one infinite series into another is an oner-
ous task, even if it does lead to a wavelet that is exactly causal. In practice we do
operations that are conceptually the same, but for speed we do them with discrete
Fourier transforms. The disadvantage is periodicity, i.e., negative times are repre-
sented computationally like negative frequencies. Negative times are the last half of



10.2. SPECTRAL FACTORIZATION 239

Figure 10.9: Exponentials.
spec-eZ [NR]

the elements of a vector, so there can be some blurring of late times into negative
ones.

Figure 1.9 gives examples of equation (1.17) for C = Z and C = 4Z. Unfortu-
nately, I do not have an analytic calculation to confirm the validity of these examples.

10.2.2 Finding a causal wavelet from a prescribed spectrum

To find a causal wavelet from a prescribed spectrum, we will need to form the loga-
rithm of the spectrum. Since a spectrum can easily vanish, and since the logarithm of
zero is infinite, there is a pitfall. To prepare ourselves, we first examine the log spectra
example given in Figure 1.10. On the infinite domain, the FT of a box function is a
sinc whose zeros become minus infinities in the logarithm. On the discrete domain,
exact zeros may occur or not. The transform of a triangle is a sinc squared, but since
this triangle was imperfectly drawn (by me), its transform does not go identically to
zero. The sinc function drops off as ω, and sinc squared drops off as ω2. We confirm
this on the logarithm plot: sinc squared drops off twice as much.

Figure 10.10: Log spectra of a box
function and a triangle function.
spec-logspec [NR]

Now for the task of going from a spectrum to a causal wavelet. Take as given the
spectrum of the causal wavelet B(Z). This means that we are not given B(Z) itself,
but we are given S(Z) = B(1/Z)B(Z). Assuming no zeros in the spectrum S(ω), it
is easy to find the log of the spectrum U = lnS. The spectrum may be specified as
autocorrelation coefficients or values on the unit circle. Thus,

B(1/Z)B(Z) = S(Z) = elnS(Z) = eU(Z) = eC(1/Z)+C(Z) = eC(1/Z) eC(Z) (10.18)

Given the spectrum S(Z) for each value on the unit circle, we could deduce the log
spectrum U(Z) = lnS(Z) at each point on the unit circle:

U(Z) = ln[S(Z)] = C(1/Z) + C(Z) (10.19)

This is the answer we have been looking for. Given U(Z) for all real values of ω,
we could inverse transform to the time domain, obtaining the two-sided function



240 CHAPTER 10. SPECTRUM AND PHASE

ut = c̄−t + ct. Setting to zero the coefficients at negative times eliminates c̄−t, leaving
just ct; hence C(Z). And we already know that the exponential of C(Z) gives B(Z)
with a causal bt. This method is known as “Kolmogoroff spectral factorization,”
after the mathematician who discovered it.

The program mpwave() below begins with a wavelet, forms its spectrum, and
then calls kolmogoroff() to factor the spectrum. The program kolmogoroff() first
takes the logarithm of the spectrum, then returns to the time domain and sets to zero
the noncausal part. It returns to frequency, exponentiates, and returns to the time
domain with a wavelet that will be proven to be minimum-phase.

subroutine mpwave( n, cx) # minimum phase equivalent wavelet
integer i, n # input: cx = any wavelet
complex cx(n) # output: cx = min phase wavelet
call ftu( 1., n, cx) # with same spectrum.
call scaleit( sqrt(1.*n), 2*n, cx)
do i= 1, n

cx(i) = cx(i) * conjg( cx(i))
call kolmogoroff( n, cx)
return; end

subroutine kolmogoroff( n, cx) # Spectral factorization.
integer i, n # input: cx = spectrum
complex cx(n) # output: cx = min phase wavelet
do i= 1, n

cx(i) = clog( cx(i) )
call ftu( -1., n, cx); call scaleit( sqrt(1./n), 2*n, cx)
cx(1 ) = cx(1 ) / 2.
cx(1+n/2) = cx(1+n/2) / 2.
do i= 1+n/2+1, n

cx(i) = 0.
call ftu( +1., n, cx); call scaleit( sqrt(1.*n), 2*n, cx)
do i= 1, n

cx(i) = cexp( cx(i))
call ftu( -1., n, cx); call scaleit( sqrt(1./n), 2*n, cx)
return; end

Between the times when negative lags are set to zero and positive lags are left un-
touched are two points that are scaled by half. The overall scaling was chosen to
preserve the scale of the input wavelet.

The first test I tried on this program was the input wavelet (1, 2, 0, 0). The desired
result is that the wavelet should time-reverse itself to (2, 1, 0, 0). The actual result was
(1.9536, 1.0837, 0.0464, -0.0837), imperfect because the four-point Fourier transform
is a summation around the unit circle, whereas theoretically an integration is called
for. Therefore, better results can be obtained by padding additional zeros after the
input wavelet. Also, you might notice that the program is designed for complex-valued
signals. As typical of Fourier transform with single-word precision, the imaginary
parts were about 10−6 of the real parts instead of being precisely zero.

Some examples of spectral factorization are given in Figure 1.11.



10.2. SPECTRAL FACTORIZATION 241

Figure 10.11: Examples of log spectra and their associated minimum-phase wavelets.
spec-example [NR]

10.2.3 Why the causal wavelet is minimum-phase

Next we see why the causal wavelet B(Z), which we have made from the prescribed
spectrum, turns out to be minimum-phase. First return to the original definition
of minimum-phase: a causal wavelet is minimum-phase if and only if its inverse is
causal. We have our wavelet in the form B(Z) = eC(Z). Consider another wavelet
A(Z) = e−C(Z), constructed analogously. By the same reasoning, at is also causal.
Since A(Z)B(Z) = 1, we have found a causal, inverse wavelet. Thus the bt wavelet is
minimum-phase.

Since the phase is a Fourier series, it must be periodic; that is, it cannot increase
indefinitely with ω as it does for the nonminimum-phase wavelet (see Figure 1.19).

10.2.4 Pathological examples

The spectral-factorization algorithm fails when an infinity is encountered. This
happens when the spectrum becomes zero, so that its logarithm becomes minus infin-
ity. This can occur in a benign way—for example, in the case of the spectrum of the
wavelet (1, 1), where the infinity occurs at the Nyquist frequency. We could smooth
the spectrum near the Nyquist before we take the logarithm. On the other hand,
the pathology can be more extreme. Convolving (1, 1) with itself N times, we see
that the result and its spectrum tend to Gaussians. So, at the Nyquist frequency,
smoothing would only replace zero by a very tiny number.

Figure 1.12 shows functions whose spectra contain zeros, along with their minimum-
phase equivalents. When the logarithm of zero arises during the computation, it is
replaced by the log of 10−30. It is surprising that the triangle suffered so much less
than the other two functions. It seems that minor imperfection in specifying the tri-
angle resulted in a spectrum that did not have the theoretical zeros of sinc squared.



242 CHAPTER 10. SPECTRUM AND PHASE

Figure 10.12: Functions whose
spectra contain zeros, along with
their minimum-phase equivalents,
as computed by discrete Fourier
transform. spec-patho [NR]

10.2.5 Relation of amplitude to phase

As we learned from equation (1.19), a minimum-phase function is determined com-
pletely from its spectrum. Thus its phase is determinable from its spectrum. Like-
wise, we will see that, except for a scale, the spectrum is determinable from the
phase.

So far we have not discussed the fact that spectral factorization implicitly uses
Hilbert transformation. Somehow we simply generated a phase. To see how the
phase arose, recall equation (1.18) and (1.19):

Sk = elnSk = eUk = e(Uk−iΦk)/2 e(Uk+iΦk)/2 = eCkeCk = BkBk (10.20)

Where did Φk come from? We took Uk + i0 to the time domain, obtaining ut. Then
we multiplied ut by a real-valued step function of time. This multiplication in the
time domain is what created the phase, because multiplication in the time domain
implies a convolution in the frequency domain. Recall that the Fourier transform of
a real-valued step function arises with Hilbert transform. Multiplying in time with a
step means that, in frequency, Uk has been convolved with δk=0 + i× (90◦ phase-shift
filter). So Uk is unchanged and a phase, Φk, has been generated. This explanation
will be somewhat clearer if you review the Z-transform approach discussed at the
beginning of the chapter, because there we can see both the frequency domain and
the time domain in one expression.

To illustrate different classes of discontinuity, pulse, step, and slope, Figure 1.13
shows another Hilbert-transform pair.

Figure 10.13: A Hilbert-transform pair. spec-hilb2 [NR]



10.3. A BUTTERWORTH-FILTER COOKBOOK 243

EXERCISES:

1 What is the meaning of minimum-phase waveform if the roles of the time and
frequency domains are interchanged?

2 Show how to do the inverse Hilbert transform: given φ, find u. What is the
interpretation of the fact that we cannot get u0?

3 Consider a model of a portion of the earth where x is the north coordinate, +z
represents altitude above the earth, and magnetic bodies are distributed in the
earth, creating no component of magnetic field in the east-west direction. We
can show that the magnetic field h above the earth is represented by[

hx(x, z)
hz(x, z)

]
=
∫ +∞

−∞
F (k)

[
−ik
|k|

]
eikx−|k|z dk

Here F (k) is some spatial frequency spectrum.

(a) By using Fourier transforms, how do you compute hx(x, 0) from hz(x, 0) and
vice versa?

(b) Given hz(x, 0), how do you compute hz(x, z)?

(c) Notice that, at z = 0,

f(x) = hz(x) + ihx(x) =
∫ +∞

−∞
eikxF (k) (|k|+ k) dk

and that F (k)(|k| + k) is a one-sided function of k. With a total field
magnetometer we observe that

h2
x(x) + h2

z(x) = w(x)w̄(x)

What can you say about obtaining F (k) from this?

(d) How unique are hx(x) and hz(x) if f(x)f̄(x) is given?

4 Test this idea: write code to factor X(Z) into X(Z) = A(Z)B(Z), where B(Z)
is minimum-phase and A(Z) is maximum-phase. Maximum-phase means that
ZNA(1/Z) is minimum-phase. First compute U(ω) = lnX(ω). Then remove a
linear trend in the phase of U(ω) to get N. Then split U with its trend removed
into causal and anticausal parts U(Z) = C−(1/Z)+C+(Z). Finally, form B(Z) =
expC+(Z) and ZNA(1/Z) = exp(C−(Z)).

10.3 A BUTTERWORTH-FILTER COOKBOOK

An ideal bandpass filter passes some range of frequencies without distortion and
suppresses all other frequencies. Further thought shows that what we think of as
the ideal bandpass filter, a rectangle function of frequency, is instead far from ideal,



244 CHAPTER 10. SPECTRUM AND PHASE

because its time-domain representation (sin ω0t)/(ω0t) is noncausal and decays much
too slowly with time for many practical uses. The appropriate bandpass filter is one
whose time decay can be chosen to be reasonable (in combination with a reasonable
necessary compromise on the shape of the rectangle). Butterworth filters fulfill
these needs. They are causal and of various orders, the lowest order being best
(shortest) in the time domain, and the higher orders being better in the frequency
domain. Well-engineered projects often include Butterworth filters. Unfortunately
they are less often used in experimental work because of a complicated setting-up
issue that I am going to solve for you here. I will give some examples and discuss
pitfalls as well.

The main problem is that there is no simple mathematical expression for the filter
coefficients as a function of order and cutoff frequency.

Analysis starts from an equation that for large-order n is the equation of a box:

B(ω)B(ω) =
1

1 +
(
ω
ω0

)2n (10.21)

When |ω| < ω0, this Butterworth low-pass spectrum is about unity. When |ω| > |ω0|,
the spectrum drops rapidly to zero. The magnitude |B(ω)| (with some truncation
effects to be described later) is plotted in Figure 1.14 for various values of n.

Figure 10.14: Spectra of Butterworth filters of various-order n. spec-butf [NR]

Conceptually, the easiest form of Butterworth filtering is to take data to the fre-
quency domain and multiply by equation (1.21), where you have selected some value
of n to compromise between the demands of the frequency domain (sharp cutoff) and
the time domain (rapid decay). Of course, the time-domain representation of equa-
tion (1.21) is noncausal. If you prefer a causal filter, you could take the Butterworth
spectrum into a spectral-factorization program such as kolmogoroff().

The time-domain response of the Butterworth filter is infinitely long, although
a Butterworth filter of degree n can be well approximated by a ratio of nth-order
polynomials. Since, as we will see, n is typically in the range 2-5, time-domain



10.3. A BUTTERWORTH-FILTER COOKBOOK 245

filtering is quicker than FT. To proceed, we need to express ω in terms of Z, where
Z = eiω∆t. This is done in an approximate way that is valid for frequencies far from
the Nyquist frequency. Intuitively we know that time differentiation is implied by
−iω. We saw that in sampled time, differentiation is generally represented by the
bilinear transform, equation (??): −iω̂∆t = 2(1− Z)/(1 + Z). Thus a sampled-time
representation of ω2 = (iω)(−iω) is

ω2 = 4
1− Z−1

1 + Z−1

1− Z
1 + Z

(10.22)

Substituting equation (1.22) into (1.21) we find

B
(

1

Z

)
B(Z) =

[(1 + Z−1)(1 + Z)]n

[(1 + Z−1)(1 + Z)]n + [ 4
ω2

0
(1− Z−1)(1− Z)]n

(10.23)

B
(

1

Z

)
B(Z) =

N(Z−1)N(Z)

D(Z−1)D(Z)
(10.24)

where the desired, causal, Butterworth, discrete-domain filter is B(Z) = N(Z)/D(Z).
You will be able to appreciate the enormity of the task represented by these equations
when you realize that the denominator in (1.23) must be factored into the product
of a function of Z times the same function of Z−1 to get equation (1.24). Since the
function is positive, it can be considered to be a spectrum, and factorization must be
possible.

10.3.1 Butterworth-filter finding program

To express equation (1.23) in the Fourier domain, multiply every parenthesized factor
by
√
Z and recall that

√
Z + 1/

√
Z = 2 cos(ω/2). Thus,

B(ω)B(ω) =
(2 cos ω/2)2n

(2 cos ω/2)2n + ( 4
ω0

sin ω/2)2n
(10.25)

An analogous equation holds for high-pass filters. Subroutine butter() on page 17
does both equations. First, the denominator of equation (1.25) is set up as a spectrum
and factored. The numerator could be found in the same way, but the result is already
apparent from the numerator of (1.23), i.e., we need the coefficients of (1 + Z)n.
In subroutine butter() they are simply obtained by Fourier transformation. The
occurrence of a tangent in the program arises from equation (??).

# Find the numerator and denominator Z-transforms of the Butterworth filter.
# hilo={1.,-1.} for {low,high}-pass filter
# cutoff in Nyquist units, i.e. cutoff=1 for (1,-1,1,-1...)
#
subroutine butter( hilo, cutoff, npoly, num, den)
integer npoly, nn, nw, i
real hilo, cutoff, num(npoly), den(npoly), arg, tancut, pi



246 CHAPTER 10. SPECTRUM AND PHASE

complex cx(2048)
pi = 3.14159265; nw=2048; nn = npoly - 1
tancut = 2. * tan( cutoff*pi/2. )
do i= 1, nw {

arg = (2. * pi * (i-1.) / nw) / 2.
if( hilo > 0. ) # low-pass filter

cx(i) = (2.*cos(arg) ) **(2*nn) +
(2.*sin(arg) * 2./tancut ) **(2*nn)

else # high-pass filter
cx(i) = (2.*sin(arg) ) **(2*nn) +

(2.*cos(arg) * tancut/2. ) **(2*nn)
}

call kolmogoroff( nw, cx) # spectral factorization
do i= 1, npoly

den(i) = cx(i)
do i= 1, nw # numerator

cx(i) = (1. + hilo * cexp( cmplx(0., 2.*pi*(i-1.)/nw))) ** nn
call ftu( -1., nw, cx)
do i= 1, npoly

num(i) = cx(i)
return; end

10.3.2 Examples of Butterworth filters

Spectra and log spectra of various orders of Butterworth filters are shown in Fig-
ure 1.14. They match a rectangle function that passes frequencies below the half-
Nyquist. Convergence is rapid with order. The logarithm plot shows a range of
0-3, meaning an amplitude ratio of 103 = 1000. Tiny glitches near the bottom for
high-order curves result from truncating the time axis in the time domain shown in
Figure 1.15. The time-domain truncation also explains a slight roughness on the top

Figure 10.15: Butterworth-filter
time responses for half-Nyquist
low pass. spec-butm [ER]

of the rectangle function.

In practice, the filter is sometimes run both forward and backward to achieve a
phaseless symmetrical response. This squares the spectral amplitudes, resulting in



10.3. A BUTTERWORTH-FILTER COOKBOOK 247

convergence twice as fast as shown in the figure. Notice that the higher-order curves
in the time domain (Figure 1.15) have undesirable sidelobes which ring longer with
higher orders. Also, higher-order curves have increasing delay for the main signal
burst. This delay is a consequence of the binomial coefficients in the numerator.

Another example of a low-pass Butterworth filter shows some lurking instability.
This is not surprising: a causal bandpass operator is almost a contradiction in terms,
since the word “bandpass” implies multiplying the spectrum by zero outside the
chosen band, and the word “causal” implies a well-behaved spectral logarithm. These
cannot coexist because the logarithm of zero is minus infinity. All this is another
way of saying that when we use Butterworth filters, we probably should not use
high orders. Figure 1.16 illustrates that an instability arises in the seventh-order
Butterworth filter, and even the sixth-order filter looks suspicious. If we insist on

Figure 10.16: Butterworth time
responses for a narrow-band low-
pass filter. spec-butl [ER]

using high-order filters, we can probably go to an order about twice as high as we
began with by using double precision, increasing the spectral width nw, and, if we are
really persistent, using the method of the exercises below. My favorite Butterworth
filters for making synthetic seismograms have five coefficients (fourth order). I do one
pass through a low cut at cutoff=.1 and another through a high cut at cutoff=.4.

EXERCISES:

1 Above we assumed that a bandpass filter should be made by cascading a low-
pass and a high-pass filter. Suggest a revised form of equation (1.21) for making
bandpass filters directly.

2 Notice that equation (1.21) can be factored analytically. Individual factors could
be implemented as the Z-transform filters, and the filters cascaded. This prevents
the instability that arises when many poles are combined. Identify the poles of
equation (1.21). Which belong in the causal filter and which in its time reverse?



248 CHAPTER 10. SPECTRUM AND PHASE

10.4 PHASE DELAY AND GROUP DELAY

The Fourier-domain ratio of a wave seen at B divided by a wave seen at A can be
regarded as a filter. The propagation velocity is the distance from A to B divided by
the delay. There are at least two ways to define the delay, however.

10.4.1 Phase delay

Whenever we put a sinusoid into a filter, a sinusoid must come out. The only things
that can change between input and output are the amplitude and the phase. Compar-
ing a zero crossing of the input to a zero crossing of the output measures the so-called
phase delay. To quantify this, define an input, sinωt, and an output, sin(ωt − φ).
Then the phase delay tp is found by solving

sin(ωt− φ) = sinω(t− tp)
ωt− φ = ωt− ωtp

tp = φ
ω

(10.26)

A problem with phase delay is that the phase can be ambiguous within an additive
constant of 2πN , where N is any integer. In wave-propagation theory, “phase veloc-
ity” is defined by the distance divided by the phase delay. There it is hoped that the
2πN ambiguity can be resolved by observations tending to zero frequency or physical
separation.

10.4.2 Group delay

A more interesting kind of delay is “group delay,” corresponding to group velocity
in wave-propagation theory. Often the group delay is nothing more than the phase
delay. This happens when the phase delay is independent of frequency. But when
the phase delay depends on frequency, then a completely new velocity, the “group
velocity,” appears. Curiously, the group velocity is not an average of phase velocities.

The simplest analysis of group delay begins by defining a filter input xt as the
sum of two frequencies:

xt = cosω1t+ cosω2t (10.27)

By using a trigonometric identity,

xt = 2 cos(
ω1 − ω2

2
t)︸ ︷︷ ︸

beat

cos(
ω1 + ω2

2
t) (10.28)

we see that the sum of two cosines looks like a cosine of the average frequency multi-
plied by a cosine of half the difference frequency. Since the frequencies in Figure 1.17
are taken close together, the difference frequency factor in (1.28) represents a slowly



10.4. PHASE DELAY AND GROUP DELAY 249

Figure 10.17: Two nearby frequencies beating. spec-beat [NR]

variable amplitude multiplying the average frequency. The slow (difference frequency)
modulation of the higher (average) frequency is called “beating.”

The beating phenomenon is also called “interference,” although that word is
deceptive. If the two sinusoids were two wave beams crossing one another, they
would simply cross without interfering. Where they are present simultaneously, they
simply add.

Each of the two frequencies could be delayed a different amount by a filter, so
take the output of the filter yt to be

yt = cos(ω1t− φ1) + cos(ω2t− φ2) (10.29)

In doing this, we have assumed that neither frequency was attenuated. (The group
velocity concept loses its simplicity and much of its utility in dissipative media.)
Using the same trigonometric identity on (1.29) as we used to get (1.28), we find that

yt = 2 cos(
ω1 − ω2

2
t− φ1 − φ2

2
)︸ ︷︷ ︸

beat

cos(
ω1 + ω2

2
t− φ1 + φ2

2
) (10.30)

Rewriting the beat factor in terms of a time delay tg, we now have

cos[
ω1 − ω2

2
(t− tg)] = cos(

ω1 − ω2

2
t− φ1 − φ2

2
) (10.31)

(ω1 − ω2)tg = φ1 − φ2

tg =
φ1 − φ2

ω1 − ω2
=

∆φ

∆ω
(10.32)

For a continuum of frequencies, the group delay is

tg =
dφ

dω
(10.33)

10.4.3 Group delay as a function of the FT

We will see that the group delay of a filter P is a simple function of the Fourier
transform of the filter. I have named the filter P to remind us that the theorem strictly
applies only to all-pass filters, though in practice a bit of energy absorption might be



250 CHAPTER 10. SPECTRUM AND PHASE

OK. The phase angle φ could be computed as the arctangent of the ratio of imaginary
to real parts of the Fourier transform, namely, φ(ω) = arctan[=P (ω)/<P (ω)]. As
with (1.12), we use φ = = lnP ; and from (1.33) we get

tg =
dφ

dω
= = d

dω
lnP (ω) = = 1

P

dP

dω
(10.34)

which could be expressed as the Fourier dual to equation (1.14).

10.4.4 Observation of dispersive waves

Various formulas relate energy delay to group delay. This chapter illuminates those
that are one-dimensional. In observational work, it is commonly said that “what you
see is the group velocity.” This means that when we see an apparently sinusoidal
wave train, its distance from the source divided by its traveltime (group delay) is
the group velocity. An interesting example of a dispersive wave is given in FGDP
(Figure 1-11).

10.4.5 Group delay of all-pass filters

We have already discussed (page ??) all-pass filters, i.e., filters with constant unit
spectra. They can be written as P (Z)P (1/Z) = 1. In the frequency domain, P (Z)
can be expressed as eiφ(ω), where φ is real and is called the “phase shift.” Clearly,
PP = 1 for all real φ. It is an easy matter to make a filter with any desired phase
shift—we merely Fourier transform eiφ(ω) into the time domain. If φ(ω) is arbitrary,
the resulting time function is likely to be two-sided. Since we are interested in physical
processes that are causal, we may wonder what class of functions φ(ω) corresponds
to one-sided time functions. The answer is that the group delay τg = dφ/dω of a
causal all-pass filter must be positive.

Proof that dφ/dω > 0 for a causal all-pass filter is found in FGDP; there is no
need to reproduce the algebra here. The proof begins from equation (??) and uses
the imaginary part of the logarithm to get phase. Differentiation with respect to ω
yields a form that is recognizable as a spectrum and hence is always positive.

A single-pole, single-zero all-pass filter passes all frequency components with con-
stant gain and a phase shift that can be adjusted by the placement of the pole. Taking
Z0 near the unit circle causes most of the phase shift to be concentrated near the fre-
quency where the pole is located. Taking the pole farther away causes the delay to
be spread over more frequencies. Complicated phase shifts or group delays can be
built up by cascading single-pole filters.

The above reasoning for a single-pole, single-zero all-pass filter also applies to
many roots, because the phase of each will add, and the sum of τg = dφ/dω > 0 will
be greater than zero.



10.5. PHASE OF A MINIMUM-PHASE FILTER 251

The Fourier dual to the positive group delay of a causal all-pass filter is that the
instantaneous frequency of a certain class of analytic signals must be positive. This
class of analytic signals is made up of all those with a constant envelope function, as
might be approximated by field data after the process of automatic gain control.

EXERCISES:

1 Let xt be some real signal. Let yt = xt+3 be another real signal. Sketch the phase
as a function of frequency of the cross-spectrum X(1/Z)Y (Z) as would a computer
that put all arctangents in the principal quadrants −π/2 < arctan < π/2. Label
the axis scales.

2 Sketch the amplitude, phase, and group delay of the all-pass filter (1−Z0Z)/(Z0−
Z), where Z0 = (1 + ε)eiω0 and ε is small. Label important parameters on the
curve.

3 Show that the coefficients of an all-pass, phase-shifting filter made by cascading
(1− Z0Z)/ (Z0 − Z) with (1− Z0Z)/(Z0 − Z) are real.

4 A continuous signal is the impulse response of a continuous-time, all-pass filter.
Describe the function in both time and frequency domains. Interchange the words
“time” and “frequency” in your description of the function. What is a physical
example of such a function? What happens to the statement, the group delay of
an all-pass filter is positive?

5 A graph of the group delay τg(ω) shows τg to be positive for all ω. What is the
area under τg in the range 0 < ω < 2π? (hint: This is a trick question you can
solve in your head.)

10.5 PHASE OF A MINIMUM-PHASE FILTER

In chapter 3 we learned that the inverse of a causal filter B(Z) is causal if B(Z)
has no roots inside the unit circle. The term “minimum phase” was introduced
there without motivation. Here we examine the phase, and learn why it is called
“minimum.”

10.5.1 Phase of a single root

For real ω, a plot of real and imaginary parts of Z is the circle (x, y) = (cos ω, sin ω).
A smaller circle is .9Z. A right-shifted circle is 1+ .9Z. Let Z0 be a complex number,
such as x0 + iy0, or Z0 = eiω0/ρ, where ρ and ω0 are fixed constants. Consider the



252 CHAPTER 10. SPECTRUM AND PHASE

complex Z plane for the two-term filter

B(Z) = 1− Z

Z0
(10.35)

B(Z(ω)) = 1− ρei(ω−ω0) (10.36)

B(Z(ω)) = 1− ρ cos(ω − ω0)− iρ sin(ω − ω0) (10.37)

Figure 10.18: Left, complex B plane for ρ < 1. Right, for ρ > 1. spec-origin [ER]

Real and imaginary parts of B are plotted in Figure 1.18. Arrows are at frequency
ω intervals of 20◦. Observe that for ρ > 1 the sequence of arrows has a sequence of
angles that ranges over 360◦, whereas for ρ < 1 the sequence of arrows has a sequence
of angles between ±90◦. Now let us replot equation (1.37) in a more conventional
way, with ω as the horizontal axis. Whereas the phase is the angle of an arrow in
Figure 1.18, in Figure 1.19 it is the arctangent of =B/<B. Notice how different is
the phase curve in Figure 1.19 for ρ < 1 than for ρ > 1.

Real and imaginary parts of B are periodic functions of the frequency ω, since
B(ω) = B(ω + 2π). We might be tempted to conclude that the phase would be
periodic too. Figure 1.19 shows, however, that for a nonminimum-phase filter, as
ω ranges from −π to π, the phase φ increases by 2π (because the circular path in
Figure 1.18 surrounds the origin). To make Figure 1.19 I used the Fortran arctangent
function that takes two arguments, x, and y. It returns an angle between −π and +π.
As I was plotting the nonminimum phase, the phase suddenly jumped discontinuously
from a value near π to −π, and I needed to add 2π to keep the curve continuous.
This is called “phase unwinding.”

You would use phase unwinding if you ever had to solve the following problem:
given an earthquake at location (x, y), did it occur in country X? You would cir-
cumnavigate the country—compare the circle in Figure 1.18—and see if the phase
angle from the earthquake to the country’s boundary accumulated to 0 (yes) or to 2π
(no).



10.5. PHASE OF A MINIMUM-PHASE FILTER 253

Figure 10.19: Left shows real
and imaginary parts and phase
angle of equation ((1.37)), for
ρ < 1. Right, for ρ >
1. Left is minimum-phase
and right is nonminimum-phase.
spec-phase [ER]

The word “minimum” is used in “minimum phase” because delaying a filter can
always add more phase. For example, multiplying any polynomial by Z delays it and
adds ω to its phase.

For the minimum-phase filter, the group delay dφ/dω applied to Figure 1.19 is
a periodic function of ω. For the nonminimum-phase filter, group delay happens to
be a monotonically increasing function of ω. Since it is not an all-pass filter, the
monotonicity is accidental.

Because group delay dφ/dω is the Fourier dual to instantaneous frequency
dφ/dt, we can now go back to Figure 1.5 and explain the discontinuous behavior of
instantaneous frequency where the signal amplitude is near zero.

10.5.2 Phase of a rational filter

Now let us sum up the behavior of phase of the rational filter

B(Z) =
(Z − c1)(Z − c2) · · ·
(Z − a1)(Z − a2) · · · (10.38)

By the rules of complex-number multiplication, the phase of B(Z) is the sum of the
phases in the numerator minus the sum of the phases in the denominator. Since we
are discussing realizable filters, the denominator factors must all be minimum-phase,
and so the denominator phase curve is a sum of periodic phase curves like the lower
left of Figure 1.19.

The numerator factors may or may not be minimum-phase. Thus the numerator
phase curve is a sum of phase curves that may resemble either type in Figure 1.19.
If any factors augment phase by 2π, then the phase is not periodic, and the filter is
nonminimum-phase.



254 CHAPTER 10. SPECTRUM AND PHASE

10.6 ROBINSON’S ENERGY-DELAY THEOREM

Here we will see that a minimum-phase filter has less energy delay than any other
one-sided filter with the same spectrum. More precisely, the energy summed from
zero to any time t for the minimum-phase wavelet is greater than or equal to that of
any other wavelet with the same spectrum.

Here is how I prove Robinson’s energy-delay theorem: compare two wavelets,
Fin and Fout, that are identical except for one zero, which is outside the unit circle
for Fout and inside for Fin. We can write this as

Fout(Z) = (b+ sZ)F (Z) (10.39)

Fin(Z) = (s+ bZ)F (Z) (10.40)

where b is bigger than s, and F is arbitrary but of degree n. Proving the theo-
rem for complex-valued b and s is left as an exercise. Notice that the spectrum
of b + sZ is the same as that of s + bZ. Next, tabulate the terms in question.
t Fout Fin F 2

out − F 2
in

∑t
k=0(F 2

out − F 2
in)

0 bf0 sf0 (b2 − s2) f0
2 (b2 − s2) f0

2

1 bf1 + sf0 sf1 + bf0 (b2 − s2) (f1
2 − f0

2) (b2 − s2) f1
2

...
...

k bfk + sfk−1 sfk + bfk−1 (b2 − s2) (fk
2 − f 2

k−1) (b2 − s2) fk
2

...
...

n+ 1 sfn bfn (b2 − s2)(−fn2) 0

The difference, which is given in the right-hand column, is always positive. An
example of the result is shown in Figure 1.20.

Figure 10.20: p
ercentage versus time. ‘x’ for
minimum-phase wavelet. ‘o’
for nonminimum phase. ] Total
energy percentage versus time.
‘x’ for minimum-phase wavelet.
‘o’ for nonminimum phase.
spec-robinson [ER]

Notice that (s + bZ)/(b + sZ) is an all-pass filter. Multiplying by an all-pass
filter does not change the amplitude spectrum but instead introduces a zero and a
pole. The pole could cancel a preexisting zero, however. To sum up, multiplying by
a causal/anticausal all-pass filter can move zeros inside/outside the unit circle. Each



10.7. FILTERS IN PARALLEL 255

time we eliminate a zero inside the unit circle, we cause the energy of the filter to
come out earlier. Eventually we run out of zeros inside the unit circle, and the energy
comes out as early as possible.

EXERCISES:

1 Repeat the proof of Robinson’s minimum-energy-delay theorem for complex-
valued b, s, and fk. (hint: Does Fin = (s+ bZ)F or Fin = (s+ bZ)F?)

10.7 FILTERS IN PARALLEL

We have seen that in a cascade of filters the Z-transform polynomials are multiplied
together. For filters in parallel the polynomials add. See Figure 1.21.

Figure 10.21: Filters operating in
parallel. spec-parallel [NR]

We have seen also that a cascade of filters is minimum-phase if, and only if, each
element of the product is minimum-phase. Now we will find a condition that is
sufficient (but not necessary) for a sum A(Z) + G(Z) to be minimum-phase. First,
assume that A(Z) is minimum-phase. Then write

A(Z) +G(Z) = A(Z)

(
1 +

G(Z)

A(Z)

)
(10.41)

The question as to whether A(Z) + G(Z) is minimum-phase is now reduced to de-
termining whether A(Z) and 1 + G(Z)/A(Z) are both minimum-phase. We have
assumed that A(Z) is minimum-phase. Before we ask whether 1 + G(Z)/A(Z) is
minimum-phase, we need to be sure that it is causal. Since 1/A(Z) is expandable in
positive powers of Z only, then G(Z)/A(Z) is also causal. We will next see that a
sufficient condition for 1 +G(Z)/A(Z) to be minimum-phase is that the spectrum of
A exceed that of G at all frequencies. In other words, for any real ω, |A| > |G|. Thus,
if we plot the curve of G(Z)/A(Z) in the complex plane, for real 0 ≤ ω ≤ 2π, it lies
everywhere inside the unit circle. Now, if we add unity, obtaining 1 + G(Z)/A(Z),
then the curve will always have a positive real part as in Figure 1.22. Since the curve
cannot enclose the origin, the phase must be that of a minimum-phase function.

You can add garbage to a minimum-phase wavelet if you do not add too much.

This abstract theorem has an immediate physical consequence. Suppose a wave
characterized by a minimum-phase A(Z) is emitted from a source and detected at a



256 CHAPTER 10. SPECTRUM AND PHASE

Figure 10.22: A phase trajectory
as in Figure 1.18 left, but more
complicated. spec-garbage [ER]

receiver some time later. At a still later time, an echo bounces off a nearby object and
is also detected at the receiver. The receiver sees the signal Y (Z) = A(Z)+ZnαA(Z),
where n measures the delay from the first arrival to the echo, and α represents the
amplitude attenuation of the echo. To see that Y (Z) is minimum-phase, we note
that the magnitude of Zn is unity and the reflection coefficient α must be less than
unity (to avoid perpetual motion), so that ZnαA(Z) takes the role of G(Z). Thus, a
minimum-phase wave along with its echo is minimum-phase. We will later consider
wave propagation with echoes of echoes ad infinitum.

EXERCISES:

1 Find two nonminimum-phase wavelets whose sum is minimum-phase.

2 Let A(Z) be a minimum-phase polynomial of degree N . Let A′(Z) = ZNA(1/Z).
Locate in the complex Z plane the roots of A′(Z). A′(Z) is called “maximum
phase.” (hint: Work the simple case A(Z) = a0 + a1Z first.)

3 Suppose that A(Z) is maximum-phase and that the degree of G(Z) is less than
or equal to the degree of A(Z). Assume |A| > |G|. Show that A(Z) + G(Z) is
maximum-phase.

4 Let A(Z) be minimum-phase. Where are the roots of A(Z) + cZNĀ(1/Z) in
the three cases |c| < 1, |c| > 1, |c| = 1? (hint: The roots of a polynomial are
continuous functions of the polynomial coefficients.)



312 CHAPTER 10. SPECTRUM AND PHASE



Index

all-pass filter, 22
amplitude spectrum, 9
analytic signal, 4–6
autocorrelation, 11

bandpass, 19
beating, 21
butter subroutine, 17
Butterworth filter, 16

cascade of filters, 27
causal, 1, 2, 10, 19
complex-valued signal, 6

earthquake, 24
energy delay, 26
envelope, 5, 6
exponential of a causal, 10

filter
all-pass, 22
Butterworth, 16
causal bandpass, 19
minimum-phase, 26
parallel, 27
quadrature, 3, 5, 9
rational, 25

Gaussian, 13
group delay, 20–22, 25
group velocity, 20, 21

Hilbert transform, 1, 2, 14

instability, 19
instantaneous energy, 5
instantaneous frequency, 6, 8, 25
interference, 21

Kolmogoroff, 9, 12

kolmogoroff subroutine, 12

log spectrum, 11

magnetic field, 15
minimum phase, 23, 26
minimum-phase, 12, 13
mpwave subroutine, 12

negative frequency, 4

phase, 5, 13, 14, 20, 24
physics, 6
pitfall, 16
pole, 4
precision, 12
prediction-error filter, 9

quadrature filter, 3, 5, 9
quantum mechanics, 6

rational filter, 25
Robinson, 10, 26

sgn, 3
signum, 3
smoothing, 5, 6
spectral factorization, 12
spectral logarithm, 11
spectral-factorization, 13
spectrum, 11, 14
subroutine

butter, Butterworth filter, 17
kolmogoroff, factor spectrum, 12
mpwave, minimum phase, 12

unwinding, 24

313



Chapter 11

Resolution and random signals

The accuracy of measurements on observed signals is limited not only by practical re-
alities, but also by certain fundamental principles. The most famous example included
in this chapter is the time-bandwidth product in Fourier-transformation theory, called
the “uncertainty principle.”

Observed signals often look random and are often modeled by filtered random
numbers. In this chapter we will see many examples of signals built from random
numbers and discover how the nomenclature of statistics applies to them. Funda-
mentally, this chapter characterizes “resolution,” resolution of frequency and arrival
time, and the statistical resolution of signal amplitude and power as functions of time
and frequency.

We will see
√
n popping up everywhere. This

√
n enters our discussion when

we look at spectra of signals built from random numbers. Also, signals that are
theoretically uncorrelated generally appear to be weakly correlated at a level of 1/

√
n,

where n is the number of independent points in the signal.

Measures of resolution (which are variously called variances, tolerances, uncer-
tainties, bandwidths, durations, spreads, rise times, spans, etc.) often interact
with one another, so that experimental change to reduce one must necessarily increase
another or some combination of the others. In this chapter we study basic cases where
such conflicting interactions occur.

To avoid confusion I introduce the unusual notation Λ where ∆ is commonly used.
Notice that the letter Λ resembles the letter ∆, and Λ connotes length without being
confused with wavelength. Lengths on the time and frequency axes are defined as
follows:

dt, df mesh intervals in time and frequency
∆t, ∆f mesh intervals in time and frequency
∆T ∆F extent of time and frequency axis
ΛT , ΛF time duration and spectral bandwidth of a signal

257



258 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

There is no mathematically tractable and universally acceptable definition for
time span ΛT and spectral bandwidth ΛF . A variety of defining equations are easy
to write, and many are in general use. The main idea is that the time span ΛT or the
frequency span ΛF should be able to include most of the energy but need not contain
it all. The time duration of a damped exponential function is infinite if by duration
we mean the span of nonzero function values. However, for practical purposes the
time span is generally defined as the time required for the amplitude to decay to e−1

of its original value. For many functions the span is defined by the span between
points on the time or frequency axis where the curve (or its envelope) drops to half
of the maximum value. Strange as it may sound, there are certain concepts about
the behavior of ΛT and ΛF that seem appropriate for “all” mathematical choices of
their definitions, yet these concepts can be proven only for special choices.

11.1 TIME-FREQUENCY RESOLUTION

A consequence of Fourier transforms being built from eiωt is that scaling a func-
tion to be narrower in one domain scales it to be wider in the other domain. Scal-
ing ω implies inverse scaling of t to keep the product ωt constant. For example,
the FT of a rectangle is a sinc. Making the rectangle narrower broadens the sinc
in proportion because ωt is constant. A pure sinusoidal wave has a clearly de-
fined frequency, but it is spread over the infinitely long time axis. At the other
extreme is an impulse function (often called a delta function), which is nicely com-
pressed to a point on the time axis but contains a mixture of all frequencies. In
this section we examine how the width of a function in one domain relates to that
in the other. By the end of the section, we will formalize this into an inequality:

For any signal, the time duration ΛT and the spectral bandwidth ΛF are related
by

ΛF ΛT ≥ 1 (11.1)

This inequality is the uncertainty principle.

Since we are unable to find a precise and convenient analysis for the definitions of
ΛF and ΛT , the inequality (1.1) is not strictly true. What is important is that rough
equality in (1.1) is observed for many simple functions, but for others the inequality
can be extremely slack (far from equal). Strong inequality arises from all-pass filters.
An all-pass filter leaves the spectrum unchanged, and hence ΛF unchanged, but it can
spread out the signal arbitrarily, increasing ΛT arbitrarily. Thus the time-bandwidth
maximum is unbounded for all-pass filters. Some people say that the Gaussian
function has the minimum product in (1.1), but that really depends on a particular
method of measuring ΛF and ΛT .



11.1. TIME-FREQUENCY RESOLUTION 259

11.1.1 A misinterpretation of the uncertainty principle

It is easy to misunderstand the uncertainty principle. An oversimplification of it is
to say that it is “impossible to know the frequency at any particular time.” This
oversimplification leads us to think about a truncated sinusoid, such as in Figure 1.1.
We know the frequency exactly, so ΛF seems zero, whereas ΛT is finite, and this
seems to violate (1.1). But what the figure shows is that the truncation of the
sinusoid has broadened the frequency band. More particularly, the impulse function
in the frequency domain has been convolved by the sinc function that is the Fourier
transform of the truncating rectangle function.

Figure 11.1: Windowed sinusoid and its Fourier transform. rand-windcos [NR]

11.1.2 Measuring the time-bandwidth product

Now examine Figure 1.2, which contains sampled Gaussian functions and their Fourier
transforms. The Fourier transform of a Gaussian is well known to be another Gaussian
function, as the plot confirms. I adjusted the width of each Gaussian so that the
widths would be about equal in both domains. The Gaussians were sampled at
various values of n, increasing in steps by a factor of 4. You can measure the width
dropping by a factor of 2 at each step. For those of you who have already learned
about the uncertainty principle, it may seem paradoxical that the function’s width is
dropping in both time and frequency domains.

Figure 11.2: Sampled Gaussian
functions and their Fourier trans-
forms for vectors of length n = 16,
64, and 256. rand-uncertain
[NR]

The resolution of the paradox is that the physical length of the time axis or the
frequency axis is varying as we change n (even though the plot length is scaled to a
constant on the page). We need to associate a physical mesh with the computational
mesh. A method of associating physical and computational meshes was described in
chapter 9 on page ??. In real physical space as well as in Fourier transform space,
the object remains a constant size as the mesh is refined.



260 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

Let us read from Figure 1.2 values for the widths ΛF and ΛT . On the top row,
where N = 16, I pick a width of about 4 points, and this seems to include about 90%
of the area under the function. For this signal (with the widths roughly equal in both
domains) it seems that ΛT =

√
Ndt and ΛF =

√
Ndf . Using the relation between

dt and df found in equation (??), which says that dt df = 1/N , the product becomes
ΛTΛF = 1.

We could also confirm the inequality (1.1) by considering simple functions for
which we know the analytic transforms—for example, an impulse function in time.
Then ΛT = dt, and the Fourier transform occupies the entire frequency band from
minus to plus the Nyquist frequency ±.5/dt Hz, i.e., ΛF = 1/dt. Thus again, the
product is ΛTΛF = 1.

11.1.3 The uncertainty principle in physics

The inequality (1.1) derives the name “uncertainty principle” from its interpreta-
tion in quantum mechanics. Observations of subatomic particles show they behave
like waves with spatial frequency proportional to particle momentum. The classical
laws of mechanics enable prediction of the future of a mechanical system by extrap-
olation from the currently known position and momentum. But because of the wave
nature of matter, with momentum proportional to spatial frequency, such prediction
requires simultaneous knowledge of both the location and the spatial frequency of the
wave. This is impossible, as we see from (1.1); hence the word “uncertainty.”

11.1.4 Gabor’s proof of the uncertainty principle

Although it is easy to verify the uncertainty principle in many special cases, it is
not easy to deduce it. The difficulty begins from finding a definition of the width of
a function that leads to a tractable analysis. One possible definition uses a second
moment; that is, ΛT is defined by

(ΛT )2 =

∫
t2 b(t)2 dt∫
b(t)2 dt

(11.2)

The spectral bandwidth ΛF is defined likewise. With these definitions, Dennis Gabor
prepared a widely reproduced proof. I will omit his proof here; it is not an easy proof;
it is widely available; and the definition (1.2) seems inappropriate for a function we
often use, the sinc function, i.e., the FT of a step function. Since the sinc function
drops off as t−1, its width ΛT defined with (1.2) is infinity, which is unlike the more
human measure of width, the distance to the first axis crossing.



11.1. TIME-FREQUENCY RESOLUTION 261

11.1.5 My rise-time proof of the uncertainty principle

In FGDP I came up with a proof of the uncertainty principle that is appropriate for
causal functions. That proof is included directly below, but I recommend that the
beginning reader skip over it, as it is somewhat lengthy. I include it because this book
is oriented toward causal functions, the proof is not well known, and I have improved
it since FGDP.

A similar and possibly more basic concept than the product of time and frequency
spreads is the relationship between spectral bandwidth and the “rise time” of a
system-response function. The rise time ΛT of a system response is defined as follows:
when we kick a physical system with an impulse function, it usually responds rapidly,
rising to some maximum level, and then dropping off more slowly toward zero. The
quantitative value of the rise time is generally, and somewhat arbitrarily, taken to be
the span between the time of excitation and the time at which the system response
is more than halfway up to its maximum.

“Tightness” (nearness to equality) in the inequality (1.1) is associated with mini-
mum phase. “Slackness” (remoteness from equality) in the (1.1) would occur if a filter
with an additional all-pass component were used. Slackness could also be caused by
a decay time that is more rapid than the rise time, or by other combinations of rises
and falls, such as random combinations. Minimum-phase systems generally respond
rapidly compared to the rate at which they later decay. Focusing our attention on
such systems, we can now seek to derive the inequality (1.1) applied to rise time and
bandwidth.

The first step is to choose a definition for rise time. I have found a tractable
definition of rise time to be

1

ΛT
=

∫∞
0

1
t
b(t)2 dt∫∞

0 b(t)2 dt
(11.3)

where b(t) is the response function under consideration. Equation (1.3) defines ΛT
by the first negative moment. Since this is unfamiliar, consider two examples. Taking
b(t) to be a step function, recognize that the numerator integral diverges, giving the
desired ΛT = 0 rise time. As a further example, take b(t)2 to grow linearly from zero
to t0 and then vanish. Then the rise time ΛT is t0/2, again reasonable. It is curious
that b(t) could grow as

√
t, which rises with infinite slope at t = 0, and not cause ΛT

to be pushed to zero.

Proof by way of the dual problem

Although the Z-transform method is a great aid in studying cases where divergence
(as 1/t) plays a role, it has the disadvantage that it destroys the formal interchange-
ability between the time domain and the frequency domain. To take advantage of
the analytic simplicity of the Z-transform, we consider instead the dual to the rise-
time problem. Instead of a signal whose square vanishes at negative time, we have a



262 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

spectrum B(1/Z)B(Z) that vanishes at negative frequencies. We measure how fast
this spectrum can rise after ω = 0. We will find this time interval to be related to the
time duration ΛT of the complex-valued signal bt. More precisely, we now define the
lowest significant frequency component ΛF in the spectrum, analogously to (1.3), as

1

ΛF
=

∫ ∞
−∞

1

f
BB df =

∫ ∞
−∞

BB
dω

ω
(11.4)

where we have assumed the spectrum is normalized, i.e., the zero lag of the auto-
correlation of bt is unity. Now recall the bilinear transform, equation (??), which
represents 1/(−iω) as the coefficients of 1

2
(1+Z)/(1−Z), namely, (. . . 0, 0, 0, 1

2
, 1, 1, 1 . . .).

The pole right on the unit circle at Z = 1 causes some nonuniqueness. Because 1/iω
is an imaginary, odd, frequency function, we will want an odd expression (such as on
page ??) to insert into (1.4):

1

−iω =
(· · · − Z−2 − Z−1 + 0 + Z + Z2 + · · ·)

2
(11.5)

Using limits on the integrals for time-sampled functions and inserting (1.5) into (1.4)
gives

1

ΛF
=

−i
2π

∫ +π

−π

1

2
(· · · − Z−2 − Z−1 + Z + Z2 + · · ·) B

(
1

Z

)
B(Z) dω (11.6)

Let st be the autocorrelation of bt. Since any integral around the unit circle of a
Z-transform polynomial selects the coefficient of Z0 of its integrand, we have

1

ΛF
=
−i
2

[(s−1 − s1) + (s−2 − s2) + (s−3 − s3) + · · ·] =
∞∑
t=1

−=st (11.7)

1

ΛF
=

∞∑
t=1

−=st ≤
∞∑
t=1

|st| (11.8)

The height of the autocorrelation has been normalized to s0 = 1. The sum in (1.8) is
an integral representing area under the |st| function. So the area is a measure of the
autocorrelation width ΛTauto. Thus,

1

ΛF
≤

∞∑
t=1

|st| = ΛTauto (11.9)

Finally, we must relate the duration of a signal ΛT to the duration of its auto-
correlation ΛTauto. Generally speaking, it is easy to find a long signal that has short
autocorrelation. Just take an arbitrary short signal and convolve it using a lengthy
all-pass filter. Conversely, we cannot get a long autocorrelation function from a short
signal. A good example is the autocorrelation of a rectangle function, which is a
triangle. The triangle appears to be twice as long, but considering that the triangle
tapers down, it is reasonable to assert that the ΛT ’s are the same. Thus, we conclude
that

ΛTauto ≤ ΛT (11.10)



11.2. FT OF RANDOM NUMBERS 263

Inserting this inequality into (1.9), we have the uncertainty relation

ΛT ΛF ≥ 1 (11.11)

Looking back over the proof, I feel that the basic time-bandwidth idea is in the
equality (1.7). I regret that the verbalization of this idea, boxed following, is not es-
pecially enlightening. The inequality arises from ΛTauto < ΛT , which is a simple idea.

The inverse moment of the normalized spectrum of an analytic signal equals the
imaginary part of the mean of its autocorrelation.

EXERCISES:

1 Consider B(Z) = [1−(Z/Z0)
n]/(1−Z/Z0) as Z0 goes to the unit circle. Sketch the

signal and its squared amplitude. Sketch the frequency function and its squared
amplitude. Choose ΛF and ΛT .

2 A time series made up of two frequencies can be written as

bt = A cosω1t+B sinω1t+ C cosω2t+D sinω2t

Given ω1, ω2, b0, b1, b2, and b3, show how to calculate the amplitude and phase
angles of the two sinusoidal components.

11.2 FT OF RANDOM NUMBERS

Many real signals are complicated and barely comprehensible. In experimental work,
we commonly transform such data. To better understand what this means, it will be
worthwhile to examine signals made from random numbers.

Figure 1.3 shows discrete Fourier transforms of random numbers. The basic con-
clusion to be drawn from this figure is that transforms of random numbers look like
more random numbers. A random series containing all frequencies is called a “white-
noise” series, because the color white is made from roughly equal amounts of all colors.
Any series made by independently chosen random numbers is said to be an “inde-
pendent” series. An independent series must be white, but a white series need not be
independent. Figure 1.4 shows Fourier transforms of random numbers surrounded by
zeros (or zero padded). Since all the vectors of random numbers are the same length
(each has 1024 points, including both sides of the even function with the even part
(513 points) shown), the transforms are also the same length. The top signal has less
randomness than the second trace (16 random numbers versus 64). Thus the top FT
is smoother than the lower ones. The best way to understand this figure is to think
of the left-hand signal as a frequency function. When higher frequencies are present,
the right-hand signal oscillates faster.



264 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

Figure 11.3: Fourier cosine transforms of vectors containing random numbers. N is
the number of components in the vector. rand-nrand [NR]

Figure 11.4: Zero-padded random numbers and their FTs. rand-pad [NR]



11.3. TIME-STATISTICAL RESOLUTION 265

11.2.1 Bandlimited noise

Figure 1.5 shows bursts of 25 random numbers at various shifts, and their Fourier
transforms. You can think of either side of the figure as the time domain and the
other side as the frequency domain. (See page ?? for a description of the different
ways of interpreting plots of one side of Fourier-transform pairs of even functions.) I
like to think of the left side as the Fourier domain and the right side as the signals.
Then the signals seem to be sinusoids of a constant frequency (called the “center”
frequency) and of an amplitude that is modulated at a slower rate (called the “beat”
frequency). Observe that the center frequency is related to the location of the random
bursts, and that the beat frequency is related to the bandwidth of the noise burst.

Figure 11.5: Shifted, zero-padded random numbers in bursts of 25 numbers.
rand-shift [NR]

You can also think of Figure 1.5 as having one-sided frequency functions on the left,
and the right side as being the real part of the signal. The real parts are cosinelike,
whereas the imaginary parts (not shown) are sinelike and have the same envelope
function as the cosinelike part.

You might have noticed that the bottom plot in Figure 1.5, which has Nyquist-
frequency modulated beats, seems to have about twice as many beats as the two plots
above it. This can be explained as an end effect. The noise burst near the Nyquist
frequency is really twice as wide as shown, because it is mirrored about the Nyquist
frequency into negative frequencies. Likewise, the top figure is not modulated at all,
but the signal itself has a frequency that matches the beats on the bottom figure.

11.3 TIME-STATISTICAL RESOLUTION

1 If we flipped a fair coin 1000 times, it is unlikely that we would get exactly 500 heads
and 500 tails. More likely the number of heads would lie somewhere between 400 and

1I would like to thank Gilles Darche for carefully reading this chapter and pointing out some
erroneous assertions in FGDP. If there are any mistakes in the text now, I probably introduced them
after his reading.



266 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

600. Or would it lie in another range? The theoretical value, called the “mean”
or the “expectation,” is 500. The value from our experiment in actually flipping a
fair coin is called the “sample mean.” How much difference Λm should we expect
between the sample mean m̂ and the true mean m? Both the coin flips x and our
sample mean m̂ are random variables. Our 1000-flip experiment could be repeated
many times and would typically give a different m̂ each time. This concept will be
formalized in section 11.3.5. as the “variance of the sample mean,” which is the
expected squared difference between the true mean and the mean of our sample.

The problem of estimating the statistical parameters of a time series, such as
its mean, also appears in seismic processing. Effectively, we deal with seismic traces
of finite duration, extracted from infinite sequences whose parameters can only be
estimated from the finite set of values available in these seismic traces. Since the
knowledge of these parameters, such as signal-to-noise ratio, can play an important
role during the processing, it can be useful not only to estimate them, but also to
have an idea of the error made in this estimation.

11.3.1 Ensemble

The “true value” of the mean could be defined as the mean that results when the coin
is flipped n times, when n is conceived of as going to infinity. A more convenient defi-
nition of true value is that the experiment is imagined as having been done separately
under identical conditions by an infinite number of people (an “ensemble”). The
ensemble may seem a strange construction; nonetheless, much literature in statistics
and the natural sciences uses the ensemble idea. Let us say that the ensemble is
defined by a probability as a function of time. Then the ensemble idea enables us to
define a time-variable mean (the sum of the values found by the ensemble weighted
by the probabilities) for, for example, coins that change with time.

11.3.2 Expectation and variance

A conceptual average over the ensemble, or expectation, is denoted by the symbol
E. The index for summation over the ensemble is never shown explicitly; every
random variable is presumed to have one. Thus, the true mean at time t is defined
as mx(t) = E(xt). The mean can vary with time:

mx(t) = E[x(t)] (11.12)

The “variance” σ2 is defined to be the power after the mean is removed, i.e.,

σx(t)
2 = E [(x(t)−mx(t))

2] (11.13)

(Conventionally, σ2 is referred to as the variance, and σ is called the “standard
deviation.”)



11.3. TIME-STATISTICAL RESOLUTION 267

For notational convenience, it is customary to write m(t), σ(t), and x(t) simply
as m, σ, and xt, using the verbal context to specify whether m and σ are time-
variable or constant. For example, the standard deviation of the seismic amplitudes
on a seismic trace before correction of spherical divergence decreases with time, since
these amplitudes are expected to be “globally” smaller as time goes on.

When manipulating algebraic expressions, remember that the symbol E behaves
like a summation sign, namely,

E ≡ (limN →∞)
1

N

N∑
1

(11.14)

Note that the summation index is not given, since the sum is over the ensemble,
not time. To get some practice with the expectation symbol E, we can reduce equa-
tion (1.13):

σ2
x = E [(xt−mx)

2] = E(x2
t ) − 2mxE(xt)+m2

x = E(x2
t ) − m2

x (11.15)

Equation (1.15) says that the energy is the variance plus the squared mean.

11.3.3 Probability and independence

A random variable x can be described by a probability p(x) that the amplitude
x will be drawn. In real life we almost never know the probability function, but
theoretically, if we do know it, we can compute the mean value using

m = E(x) =
∫

x p(x) dx (11.16)

“Statistical independence” is a property of two or more random numbers. It
means the samples are drawn independently, so they are unrelated to each other.
In terms of probability functions, the independence of random variables x and y is
expressed by

p(x, y) = p(x) p(y) (11.17)

From these, it is easy to show that

E(xy) = E(x)E(y) (11.18)

11.3.4 Sample mean

Now let xt be a time series made up of identically distributed random numbers: mx

and σx do not depend on time. Let us also suppose that they are independently
chosen; this means in particular that for any different times t and s (t 6= s):

E(xtxs) = E(xt)E(xs) (11.19)



268 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

Suppose we have a sample of n points of xt and are trying to determine the value of
mx. We could make an estimate m̂x of the mean mx with the formula

m̂x =
1

n

n∑
t=1

xt (11.20)

A somewhat more elaborate method of estimating the mean would be to take a
weighted average. Let wt define a set of weights normalized so that∑

wt = 1 (11.21)

With these weights, the more elaborate estimate m̂ of the mean is

m̂x =
∑

wt xt (11.22)

Actually (1.20) is just a special case of (1.22); in (1.20) the weights are wt = 1/n.

Further, the weights could be convolved on the random time series, to compute
local averages of this time series, thus smoothing it. The weights are simply a fil-
ter response where the filter coefficients happen to be positive and cluster together.
Figure 1.6 shows an example: a random walk function with itself smoothed locally.

Figure 11.6: Random walk and itself smoothed (and shifted downward). rand-walk
[NR]

11.3.5 Variance of the sample mean

Our objective here is to calculate how far the estimated mean m̂ is likely to be from
the true mean m for a sample of length n. This difference is the variance of the
sample mean and is given by (Λm)2 = σ2

m̂, where

σ2
m̂ = E [(m̂−m)2] (11.23)

= E
{

[(
∑

wtxt)−m]2
}

(11.24)



11.3. TIME-STATISTICAL RESOLUTION 269

Now use the fact that m = m
∑
wt =

∑
wtm:

σ2
m̂ = E


[∑

t

wt(xt −m)

]2
 (11.25)

= E

{[∑
t

wt(xt −m)

] [∑
s

ws(xs −m)

]}
(11.26)

= E

[∑
t

∑
s

wtws(xt −m)(xs −m)

]
(11.27)

The step from (1.26) to (1.27) follows because

(a1 + a2 + a3) (a1 + a2 + a3) = sum of

 a1a1 a1a2 a1a3

a2a1 a2a2 a2a3

a3a1 a3a2 a3a3

 (11.28)

The expectation symbol E can be regarded as another summation, which can be done
after, as well as before, the sums on t and s, so

σ2
m̂ =

∑
t

∑
s

wtws E [(xt −m)(xs −m)] (11.29)

If t 6= s, since xt and xs are independent of each other, the expectation E[(xt −
m)(xs − m)] will vanish. If s = t, then the expectation is the variance defined by
(1.13). Expressing the result in terms of the Kronecker delta, δts (which equals unity
if t = s, and vanishes otherwise) gives

σ2
m̂ =

∑
t

∑
s

wtws σ
2
xδts (11.30)

σ2
m̂ =

∑
t

w2
t σ

2
x (11.31)

σm̂ = σx

√∑
t

w2
t (11.32)

For n weights, each of size 1/n, the standard deviation of the sample mean is

Λmx = σm̂x = σx

√√√√ n∑
t=1

(
1

n

)2

=
σx√
n

(11.33)

This is the most important property of random numbers that is not intuitively ob-
vious. Informally, the result (1.33) says this: given a sum y of terms with random
polarity, whose theoretical mean is zero, then

y = ±1± 1± 1 · · ·︸ ︷︷ ︸
n terms

(11.34)



270 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

The sum y is a random variable whose standard deviation is σy =
√
n = Λy. An

experimenter who does not know the mean is zero will report that the mean of y is
E(y) = ŷ ± Λy, where ŷ is the experimental value.

If we are trying to estimate the mean of a random series that has a time-variable
mean, then we face a basic dilemma. Including many numbers in the sum in or-
der to make Λm small conflicts with the possibility of seeing mt change during the
measurement.

The “variance of the sample variance” arises in many contexts. Suppose we
want to measure the storminess of the ocean. We measure water level as a function
of time and subtract the mean. The storminess is the variance about the mean. We
measure the storminess in one minute and call it a sample storminess. We compare it
to other minutes and other locations and we find that they are not all the same. To
characterize these differences, we need the variance of the sample variance σ2

σ̂2 . Some
of these quantities can be computed theoretically, but the computations become very
cluttered and dependent on assumptions that may not be valid in practice, such as
that the random variables are independently drawn and that they have a Gaussian
probability function. Since we have such powerful computers, we might be better off
ignoring the theory and remembering the basic principle that a function of random
numbers is also a random number. We can use simulation to estimate the function’s
mean and variance. Basically we are always faced with the same dilemma: if we want
to have an accurate estimation of the variance, we need a large number of samples,
which limits the possibility of measuring a time-varying variance.

EXERCISES:

1 Suppose the mean of a sample of random numbers is estimated by a triangle
weighting function, i.e.,

m̂ = s
n∑
i=0

(n− i) xi

Find the scale factor s so that E(m̂) = m. Calculate Λm. Define a reasonable
ΛT . Examine the uncertainty relation.

2 A random series xt with a possibly time-variable mean may have the mean esti-
mated by the feedback equation

m̂t = (1− ε)m̂t−1 + bxt

a. Express m̂t as a function of xt, xt−1, . . . , and not m̂t−1.

b. What is ΛT , the effective averaging time?

c. Find the scale factor b so that if mt = m, then E(m̂t) = m.

d. Compute the random error Λm =
√

E(m̂−m)2. (hint: Λm goes to σ
√
ε/2

as ε→ 0.)

e. What is (Λm)2ΛT in this case?



11.4. SPECTRAL FLUCTUATIONS 271

11.4 SPECTRAL FLUCTUATIONS

Recall the basic model of time-series analysis, namely, random numbers passing
through a filter. A sample of input, filter, and output amplitude spectra is shown in
Figure 1.7. From the spectrum of the output we can guess the spectrum of the filter,

Figure 11.7: Random numbers
into a filter. Top is a spectrum
of random numbers. Middle is
the spectrum of a filter. Bottom
is the spectrum of filter output.
rand-filter [ER]

but the figure shows there are some limitations in our ability to do so. Let us analyze
this formally.

Observations of sea level over a long period of time can be summarized in terms
of a few statistical averages, such as the mean height m and the variance σ2. Another
important kind of statistical average for use on geophysical time series is the “power
spectrum.” Many mathematical models explain only statistical averages of data and
not the data itself. To recognize certain pitfalls and understand certain fundamental
limitations on work with power spectra, we first consider the idealized example of
random numbers.

Figure 11.8: Autocorrelation and spectra of random numbers. rand-auto [NR]

Figure 1.8 shows a signal that is a burst of noise; its Fourier transform, and
the transform squared; and its inverse transform, the autocorrelation. Here the FT



272 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

squared is the same as the more usual FT times its complex conjugate—because the
noise-burst signal is even, its FT is real.

Notice that the autocorrelation has a big spike at zero lag. This spike repre-
sents the correlation of the random numbers with themselves. The other lags are much
smaller. They represent the correlation of the noise burst with itself shifted. Theo-
retically, the noise burst is not correlated with itself shifted: these small fluctuations
result from the finite extent of the noise sample.

Imagine many copies of Figure 1.8. Ensemble averaging would amount to adding
these other autocorrelations or, equivalently, adding these other spectra. The fluctu-
ations aside the central lobe of the autocorrelation would be destroyed by ensemble
averaging, and the fluctuations in the spectrum would be smoothed out. The expec-
tation of the autocorrelation is that it is an impulse at zero lag. The expectation
of the spectrum is that it is a constant, namely,

E[Ŝ(Z)] = S(Z) = const (11.35)

11.4.1 Paradox: large n vs. the ensemble average

Now for the paradox. Imagine n → ∞ in Figure 1.8. Will we see the same limit as
results from the ensemble average? Here are two contradictory points of view:

• For increasing n, the fluctuations on the nonzero autocorrelation lags get smaller,
so the autocorrelation should tend to an impulse function. Its Fourier transform,
the spectrum, should tend to a constant.

• On the other hand, for increasing n, as in Figure 1.3, the spectrum does not get
any smoother, because the FTs should still look like random noise.

We will see that the first idea contains a false assumption. The autocorrelation does
tend to an impulse, but the fuzz around the sides cannot be ignored—although the
fuzz tends to zero amplitude, it also tends to infinite extent, and the product of zero
with infinity here tends to have the same energy as the central impulse.

To examine this issue further, let us discover how these autocorrelations decrease
to zero with n (the number of samples). Figure 1.9 shows the autocorrelation samples
as a function of n in steps of n increasing by factors of four. Thus

√
n increases by

factors of two. Each autocorrelation in the figure was normalized at zero lag. We
see the sample variance for nonzero lags of the autocorrelation dropping off as

√
n.

We also observe that the ratios between the values for the first nonzero lags and the
value at lag zero roughly fit 1/

√
n. Notice also that the fluctuations drop off with lag.

The drop-off goes to zero at a lag equal to the sample length, because the number
of terms in the autocorrelation diminishes to zero at that lag. A first impression is
that the autocorrelation fits a triangular envelope. More careful inspection, however,



11.4. SPECTRAL FLUCTUATIONS 273

Figure 11.9: Autocorrelation as a function of number of data points. The random-
noise-series (even) lengths are 60, 240, 960. rand-fluct [NR]

shows that the triangle bulges upward at wide offsets, or large values of k (this is
slightly clearer in Figure 1.8). Let us explain all these observations. Each lag of the
autocorrelation is defined as

sk =
n−k∑
t=1

xtxt+k (11.36)

where (xt) is a sequence of zero-mean independent random variables. Thus, the
expectations of the autocorrelations can be easily computed:

E(s0) =
n∑
1

E(x2
t ) = nσ2

x (11.37)

E(sk) =
n−k∑

1

E(xt)E(xt+k) = 0 (for k ≥ 1) (11.38)

In Figure 1.9, the value at lag zero is more or less nσ2
x (before normalization), the

deviation being more or less the standard deviation (square root of the variance) of
s0. On the other hand, for k ≥ 1, as E(sk) = 0, the value of the autocorrelation is
directly the deviation of sk, i.e., something close to its standard deviation. We now
have to compute the variances of the sk. Let us write

sk =
n−k∑
t=1

yk(t) (where yk(t) = xtxt+k) (11.39)

So: sk = (n− k)m̂yk , where m̂yk is the sample mean of yk with n− k terms. If k 6= 0,
E(yk) = 0, and we apply (1.33) to m̂yk :

E(m̂2
yk

) =
σ2
yk

n− k (11.40)



274 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

The computation of σ2
yk

is straightforward:

σ2
yk

= E(x2
tx

2
t+k) = E(x2

t )E(x2
t+k) = σ4

x , (11.41)

Thus, for the autocorrelation sk:

E(s2
k) = (n− k)σ2

yk
= (n− k)σ4

x =
n− k
n2

(E(s0))2 (11.42)

Finally, as E(sk) = 0, we get

σsk =
√
E(s2

k) = E(s0)

√
n− k
n

(11.43)

This result explains the properties observed in Figure 1.9. As n→∞, all the nonzero
lags tend to zero compared to the zero lag, since

√
n− k/n tends to zero. Then, the

first lags (k << n) yield the ratio 1/
√
n between the autocorrelations and the value

at lag zero. Finally, the autocorrelations do not decrease linearly with k, because of√
n− k.

We can now explain the paradox. The energy of the nonzero lags will be

E =
∑
k 6=0

E(s2
k) =

(E(s0))2

n2

n∑
k=1

(n− k) = (E(s0))2n(n− 1)

n2
(11.44)

Hence there is a conflict between the decrease to zero of the autocorrelations and
the increasing number of nonzero lags, which themselves prevent the energy from
decreasing to zero. The autocorrelation does not globally tend to an impulse function.
In the frequency domain, the spectrum S(ω) is now

S(ω) =
1

n
(s0 + s1 cosω + s2 cos 2ω + · · ·) (11.45)

So E[S(ω)] = (1/n)E[s0] = σ2
x, and the average spectrum is a constant, independent

of the frequency. However, as the sk fluctuate more or less like E[s0]/
√
n, and as their

count in S(ω) is increasing with n, we will observe that S(ω) will also fluctuate, and
indeed,

S(ω) =
1

n
E[s0]± 1

n
E[s0] = σ2

x ± σ2
x (11.46)

This explains why the spectrum remains fuzzy: the fluctuation is independent of
the number of samples, whereas the autocorrelation seems to tend to an impulse.
In conclusion, the expectation (ensemble average) of the spectrum is not properly
estimated by letting n→∞ in a sample.

11.4.2 An example of the bandwidth/reliability tradeoff

Letting n go to infinity does not take us to the expectation Ŝ = σ2. The problem is, as
we increase n, we increase the frequency resolution but not the statistical resolution
(i.e., the fluctuation around Ŝ). To increase the statistical resolution, we need to
simulate ensemble averaging. There are two ways to do this:



11.4. SPECTRAL FLUCTUATIONS 275

1. Take the sample of n points and break it into k equal-length segments of n/k
points each. Compute an S(ω) for each segment and then average all k of the
S(ω) together. The variance of the average spectrum is equal to the variance of
each spectrum (σ2

x) divided by the number of segments, and so the fluctuation
is substantially reduced.

2. Form S(ω) from the n-point sample. Replace each of the n/2 independent
amplitudes by an average over its k nearest neighbors. This could also be done
by tapering the autocorrelation.

Figure 11.10: Spectral smoothing by tapering the autocorrelation. ΛT is constant
and specified on the top row. Successive rows show ΛF increasing while ΛS decreases.
The width of a superimposed box roughly gives ΛF , and its height roughly gives ΛS.
rand-taper [NR]

The second method is illustrated in Figure 1.10. This figure shows a noise burst of
240 points. Since the signal is even, the burst is effectively 480 points wide, so the
autocorrelation is 480 points from center to end: the number of samples will be the
same for all cases. The spectrum is very rough. Multiplying the autocorrelation by
a triangle function effectively smooths the spectrum by a sinc-squared function, thus
reducing the spectral resolution (1/ΛF ). Notice that ΛF is equal here to the width of
the sinc-squared function, which is inversely proportional to the length of the triangle
(ΛTauto).

However, the first taper takes the autocorrelation width from 480 lags to 120 lags.
Thus the spectral fluctuations ΛS should drop by a factor of 2, since the count of terms
sk in S(ω) is reduced to 120 lags. The width of the next weighted autocorrelation



276 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

width is dropped from 480 to 30 lags. Spectral roughness should consequently drop by
another factor of 2. In all cases, the average spectrum is unchanged, since the first lag
of the autocorrelations is unchanged. This implies a reduction in the relative spectral
fluctuation proportional to the square root of the length of the triangle (

√
ΛTauto).

Our conclusion follows:

The trade-off among resolutions of time, frequency, and spectral amplitude is

ΛF ΛT
(

ΛS

S

)2

> 1 (11.47)

11.4.3 Spectral estimation

In Figure 1.10 we did not care about spectral resolution, since we knew theoretically
that the spectrum was white. But in practice we do not have such foreknowledge.
Indeed, the random factors we deal with in nature rarely are white. A widely used
model for naturally occurring random functions, such as microseism, or sometimes
reflection seismograms, is white noise put into a filter. The spectra for an example
of this type are shown in Figure 1.7. We can see that smoothing the envelope of the
power spectrum of the output gives an estimate of the spectrum of the filter. But we
also see that the estimate may need even more smoothing.

11.5 CROSSCORRELATION AND COHERENCY

With two time series we can see how crosscorrelation and coherency are related.

11.5.1 Correlation

“Correlation” is a concept similar to cosine. A cosine measures the angle between
two vectors. It is given by the dot product of the two vectors divided by their
magnitudes:

c =
(x · y)√

(x · x)(y · y)
(11.48)

This is the sample normalized correlation we first encountered on page ?? as a
quality measure of fitting one image to another.

Formally, the normalized correlation is defined using x and y as zero-mean,
scalar, random variables instead of sample vectors. The summation is thus an expec-



11.5. CROSSCORRELATION AND COHERENCY 277

tation instead of a dot product:

c =
E(xy)√

E(x2) E(y2)
(11.49)

A practical difficulty arises when the ensemble averaging is simulated over a sam-
ple. The problem occurs with small samples and is most dramatically illustrated
when we deal with a sample of only one element. Then the sample correlation is

ĉ =
xy

|x| |y| = ±1 (11.50)

regardless of what value the random number x or the random number y should take.
For any n, the sample correlation ĉ scatters away from zero. Such scatter is called
“bias.” The topic of bias and variance of coherency estimates is a complicated one,
but a rule of thumb seems to be to expect bias and variance of ĉ of about 1/

√
n

for samples of size n. Bias, no doubt, accounts for many false “discoveries,” since
cause-and-effect is often inferred from correlation.

11.5.2 Coherency

The concept of “coherency” in time-series analysis is analogous to correlation. Tak-
ing xt and yt to be time series, we find that they may have a mutual relationship
which could depend on time delay, scaling, or even filtering. For example, perhaps
Y (Z) = F (Z)X(Z) + N(Z), where F (Z) is a filter and nt is unrelated noise. The
generalization of the correlation concept is to define coherency by

C =
E
[
X
(

1
Z

)
Y (Z)

]
√

E(XX) E(Y Y )
(11.51)

Correlation is a real scalar. Coherency is a complex function of frequency; it ex-
presses the frequency dependence of correlation. In forming an estimate of coherency,
it is always essential to simulate ensemble averaging. Note that if the ensemble aver-
aging were to be omitted, the coherency (squared) calculation would give

|C|2 = CC =
(XY )(XY )

(XX)(Y Y )
= 1 (11.52)

which states that the coherency squared is unity, independent of the data. Because
correlation scatters away from zero, we find that coherency squared is biased away
from zero.



278 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

11.5.3 The covariance matrix of multiple signals

A useful model of single-channel time-series analysis is that random numbers xt enter a
filter ft and come out as a signal yt. A useful model of multiple-channel time-series
analysis—with two channels, for example—is to start with independent random
numbers in both the x1(t) channel and the x2(t) channel. Then we need four filters,
f11(t), f12(t), f21(t), and f22(t), which produce two output signals defined by the
Z-transforms

Y1(Z) = B11(Z)X1(Z) +B12(Z)X2(Z) (11.53)

Y2(Z) = B21(Z)X1(Z) +B22(Z)X2(Z) (11.54)

These signals have realistic characteristics. Each has its own spectral color. Each
has a partial relationship to the other which is characterized by a spectral amplitude
and phase. Typically we begin by examining the covariance matrix. For example,
consider two time series, y1(t) and y2(t). Their Z-transforms are Y1(Z) and Y2(Z).
Their covariance matrix is[

E[Y1(1/Z)Y1(Z)] E[Y1(1/Z)Y2(Z)]
E[Y2(1/Z)Y1(Z)] E[Y2(1/Z)Y2(Z)]

]
= E

([
Y1(1/Z)
Y2(1/Z)

] [
Y1(Z) Y2(Z)

])
(11.55)

Here Z-transforms represent the components of the matrix in the frequency domain.
In the time domain, each of the four elements in the matrix of (1.55) becomes a
Toeplitz matrix, a matrix of correlation functions (see page ??).

The expectations in equation (1.55) are specified by theoretical assertions or esti-
mated by sample averages or some combination of the two. Analogously to spectral
factorization, the covariance matrix can be factored into two parts, U′U, where U
is an upper triangular matrix. The factorization might be done by the well known
Cholesky method. The factorization is a multichannel generalization of spectral
factorization and raises interesting questions about minimum-phase that are partly
addressed in FGDP.

11.5.4 Bispectrum

The “bispectrum” is another statistic that is used to search for nonlinear interactions.
For a Fourier transform F (ω), it is defined by

B(ω1, ω2) = E[F (ω1)F (ω2)F (ω1 + ω2)] (11.56)

A statistic defined analogously is the “bispectral coherency.” In seismology, signals
rarely have adequate duration for making sensible bispectral estimates from time
averages.



11.6. SMOOTHING IN TWO DIMENSIONS 279

11.6 SMOOTHING IN TWO DIMENSIONS

In previous sections we assumed that we were using one-dimensional models, and
smoothing was easy. Working in two dimensions is nominally much more costly, but
some tricks are available to make things easier. Here I tell you my favorite trick for
smoothing in two dimensions. You can convolve with a two-dimensional (almost)
Gaussian weighting function of any area for a cost of only sixteen additions per output
point. (You might expect instead a cost proportional to the area.)

11.6.1 Tent smoothing

First recall triangular smoothing in one dimension with subroutine triangle() on
page 55. This routine is easily adapted to two dimensions. First we smooth in the
direction of the 1-axis for all values of the 2-axis. Then we do the reverse, convolve
on the 2-axis for all values of the 1-axis. Now recall that smoothing with a rectangle
is especially fast, because we do not need to add all the points within the rectangle.
We merely adapt a shifted rectangle by adding a point at one end and subtracting a
point at the other end. In other words, the cost of smoothing is independent of the
width of the rectangle. And no multiplies are required. To get a triangle, we smooth
twice with rectangles.

Figure 1.11 shows the application of triangle smoothers on two pulses in a plane.
The plane was first convolved with a triangle on the 1-axis and then with another
triangle on the 2-axis. This takes each impulse and smooths it into an interesting
pyramid that I call a tent. The expected side-boundary effect is visible on the fore-

Figure 11.11: Two impulses in two dimensions filtered with a triangle function along
each spatial axis. Left: bird’s-eye view. Right: contours of constant altitude z.
rand-pyram [NR]

ground tent. In the contour plot (of the same 120 by 40 mesh), we see that the cross
section of the tent is rectangular near the base and diamond shaped near the top.
The altitude of the jth tent face is z = a(x−xj)(y−yj), where (xj , yj) is the location
of a corner and a is a scale. The tent surface is parabolic (like z = x2) along x = y
but linear along lines parallel to the axes. A contour of constant z is the (hyperbolic)



280 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

curve y = a+ b/(x+ c) (where a, b, and c are different constants on each of the four
faces).

11.6.2 Gaussian mounds

In Figure 1.12 we see the result of applying tent smoothing twice. Notice that the

Figure 11.12: Two impulses in two dimensions filtered twice on each axis with a
triangle function. Left: bird’s-eye view. Right: contours of constant altitude z.
rand-mound [ER]

contours, instead of being diamonds and rectangles, have become much more circular.
The reason for this is briefly as follows: convolution of a rectangle with itself many
times approachs the limit of a Gaussian function. (This is a well-known result called
the “central-limit theorem.” It is explained in section 1.7.) It happens that the
convolution of a triangle with itself is already a good approximation to the Gaussian
function z(x) = e−x

2
. The convolution in y gives z(x, y) = e−x

2−y2
= e−r

2
, where r

is the radius of the circle. When the triangle on the 1-axis differs in width from the
triangle on the 2-axis, then the circles become ellipses.

11.6.3 Speed of 2-D Gaussian smoothing

This approximate Gaussian smoothing in two dimensions is very fast. Only eight
add-subtract pairs are required per output point, and no multiplies at all are re-
quired except for final scaling. The compute time is independent of the widths of the
Gaussian(!). (You should understand this if you understood that one-dimensional
convolution with a rectangle requires just one add-subtract pair per output point.)
Thus this technique should be useful in two-dimensional slant stack.



11.7. PROBABILITY AND CONVOLUTION 281

EXERCISES:

1 Deduce that a 2-D filter based on the subroutine triangle() on page 55 which
produces the 2-D quasi-Gaussian mound in Figure 1.12 has a gain of unity at zero
(two-dimensional) frequency (also known as (kx, ky) = 0).

2 Let the 2-D quasi-Gaussian filter be known as F . Sketch the spectral response of
F .

3 Sketch the spectral response of 1− F and suggest a use for it.

4 The tent filter can be implemented by smoothing first on the 1-axis and then on
the 2-axis. The conjugate operator smooths first on the 2-axis and then on the
1-axis. The tent-filter operator should be self-adjoint (equal to its conjugate),
unless some complication arises at the sides or corners. How can a dot-product
test be used to see if a tent-filter program is self-adjoint?

11.7 PROBABILITY AND CONVOLUTION

One way to obtain random integers from a known probability function is to write
integers on slips of paper and place them in a hat. Draw one slip at a time. After
each drawing, replace the slip in the hat. The probability of drawing the integer i is
given by the ratio ai of the number of slips containing the integer i divided by the
total number of slips. Obviously the sum over i of ai must be unity. Another way to
get random integers is to throw one of a pair of dice. Then all ai equal zero except
a1 = a2 = a3 = a4 = a5 = a6 = 1

6
. The probability that the integer i will occur on the

first drawing and the integer j will occur on the second drawing is aiaj . If we draw
two slips or throw a pair of dice, then the probability that the sum of i and j equals
k is the sum of all the possible ways this can happen:

ck =
∑
i

aiak−i (11.57)

Since this equation is a convolution, we may look into the meaning of the Z-
transform

A(Z) = · · ·a−1Z
−1 + a0 + a1Z + a2Z

2 + · · · (11.58)

In terms of Z-transforms, the probability that i plus j equals k is simply the coefficient
of Zk in

C(Z) = A(Z)A(Z) (11.59)

The probability density of a sum of random numbers is the convolution of their
probability density functions.



282 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

EXERCISES:

1 A random-number generator provides random integers 2, 3, and 6 with probabil-
ities p(2) = 1/2, p(3) = 1/3, and p(6) = 1/6. What is the probability that any
given integer n is the sum of three of these random numbers? (hint: Leave the
result in the form of coefficients of a complicated polynomial.)

11.8 THE CENTRAL-LIMIT THEOREM

The central-limit theorem of probability and statistics is perhaps the most im-
portant theorem in these fields of study. A derivation of the theorem explains why
the Gaussian probability function is so frequently encountered in nature; not just
in physics but also in the biological and social sciences. No experimental scientist
should be unaware of the basic ideas behind this theorem. Although the central-limit
theorem is deep and is even today the topic of active research, we can quickly go to
the basic idea.

From equation (1.59), if we add n random numbers, the probability that the sum
of them equals k is given by the coefficient of Zk in

G(Z) = A(Z)n (11.60)

The central-limit theorem says that as n goes to infinity, the polynomial G(Z) goes
to a special form, almost regardless of the specific polynomial A(Z). The specific
form is such that a graph of the coefficients of G(Z) comes closer and closer to fitting
under the envelope of the bell-shaped Gaussian function. This happens because, if
we raise any function to a high enough power, eventually all we can see is the highest
value of the function and its immediate environment, i.e., the second derivative there.
We already saw an example of this in Figure ??. Exceptions to the central-limit
theorem arise (1) when there are multiple maxima of the same height, and (2) where
the second derivative vanishes at the maximum.

Figure 11.13: Left: wiggle plot style. Middle: perspective. Right: contour.
rand-clim [ER]

Although the central-limit theorem tells us that a Gaussian function is the limit
as n → ∞, it does not say anything about how fast the limit is attained. To test



11.8. THE CENTRAL-LIMIT THEOREM 283

this, I plotted the coefficients of ( 1
4Z

+ 1
2

+ 1
4
Z)n for large values of n. This sig-

nal is made up of scaled binomial coefficients. To keep signals in a suitable
amplitude scale, I multiplied them by

√
n. Figure 1.13 shows views of the coef-

ficients of
√
n( 1

4Z
+ 1

2
+ 1

4
Z)n (horizontal axis) versus

√
n (vertical axis). We see

that scaling by
√
n has kept signal peak amplitudes constant. We see also that

the width of the signal increases linearly with
√
n. The contours of constant am-

plitude show that the various orders are self-similar with the width stretching.

Sums of independently chosen random variables tend to have Gaussian probability
density functions.



312 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS



Index

all-pass filter, 2
autocorrelation, 6, 16

bandwidth, 1, 5
beat, 9
bilinear transform, 6
binomial coefficients, 27

central-limit theorem, 24, 26
Cholesky, 22
coherency, 21
convolution, 25
correlation, 20
correlation

normalized, 20
sample normalized, 20

covariance matrix, 22

Darche, 9
duration, 1

ensemble, 10
expectation, 10
expectation of the autocorrelation, 16
expectation of the spectrum, 16

factorization, 22
filter

all-pass, 2

Gabor, 4
Gaussian, 2, 24, 26

inequality, 2

mean, 10, 11

pitfall, 15
power spectrum, 15
probability, 11, 25

quantum mechanics, 4

random, 7, 25
resolution, 1, 20
rise time, 1, 5

sample mean, 10
sinc, 4
smoothing, 23
spread, 1
standard deviation, 10
statistic, 10
statistical independence, 11

time-series analysis, 22
time-series analysis

multi-channel, 22
Toeplitz, 22
tolerance, 1

uncertainty principle, 1, 2, 4

variance, 1, 10
variance of the sample mean, 10, 12
variance of the sample variance, 14

313



284



Chapter 12

Entropy and Jensen inequality

Jensen inequality is my favorite theory-that-never-quite-made-it-into-practice, but
there is still hope!

In this book we have solved many problems by minimizing a weighted sum of
squares. We understand vaguely that the weights should somehow be the inverse to
the expected value of the object they weight. We really cannot justify the square,
however, except to say that it makes residuals positive, and positive residuals lead to
ready methods of analysis. Here we will think about a more general approach, more
clumsy in computation, but potentially more powerful in principle. As we begin with
some mathematical abstractions, you should think of applications where populations
such as envelopes, spectra, or magnitudes of residuals are adjustable by adjusting
model parameters. What you will see here is a wide variety of ways that equilibrium
can be defined.

12.1 THE JENSEN INEQUALITY

Let f be a function with a positive second derivative. Such a function is called
“convex” and satisfies the inequality

f(a) + f(b)

2
− f

(
a+ b

2

)
≥ 0 (12.1)

Equation (1.1) relates a function of an average to an average of the function. The
average can be weighted, for example,

1

3
f(a) +

2

3
f(b) − f

(
1

3
a+

2

3
b
)
≥ 0 (12.2)

Figure 1.1 is a graphical interpretation of equation (1.2) for the function f = x2.
There is nothing special about f = x2, except that it is convex. Given three numbers
a, b, and c, the inequality (1.2) can first be applied to a and b, and then to c and

285



286 CHAPTER 12. ENTROPY AND JENSEN INEQUALITY

Figure 12.1: Sketch of y = x2

for interpreting equation ((1.2)).
jen-jen [NR]

f ( x ) = x 2

A B

B 2

A2
x

)(
21

3 3
2

BA + 

1
3 3

2
BA + 

3
2

B
1
3

A
2 + 2

the average of a and b. Thus, recursively, an inequality like (1.2) can be built for a
weighted average of three or more numbers. Define weights wj ≥ 0 that are normalized
(
∑
jwj = 1). The general result is

S(pj) =
N∑
j=1

wjf(pj) − f

 N∑
j=1

wjpj

 ≥ 0 (12.3)

If all the pj are the same, then both of the two terms in S are the same, and S
vanishes. Hence, minimizing S is like urging all the pj to be identical. Equilibrium is
when S is reduced to the smallest possible value which satisfies any constraints that
may be applicable. The function S defined by (1.3) is like the entropy defined in
thermodynamics.

12.1.1 Examples of Jensen inequalities

The most familiar example of a Jensen inequality occurs when the weights are all
equal to 1/N and the convex function is f(x) = x2. In this case the Jensen inequality
gives the familiar result that the mean square exceeds the square of the mean:

Q =
1

N

N∑
i=1

x2
i −

(
1

N

N∑
i=1

xi

)2

≥ 0 (12.4)

In the other applications we will consider, the population consists of positive members,
so the function f(p) need have a positive second derivative only for positive values of
p. The function f(p) = 1/p yields a Jensen inequality for the harmonic mean:

H =
∑ wi

pi
− 1∑

wipi
≥ 0 (12.5)

A more important case is the geometric inequality. Here f(p) = − ln(p), and

G = −
∑

wi ln pi + ln
∑

wipi ≥ 0 (12.6)



12.2. RELATED CONCEPTS 287

The more familiar form of the geometric inequality results from exponentiation and
a choice of weights equal to 1/N:

1

N

N∑
i=1

pi ≥
N∏
i=1

p
1/N
i (12.7)

In other words, the product of square roots of two values is smaller than half the
sum of the values. A Jensen inequality with an adjustable parameter is suggested by
f(p) = pγ:

Γγ =
N∑
i=1

wip
γ
i −

(
N∑
i=1

wipi

)γ
(12.8)

Whether Γ is always positive or always negative depends upon the numerical value
of γ. In practice we may see the dimensionless form, in which the ratio instead of
the difference of the two terms is used. A most important inequality in information
theory and thermodynamics is the one based on f(p) = p1+ε, where ε is a small positive
number tending to zero. I call this the “weak” inequality. With some calculation we
will quickly arrive at the limit:∑

wip
1+ε
i ≥

(∑
wipi

)1+ε
(12.9)

Take logarithms
ln
∑

wip
1+ε
i ≥ (1 + ε) ln

∑
wipi (12.10)

Expand both sides in a Taylor series in powers of ε using

d

dε
au =

du

dε
au ln a (12.11)

The leading term is identical on both sides and can be canceled. Divide both sides
by ε and go to the limit ε = 0, obtaining∑

wipi ln pi∑
wipi

≥ ln
∑

wipi (12.12)

We can now define a positive variable S′ with or without a positive scaling factor∑
wp:

S ′intensive =

∑
wipi ln pi∑
wipi

− ln
∑

wipi ≥ 0 (12.13)

S ′extensive =
∑

wipi ln pi −
(∑

wipi
)

ln
(∑

wipi
)
≥ 0 (12.14)

Seismograms often contain zeros and gaps. Notice that a single zero pi can upset the
harmonic H or geometric G inequality, but a single zero has no horrible effect on S
or Γ.

12.2 RELATED CONCEPTS

In practice we may wonder which Jensen inequality to use.



288 CHAPTER 12. ENTROPY AND JENSEN INEQUALITY

12.2.1 Prior and posterior distributions

Random variables have a prior distribution and a posterior distribution. Denote
the prior by bi (for “before”) and posterior by ai (for “after”). Define pi = ai/bi, and
insert pi in any of the inequalities above. Now suppose we have an adjustable model
parameter upon which the ai all depend. Suppose we adjust that model parameter
to try to make some Jensen inequality into an equality. Thus we will be adjusting it
to get all the pi equal to each other, that is, to make all the posteriors equal to their
priors. It is nice to have so many ways to do this, one for each Jensen inequality.
The next question is, which Jensen inequality should we use? I cannot answer this
directly, but we can learn more about the various inequalities.

12.2.2 Jensen average

Physicists speak of maximizing entropy, which, if we change the polarity, is like
minimizing the various Jensen inequalities. As we minimize a Jensen inequality, the
small values tend to get larger while the large values tend to get smaller. For each
population of values there is an average value, i.e., a value that tends to get neither
larger nor smaller. The average depends not only on the population, but also on
the definition of entropy. Commonly, the pj are positive and

∑
wjpj is an energy.

Typically the total energy, which will be fixed, can be included as a constraint, or we
can find some other function to minimize. For example, divide both terms in (1.3) by
the second term and get an expression which is scale invariant; i.e., scaling p leaves
(1.15) unchanged: ∑N

j=1wjf(pj)

f
(∑N

j=1wjpj
) ≥ 1 (12.15)

Because the expression exceeds unity, we are tempted to take a logarithm and make
a new function for minimization:

J = ln

∑
j

wjf(pj)

 − ln

f
∑

j

wjpj

 ≥ 0 (12.16)

Given a population pj of positive variants, and an inequality like (1.16), I am now
prepared to define the “Jensen average” p. Suppose there is one element, say pJ , of
the population pj that can be given a first-order perturbation, and only a second-order
perturbation in J will result. Such an element is in equilibrium and is the Jensen
average p:

0 =
∂J

∂pJ

]
pJ=p

(12.17)

Let fp denote the derivative of f with respect to its argument. Inserting (1.16) into
(1.17) gives

0 =
∂J

∂pJ
=

wJ fp(pJ)∑
wj f(pj)

−
fp(
∑N
j=1wjpj)wJ

f (
∑
wjpj)

(12.18)



12.2. RELATED CONCEPTS 289

Solving,

p = pJ = f−1
p

eJfp( N∑
j=1

wjpj)

 (12.19)

But where do we get the function f , and what do we say about the equilibrium value?
Maybe we can somehow derive f from the population. If we cannot work out a general
theory, perhaps we can at least find the constant γ, assuming the functional form to
be f = pγ.

12.2.3 Additivity of envelope entropy to spectral entropy

In some of my efforts to fill in missing data with entropy criteria, I have often based
the entropy on the spectrum and then found that the envelope would misbehave. I
have come to believe that the definition of entropy should involve both the spectrum
and the envelope. To get started, let us assume that the power of a seismic signal is
the product of an envelope function times a spectral function, say

u(ω, t) = p(ω)e(t) (12.20)

Notice that this separability assumption resembles the stationarity concept. I am
not defending the assumption (1.20), only suggesting that it is an improvement over
each term separately. Let us examine some of the algebraic consequences. First
evaluate the intensive entropy:

S ′intensive =

∑
t

∑
ω u lnu∑

t

∑
ω u

− ln
1

N2

∑
t

∑
ω

u ≥ 0 (12.21)

=

∑∑
pe(ln p+ ln e)

(
∑
p)(
∑
e)

− ln

(
1

N

∑
ω

p
1

N

∑
t

e

)
(12.22)

=

∑
e
∑
p ln p +

∑
p
∑
e ln e

(
∑
p)(
∑
e)

− ln
1

N

∑
p − ln

1

N

∑
e(12.23)

=

(∑
p ln p∑
p
− ln

1

N

∑
p

)
+

(∑
e ln e∑
e
− ln

1

N

∑
e

)
(12.24)

= S(p) + S(e) ≥ 0 (12.25)

It is remarkable that all the cross terms have disappeared and that the resulting
entropy is the sum of the two parts. Now we will tackle the same calculation with
the geometric inequality:

G = ln
1

N2

∑∑
u − 1

N2

∑∑
lnu (12.26)

= ln

[(
1

N

∑
t

e

)(
1

N

∑
ω

p

)]
− 1

N2

∑
t

∑
ω

(ln pω + ln et) (12.27)

= ln e + ln p − 1

N2

∑
t

1t
∑
ω

ln pω −
1

N2

∑
ω

1ω
∑
t

ln et (12.28)



290 CHAPTER 12. ENTROPY AND JENSEN INEQUALITY

= ln e + ln p − 1

N

∑
ω

ln p − 1

N

∑
t

ln e (12.29)

= G(t) + G(ω) (12.30)

Again all the cross terms disappear, and the resulting entropy is the sum of the two
parts. I wonder if this result applies for the other Jensen inequalities.

In conclusion, although this book is dominated by model building using the
method of least squares, Jensen inequalities suggest many interesting alternatives.



312 CHAPTER 12. ENTROPY AND JENSEN INEQUALITY



Index

entropy, 2, 4, 5
envelope, 5

geometric inequality, 2

harmonic mean, 2

inequality, 1

Jensen average, 4

physics, 4
posterior distribution, 4
prior distribution, 4

spectrum, 5
stationarity, 5

thermodynamics, 2

313



Chapter 13

RATional FORtran == Ratfor

Bare-bones Fortran is our most universal computer language for computational
physics. For general programming, however, it has been surpassed by C. “Ratfor” is
Fortran with C-like syntax. I believe Ratfor is the best available expository language
for mathematical algorithms. Ratfor was invented by the people who invented C.
Ratfor programs are converted to Fortran with the Ratfor preprocessor. Since the
preprocessor is publicly available, Ratfor is practically as universal as Fortran.1

You will not really need the Ratfor preprocessor or any precise definitions if you
already know Fortran or almost any other computer language, because then the Ratfor
language will be easy to understand. Statements on a line may be separated by
“;.” Statements may be grouped together with braces { }. Do loops do not require
statement numbers because { } defines the range. Given that if( ) is true, the
statements in the following { } are done. else{ } does what you expect. We may
not contract else if to elseif. We may always omit the braces { } when they
contain only one statement. break will cause premature termination of the enclosing
{ }. break 2 escapes from {{ }}. while( ) { } repeats the statements in { }
while the condition ( ) is true. repeat { ... } until( ) is a loop that tests at
the bottom. A looping statement more general than do is for(initialize; condition;
reinitialize) { }. next causes skipping to the end of any loop and a retrial of the test
condition. next is rarely used, but when it is, we must beware of an inconsistancy
between Fortran and C-language. Where Ratfor uses next, the C-language uses
continue (which in Ratfor and Fortran is merely a place holder for labels). The
Fortran relational operators .gt., .ge., .ne., etc. may be written >, >=, !=, etc.
The logical operators .and. and .or. may be written && and ||. Anything from
a # to the end of the line is a comment. Anything that does not make sense to
the Ratfor preprocessor, such as Fortran input-output, is passed through without
change. (Ratfor has a switch statement but we never use it because it conflicts with

1Kernighan, B.W. and Plauger, P.J., 1976, Software Tools: Addison-Wesley. Ratfor was invented
at AT&T, which makes it available directly or through many computer vendors. The original Ratfor
transforms Ratfor code to Fortran 66. See http://sepwww.stanford.edu/sep/prof for a public-
domain Ratfor translator to Fortran 77.

291



292 CHAPTER 13. RATIONAL FORTRAN == RATFOR

the implicit undefined declaration. Anybody want to help us fix the switch in
public domain ratfor?)

Indentation in Ratfor is used for readability. It is not part of the Ratfor language.
Choose your own style. I have overcondensed. There are two pitfalls associated
with indentation. The beginner’s pitfall is to assume that a do loop ends where the
indentation ends. The loop ends after the first statement. A larger scope for the do

loop is made by enclosing multiple statements in braces. The other pitfall arises in
any construction like if() ... if() ... else. The else goes with the last if()
regardless of indentation. If you want the else with the earlier if(), you must use
braces like if() { if() ... } else ....

The most serious limitation of Fortran-77 is its lack of ability to allocate tem-
porary memory. I have written a preprocessor to Ratfor or Fortran to overcome
this memory-allocation limitation. This program, named sat, allows subroutines to
include the declaration temporary real data(n1,n2), so that memory is allocated
during execution of the subroutine where the declaration is written. Fortran-77 forces
us to accomplish something like this only with predetermined constants or param-
eters. If the sat preprocessor is not available on your system, you can modify the
subroutines in this book by putting the appropriate numerical constants into the
memory arrays being allocated, or adapt the programs here to Fortran 90 (although
students at Stanford seem to prefer the sat approach).

Below are simple Ratfor subroutines for erasing an array (zero()), (null()),
for copying one array to another (copy()), for vector scaling (scaleit()), for the
signum function sgn(x) = x/|x| (signum()), for nearest-neighbor interpolation. In
the interpolation programs the mathematical concept x = x0 + n∆x is expressed as
x = x0 +(ix-1)*dx. The idea of “nearest neighbor” arises when backsolving for the
integer ix: a half is added to the floating-point value before rounding down to an
integer, i.e., ix = .5 + 1 + (x-x0)/dx. The file quantile() on page 3 contains two
quantile-finding utilities. The method is the well-known one developed by Hoare.

subroutine zero( n, xx)
integer i, n; real xx(n)
do i= 1, n

xx(i) = 0.
return; end

subroutine null( xx, n)
integer i, n; real xx( n)
do i= 1, n

xx(i) = 0.
return; end

subroutine copy( n, xx, yy)
integer i, n; real xx(n), yy(n)
do i= 1, n

yy(i) = xx(i)
return; end



293

subroutine scaleit( factor, n, data)
integer i, n
real factor, data(n)
do i= 1, n

data(i) = factor * data(i)
return; end

real function signum( x)
real x

if ( x > 0 ) { signum = 1. }
else if ( x < 0 ) { signum = -1. }
else { signum = 0. }

return; end

# Two quantile utilities. Changed since formally tested.
#
# value = value of bb(k) if bb(1...n) were sorted into increasing order.
subroutine quantile( k, n, bb, value)

integer i, k, n; real bb(n), value
temporary real aa(n)
do i= 1, n

aa(i) = bb(i)
call quantinternal( k, n, aa)
value = aa(k)
return; end

# value = value of abs(bb(k)) if abs(bb(1...n)) were sorted to increasing order.
subroutine quantabs( k, n, bb, value)

integer i, k, n; real bb(n), value
temporary real aa(n)
do i= 1, n

aa(i) = abs( bb(i))
call quantinternal( k, n, aa)
value = aa(k)
return; end

subroutine quantinternal( k, n, a)
integer k, n; real a(n)
integer i, j, low, hi; real ak, aa
if( k>n || k<1) call erexit("quant: inputs not in range 1 <= k <= n ")
low = 1; hi = n
while( low < hi) {

ak = a(k); i = low; j = hi
repeat {

if( a(i) < ak)
i = i+1

else {
while( a(j) > ak) j = j-1
if( i > j) break
aa = a(i); a(i) = a(j); a(j) = aa
i = i+1; j = j-1
if( i > j) break



294 CHAPTER 13. RATIONAL FORTRAN == RATFOR

}
}

if( j < k) low = i
if( k < i) hi = j
}

return; end

real function rand01( iseed)
integer ia, im, iseed
parameter(ia = 727,im = 524287)
iseed = mod(iseed*ia,im)
rand01 =(float(iseed) - 0.5)/float(im - 1)
return; end



Chapter 14

Seplib and SEP software

At the time of writing, this book can be run on a variety of computers. You will have
noticed that each figure caption contains a box enclosing a label. In the electronic
book, this box is a pushbutton that generally activates a rebuilding of the figure,
sometimes after program or parameter changes and sometimes interactively. The
label in the box points to the location of the underlying software. My associates and
I have worked through complete cycles of “burning” and building all the figures on
various computers. To enable you to do the same, and to further enable you to rapidly
build on my work, I intend to release an electronic copy of the book soon. This short
appendix describes the utility software that is used extensively in the electronic book.

Most of the seismic utility software at the Stanford Exploration Project1

(SEP) handles seismic data as a rectangular lattice or “cube” of numbers. Each cube-
processing program appends to the history file for the cube. Preprocessors extend
Fortran (or Ratfor) to enable it to allocate memory at run time, to facilitate input
and output of data cubes, and to facilitate self-documenting programs.

At the SEP a library of subroutines known as seplib evolved for routine opera-
tions. These subroutines mostly handle data in the form of cubes, planes, and vectors.
A cube is defined by 14 parameters with standard names and two files: one the data
cube itself, and the other containing the 14 parameters and a history of the life of
the cube as it passed through a sequence of cube-processing programs. Most of these
cube-processing programs have been written by researchers, but several nonscientific
cube programs have become highly developed and are widely shared. Altogether there
are (1) a library of subroutines, (2) a library of main programs, (3) some naming con-
ventions, and (4) a graphics library called vplot. The subroutine library has good
manual pages. The main programs rarely have manual pages, their documentation
being supplied by the on-line self-documentation that is extracted from the comments
at the beginning of the source file. Following is a list of the names of popular main
programs:

1Old reports of the Stanford Exploration Project can be found in the library of the Society of
Exploration Geophysicists in Tulsa, Oklahoma.

295



296 CHAPTER 14. SEPLIB AND SEP SOFTWARE

Byte Scale floats to brightness bytes for raster display.
Cat Concatenate conforming cubes along the 3-axis.
Contour Contour plot a plane.
Cp Copy a cube.
Dd Convert between ASCI, floats, complex, bytes, etc.
Dots Plot a plane of floats.
Ft3d Do three-dimensional Fourier transform.
Graph Plot a line of floats.
In Check the validity of a data cube.
Merge Merge conforming cubes side by side on any axis.
Movie View a cube with Rick Ottolini’s cube viewer.
Noise Add noise to data.
Reverse Reverse a cube axis.
Spike Make a plane wave of synthetic data.
Ta2vplot Convert a byte format to raster display with vplot.
Tpow Scale data by a power of time t (1-axis).
Thplot Make a hidden line plot.
Transpose Transpose cube axes.
Tube View a vplot file on a screen.
Wiggle Plot a plane of floats as “wiggle traces.”
Window Find a subcube by truncation or subsampling.

To use the cube-processing programs, read this document, and then for each
command, read its on-line self-documentation. To write cube-processing programs,
read the manual page for seplib and the subroutines mentioned there and here. To
write vplot programs, see the references on vplot.

14.1 THE DATA CUBE

The data cube itself is like a Fortran three-dimensional matrix. Its location in
the computer file system is denoted by in=PATHNAME, where in= is the literal oc-
currence of those three characters, and PATHNAME is a directory tree location like
/sep/professor/pvi/data/western73.F. Like the Fortran cube, the data cube can
be real, complex, double precision, or byte, and these cases are distinguished by the
element size in bytes. Thus the history file contains one of esize=4, esize=8, or
esize=1, respectively. Embedded blanks around the “=” are always forbidden. The
cube values are binary information; they cannot be printed or edited (without the
intervention of something like a Fortran “format”). To read and write cubes, see the
manual pages for such routines as reed, sreed, rite, srite, snap.

A cube has three axes. The number of points on the 1-axis is n1. A Fortran
declaration of a cube could be real mydata(n1,n2,n3). For a plane, n3=1, and for a
line, n2=1. In addition, many programs take “1” as the default for an undefined value
of n2 or n3. The physical location of the single data value mydata(1,1,1), like a



14.2. THE HISTORY FILE 297

mathematical origin (o1, o2, o3), is denoted by the three real variables o1, o2, and o3.
The data-cube values are presumed to be uniformly spaced along these axes like the
mathematical increments (∆1,∆2,∆3), which may be negative and are denoted by the
three real variables d1, d2, and d3. Each axis has a label, and naturally these labels
are called label1, label2, and label3. Examples of labels are kilometers, sec, Hz,
and "offset, km". Most often, label1="time, sec". Altogether that is 2 + 3× 4
parameters, and there is an optional title parameter that is interpreted by most
of the plot programs. An example is title="Yilmaz and Cumro Canada profile

25". We reserve the names n4,o4,d4, and label4 (a few programs support them
already), and please do not use n5 etc. for anything but a five-dimensional cubic
lattice.

14.2 THE HISTORY FILE

The 15 parameters above, and many more parameters defined by authors of cube-
processing programs, are part of the “history file” (which is ASCI, so we can print
it). A great many cube-processing programs are simple filters—i.e., one cube goes
in and one cube comes out—and that is the case I will describe in detail here. For
other cases, such as where two go in and one comes out, or none go in and one comes
out (synthetic data), or one goes in and none come out (plotting program), I refer
you to the manual pages, particularly to subroutine names beginning with aux (as in
“auxiliary”).

Let us dissect an example of a simple cube-processing program and its use. Sup-
pose we have a seismogram in a data cube and we want only the first 500 points on
it, i.e., the first 500 points on the 1-axis. A utility cube filter named Window will do
the job. Our command line looks like < mygiven.H Window n1=500 > myshort.H

On this command line, mygiven.H is the name of the history file of the data we are
given, and myshort.H is the history file we will create. The moment Window, or any
other seplib program, begins, it copies mygiven.H to myshort.H; from then on, in-
formation can only be appended to myshort.H. When Window learns that we want
the 1-axis on our output cube to be 500, it does call putch(’n1’,’i’,500), which
appends n1=500 to myshort.H. But before this, some other things happen. First,
seplib’s internals will get our log-in name, the date, the name of the computer we
are using, and Window’s name (which is Window), and append these to myshort.H.
The internals will scan mygiven.H for in=somewhere to find the input data cube
itself, and will then figure out where we want to keep the output cube. Seplib will
guess that someone named professor wants to keep his data cube at some place like
/scr/professor/ Window.H@. You should read the manual page for datapath to
see how you can set up the default location for your datasets. The reason datapath

exists is to facilitate isolating data from text, which is usually helpful for archiving.

When a cube-processing filter wonders what the value is of n1 for the cube coming
in, it makes a subroutine call like call hetch("n1","i",n1). The value returned



298 CHAPTER 14. SEPLIB AND SEP SOFTWARE

for n1 will be the last value of n1 found on the history file. Window also needs to
find a different n1, the one we put on the command line. For this it will invoke
something like call getch("n1","i",n1out). Then, so the next user will know
how big the output cube is, it will call putch("n1","i",n1out). For more details,
see the manual pages.

If we want to take input parameters from a file instead of from the command line,
we type something like <in.H Window par=myparfile.p > out.H. The .p is my
naming convention and is wholly optional, as is the .H notation for a history file.

Sepcube programs are self-documenting. When you type the name of the pro-
gram with no input cube and no command-line arguments, you should see the self-
documentation (which comes from the initial comment lines in the program).

SEP software supports “pipelining.” For example, we can slice a plane out of
a data cube, make a contour plot, and display the plot, all with the command line
<in.H Window n3=1 | Contour | Tube where, as in UNIX pipes, the “|” denotes
the passage of information from one program to the next. Pipelining is a convenience
for the user because it saves defining a location for necessary intermediate files. The
history files do flow down UNIX pipes. You may not have noticed that some location
had to be assigned to the data at the intermediate stages, and when you typed the
pipeline above, you were spared that clutter. To write seplib programs that allow
pipelining, you need to read the manual page on hclose() to keep the history file
from intermingling with the data cube itself.

A sample history file follows: this was an old one, so I removed a few anachronisms
manually.

# Texaco Subduction Trench: read from tape by Bill Harlan
n1=1900 n2=2274
o1=2.4 it0=600 d1=.004 d2=50. in=/d5/alaska
Window: bill Wed Apr 13 14:27:57 1983

input() : in ="/d5/alaska"
output() : sets next in="/q2/data/Dalw"
Input: float Fortran (1900,2274,1)
Output: float Fortran (512,128,1)

n1=512 n2=128 n3=1
Swab: root@mazama Mon Feb 17 03:23:08 1986
# input history file /r3/q2/data/Halw

input() : in ="/q2/data/Dalw"
output() : sets next in="/q2/data/Dalw_002870_Rcp"
#ibs=8192 #obs=8192

Rcp: paul Mon Feb 17 03:23:15 PST 1986
Copying from mazama:/r3/q2/data/Halw
to hanauma:/q2/data/Halw
in="/q2/data/Dalw"

Cp: jon@hanauma Wed Apr 3 23:18:13 1991
input() : in ="/q2/data/Dalw"
output() : sets next in="/scr/jon/_junk.H@"



14.3. MEMORY ALLOCATION 299

14.3 MEMORY ALLOCATION

Sepcube programs can be written in Fortran, Ratfor, or C. A serious problem with
Fortran-77 (and hence Ratfor) is that memory cannot be allocated for arrays whose
size is determined at run time. We have worked around this limitation by using two
home-grown preprocessors, one called saw (Stanford Auto Writer) for main programs,
and one called sat (Stanford Auto Temporaries) for subroutines. Both preprocessors
transform either Fortran or Ratfor.

14.3.1 Memory allocation in subroutines with sat

The sat preprocessor allows us to declare temporary arrays of arbitrary dimension,
such as temporary real*4 data(n1,n2,n3), convolution(j+k-1) These declara-
tions must follow other declarations and precede the executable statements.

14.3.2 The main program environment with saw

The saw preprocessor also calls an essential initialization routine initpar(), organizes
the self-doc, and simplifies data-cube input. See the on-line self-documentation or the
manual pages for full details. Following is a complete saw program for a simple task:

# <in.H Scale scaleval=1. > out.H
#
# Copy input to output and scale by scaleval
# keyword generic scale
#%
integer n1, n2, n3, esize
from history: integer n1, n2, n3, esize
if (esize !=4) call erexit(’esize != 4’)
allocate: real x(n1,n2)
subroutine scaleit( n1,n2, x)
integer i1,i2, n1,n2
real x(n1,n2), scaleval
from par: real scaleval=1.
call hclose() # no more parameter handling.
call sreed(’in’, x, 4*n1*n2)
do i1=1,n1

do i2=1,n2
x(i1,i2) = x(i1,i2) * scaleval

call srite( ’out’, x, 4*n1*n2)
return; end

14.4 References

Claerbout, J., 1990, Introduction to seplib and SEP utility software: SEP–70,
413–436.



300 CHAPTER 14. SEPLIB AND SEP SOFTWARE

Claerbout, J., 1986, A canonical program library: SEP–50, 281–290.

Cole, S., and Dellinger, J., Vplot: SEP’s plot language: SEP-60, 349–389.

Dellinger, J., 1989, Why does SEP still use Vplot?: SEP–61, 327–335.

14.5 Acknowledgments

Robert Clayton introduced the original parameter-fetching method. I introduced
history files. Stew Levin got pipes to work and brought the code to a high standard.
Dave Nichols generalized it to support many computer architectures and networks of
machines.



312 CHAPTER 14. SEPLIB AND SEP SOFTWARE



Index

burn, 5
Byte program, 6

C, 1
Cat program, 6
Contour program, 6
copy subroutine, 2
Cp program, 6

Dd program, 6
Dots program, 6

Fortran, 1, 2, 5, 9
Ft3d program, 6

Graph program, 6

history file, 7

In program, 6

Merge program, 6
Movie program, 6

Noise program, 6
null subroutine, 2

pitfall, 2
preprocessor, 1, 2

quantile subroutine, 3

rand01 subroutine, 4
Ratfor, 1, 2, 5
Reverse program, 6

sat, 2, 9
saw, 9
scaleit subroutine, 3
SEP, 5, 9, 10
seplib, 5

signum subroutine, 3
Spike program, 6
Stanford Exploration Project, 5
subroutine

copy, copy a vector, 2
null, erase a vector, 2
quantile, find quantile, 3
rand01, random numbers, 4
scaleit, scale a vector, 3
signum, math function, 3
zero, erase a vector, 2

Ta2vplot program, 6
Thplot program, 6
Tpow program, 6
Transpose program, 6
Tube program, 6

vplot, 5

Wiggle program, 6
Window program, 6

zero subroutine, 2

313



Chapter 15

Notation

The following notation is consistent throughout this book. Other notation defined
locally as applying to an exercise or a subsection is not given here. A few symbols
have several meanings (separated by semicolons), but never more than one meaning
per chapter.

15.1 OPERATORS

<z real part of complex number z
=z imaginary part of complex number z
E expectation; sum over ensemble

15.2 SCALARS

n,m,N number of components in a vector
x, y, z Cartesian coordinates
r radius
φ phase angle
z = x+ iy = reiφ complex number
z complex conjugate of z
t time; transmission coefficient
j, k index on discrete time
f generic function; frequency in cycles
ω = 2πf angular frequency (common)
Z = eiω∆t Z-transform variable
∗ convolution; multiplication (in programs)
∆t, dt sampling time interval
∆f, df frequency sampling interval

301



302 CHAPTER 15. NOTATION

∆T extent of time axis
∆F extent of frequency axis
ΛT signal duration
ΛF spectral bandwidth
σ2 variance
c reflection coefficient

15.3 FILTERS, SIGNALS, AND THEIR TRANSFORMS

The example x(t), xt, Xk, X(Z), X(ω) can be understood as follows. A lower-case
letter with a function argument (t) denotes a continuous time function (rare). Lower
case with a subscript denotes a signal or filter as a function of discrete time (common).
Upper case with subscript denotes a discrete Fourier transform. Z-transforms are
denoted by the function argument (Z). Where a function argument ω is occasionally
seen, such as in A(ω), it is generally a shorthand for A(Z = eiω). For a definition of
the complex conjugate of filters, see page ??.

aA feedback filter (autoregression)
bB convolution filter
cC causal filter; reflected wave; cross-spectrum
dD downgoing wave
E escaping wave
fF component of layer matrix; force; generic function
gG component of layer matrix; analytic signal; causal garbage filter
hH admittance
I causal integration operator
JKLMO unused
N noise
pP phase shift; pressure; all-pass filter; generic input space
qQ quadrature filter; generic output space
rR impedance; reflection seismogram
sS S is spectrum; st is autocorrelation
T transmitted wave
uU upcoming wave; logarithm of S
vV velocity
W weighting function; vertical component of flow
xX generic input signal
yY generic output signal
φΦ phase



15.4. MATRICES AND VECTORS 303

15.4 MATRICES AND VECTORS

Matrices are universally denoted by upper-case boldface. Vectors are lower-case bold-
face everywhere except in the conjugate-gradient section of chapter 5, where vectors
are capitalized when in transform space.

x generic model space, often unknown
y generic data space
d data, given
A generic matrix
B generic matrix
B′ conjugate transpose of generic matrix
I identity matrix
U unitary or pseudounitary matrix
W weighting diagonal matrix
D diagonal matrix
N NMO (normal-moveout) matrix
T tridiagonal matrix; matrix with time t on diagonal
Q quadratic form

15.5 CHANGES FROM FGDP

In FGDP I used R(Z) to denote a reflection seismogram, an impedance function, and
a spectrum with autocorrelation coefficients rt. I liked this classic notation, which
was used by the mathematicians Wiener and Levinson. It is confusing, however, to
use in one equation rt both for the causal, one-sided, reflection seismogram and for
the two-sided autocorrelation. Thus I have introduced S, which is a natural notation
for spectrum, although s is admittedly less natural for autocorrelation.



304 CHAPTER 15. NOTATION



Chapter 16

Interactive, 1-D, seismology
program ed1D

The ed1D program made 23 figures for this paper book, many of them in chapters
9 and 11. In the electronic book, the caption for each of those 23 figures contains a
pushbutton that activates ed1D and initializes it to that figure. ed1D has a built-in
tutorial that will enable you to operate it without this document.

ed1D is an interactive program that shows two one-dimensional signals related
by various selectable mathematical transforms. Using a pointer, you can edit either
signal and see the effect on the other one. The signals can be Fourier-transform
pairs, or a wide variety of other pairs created by transformations such as Hilbert
transforms, spectral factorization, autocorrelations, reflection coefficients, and
impedance. Some of these transformations are not described in this book, but are
described in chapter 8 of FGDP.

When you enter the program, you should move the pointer around the screen
until you find the “Tutor” button and then click pointer buttons on it, all the while
watching the message window for instructions.

You will see that there are several ways of editing a signal. First, you can use the
pointer simply to draw the signal you wish. Second, you can draw a weighting function
to multiply any signal that you have previously prepared. Third, there are a variety
of preexisting analytic signals that you can use as weights. These mathematical
weighting functions have two adjustable parameters, the shift and the bandwidth,
which you select with the pointer. Watch the message window for instructions for
selecting these parameters.

As long as the number of ordinates is less than about 256, edited changes in one
domain show up immediately in both domains. That is good for learning. With more
ordinates (more computational work), you see the changes only in the domain you
are editing, until later, when you move the cursor into the other domain.

The number of options in this program proved confusing to beginners, so I com-

305



306 CHAPTER 16. INTERACTIVE, 1-D, SEISMOLOGY PROGRAM ED1D

mented out a few in the source code. See Claerbout (1988) for more details. For
example, there is a parabolic-shaped editing tool that can be pushed against any
signal to deform it. The curvature of the parabola is adjustable. You can reinstall
the parabolic pushing tool by uncommenting a few lines in the control panel. An-
other example is the huge number of transformations that can be studied with this
program: I hid these, since they have no obvious interest and proved confusing to
beginners.

16.1 References

Claerbout, J., 1988, Interaction with 1-D seismology: SEP–57, 513–522.



Chapter 17

The Zplane program

The Zplane program made 16 figures for this paper book. In the electronic book,
each of those 16 figure captions contains a pushbutton that activates Zplane and
initializes it to that figure. Zplane has a built-in tutorial that enables you to operate
it without this document. Huge gaps between the abstract and the concrete are
bridged by Zplane. First is the conceptual gap from the time-domain representation
of a filter to its poles and zeros in the complex frequency plane (as described in chapter
3). Second is a gap from the appearance of a filter to the appearance of field data
after applying it. Zplane gives you hands-on experience with all these relationships.
Z-plane theory conveniently incorporates causality and relates time and frequency
domains. With Zplane, you create and move poles and zeros in the complex Z-plane.
You immediately see the filter impulse response and its spectrum as you readjust
the poles and zeros. If you choose to touch a plane of seismograms, it is filtered by
your chosen filter and redisplayed after a few seconds.

Choice of a display filter is important for both field data and synthetic data. Goals
for filter design that are expressed in the frequency domain generally conflict with
other goals in the time domain. For example, when a filter is specified by frequency
cutoffs and rolloffs, then the time-domain behavior, i.e., filter length, phase shift, and
energy delay, are left to fall where they may.

17.1 THE SCREEN

The program displays four planes: (1) an impulse-response graph, (2) a frequency-
response graph, (3) a complex frequency plane for roots, and (4) a seismic data plane
(such as a gather or section). Planes (1), (2), and (3) are line drawings or “vector
plots,” and they update immediately, whereas plane (4) is a variable brightness plane
that updates only on command and after a delay of several seconds.

307



308 CHAPTER 17. THE ZPLANE PROGRAM

17.1.1 Complex frequency plane

A frequency-response graph displays the amplitude spectra of the current filter. On
the same axes, the amplitude spectrum of a portion of data can be displayed. Further,
since the horizontal axis of these spectra is the real ω-axis, it is convenient to superpose
the complex ω-plane with <ω horizontal and scaled =ω vertical. The location of the
pointer in the complex frequency plane is printed in the message window as the
pointer moves. Theory suggests a display of the complex Z-plane. Instead I selected
a complex ω-plane, because its Cartesian axes are well suited to the superposition of
the amplitude spectra of filters and data.

The letters “z” and “p” are plotted in the complex ω-plane to show the locations
of poles and zeros. The location of these roots is under the exact center of the
letter. You may put one letter exactly on top of another, but that only disguises the
multiplicity of the root.

Recall from Z-plane theory that to keep the filter response real, any pole or zero
on the positive ω-axis must have a twin on the negative ω-axis. To save screen space, I
do not plot the negative axis, so you do not see the twin. Thus you need to be careful
to distinguish between a root exactly at zero frequency (or at Nyquist frequency) with
no twin, and a root slightly away from zero (or Nyquist) that has a twin at negative
frequency (not displayed).

Let the complex frequency be decomposed into its real and imaginary parts,
i.e., ω = <ω+ i=ω. All filters are required to be causal and minimum-phase—that is,
all poles and zeros must be outside the unit circle in the Z-plane. Since Z = eiω, the
roots must all have negative values of =ω. Any attempt to push a root to positive
values of =ω simply leaves the root stranded on the axis of =ω = 0. Likewise, roots
can easily be placed along the edges <ω = 0 and <ω = π.

Although mathematics suggests plotting =ω along the vertical axis, I found it more
practical to plot something like the logarithm of =ω, because we frequently need to
put poles close to the real axis. The logarithm is not exactly what we want either,
because zeros may be exactly on the unit circle. I could not devise an ideal theory
for scaling =ω. After some experimentation, I settled on =ω = −(1 + y3)/(1 − y3),
where y is the vertical position in a window of vertical range 0 < y < 1, but you do
not need to know this since the value of ρ can be read from the message window as
you move the pointer on the Z-plane.

17.1.2 The seismic data plane

The seismic data plane is displayed as wiggle traces or as raster information, i.e., gray
levels, with clipped values shown in a dull red.

The “clip” value is defined as that above which a signal cannot be displayed,
because the screen cannot be made brighter. To replot the filtered data with a



17.2. REFERENCES 309

different clip value, you touch the data in a different place. The clip is taken as 1%
more than the maximum of the 30 time points surrounding the pointer.

There are no numbered axes on the data plane because none are needed. As you
move the pointer across the data plane, the values of time and space are written
near the ends of the axes. These values are more accurate than you could read from
numbered axes.

17.1.3 Burg spectra

The Burg spectral method is described in FGDP. A theoretical description is not
repeated in this book. The main feature of the Burg spectrum is its insensitivity to
the edges of the data window of estimation.

In building the Zplane program, several interesting practical aspects arose. First,
the program allows us to put a box on the data, and the Burg spectrum of the
data in that box is computed and displayed. Thus the Burg computation of the
reflection coefficients is a ratio of a numerator to a denominator, each of which is
averaged in your selected box. Second, some traditional literature suggests that
the only parameter you choose with the Burg spectrum is the filter length. After
experimenting a while, I decided to keep the filter length at a constant 25, and
instead let the variable be the corners of the estimation box that we draw on the data
plane. Third, I found it necessary to bias the reflection coefficients downward as the
lag approaches the data length.

17.2 References

Claerbout, J., 1987, Interactive filter design in the Z-plane: SEP–56, 263–271.



310 CHAPTER 17. THE ZPLANE PROGRAM



Index

bandwidth, 5
Burg, 9

factorization, 5
FGDP, 3
Fourier-transform, 5

Hilbert transform, 5

impulse response, 7

notation, 1

pole, 7

SEP, 6, 9
spectrum, 7

zero, 7

311


