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‘Orebody modelling and strategic mine planning’ are arguably the backbone of our industry and
represent an intricate, complex and critically important part of mining ventures. They have a
profound effect on the value of a mine, as well as determining the technical plan to be followed
from mine development to mine closure.

It is most gratifying to introduce the second revised edition of this Spectrum Series volume on the
above topic, following the depletion of all copies of the first edition within about a year of its
publication. The present volume includes new developments since the first edition, ranging from
integrated mine evaluation and mine management under uncertainty presented by DeBeers, to BHP
Billiton’s recent efforts in jointly optimising ore extraction and in-pit dumping, to the stochastic
simulation of orebody geology or wireframes with multi-point spatial statistics. Undoubtedly, this
edition is a reaffirmation of the continuing commitment to our field of work by a large number of
individuals, mining companies and professional organisations.

Uncertainty and risk management models are the underlying themes of this volume. Several of the
papers presented refer to the staggering statistics of mining risk and the recognised importance to
strategic mine planning of geological ore reserve risk. The reality is that few projects perform as
expected due to problems in orebody modelling and ore reserve estimates. Surveys suggest that
nearly three quarters of mining projects fail to meet expectations, leading to capital investment
losses in the order of hundreds of millions of dollars. The aim of this volume is to foster not only
an understanding of the adverse effects of risk, but also address the potential limitations
encountered in traditional methods and demonstrate how to technically manage risk to perform
better. Adding value to the industry means demonstrating how the quantification of uncertainty and
risk management can be used to capture maximum upside potential while minimising downside
risk in assessing the value of mining assets.

The papers in this volume are grouped according to key themes. Why strategic risk management? is
the opening theme of this volume. Papers examine the following: issues for optimisation methods,
large geological risk modelling case studies that look at effects throughout the chain of mining,
financial models that include integration of risk from various sources, new approaches to
optimisation with quantified risk, and new models and their associated issues for reserve modelling
and stochastic simulation. New practical conditional simulation methods for modelling large
orebodies are highlighted in the next section, which puts an emphasis on new multi-point as well as
very efficient methods that are practical for routine use in the industry environment. A group of
papers on advances in conventional mining optimisation complements the previous section.
Integrated large-scale applications includes both major case studies using new technologies and new
approaches, and their application in various commodities and mining methods. Geological
uncertainty and mineral resources/ore reserves is a section focusing on the issues underpinning the
sustainability of the mining industry. Geotechnical risk and mine design raises the need to further
integrate geotechnical risk into modelling and optimisation. Case studies and blending optimisation
includes optimisation of multiple operating policies in complex resource exploitation. New concepts,
technologies and directions is the final section of this volume and deals with new, broadly applicable
risk-based frameworks for optimising under uncertainty. As well as documenting the concepts, it
explores the distinct financial advantages of risk-based optimisation through case studies.

A key impetus for the preparation of this volume was the outstanding success of an international
symposium on the same topic, held in Perth, Western Australia, in November 2004, and the



commitment of over 260 participants from around the globe, as well the mining industry sponsors
and organisers to further the transfer and dissemination of emerging leading edge technologies and
new promising results from research, development and applications in recent years. Thus, this
volume includes selected upgraded papers from that symposium, several new contributions which
complement this topic, and new papers that have been added along with previously published
papers, recently revised for this second edition. At a time when demands for improved
performance in sustainability, responsibility and economic growth are accelerating, technical
uncertainties (geological and mining) and uncertain mineral market forecasts have traditionally
been seen as limitations on the sector’s ability to ‘do better’. This need not be the case, as is
demonstrated in this volume.

In particular, several papers represent a technical articulation of a paradigm shift based on the use
of information that can be gained by applying sophisticated mathematical models to data where
there is inherent uncertainty. This type of modelling enables quantification and analysis of
multifaceted risk, and facilitates the identification of major changes that can result in improved
resource assessment, mine planning and mining operations. It is hoped that our intellectual capital
investment in ‘mineral resource management and mining under uncertainty’, along with the
outcomes presented in this second edition Spectrum Series volume, will not only contribute to and
encourage a shift in the way we approach and solve problems in the mining sector, but also
contribute to the dissemination of new technologies for modelling uncertainty, mine design,
production scheduling and options valuation.

Education underpins the transfer and acceptance of new technologies and concepts to both the
current generation of mining professionals, as well as the next. I am particularly indebted to The
AusIMM, whose collaboration in preparing and producing this volume for the second time, as well
as several other professional development activities, has been most effective and greatly
appreciated over the years. With the ongoing globalisation of the mining sector, the contribution
and collaboration of the CIM (Canada), the SME (USA) and the SAIMM (South Africa) has also
been critical to the success of our efforts. This volume is, I believe, the continuation of the effort of
the above Institutes to enhance professional excellence in the critical field addressed by this
Spectrum Series publication in both of its editions to date.

If this volume makes a contribution to our profession, it is due to the combined efforts of many
professionals over several years. In particular, I would like to thank our colleagues and international
experts: Jeff Whittle, Gavin Yeates, Peter Ravenscroft, Peter Forrestal, Allen Cockle, Wynand
Kleingeld, Jean-Michel Rendu, Peter Monkhouse, Martin Whitham, Georges Verly, Olivier
Tavchandjian, Duncan Campbell, Peter Dowd, Jean-Paul Chiles, Andre Journel and Paul Greenfield
whose support over many years has been invaluable. In addition, I would like to update this list and
express my gratitude to include the following colleagues who have supported and contributed to our
broader efforts as well as this second edition: Rick Allan, Edson Ribeiro, Brian Baird, Ian Douglas,
David Whittle, Kapila Karunaratna, Jaimie Donovan, Peter Stone and Malcolm Thurston.

I would further like to acknowledge the diligent work of the reviewers who are listed on page iii, and
thank the authors for the high quality of their contributions. Last, but not least, I wish to acknowledge
the multifaceted support of the sponsors of both the first edition: AngloGold Ashanti, BHP Billiton,
De Beers, Hamersley Iron, Newmont, Rio Tinto, Whittle Programming and Xstrata Copper, as well
as the sponsors of this second edition: Companhia Vale do Rio Doce (CVRD) and Barrick Gold. This
volume is in your hands thanks to them.

Roussos Dimitrakopoulos

Professor

COSMO - Stochastic Mine Planning Laboratory
Department of Mining, Metals and Materials Engineering
McGill University

Montreal QC Canada
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Beyond Naive Optimisation
P H L Monkhouse' and G A Yeates?

ABSTRACT

Most practitioners would regard the maximising of the net present value
(NPV) of a mine by changing mining schedules, push-backs, cut-off
grades, ultimate pit shells and stockpile rules and procedures as
encompassing current best practice in mine planning. This optimisation is
typically carried out for a single set of assumptions about:

e orebody tonnes and grade,

e processing methods and costs,

e maximum sales volumes in the case of bulk commodities,

e commodity prices, and

e discount rates.

About the only thing we can be sure of is that the assumptions on all
these factors will be wrong, yet we continue to naively optimise our mine
plan. This paper argues that this approach is inherently flawed.
Recognising that our assumptions will be wrong, and that our actions can
alter over time as new information is made available, means that the mine
plan that is ‘optimal’ under a single set of assumptions may well be
suboptimal in the real and uncertain world.

INTRODUCTION

Best practice is a fuzzy term; when applied to mine planning it
can mean many things. Current best practice in mine planning, as
viewed by most practitioners, encompasses the maximising of
the net present value (NPV) of a mine by changing mining
schedules, push-backs, cut-off grades, ultimate pit shells and
stockpile rules and procedures. This analysis is typically
performed for a single set of assumptions, which we can almost
guarantee will be wrong. Assumptions typically cover: orebody
tonnes and grade; processing methods and costs; maximum sales
volumes in the case of bulk commodities; commodity prices; and
discount rates.

Planning for a single set of assumptions that turn out to be
incorrect will result in a suboptimal, or naive, mine plan. There
are two possible responses to this. The first is to try harder to
correctly estimate (forecast) the future. The second response is to
recognise that the future is in many respects unknowable, and to
subsequently develop mine plans that have the flexibility to
respond to changes to assumptions in the future. This flexible —
or robust — mine plan will continue to give high mine values over
a wide range of input assumptions (both optimistic and
pessimistic), rather than a plan that only gives optimal results
over a very small range of assumptions.

The key to addressing these issues is understanding
uncertainty and risk, and developing methods to incorporate
them into the mine planning process. This allows us to value
flexibility and the benefit derived from robust mine plans. Whilst
acknowledging that this is difficult, we propose that solutions can
be found by combining the research from two broad but quite
different areas, those of mine planning and real options. Even if
robust or flexible plans are developed, the organisational
challenge is to act effectively. For example, how many copper
mines changed their mine plans when the copper price doubled
over a relatively short period of time? How many of these
operations are still working to the cut-off, the schedule and
ultimate pit that were in place when the copper price was half

1. Vice President — Business Strategy for Carbon Steel Materials, BHP
Billiton Limited, PO Box 86A, Melbourne Vic 3001, Australia.
Email: peter.hl.monkhouse @bhpbilliton.com

2. FAusIMM(CP), Global Manager — Mineral Resource Development,
Business Excellence, BHP Billiton Limited, PO Box 86A, Melbourne
Vic 3001, Australia. Email: gavin.yeates @bhpbilliton.com
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what it is today? A mine with flexibility, with exposed ore and
with surplus stripping capacity would be able to respond by
raising the cut-off, raising the head grade and thereby producing
more copper during periods of higher prices and hence capturing
value during the price spike. How much value is being destroyed
by not changing our current operating plans in light of new
information?

In this paper, current industry practice in regard to mine
planning is briefly reviewed and the generic assumptions that
strongly influence the final mine plan are then discussed. Two key
sources of uncertainty — orebody uncertainty and price uncertainty
— are then reviewed in some detail. A discussion follows regarding
current practices within BHP Billiton before concluding with
some suggestions for future developments in this area.

CURRENT INDUSTRY PRACTICE

The current practice in industry is to take a single estimate
(model) of the orebody, using a single set of mining assumptions,
along with a single set of deterministic external economic
assumptions, to come up with an ‘optimal’ ultimate pit design,
extraction sequence, and schedule. The term ‘optimal’ usually
means the maximising of a single variable, usually NPV or its
proxy, for a given set of assumptions. The optimised model
typically defers stripping, brings forward revenue (high grade)
and often extends mine life by dynamically changing cut-off
grade over time. Sometimes additional effort is applied to look
for the potential of additional value in the stockpiling of
low-grade material.

The first step in a mine optimisation typically involves coming
up with final pit limits. The tool commonly used is the Whittle
pit optimisation, the nested pit version of the Lerchs-Grossmann
algorithm (Lerchs and Grossmann, 1965; Whittle, 1988; Muir,
2007, this volume). The mine planner’s dilemma in using these
techniques is that they focus on the final limits. Given that the
decision about the final limit is usually far into the future and
heavily reliant on external economic assumptions, such as the
price at the time the final pushback will be mined, the decision is
fraught with difficulty. While this decision is likely to be refined
during mine life, key investment decisions are often made on the
basis of this information. The next steps in mine optimisation are
encapsulated in the seminal book in this area, The Economic
Definition of Ore (Lane, 1988) with the general approach being
considered as established practice in the industry.

Unfortunately, the big picture is often lost and the mine
planning process blindly followed in the beliefs that the
assumptions are right and that the resultant plan is optimal in
reality. The key concept regarding all of these factors is that they
are only optimal for a given set of assumptions (inputs) — today’s
optimised mine plans have no flexibility to respond to changed
circumstances. This is usually due to the stripping being
deferred, all exposed ore being minimised, all stockpiles cut to
near zero by the accounting drive to minimise working capital,
and material movement matched to the fleet capacity thereby
eliminating sprint capacity. Further, if we consider current
practice in use at most of our mining operations, the mine plan is
often not revised, even when we have significant changes to
external assumptions.

SOURCES OF UNCERTAINTY OR KEY
ASSUMPTIONS

The key sources of uncertainty that affect the final mine plan are
as follows:
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Orebody uncertainty: The three-dimensional distribution of
grade over the orebody is estimated by relatively limited drill
hole data coupled with a geological interpretation, which may or
may not be correct. This uncertainty, however, is often ignored in
the mine planning process. This issue is discussed in more detail
in a subsequent section.

Processing uncertainty: Just as methods for modelling grade
now exist, so do advances in the modelling of what is now called
‘geometallurgical’ performance. It is now possible to
deterministically model variables such as ore hardness, flotation
or leach recovery, concentrate grade, and ultimately dollars per
hour through the mill (eg Wooller, 1999). Ultimately, these
variables can also be simulated to describe the range of possible
outcomes that may be encountered in the future operation. This
is essentially modelling the current performance through a given
process plant (Flores, 2005).

Uncertainty in changing technologies: Another significant
uncertainty far more difficult to model is a major technology
change; these step changes could well have major impacts on
future mine plans. Examples include atmospheric leaching of
nickel ores, leaching of chalcopyrite ores, and the use of high
phosphorous iron ore in steel plants. The key uncertainties for
these particular changes are threefold: Will the breakthrough
occur? If so, when will it occur? If it occurs what will be the size
of the step change in cost, recovery and therefore reserve
definition?

Volume uncertainty: London Metals Exchange (LME)
commodities effectively exhibit no volume uncertainty, as
product can always be sold and delivered to LME warehouses.
However, non-LME commodities, such as coal and iron ore, can
only be sold to traders or customers, thereby introducing volume
or sales uncertainty. The ability to sell the material is also
influenced by its quality.

Price uncertainty: The price forecast we enter into our
computer models is problematic, especially when the only
certainty is that the price forecast we use will be wrong. This will
be discussed in more detail later.

Discount rate uncertainty: The issue of interest rate
uncertainty is more subtle, but no less important, in that it affects
what discount rate we use. It affects the trade-off decision
between future benefits versus current benefits. Again, the only
thing we know about our forecast of interest rates, and hence
discount rates, is that they will change over time. Political risk,
often allowed for in the discount rate, further complicates this
issue. Should we allow for a country risk premium on our annual
discount rate that declines with time, as we learn to operate in a
country? Or does country risk keep growing exponentially, as is
implied in a constant per period discount rate?

OREBODY UNCERTAINTY

The traditional approach has been to provide mine planners with
a single ‘best’ interpretation of the orebody. This single
geological interpretation is then treated as fact. This approach
gives no indication of the uncertainty in the interpretation, nor
does it communicate the risk that the interpretation could be
wrong or the likely range of possible outcomes. Geologists are
dealing with imperfect knowledge, they know that the data on
which the interpretation is based is incomplete, imprecise and
inaccurate. They also know that there are multiple possible
interpretations, each of which is valid. Some may have greater
probability than others, but each is valid if it can explain the
available data. It is now possible to quantify and model some
aspects of the geological uncertainty. The use of simulation
techniques is well-developed for modelling the grade uncertainty,
but also well known is the critical nature of geological interpretation
that controls the grade. There are limited examples of quantifying
the range of geological interpretations and hence the grade (eg
Jackson et al, 2003; Khosrowshahi, Shaw and Yeates, 2007, this
volume; Osterholt and Dimitrakopoulos, 2007, this volume).
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Dimitrakopoulos, Farrelly and Godoy (2002) illustrate a case
where, for a range of equally probable geological outcomes, the
mine plan developed on a single estimate of the orebody is
excessively optimistic. This is partly driven by any misestimation
of grades — resulting in a loss of value either by ore being
classified as waste and an opportunity loss suffered — or waste
being classified as ore and additional processing costs incurred.
This resulting ‘bias’ is what makes many deterministic plans
optimistic. It should be noted, however, that the opposite may
also occur unpredictably, to stress the limits of the current
modelling and optimisation technologies. This finding has been
confirmed by internal research at BHP Billiton Technology
(Menabde et al, 2007, this volume). Further, and more
importantly, this work shows consistently that a mine plan can be
developed considering the uncertainty in the geological input
assumptions, and this mine plan will have a higher NPV on
average (ie over a wide range of inputs), a finding independently
observed in Godoy and Dimitrakopoulos (2004); and Ramazan
and Dimitrakopoulos (2007, this volume).

PRICE UNCERTAINTY

To illustrate the problems with current best practice, the
following hypothetical mine development is used.

A simplified example

Consider a mining company that requires an optimal mine plan
for a copper orebody shown (simplistically) in Figure 1.

Waste

Low ! Mid ‘High Mid ! Low

FIG 1 - A simplistic hypothetical copper orebody.

For the high-grade block, assume:

1. A grade of 1.25 per cent copper and containing 20 million
pounds of copper. At a copper price of US$1/Ib this block
will produce US$20 M revenue.

2. The total cost of mining and processing for this high-grade
block is US$12 M, split US$6 M for the waste removal and
US$6 M for the mining and treatment of the ore. Mining
and processing should occur in year 1.

For the mid-grade block, assume:

1. A grade of one per cent copper and containing 12 million
pounds copper. At a copper price of US$1/1b it will produce
US$12 M revenue.

2. The total incremental cost is US$12 M, split between
additional waste removal (US$2M) and mining and
processing mid-grade. If mining were to be undertaken, the
mining and processing should occur in year 2.

For the low-grade block, assume:

1. The low-grade block is not drilled because the Promoter
wants the orebody open at depth, but George the Geologist
is convinced it has a grade of 0.65 per cent Cu, containing
12 M pounds copper, for revenue of US$12 M.

Orebody Modelling and Strategic Mine Planning



2. The incremental cost of removing the low-grade block is
estimated at US$14 M, split US$2 M for additional waste
removal and US$12 M for mining and processing the ore. If
undertaken, the mining and processing of this low-grade
block should occur in year 3.

Furthermore, assume that all the waste must be extracted in year
0, and that once this decision is made it is very expensive to go
back, in either cost and/or time, and re-strip the additional waste.

The problem facing the company

The problem for the mining company is that a decision needs to
be made today on what to mine. If the company forecasts the
copper price to be US$1/1b:

e Should the company only mine the high-grade block?
e Should it mine the mid-grade block?

e Should it trust George the Geologist and plan to mine the
low-grade block?

If our assumption was that the forecast copper price was
US$1/Ib then we would apply the approach outlined by Lane
(1988). Primarily because of the effects of discounting — with cost
of waste removal being incurred in year O and revenue in years 1,
2 and 3 — we would only extract the high-grade block. An
alternate approach may be to use a break-even cut-off (and ignore
the effects of discounting), where at US$1/lb copper and for the
costs outlined previously, a break-even cut-off grade for the
high-grade block is 0.75 per cent copper, the mid-grade block is
one per cent copper, and the low-grade block is some 0.76 per cent
copper. Accordingly, using this approach the company would have
mined the high- and mid-grade blocks.

Under what circumstances would the company plan on mining
all the blocks? How would the company develop a robust (or
flexible) mine plan that allows them to respond to changing
circumstances? To highlight the impact of price uncertainty,
discount rate uncertainty and geological uncertainty, how would
the decision change if:

® Analysis of the futures market indicated there was a
50 per cent chance the copper price would exceed US$1.50
in three years’ time?

e The deposit was located in a country with a corrupt dictator
that may expropriate the operation at any time?

® An independent review of George the Geologist’'s work
indicated there is a 95 per cent chance he is right.

Intuitively, all these assumptions should change the optimal
mine plan, yet current best practice would struggle to include
these assumptions. It is suggested that the ‘best’ mine plan
should be one that maximises value over a ‘reasonable’ range of
input assumptions.

Framing the questions in the language of real
options
To determine what we mean by ‘best’ and a ‘reasonable’ range of
assumptions, the previous example will be re-stated.

For the high-grade block, assume:

1. A grade of 1.25 per cent copper containing 20 million
pounds of copper. At a copper price of US$1/Ib this will
produce US$20 M revenue.

2. Total cost of mining and processing the high-grade block is
US$12 M, split US$6 M for waste removal and US$6 M for
mining and treating the ore. The waste removal will occur
in year 0 with mining and processing to occur in year 1.

f  This assumption is discussed in detail in corporate finance textbooks
(eg Brealey and Myers, 2003, Chapter 21; Hull, 2000, Chapter 9).

Orebody Modelling and Strategic Mine Planning
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For the mid-grade block, assume:

1. A grade of one per cent copper containing 12 million
pounds copper. At a copper price of US$1/1b it will produce
US$12 M revenue.

2. For the cost of additional stripping in year O of some
US$2 M, we have the option to mine and process the
mid-grade block in year 2 at a cost of some US$10 M.

For the low-grade block, assume:

1. The low-grade block is not drilled because the Promoter
wants the orebody open at depth. George the Geologist is
convinced the grade is at least 0.65 per cent copper, and
contains 12 million pounds of copper, which would produce
revenue of US$12 M if he is correct.

2. for the cost of additional stripping in year 0 of another
US$2 M, we have the compound option to mine and process
the low-grade block in year 3 at a cost of some US$12 M. It
is a compound option because it is conditional on us mining
the mid-grade block in year 2. In this example, the low-grade
block is only mined if the mid-grade block is already mined.
Compound options are highly non-linear and the effects are
complex. In general, the second option (on the low-grade
block) has the effect of increasing the value of the first
option (on the mid-grade block). However, compound
options are not that difficult to value.

Considering this scenario, does the company now mine the high
grade block? Does the company now buy the (real) option for
US$2 M to mine and process the mid-grade block in two years
hence? Does the company buy the (real) option over the low-grade
block costing a further US$2 M? Unless the options (or flexibility)
can be valued, or the benefits of a robust mine plan can be valued,
it is unlikely that mine planning will be successful in moving
forward. The keys are properly modelling uncertainty and risk,
and understanding the value of preserving options and flexibility.

In our example the two key questions are: What options should
be purchased? When, if at all, should options be exercised? To
answer the first question the company must know the cost of
purchasing the option — in the above example this is US$2 M to
undertake the additional stripping. The harder question is: What
is the value of acquiring this option, or flexibility? If the option is
worth more than it costs, then the company will want to purchase
it, and develop a flexible, or robust mine plan. Yet there are
limits to the amount of flexibility that should be acquired. To
answer the second question about when to exercise the options,
the company needs to know the value of keeping the option alive,
and the value of exercising the option. Again, we will exercise
the option, or mine the mid- and possibly the low-grade blocks if
the value of exercising the option is greater than the value of
keeping the option alive. The harder issue is valuing the option,
not the value of exercising it (developing the mine).

Valuing the real options for price uncertainty

Price uncertainty can be modelled in a real options framework by
building a price tree. To simplify the mathematics in this
example, it is assumed that the prices will be constant for one
year, and then may vary. It is further assumed that the price
distribution is log-normal® and that the volatility of the copper
price is 20 per cent per annum. It is also assumed that this price
tree is a risk-neutral price tree, as obtained from futures data. It is
not the price tree of expected copper price movements. This
distinction is very important to ensure price risk is handled
properly. With these assumptions, the up price factor is 1.2214
and the down price factor is the reciprocal, or 0.8187. Assuming
a five per cent per annum risk-free rate (continuously
compounded) and these up and down factors it follows that the
risk-neutral probability of an up price movement is 0.5775 and
the risk-neutral probability of a down price movement is 0.4225.
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Copper price tree

Given the above assumptions, and assuming the current copper

price is US$1/1b, the copper price tree is shown in Table 1.

TABLE 3
Value tree, assuming the risk-free interest rate is five per cent per
annum (continuously compounded) and that the waste removal
has already occurred.

Now Year 1 Year 2 Year 3
TABLE 1
Copper price tree with and copper price at US$1/Ib.
Now Year 1 Year 2 Year 3 18.43
1.82 14.29*
1.49 10.37
1.22 1.22
1.00 1.00
0.82 0.82
0.67 *  Calculated as (18.43%0.5775+10.37%0.4225)/exp(0.05). The exponential
term is because the interest rate is expressed on a continuously
0.55 compounded basis.

Value of high-grade block

Given there are 20 M pounds of copper and the mining and
processing costs are US$6 M, the cash flows from mining the
high-grade block (assuming the waste removal has already
occurred in year 0) is shown in Table 2.

TABLE 2

Cash flows from mining the high-grade block (assuming the waste
removal has already occurred in year 0).

Now Year 1 Year 2 Year 3

18.43*

10.37

*  Calculated as (1.2214%20)-6.0

Assuming the risk-free interest rate is five per cent per annum
(continuously compounded) and that the waste removal has
already occurred, the value tree is shown in Table 3.

After spending US$6 M on waste removal we should have a
value of US$14.29 M. Thus, before we even start the project it
has a value of some US$8.29 M and indicates that the high-grade
block should be mined.

Value of mid-grade block

Using the same price tree as above and given there are 12 M
pounds of copper and the mining and processing costs are
US$10 M, the cash flows from mining the mid-grade block
(assuming the waste removal has already occurred in year 0) are
shown in Table 4.

Assuming the risk-free interest rate is five per cent per annum
(continuously compounded) and that the waste removal has
already occurred, the value tree is shown in Table 5.

Spending US$2 M on additional waste removal should give us
a value of US$3.27 M. Thus the project, before we start, has a
value of some US$1.27 M and means the company should at
least undertake the prestrip for the mid grade block. However, we
will only mine the mid-grade zone if the copper price is US$1/1b
or above. We will not mine the mid-grade zone if the copper
price is the low price in year 2 of US$0.67/Ib. Ultimately, it is the
ability to defer this mining decision that is creating the value, and
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TABLE 4

Cash flows from mining the mid-grade block (assuming the waste
removal has already occurred in year 0).

Now Year 1 Year 2 Year 3

7.90

2.00

-1.96

TABLE 5
Value tree, assuming the risk-free interest rate is five per cent per
annum (continuously compounded), and that the waste removal
has already occurred.

Now Year 1 Year 2 Year 3
7.90
5.14
3.27 2.00
1.10
0.00

thus facilitating the mining of the mid-grade zone in some
circumstances.

A possible counterintuitive result is also evident from this
example. Consider the case where the copper price remains at
US$1/1b through the mine life. In this case the company will end
up mining the mid-grade block because:

e the option analysis commits the company to undertake the
prestrip, as the copper price might rise; however

e when the company gets to make the mining decision it
decides to mine even if the copper price is only US$1/Ib
because the prestripping is now a sunk cost and is excluded
from the analysis.

More of the deposit is mined if the copper price turns out to be
a constant US$1/Ib under the robust mine planning framework
compared to a current ‘best practice’ framework. This is despite
the fact that if we had perfect foresight we would not have
committed to this prestripping and the mining of the mid-grade
block. This is of obvious benefit to the host country.
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Value of low-grade block

Now let us repeat this procedure for the low-grade block. The
price tree is the same as in the previous example. Given that
there are 12 M pounds of copper and the mining and processing
costs are US$12 M, the cash flows from mining the low-grade
block (assuming the waste removal has already occurred in
year 0) are shown in Table 6.

TABLE 6

Cash flows from mining the low-grade block (assuming the waste
removal has already occurred in year 0).

Now Year 1 Year 2 Year 3
9.87

2.66

-2.18

-5.41

Assuming the risk-free interest rate is five per cent per annum
(continuously compounded), and that the waste removal has
already occurred, the value tree is shown in Table 7.

TABLE 7

Value tree, assuming the risk-free interest rate is five per cent per
annum (continuously compounded) and that the waste removal
has already occurred.

Now Year 1 Year 2 Year 3
9.87
6.49
4.15 2.66
2.60 1.46
0.80 0.00
0.00
0.00

Spending US$2 M on additional waste removal should give us
a value of US$2.60 M. The project, before we start, therefore has
a value of some US$0.60 M. This means the company should do
the prestrip for the low-grade block as well, but will only mine
the low-grade zone if the copper price is above US$1.22/lb. The
low-grade zone will not be mined if the copper price is only
US$0.82/1b or less. At the risk of labouring the point, it is the
ability to defer this mining decision that is creating the value, and
thus facilitating the mining of the low-grade zone in some
circumstances.

£ The Nobel Prize in Economics in 1997 was awarded to Scholes and
Merton for adequately handling risk in (financial) option valuations.
The earlier tool of the Capital Asset Pricing Model — while important
and underpinning all NPV analysis — does not allow risk to be
accurately valued when we have option-type pay-offs. The seminal
option paper by Black and Scholes (1973) effectively provided a
numerically quantifiable way of handling non-diversifiable (or
priced) risk in option-type pay-offs. This concept has since been
extended to real options.

§ The application of real options is discussed in Copeland and Tufano
(2004). The application of real options to a mining example is
discussed in McCarthy and Monkhouse (2003).
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BEYOND NAIVE OPTIMISATION

Note that more of the deposit is mined under the robust
planning framework than under the current ‘best practice’
framework. The expected amount of material mined at the start
of the mining operation is greater under the robust mine planning
framework than any other framework, with significant benefits to
the company, shareholders and the host country.

INTRODUCING ADDITIONAL SOURCES OF
UNCERTAINTY IN THE ANALYSIS

The simplified example shown previously introduced an
additional source of uncertainty. Should the company trust
George the Geologist’s intuition and plan to mine the low-grade
block? What about the risk that George is wrong? Should this
risk be allowed for in the analysis? Before discussing this in
more detail we need to introduce another concept from corporate
finance, namely diversifiable risk and non-diversifiable risk. The
key issue is that some (non-diversifiable) risks are priced
(investors will pay to avoid them, eg commodity price risk,
interest rate risk), and other (diversifiable) risks are unpriced
(investors are indifferent about bearing them, eg geological
uncertainty). This concept forms the bedrock of the Capital Asset
Pricing Model or CAPM (Brealey and Myers, 2003, Chapters 7
and 8).

If George’s estimate of the grade is truly a central estimate then
because geological risk is, at least to a first order approximation,
unpriced, we should not introduce any additional value reduction
because of the ‘risk’, even if the distribution of possible outcomes
is incredibly wide. The key issue is whether George’s estimate is a
central estimate because, unlike copper price, the risk of the
possible outcomes does not enter the valuation.

MORE GENERAL COMMENTS ON UNCERTAINTY
AND RISK

The latter example has introduced two key corporate finance
concepts: namely real options, and diversifiable and
non-diversifiable risk, but this paper cannot do justice to these
concepts®. Together these two concepts allow for the
classification of risks into priced and non-priced risks, and where
they are priced an analytical tool to evaluate them is provided. It
allows the valuation of mine plans (and risk) from the
perspective of shareholders and allows the company to then
compare the cost of acquiring flexibility, versus the value of
having flexible mine plans.

Failure to adequately address risk (such as using expected spot
prices instead of risk-neutral prices) means that we get the
garbage-in-garbage-out problem, a very large problem. Properly
valuing the risk introduced by real options is complex. We can
quickly end up in the world of stochastic differential equations,
or large-scale numerical methods. Yet failing to properly value
risk means we are wasting our time. The authors believe that we
are better off relying on our intuition than doing some
pseudo-maths that does not properly allow for risk.

POSSIBLE CRITICISMS OF THE PROPOSED
APPROACH

In these examples, a flexible or robust mine plan means
removing all the waste in year 0, which goes beyond standard
practice in the industry. One possible criticism of this approach is
that the decision to prestrip is made up-front and is artificial. In
practice you could go back and prestrip for the mid- and the
low-grade blocks if the price spiked. While this is to some extent
correct, it can be argued that:

1. going back and undertaking additional prestripping will
contribute to cost and time penalties, although these can be
modelled if considered appropriate;
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2. in areal-world approach you need to model mean reversion
in the commodity prices, which means that any time delays
suffered could well cause a significant value loss; and

3. in any mining operation, the time taken to do any additional
stripping is measured in years.

In any event, the mere fact that we are thinking how we will
respond to changed economic circumstances is the whole point
of this paper. The aim, in real options talk, is to acquire
flexibility for less than its inherent value — if that can be done by
alternative and lower cost means then so much the better. It could
be argued that all this is too hard and that sensitivity analysis will
get us most of the way there, but at a fraction of the complexity.
To the extent that sensitivity analysis builds intuition, then that is
a great outcome. But of itself, sensitivity analysis will have
limited benefit in generating a robust or flexible mine plan as it
will be unable to justify the cost of investing in flexibility. This
can only be achieved by implementing real options analysis as
described previously.

STATE OF PLAY IN BHP BILLITON

Within BHP Billiton it is well-recognised that there are limitations
to optimising a mine plan for a given set of assumptions that will
inevitably turn out to be incorrect. Further, it is accepted that this
approach will lead to suboptimal outcomes, for both our
shareholders and the host country. Overcoming this deficiency is
crucial; it requires the development of new mine planning
techniques, and — just as importantly — it requires the development
of management systems to facilitate changes to the mining
operations in response to changing economic conditions. At BHP
Billiton we are developing robust and flexible mine plans, and we
have adjusted budgets and incentives to reflect changed economic
circumstances. We believe we already have a competitive edge in
this area, but we are the first to admit that there is a lot more work
to be done.

CONCLUDING REMARKS

This paper has discussed current best practice in mine planning
and has identified a key shortcoming. The fact that the key
assumptions underpinning our mine plans will inevitably prove to
be incorrect means that our mine plans are no longer optimal over
a reasonable range of real world outcomes. Possible sources of
uncertainty were highlighted and discussed. The paper then
focused on two key sources of uncertainty: price uncertainty and
geological uncertainty. By using a simplified example it was
shown that mine plans will change if price uncertainty is explicitly
recognised. The issue of geological uncertainty was also
introduced in the simplified example and it was indicated that
plans will likely change to extract more ore. Perhaps
counterintuitively, it was argued that the risk of geological
uncertainty did not affect the mine plan and was of a
fundamentally different character to that of commodity price risk.
Possible criticisms of the proposed approach were also discussed.

What needs to be remembered is that every day mine planners
are making decisions about:

e What is waste and what is ore?

e How much exposed ore should we carry?

e  When should we run down our levels of exposed ore?
e  What sequence of push-backs should we use?

e  What stockpiles should we carry?

e How much ‘excess’ mining capacity we should carry?
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We cannot stop the mining operations to perform the analysis.
We have uncertainty regarding geology, processing, new
technologies, market, prices and discount rates; the opportunity
cost of suboptimal mine plans is large. At BHP Billiton we are
mindful of the limitations of conventional optimisation
techniques, and are developing methods and tools to assist us in
valuing flexibility and ultimately developing robust mine plans.
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Integrated Mine Evaluation — Implications for Mine Management
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ABSTRACT

Mine management is often expected to make rapid evaluation decisions at
different stages of projects based on limited and uncertain data. The
challenge is exacerbated by having to distil technical complexity into a
financial model that is usually designed to produce only one or two key
indicators, such as NPV and IRR. Mining is a complex environment with
many sources of uncertainty ranging from sampling to economics. In
order to optimise investment decision-making, an appropriately structured
evaluation framework must be utilised. An evaluation framework should
be designed to encapsulate and integrate the complexity across the
evaluation cycle, that is, sampling, resource estimation, mine planning
and treatment, and financial and economic modelling. This complexity is
diverse and ranges from sampling support, scale effects to understanding
the impact of variability, uncertainty and flexibility on operational
efficiency and economic viability. These complexities, combined with
time and capital constraints, usually do not allow all facets of evaluation
to be integrated into the model. The model must strike a balance between
simplified estimation techniques and sufficient incorporation of aspects of
the project that will make a material difference to the investment
decision.

This paper demonstrates the impact of the scale of measurement on the
valuation of a mineral project. NPV comparisons are made between
global estimation averages using a top-down approach and local estimates
using a bottom-up approach. Three sampling campaigns were conducted
on a virtual orebody to compare the relative NPV accuracies. Stochastic
forward models were run on foreign exchange rates and are compared
with the results from a fixed foreign exchange rate model.

INTRODUCTION

This paper explores the impact of the measurement scale on the
estimate of a mineral project’s NPV. Scale of measurement refers
to dimensions in both space and time that are related to the key
variables of the project, such as ore volume (thickness), grade,
density, costs, revenue, foreign exchange rates, etc. Why is this
important? Given a complex geological deposit and volatile price
environment, it is suggested that the valuation of a mineral
project may be materially affected by the use of large scale,
annual average estimates for major variables. An integrated mine
evaluation approach should be adopted using short-term,
operational scale numerics that are accumulated into annual
estimates to derive more realistic NPVs.

Many of the well-established resource and reserve
classification codes refer to a mineral resource as having some
‘reasonable and realistic prospects for eventual economic
extraction’ (JORC, 1999; SAMREC, 2000; NI43-101, 2001).
These codes offer guidelines for assessing the criteria required to
define mineral reserves but do not stipulate any quantitative
confidence limits associated with tonnages, grade and revenue
estimates. The selection of measurement scales is ultimately
based on the judgement of a competent person. In order to
quantify the impact of the selected scale on valuation, it is
recommended that the process incorporate a quantitative
assessment of the impact of these effects. This assessment should
include both the modelling of unsystematic (specific) risks for
resources and reserves, and systematic (market) risks, such as
foreign exchange variability and costs of commodities such as
oil, steel, concrete, etc. This would facilitate the setting of
confidence limits around project valuation.

1. De Beers, Mineral Resource Management R&D Group, Mendip Court,
Bath Road, Wells BAS 3DG, United Kingdom.

2. Cerna, Ecole des Mines de Paris, 60 Boulevard Saint-Michel, 75272
Paris Cedex 06, France.
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It is unrealistic to create predictions of resource and reserve
estimates on a small block scale when sample data are limited
and spread out over a large area. Thus, in many cases production
estimates of tonnages and grades are computed on an annual
basis rather than a shorter-term scale (eg daily, weekly, etc). The
sum of the local reserve depletions in a year is not equal to the
total expected production derived from the average global
reserve depletions. This is true for mineral projects that have a
high degree of short-scale geological and mineralisation
variability but only limited sampling data. The effect is amplified
when resource variability has a substantial impact on mining rate
and treatment efficiencies. The problem is further exacerbated
for marginal projects which usually cannot afford the cost and
potential time delays of spending additional evaluation capital on
attaining close-spaced sampling data.

As the scale of data acquisition changes (ie more or less data
are acquired), the mean and dispersion of the data will change.
The impact of scale on a single variable is largely dependent on
the distribution of the underlying phenomenon, eg for grade or
density. If many sample data were acquired, the shape of the
distribution (specifically, the means and variances) for each
variable would be well defined. In most cases of evaluation,
however, only limited sampling data are acquired and as a result,
changes in the means and variances of individual resource
variables could have a material impact on the project value. As
variances are additive, the cumulative impact could result in
over- or under-estimation of the NPV.

Two different evaluation approaches are selected in this paper
to demonstrate the impact of measurement scale, viz. top-down
versus bottom-up techniques. The former refers to annual
forecasts that are calculated from depleting resource estimates
through a global mine plan. Average expected values per annum
are used as inputs into the mine plan to produce a NPV estimate.
An alternative approach utilises a bottom-up evaluation
technique whereby additional sampling data allow finer
resolution resource models to be created. These finer scale
models provide a way to carry out a quantitative assessment of
the impact that resource variability has on daily mine output.
Annual cash flow forecasts are derived from accumulations of
daily depletions based on localised resource estimates.

While it may appear that these two methods would produce
similar NPV results, there are cases where they do not. A
case-study of an underground mine in Canada is presented where
diamonds are contained in an irregular dyke that intruded into a
fractured granitic host rock. Two sources of uncertainty were
modelled. Firstly, geology was evaluated as a form of
unsystematic (specific) risks due to the uncertain thickness of a
mineralised dyke and its undulating top surface. Secondly,
economic uncertainty, in the form of foreign exchange rate
volatility between the US dollar and the Canadian dollar, was
integrated into the evaluation model as a systematic (market) risk.

A virtual orebody (v-bod) was created using a non-conditional
geostatistical simulation based on actual sampling data to
provide a method of comparing the top-down and bottom-up
approaches with ‘reality’ in the form of a v-bod. Comparisons
were made between the two techniques and the v-bod. Three
sampling campaigns were conducted on the v-bod and resource
and reserves estimates were recalculated each time using the
additional information to assess the impacts on differences
between the top-down and bottom-up approaches.
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EVALUATION PRACTICES

Project evaluation comprises three main components: project
uncertainty, project structure, and value numerics (Samis and
Davis, 2005). The authors of this paper focused solely on project
uncertainty. Firstly, because in their experience technical
complexities and correlations between variables cannot be
captured easily in the typical evaluation of mineral projects; and
secondly, because the impacts of technical uncertainty and
variability are not clearly communicated to management.

Geostatistical techniques are routinely used to estimate grade,
geology and density resource models for most mineral
commodities, Matheron (1973) and Krige (1951). Since
geostatistical simulations were developed (Matheron, 1973;
Journel, 1974), they have been used to model the inherent
variability and compare the impact of different mining methods
or support sizes on resources and reserves. Early work (Dowd,
1976; Dumay, 1981; Chica-Olmo, 1983; and Fouquet De, 1985)
focused on understanding the influence of technical aspects
related to complex mining constraints and on quality control
during production. As computer power increased, more
simulations could be run and different types of simulation
methods were developed that allowed more complex types of
geology to be modelled.

Since the 1990s, the impact of uncertainty on project economics
became increasingly important as more marginal projects were
discovered. Ravenscroft (1992), Berckmans and Armstrong
(1997), Dowd (2000), Dimitrakopoulos et al (2002), Godoy and
Dimitrakopoulos (2004), and in this volume Ramazan and
Dimitrakopoulos (2007), Menabde et al (2007), and Dowd and
Dare-Bryan (2007) have used a combination of objective functions
and geostatistical techniques to evaluate the impact of resource
risks on the mine plan and determine their probabilistic impacts on
NPV. These techniques incorporate resource uncertainty in the
scheduling optimisation algorithm compared to traditional mine
planning methods which could result in suboptimal reserves.

Over the past 15 to 20 years the techniques used in financial
valuation of mineral projects have also evolved. Standard
discounted cash flow (DCF) is used as the baseline for
decision-making, but most mining companies now understand its
limitations Davis (1995) and Smith (2000). Firstly, the technical
and financial parameters used as input in NPV calculations are
subject to uncertainty; secondly, mine management can and do
react to changing circumstances (eg rising or falling commodity
prices) by adapting the mine plan. Monte Carlo simulations
coupled with geostatistical orebody simulations overcome the
first limitation; real options were developed to overcome the
second one.

According to Brealey and Meyers (2003) the first person to
have recognised the value of flexibility was Kester (1984) in an
article in the Harvard Business Review. The following year,
Mason and Merton (1985) reviewed a range of applications to
corporate finance and in their seminal paper, Brennan and
Schwartz  (1985) applied option pricing techniques first
developed in finance to the evaluation of irreversible natural
resource investments using Chilean copper mines to illustrate the
procedure. To simplify the mathematics, they assumed that the
reserves were perfectly homogeneous and that the grades were
perfectly known. From a mining point of view, these assumptions
may be unrealistic. Galli and Armstrong (1997), Carvalho et al
(2000), and Goria (2004) address this by combining geostatistics
with option pricing. Other mining aspects are presented by
others, including Blais e al (2007, this volume) and Monkhouse
and Yeates (2007, this volume).

In their paper, Brennan and Schwartz (1985) used a geometric
Brownian motion based on Black and Scholes (1973) method with
a convenience yield proportional to price in order to model the
copper price. This was necessary to try and reproduce the natural
variability of commodity prices over time. In contrast to many
other commodities, diamond prices are not as volatile. Factors like
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the oil price and the exchange rate are more volatile and have a
material impact on project value; the oil price affects costs and the
exchange rate influences the company’s revenue. The authors have
chosen to focus on the exchange rate for this study.

Many models have been developed for interest rate and foreign
exchange rates, ranging from simple extensions of Black and
Scholes (1973) through Vasicek (1997) and on to the latest
models with stochastic volatility. The book edited by Hughston
(1996) provides a good overview of the subject. The authors
chose to use the Garman and Kohlhagen (1983) which is a
simple extension of Black and Scholes. In this model the drift
term is replaced by the difference between the domestic and
foreign interest rates. If St denotes the spot exchange rate at time
t and rd and rf are the domestic and foreign interest rates, then

dS, =(r, —1;)S,dt+ 6 ;S dW,
where:
os is the volatility of the exchange rate
dW¢ is a Brownian element

Two advantages of this model are that the exchange rates
generated are lognormally distributed and hence positive, and
that the parameters are easy to estimate.

The evaluation of a mineral project is a complex and
technically challenging process, further complicated by
numerous estimates of variables, covariance relationships and
associated uncertainties. This paper captures a few crucial
aspects of the evaluation pipeline, summarised in the following
four sections, sampling and resource modelling, estimation of
reserves (mine-planning and treatment), financial evaluation and
economic modelling, and analysis and interpretation of results.

SAMPLING AND RESOURCE MODELLING

Sampling data in any evaluation model are fundamental in
producing estimates that reflect reality. Although including more
samples reduces uncertainty associated with both the mean and
variance of resource estimates, it does not alter the natural
variability within the deposit. The limitations of designing a
sampling campaign for multiple variables have been discussed
before Kleingeld and Nicholas (2007). Three variables were
considered in this evaluation model, the

e geometrical variability of the top surface of the dyke (v1),
e thickness related to the volume of the dyke, and
e grade (in carats per hundred tonnes).

Core drilling was used to delineate geological variability on
three different grid densities; 75 by 75 m, 50 m by 50 m and 25 m
by 25 m, creating scenarios 1, 2 and 3, respectively. A 50 m by 50
m drilling grid was used to sample for grade, using large diameter
drilling (LDD). Grade was not deemed to have any significant
variability between scenarios and therefore, a single sampling
campaign sufficed. The same grade estimates were applied to each
scenario. A virtual orebody (v-bod) was created using a
non-conditional geostatistical simulation based on data gathered
from a combination of drilling information, bulk-samples and face
mapping from an exposed part of the dyke. It is assumed to be the
‘reality’ on which the various sampling campaigns were conducted
to generate sample data. Table 1 describes the design of the
simulated sampling campaigns on a virtual orebody; sampling
occurred at point support and simulation grid nodes were 4 m by
4 m in dimension.

The limitation of this approach is that only a single v-bod was
created due to the time constraints and all conclusions are
directly a function of both the data used to seed the v-bod and the
design of the subsequent sampling campaigns. Sample data were
used as input to generate kriged estimates and spatial simulations
of grade, dyke thickness and geometric surface undulations of

Orebody Modelling and Strategic Mine Planning



INTEGRATED MINE EVALUATION — IMPLICATIONS FOR MINE MANAGEMENT

TABLE 1

Sampling campaign design — summarising the three sampling
campaigns and the v-bod.

V-bod Scenario 1 | Scenario 2 | Scenario 3
Description Reality | Wide-spaced | Moderate Detailed
Grid dimensions | 4mx4m |75mx75m [5S0mx50m|[25 m x25m
No of samples/ | 399 360 1136 2556 10 224
nodes
Sample per cent - 0.28% 0.64% 2.56%
of v-bod

the dyke. A single mine plan was created based on the kriged
estimates and overlain onto each estimate and simulation to
determine the reserves. All output was fed into the financial
model. Base maps of the v-bod and each sampling campaign are
shown in Figure 1. Table 2 shows the statistical differences
between the v-bod and each scenario for grade, dyke thickness
and the geometrical variability of the dyke surface (v1).

RESERVES

The degree of resource complexity will have little impact on an
operation’s financial outcome for models that are generally
unconstrained in terms of mining and treatment thresholds
(assuming that the resource estimates have been accurately
estimated). This applies to scenarios where abundant flexibility
is included in the mining plan so that no bottlenecks occur in the
extraction or treatment processes. The rate and scale of mining
would deviate very little from plan as a result of resource
variabilities. In contrast, mining operations (such as the
underground example in this paper) that operate under strict
geotechnical and geohydrological constraints in environmentally
sensitive areas do not have the luxury of unlimited mining and
treatment flexibilities. These mines cannot easily respond to
changes in tonnages or grades as a function of resource
variability. In the case of marginal operations with limited capital
expenditure, the impact of this limited responsiveness is further
exacerbated by the presumption of ‘smoothed’ ore horizons due
to kriging with limited sampling data. The impact of this
‘smoothing’ will be demonstrated in this paper.

There are multiple factors to consider at this stage, ranging
from resource uncertainties, mining and treatment constraints,
financial cost per tonne data and economic volatilities with
respect to commodity pricing and consumable costs. Identifying
those factors that have the biggest impact on project value is
essential but can be a very complex and time consuming process.
This is largely driven by the number of variables that have to be
considered and the complex interaction between variables, which
are associated with different uncertainties and variabilities.
While legal, social, political and environmental factors may
influence managerial decision-making, the authors have elected
to concentrate on the mining and treatment components of this
model as discussed below.

Mine — planning and design

In this example, a conventional room and pillar underground
method is considered with an option of slashing and drifting,
depending on whether the dyke thickness was less than a
specified mining threshold. An average extraction rate of 75 per
cent was used. Each mining block of size 250 m by 250 m was
depleted based on a combination of rim tunnels, stope tunnels
and stope slashing. An average daily call of 3150 treatment tons
was imposed on the project by management. The mine plan and
treatment plant were designed to meet this production
requirement on average per year.

The tabular nature of this deposit and mining, geohydrological
and geotechnical restrictions severely limit the sequencing and
optimisation of extraction. Simplistic assumptions were made
regarding the selection sequence of blocks based on the highest
value blocks being extracted first to maximise the time value of
money. While the authors recognise the work done by
Dimitrakopoulos and Ramazan (2004), Godoy and
Dimitrakopoulos (2004), Grieco and Dimitrakopoulos (2007a),
Grieco and Dimitrakopoulos (2007b), Ramazan and
Dimitrakopoulos (2007), Menabde et al (2007) all in this
volume; and others, involving the optimisation of the extraction
sequence of blocks given resource and reserve uncertainties,
there was insufficient time to include this in the study. The mine
plan provided an opportunity to understand the interaction of the
spatial nature of the reserves with the temporal realisation of its
value. Mine blocks were depleted at a smallest mining unit
(SMU) scale of 4 m by 4 m with a minimum mining height
requirement of 2.0 m for equipment access into stope tunnels.
Maximum mining heights of stopes were constrained to 2.2 m
while rim tunnels were 3.5 m; rim tunnels were 4 m X 4 m X
3.5 m (height), stope tunnels were 4 m X 4 m x minimum 2.0 m
(height), stope blocks were 4 m x 4 m X minimum 1.0 m
(height). Pillar dimensions varied depending on the support
required but no span greater than 8§ m was created.

Recovery modelling

The estimation of the mean recovery factor and its variance is
critical in determining the quantity of recovered material at a
predetermined throughput treatment rate. The recovery factor
depends largely on three key considerations. The characteristics
of the ore type, its liberation and separation properties, and the
design and interaction of the treatment process in relation to this
ore type. The challenge of achieving efficient recoveries is to
understand these complex three-way interactions. Due to the
time constraints, simplistic assumptions were made regarding a
linear relationship between the proportion of kimberlite ore and
the waste.

The impact of the recovery factor on the recovered carats can
be very marked especially if there are constraints on the system.
For example, if the cut off grade is close to the statistical mean,
subtle variations in the mean cut-off grade could significantly
impact the project NPV. If the cut-off grade is raised, the average

TABLE 2

Resource simulation output showing the statistical differences between the v-bod and each scenario for grade, dyke thickness and the
geometrical variability of the dyke surface (v1).

V-bod Scenario 1 (75 m) Scenario 2 (50 m) Scenario 3 (25 m)
Kriged Sim 1 Kriged Sim 1 Kriged Sim 1
Mean thickness 1.70 1.70 1.66 1.70 1.71 1.70 1.69
Variance thickness 0.23 0.11 0.18 0.11 0.15 0.13 0.20
Mean v1 1.88 1.90 1.90 1.90 1.91 1.90 1.91
Variance v1 0.18 0.09 0.17 0.09 0.10 0.09 0.17
Mean grade 191 195 187 195 195 195 192
Variance grade 1985 1062 2860 1062 1523 1062 2004
Orebody Modelling and Strategic Mine Planning Spectrum Series Volume 14 11
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FIG 1 - The thickness and v1 base maps for the kriged and simulated outputs of each scenario with that of the v-bod. Grade was held
constant between scenarios (warmer colours represent higher values while darker colours are low values).
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FIG 1 - The thickness and v1 base maps for the kriged and simulated outputs of each scenario with that of the v-bod. Grade was held
constant between scenarios (warmer colours represent higher values while darker colours are low values).

grade above cut-off increases which may require mining that is
too selective using the current mine design and equipment. Plant
design, by its nature, requires a best fit for the ‘average expected
feed’ and hence cannot incorporate the daily feed variation that
may occur over the project’s LOM. Conventional approaches to
plant optimisation Parker (1997) usually entail, adapting the
plant to accept the variability, installing a stockpile blending
system, as well as adapting the mining method to increase the
number of faces or draw points and use smaller equipment to
improve selectivity.

The example in this study is fairly fixed in terms of its mine
design and equipment selection. In addition, environmental
policies limit the creation of large stockpiles. A total stockpile
capacity of 3000 tons was created, which included capacity from
an underground storage bin. While some degree of flexibility was
available to adapt the plant settings to the ore variability, this was
more suited to weekly and monthly fluctuations but would not
cater for daily variations in the system. While dynamic
simulations are considered as a possible means to estimate the
short-scale variability in the recovery efficiency, time constraints
did not allow for this. A simpler, pragmatic approach was sought
to ascertain the impact.

In this model, depletions of the simulated 4 m by 4 m SMUs
provided the ore-waste proportion information. A simplistic,
linear relationship was imposed on treatment recoveries in
relation to the proportion of kimberlite and waste; recovery
efficiency improved as the proportion of kimberlite increased. A
plant surge capacity constraint was included to assess the impact
of varying dyke thickness (on a 4 m by 4 m SMU scale) on the
feed rate variability using an ‘event-based’ simulation. The
principle strategic levers that were considered in this mining and
treatment sections were as follows: Annual mining rate in order
to produce 3150 tons per day; bin storage capacity of 3000 tons;
SMU selection (4 m x 4 m x height); the maximum mining ramp
angle (17 degrees); a threshold imposed on the waste/kimberlite
proportion (70/30) and if any blasted block had more than 70 per
cent waste, it was not sent to the treatment plant.

Orebody Modelling and Strategic Mine Planning
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Mine plan and treatment output

The daily production variations for scenario 3 are shown in
Figure 2 together with resource variability in relation to mining
and treatment constraints. The recovered carats after deducting
all losses due to the waste threshold vary considerably on a daily
basis. Output from the mining and treatment phase on an annual
basis is tabulated in Table 3 for the v-bod and each of the three
scenarios. More specifically, Table 3 shows the annual
production output for the v-bod and the three scenarios.
Recovered carats and grade are shown after all deductions.

FINANCIAL MODELLING

Given the uncertainties associated with each component of the
model, the conventional practice of quoting a single NPV output
is deemed idealistic and often, misleading. Conversely, running
hundreds (or thousands) of stochastic realisations to quantify
uncertainty in each component may be excessively time
consuming and expensive and could result in superfluous data
that have little material impact on the NPV. A balance must be
struck. The financial model must be sufficiently flexible to
accommodate multiple input scenarios for both global and local
estimates yet quick when generating NPV outputs. Financial
models are often designed as disparate systems, usually in a
spreadsheet form, to compute the financial value of a project
based on hard-coded production output from mine plans. So they
have difficulty in capturing dynamic, technical linkages between
resource, mining, treatment and economic models. The
evaluation framework of conventional models allows limited risk
and sensitivity analyses to be conducted as they do not assess the
impact of correlated variables across the evaluation pipeline.

In conventional sensitivity analyses, all parameters, except the
one in question, are held constant in the evaluation model. While
this helps to identify which variable has the highest influence on
the NPV, it cannot capture the range and probability of realistic
scenarios when parameters vary simultaneously. Monte Carlo
simulations (MCS) are a useful tool but should be used in
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FIG 2 - An example of the daily production output in one year for scenario 3.

TABLE 3
LOM production output showing the annual production output for the v-bod and the three scenarios (recovered carats and grade are shown
after all deductions).
V-Bod Kriged results Simulated results
Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3
Total tons (million) 10.8 10.8 10.8 10.8 10.8 10.8 10.8
Recovery factor 92.5 93.6 93.3 93.1 92.1 92.5 93.0
Recovered carats (million) 16.2 16.6 16.6 16.5 15.7 16.2 16.4
Recovered grade 149.6 153.8 153.7 153.2 145.7 149.8 151.9

conjunction with other geostatistical and economic modelling
tools to model the spatial and time-based variabilities. Examples
of economic stochastic variables are foreign exchange rate
prices, commodity prices, oil and diesel prices, etc.

A few of the key financial concepts are discussed below
forming the building blocks of an integrated mine evaluation
approach. Financial values have been adjusted to maintain
confidentiality of the Canadian diamond mine.

Bottom-up versus top-down evaluation

Temporal scale is one of the most important aspects to be
considered in the design of a financial model. The time interval
in which cash flows are estimated must correspond with the time
interval in which mining and treatment production data are
measured and accumulated. These reserves in turn, depend upon
the mine plan’s ability to react to resource variability at the
appropriate operational short scale. In addition to the
unsystematic (project specific) risks, the financial model should
also take due cognisance of systematic (market, economic
related) risks by incorporating these stochastic variables at the
appropriate time scale (support size). This section of the paper
demonstrates that cash flow constituents derived from annual
estimates in a top-down approach will not correctly reflect the
asymmetries due to operational variability on a local, daily basis.

14 Spectrum Series Volume 14

A more accurate way of deriving annual cash flow estimates
needed to make decisions on projects would be to accumulate the
appropriate values from a bottom-up approach, ie daily, monthly,
quarterly then derive annual estimates for NPV forecasts.

The bottom-up approach entailed estimation (via geostatistical
kriging techniques) of the main resource variables into a fine
resolution grid (SMUs of 4 m by 4 m) based on sampling data
from each campaign. Each SMU was analogous to a mining blast
that was assessed to ascertain if it met the necessary mining and
plant criteria, before either contributing to the daily plant call of
3150 tons per day or being trammed to the waste bin if it
comprised more than 70 per cent waste. These daily
accumulations were added together to form monthly, quarterly
and annual production totals forming inputs into the cash flow
models to derive NPVs for each scenario.

For the top-down approach, it was assumed that the mine plan
only incorporated sufficient detail to deplete large-scale mine
blocks of dimensions 250 m by 250 m. This implied that local
mine plans (within each large-scale mine block) were not
available to allow sequential depletion of the SMUs to
accumulate tonnages and carats in a given year. Although the
resource was modelled on a finer resolution (SMUs of 4 m by
4 m), these values were averaged into larger 250 m by 250 m
mine blocks. The mine plan was designed to deplete on average
3.3 large-scale mine blocks per annum.

Orebody Modelling and Strategic Mine Planning
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The average resource values for each year were run through
this mine plan, assuming a fixed daily plant call of 3150 tons per
day could be attained. Total recovered carats were calculated as a
function of depleting the average estimated tonnages (per
large-scale mine block) at a fixed throughput rate of 3150 tons
per day, then multiplying the depleted carats with an average
recovery factor per large-scale mine block. The carats per
large-scale mine block were accumulated into annual cash flow
models to produce global NPV estimates for each of the three
kriged scenarios. Table 4 shows the differences between the
global NPV, using a top-down approach versus that of the NPV
annual based on a bottom-up approach (all values were
calculated using a flat forex rate).

Technical discount rate

Many approaches have been developed to include technical risks
in projects. Davis (1995) and Samis er al (2006) have argued
against using a single discount factor to the aggregate net cash
flows; they favour discounting each component as a function of
its specific risk level. The authors, however, elected to use a
single discount rate for the following reasons:

e It is still used in practice today as a baseline metric for
financial comparisons.

e |t allowed uncomplicated calculations of the NPV and the
principles of this study are applicable to any other approach
used.

e This study assessed the evaluation of a single project rather
than a portfolio of projects. Project (technical) risks could be
diversifiable if a large portfolio of projects were considered.
The overall variance of the portfolio would reduce as a
function of the number of projects in the portfolio,
Markowitz (1952).

In this study, a ten per cent discount rate has been used. The
standard NPV formula is well known where CF refers to the cash
flow in each period i and r is the discount rate (see Equation 1).
This equation can be rewritten as a weighted sum to illustrate the
impact of the discount rate on the variance of the DCF (see
Equation 2).

ey =25 (1
(L+r)

} or DCF = Y CF,#w, (2)

1
DCF = CF,x* ‘
2 [(1 +r)

When risk analyses are conducted to ascertain the impact of
the uncertain cash flows on a project’s NPV, the mean net cash
flow in each period, i, will be reduced by the weighting factor, w.
This penalises cash flows in later years. The variance of the cash

flows also reduces but by the square of the weighting factor, w,
so this has an even greater effect on the variance than on the
mean. In this example there are two opposing effects; on the one
hand the variance reduces over time but as the sampling
information is sparser in later years, less knowledge exists about
the continuity of the dyke or the grade variability in those years.

DCF Analysis and time windows

NPV is a metric to assess whether the project makes a profit after
all debts, invested capital and interests have been repaid. Once
the NPV estimate has been determined, the second step is to plot
the annual DCFs as this shows when the major proportion of
cash flows fall and whether there are any irregularities over the
LOM. The annual, locally-derived NPVs using the kriged
estimates for scenario 1 and 3 are CAD 32.9 million and CAD
28.3 million, respectively. Figure 3 compares the annual cash
flows and DCF values for these two scenarios.

Figure 3 shows that the period between (2008 and 2012)
accounts for more than 60 per cent of the project’s positive
annual cash flow and 70 per cent of the DCF value. As cash
flows generated after 2012 are discounted at values of 50 per
cent and higher, management would have to make significant
operational changes in order to increase net cash flows beyond
2012. Money would be better spent on attempting to improve the
net cash flows earlier on to maximise the NPV. Risk mitigating
controls could be implemented such as mining or treatment
modifications or by reducing the technical risk proportion in the
discount rate through further sampling.

Economic (forex) uncertainty

Two scenarios considering forex uncertainty were integrated into
the evaluation model. In both cases, the forex rate was applied
only to the revenue component as sales from diamonds were in
notional US$ whereas all costs were assumed to be sourced
locally. The first scenario assumed a flat rate of 1.21 CADS$ to a
USS$. This corresponds to a forward forex price. Transaction
costs were ignored. The NPV results of the three scenarios
relative to the v-bod using the flat rate were shown in Table 4.
The second scenario assumed that the project management team
would expose the project to the forex rate volatility. Forex
stochasticity was modelled using a Garman and Kohlhagen
(1983) to incorporate mean reversion and volatility parameters.
A total of 100 simulations were run over a ten-year period
emulating the forex uncertainty (Figure 4). Each of the 100
simulations was incorporated into the financial model to produce
NPV estimates for each scenario and for the v-bod. NPV
histograms and cumulative probability plots for the v-bod are
shown in Figure 5 and Figure 6. NPV comparisons incorporating
the forex rate simulations are tabulated in Table 5 for each
scenario and for the v-bod. Table 5 shows the maximum,
minimum and 50th percentile NPVs of the three scenarios
relative to the v-bod after including forex rate modelling (per

TABLE 4

Financial output (in CAD$) showing the differences between the global NPV, using a top-down approach versus that of the NPV annual
based on a bottom-up approach (all values were calculated using a flat forex rate).

V-Bod Kriged
Scenario 1 Scenario 2 Scenario 3
Global annual NPV - 91.6 80.1 73.9
Local annual NPV 2.1 329 31.4 28.3
Differences - 58.8 48.7 45.6
V-Bod Simulated
Scenario 1 Scenario 2 Scenario 3
Global annual NPV - 12.0 39.7 58.1
Local annual NPV 2.1 (26.1) 3.6 18.1
Differences - 38.0 36.1 40.0
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FIG 4 - Forex rate stochastic output per year from 100 simulations.

cent differences are relative to the v-bod P50 value). All values
shown were calculated using the local estimation technique
(bottom-up approach).

ANALYSIS AND INTERPRETATION

The case study demonstrated the impact of resource and
economic stochasticities on a project’s NPV as a function of both
sampling and temporal uncertainties. A v-bod was constructed
from actual sampling data, derived from a Canadian mine, to
provide a method of comparing scenarios against a simulated
version of reality. Three sampling campaigns at grids of 75 m,
50m and 25 m were conducted on the v-bod to produce
scenarios 1, 2 and 3. It was shown that global annual NPV
estimates derived in a top-down fashion, markedly
under-estimated the v-bod NPV. Comparisons between scenarios
showed material differences in the NPV estimates.

Global NPVs derived from kriged estimates for the three
scenarios (75 m, 50 m and 25 m) were CAD 91.6 million, CAD
80.1 million and CAD 73.9 million, respectively.
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As drilling grid densities increased from 75 m to 50 m and 25 m
intervals, the uncertainty of v1 and dyke thickness reduced and the
estimates improved relative to the actual v-bod NPV (CAD 2.1
million). Nonetheless, all global estimates over-estimated the
v-bod NPV estimate by a magnitude of 43 to 35 times (75 m to
25 m scenarios). Local NPVs derived from kriged estimates for
the three scenarios (75 m, 50 m and 25 m) were CAD 32.9
million, CAD 31.4 million and CAD 28.3 million, respectively.
Similarly, the NPV estimates improved as more samples were
taken. Local estimates over-estimated the v-bod NPV estimate by
a magnitude of 15 to 13 times (75 m to 25 m scenarios). Note that
the number of samples are significantly large (1136 samples for
the 75 m scenario, 2556 samples for the 50 m scenario and 10 224
samples for the 25 m scenario). The more complex a deposit is (in
terms of geological structures and mineralisation dispersion), the
more sample holes will be required to reduce uncertainty and
produce more accurate estimates of the statistical means and
variances of relevant variables. Greater NPV differences between
sampling scenarios would be expected if fewer samples were taken.
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FIG 5 - An NPV histogram for v-bod after including 100 forex simulations.
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FIG 6 - The cumulative probability plot of the NPV for v-bod after including 100 forex simulations.

TABLE 5

Economic forex output (in CAD$) showing the maximum, minimum and 50th percentile NPV of the three scenarios relative to the v-bod
after including forex rate modelling (per cent differences are relative to the v-bod P50 value).

V-bod Scenario 1 Scenario 2 Scenario 3
Maximum NPV (annual) 255.2 292.5 291.5 287.6
Minimum NPV (annual) (177.4) (150.3) (152.8) (155.2)
NPV P50 (annual) 6.7) 24.5 22.7 19.6
P50 difference - 468% 440% 394%

While kriging exercises produced the best unbiased estimates
for key variables, they tend to provide ‘smoothed’ resource
estimates based on limited data. It is this ‘smoothing effect’ that
results in over-estimation of the grades, thickness and v1 variables.
NPV estimates would be over-estimated relative to the actual
deposit. Contrary to kriging, spatial simulations provide a better
indication of the range of variabilities to be expected. Insufficient
time was available to generate a range of simulated realisations for
comparison purposes. Thus, only a single simulated realisation
was selected as an example of the expected differences in mean
values.

Local NPVs based on conditional simulated estimates for the
three scenarios (75 m, 50 m and 25 m) were negative CAD 26.1
million, CAD 3.6 million and CAD 18.1 million, respectively.
These simulated outcomes are significantly lower than the kriged
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estimates and closer to the actual v-bod NPV. This may give the
impression that conditional simulations provided more accurate
estimates than kriging, but these simulations represent only one
extraction from a range of simulations. This could represent the
tenth or 90th percentiles (P10 or P90) of the simulated distribution
outputs. Further work is necessary to generate the e-type estimate
from a complete range of conditional simulations and compare it
with the kriged result. The use of a flat forex rate was compared
with a stochastic forward model that considered forex rate
volatility. A fixed forex rate of 1.21 was used (February 2006
CAD:USS$ rates) to derive a v-bod NPV of CAD 2.1 million.
Table 5 shows the probable range in NPVs for the v-bod and three
kriged scenarios when each of the 100 forex models were run
through the financial model. The medians (ie 50th percentile or
P50) for scenarios 1, 2 and 3 were CAD 24.5 million, CAD 22.7
million and CAD 19.6 million, respectively.
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Using the variable forex rates, the P50 of the v-bod NPV
reduced from CAD 2.1 million to negative CAD 6.7 million (four
times less). This would imply that the project is susceptible to
forex rate volatility. However, as shown in Figures 5 and 6, there
is considerable upside opportunity when the 50th to 90th
percentiles are considered. Projects that are particularly revenue
or cost sensitive may benefit by conducting forward modelling of
the forex rate as it allows management to gain an improved
understanding of the range of probable NPVs. The costs of
hedging against downside risks of forex rate fluctuations should
be weighed against the negative impact that it may have on
project value.

The estimation of resources strives to create a view of the
quantity of in sifu material that can reasonably be mined. It is
this ‘reasonable expectation’ of ‘mineability’ that implies it is
impossible to estimate resources totally independently of all
external factors. These factors include the economic and
technological limits that have to be imposed, and the scale and
rate of mining.

As noted from this study, the optimal operational strategy of a
mine is related to a number of key factors that need to be defined
at an appropriate temporal scale:

e resource complexity, in terms of the continuity of
mineralisation within geological structures; and thickness of
the ore zone;

e design of sampling campaign(s) to detect the means and
variances of selected variables; specifically considering
sample support size and quantity of samples;

e resource modelling; kriged estimates to determine the means
of grade, thickness, etc and geostatistical simulations to
assess the probabilistic impact of variabilities on the
evaluation model;

e design of the mine plan in response to resource complexities;

e mining and treatment logistical, environmental and financial
constraints;

e financial cash flow model with respect to revenues, costs and
other aspects, such as taxes and royalties that emphasise
asymmetries in cash flows;

e cconomic stochasticity of foreign exchange rates and
commodity prices for steel, diesel, concrete costs, etc; and

e encapsulation of different sources of technical risks in the
evaluation model.

While this study focused exclusively on a diamond mine
example, it is believed that the key aspects mentioned above are
true for most mineral projects that have complicated resource
models but only limited sampling data, and restrictive mining
and treatment constraints.

CONCLUSIONS

Mine evaluation requires an integrated, holistic approach as the
valuation of intangible resource and reserve assets are based on
uncertain data that are linked to several components of the
valuation pipeline. The complexity of valuing mineral projects
lies in evaluating a number of spatial and time-dependent
variables, within an appropriate time scale. These variables may
or may not be correlated with each other. There is usually a high
degree of uncertainty about the true means and variances of these
variables which complicates the design of an optimal integrated
evaluation system. As noted from this study, selection of the
appropriate time measurement scale in which to evaluate a
number of diverse variables in a mineral resource project is
critical in attaining realistic NPV estimates. Further analysis
demonstrated the knock on effects that both uncertainty and
variability have on the evaluation pipeline. For this reason, the
evaluation model components cannot be optimised individually;
the synchronisation of resource, mining and treatment, and
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financial components is required in order to achieve an optimal
balance of the system. There are three main effects that have
been investigated in this model.

The first is the impacts that a complex and uncertain resource
has on the design of an optimal mine plan. The effectiveness of
the design is usually determined by a combination of the
inherent, stochastic variability of the deposit and the uncertainty
of predictions of this complexity that arises from limited
sampling data. If restrictive mining and treatment constraints are
imposed onto a complex resource model, the adaptability of the
mine will decrease. Where possible, the flexibility in the mine
plan should be matched to both the estimated degree of resource
complexity and the uncertainty that the mine design team has
about that complexity.

Secondly, synchronisation between the treatment plant and the
mining extraction process has a huge impact on the asymmetries
in the cash flow model. If mining constraints, such as mining rate
of advance, development tonnes, dilution, etc are not aligned
with the treatment constraints in terms of storage bin capacity or
plant throughput, the mine could produce more tonnes at a time
when the plant cannot treat it, or conversely, the mine will
produce less tonnes at a time when the plant’s capacity exceeds
that of the mine. Imbalances in these constraints result in time
wastage and inevitably, lost profit opportunities.

Lastly, the process of integrating this model revealed which
resource, mining and treatment parameters have the biggest
impact on project value. This process would assist the competent
person in identifying those areas which are uncertain and could
lead to a material difference in valuation. Once an integrated
development system has been developed, it will be possible to
explore the upside potential of optimally synchronising
economic forecasts with mining and treatment parameters.
Forward models of cost and revenue data should be at an
appropriate time scale that is aligned with the estimates of cash
flow forecasts and reserve calculations. Changes in revenue as a
function of commodity price or exchange rates, or costs related
to oil and diesel, steel and concrete prices could have a material
impact on a project’s value. The derivation of reserves will also
be influenced by these economic stochasticities.

While a balance was sought between a pragmatic yet
sufficiently detailed evaluation model, inclusion of realistic
mining and treatment constraints necessitated the construction of
a more complex evaluation model to reflect the value of
additional sampling data. Mining and treatment constraints in
response to resource variability defined the key relationships
within the evaluation model that resulted in different NPVs
between scenarios.

Further work is pending in the following areas:

e modelling spatial correlations between thickness, geometrical
surfaces of the dyke and grade using the latest sampling data;

® mine plan sequencing and optimisation in response to resource
uncertainty;

e dynamic recovery modelling with particular emphasis to
liberation, separation and their interaction with the ore
properties;

® cconomic stochastic modelling related to oil, steel and
concrete prices;

e response of the evaluation model (feed-back and feed-forward
loops) to different sources of uncertainty;

e real options valuation to ascertain the impact of flexibility in
the model; and

e development of an integrated software platform to rapidly
evaluate projects.

As a last remark, beware that uncertainty ... arises
from our imperfect knowledge of that phenomenon,
it is data-dependent and most importantly model-
dependent, that model specifying our prior concept

Orebody Modelling and Strategic Mine Planning
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(decisions) about the phenomenon. No model,
hence no uncertainty measure, can ever be
objective — Goovaerts (1997).
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Using Real Options to Incorporate Price Risk into the Valuation

of a Multi-Mineral Mine

V Blais', R Poulin? and M R Samis®

ABSTRACT

The mining industry is increasingly focused on using a consistent
approach to determine the effect of risk on project value and operating
policy. Valuation techniques from the financial industry are being adapted
so that a mine valuation model can successfully integrate market
information about risk with a detailed description of project structure.
The real option method is one such import that is finding increasing use
in the mining industry. However, real option models are often built with
only one source of uncertainty — namely, the primary output mineral. This
can produce misleading valuation results when secondary minerals are
also recovered.

This paper extends the application of real options in the mining
industry by developing a Monte Carlo valuation model of an undeveloped
mine that can produce two minerals. We compare the results to a Monte
Carlo discounted cash flow model and demonstrate the importance of
explicitly recognising the unique risk and uncertainty characteristics of
each mineral within the value calculation. We consider the industry
practice of converting secondary minerals into metal equivalents and
highlight project situations where this may be acceptable and others in
which it is not. In particular, copper-gold prospects are shown to be
unsuitable since differences in uncertainty characteristics may cause
metal equivalents to produce results that overstate or understate project
value and incorrectly identify price levels at which operating policy
changes. Our results show that it is important that mine valuation
professionals and qualified persons be aware of the important
consequences associated with ignoring the uncertainty characteristics of
secondary minerals.

INTRODUCTION

The mining industry is has been working towards a consistent
approach to determine the effect of project risk on value and
operating policy. With a variety of valuation techniques, project
analysts are attempting to build mine valuation models that
successfully integrate market information about risk with a
detailed description of project structure. The real option
approach is one such method that is finding increasing use, since
it can consider project development and operation alternatives in
conjunction with the unique risk and uncertainty characteristics
of each output mineral within the value calculation.

However, real option models often include only one source of
uncertainty because the most commonly used numerical
techniques have difficulty including multiple sources of
uncertainty. Some numerical techniques used by real option
practitioners have limitations that force many valuation
professionals to consider the primary output mineral as the only
underlying state variable. Any secondary minerals are either
converted into primary mineral equivalents or are treated as a
pre-set risk-discounted revenue stream. This can produce
misleading valuation results since the unique risk and uncertainty
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Calgary AB T2P 3Y6, Canada.
Email: vincent.blais @towersperrin.com
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characteristics of secondary minerals can have important value
consequences. This paper extends the application of real options
in the mining industry by using Monte Carlo simulation to value
a project with multiple sources of mineral price uncertainty and
abandonment flexibility.

The potential problems associated with using metal
equivalents are demonstrated with an example valuation of a
copper-gold prospect where gold is an important secondary
output and there is no flexibility. A detailed cash flow model of
the full project life cycle is presented. A net present value (NPV)
is calculated using both the discounted cash flow (DCF) method
and the real option (RO) method in which gold production is
converted into copper equivalents. The gold copper equivalents
are calculated using the ratio between expected gold and copper
prices at each production time.

The DCF method of calculating project NPV is the most widely
accepted valuation method in the mining industry. However, the
conventional DCF practice of using a constant corporate discount
rate to value a range of projects is problematic. The primary
criticism of this practice is that it implicitly assumes that net cash
flow uncertainty varies across time and projects in a constant
manner. This is a careless treatment of the fundamental valuation
principle that uncertainty is an important value influence, since
uncertainty often varies across time and projects in a non-constant
manner. Samis, Laughton and Poulin (2003) discuss this limitation
of the conventional DCF method and demonstrate how the RO
valuation method recognises variations in net cash flow
uncertainty. The application of DCF and RO methods in
evaluating and selecting from different open pit mine designs in
the presence of both cash flow and metal uncertainty is described
in Dimitrakopoulos and Abdel Sabour (2007).

The ability to abandon the project at any time is incorporated
into the project model and a RO NPV is calculated in which gold
output is expressed in terms of copper equivalents. This model is
then re-configured for two state variables such that it is not
necessary to translate gold output into copper equivalents and a
price path is generated for each metal. Project NPVs are
calculated when these price paths are independent and over a
range of negative and positive copper-gold price correlations.
However, for an actual project valuation, a valuation analyst
would likely use a low correlation between copper and gold price
movements since copper is mined for its industrial uses while
gold is mined primarily as an investment asset with some
secondary industrial uses. Project values are calculated over a
range of price correlations to demonstrate the value effect of
price correlation. The potential value impact of using the metal
equivalent simplification for copper-gold prospects can be
observed from comparing the various value results.

THE COPPER-GOLD PROJECT

Mining is a highly capital-intensive business in which project
cost structure has a large number of fixed components.
Significant upfront capital expenditures in the form of
exploration, pre-production and development costs as well as
large investments in fixed assets are necessary when establishing
a mine. The project considered in this paper has development and
operating cost components in both American and Canadian
dollars. Initial capital of CAD$320 million and US$70 million is
invested between 2004 and 2007. Production begins in 2008 at a
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constant rate of two million tonne of ore per year over 12 years.
Copper and gold grades decrease in a linear manner that reflects
a mine design where operations move from high quality to low
quality reserves. More complex patterns of ore grades can be
used without increasing the model’s complexity. Details of the
copper-gold prospect are presented in Table 1.

The annual real risk-free rate of 2.0 per cent is used for RO
NPV calculations and a risk-adjusted discount rate (RADR) of
10.0 per cent is used for DCF NPV calculations. A constant
exchange rate of CAD$1.37:US$1.00 is used to convert
Canadian dollar costs into American dollars. Exchange rate
uncertainty can be added easily as an additional state variable but
this is not done here in order to retain a focus on the practice of
using metal equivalents.

STOCHASTIC PROCESS OF MINERAL PRICES

Microeconomic theory highlights that the price of an industrial
commodity, such as copper or nickel, should be linked to its
marginal production cost in the long term. Expectations of future
prices revert back towards the marginal production cost even
when price shocks force the current spot price away from this
equilibrium. Conversely, investment assets such as financial
stocks or gold do not exhibit price reversion in that there does not
appear to be a long-term equilibrium price towards which future
price expectations trend.

Gold and copper prices in this paper are modelled by the single
factor stochastic process (details of this process can be found in
Laughton and Jacoby, 1993; Salahor, 1998; Samis, 2000):

ds = |:0c* + %(52 - yln( ; ﬂSdl+ 6Sdz
where:
S is the current mineral spot price

is the current long-term price median

S
o is the short-term growth rate of the price medians
o is the short-term price volatility

Y

is the reversion factor
dz  is the standard Wiener increment

The strength of economic forces pulling spot prices back
towards a long-term equilibrium price is measured by a reversion
factor. This factor is determined with the formula:

_ log(2)
L

where HL is the mineral price half-life in years. Price half-life
measures the length of time required for a price shock of X per
cent to dissipate by one half. For example, a price shock pushing
a mineral spot price 20 per cent above the long-term equilibrium
price would cause the three-year expected prices to be ten per
cent above the equilibrium price if the mineral’s half-life is three
years. Metals that do not demonstrate price reversion, such as
gold, can also be modelled with this process by setting the
half-life of gold to 1000000 years. The stochastic process
becomes a geometric Brownian process when this is done.

TABLE 1

Project model.
Year 2004 2005 2007 2008 2009 2010 2011
Project time 0 1 3 4 5 6 7
Ore reserve (thousands t) 24 000 22 000 20 000 18 000 16 000
Production (thousands tpy) 2000 2000 2000 2000
Copper grade (%) 3.00 2.95 2.90 2.85
Gold grade (o0z/t) 0.080 0.078 0.076 0.074
Canadian operating costs (CAD$M/t) 60.00 60.00 60.00 60.00
Canadian CAPEX costs (CAD$M) 50.00 70.00 110.00 90.00
US operating costs (US$M/t) 10.00 10.00 10.00 10.00
US CAPEX costs (US$M) 10.00 20.00 30.00 10.00
Total operating costs (US$/t) 53.80 53.80 53.80 53.80
Total CAPEX costs (US$M) 46.50 71.09 110.29 75.69
Year 2012 2013 2014 2015 2016 2017 2018 2019
Project time 8 9 10 11 12 13 14 15
Ore reserve (thousands t) 14 000 12 000 10 000 8000 6000 4000 2000 0
Production (thousands tpy) 2000 2000 2000 2000 2000 2000 2000 2000
Copper grade (%) 2.80 2.75 2.70 2.65 2.60 2.55 2.50 2.45
Gold grade (oz/t) 0.072 0.070 0.068 0.066 0.064 0.062 0.060 0.058
Canadian operating costs (CAD$M/t) 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00
Canadian CAPEX costs (CAD$M)
US operating costs (US$M/t) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
US CAPEX costs (US$SM)
Total operating costs (US$/t) 53.80 53.80 53.80 53.80 53.80 53.80 53.80 53.80
Total CAPEX costs (US$M)

Exchange rate CAD$/USS: 1.37
DCF RADR (%): 10.0
Annual real risk free rate (%): 2.0
22
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An important difference between conventional DCF and RO
valuation methods is found in risk discounting. Conventional
DCEF applies a risk representing overall project or corporate risk
to the project’s net cash flow stream, while RO applies a risk
adjustment to the source of uncertainty and then filters
risk-adjusted uncertainty through to the net cash flow stream.
This difference requires the previous stochastic process to be
modified to include a risk-adjustment before it can be used for
RO Monte Carlo value calculations. The modified process
includes an additional variable RiskRate to produce the
risk-adjusted stochastic process:

das = [(x* + %Gz —yln( ;‘*) + RiskRale}Sdt+ oSdz

The new parameter RiskRate is determined by the formulas:
log(RDF,,pra1)

RiskRate =
dt
RDF,,,... =(exp—PRisk,;,,.. % 0x(1—exp(—ydn)/ ),
PRisky. = PRiskyy X Py vinerar
where:
P atie. Mienral is the correlation between mineral and the market
PRiskpkr is the price of market risk

PRiskyinerar 18 the price of mineral risk

RDFupinerat

The stochastic price parameters used in this paper are detailed
in Table 2. The stochastic process parameters used here have
been retrieved from older published sources or selected to reflect
personal understanding of metal price movements. They should
not be used in an actual project valuation. It is recommended that
a professional econometrician be retained to parameterise metal
price processes for any valuation exercise. Note that the long-half
life of gold converts the reverting process into a classical
geometric Brownian stochastic process that is often used in
uncertainty models of investment assets. Refer to Oksendal
(1995) for an exhaustive discussion of stochastic differential
equations.

is the risk discounting factor for the mineral

ANALYSIS PROCEDURE

The copper-gold project is valued using the following three
valuation models:

1. a conventional DCF NPV model with copper and gold
expressed as copper equivalencies,

2. a RO NPV model with a risk-adjusted copper price stochastic
process and gold output expressed as copper equivalent, and

TABLE 2
Stochastic process parameters for copper and gold T,
Stochastic process Copper (Cu) Gold (Au)
parameters
S 1.08 US$/Ib 400.00 US$/oz
) 0.90 US$/1b 400.00 US$/oz
0% -1.1%
c 23.3% 15.0%
HL 1.875 years 1 000 000 years
P Mkt Mineral 0.8 0.1
PRiskyi 0.4 0.4

+  The stochastic process parameters used here have been retrieved from
older published sources or selected to reflect personal understanding of
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metal price movements.

3. RO NPV model incorporating copper and gold price
stochastic processes that are risk adjusted and include a
range of correlations.

An early closure option is also included in both RO
calculations since managers have the ability to permanently exit
a project when economic conditions turn unfavourable. This
option is expressed in terms of metal prices and closure costs.

REAL OPTION VALUATION METHOD

Many tools are available for valuing both financial and real
options but most of these are only appropriate in specific
situations. Blais and Poulin (2004) provide a critical review of
the various option valuation methods. They highlight that option
pricing methods can be divided into four main classes: analytical
solutions for European-type claims as proposed by Black and
Scholes (1973), lattice methods first introduced by Cox, Ross
and Rubinstein (1979), finite difference methods for solving
partial differential equations (PDEs) such as used by Brennan
and Schwartz (1985), and stochastic Monte Carlo simulations
first presented by Boyle (1977).

The Monte Carlo method has traditionally been used to value
options with one exercise decision point. Longstaff and Schwartz
(2001) recently extended the Monte Carlo method so that options
with multiple exercise decision points can also be valued. Their
approach combines Monte Carlo simulation with least squares
linear regressions to determine continuation value and the
optimal stopping time, both necessary to apply an optimal
exercise decision policy.

Stochastic Monte Carlo simulation should be the preferred
numerical technique in the majority of practical valuations
because it is has the ability to calculate option values in
multidimensional economical environment without constraint.
An extended version of the simulation algorithm proposed by
Longstaff and Schwartz (2001) is used in this paper because
singularity problems are often encountered when using the
original least squares linear regression. They also recognised this
stability problem and suggested use of a quadratic algorithm
(QR-algorithm) to perform the least squares regression.
However, the QR-algorithm may still experience singularity
problems even though the results tend to be more stable. The
accuracy of the Longstaff and Schwartz algorithm may also be
affected when it is extended to estimate solutions of
overdetermined  systems  of  linear  equations  via
iterative-refinement algorithms and pseudoinverses, since the
inverted matrix may almost be singular. A discussion about
generalised inverses of linear transformations is available in
Meyer and Campbell (1991).

The pseudoinverse extension used in this paper solves the
singularity difficulties of the Longstaff and Schwartz approach
and allows options with multiple exercise decision points to be
valued.

RESULTS

The value estimates from the three NPV calculation approaches
are presented and discussed in the next subsections. The
estimates from the stochastic Monte Carlo simulations generate
project mean NPV, standard deviation, and confidence intervals.
Three thousand simulations of 5000 experiments each were
completed for each valuation configuration. All values are stated
in American dollars.

Conventional DCF valuation of NPV with copper
uncertainty and gold output expressed as copper
equivalent

A conventional DCF NPV calculation using a ten per cent RADR
and treating gold output as copper equivalent estimated the
project value to be $70.250 million with a standard deviation of
$2.152 million. Table 3 presents the results of the value
simulation.

Spectrum Series Volume 14 23



V BLAIS, R POULIN and M R SAMIS

TABLE 3
DCF valuation results (US$M).

Number of bath: 3000
Number of replication: 5000

Stochastic simulation results

DCF 70.250
ODCF 2.152
010% (70.205, 70.306)

The mining industry predominantly uses conventional DCF
techniques to estimate project value. This may lead some
valuation analysts to prefer the DCF NPV as the correct estimate
of value. However, there are strong reasons to reject this value as
being misleading. First, net cash flow uncertainty varies with
price scenarios since high price scenarios tend to produce net
cash flows that are less uncertain than low price scenarios and
varies with project structures since reserves with small profit
margins (high unit operating costs) tend to generate net cash
flows that are more uncertain than those with large profit
margins. Second, the copper price is modelled as reverting
towards a long-term equilibrium price that results in copper price
uncertainty saturating in the long term. Uncertainty saturation
leads to per period copper price uncertainty growing at
decreasing rates each year until at some point in the future
overall copper price uncertainty can be considered constant for
valuation purposes. Finally, the early closure option allows
management to limit downside price risk and fundamentally
change the structure of net cash flow uncertainty.

The conventional DCF method assumes that project
uncertainty grows at a constant rate when a constant RADR is
used. Each of the previous reasons for rejecting the DCF value
highlights that net cash flow uncertainty can vary tremendously
over the life of the project due to changes in cost structure, price
levels, uncertainty characteristics and operating strategy. A
fundamental principle of valuation theory is that investors are
concerned with net cash flow uncertainty and require
compensation for being exposed to risk (ie risk adverse). This
suggests that the assumption of net cash flow uncertainty
growing at a constant rate is problematic since it violates the
principle of investor risk aversion where the net cash flow
uncertainty is not increasing at a constant rate.

Note that this limitation of the conventional DCF method has
important implications for qualified person valuation reports. It
may become necessary in the future for qualified persons to state
why they accept this limitation of the DCF method value when
they could use RO, which is able to easily recognise changes in
net cash flow uncertainty within the value calculation.

Real option with copper price uncertainty and
gold output expressed as copper equivalent

The second valuation model uses RO to estimates project value
with a risk-adjusted copper price stochastic process and gold
output converted into copper equivalents. When there is no early
closure option, the project value is estimated to be $36.025
million with a standard deviation of $3.302 million. This
indicates that the RO approach considers the project net cash
flows to be much riskier than the ten per cent RADR used by the
conventional DCF model.

The ability to limit downside risk with an early closure option
increases project value by an estimated $51.315 million,
producing a total estimated project value of $87.340 million. The
extended Longstaff and Schwartz Monte Carlo (LSM) algorithm
is used to perform the optimal control of sample paths during the
calculation of project value. Table 4 presents the project values
when there is no early closure option and when such an option
available.
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TABLE 4
Real option valuation results (US$M).
Stochastic simulation results Number of bath: 3000
Number of replication: 5000

Real option without flexibility 36.025
GRONOFLEX 3.302

Value of the option to abandon 51.315

OFLEX 1.244

O10% (33.029, 36.102)

The additional value added by flexibility may seem surprising
to some. However, a study conducted by Kester (1982) shows the
value of flexibility associated to real options is sometimes worth
more than half the value of large firms. Even though his study
bears only on large market capitalisations, the same
characteristics also exist for small firms whose potential growth
represents an even more important part of their value.

This analysis is an improvement over the conventional DCF
model because it recognises variation in net cash flow
uncertainty and the ability to close the project early in response
to low metal prices. However, it misses the importance of
describing the dynamics of gold price uncertainty with a separate
price process. Gold prices have a low correlation with general
market uncertainty and as such do not require a risk-adjustment
as large as that applied to the copper price. Some gold mining
companies use this argument to justify use of a small RADR to
calculate conventional DCF project values.

Real option with copper and gold prices
generated by independent stochastic price
processes

The third valuation model of the copper-gold project goes one
step further and uses risk-adjusted stochastic price processes to
describe both metal price movements independently so that their
unique risk characteristics are captured. In this model, the gold
revenues are calculated and risk-adjusted with a stochastic
process that reflects the uncertainty and risk characteristics of
gold and not copper. The gold risk-adjustment is much smaller
than the copper risk-adjustment because gold is modelled to have
a much lower correlation (a correlation coefficient of 0.1) with
general economic uncertainty than does the copper price (a
correlation coefficient of 0.8). The estimated project NPV
increases to $92.106 million (a 255 per cent increase) when there
is no early closure option and gold price is modelled as a
separate price process. This increase in value over estimated
NPV from the previous RO model ($36.025 million) is solely due
to the recognising the differences between gold and copper risk
characteristics.

The estimated project NPV when there is an early closure
option increases to $132.272 million. The value of the closure
option decreases to $40.166 million. This is the logical
consequence of it being less likely that the early closure option
will be exercised given that the underlying project NPV is higher.
Table 5 presents the project NPVs when metal prices are each
modelled by a separate stochastic process.

The results presented to this point demonstrate that the use of
metal equivalents with either the conventional DCF method or
the RO method over simplifies the unique risk characteristics of
each metal. The widespread mining industry practice of
expressing secondary metals in terms of primary metal
equivalents can lead to large valuation errors.

The results also highlight that ignoring operational flexibility
such as early closure can generate misleading project NPV
estimates. Managers often have the ability to manage project risk
with operational strategies and this ability can have significantly
effect on project NPV. An extensive review of managerial real
options is provided in Trigeorgis (1996).
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TABLE 5

Real option results for copper and gold (US$M).

Stochastic simulation results Number of bath : 3000
Number of replication : 5000

Real option without flexibility 92.106
GRONOFLEX 3.722
Value of the option to abandon 40.166
OFLEX 1.081
0L10% (92.019, 92.193)

CORRELATED MINERAL PRICES

Copper and gold price were assumed to be independent in the
previous section when in reality they may exhibit some
correlation. Valuation simulations assuming price independence
may produce misleading estimates if there is some degree of
correlation between prices. Metal price correlations can be
introduced into the valuation model by conducting an Eigenvalue
decomposition on the price correlation matrix. An Eigenvalue
decomposition is used even though it is more difficult to
implement than a Cholesky decomposition because it can handle
matrices that are not positive definite and that contain hundreds
of variables. The Cholesky decomposition can barely handle
more than ten. A short note outlining how to generate correlated
random variables is provided in this section due to the
importance of this concept.

The first step is to analyse time series data of all state variables
or sources of uncertainty to determine the correlations between
them. Regression packages can do this work easily once a data
file to extracted numbers from has been constructed. Correlation
coefficients are required in a matrix form.

The procedure to generate correlated random variables begins
with the decomposition of the correlation matrix into matrices A
and E such that:

C=E"AE
where:

C s the correlation matrix,

1 P P Pin
P2 1 P23 Pay
C = p.31 P3 1 . p?N
[Pn2 Pao 1 i

The coefficients p, and p,; have the same value and represent
the correlation coefficient between the first and second state
variable. A is a diagonal matrix whose entries are the
eigenvalues:

A, 0 - 0
0 A, 0
A= . . .
0 0 - Ay

The matrix E when multiplied by its transpose ET produces the
identity matrix.

The correlation matrix can be re-written with these results as
follows:

C=B"B

where the matrix B is be obtained in the following manner:
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B=A"E

The matrix B is multiplied by a vector of standard normal
random variables to generate correlated random variables, t, such
that:

F=7B

In the general case of N underlying assets, the transformation
of independent standard normal random variables in correlated
random variables can be accomplished with the linear algebra

operation:
em/}T] ...... QN\/;TI
PN Vs
[8f, 8f,...8f ] =[Z, Z,... Z,] 2“,/72

ey by e ey Ay

The previous step is repeated as many times as there are time
steps in the simulation, so as to generate a sample path
characterising each state variable. For instance, the project time
horizon of 15 years has been divided into 150 time steps or ten
time steps per year. The previous exercise is performed as many
times as the required number of replications. 5000 replications
are used to value the project valued in this paper. The generation
of random variables having the desired correlation properties is
possible using appropriate coding software such as MatLab.

Impact of correlated mineral prices on project
value

Time series of copper and gold prices (see Figures 1 and 2) has
been analysed from 1998 to 2004 to estimate the correlation
coefficient for these metals. A correlation coefficient of 0.5107
was calculated, suggesting that stochastic Monte Carlo simulations
should be performed with correlated diffusion processes. The
econometric calculations conducted here are likely not appropriate
and require more extensive validation by a professional
econometrician before being used in an actual mining project
valuation.

A sensitivity analysis has been conducted to verify the impact
of the correlation coefficient on the value of early closure and on
RO project NPVs. Estimated RO NPV when there is no early
closure option is graphed in Figure 3 for correlation coefficients
ranging from zero to one. The estimated RO NPV increases from
$92 million when the correlation coefficient is zero to $123
million when the coefficient is one.

The value of the early closure option is plotted against
correlation coefficient in Figure 4 for correlation coefficients
ranging from zero to one. This figure shows that option value
decreases from $40 million when the coefficient is zero to
approximately $28 million when the coefficient is one.

The net effect on estimated project NPV is an increase in value
from $132 million to approximately $151 million as the
correlation coefficient rises from zero to one.

CONCLUSION

An extension to the RO Monte Carlo simulation algorithm
introduced by Longstaff and Schwartz (2001) was presented to
assist mine valuation professionals improve their assessment of
project value. The use of the Longstaff and Schwartz algorithm
permitted a reassessment of the industry practice of using metal
equivalents to combine primary and secondary revenue streams
in a project valuation. This paper demonstrated that converting
secondary metal output into primary metal equivalents may lead
to large valuation errors, as this practice ignores the unique
uncertainty and risk characteristics of the secondary mineral. The
results also showed that the correlation between primary and
secondary metal prices can also have important value effects.
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The model presented here can be extended to include other
forms of management flexibility and uncertainty. One such
uncertainty is surely foreign exchange rate risk, since mineral
deposits cannot be shifted when exchange rates move adversely.
Movements in foreign exchange rates can only be managed in
the medium to long term with operating strategies such as
temporary closure of marginal reserves. The adaptation of the
Longstaff and Schwartz RO Monte Carlo algorithm presented in
this paper can incorporate the myriad of uncertainties and
operating flexibilities that are part of any mining project.
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Roadblocks to the Evaluation of Ore Reserves —
The Simulation Overpass and Putting More Geology into

Numerical Models of Deposits

A G Journel

INTRODUCTION

Many factors including data scarcity, volume support effects,
information effect, accessibility and pervasive uncertainty, make
the early prediction of recoverable reserves a challenge that
cannot be addressed by mere estimation or interpolation
algorithms. There is the illusion that as long as one uses the
‘best’ estimation algorithm based on quality data and sound
geological interpretation, one would provide the best possible
evaluation. Unfortunately, a set of locally accurate (‘as best as
they can be’) estimated values does not generally make for a
good, or even an unbiased base on which to assess future
recoverable reserves. The dichotomy between local accuracy and
global representation is at the source of many arguments and
severe prediction errors. A discussion on the various factors
affecting the reliability of reserves prediction may help in
focusing efforts on what matters, marking common pitfalls, then
stress what must be done, such as building into the deposit
numerical models geological interpretation beyond mere
variogram models. It is suggested that the essential components
of a mining operation could be simulated from such numerical
models, like the performance of the wings of a future plane is
simulated in a wind tunnel.

LOCAL VERSUS GLOBAL ACCURACY

The illusion that a sound estimation algorithm suffices for ore
reserves evaluation comes from the lack of understanding of the
trade-offs involved when defining the goodness criterion of any
estimator. No estimation algorithm, unless trivially based on
exhaustive accurate data, can be good for all purposes. Most
estimation algorithms, and kriging is no exception, aim at local
accuracy, that is providing an estimate z*(u;) as close as possible
to the true and unknown value z(w;), irrespective of its relation
with any other estimated value z*(u;), j#i. The attribute z could
be any variable, say the mineral content of a given volume
centred at a location of coordinates vector w;. Local accuracy
would suffice if the estimation was so good as to allow the
approximation: z*(w;) = z(w;) and z*(w;) = z(w;), in which case the
pair of estimated values {z*(w;), z*(u)} would reflect the
continuity in space of the true values {z(w), z(u)}. Or, more
generally, the estimated map would reflect accurately the true
patterns of spatial continuity. Unfortunately, the data available at
the time of mine planning and reserves prediction are never
sufficient to assume that the map of estimated values accurately
reflects the spatial variance of the true values. This is the well
known smoothing effect of estimation, a smoothing effect made
worse by being non-stationary. This effect is minimal next to the
data locations, maximal away from the data and may create
patterns that are artefacts of the drill hole locations. An example
of a potentially misleading effect on mine planning of otherwise
locally accurate orebody models is shown in Dimitrakopoulos,
Farrelly and Godoy (2002).
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What makes a mine feasible is not only the tonnage of
potential payable ore but also how that potential is distributed
in space, allowing economical recovery. Hence, a correct
assessment of the actual spatial distribution of grades and
relevant morphological properties of the deposit is critical, more
critical than local accuracy. Local accuracy is critical only at the
time of selection, when the mine is already operating. In
addition, that selection is typically performed from different data
not available at the time of reserves prediction.

Thus, for recoverable reserves estimation, one should trade, or
at least balance, the local accuracy criterion for a criterion
ensuring accurate depiction of the patterns of heterogeneities
prevailing over the actual study area, whether that area is the
entire deposit, a bench or a mining panel, within which selective
mining will take place. In geostatistics, the traditional measure of
spatial variability is the variogram model Y(u-w;). Thus, we
should require that the estimated values reproduce that model;
the qualifier ‘simulated’ is then used instead of ‘estimated’. In
advanced geostatistics, we aim at reproducing patterns of
heterogeneities involving multiple locations at a time, as opposed
to reproducing a mere variogram, the latter being but a two-point
(w;,wy) statistic. The name multiple-point (mp) geostatistics is
therefore given to that advance, see Appendix and Strebelle
(2002).

Stochastic simulation trades poorer local accuracy for a better
global or ‘structural” accuracy as defined by a prior model of
spatial variability, whether that model is limited to a histogram
plus a variogram as in traditional geostatistics, or that model is
given as a training image as in mp geostatistics. In the presence
of limited data, it is suggested to forfeit any attempt at locating
precisely each ore block or Selective Mining Unit (SMU).
Instead, one should aim at providing a spatial representation of
the grades distribution that mimics the spatial patterns of the true
grades, those patterns that may affect the mine plan and recovery.
Since stochastic simulation trades off local accuracy, any one of
the simulated patterns is likely, though probably not at its true
location. Hence simulation should provide many alternative
representations or realisations of that spatial distribution, all
consistent with the few local data available. No result taken from
any single simulated realisation should be used as a local
estimate. By definition, results should be collected from multiple
simulated realisations, that is, a distribution of results should be
provided. A single simulated realisation should not be used, in
lieu of say a kriging map, for any local decision; yet a set of
simulated realisations could replace that kriging map for such a
local decision, which then leads to a probabilistic decision
(Srivastava, 1987).

Although it is unreasonable, from sparse data, to try locating
and hence estimating any single recoverable SMU, estimation of
large panels or homogeneous zones can be attempted because
one could capitalise on the averaging of errors over large
volumes. However, within-panel or within-zone recovery should
be approached through simulation of the spatial patterns of
grades distribution within each panel or zone. No localisation of
the within-panel recovery is yet possible, nor is such detail
needed for mine planning.
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DATA SCARCITY

In a simulation approach data are needed for two purposes:

1. delineation of homogeneous mineralisation zones, each
defined such that its grade distribution could be
characterised by a stationary model, typically limited to a
histogram and variogram, or better by a training image that
includes the two previous statistics; and

2. rough localisation of ore patches within the previous zones.

The data required for the first purpose does not need to all
come from drilling; they can be structural and interpretative in
nature. The delineation of homogeneous zones is typically
guided from geological interpretation, possibly borrowing
structural information from outcrops or similar formations mined
elsewhere. In modern geostatistics, multiple-point statistics can
include information beyond the variogram by borrowing from
geological drawings (training images), the patterns of grade
variability deemed to prevail in the actual deposit. In the
presence of uncertainty about the style of variability, alternative
training images can be considered, each leading to a possibly
different recovery of the same global tonnage. This is tantamount
to varying the variogram model.

Each simulated realisation is then anchored to whatever local
data are available. However, here a shortage of data is less
consequential because no local accuracy is required, nor should
any single simulated result be used as a local estimate.

THE VOLUME SUPPORT EFFECT

Future mining selection will operate on selective mining units
whose geometry and volume support may vary considerably. The
volumes are typically beyond the resolution of the data available
at the time of mine planning and reserves estimation. Within
each large homogeneous zone, a histogram of SMU grades is
needed to evaluate the proportion of such SMUs that could be
recovered as ore. However, that histogram cannot be built from
estimated SMU grades because of the smoothing effect of
estimation. The solution is not to attempt an awkward analytical
correction of the histogram of estimated values, but to simulate
the grade distribution at the quasi-point support volume of the
data composite used. These simulated point values can then be
averaged into simulated grades for SMUs of possibly different
sizes, then the selection process can be simulated on the spatial
distribution and histogram of the simulated SMU grades.
Sensitivity of ore recovery to SMU size and more generally to
the mine selection process can then be easily performed. The
utilisation of a common quasi-point support realisation ensures
consistency of all results, no matter which SMU size is chosen.

THE INFORMATION EFFECT

Possibly the most important contribution of the simulation
approach is the assessment of the impact of misclassification on
recovery. No present estimation-based geostatistical approach,
whether by indicator kriging or uniform conditioning, offers that
flexibility. Selective mining calls for small SMUs of varying
support volumes, far below the resolution of the data available at
the time of mine planning. Indeed, SMUs will be sorted on their
ultimate estimated values based on future data not yet available,
but it is the corresponding true grades that are sent to the mill
and contribute to actual recovery. Misclassification is an
unavoidable and often critical aspect of any selective mining; its
rigorous evaluation cannot be ducked.

One can simulate the future selection data, for example
blasthole data, together with the SMU grades z,® from the
point-support simulated grade realisation z®. The simulated
blasthole data are then combined into ‘simulated future’ SMU
estimated values z,®". The superscript (s) stands for simulated,
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a star * is added for estimated, and subscript v represents the
SMU support volume. Availability of the simulated pairs
{z,®(), z,*"(w)}, true SMU grade and selection estimate, at any
location wu, allows an assessment of the impact of
misclassification. Again, sensitivity analysis to various aspects of
that information effect can be easily performed, say the type and
density of the future data available for ore/waste selection, the
geometry of the mine dig lines, etc. Consistency of the various
results is ensured by the common quasi-point support of any one
of the simulated base realisations.

A lot of heat in the debate about the cause and remediation for
‘conditional bias” would be reduced if the information effect was
better understood. Any set of estimates, kriging being no
exception, is conditionally biased if used to predict a recovery
that is performed on another set of estimates. What is needed is
the joint distribution of the actual selection estimates versus the
true values, these are yet unknown but can be simulated and were
previously denoted as {z,*)(u), z,*"(u)}. Improving the kriging
procedure, say by culling some data or increasing the search
neighbourhood, or designing yet another estimator, say through
indicator or disjunctive kriging, would not solve the problem.

ACCESSIBILITY

There is rarely, if ever, free selection: the economic worth of a
block in situ depends not only on its metal content but also on
the cost of accessing it and then mining it, the total cost involved
being shared with other neighbouring blocks. The decision to
mine a block as ore or waste depends on the mine plan, which
itself depends on the estimated grades at the time of selection.
Estimation of recoverable reserves and mine planning are closely
related endeavours that call for a difficult optimisation problem.

Unfortunately, with some notable exceptions (Godoy and
Dimitrakopoulos, 2004), that optimisation is rarely fully
addressed. Instead, and too often, mine plan and design are based
on rough, large-scale estimates of grade distributions, with little
or no account for the impact of the smoothing effect and future
misclassification. Fortunately, such large-scale estimates are not
significantly affected by the smoothing effect if based on sound
prior geological zoning. As for the impact of future
misclassification, it usually is dealt with through dilution factors.

I suggest that simulated realisations of both the distributions of
mineral zones and their mineral grades could provide the data
bases necessary for testing and fine-tuning alternative mining
scenarios, accounting for the all-important support and
information effect. There will come a time when mine planning
will reach the level of rigour and scientific repeatability of the
design of a new aircraft. At that time, simulated numerical
models of the distribution of grades and rock properties will be
needed, and once again global or structural accuracy of the
model will prevail over its local accuracy; that is, stochastic
simulation will prevail over estimation.

UNCERTAINTY ASSESSMENT

Evaluation of recovered reserves from early development data,
not the data used for actual selection, is an extremely challenging
task fraught with uncertainty at each step. Not only should it be
ensured that all known biases are avoided, but a final assessment
of uncertainty about the reserves figures should be provided. It is
clear that such uncertainty assessment is beyond any estimation
or combined kriging variance, because:

1. Kriging variances are independent of the data values; they
are no different whether the SMU is selected as ore or sent
to the waste.

2. A variance does not suffice to characterise a distribution
unless an arbitrary, and here inappropriate, Gaussian-
related distribution is assumed. Simulation approaches can,
however, provide this uncertainty assessment.
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CONCLUSION

There is no practical alternative to a simulation approach if critical
biases are to be avoided and if the uncertainty about global
reserves figures is to be assessed. The paradigm is simple, but its
application is difficult. One generates alternative data sets, called
simulated realisations, on which the process of imperfect selection
is simulated. Provided that the simulated realisations mimic
reasonably those traits of the actual grade distribution that most
affect the recovery of reserves, and provided that the simulation of
the future selection process and its related misclassification is
possible, a probabilistic distribution (histogram) for the simulated
recovery numbers can be obtained, thus providing a model of
uncertainty and confidence intervals. Note that for both simulation
processes (geology and mining) various scenarios can and should
be considered. Given an early and sparse data set, there can be
alternative  geological  scenarios/interpretations and many
alternative options for the mining plan.

All previous provisos render the simulation approach extremely
demanding, but correspondingly rewarding, an endeavour that
befits the critical importance of reserves assessment.
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APPENDIX: PUTTING MORE GEOLOGY INTO
NUMERICAL MODELS OF DEPOSITS

Most reserves evaluation and mine planning start with a
numerical model of the spatial distribution of the deposit mineral
zones. Yet no model is better than the algorithm from which it is
built, the algorithm that relates the data to the unknowns. Should
the estimation or simulation process include explicitly additional
structural information indicated but not included in the data? We
suggest that it is that additional information, beyond the actual
drill hole data, which determines the quality of a mine model,
and hence of its reserves forecasts. Local data, particularly when
sparse in an early development stage, are less consequential than
the structural/geological information used to tie them to the
unsampled locations.

Research in mineral deposit modelling should focus on
developing algorithms capable of including more geology in the
numerical models. Ignoring prior geological interpretation on
grounds that it is uncertain or too subjective is not only
counterproductive, it is also conceptually wrong. Better an
inaccurate geology than an automatic interpolation algorithm,
whether geostatistical or not, that replaces all geology by its own
canned universal structure, one that is most often maximum
entropy forbidding geological organisation. Accordingly, the
major source of uncertainty is the geological interpretation.

Recent developments on multiple-point geostatistics have
adopted that route (Strebelle, 2002; Remy, 2004), replacing the
two-point variogram by pattern statistics lifted directly from
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Three different simulations conditioned to the same 30 samples
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FIG 2 - Simulated realisations, using for training images the patterns of Figure 1.

prior training images proposed by geologists to represent their
prior concept about facies or rock type geometry and spatial
distribution.

These conceptual geometrical patterns are morphed and
anchored to the actual local data. Only when the architecture of
the deposit has been built on sound geological considerations can
grade interpolation or simulation be performed using the
traditional variogram-based algorithms.

An eye opener example

Figure 1 gives images of three different binary facies
distributions, say the dark grey facies represent the high-grade
mineralisation. The three images are conditioned to the same 30
sample data shown at the left of the figure. Although the three
facies distributions are clearly different leading possibly to
different mining dilution hence recovery, their exhaustive
(indicator) variograms in both EW and NS directions are about
the same. Had those variograms been calculated from the 30
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sample data they would be all identical! The point made is that a
variogram, and more generally two-point statistics, does not
suffice to characterise complex spatial patterns.

These three images are now used as training images for
conditional simulation with an algorithm based on multiple-point
(mp) statistics; conditioning is to the same 30 samples. The
results are shown at the top of Figure 2: mp simulation has
succeeded to distinguish the three types of spatial patterns; as for
variogram reproduction (bottom of Figure 2) it is as good as, or
better than, what would be provided by any traditional
variogram-based simulation algorithm. In mp geostatistics, the
variogram structural function is replaced by multiple-point
spatial patterns lifted from a training image and anchored to the
hard conditioning data. The challenge for the geologist is to
provide such training images corresponding to their geological
interpretation of the data available; alternative geological
scenarios could and should be considered. This challenge is no
different from that of inferring a variogram model.
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Quantification of Risk Using Simulation of the Chain of Mining —
Case Study at Escondida Copper, Chile
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ABSTRACT

Quantification of risk is important to the management team of any rapidly
expanding mining operation. Examples of areas of concern are the
likelihood of not achieving project targets, the impact of a planned
drilling program on uncertainty and the change in the risk profile due to a
change in the mining sequence. Recent advances in conditional
simulation and the practical use of such models have provided the
opportunity to more fully characterise mineral deposits and to develop
empirical estimates of the recoverable resources and ore reserves. This
allows meaningful quantification of risk (and upside potential) associated
with various components of a mining project.

This paper presents an approach referred to herein as ‘simulation of the
chain of mining’ to model the grade control and mining process. Future
grade control sampling, mining selectivity and other issues that impact on
the final recoverable tonnes and grades are incorporated. The application
of this approach to Escondida, a large-scale open pit copper mining
operation in Chile, provided a definitive way to assess the expected risk
of a number of alternative development strategies on operational
performance of the project. This approach is gaining acceptance as one of
the most important steps in developing short-term mining models. The
concepts developed here also have implications for assessing the ore that
will be recovered from ore reserves during mining.

INTRODUCTION

The Escondida open pit copper mine is located 140 km south
east of Antofagasta, Chile. The mine started production in the
late 1990s and by 2004 the annual production reached 82.4 Mton
of sulfide ore; generating 1 005 200 ton of copper concentrate,
152 300 ton of cathode copper, 179 800 oz of gold and 4.5 Moz
of silver. The orebody is a porphyry copper formed by two major
stages of sulfide and one stage of oxide mineralisation. The
supergene enrichment blanket of the deposit is defined by
chalcocite and minor covellite with remnant chalcopyrite and
pyrite that reaches a thickness of several hundred metres in
places. The largest contributor of mineralised tonnage in the
deposit is an Oligocene porphyritic intrusive hosted by andesites,
combined with less significant hydrothermal and igneous
breccias occurring throughout the deposit.

This study was conducted to assess the risk associated with the
use of the Escondida resource model as a basis for developing
mine schedules, forecasts and budgets of mineable ore. In
addition, it was used to define the impact of risk for the first five
years of the Phase IV Expansion and identify the alternative
mine schedules that present less risk. The study was based on the
construction of a large conditional simulation model, covering a
significant part of the Escondida copper mine and the analysis of
this model through a ‘transfer function’ or mining process termed
the Chain of Mining (CoM).
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More specifically, a geostatistical conditional simulation (CS)
model was developed for a large part of the Escondida sulfide
resource that contained five years of scheduled mining from the
start of year one to the end of year five. The CS model consisted
of 50 realisations that independently defined the lithology
(andesite or non-andesite), the mineralisation zones (High
Enrichment, Low Enrichment and Primary) and the grade (per
cent copper as total copper and soluble copper) dependent on the
previous two geological variables. A Chain of Mining approach
was then used to model the errors impacting upon the translation
of the in situ resource to a recoverable ore reserve. A number of
CoM models were developed and analysed to determine the
parameters that would match actual mining performance at
Escondida. The impact of various contributing errors was
modelled using parameters for blasting movement, sampling and
assaying precision, sampling and assaying bias, and mining
selectivity. The CoM models were examined in relation to all
available reconciliation results. From available production data it
was evident that the Escondida resource model available at that
time significantly over-predicted the tonnage that was realised
during mining. A base case Chain of Mining model was selected
that appeared to best capture the real performance indicated by
the production data. This case was used to predict the
performance of the current mining practice within the volume
defined by the planned next five years of mining. The analysis
was done on a quarterly basis and a pushback basis for two
alternative (north and east) mining options.

The approach presented herein is based on sequential
conditional simulation (eg Journel and Huijbregts, 1978;
Goovaerts, 1997; Benndorf and Dimitrakopoulos, 2007, this
volume; Nowak and Verly, 2007, this volume) and the concept of
‘future’ grade control data for recoverable reserve estimation
detailed in Journel and Kyriakidis (2004). Related aspects are
discussed in the next sections, which start with the description of
available data and conditional simulation modelling at
Escondida, followed by the CoM approach (Shaw and
Khosrowshahi, 2002), a calibration of the resulting models and a
comparison with production. Conclusions and comments follow.

DATA AND DATA ANALYSIS

Data sets used for analysis were based on 15 m bench composites
for exploration data and grade control data. Subsequent analysis
was based on the High Enrichment (HE), Low Enrichment (LE)
and Primary (PR) zones. The lithology was considered as two
domains, Non-Andesite porphyry/breccia and Andesite. Thus,
there were six modelling domains for preliminary analysis,
including univariate statistics of exploration and grade control data
for total copper (CuT) and soluble copper (CuS).

To assess continuity trends for the characterisation of
anisotropies in the data prior to variography, maps of grade and
grade indicators were constructed. The interpolated maps were
not constrained by the lithology or mineralogical zones and,
therefore, reflect an isotropic interpolation of the data in 3D. The
maps were used for the preliminary identification of grade
continuity trends in order to further the definition of domains and
for variographic analysis. The plan view maps indicated different
grade continuity trends on either side of the north-south line at
16300 E. On the eastern side, grade continuity has a NE
orientation. This differs from the western side, which shows a
NW continuity. An indicator defining the samples coded as
andesite or non-andesite was also mapped in the same way.
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Variography of the exploration and grade control data sets for
total copper and for the ratio of soluble copper to total copper
(ratio) was carried out for each of the HE, LE and PR
mineralogical zones with subdivision by lithology (andesite and
non-andesite, ie porphyry) that was separated into east and west
at 16 300 E. Preliminary variograms of exploration data did not
provide a good definition of short-scale structures. This is mainly
due to the exploration data density, which does not allow
accurate and detailed variogram definition over small distances.
The exploration variograms generally characterised large-scale
structures, but these are not as critical to risk assessment as the
characterisation of short-scale continuity. It was found that
variograms of grade control data generally showed less
continuous behaviour, and a far clearer definition of short-scale
variability. Accordingly, it was decided to model variograms of
grade control data for all domains containing sufficient data to
characterise this short-scale variability for simulation purposes.
Exploration variograms were also modelled to determine the
sensitivity of the study to this approach. For the Primary zone,
grade control data was scarce and the variograms were based on
exploration data, although this generally produced poorly defined
variograms for the west domains.

The enrichment surfaces were based on the HE, LE and PR
codes in the exploration and grade control data (Figure 1). For
this analysis, it was considered necessary to use a combined
grade control and exploration hole surface data set for each of
HE, LE and PR for variographic purposes to ensure that
maximum coverage was provided of the spatial data.

GENERATION OF THE CONDITIONAL
SIMULATION MODELS

First, the enrichment surfaces were simulated using sequential
Gaussian simulation, followed by the simulation of the two
lithologies, andesite and non-andesite, using sequential indicator
simulation. These models were merged resulting in simulated
models, each with its own lithology and enrichment surface. Next,
these models were populated with simulated CuT and CuS grades.

Simulation of the enrichment surfaces

An example of the final simulated enrichment surfaces are
provided in Figure 2. The influence of the conditioning data is
evident when comparing the simulated images of the HE, LE and
PR surfaces. The lower number of conditioning data points for
the PR surface leads to greater variability in the simulated
surface. Variography was carried out for the mineralogical
contacts described by the geological interpretation (enrichment
surfaces). Variography of the surfaces was performed in 2D
(Figure 3) with the variable analysed being the RL coordinate.

Simulation of lithological data

The dominant rock type for the Escondida deposit is porphyry.
Grades in the andesite west of the 16 300 coordinate line are
generally recognised to be lower than those in the porphyry
lithologies and metallurgical recoveries are lower. The data was
examined and it was decided, for the purpose of this study, to
define two lithologies, namely andesite and non-andesite (or
porphyry), which is used for porphyry/breccia and all other
non-andesite lithologies. The lithology variography was based on
indicators for andesite (and porphyry) for all data below the top
of the HE zone. The indicators were defined from the drill log
codes in the grade control and exploration data sets. As for the
grade variography, the lithology variography was carried out for
separate populations east and west of 16 300 E.

The lithological data was simulated as a categorical variable
(Figure 4). The presence of andesite was defined in the drill hole
data using an indicator value of 1 with the absence of andesite (ie
the presence of porphyry) assigned an indicator value of 0. The
conditioning data set used for simulation of this categorical
variable was the 15 m composited exploration data combined
with the grade control 15 m blasthole data. The coded lithology
data and the indicator variogram parameters were used to
generate a sequential indicator simulation 3D model of the
lithology as defined by the distribution of the andesite indicator.

Generation of the geological conditional
simulation model

The 50 two-dimensional simulated realisations of each of the
three enrichment surfaces and the 50 three-dimensional
simulated realisations of andesites in two separate domains (east
and west) were then merged into a single geology conditional
simulation model comprising all simulated outcomes. Thus, there
were 50 simulations each with a different lithology and Minzone
outcome (Figure 5).

Simulation of grades for CuT and CuS

Twelve separate domains were considered for simulation of the
percentage of copper as CuT and CuS grades. The conditioning
data for each domain was the 15 m exploration composite data
set. For each domain, appropriate data belonging to that domain
was extracted. The sequential Gaussian simulation approach was
used to simulate grades (Figure 6) and simulated realisations for
each domain were validated by checking the reproducibility of
the weighted histogram of the exploration data, and the normal
score variogram model from the grade control data.

FIG 1 - Typical cross-section at Escondida copper.
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FIG 2 - Example of simulated image of the enrichment profiles.
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It is impossible to produce a perfect representation of any
deposit as a resource model since the geological knowledge, the
sampled data, and the assumptions made during estimation are
all imperfect. If a model was perfect it could be used as the basis
for mining without any requirement for further mapping or
sampling. Collectively, these imperfections are termed the
information effect and can never be overcome completely.
During mining, decisions are made based on similar imperfect
data. Geological mapping, sampling and assaying are used to
provide a basis on which the ore boundaries are defined and
mined. Estimates of grades within the ore blocks must be made
from the best available data. The impact of such estimates causes
dilution (material below the cut-off grade being sent to the mill)
and ore loss (ore incorrectly being sent to low grade stockpiles or
waste dumps). Imperfect knowledge of the deposit again plays a
part, but to this is now added imperfect mining practices. Even if
the cut-off grade boundary could be defined perfectly it could not
be mined perfectly every time at a practical mining scale. To
differentiate between the impact on resource modelling and the
impact on mining, these imperfections are collectively termed
the grade control effect and, again, can never be overcome
completely.

THE CHAIN OF MINING APPROACH

For any measurable value, the term error can be used to indicate
the difference between an estimate and the true value. During the
process of defining an ore block for mining, a number of
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measured values are used, such as the location of the ore in 3D
space, the representativity of the sample, the quality of the
sample, the grade of the sample, and the cut-off boundary of the
ore block boundary to be mined. For each of these attributes a
‘true’ value and an ‘estimated’ value can be defined.

Mining decisions are in all cases based on the estimated value.
However, the results of mining are in all cases determined by the
true value. For example, the placement of an ore block boundary
and the predicted grade of that ore block might be defined solely
by the sampled grades in and around that block. Errors in the
sampling process (which leads to imperfect delineation of
boundaries) and during mining (which leads to imperfect mining
of the planned boundaries) both result in dilution and ore loss such
that the grade of the ore delivered to the mill is invariably lower
than that predicted by the estimated values. This is because the
application of a cut-off grade alters the impact of the distribution
of errors. Waste incorrectly sent to ore is by definition always of
lower grade than ore incorrectly sent to waste.

There are various approaches that can be taken to solving this
nexus between ‘predicted’ and ‘actual’ mining performance. For
the present study, a series of parameters that model the
differences between the predicted and actual mining performance
were measured. To define these parameters, the various stages
where errors can occur in measured values were considered. The
mining process as a whole was considered to be a chain of events
with the consequences of each event impacting on the next
measurement in sequence. The term Chain of Mining is used to
underscore the dependence of the eventual mining result on each
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link in the process (Shaw and Khosrowshahi, 2002; Shaw et al,
2002; Khosrowshahi and Shaw, 1997). Figure 7 provides a
schematic of the process to characterise the generation of
recoverable resource estimates.

Estimated Grade
Control Model

Reference Mining  Grade control
Image SMU sampling

Inverse Distance
Squared (ID?)

Polygonal (NN)

True

Tonnes and
Grade
Final
Recoverable ]
Reserve Blast
Models Movements

Ore Block
Image Outlines

Reference

FIG 7 - Using the Chain of Mining process on a simulation model
to characterise recoverable reserve estimates.

Sources of error during mining

It was apparent that there were four possible sources of error that
contributed to the grade control effect and which could be
modelled, namely, sampling and assaying errors of precision,
sampling and assaying errors of bias, movement due to blasting
as lateral displacement or heave, and mining selectivity. It was
recognised that it would be impractical to attempt to define
parameters in detail for every possible source of error at
Escondida. In addition, due to the large and very complex nature
of such a mining operation, there is always the possibility that
one or more practices will change in time. Instead, an empirical
approach was taken. Error models were developed where
observation on site indicated that this would be appropriate and
these various error models were tested to determine their impact.

Error due to sampling and assaying precision

The grade control sampling at Escondida is done using vertical
blastholes. The ore is blasted and dug on 15 m high benches. The
blastholes are drilled with large rotary air blast equipment,
drilled to a depth of 15 m (one mining bench) plus subdrill of
approximately 2.5 m. Sampling errors that will lead to a
difference between the actual grade of the material in the cone of
blasthole cuttings and the true grade of the ore in the ore block
are not quantifiable (since they are frequently not repeatable).
Nevertheless, these errors exist and include both the sample
delimitation error due to subdrill material remaining in the
cuttings cone, and sample extraction error due to contamination
and loss during the open hole rotary drilling, and due to dust loss.

The subsampling of the spoil cone is done manually after
drilling using a tube sampler and eight increments are collected.
The sample is then further crushed and subsampled in the MEL
site laboratory. The errors that impact on the predicted grade
include:

1. the grouping and segregation error that is due to splitting of
the spoil cone (in this case due to the tube splitter); and

2. error due to the relationship between particle size and
grade, known as the Fundamental Sampling Error (Gy,
1979) that results from the process of splitting, crushing
and pulverising to reduce the 2 t sample spoil cone to a
200 g pulped sample submitted for assay.

Orebody Modelling and Strategic Mine Planning

The first type of error is not quantifiable, and every
subsampling system incurs the second type of error. The total
impact of all these errors was modelled in two scenarios:

Low sampling error

A relative sampling precision of +20 per cent was assumed as the
base case. This incorporates the measured precision of +10 per
cent demonstrated by repeat sampling and assaying of blasthole
cones (Figure 8). An allowance for additional error was made
due to the drill sampling method. This scenario assumes high
quality grade control sampling is available.

Escondida: Blasthole field repeats
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FIG 8 - Field duplicates of Escondida blasthole cone sampling
from which a relative precision of +10 per cent was obtained.

High sampling error

A relative sampling precision of +60 per cent was assumed as the
high error case to indicate the typical level of sampling
repeatability that occurs in twinned blasthole drill sampling. No
data for this estimate was available. The nearest such data was
paired blasthole and resource hole estimates where a precision of
+40 per cent was obtained. The high error case was adopted to
allow for the impact of the blasthole subdrill and accounts for the
local variability typically seen in blasthole sampling.

Error due to blasting

Ore movement can result in the predicted ore being displaced so
that the material eventually mined is different from that which
was planned. The degree of dilution and ore loss that this causes
is dependent on the lateral displacement of the ore block
boundaries, and the vertical heave resulting in mixing across
horizontal mining levels. Heave is not an issue at Escondida
since the ore is blasted and mined on a single mining bench. It
was decided to model two scenarios, one where the lateral blast
movement was negligible and one where the movement was 3 m
in both the east-west and north-south directions, this being the
movements observed on site for a number of blasts.

Mining selectivity

Perfect mining of any orebody is always impossible due to two
factors; the availability (and quality) of data to define boundaries,
and the ability of the equipment to dig a defined boundary, which
decreases with the production scale of the operation. The
effective minimum mineable block size can be expected to relate
in some way to these factors and, consequently, in a resource
model the point estimates of grade, interpolated from drill hole
(quasi-point) data, may be aggregated to a mineable block size.
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The degree of mining selectivity represented by a resource block
model is defined as the selective mining unit (SMU). This SMU
block size may be regarded as the minimum viable size of a
mining block, although of course, the average size of the mined

TABLE 1

Parameters used in the Chain of Mining (CoM) analysis for the
various CoM models examined, with results for the reconciliation

blocks may be much bigger. The degree of misclassification that perio
generally occurs along any block boundary during mining is Case | Blasting |Sampling| SMU | Mt | Grade| Comment
directly related to the production rate and size of the mining movement| error | (I5m %o
equipment. The concept of the SMU block size can assist in high) CuT
understanding the impact of the mining method on the orebody 1 0 Low |16x16/109.4| 1.875
and how well this can be represented by the resource model. ) 0 Low 8x 16 |107.5 1.893
CALIBRATION OF THE CHAIN OF MINING : O E A P Iy B
4 0 High [16x16|108.0| 1.885
MODELS AND COMPARISON WITH p 0 High | 8x 16 |105.3] 1.907
PRODUCTION ) — -
6 0 High 8x8 | 99.0 | 1.953 | closest to mine
The conditional simulation model developed for the Escondida production
deposit was used to test the impact of various mining selection data
parameters and the impact of the various expected errors. A 7 3 Low |16x16]109.4| 1.861
series of ten cases was devel.oped.using the parameters Flefineq in 3 3 Low 8x16 |107.5| 1.873
Table 1 to address misclassification errors likely to arise during )
mining. These CoM models were then tested against production 9 3 High | 8x16 |105.3] 1.887
records and compared to the Escondida resource model. 10 3 High 8x8 199.0 | 1.921

Analysis of risk for Tonnes by quarter for 5 year plan

Chain of mining case: 8§x8m high sampling error
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FIG 9 - Risk associated with tonnes in the five year plan by quarters.
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Analysis of the results for the different scenarios indicated that
Case 6 was the closest to the Production data total of 100.294 Mt
at 2.11 per cent CuT. The selected case used no blasting
movement, a high sampling error consistent with blasthole
samples, and an 8 x 8 m SMU block area. The smaller SMU size
provided better selectivity at the cut-off grade, producing a lower
tonnage and higher grade than that predicted by the resource
model. Case 6 was regarded as the base case. Various models
were intersected with each wire-frame defining the mine plan,
and the results were aggregated by both quarterly period and
major pushback increment. For the Chain of Mining cases, each
of the 50 simulations was separately intersected with each
wire-frame to provide a risk profile of the chance of not
achieving the scheduled tonnes and grade for the period that the
wire-frames represented. The tonnages and grades within each
simulation realisation were determined for the quarterly and
pushback increments for the base case (8 x 8 m SMU with high

sampling error). The results are presented in graphical form in
Figure 8 to Figure 12. In assessing the relative risk using this
graphical data, occurrences below the horizontal line indicate
where the expectation of tonnes or grade was not reached, ie
periods when the resource model is at risk under the assumed
mining scenario.

CONCLUSIONS

The five-year schedule options adequately fit with the in situ
resource. However, the Chain of Mining case (8 x 8§ m SMU,
high error) selected to best emulate the production data indicates
a significant expected shortfall in tonnes. What had not been
evident until this study, and could only be demonstrated using the
exhaustive data set provided by a conditional simulation study, is
that there was considerable risk of a shortfall in tonnes. This was
because the selectivity evident in the actual mining strategy

Analysis of risk for CuT Grade by quarter for 5 year plan

Chain of mining case: 8§x8m
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Analysis of risk for Tonnes by pushback for 5 year plan
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FIG 11 - Risk associated with tonnes in the five year plan by pushback.

differed significantly from that inherently assumed in the
resource model. High quality grade control practices on site were
effectively providing higher selectivity than that assumed in the
resource model. This lead to a scenario of ‘vanishing tonnes’
(David, 1977), a concept demonstrated in this study that is
familiar to many large mines. This problem can be related to
attempts to improve the head-grade to unrealistic targets applied
on a short-term (sometimes daily) basis. Visual grade control and
other decisions to remove small parcels of contaminating
material in order to maintain a high mill head grade may lead to
an artificially small effective mining selectivity that is not related
to the SMU block size assumed in the resource modelling.

The quantification of risk using simulation of the Chain of
Mining is a technique that can be used to identify a potential
shortfall in tonnes or grade for a given mining scenario.
Alternative plans can then be developed and tested before the
shortfall impacts production. An approach such as the one
demonstrated here for Escondida can determine if a plan is
realistic and the predicted results will be obtained. Hence, the
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risk inherent in a given plan can be quantified. Testing alternate
mining scenarios, operating practices and policies to determine if
they will indeed deliver as intended, therefore, provides
considerable advantages to both mine planners and operators.
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Integrated Strategy Optimisation for Complex Operations

B King'

ABSTRACT

While large mining operations frequently provide enormous value for their
shareholders, they also contain enormous challenges for those determining
the operating strategies that maximise the net present value (NPV).
Experience shows that value could be increased by several percent through
additional or ‘second order’ optimisation of the extraction policies. For
operations constantly looking for ways to trim costs and add value, analysis
of the optimisation process may help initiate a step change in the project’s
NPV. Determining the best operating policy is often limited by the analysis
time and the availability of skilled engineers to appropriately utilise various
planning tools. For example, the size, shape and timing of even a single
pushback may have thousands of valid alternatives. For a very small
operation, these alternatives may be evaluated to determine which one
results in the best project value. Mines with durations of more than five
years often have so many valid alternatives that the number of neutrons in
the universe appears small in comparison.

Optimisation algorithms implemented in commercial software tools for
maximising project value provide guidance for some key parts of the
process to determine the best operating policy. It then becomes a matter
of how we can answer questions that are not explicitly optimised by the
algorithms. These questions may concern the mining and processing
capacity that should be installed, the size and timing of a processing
expansion, the timing of extracting resource from nearby mines, and the
timing of mining a resources from underground rather than from the
surface. This paper outlines a framework for optimising many of these
policies in large, and often very complex, mineral resources. Examples
are presented from experiences at major operations in Australia, Chile,
Peru and the USA. It is hoped that this will assist engineers to more
responsibly exploit our finite resources.

INTRODUCTION

In mining, several decisions can be made with the guidance of
commercially available optimisation algorithms and tools. This
paper focuses on how to determine the best choice for a policy
that is not optimised by these tools. We do not have to search far
in large operations to find strategies that are not optimised but
which may add substantial value through appropriately made
decisions. While small mining ventures have ridden the tides of
metal prices and market conditions for short-term profit and
unconstrained resource high grading, the following objectives of
a modern mining company are more commonly stated. Firstly,
the modern company will aim to act responsibly as a steward of
the resources in its care so that they benefit both the countries in
which they are found and the world at large which depends on
them. Secondly, the modern mining company will aim to create
long-term wealth for its own shareholders. These objectives are
believed to be in harmony with each other, and both are a vital
part of the mining industry. In determining realistic policies,
environmental, safety and political constraints must all be
considered. There is clearly little point investing time and effort
in developing plans that cannot be implemented for failing to
obey these constraints.

Ideally, all possible decisions that could influence a mine’s
value should be considered to achieve designs which will result
in the maximum net present value. The number of combinations
of these parameters over the life of the mine is overwhelming for
any global optimisation technique unless several assumptions are
made. Until the entire mine design problems can be solved with
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one integrated algorithm, smaller components of the process are
often worked on sequentially. These sub-problems normally form
a sequential mine planning process that can be repeated
iteratively. Higher value results are expected as more of the
sub-problems are simultaneously considered in a single
optimisation. Efficient algorithms are required to ensure the
solution times do not explode as the complexity increases. These
may be very expensive to look for and, if found, costly to turn
into practical tools for the mining industry. For example, the
algorithms based on dynamic programming that are used in the
COMET software integrate pushback timing, cut-off grade,
processing policies and financial analysis. This allows the
interaction between the policies to be exploited to maximise the
project value. Further presentation of COMET is provided by
Wooller (2007, this volume) and King (2004).

Because any ‘optimising’ tool only works on a limited model
of reality, results should be reviewed to check that they are
reasonable. When breaking the problem down into components,
the resulting designs lose any guarantee of finding the maximum
present value; they simply hope to be close to the maximum.
While this may be somewhat disappointing to management or
investors, it is a sobering reminder of the complexity of mine
planning and the need to appropriately resource this vital work.
Large operations with multiple orebodies, mining areas and
processing alternatives are often so complex that the number of
feasible solutions makes the number of neutrons in the universe
(10'®) seem small. The next part of this paper discusses
available tools for solving some of these problems found in large
operations. The problems selected are ones that are important to
many large operations and that do not have integrated
optimisation algorithms to solve them.

GENERIC PROCESS

The question to be answered is ‘How can I use the available tools
to optimise policies that are not usually optimised by these
tools?’ Let us assume we have policies A, B and C to optimise,
though only policies B and C can be simultaneously optimised
with available algorithms. This paper offers the following generic
steps for approximating the optimal choice of policy A.

The first step is to choose a tool that uses an objective that (a)
accurately reflects your business objectives (maximising NPV is
assumed in this paper) and (b) simultaneously optimises as many
of the other key policies (B and C) as possible. (Sometimes
multiple tools are required to model the process. COMET
software has been used for the problems identified in this paper.)
The next step is to identify the broad options for policy A. Then,
for each policy A alternative, optimise the remaining policies (B
and C). The final step is to choose the highest value options for
some more detailed analyses if the schedule values are close
(within the accuracy of the estimate). The option for policy A
that gave the highest value is chosen to optimise this policy. This
process often contains a substantial manual component, which is
both expensive and time consuming. If this decision is to be
evaluated often, then some automation may be justified.

The above process can also be used when several policies must
be chosen even though they are not able to be simultaneously
optimised with the available technology. Policy A can be a
complex policy, or a combination of several policies. If we have
independent policies X and Y, both with two options (X, X, and
Y, Y,), policy A can be defined as a set of four policies of X and

Spectrum Series Volume 14 43



B KING

Y (XY, XY, X,Y, X, Y,). The number of options can rapidly
approach the number of neutrons in the universe again, so some
judgement may be needed to consider only reasonably likely
options. In addition, while the above approach may be deduced
by common sense, the key issue to recognise is that all
combinations of policies A, B and C do not have to be searched
in order to find the highest value path. Only one path for each
policy A alternative needs to be valued. This can have enormous
time-saving benefits when applied to many complex operations.
The following examples have been used to illustrate how this
process may be applied to a number of problems found in large,
complex mining projects.

SURFACE TO UNDERGROUND INTERFACE

Many large resources mined from the surface also have a
potential resource that can be extracted from underground.
Although surface mining methods may be used to extract much
of the resource, the highest value for the project should consider
both underground and surface options.

There are many factors that impact on the ideal transition from
surface to underground operations. Surface issues include cut-off
grades, waste stripping, and stockpile generation and reclaim.
Underground issues include access to higher grades, dilution, the
proportion of resource extracted (due sterilisation associated with
the mining method), production costs and capacities, and capital
requirements. Combined issues include tailings capacity and
closure cost implications. There is currently no algorithm (and
therefore software product) for determining the best transition
between surface and underground mining that will take into
account all of the above issues. Where currently available
software tools attempt to answer these questions, only a few of
these aspects are considered. However, it is not the objective of
this paper to list the limitations of commercially available
software tools, many of which can still be profitably used despite
these shortcomings. Thus, the question becomes ‘How can we
use the available tools to optimise the transition between surface
and underground mining?’

By applying the generic process suggested above the best

ore. The surface policies, such as cut-off grade and ultimate pit
limits, are dependent on the value of the remaining underground
resource. If the underground is considered without reference to
the open pit, Option A (large underground) is chosen. If the open
pit is evaluated without the underground impact, Option C (large
open pit) is selected.

Without an underground, the open pit cut-off grades will
normally drop down close to break even as the last material is
mined. With a highly profitable underground that cannot start
until the surface operation is complete, open pit cut-off grades
will generally increase to bring forward the value from the
underground resource. Although specific policies are dependent
on the particular project, Figure 2 shows the general pattern of
change in cut-off grade for the three cases shown in Figure 1.
Each of these schedules was optimised using the COMET
software and a dynamic programming algorithm based on
successive approximation (Roman, 1973).

The changes in policies are dependent on the constraints,
economics and resource mined. Figure 2 shows that the shorter
open pit options generally utilise lower cut-off grade strategies
that have the result of extracting more value from the earlier
open pit phases. As is usually the case with optimised cut-off
grade policies, the policies rise as more high-grade material is
reached and then generally decline with time. While the cut-off
grade policies are interesting, the most important number is the
NPV presented in Table 1. The highest value schedule was
Option B, with the medium surface and underground designs. Of
interest in Table 1 is the mine life, which increases with pit size.
The primary reason for this is the lower grade material that was
processed in the larger pit options. The underground costs do not
justify the removal of all of this material and so larger
underground designs have smaller reserves. A second point to
note in Table 1 is that all three cases yielded positive NPVs,
some were just a little more positive than the others! This should
serve as a reminder that a high-value schedule does not
necessarily mean that an even higher value schedule is not
possible with a little more effort. Further information from the
best case (Option B) is presented in Figure 3.

transition from surface mining to underground can be evaluated. TABLE 1
For the example illustrated in Figure 1 there are three different Surface to underground transition summary results.
options to evaluate. Each of the underground mining options has
a different design, production schedules, capital requirements, Option A B &
life and of course value. The open pit designs have several Open pit size Small Medium Large
pushbacks that extract different portions of the resource. These Underground size Large N Small
underground alternatives impact on the opportunity costs for
processing surface material, since every day spent processing Ll ) 225 Zalr] 24
surface ore could alternatively be spent processing underground Life (years) 21 22 27
Option (A) I Option (B) I Option (C)
Small OP Medium OP Large OP
[ [
[ [
[ [
""" [ [
1 | [
[ [
Large UG I Medium UG I Small UG

FIG 1 - Surface to underground transition options.
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FIG 2 - Cut-off grade policies for surface to underground transition.
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FIG 3 - Highest value integrated surface and underground schedule (Option B, $2425 M) with variable cut-off grade
and pushback sequencing.

Figure 3 shows that the low-grade stockpile is reclaimed once
the open pit ore runs out and during the underground mining
period. The underground ore was higher grade than the stockpile
but was not able to be mined at a sufficient rate to use the full
mill capacity. Ideally, the mill throughput/recovery would be
modelled to add further value. A new set of schedules was
therefore undertaken to exploit a time varying grind policy to
maximise the project value. For the purpose of this paper, a grind
relationship was used in which the mill could process up to ten
per cent more material with the loss of five per cent in recovery,
or process 20 per cent less material and realise ten per cent
higher recoveries. Figure 4 shows the schedule when optimised
with a variable throughput/recovery policy, which is optimised
simultaneously with the cut-off grade and pushback sequencing.
A substantial increase in value (from $2425 M to $2523 M or
four per cent) was realised by simultaneously optimising the
grind policy (throughput/recovery relationship) with the other
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policies (cut-off grade and pushback sequencing). An outline of
the theory of how to optimise multiple policies like these is
presented by King (2001). The same surface to underground
transition was found to produce the highest value and all
schedules had higher values. The addition of the grind policy to
the optimisation is an example of adding complexity as a model
of the project is developed. As time is spent analysing and
understanding the project value drivers, some areas are obvious
candidates for greater model accuracy.

It is important to review the sensitivity of these decisions to
price, cost and constraint variation. A low-reserve schedule that
has the highest value at a low price may not be best schedule at a
higher price (since more reserves can utilise the higher prices). It
is also important to recognise the different risk profiles of the
resulting schedules. Risk is often a more difficult property to
measure; however, there are normally some parameters that
reflect this risk.
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FIG 4 - Best integrated surface and underground schedule (Option B, $2523 M) using variable grind (throughput/recovery),
cut-off grade and pushback sequencing.

ADDITIONAL COMPLEX POLICIES

Pushback designs

Designing realistic pushbacks is a fundamental part of planning a
large surface mining operation. Many engineers use tools based
on the ultimate pit algorithms, such as the Lerchs-Grossmann
algorithm (Lerchs and Grossmann, 1965; Whittle, 1988), to
provide guidelines for creating intermediate pushbacks. These
tools are often run at lower than expected metal prices to
determine a nested set of shells. While this approach does
provide useful guides, there are a number of issues that arise in
large operations that limit the usefulness of these guides. For
one, there are a number of factors that are not considered, such as
mining and processing capacities; time dependent properties,
including prices and costs; operating policies such as cut-off
grade; interaction between material mined and processed; and
ramp locations and some geotechnical constraints (such as stress
unloading). Another issue is that shells may be much smaller or
larger than can be practically mined. The above reasons may
provide substantial uncertainty of the best shape for intermediate
pushbacks. Several options may need to be manually designed
and scheduled to find the best designs and maximum value.

The ultimate pit size is also subject to the same assumptions
and therefore limitations as described above. For example, the
location of the final pushback may need to be confirmed by
grouping shells into a realistic width and scheduling with all
other policies (such as cut-off grade and stockpiling) optimised.

Mine and process expansion optimisation

Mine and processing expansions may provide the keys to unlock
substantial additional project value. These capacities are not
automatically optimised by the currently available algorithms
and software tools, so we ask ‘What is the optimum mining and
processing capacity for the project?’. Although a simple
question, the answer can involve a complex combination of
policies throughout the business. For example, increasing the
flotation capacity would also require increasing the SAG
capacity, crushing and grinding capacities, concentrate handling
capacities and, quite possibly, the tailings capacity. Once the
entire processing system has been upgraded and new cost and
recovery functions implemented there may still be negligible
increase in value. The reason could well be due to the operation
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being constrained by the mining equipment. When mining is
constrained, cut-off grades drop to breakeven grades, and very
marginal material is processed. In order to reveal the full value of
a processing expansion it should be coupled with a mining
capacity expansion. Although schedule optimisation tools may
not directly provide the optimum choice of mining or processing
capacity, by scheduling several options an engineer can rapidly
determine the optimum choice of both mine equipment fleets and
process capacities.

To evaluate all the possible options of truck and shovel fleets
alone would be an enormous and unnecessary task. Most of the
options are able to be discarded as unlikely to achieve higher
value. For example, expanded truck fleets without associated
shovel fleets are unlikely to reveal any further value unless the
operation was already truck constrained. By applying sensible
boundaries to the options and reviewing results as they are
generated, options for analysis can be greatly reduced.

CONCLUSIONS

Strategic and long-term plans set the context for shorter term
decision-making. Substantial value is realised by ensuring that
strategic and long-term planning follow the corporate objectives,
normally defined using the net present value.

Many optimisation algorithms have been developed to solve
parts of the planning problem. However, there are still important
problems that are not able to be automatically optimised with
these algorithms. This paper demonstrates that, by using an
efficient schedule optimisation tool, many of these policies can
be optimised to add substantial value to a project.
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Simulation of Orebody Geology with Multiple-Point Geostatistics
— Application at Yandi Channel Iron Ore Deposit, WA and
Implications for Resource Uncertainty

V Osterholt! and R Dimitrakopoulos2

ABSTRACT

Development of mineral resources is based on a spatial model of the
orebody that is only partly known from exploration drilling and
associated geological interpretations. As a result, orebody models
generated from the available information are uncertain and require the use
of stochastic conditional simulation techniques. Multiple-point methods
have been developed for petroleum reservoir modelling enabling
reproduction of complex geological geometries for orebodies. This paper
considers a multiple-point approach to capture the uncertainty of the
lithological model at the Yandi channel iron ore deposit, Western
Australia. Performance characteristics of the method for the application
are discussed. It is shown that the lithological model uncertainty
translates into considerable grade-tonnage uncertainty and variability that
is now quantitatively expressed.

INTRODUCTION

Geological controls of physical-chemical properties of ore
deposits are important, thus, understanding and modelling the
spatial distribution of deposit geology is critical to grade
estimation, as well as the modelling of any pertinent attributes of
orebodies (eg Sinclair and Blackwell, 2002; King ef al, 1986). In
iron ore deposits, for example, geological domains typically
include lithology, weathering, ore and contaminant envelopes.
Domains for other physical properties such as density, hardness
and lump-fines yield may be required. The traditional approach
to model geological domains is the drawing of outlines of the
geological units by the geologist, resulting in an over-smoothed
subjective interpretation. Automatic interpretations are rare and
include solids models that are, however, also inherently smooth.
Furthermore, such single ‘best-guess’ interpretations do not
account for uncertainty about the location of boundaries and
corresponding volumes, leading to inconsistencies between mine
planning and production.

Stochastic simulation techniques address the above type of
challenges in modelling the geology of, or the uncertainty about,
a deposit. Unlike in the petroleum industry, stochastic simulation
of geological units of mineral deposits has been limited in the
mining industry due to the above-mentioned traditional practices,
despite early efforts (David, 1988). The principle behind
stochastic simulation is interpreting the occurrence of a
geological unit at a location as the outcome of a discrete random
variable. This probabilistic approach honours the fact that the
geology at any location cannot be known precisely from drilling
data. All available information including data, data
statistics/geostatistics, and geological interpretations are included
in such an approach to yield the most realistic models. Stochastic
simulation methods have been developed and tested on
geological models of mineral deposits. Methods mainly consist
of sequential indicator simulation or SIS (Goovaerts, 1997) type
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approaches and the truncated pluri-Gaussian simulation approach
or PGS (Le Loc’h and Galli, 1997; Langlais and Doyle, 1993).
Various implementations and applications include the modelling
of mineralised envelopes with a predecessor to SIS approach
(David, 1988), simulating geologic units with nested indicators
(Dimitrakopoulos and Dagbert, 1994), generation of ore textures
with ‘growth’ (Richmond and Dimitrakopoulos, 2000),
simulation of oxidisation fronts with PGS (Betzhold and Roth,
2000), ore lenses in an underground mine (Srivastava, 2005),
uranium roll-fronts (Fontaine and Beucher, 2006) and kimberlite
pipes (Deraisme and Field, 2006). Alternative approaches
include methods based on Markov transition probabilities (Carle
and Fogg, 1996; Li, 2007) and object based methods (eg Seifert
and Jensen, 2000).

The main drawback of the above methods is their inability to
capture non-linear geological complexities, and it becomes
obvious when curvilinear features such as faults, multiple
superimposed geological phases, fluvial channels, or irregular
magmatic bodies are simulated. The reason for this limit is that
conventional methods represent geological complexity in terms
of second order (two-point) statistics. Variograms describe the
variability of point-pairs separated by a given distance and,
although they capture substantial geological information (David,
1988), there is a limit to the information they can convey
(Journel and Alabert, 1988; Journel, 2007, this volume). Figure 1
illustrates the limits of variograms in fully characterising
geological patterns. Figure 1 shows three geological patterns
with different spatial characteristics where the variograms of the
three patterns cannot differentiate between the three geological
patterns.
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FIG 1 - Vastly different patterns show same variogram (modified
from Journel, 2007, this volume).
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In advancing from the above limits, substantial efforts have
been made to develop new techniques that account for the
so-called high-order spatial statistics. These include the most
well established multiple-point (multi-point or MP) approach
(Strebelle, 2002; Zhang et al, 2006), as well as Markov random
field based, high-order statistical approaches (Daly, 2004;
Tjelmeland and Eidsvik, 2004) or computer graphic methods that
reproduce multiple-point patterns (Arpat and Caers, 2007). These
efforts replace the two-point variogram with a training image (or
analogue) so as to account for higher order dependencies in
geological processes. The training image is a geological analogue
of a deposit that describes geometric aspects of rock patterns
assumed to be present in the attributes being modelled and reflects
the prior geological understanding of a deposit considered.

The multiple-point or MP simulation approach examined
herein and adopted for the modelling of the geological units of
an iron ore deposit is based on the MP extension of SIS
(Guardiano and Srivastava, 1993; Strebelle, 2002; Liu and
Journel, 2004), where MP statistics are inferred by scanning a
training image (TI). The TI is regarded as a geological analogue,
forms part of the geological input, and it should contain the
relevant geometric features of the units being simulated. Until
recently, the MP simulation approach has mainly been used for
modelling of fluvial petroleum reservoirs. It is logical to extend
its application to modelling mineral deposits, where the TI can
be derived from geological interpretations of the relatively dense
exploration or grade control drill hole data, and/or face
mappings.

This paper revisits multiple-point simulation as an algorithm
for the simulation of the geology for mineral deposits. In the next
sections, the MP method is first reviewed and outlined.
Subsequently, an application at the Yandi channel iron ore
deposit is detailed. Implementation issues, the characteristics of
the resulting simulated realisations and the resource uncertainty
profile are also discussed. Finally, conclusions from this study
are presented.

SIMULATION WITH MULTIPLE-POINT STATISTICS
REVISITED

Definitions

Multiple-point or MP statistics consider the joint neighbourhood
of any number 7 of points. As indicated above, the variogram can
be seen as a MP statistic consisting of only two points; hence, it
cannot capture very complex patterns. Using MP statistics
sequentially on difference scales, large and complex patterns can
be reproduced with a relatively small neighbourhood size n of
about 20 to 30. MP statistics can be formulated using the
multiple-point data event D with the central value A. The
geometric configuration of D is called the template 7, of size n.
Figure 2 shows an example of a data event on a template with
n=4.

D
|

[ /EI
/

FiG 2 - Naming conventions to define MP statistics.
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The size n of the template and its shape can be adjusted to
capture any data events informing central value A. As MP
statistics characterise spatial relations of closely spaced data,
they may not always be calculated directly from drilling data.
The method used for this study defines MP statistics on a regular
grid, and are inferred from the TI, a regular cell model that
serves as a 3D representation of the geological features
concerned. The geometries contained in the TI should be
consistent with the geological concept and interpretation of the
deposit. In practice, this can always be confirmed by a geologist
familiar with the deposit.

A conditional simulation algorithm

Consider an attribute S taking K possible discrete states {s;, k=1,
..., K}, which may code lithological types, metallurgical ore
types, grindability units, and so on. Let d, be a multiple-point
data event of n points centred at location X. d, is associated with
the data geometry (the data template t,) defined by the set of n
vectors {h,, a=1,...,n} and consists of the n data values
s(x+h,) =s(x,), a=1, ..., n. While traditional variogram-based
simulation methods estimate the corresponding conditional
distribution function (ccdf) by somehow solving a kriging system
consisting on the two-point covariances, the MP ccdf is
conditioned to single joint MP data events d,, :

fixis | d,) = E(I(x:s) | d,}=Pr{S(x) = 5, 1d,}, k=1,... K (1)

Let A, denote the binary random variable indicating the
occurrence of category s, at location x:

3 Lif S(x)=s,
ko 0, otherwise

(@5

Similarly, let D be a binary random variable indicating the
occurrence of data event d,. Then, the conditional probability of
node x belonging to state s, is given by the simple indicator
kriging (SIK) expression:

fixis, 1d,) =Pr{A=11D=1} = E {A,} + A[1-E{D}] A3)

where, E{D} = Pr{D=1} is the probability of the conditioning data
event d, occurring, and E {A;}=Pr{S(x)=s,} is the prior
probability for the state at x to be s;. Solving the simple kriging
system for the single weight A leads to the solution of Equation (3):

E{AD}-E{AJE(D} _Pr{A, =1,D=1}
E{D} ~ Pr{D=1)

fxisi 1 d,) = E{A}+ “4)

Therefore, given a single global conditioning data event, this
solution is identical to Bayes’ definition of the conditional
probability. However, one might consider decomposing the
global event D, into more simple components whose frequencies
are easier to infer. From its definition, it is obvious that D; can be
any one of the 2’ joint outcomes of the J binary data events
A,=Ax+h),a=1,...,J with A, €{0,1}. Equivalent to the
common SIK estimate, the conditional probability of the event
Ay =1 can be written in a more general form as a function of the
J conditioning data (Guardiano and Srivastava, 1993):

Pr{A, =114, =s;a=1.. Jie(l.. K}

J J J
= E(A)+ S AVA, ~EIAN+ Y S A81A, A, — E(A)]

al=1 al=1 a2>al

S
+Z Z Zz’ﬁzsl)ala}[AalAaZAaB_E{AO}]+"'+A(J)

al=1 a2>al a3>a2

el

(&)
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The 2/ -1 weights A} call for an extended system of normal
equations similar to a simple kriging system that takes into
account the multiple-point covariances between all the possible
subsets D} HAﬂ,J'g{l,...,J} of the global event D, These

pel’

multiple-point covariances are inferred by scanning the training
image for each specific configuration. For the case when all J
values a, are equal to 1, Equation (4) is identical to Bayes’
relation for conditional probability. The decomposition of the
global event D, illustrates that the traditionally used two-point
statistics lose their exclusive status in an extended simple kriging
system.

The numerator and denominator of Equation (4) are inferred
by scanning a training image and counting both the number of
replicates of the conditioning data event c¢(d,), and the number of
replicates ci(d,), among the ¢ previous ones, with the central
value S(x) =s,. In the Single Normal Equation Simulation or
SNESIM algorithm (Strebelle, 2002), these frequencies are
stored in a search tree enabling fast retrieval. The required
conditional probability is then approximated by:

c(d)

6
c(d,) ©)

fixis,1d,) = Pr{A=11D=1}=

To simulate an unknown location X, the available conditioning
data forming the data event d, is retained. The proportions for
building the ccdf (Equation 6) are retrieved from the search tree
by searching the retained data event and reading the related
frequencies.

The SESIM algorithm and the options provided in the
implementation have been covered elsewhere (Strebelle, 2002;
Remy, 2004; Liu, 2006) and will not be repeated here in detail.
An overview of the general steps of the simulation is given
below:

1. Scan the training image and store occurrences of all data
events D. This may be seen as building a database of jigsaw
puzzle pieces of different shapes (D) and their central
values (A) from the TL

2. Define a random path and visit nodes one by one.
Simulate each node by:

e retrieving all data events (jigsaw puzzle pieces) fitting
the surrounding data and previously simulated nodes,

e derive the local probability distribution from stored
frequencies of central values; the probability of finding
a certain lithology at the node given the surrounding
data event D is given by Bayes relation for conditional
probability, and

e pick randomly from the distribution and add simulated
node to the grid.

4.  Start again at Step 1 for the next realisation, as may be
needed.

CASE STUDY

Geology of the Yandi channel iron ore deposit

A number of operations in the Pilbara region of Western
Australia produce iron ore from clastic channel iron ore deposits
(CID) formed in the Tertiary. These deposits contribute a
significant portion of the overall production from the region.
Their formation in a fluvial environment with variable sources
and deposition of the material as well as post-depositional
alteration resulted in very large high quality but complex iron
orebodies. The CID consists of an incised fluvial channel filled
with detrital pisolite ore that is affected by variable clay content.
Ore qualities depend on lithological domains that are modelled
using sectional interpretations and grade cut-offs. Defining and
modelling boundaries to low-grade overburden and to internal
high-aluminous areas cause problems in the current resource
estimation, assessment and modelling practices.

Figure 3 shows a schematic cross-section through the CID
showing the various lithologies. The erosional surface of the
incised channel is covered by the BCC. From bottom to top, LGC,
GVL, GVU, WCH and ECC sequentially fill the channel. ALL
covers the whole channel sequence including the surrounding WW
bedrock. The GVU and the GVL are the only units that currently
fall within economic mining parameters. The WCH is a high SiO,
waste unit with a gradational uncertain boundary to the GVU
below. These two ore bearing lithologies and the transitional WCH
are encapsulated by high Al,O; waste (WAS), which consists of
various clay-rich low-grade strata in both the hanging wall and the
footwall (ALL, ECC, LGC, BCC and WW).

The study area is located at Junction Central deposit of the
Yandi CID (Figure 4) and consists of the so-called Hairpin model
area. The existing Hairpin resource orebody model is rotated by
45°. To accommodate for this rotation, this case study was
performed in a local grid with north oriented to 285°. All results
are presented in this rotated grid.

The study area has been drilled out in various campaigns to
nominal spacing of 100 m by 50 m. This data and the knowledge
of absence of CID outside the drilled area are used to interpret
the deposit. To introduce the knowledge about undrilled areas
into the simulations, the areas around the drilled CID was
‘infilled” using 50 m by 50 m spaced data points with WAS code
assigned (Figure 5).

Deriving a training image

The training image (TI) has to contain the relevant geological
patterns of the simulation domain. In the context of the Yandi
CID, this means that the TI has to characterise the shape of the
channel and of the internal boundaries within the study area. The
geological model of the mined out initial mining area (IMA) is
the best available source for this information:

1. the model is based on relatively dense exploration drilling
on a 50 m x 50 m grid, and

2. it consists of a straight section of the CID thus having a
constant channel axis azimuth.

FIG 3 - Schematic cross-section through CID showing the various lithologies. Lithologies: ALL — alluvium, ECC — eastern clay conglomerate,
WCH — weathered channel, GVU — goethite-vitreous upper, GVL — goethite-vitreous lower, LGC — limonite-goethite channel, BCC — basal
clay conglomerate, WW — Weeli Wolli formation.
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FiG 5 - Drill hole data set (left) and infilled grid data (right).

The TI was generated as a regular geological block model of the
IMA prospect into 10 m x 10 m x 1.25 m blocks. This resulted in
80 x 80 x 125 or 800000 blocks in total. Four slices of the
training image are depicted in Figure 6 and show the main
direction of the channel (EW) and the slight undulation of the
channel axis. The boundaries between the various units are smooth,
reflecting the wireframe model upon which the TI was based.

As such, ensuring that the training image is consistent with the
available data within the simulation domain is a measure needed
to assess the validity and limits of the TI. Here, the variograms
and cross-variograms of the geological categories are used for
this validation. Two data sets will be compared with the TI:

1. the data at IMA that was used for constructing the
geological model; this shows the differences of two-point
statistics occurring between exhaustive 3D data and sparse
drill hole data, and
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FIG 6 - Bench sections (channel bottom to the top) of the
lithological interpretation at Yandi IMA used as training image.

2. the data available in the simulation domain (HPIN) then
serves the validation of the TI for use within that domain.
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FIG 7 - Variograms of the four categories parallel to the channel axis for the Tl, the data (at HPIN) and the data at the IMA, ie the area of the
TI. The x-axis shows the lag in metres, the gamma values are given on the ordinate.

Note that this procedure checks the change of the two-point
statistics between the data in the TI-domain (IMA) and the
simulation domain (HPIN). The statistics of the TI help to
evaluate this change: If the differences between the TI-statistics
and the HPIN-statistics are grossly larger than those between the
TI and the IMA statistics, one will have to consider the reasons
for and consequences of these differences.

Overall, the variograms of the four categories perform well in
this validation (Figure 7). For unit WAS (please refer to the
geological unit abbreviations in the previous section), the HPIN
variogram coincides more closely with the TI than the IMA. The
WCH variogram of the HPIN data shows larger values at lags up
to 350 m than both IMA data variograms and TI. However, these
differences are relatively small. The GVU variograms follow a
very similar structure; only at short lags do the HPIN variograms
have slightly larger values. For the GVL, both data variograms
have almost the same values but they are smaller than the TI
variogram, suggesting stronger continuity.

Simulation results

To assess the geological uncertainty 20 realisations were
generated. Each realisation of the 3.6 m nodes took 7.5 minutes
on a 2.4 GHz personal computer, making the process very
practical in terms of computational requirements.

Figures 8 and 9 show bench 490RL and a cross-section of the
channel, respectively; each figure includes two realisations along
with the interpreted deterministic model (wireframe). The bench
view shows that the overall shape of the channel has been well
reproduced. The incised shape of the channel was generated on a
large scale and the stratigraphic sequence has been reproduced.
The continuation of the tributary in the north-east was not
generated due to very widely spaced drilling in the area. The
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FIG 8 - Two simulations and wireframe interpretation (top);
probability maps (bottom) for bench 490mRL — units WAS, WCH,
GVU and GVL.
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FIG 9 - Two simulations and interpretation and indicator probability for an E-W cross-section (see Figure 8 for colour coding).

proportion of GVL in this bench is higher in the simulations than
in the interpreted model however, globally, proportions were
reproduced. Boundaries in the simulations are less smoothed for
both the GVL-GVU and the GVL-WAS contacts. In some areas,
channel material was generated in small pods outside the
continuous channel. The cross-section view supports these
observations. However, on the channel margins, holes and
saw-tooth shaped contacts are inconsistent with the depositional
environment of the deposit.

Bench 490RL (Figure 8) cross-cuts the boundary of GVL and
GVU. The boundary is undulating and shows an increased
irregularity in comparison with the wireframe model.
Furthermore, the overall proportion of GVU in bench 490RL is
larger in the realisations than in the HIY model. On average
probability for unit GVU (P(GVU)), the locations of the
lowermost parts of the GVU are related to the wireframe model.
However, there are areas in the northern part of the channel
where the realisations contain GVU, while the wireframe model
consists mainly of GVL. At the southern end of the channel, the
GVU patches in the realisations have an increased extension
compared to the wireframe model. The outline of the GVU to the
surrounding WAS in the realisations is very fuzzy, overall,
compared with the wireframe model. This higher disorder occurs
on two scales:

1. On a very fine scale of a few blocks, the outline is strongly
undulating.

2. On a larger scale of about 15 - 25 blocks, the undulations
are less extreme. However, they are still present and not
consistent with the TI.

In the cross-section in Figure 9, the shapes of the channel
margins are not well reproduced. Instead of an expected rather
smooth outline as in the wireframe model, the appearance is
sharply stepped (left margin of Siml and Sim2). The top part of
the channel is very fringy. All the sections depicted in Figure 9
show saw-tooth shaped features at the channel margins,
indicating slight problems of the algorithm to reproduce the
patterns of the channel margins.

Reproduction of two point statistics

The validation takes the major direction of continuity, EW or
along the channel axis, into account: Figure 10 shows the
experimental variograms of the data (black diamonds), of the TI
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(dark grey line), and of the 20 simulations (bright grey lines).
The consistency of the data and the TI was described earlier. Two
interesting aspects are compared here: (a) simulations versus TI;
and (b) simulations versus data.

The WAS variograms are well reproduced in the main
direction (EW), but the experimental data variograms suggest
less continuity of lags up to 350 m, although this difference is not
excessive. For WCH, the variogram reproduction is mediocre
and suggests more continuity of the simulations compared to the
data. The simulations deviate for lags larger than 50 m and reach
the sill of the TI-variogram only at a lag of about 450 m. GVU
and GVL variograms are well reproduced and correspond to the
experimental data variograms. Cross-variogram reproduction for
WAS/GVL and GVU/GVL is good regarding the TI, however
there is inconsistency with the data.

Volumetric differences with deterministic
wireframes and uncertainty in grade tonnage
curves

The intersection of stochastic realisations and estimated grades
allows an assessment of uncertainty due to uncertain geological
boundaries. For example, Al,O; is chosen here to show the
differences between simulated geology and conventional
wireframing, because Al,O; is not a well understood variable in
the resource model of the deposit. Grade-tonnage curves below
Al,O5 cut-offs are generated to reflect ore cut-offs. Blocks were
selected only within the limits of the ultimate pit as optimised for
the deposit at Harpin and below the WCH/GVU boundary that
serves as the hanging wall ore limit. The grades used in the
comparisons are estimated conventionally (ordinary kriging) and
within each of the 20 simulated lithology models.

A two per cent Al,O; cut-off was applied to the Yandi Hairpin
block grades to generate a product of about 1.35 per cent Al,Os;.
Figure 11 shows the grade — tonnage curve of Al,O; for the
resource within the ultimate pit limits and the uncertainty profile
for Al,O5 grade and resource tonnage. The two figures compare
results based on the simulated lithology models (solid lines) and
the deterministic (wireframe) lithology model (dashed line). The
grade uncertainty appears relatively small. However, the resource
tonnage indicated by simulations is on average 12 Mt (nine per
cent), smaller than the tonnage indicated by the best-guess
wireframe model. The simulations allow for estimating a tonnage
confidence interval. With 70 per cent confidence, the final pit at
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FIG 10 - Variogram and cross-variogram reproduction of simulations versus Tl and data for various units.

the Hairpin deposit contains 95 -97 Mt of ore within Al,O4
specifications. This shows that the contribution of the geological
uncertainty to the overall grade uncertainty is considerable.

CONCLUSIONS

Multiple-point simulation provides a practical and powerful
option to assess uncertainty in the geologic units of mineral
deposits. The application of the MP method at Yandi utilises
geometric information from a mined-out area. The generated
realisations are easily comparable to the existing geological
model and reproduce general channel shapes and the rotation of
the channel axis. Geometries borrowed from the mined-out area
are, in general, well reproduced. The position of boundaries in
between drill holes changes from realisation to realisation, thus
reflecting the uncertainty about the boundaries’ exact shape. On
the margins of the channel, the generated patterns are not always
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geologically meaningful. The MP method can incorporate
information from dense drill hole data as available in typical
mining applications.

The visual validation showed inconsistencies of the algorithm,
reproducing patterns at the margins of the channel. In bench
views, the outline of the GVL, the GVU, and the WCH undulates
on a scale of 15 - 25 blocks. Additionally, the simulations show a
strong, short-scale fuzziness for the GVU and the WCH. This
visual impression is underpinned by the larger perimeter-to-
volume ratio of the realisations compared to the TI. In the
cross-sections, the major critical observation is that the erosional
contact to the Weeli-Wolli formation is not consistent with
observations in the pit nor with geological knowledge originating
from modern geomorphologic analogues. Two sources for these
issues with pattern reproduction have to be considered, ie the TI
and the algorithm.
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It was shown that the TI and the data in the simulation domain
are not fully consistent with respect to two-point statistics. The
extent to which this influences the quality of reproduced patterns
is difficult to assess. Using a set of different training images can
provide further insight.

Resource grade and tonnage uncertainty due to uncertain
lithological boundaries was assessed by combining probabilistic
realisations of the geology with a standard grade estimation
technique. At an alumina cut-off of two per cent, the ore tonnage
based on the simulated geology ranges from 94.5 to 97.5 Mt
(wireframe model: 107 Mt) with bulk alumina grades below the
cut-off ranging insignificantly between 1.357 per cent and 1.37 per
cent (interpreted model: 1.37 per cent). Using grade simulation
instead of grade estimation techniques would add realistic grade
variability to this model and allow the assessment of total grade
tonnage uncertainty.

Potential areas of application are in areas of little geological
understanding or definition of boundaries by drilling. At Yandi,
internal clayey high-aluminous waste that cannot be defined with
the 50 - 100 m spaced resource evaluation drilling and simulation
could create value by better defining grade tonnage curve with
regard to contaminants. Training images could be constructed
from geological interpretation and data gained in previously
mined areas of the deposit.
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New Efficient Methods for Conditional Simulation of Large

Orebodies

J Benndorf' and R Dimitrakopoulos2

ABSTRACT

The application of conditional simulation techniques for modelling
orebodies requires efficient algorithms, particularly due to the large
number of grid nodes required, often in the order of tens of millions. In
this paper, two new efficient conditional simulation methods are
reviewed: the generalised sequential Gaussian simulation (GSGS) and the
direct block simulation (DBSIM). Both methods gain computational
efficiency by simulating groups of nodes simultaneously, using a local
neighbourhood as the conditioning data set. The relationship between the
group and local neighbourhood sizes used is found to be important to
both the accuracy of results and processing efficiency, and it is assessed
numerically through a measure of the loss of accuracy.

Practical aspects of the GSGS are demonstrated and assessed in a case
study at a porphyry copper deposit. Computational efficiency is
demonstrated in the case study involving orebody models with up to
14 000 000 grid nodes, where the method is up to 20 times faster than the
well-established sequential Gaussian simulation. At the same time, GSGS
maintains a high level of accuracy. The practical aspects of DBSIM are
demonstrated in simulating the same copper deposit in a comparable way
to GSGS. In the case study, the computational efficiency of DBSIM is
marginally better than GSGS; however, there are two major improvements.
First, the application of DBSIM results in a substantial reduction of storage
requirements and leads to improved data management. Second, the
validation of the reproduction of variogram models is performed at the
block support scale, which leads to a substantially more efficient variogram
validation process than at the point support scale. Both methods, GSGS
and DBSIM, provide efficient and reliable tools for practitioners to assess
geological uncertainty in large mining applications.

INTRODUCTION

Conditional simulation techniques are being applied more often in
the mining industry, realising the value of information these
techniques can generate along the chain of mining
(Dimitrakopoulos, in press). However, applications in mining
present their own challenges, including the size of simulations,
computational efficiency and data management in a range of
applications from resource/reserve classification to mine design,
production scheduling and production reconciliations, and
financial analysis. Large orebody models, frequently discretised
by up to 10® grid nodes, need to be generated (Omre, Sglna and
Tjelmeland, 1993; Godoy, 2003). Using conventional conditional
simulation techniques, such as sequential Gaussian simulation
(Isaaks, 1990), the simulation process can be substantially time
demanding. In addition, data management becomes an issue when
large size simulated realisations are needed. The application of
conditional simulation would be enhanced if practical and
computationally efficient methods were available, as already noted
in the technical literature (Ravenscroft, 1994; Godoy, 2003).

There are several conditional simulation methods available
(Goovaerts, 1997; Chiles and Delfiner, 1999). A frequently used
method is the sequential simulation (Scheuer and Stoller, 1962;
Journel, 1994), which is based on the decomposition of the
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multivariate probability density function of a stationary random
function, Z(x), x € RY, into a product of univariate conditional
probability density functions (Rosenblatt, 1952). When Z(x) is
Gaussian, the method is termed sequential Gaussian simulation
or SGS (Isaaks, 1990), which is a frequently used method due to
its relative computational efficiency. Dimitrakopoulos and Luo
(2004) suggest the generalisation of this method, termed
generalised sequential Gaussian simulation or GSGS, to enhance
computational efficiency. The generalisation is founded upon the
observation that adjacent nodes share a common neighbourhood
(Figure 1), and therefore the GSGS simulates groups of clustered
nodes simultaneously instead of node-by-node. The use of
groups of nodes amounts to the decomposition of the
multivariate probability density function of Z(x) into groups of
products of univariate conditional probability density functions.
This group decomposition is general and includes as ‘end
member’ cases the SGS, where each group has one node only,
and the LU simulation method (Davis, 1987), where all nodes to
be simulated are in one group. A major extension of the GSGS is
the direct block simulation, or DBSIM, presented by Godoy
(2003). DBSIM generates realisations directly on a block support
to substantially reduce storage requirements. The method is
based on averaging internal nodes of one group during the
simulation process. The latter process represents a joint
point-block LU-type approach. Both GSGS and DBSIM can be
extended to the efficient joint simulation of multi-element
orebodies using minimum/maximum autocorrelation factors
(Desbarats and Dimitrakopoulos, 2000; Dimitrakopoulos and
Fonseca, 2003). Further discussion of multivariable joint
simulation is presented in this volume by Boucher and
Dimitrakopoulos (2007, this volume).

This paper first reviews the theoretical background of GSGS
and DBSIM. Then, using GSGS as an example, practical aspects
of efficient conditional simulation methods are linked to
accuracy in terms of the neighbourhood sizes used and how they
are assessed. Subsequently, computational efficiency is
demonstrated in an application of the method to a porphyry
copper deposit. The application of DBSIM at the same deposit
and a comparison with GSGS conclude the paper.

°
0§o}

@ — data location

@ — node to be simulated

FIG 1 - Shared neighbourhood of group-nodes (Dimitrakopoulos
and Luo, 2004).
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EFFICIENT GENERATION OF CONDITIONAL
SIMULATION

Following the geostatistical terminology, a geological attribute
under consideration is conceptualised as a random function Z(x;).
Consider the stationary random function Z(x;), x; € RY, indexed
on a discrete grid Dy of N grid nodes at location x;, i=1,...,N, and
a set of conditioning data d ={d(x,), 0=1, ... n} representing
exploration data. In addition, consider the set including
conditioning data and previously simulated nodes A; for each
location x; such that, Ay = {d,} and A; = {A;, U Z(x;)}, for
example A; = {d,, Z(x,)}. Following this notation, the
conditional simulation on Dy is based on sampling from the
N-variate distribution conditioned on the data set A:

F(X, .0 X320 2y LAO) =P(Ux,)<z,,..Uxy)<zy LAO) (1)
The sequential conditional simulation is based on the
decomposition of the multivariate probability density function
into a product of univariate conditional distribution functions
(Rosenblatt, 1952; Scheuer and Stoller, 1962; Journel, 1994).

FXppoo X320 20 g) =

)
Fx320A) - F(X332,]A ) e

(XN’ZN‘AN )

The decomposition, described in Equation 2, is general and
well established in the general field of simulation (Law and
Kelton, 1999).

Generalised sequential Gaussian simulation

As mentioned in the introduction, grids Dy that are to be simulated
have, in practice, overlapping neighbourhoods between adjacent
grid nodes. It is therefore reasonable to consider the use of groups
of nodes simultaneously instead of node-by-node as in the
common simulation process. This sequential Gaussian conditional
simulation of groups of nodes is described in Dimitrakopoulos and
Luo (2004) and briefly outlined here.

The simulation starts with the partitioning of the simulation
grid Dy into k groups of n;, j=1,...k clustered nodes and
define N; as number of nodes in the first j groups

J
N, =Yv:j=L...ks N=N;; j=l....k; N=N,. Then, the
i=1

decomposition of the conditional density in Equation 2 into
conditional densities for k groups becomes:

f(xl’ N’Z],
Hf(xi;zip\i—l)

ZN‘ Ao) =

H f(xsz)| AL

k 1+

3

In the implementation of Equation 3 the exhaustive
neighbourhood A, is replaced by a local neighbourhood A
resulting in Equation 4:

The nodes of group j are generated using Cholesky
decomposition (Davis, 1987) of the conditional covariance
matrix of one group into an upper U and lower triangular L
matrix, and are computed by the following operation:

Z(x"| A_)=m, +C, G L (Z -m, )+Lw, 5)

where:

mjand myj.;1  are the vectors of prior means of group Z(xiNj)
and the set of data in Aj.1

C'lxj. 1Aj-1 denotes the inverse of the prior covariance
matrix of conditioning data

7)1 denotes the vector of the conditioning data set
A1

Cinj-1 is the prior covariance between Z(x;\) Aj-1

Wi is a vector of identically and independently

distributed N(0,1) random numbers

It is obvious that, if the number of nodes in one group Vv is
equal to one, the algorithm is identical to SGS. And if the
number of nodes in one group is equal to the whole grid size, the
algorithm is identical to LU-decomposition. The implementation
of the algorithm includes the following major steps:

1. define a path visiting each group j of the grid and a path
visiting each node in a group,

2. define the local neighbourhood of the current group,

calculate the conditional mean vector and conditional
covariance matrix,

4.  generate the simulated values of one group using Equation
5,

5. add the simulated data values of the current group to the
conditioning data set, and

6.  loop through Steps 2 to 5 until all groups are simulated.

Direct block simulation

A natural extension of the GSGS algorithm is the direct block
simulation detailed in Godoy (2003) and briefly reviewed here.
When simulating large grids, values simulated need to be
retained as conditioning information. This generates increased
memory requirements, issues of data management and, in
general, leads in practice to performance decline. A new
simulation algorithm is developed to simulate directly at the
block support scale based on GSGS, whereby the group of nodes
discretises a block.

Consider a normal score transformation of the random
function Y(x;) to Z(x;). The regularised random function over a
block support Z,(x;) with x;e RY, can be expressed as a linear
average of Z( ) over the volume V, centred at the block centre x;,
and approx1mated by averagmg the v internal nodes from a

group: Z (X;) = V j Z(u)du = —ZZ(X ). Since the objective is

Xev i=1

S(X s X3 Z s ZN‘ A(,) = to simulate block values y,(x;) in data space and not Gaussian
N, (4) space z,(x)), after simulation a back-transformation from the
H fxz ) H f(x:z ‘ Ao Gaussian space into the data space needs to be performed.
1 - N However, since the normal score transformation was done using
point values, there is no back transformation for blocks of type
yo(X))= ! (z, (x;)) available, unless restricting distribution
where:
assumptions are made. A solutlon to this problem is given by the
Ai-1 denotes the local conditioning data set, including _ .
; . approximation y (X;) = A._)) which is an
sample data and previously simulated nodes ~ !
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averaging of all back-transformed internal nodes y(x;l A; ) for
i=1, ..., v of one group. To derive these values, the group
Z(xN)=(Z(x;),i=1,...,v) is first simulated, which corresponds to
simulating the v internal nodes discretising the block. After
simulation of the internal nodes of a group and
back-transforming these, the simulated block value is calculated
as the average of the point values in Gaussian space and in data
space, and subsequently point values are discarded. The
simulated Gaussian block value is then added to the conditioning
data set, and the block value in data space is added to the results.

Conditioning data come in two types: point values A; and
block values included in the new subset AY;. With this definition,
and considering the screen effect approximation, the GSGS
formulation in Equation 4 can be rewritten in terms of point and
block conditioning:

FX o X322y Ag) =

l_I[f(X;;Zi 7\1,1 ) l_zlf(xi;zi
i=1

i=N, +1
Nl\
[1rx:z

i=N,_, +1

A UL ). 6)

A VA

To integrate the block support conditioning data, the algorithm
is developed in terms of a joint-simulation. The second variable
relates to the block value sequentially derived throughout the
simulation process. The parameters of the successive conditional
Gaussian distributions are obtained by solving a joint simulation
system (Myers, 1989), identical to joint LU-simulation. The
simulation of the internal nodes of each block is similar to
GSGS. The only difference is the inclusion of conditioning data
of different support scale, namely point values and block values.
The implementation of the direct block simulation algorithm
proceeds as follows:

1. define a random path visiting each of the blocks to be
simulated;

2. normalise data;

for each block, generate the simulated values in Gaussian
space of the internal nodes discretising the block;

4.  derive the simulated block value by averaging values of
simulated nodes in one group in Gaussian space and
calculate the block value in data space;

5. discard values of internal nodes and add the simulated
block value in Gaussian space to the conditioning data set;
keep the block value in data space as the result; and

6.  loop through Steps 3 to 5 until all blocks are simulated.

A major practical advantage of the algorithm above is the
decrease in memory allocation due to the discarding of the
internal points. Furthermore, the method takes advantage of the
GSGS formalism and is thus a fast algorithm. Note that the
method does not call for a block transformation function, which
is often based on a global change-of-support model. Note also
that the variogram validation at a block support scale is
substantially more efficient than at point support.

PRACTICAL ASPECTS OF GSGS

Computational costs of GSGS, implemented according to
Equation 5, may be assessed in terms of the number of floating
point operations (flops) required. Dimitrakopoulos and Luo
(2004) show computational costs of GSGS to be:

O(E(vm; + v3)) @)
A%
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where:

O denotes the number of flops (‘in the order of”)

N is the number of grid nodes

v is number of nodes in one group

Vmax is the maximum size of the local neighbourhood,

including sample data and previously simulated nodes

The grid size has a linear influence on the runtime behaviour
of the algorithm. Critical parameters in terms of efficiency are
group size and local neighbourhood size, as they influence the
runtime behaviour to the power of three. Considering a grid of
N =1 000 000 nodes, the number of flops required as a function
of the group size v and local neighbourhood size v, is shown
in Figure 2. For a fixed local neighbourhood size v,,,,, minimum
computational costs occur when v = 0.8 v, ... Considering a fixed
group size Vv, increasing the size of the neighbourhood drastically
increases the runtime (number of flops). On the other hand, a
smaller neighbourhood size causes a larger difference between
the simulated value conditioned to the local neighbourhood and
the ‘ideal’ value conditioned to all available information. This
difference is the loss of accuracy due to the use of a finite
neighbourhood (screen effect approximation) and can be
quantified using the measure ‘relative screen effect
approximation loss’ (Dimitrakopoulos and Luo, 2004), which is
discussed in the next section.

N =1 000 000

50.00 A
45.00 ® I
40.00 o i
35.00]
30.007 i
25.001 i
= 20.007 I

ghbourhood

ocal nei

10.007
5.007 I

R 15.001 3
o 1 3
2

500 1500 2500 3500 4500
Group size

FIG 2 - Theoretical runtime behaviour of the GSGS algorithm as a
function of the local neighbourhood size and the group size, for a
grid size N of 1 000 000 nodes.

Successful application of GSGS requires an understanding of
the interaction between group size v and local neighbourhood
size V. and their effect on accuracy and computational
efficiency. As a convention in the following paragraphs, GSGS
with group size v will be denoted as group configuration GSGS
i X j x k, where i denotes the number of nodes in X direction, and
jand k in Y and Z directions respectively.

Group size, neighbourhood size and accuracy:
theory and practice

To assess the effects of group size and neighbourhood size, the
relative screen effect approximation loss (RSEAL) may be
defined by the half of the expected value of the squared
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difference between simulated values Z(x;) conditioned on a local
neighbourhood A, and conditioned on all values A
standardised by the mean. That is:

i-10

[E{Z(x |\ ) —Z(x|A DY]
pR(Z(Xixi—lAi—l) = : I )
2E{Z(x A, )
The RSEAL depends on the local neighbourhood size v,,,, and

on the group size v. To understand the interaction between those
two parameters and the accuracy of the result, a relatively simple
study can be carried out, as described here. This experimental
determination of the RSEAL is based on Equation 8 and includes
the following two steps:

1. for the given dataset a base-case simulation is generated
using an exhaustive neighbourhood A, resulting in a grid
containing values Z(x;lA;_;); and

2. simulations are subsequently generated, using an
incrementally decreased local neighbourhood of size A,
and the same random seed, resulting in a grid containing
the values Z(x;/A; ).

A node-by-node comparison of the generated simulation with
the base case, in combination with the application of Equation 8,
gives the RSEAL.

For illustration purposes, a test data set containing 100 data is
used. The study field represents the southwest area of the
Walker-Lake data set (Isaaks and Srivastava, 1989). Simulations
are performed on a 2D grid of 7600 nodes, using the inferred
covariance structure of the data. Group configurations under
investigation are 2 x 2, 4 x 4, 8 x 8 and 16 x 16. Figure 3
summarises the results.

RSEA-LOSS - GSGS

20%
18%
16%
14%
12%
10% 4
8% 1
6%
4% *"—"—';-_--_:-__--_-;Z:_:_-—-—
2%

0%

Sph. Model
grid ratio = 0.05

RSEAL

50 4
100
150
200 -
250 -
300

Size of local neighbourhood

FIG 3 - Relative screen effect approximation loss (RSEAL)
considering different GSGS group configurations.

Results show a higher loss of accuracy for larger group sizes
than for smaller groups, when considering a fixed local
neighbourhood size. A larger local neighbourhood size has to be
chosen for larger groups to maintain a certain level of accuracy.
By drawing a horizontal line at an acceptable loss of accuracy,
eg five per cent, the appropriate local neighbourhood size can be
obtained, as shown in Figure 3. Generally, when only a small
local neighbourhood is used, internal nodes for large groups no
longer share a common neighbourhood. As well, adjacent groups
only have a few neighbourhood data in common, which can
cause non-continuous transitions between adjacent groups,
experienced as artefacts.

An approach as described above provides a general and
relatively simple way to obtain an understanding of the effects of
neighbourhood sizes on accuracy.

64 Spectrum Series Volume 14

Group size, neighbourhood size and
computational efficiency: theory and practice

To understand the relationship between group  size,
neighbourhood size and computational efficiency, the theoretical
runtime behaviour of the GSGS algorithm will be analysed in
more detail, and practical aspects will be stressed.

Recall that Figure 2 plots contour lines of the computational
costs of GSGS as a function of group size and local
neighbourhood size, as in Equation 7. The plot is characterised
by very dense contour lines at a group size of one. Thus,
considering a fixed local neighbourhood size, an increasing
group size substantially decreases computational costs up to a
certain point. Following the contour lines, it can be seen that,
even if the neighbourhood size has to be increased by a few data
when increasing the group size, there is still a reduction of
computational costs. The theoretical runtime analysis of an
algorithm considers the most expensive computations to be
simulated, in the case of GSGS the solution of Equation 5, which
has a linear relationship with the grid size N. The theoretical
analysis does not consider that there are more operations in the
algorithm that are linear with problem size, including handling of
the irregular shape of the orebody or the neighbourhood search.
Larger group sizes will drastically reduce search time, since it is
done simultaneously for all nodes in a group. Then, the algorithm
may in practice perform much faster (and does as demonstrated
next) than Equation 7 indicates, while still maintaining a high
level of accuracy.

An application of GSGS to a porphyry copper deposit aims to
demonstrate the practical aspects of the technique. Key questions
under investigation, in addition to reproduction of data, statistics
and variogram, are the computational costs and performance
using different group sizes. The deposit accounts for 185 drill
holes in total and 1407 composites of five metres length are
taken from these drill holes. After inferring declustered sample
statistics and variography, simulated orebody models are
generated. To study the effect of different group sizes as a
function of grid size, the deposit is discretised by different
density grids, as specified in Table 1. The six resulting orebody
model sizes range from 72 900 to 14 201 000 nodes.

TABLE 1
Orebody model definitions.

Orebody Model size | X-spacing | Y- spacing | Z- spacing
model name

Model 1 72 900 10 m 10 m Sm
Model 2 291 600 Sm S5m 5m
Model 3 1 821 500 2m 2m 5m
Model 4 3590 300 2m 1m Sm
Model 5 7 100 600 I m 1m Sm
Model 6 14 201 000 I m 0.5m 5m

Figure 4 shows exemplarily a plan view of orebody realisations
for different group sizes applied to orebody model three
(discretisation: 2mx2mx5m). A visual inspection suggests
that the algorithm performs well for all group sizes, and no
artefacts can be detected in the realisations. Figure 5 shows the
excellent reproduction of histogram and variogram models in
normal space using GSGS 2 x 2 x 2. All other group configurations
performed equally well on all considered orebody models.

To compare the runtime of GSGS for different group sizes, one
realisation was generated for all orebody models, as specified
in Table 1, using GSGS with group configurations 1 x 1 x 1,
2x2x1, 2x2x2, 3x3x2 and 4x4x2. Suitable
neighbourhoods were used for different GSGS group sizes, based
on the accuracy of results derived in the previous section. Table 2

Orebody Modelling and Strategic Mine Planning
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FIG 4 - Plan view of realisations of GSGS using different group
sizes applied to model three.

TABLE 2

Neighbourhood sizes used for different GSGS group
configurations.

GSGS GSGS GSGS GSGS GSGS
IX1x1|2x2x1|2x2%x2|[3x3x2|4x4x%x2

Number of data 20 30 45 60 90
and previously
simulated nodes

TABLE 3

Runtime of GSGS using different group sizes relative to SGS
applied to different large orebody models.

Group size 1><1><1‘2><2><1‘2><2><2‘3><3><2‘4><4><2

Model Runtime of GSGS relative to SGS

Orebody model 1 | 100% 53.5% | 64.8% | T71.8% | 142.3%

Orebody model 2 | 100% 33.1% | 392% | 421% | 73.9%

Orebody model 3 | 100% 12.8% | 10.8% 9.6% 20.1%

Orebody model 4 | 100% 19.8% | 12.1% 8.3% 14.7%

Orebody model 5 | 100% 13.8% 4.8% 4.5% 6.0%

Orebody model 6 | 100% 23.2% 9.8% 4.3% 4.6%
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FIG 5 - Reproduction of data histogram, variogram model and
reproduction of experimental variogram in normal space for the
directions of anisotropy.

summarises the neighbourhoods used. Figure 6 and Table 3
shows the computing times for each considered orebody model
size. To make the comparison general, in Figure 6 runtimes are
standardised to GSGS 1 x 1 x 1 applied to model six. Figure 6
concludes that when simulating small orebody models, say less
than one million nodes, there is limited benefit of using GSGS
considering any of the group sizes. In this case, the runtime of
the algorithm can be reduced, by up to about 30 per cent
compared with SGS, using small groups. When simulating large
orebody models containing several millions of nodes, the runtime
can be reduced substantially, up to 20 times in the case of GSGS
3 x 3 x 2. Results demonstrate that GSGS can substantially
reduce the computational costs, especially when simulating
relatively large orebody models. Experiments with GSGS show
that small groups, such as 2 x 2 x 2 to 3 x 3 x 2 nodes, perform
best and balance accuracy with efficiency.

ASPECTS OF DBSIM AND COMPARISON

To demonstrate practical aspects of the direct block simulation
algorithm, the data from the porphyry copper deposit described
in the previous section is used to generate ten realisations of the
orebody. Block dimensions are chosen to be 10 m x 10 m x 5 m
and are discretised by 10x 10x 1 internal nodes. The
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Standardized experimental runtime of GSGS using different group
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FIG 6 - Standardised experimental runtime of GSGS using
different group sizes applied to different large orebody models.

neighbourhood used includes six previously simulated blocks
and 12 sample data. Figure 7 represents the reproduction of
point-histogram and regularised variogram for DBSIM. Both
aspects indicate a good reproduction of data statistics.

To compare DBSIM with GSGS, for instance, in terms of
reproduction of sample statistics and the benefit in terms of
storage requirements when simulating direct block values, the
following is performed. Ten realisations were generated using
GSGS 2 x 2 x 2 on a grid using a discretisation of I m x 1 m
x 5 m. The GSGS neighbourhood was chosen according to Table
2. Realisations were re-blocked to a block size 10 m x 10 m
x 5 m, to comply with the block size used for the DBSIM
generated realisations. Figure 8 compares realisation number one
of Cu per cent in the deposit for both methods. The results are
indistinguishable and both methods are ‘artefact free’.

The computing time for DBSIM was 20 hours and ten minutes
compared with 21 hours and 40 minutes in case of GSGS
without reblocking (Pentium 4, 2 GHz processor). The difference
can be explained by differences in implementation details and
the faster neighbourhood search in the case of DBSIM, since
only a few blocks need to be considered instead of a number of
point data. The difference in the storage requirements of result
files is substantial: 36 Mbytes in case of DBSIM and 3.65 Gbytes
in case of GSGS, reflecting the block discretisation. In addition,
the validation of the variogram on block support requires, on
average, 33 000 pairs to be calculated, on a point support about
3300 000.

The above results demonstrate that a simulation done directly
at block support scale, as realised through DBSIM, meets
industrial requirements for the above-discussed reasons. It is
more computationally efficient than point-by-point methods and
delivers reliable results. Note that issues on DBSIM
neighbourhoods are different from GSGS, and generally DBSIM
is insensitive to the size used. Experience shows that a
neighbourhood with about six blocks and about twice as much
sample data is sufficient for excellent simulation results (Godoy,
2003).

CONCLUSIONS

The application of conditional simulation techniques in mining
generally requires efficient algorithms for large size applications.
In this paper, two new efficient and practical methods for large
applications are reviewed: the generalised sequential Gaussian
simulation, and the direct block simulation.

Using GSGS as an example, practical issues pertinent to
computational efficiency and accuracy were studied. Accuracy of
results is predominantly affected by the size of the local
neighbourhood. The relative screen effect approximation
(RSEAL) is a measure that quantifies this accuracy and assists
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the selection of suitable neighbourhood sizes for different group
sizes. The results presented herein on the size relationships are
reasonably general. Results suggest that, when using larger group
sizes, larger neighbourhoods sizes need to be considered to
maintain the desired level of accuracy.
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The application of GSGS to a porphyry copper deposit
demonstrated the efficiency of the method. While maintaining a
given level of accuracy, GSGS can improve computational
efficiency substantially, being up to 20 times faster.

A comparison of GSGS and DBSIM using the same deposit
shows that both algorithms are fast, due to the fact that both are
based on the group decomposition of the multi-variate
probability density function. The application of DBSIM results
in a substantial reduction of storage requirements and leads to
improved data management. Both GSGS and DBSIM provide
efficient and reliable tools for practitioners to assess geological
uncertainty in large mining applications.
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A Practical Process for Geostatistical Simulation with Emphasis

on Gaussian Methods
M Nowak' and G Verly2

ABSTRACT

The theory of geostatistical simulation is relatively well documented but
not its practice, which can be problematic since simulation is not as
straight forward as linear estimation. As a result, costly mistakes can be
made that sometimes go undetected. In this paper, a process for
simulation is introduced with the objective of reducing the likelihood of
such mistakes. The context is sequential Gaussian simulation within the
mining industry. However, a significant part of the process can be applied
in other simulation approaches.

Each aspect of the process is described with some steps receiving
greater attention than the others, notably the definition of the simulation
objectives, bootstrapping, trend reproduction, post-simulation checks and
adjustments, worst/best scenario choice, and risk assessment of the
simulated model.

INTRODUCTION

Although the simulation methodology is well documented, a
practical process leading to valid and representative realisations
of in situ grades is rarely a focus of attention within the
geostatistical community. To a practitioner, this can lead to the
frustration of applying a methodology that may produce poor
results. There is a need for simulation procedures that are
systematic, robust and easy to follow. This paper presents a
practical description of a simulation process with the emphasis
on sequential Gaussian simulation (Figures 1 and 2). The intent
is to have the simulation process as part of a geological process
that Placer Dome has recently defined with the objective of
guiding practitioners through exploration, resource and reserve
estimation, and reconciliation.

Sequential Gaussian simulation (SGS) starts by defining the
univariate distribution of values, eg assay grades, performing a
normal score transform of the original values to a standard
normal distribution, and assuming multi-normality of the normal
scores. The multi-normal assumption ensures that the conditional
distribution at a given location is normal with mean and variance
provided by simple kriging. Simulation of normal scores at grid
node locations is done sequentially, most often with simple
kriging using the normal score variogram and a zero mean
(Isaaks, 1991; Deutsch and Journel, 1998; Goovaerts, 1997).
Once all normal scores are simulated, they are back-transformed
to original grade values.

As shown in Figures 1 and 2, the designed simulation process
is more complex than just normal score transformation,
variogram modelling, simulation and back-transformation. A
number of calibration, validation, and adjustment steps have
been added to account for trends, and improve the reproduction
of variograms and distributions. To reproduce the uncertainty on
the grade distribution, a resampling procedure called bootstrap is
described that accounts for spatially correlated data. Finally, a
risk assessment of the issues that affect the outcome of the
simulation is suggested.

The remainder of this paper is a chronological presentation of
the steps of the process as shown in Figures 1 and 2. The emphasis
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of the paper is on the process in general and not on the details. A
detailed discussion of some of the steps can be found in Nowak
and Verly (2004).

DEFINE OBJECTIVES (1)

Although deceptively simple this step is quite often overlooked.
Clearly defined objectives have two advantages. First, they help
to design a procedure that will address the issues of specific
interest to an exploration or mine manager. Second, they may
reduce the number of necessary steps, thus reducing the time
spent on the simulation. For example:

e Bootstrapping is a necessary step when the objective of
simulation is to assess the difference between an optimistic
and pessimistic scenario. However, it may not be necessary
for a study of weekly fluctuations in sulfur content.

e A scope study may require simulating only a representative
portion of the orebody.

e  When future open pit grade control is considered, there is no
need for simulating a dense grid of values. For example, a
simulation of blast hole values on a 5 x 5 m grid spacing,
followed by block kriging based on the simulated values, will
reduce significantly the number of simulated nodes.

e In an active operation, kriging and not simulation may be the
best solution for grade control if the profit is a linear function
of the grade (Verly, 2005).

DEFINE ZONES (II)

Two zones or envelopes should be defined: a simulation zone,
and an exploratory data analysis (EDA)/validation zone. The
simulation zone covers the area of interest for the purpose of a
study, ie the area that will be simulated. Areas where reasonable
simulation results cannot be achieved should be excluded or at
least flagged as such.

|. Define objectives
§

Il. Define zones
I1.1 Simulation zone
11.2 Validation zone

l

lll. Geological uncertainty

l

IV. Grade uncertainty
IV.1 Original data simulation
IV.2 Bootstrapped data simulation
IV.3 Merge geological and grade uncertainty
IV.4 Choice of scenarios

l

V. Risk assessment and sign-off

FiG 1 - High-level simulation process.
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IV.1 Original data simulation
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v
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v
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)
IV.2.4 Normal score or Step-wise transformation
v
IV.2.5 Normal score simulation
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1 tooeoeeoeed Lol e
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FIG 2 - Process for simulation of (a) original data; and (b) bootstrapped data.
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The EDA/validation zone serves a dual purpose: calibration
and validation. The calibration is geared towards a proper
assessment of the simulation parameters such as trimming
values, grade distributions, and variograms in a series of
geological domains. The simulated results are then validated
against the original calibrated statistics. If the validation zone is
large, eg identical to the simulation zone, then extensive areas
may not be properly sampled and the statistics of the simulated
values will be different from the calibrated statistics. This could
make the validation exercise very difficult, or even worse, could
lead to erroneous conclusions and unnecessary modifications to
simulated values (Figure 2a, Step IV.1.7).

GEOLOGICAL UNCERTAINTY (liI)

Jackson et al (2003) give a striking example of geological
uncertainty where three reasonable geological interpretations by
different geologists result in significantly different ore tonnages.
Geological uncertainty, however, is seldom included in a
simulation study. Instead, a single geological model is developed
from the drill hole data, which artificially restricts the space of
uncertainty.

Specific geological scenarios, dependent on the objectives of
the study, should be used in the simulation process (Srivastava,
2005). Three simulation methods that have been used in the
mining industry for geological uncertainty are the indicator
simulation (Alabert and Massonat, 1990; Deutsch and Journel,
1998), the plurigaussian technique (Armstrong et al, 2003;
Skvortsova et al, 2000), and a probability field based approach
(Srivastava, 2005). Multi-point statistics (Strebelle, 2002;
Journel, 2007, this volume; Osterholt and Dimitrakopoulos,
2007, this volume) and the potential field method (Chiles et al,
2007, this volume) look also very promising.

The geological uncertainty simulation process is not considered
in this paper. This process, however, has some similarities to the
grade uncertainty process, such as EDA statistics (Figure 2,
IV.1.1), trend analysis (IV.1.2), bootstrap (IV.2.1), checks and
adjustment (IV.1.10), and scenario choice (IV.3).

GRADE UNCERTAINTY (IV)

Original data simulation (IV.1)

This section corresponds to Figure 2a.

Grade EDA (IV.1.1)

One objective of simulation is to reproduce the grade
distribution. The input grade distribution must therefore be
estimated properly, which entails declustering (Isaaks and
Srivastava, 1989), trimming of high values, despiking (Verly,
1984 and 1985), and limiting the work within the EDA envelope
mentioned earlier.

Sample declustering is needed to get an unbiased estimate of
the grade distribution. Two of the popular methods are the cell
and the polygonal declustering methods. Whatever the method, it
should be used with care. The declustering cell size should be
realistic; the polygonal declustering weights should not be too
large on the fringe of the EDA zone.

Trimming is needed to avoid spreading high-grade values. The
choice of the trimming values is similar to the one used for
estimation. There should be some explanation if the trimming
values chosen for simulation are significantly different from
those chosen for estimation.

Finally, if there is a significant amount of identical values,
despiking is needed to ensure a proper normal score transform
and/or to avoid an artificial noise in the normal score variogram.
The method simply involves ordering identical assays according
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to the surrounding average grade. Note that despiking is probably
not necessary if residuals after trend removal are simulated
instead of original grade values.

Trend analysis (IV.1.2)

Trends are not always well reproduced in sequential Gaussian
simulation, owing to the stationarity assumption necessary for the
normal score transform and the strict multinormal assumption
usually assumed for the normal scores (normal scores
multinormally distributed with mean 0 and covariance C(h)).

One simple way to deal with this problem is to filter the trend,
simulate the residuals, and add the trend after simulation
(Deutsch, 2002). Unfortunately, this process may produce
simulated grade values that are negative. An obvious way out is
to reset the negative values to zero, but this may result in
significant bias and poor reproduction of the trends. A second
solution consists in defining the local prior means to be used by
SK with a correction factor for all kriging variances (Goovaerts,
1997). A third solution is given by Leuangthong and Deutsch
(2004) who suggest a step-wise normal score transform, which is
discussed further in Step IV.1.4. A fourth solution consists in a
post-simulation trend adjustment (Nowak and Verly, 2004) that is
further discussed in Step IV.1.10.

In most circumstances, it is useful to analyse the trend by
producing average grade profiles along various directions (eg
elevation, easting, northing). If necessary, a 3D estimate of the
trend should then be obtained, for example by ordinary kriging
with a relatively high nugget, and used in Step IV.1.4 or Step
Iv.1.10.

MAF — Decorrelate variables (IV.1.3)

In multi-element deposits correlation between the elements must
be taken into account. It is relatively easy to co-simulate two
correlated variables (Verly, 1993). Difficulties, however, increase
significantly with more variables and the minimum/maximum
autocorrelation factor method (MAF) is a practical and simple
solution. The MAF approach was developed by Switzer and Green
(1984), used by Desbarats and Dimitrakopoulos (2000) to simulate
pore-size distribution within samples and by Dimitrakopoulos and
Fonseca (2003) and Boucher and Dimitrakopoulos (2007, this
volume) in a mining context. The method amounts to a principal
component approach that accounts for some global spatial
statistics. According to Desbarats and Dimitrakopoulos (2000),
MAF appears to produce factors that are reasonably
non-correlated for all lag distances, which is better than other
methods suggested in the past, such as a classical principal
component analysis. If there is a combination of trend and
multiple variables, a reasonable procedure is to de-correlate first,
then to perform the trend analysis.

Normal score or step-wise transformation (I1V.1.4)

Transformation of the data to normal score value is quite
straightforward with two possible options: single normal score
transform or step-wise normal score transform.

If the trend is not an issue, or if a post-simulation trend
adjustment is made (Step IV.1.10), then a single normal score
transform is performed per geology domain. This transform is a
table that associates each grade value with a standard normal
score value such that cumulative frequencies of both values are
identical. The transform tables are first obtained per geology
domain within the EDA envelope using the declustered grade
distributions. Data outside the EDA envelope are not used to
build the tables, but are transformed to normal scores using these
tables for the simulation.
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If the trend is an issue, the step-wise transform suggested by
Leuangthong and Deutsch (2004) is promising (Figure 3). The
method consists of defining, for a given geology domain within
the EDA envelope, the trend and residuals followed by a normal
score transform of the residuals conditional to the trend. This
method is very promising because the normal score transform is
not global, but conditional to the trend. The method ensures that
there is no trend in the normal score space, and that a proper
normal score variogram is used. Finally, the method greatly
reduces the number of negative grade values after the step-wise
back-transform.

This method can be modified to a transformation of the
original values conditional to the trend instead of residuals
conditional to the trend. This modification would ensure that
there are no negative grades after back-transformation.

Normal score variograms (1V.1.5)

The normal score variogram is generally less noisy and easier to
fit than the original grade variogram. Srivastava and Parker
(1989) suggest the correlogram as a better choice than the
traditional variogram for skewed distribution. The correlogram
works also very well with normal scores.

By construction, the normal score conditioning values are
standard normal within the zone of interest Z (eg one geology
domain within the EDA envelope), which means that the
dispersion variance of the normal scores within Z is 1.0, ie:

DX0|Z)=YZ,2Z)=1

where:

Freeisttigs]

@

Trend

Sl

&irs?

b

?(Z, Z) is the average normal score variogram value within Z

The normal score variogram fit should be consistent with the
above equality, which means that the variogram sill is larger than
one if the zone Z is not very large, as it can be in the case of local
grade control.

In practice, the variogram is often fitted first with a sill of one.
The value of Y(Z,Z) should then be computed. If the y(Z,Z)
value is within five per cent of one, a simple rescaling of the
variogram values is reasonable, otherwise a variogram
adjustment (sill and range) is suggested (Figure 4).

If two variables are simulated, the normal score correlation is
an indication of the sill of their cross-correlogram.

Normal score simulation (IV.1.6)

The simulation, and its speed, may be influenced by a number of
parameters. The number of realisations needed depends on how
many are sufficient to characterise the uncertainty being
addressed (Deutsch and Journel, 1998). In practice, good results
can be obtained with 50 realisations, although sometimes this
number may be reduced to 20 due to the size of the individual
realisations. The sample search criteria depend on the study
(Dimitrakopoulos and Luo, 2004). The authors, however, have
obtained good results by retaining 16 closest values (actual or
simulated), ie two values per octant, to simulate a node. If
necessary, locally defined anisotropy directions of a variogram
model should be considered. As shown by a handful of articles
there are definite benefits to this local anisotropy approach
(Sinclair and Giroux, 1984; Srivastava, 2005).

/\@&F

FIG 3 - Normal score transform of residuals conditioned to trend component. (a) Residuals are partitioned into classes based on trend
component. (b) Residuals from each class are standard normal score transformed.
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If possible, a multi-grid approach can be used. In this
approach, the simulation starts on a very large grid and ends,
after a few passes, with the required grid size. An advantage to
this approach is lower execution time and lower computer
memory requirement. Moreover, very good reproduction of long
ranges of continuity can be accomplished (Verly, 1993). Finally,
if several realisations can be loaded in memory, using the same
multi-grid random path can drastically reduce the computing
time. Indeed, at a given grid node, the same steps are used for all
realisations with only one different random number used to draw
a value from the conditional distribution (Verly, 1993). Note the
same random path is not recommended if it is not a multi-grid
random path.

Check/adjust simulated normal scores (IV.1.7)

Post-simulation checks are necessary to ensure a reasonable
reproduction of data distribution and spatial correlation. Both the
histograms and the variograms of the simulated normal score
values should be checked against the original normal score
histograms and variograms obtained in Steps IV.1.4 and IV.1.5.
Checks should be completed per geology domain and within the
EDA validation zone, ie the same zone that has been used to get
the simulation parameters such as declustered grade distribution,
the normal score transform, and the normal score variograms. All
these checks should be done with hard boundaries between
geological domains. Finally, all simulated values should be
considered for the checks to account for the statistical
differences, in particular in average and variance, due to
fluctuations between realisations.

The checks may reveal that the simulated normal scores are
not standard normal, that the input variograms are poorly
reproduced, or that two co-simulated normal score values do not
have the proper correlation.

If the variance of the simulated values is lower than 1.0 it is
highly probable that dispersion variance D*(01Z) is too low and
that the sill of the variogram model must be increased (Step
IV.1.5). If the correlation between two co-simulated normal score
values is poorly reproduced, the sill of the input
cross-correlogram should be reviewed and eventually modified
(increasing the sill will increase the correlation).

If the average of the simulated normal scores is different from
0.0, or their distribution is not normal, it is possible that there is a
mismatch between the EDA and the validation zones even if the
two zones are physically identical. For example, there could be
fringes or extensive areas that are not sampled. Under those
circumstances, a modification of the validation zone is needed to
reduce the impact of the unsampled areas. A properly defined
validation zone may represent the area relatively close to the
conditioning data, for example extending not further than a
search radius that was used for polygonal declustering. Another
possible cause is an improper declustering, which means that the
original normal score distribution has not been correctly defined.
For example, the cell declustering size may be inappropriate or
the polygonal declustering may be incomplete due to some
search radius restriction.

Ultimately, if the source of the differences is not well known,
and the original distribution is considered accurate, the simulated
values can be progressively adjusted with a correction that
increases with increasing distance from the conditioning data
(Xu and Journel, 1994; Nowak and Verly, 2004).

Normal score or step-wise back-transformation
(IvV.1.8)

This step is straightforward and does not require any particular
attention. Further checks of the back-transformed distributions
could be considered.
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De-MAF — correlate variables (1V.1.9)

This step is straightforward and is required only if the original
variables have been decorrelated using the MAF approach (Step
IV.1.3). Further checks related to the correlated distributions
could be considered.

Check/adjust simulated grades (IV.1.10)

In Step IV.1.2, the trend has been analysed along various
directions and a 3D trend model has eventually been produced.
The simulated average should be compared against the trend
along the same directions to assess the need for some adjustment
(Nowak and Verly, 2004). If the step-wise normal score
transform has been used in Step IV.1.4, trends should be very
well reproduced in the simulation. If a single normal score
transform has been used, some trend adjustment may be
necessary.

A reasonable approach to adjust for the trend has been
suggested by Nowak and Verly (2004). The approach consists in
a gradual adjustment from a maximum correction (simulated
average reset to the trend value) far away from the conditioning
data to no correction at data locations. The approach is simple,
flexible and guarantees that the trend is reproduced far away
from data locations. Moreover, the coefficients of variation of the
simulated values before and after adjustment have been noted to
be quite similar.

All checks and possible adjustments made in normal score
space (Step IV.1.7) are necessary but not sufficient to disregard
the checks on the simulated values after back-transformation and
trend adjustment. Comparisons between the simulated values and
the original data should be made per geology domain within the
validation envelope. Histograms, probability plots, scatterplots
and visual checks of maps of simulated values are useful tools.
Care should be given to ensure that the simulated mean grade in
a geological domain is similar to the average estimated grade in
that domain. If they are different, the simulated/estimated grades
may have to be adjusted either by modifying some parameters,
such as trimming values, and resimulating/reestimating, or by
further adjustment of the simulated/estimated values to the
required average. If it is a requirement that the distribution of
simulated values is very similar to the data distribution, a
correction can be made that increases progressively with the
increased distance of simulated values from the data locations
(Xu and Journel, 1994).

Bootstrapped data simulation (IV.2)

The previous section IV.1 describes a simulation that assumes
that the distribution of in situ grades is known from the
declustered grade histogram. The additional risk associated with
an imperfect knowledge of the grade distribution is described in
this section.

Except for the bootstrapping (Step IV.2.1 below), the
simulation from bootstrapped data is in many respects simpler
than the simulation of the original data. Indeed, many steps have
already been computed such as grade EDA, trend analysis, and
variable decorrelation. Some steps are not needed such as the
normal score variograms (same variograms are used) or the
various checks (checks are only done using the original dataset).
Some steps are exactly the same, such as simulation or the
various adjustments. The same adjustments that were made for
the original data simulation are also made for the bootstrapped
data simulation.

Bootstrap grades (IV.2.1)

Using a bootstrapping methodology, statistical fluctuations can
be investigated by sampling from the original distribution. A
typical bootstrap procedure consists of creating a series of
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possible datasets by drawing randomly with replacement as
many values, with the attached declustering weights, as there are
in the original distribution. The fluctuations between the various
datasets are then investigated.

When there are many sample values, such as in mining, the
classical bootstrap approach results in datasets that are very
similar to each other. This similarity would be perfectly correct if
the sample values were uncorrelated, but this is not the case in a
typical mining situation.

Spatial correlation can be addressed by drawing fewer values
from the original distribution (Srivastava, pers comm). Indeed,
the variance of the mean grade is:

Varl(Mean) = % z z ¢y

where:
N is the number of samples in the original dataset

Cij is the covariance for the distance between sample i and j,
and can be deduced from the variogram

If P values are drawn randomly from the original dataset, the
variance of the mean is:

1
Var2(Mean) = FVar(Data)

where:

Var(Data) is the variance of the original data set

The required fluctuation for the mean is achieved if P is
chosen such that Var2(Mean)=Varl(Mean), ie:

_ Var(Data)
Varl(Mean)

Note that this formula could be refined to account for
declustering weights. The bootstrapping may be done on data
from all geological domains or on data from one domain at a time.
If the former is used, the choice of optimistic (high average) and
pessimistic (low average) distributions is more difficult, because
the distributions from one or two domains may influence the
results. The authors feel that bootstrapping per domain is a better
solution. Under those circumstances, a pessimistic/optimistic
declustered distribution can be truly pessimistic/optimistic in all
domains. Of course, care should be given when choosing the
bootstrapped distributions for simulating the grades. The
distributions should not be overly pessimistic or optimistic.

The impact of the bootstrap on the input mean grade
uncertainty can be very significant as shown in Figure 5. In this

No bootstrap

mean 0393
sice, std. dev. 0.0

Froquency

Frequency

Classical bootstrap

No. of bootstrapped sets 100

figure, the sample grade distribution has a mean of 0.39.
Classical bootstrap indicates that this distribution mean grade
can vary between 0.36 and 0.42. Spatial dependence bootstrap
indicates that the mean varies between 0.30 and 0.48.

Choose pessimistic/optimistic distribution (IV.2.2)

Prior to the final choice of the optimistic and pessimistic
distributions, it may be useful to have some insight on the
potential impact of that choice on the simulated values. Applying
a cut-off grade on the bootstrapped distribution corrected for
change of support may provide such insight.

The choice of the declustered optimistic/pessimistic
distributions is related to the objectives of the simulation. If there
are several variables, then the choice can be based on the most
significant variable. The distributions are chosen for each
geology domain and later are combined for further processing
(Step IV.2.4).

MAF — Decorrelate variables (IV.2.3)

This step is straightforward. Decorrelation of variable values
corresponding to the original grade distribution has been described
in Step IV.1.3. The same decorrelation formula is used to get the
decorrelated values of the bootstrapped distribution values.

Normal score or step-wise transformation (1V.2.4)

Once a bootstrapped distribution is chosen, it is used first to
generate a single or step-wise normal score transform as per Step
IV.1.4 (Figure 6a). The bootstrapped distribution and its
transform are then used to convert the original grade values to
normal score values (Figure 6b). The cumulative frequencies of
the original sample grades are deduced from the bootstrapped
distribution, then used to get the corresponding normal score
values. Note that the resulting normal score values are not
standard normal. For example, in the case of an optimistic
bootstrapped distribution as in Figure 6, the average of the
normal score values is less than zero. The inverse of the
bootstrapped distribution normal score transform is used for
back-transformation of the simulated normal score values.

Normal score simulation (1V.2.5)

This step is straightforward. The only difference from Step IV.1.6
is the conditioning normal score values that depend on the
bootstrapped distribution used for the normal score transform.
Note that the conditioning sample locations are the same, the
sample original values are the same, but their normal score
values are different.

Spatial dependence
bootstrap

M. of bootsirapped sets 100
mean 0,304 mean 0394

sid. dev.  0.003 std. dev. 0.036

Frequency

Au

Mean = 0.39

0.36 < Mean <0.42

o
Ay

0.30 < Mean <0.48

FIG 5 - Uncertainty on the mean grade of a distribution, obtained by bootstrapping.
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FIG 6 - (a) Standard normal score transform based on an optimistic bootstrapped distribution. (b) Original grade distribution converted to
normal scores using the bootstrapped distribution and its normal score transform.

The same random seed could be used here to ensure that the
differences observed are due only to the bootstrapped
distribution used for the normal score transform. If this is
deemed unreasonable the number of realisations should be
increased.

Check/adjust simulated normal scores (IV.2.6)

All the checks have already been done in Step IV.1.7. Whatever
adjustments were made on the original normal score simulation,
they are also made on the bootstrapped normal score simulation.

Normal score or step-wise back-transformation
(Iv.2.7)

This step is identical to Step IV.1.8 except that the
back-transformation is based on the bootstrapped distribution.

De-MAF — correlate variables (1V.2.8)
This step is identical to Step IV.1.9.

Check/adjust simulated grades (1V.2.9)

Most of the checks have already been done in Step IV.1.10.
Whatever adjustments were made on the original data
simulation, they are also made on the bootstrapped data
simulation. This includes any trend adjustment.

Additional checks could be made though no particular
surprises should be expected if the same random seed has been
used for the original and bootstrapped data simulation.

Orebody Modelling and Strategic Mine Planning

Merge geological and grade uncertainty (IV.3)

This step is not an issue if Step III has been skipped and a
deterministic geology model has been used in Steps IV.1 and
IV.2. If, however, several geological realisations have been
simulated in Step III, two passes through Steps IV.1 may be
necessary. The first pass is a careful calibration and validation of
the grade simulation using one ‘median’ realisation of the
geology. The second pass is a series of ‘blanket’ simulations per
geology domain that are then attached onto the appropriate
geology as per the realisations obtained in Step III.

Note that only one pass of ‘blanket’ grade simulations is
necessary for the bootstrapped grade simulation.

Choice of scenarios (1V.4)

Ideally, all realisations should be processed accordingly to the
specified objectives. Unfortunately, flexible software is still often
lacking to efficiently process multiple realisations. The choice of
what realisations to process is then critical and should depend on
the objective of the simulation that has been defined in Step 1.

If bootstrapping has been part of the procedure, an important
choice of scenarios has already been done in Step IV.2.2. In this
Step IV.4, a series of realisations is available and the choice of
which ones to retain is generally based on the value of some
quantity within an area of specific interest.

If the simulation objective is the fluctuation in size of an
ultimate pit, a minimum of three realisations could be retained:
‘worst’, ‘median’, and ‘best’ scenarios. The quantity on which
the choice is based could be an SMU average grade above a
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TABLE 1
Example of simulated model risk assessment.
Issue Impact Likelihood Consequence Risk
Some assays are biased low Simulated grades are too low D B Medium
Geological model is deterministic and The model does not properly reflect the controls B B High
based on relatively little data on mineralisation; geological uncertainty not
accounted for
Bootstrapping incorrectly describes Space of uncertainty on grade too narrow D D Low
uncertainties on grade distribution
Trends are not properly defined at some | Improper trend reproduction far away from data C C Medium
distance from the data
given cut-off grade or some NPV value. The area of interest CONCLUSIONS

could be the area between a very optimistic and a very
pessimistic pit shell, ie an area that excludes the mineralisation
core that will be mined anyway. The area could be further
divided into octants. Within each octant one of the worst and one
of the best realisations are chosen, then merged into one very
pessimistic and one very optimistic hybrid realisation.

If the simulation objective is to illustrate the change of support,
then a ‘hybrid’ realisation may be again the best solution. In this
case, one realisation is picked per geology domain such that the
simulated average and coefficient of variation are as close as
possible to the original data corresponding statistics. The chosen
realisations are then merged into one ‘hybrid’ realisation that
reproduces very closely the original statistics per geology domain.

If the mining process is already defined (eg ultimum pit shape,
scheduling), then all realisations should be considered to assess
the risk by looking at the process response to the different
realisation results (Dimitrakopoulos et al, 2002). Though this can
generally be done with minimum programming/scripting, it does
not indicate if the process is optimum or not. To get the optimum
process, new techniques have to be designed that process all
realisations, such as some described in this volume
(Dimitrakopoulos, Martinez and Ramazan, 2007; Grieco and
Dimitrakopoulos, 2007; Ramazan and Dimitrakopoulos, 2007;
Menabde et al, 2007).

RISK ASSESSMENT AND SIGN-OFF (V)

The sign-oft step serves two objectives:
1. formalised transfer between different individuals, and
2. risk assessment of the simulation.

The first objective helps to establish common ground between
different stakeholders who should discuss and understand the
simulation results, notably their limitations.

The second objective helps to put in perspective the simulation
results. In the course of a simulation study a practitioner may
come across a number of issues that affect the outcome of the
study. In addition, he/she is forced to make a number of decisions
that may have a significant impact on the simulation results.
These decisions and issues should be explicitly stated and the
associated risk for the company assessed. An example of risk
assessment is presented in Table 1. A number of issues/events
and their impact on the simulation model are given. The event
likelihood and consequence are rated from A to E corresponding
to ‘almost certain’ to ‘very rare’ for the likelihood, and ‘very
high’ to ‘insignificant’ for the consequence. A ‘low’ to ‘high’ risk
is deduced from the likelihood/consequence combination. The
risk column is then used to decide if more work is needed on the
simulation model, or if the corresponding issue(s) must be part of
subsequent risk assessments made at the reserve estimation and
financial decision stages.
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In this paper, a process for simulation with emphasis on
sequential Gaussian simulation is presented. The subprocess
corresponding to Gaussian simulation contains many more steps
than the usual normal score transformation, variogram modelling,
simulation and back-transformation. A significant portion of this
subprocess may also be used for other simulation methods. The
authors believe that using similar processes in the mineral
industry would avoid costly mistakes.

Some aspects of the simulation process are extremely important.
Properly defined objectives of the study enable a correct design of
the simulation parameters, which in turn can lower the time spent
and the costs of the simulation. Although trends, in some cases,
may not have to be defined, grade bootstrapping should be
considered in most situations. Frequent checking of the results is
emphasised. A dispersion variance per geology domain should be
computed and if different from 1.0, the modelled variogram sill
should be readjusted. Comparisons of simulated values with the
conditioning data should be conducted both in normal score space
and after back-transformation. The simulation study should be
followed by a risk assessment of the important issues noted during
the study.
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Conditional Simulation by Successive Residuals — Updating of

Existing Orebody Realisations

A Jewbali' and R Dimitrakopoulos?

ABSTRACT

Conditional simulation by successive residuals (CSSR) is a new simulation
method based on the column decomposition of the covariance matrix,
which leads to the expression of the simulation process in terms of
successive conditional covariance matrices. The method follows successive
steps where, at each step, random variables in a group are simulated using
a lower-upper decomposition of a covariance matrix of updated conditional
covariance residuals. The updating process does not require the solution of
large systems of equations — a limitation of other simulation methods —
thus it is more efficient. A practical consequence of CSSR is the fast
updating of existing simulations when additional data becomes available.
An implementation of CSSR, using data from a stockwork gold deposit,
demonstrates the approach. In addition, simulated realisations both before
and after the update are benchmarked against a known sequential Gaussian
simulation implementation. The fast updating is found to improve
computational efficiency by 65 - 77 per cent.

INTRODUCTION

Stochastic simulations of Gaussian random fields have been used
for risk analysis and management in various aspects of orebody
modelling and mine planning (Ravenscroft, 1992; Dowd, 1994;
Dimitrakopoulos, Farrelly and Godoy, 2002; Godoy and
Dimitrakopoulos, 2007, this volume; Ramazan and
Dimitrakopoulos, 2007, this volume; Dimitrakopoulos, in press).
These approaches require the generation of multiple realisations of
random fields conceptually representing the attribute of interest
and, if the mineral deposit is large, the simulation may involve
tens of millions of nodes. As exploration or mining progress,
additional information, termed ‘future data’, becomes available
(for example, through infill drilling or exploration near the mine).
Incorporating the newly acquired data into the orebody modelling,
risk assessment or optimisation process requires re-simulating the
orebody with the new information. For large simulations, this
constitutes rerunning simulations that require a substantial
computational effort and time (Dimitrakopoulos and Luo, 2004).
The ability to provide mechanisms for fast updating of existing
realisations would contribute to the practical use of simulation
technologies, particularly their integration into new optimisation
formulations and mine production scheduling.

A conditional simulation approach based on successive
residuals  (Vargaz-Guzman and Dimitrakopoulos, 2002;
Vargaz-Guzman and Dimitrakopoulos, 2003), which can update
existing simulations when new data becomes available, is
presented in this paper. The approach is founded on a new,
column partitioning of the lower-upper (LU) decomposition of
the covariance matrix C of data and grid node locations to be
simulated. The approach overcomes the size limitations of the
LU method in Davis (1987). It is useful to recall that the LU
method will generate a realisation z of a spatial random field
Z(x), xe R", at a set of grid node locations conditional to the
available data from z = Lw, where w is a vector of white noise
and L is generated from the decomposition L = CU"!. The size of
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matrix L poses the well-known limitation of the method to only
being able to generate realisations up to a few thousand grid
nodes. Simulating with all data z, available and following the
matrix form of kriging, the realisation z is a simple estimate plus
a random component, such that z = A, L;z, + L,,w, where the
partitioning L = L | is used. The L;; matrix is derived
LA7] 2ZJ

from the LU decomposition of the data covariance matrix, and
A, and L,, matrices from the partitioned L matrix in the
decomposition of the covariance C shown above.

The method discussed here provides an alternative formulation
that is able to overcome the limitations of the LU decomposition.
The new method is based on the column decomposition of the
covariance matrix using conditional covariance matrices.
Conditional simulation by successive residuals (CSSR) is a
method that can simulate, in successive steps, a small group of
nodes using the LU decomposition of a matrix of updated
conditional covariance of residuals. The simulated nodes are then
used to update residuals, a step that eliminates the solution of
large systems of equations. The successive process amounts to
the separation of influences from different data sources, allowing
recalculation of only those sources that introduce new
information when updating. Thus, the process can uniquely
facilitate the fast updating of simulated realisations with new
data when appropriate, without having to repeat the complete
simulation process.

In the following sections, the conditional simulation by
successive residuals is first explained and then its
implementation is discussed. Subsequently, a case study from a
stockwork gold deposit explains the practical aspects of the
updating of simulated deposit realisations with CSSR. A brief
discussion of performance issues and conclusions follow.

CSSR: EXPLAINING WITH AN EXAMPLE

The CSSR method is explained here, using the example shown in
Figure 1. In this example, six grid nodes are to be simulated,
conditional to four data points. CSSR divides the data and grid
nodes into groups. Hence Figure 1 shows the data divided into
two groups, P and S, and the grid nodes into two groups, V and
M. Next, the covariance matrix C containing the covariances
between the data and grid nodes is generated, and it is:

\'

[ @  ®mv

FIG 1 - Area to be simulated containing six grid nodes (squares)
and four data points (circles).
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where the terms Cj; contain the covariances between the nodes in
group i and those in group j, such as groups P, S, V and M in the
present example. C is subsequently split into a lower and upper
triangular matrix such that C = LU = LLT, and it is followed by
the column-wise decomposition of L in which each element in a
column is expressed as a function of its diagonal element
(Vargaz-Guzman and Dimitrakopoulos, 2002). This is:

[ L, 1
— CSP [CPP ]71 IJPP LSS
c,IC, "L, E’[EP?IL, L,
C., [C,, 1" L, EQESIL EQ[ENIL, L,

@

where E =C, -C,,[C,,I"C, and E) =E? —EP[E®]"E?
for j = s,v,m. To generate simulated values z, L is multiplied by a
vector w of independent N(0,1) random numbers, and it is:

[ L, Tw, 1 [2,1
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|C,[C, "L, EJ[EJIL, L, v | |z |
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The column-wise decomposition of the L matrix facilitates
updating when new data is received, because it splits influences
from the various groups of data and grid nodes. For instance,
consider the second group of grid nodes M to be simulated after
simulation of nodes in V; this corresponds to the last row in
Equation 3, and is:

-1 [2] [2]19-1
CopCop LppW, T E [EST Low, +

(31 3171 —
Emv [Evv ] vawv + mewm =z,
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The  first two  components in  Equation 4,
C,,C,,L,,w, and EZ[EPT'L w,, describe the influence of
the data in groups P and S on the simulated grid nodes in group
M, while the third component, E¥' [E®' T L, w_, contributes the
influence of the previously simulated values in group V. If future
data becomes available in, say, group V, then the simulated grid
nodes in group M will be updated by only recalculating
EM[EPT'L, w,. The CSSR approach requires that the
locations of the future data that will become available are known
and included in the set of grid nodes to be simulated (in the
present example this is group V). In addition, Equation 3
considers that the structure of spatial correlation remains
unchanged when future data is included.

AN IMPLEMENTATION

The implementation of CSSR considered here divides the grid
nodes to be simulated into groups using a local search
neighbourhood. This is reasonable considering that data that is
available far from the nodes being simulated will have negligible
influence on the values being simulated. A further discussion of
group sizes may be found in Benndorf and Dimitrakopoulos
(2007, this volume) and Dimitrakopoulos (in press). The steps
followed in the implementation are as follows:

1. divide the grid nodes into groups;
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2. randomly select a group and simulate only the future data
locations within the group; repeat this for each of the groups;

3. define a random path that visits each group once and define
a group to start with;

4. at a group, find the data, the future data locations already
simulated, and any other simulated nodes within the
neighbourhood;

5.  simulate the group using partitions of the covariance matrix
into two columns and the equivalent of Equation 3 given in

Equation 5:

oL, Twil [z, 5

LCZICH L, Ly JLW2 J Lzz J

where:

71 contains the conditioning data and the already
simulated future data locations/nodes within
the search neighbourhood

V) contains the remainder of the grid nodes being

simulated within the group

wiand wo are vectors of independent N(0,1) random
numbers. For updating purposes, the lower
triangular component of C;' and Lxow) are
retained

6.  move to the next group; and
continue with Steps 2, 3 and 4 until all groups are simulated.
The steps for the updating are as follows:
1. consider the group to be updated and retrieve C}; and L,,w,,
2. generate C,; and update z,, and

3. move to the next group and continue with Steps 1 and 2
until all groups have been updated.

As noted earlier, a practical advantage of the updating algorithm
is that the simulations do not have to be regenerated when future
data becomes available. At the same time, by simulating clusters
of grid nodes at each step, as in the generalised sequential
Gaussian simulation or GSGS (Dimitrakopoulos and Luo, 2004),
the above implementation adds computational efficiency. The
updating capabilities (outlined above), however, have increased
storage requirements compared with methods that do not perform
updating, such as the GSGS.

A CASE STUDY AT A STOCKWORK GOLD
DEPOSIT

Deposit, data and characteristics

The data from a stockwork gold deposit is used here to explain
CSSR and the implementation above. In the deposit, most of the
mineralisation occurs in a quartz diorite intrusion, with gold in
narrow quartz/calcite/pyrite veins. There are 29 vertical drill
holes, at a spacing of about 25 m, in a 200 m x 200 m section of
the deposit. From the available 5 m composites, 496 are used to
generate the first set of realisations in CSSR (first dataset). Later,
an additional 18 inclined drill holes are used to update the
realisations from the first dataset, leading to the conditioning of
the simulated deposit models with 763 of the 5 m composites in
total (second dataset). To remove any bias from clustering, both
datasets have been declustered, using cell dimensions determined
from plotting means against block sizes. The declustered
statistics for the 5 m composites for both sets of data are shown
in Table 1 and Figure 2. The spatial distribution of gold for the
5 m composites is shown in Figure 3.
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FIG 2 - Declustered data histogram of both sets of data.
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TABLE 1
Declustered statistics for both sets of data.
Au (g/t)-29 vertical drill holes Au (g/t)-29 vertical +
18 inclined drill holes
No of data 496 | No of data 763
Mean 1.75 | Mean 1.66
Median 1.07 | Median 1.04
Standard deviation 4.20 | Sandard deviation 3.82
Coefficient of variation 2.40 | Coefficient of variation 2.30
Maximum 85.13 | Maximum 85.13
Minimum 0.0 | Minimum 0.0
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FIG 3 - Locations of the 29 vertical drill holes (left) and the
29 vertical + 18 inclined drill holes (right).

Variography for five metre composites

(29 vertical drillholes)

Both sets of data are transformed to normal scores, and
variography is performed on each set. Figure 4 shows the
experimental and model variograms of both datasets. The figure
suggests that the model in the vertical direction is defined very
well with just the original 29 drill holes and that addition of the
18 inclined drill holes does not alter the model. On the other
hand, the variogram horizontally is not equally clear, and
addition of the 18 inclined drill holes does not lead to any
substantial differences. Note that the addition of the 18 drill hole
data does not change the variogram structure.

Conditional simulation and updating

Conditional simulation is performed using CSSR with data from
the first 29 vertical drill holes in the first instance. Without loss
of generality, ten realisations are generated here within a study
area of 200 m x 200 m x 100 m and a grid spacing of 4 m x 4 m
x 4 m, leading to 65 000 nodes. The group size used is 2 x 2 x 2
nodes. To evaluate how the simulation of groups of nodes
coupled with the use of future data may affect the realisations,
the results from CSSR are benchmarked against results obtained
from sequential Gaussian simulation (SGS) (Deutsch and
Journel, 1998) using the same 29 vertical drill holes and
corresponding composites. For the benchmarking, the histograms
and variograms are compared, and the simulations generated
from the two different methods are compared visually.

Figure 5 shows two randomly selected realisations produced
by each method, CSSR and SGS, based on data from the 29
vertical drill holes. There are no visual differences in terms of
structures between the realisations from the two methods. The
histograms and variograms for the realisations generated by
CSSR and SGS are shown in Figure 6 and Figure 7. Both

Variography for five metre composites
(29 vertical + 18 inclined drillholes)
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FIG 4 - Experimental and model variograms of both datasets (normal scores).
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FIG 5 - Randomly selected Au realisations of a horizontal section of the deposit. The top two realisations were produced by CSSR
(pre-updating) and the bottom two by SGS.
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FIG 6 - Variograms of the CSSR realisations in the normal score space prior to updating (top) and variograms of normal score SGS
realisations (bottom), for the 29 vertical drill holes (first dataset).
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FIG 7 - Reproduction of histograms in the data space (29 vertical drill holes).
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FIG 8 - Selected Au realisations of the same horizontal section of the deposit as in Figure 5. The top realisations are produced by CSSR
after updating with new data and the bottom two by SGS and all data available.

methods appear to reproduce the data histogram and variogram
well, and no particular distinction in the results between these
two methods can be made in general.

In the next part of this case study, the realisations generated by
CSSR are updated with the data from the 18 inclined drill holes.
To facilitate the current example, this data is moved to the closest
nodes of the grid used. In a similar way to the case above, the
results from updating are then benchmarked against simulations
generated using SGS and the second dataset (which includes data
derived from both the 29 vertical and the 18 inclined drill holes).

Figure 8 shows the two updated realisations from CSSR and
two realisations generated using SGS for the above case. The
comparison of Figure 5 and Figure 8 shows that the updated

Orebody Modelling and Strategic Mine Planning

simulations, which use the new data, are different from the
realisations generated from the first dataset, due to the new data
in the updating. Figure 9 and Figure 10 present the histograms
and variograms after updating. As in the comparison for the
initial dataset, no distinction can be made between the two
methods based on the variograms and histograms.

COMMENTS ON PERFORMANCE

To facilitate a further understanding of practical issues of CSSR
and updating existing realisations in terms of computing time
related to the updating, the 5 m composites from the 29 vertical
drill holes were used to simulate fields containing 68 000,
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FIG 9 - Variograms of the realisations in the normal score space post-update, compared with experimental variograms of normal score
data (29 vertical + 18 inclined drill holes) and models.
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FIG 10 - Reproduction of histograms in the data space post-update (29 vertical drill holes + 18 inclined drill holes).

500 000 and 4 000 000 nodes with group sizes of 2 x 2 x 2,3 x 3
x 2 and 4 x 4 x 2 nodes. For the larger group sizes, a larger
search neighbourhood was used to maintain accuracy and prevent
artefacts from occurring (Benndorf and Dimitrakopoulos, 2007,
this volume). The generated realisations were then updated using
the 5 m composites from the 18 inclined drill holes. The time
required for the updating is compared with the time required for
a rerun of the simulations. Note that in the first instance, for the
first set of simulations, the future data locations within the
neighbourhood are actually previously simulated nodes. During
the second run when updating, the future data locations within
the neighbourhood become legitimate data values. The results,
summarised in Table 2, show that the update times are in the
order of 65 -77 per cent of the rerun times, depending on the
size of the field being simulated. Generally the larger the field,
the smaller the savings from updating. The savings from
updating are a balance between the computational cost of the
covariance matrix recalculation and the computational cost of the
data search and other operations.
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SUMMARY AND CONCLUSIONS

A new simulation method, termed conditional simulation by
successive residuals has been presented and examined in this
paper. The method enables the efficient updating of existing
simulated realisations, a characteristic of particular interest to the
simulation of orebodies. CSSR is based on the column-wise
decomposition of the covariance matrix. This decomposition
amounts to implementation of the simulation process with
successive conditional covariance matrices. In each successive
step of the simulation, random variables in a group are simulated
with an LU decomposition of a covariance matrix of updated
residuals of conditional covariances. The fast-updating aspect of
CSSR is implemented in this study sequentially, a process that is
found to perform well. Application of the approach to a
stockwork gold deposit supports this assessment and shows the
effect of the updating process on the realisations generated. A
comparison of the CSSR realisations with the realisations of the
deposit generated by the well-known sequential Gaussian
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TABLE 2
Relative update times for different field and group sizes T
Group size (number of nodes)
Field size Node 2x2%x2=8|3x3x2=18/4x4x2=32
spacings

68 000 4x4x4m 72% 69% 65%
500 000 4x4x4m 72% 76% 75%
4000000 | 4x4x4m 76% 77% 77%

f  Relative update time = time required for updating divided by time
required for rerunning the simulations.

simulation (SGS) shows the end results from these two methods
to be indistinguishable. The methods were compared initially
using a dataset composed of 29 drill holes and, subsequently,
using an updated dataset containing an additional 18 drill holes.
The performance studies have shown that the computing times
for updating are in the order of 65 -77 per cent of the rerun
times, depending on the size of the field being simulated.
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Fractal-Based Fault Simulations Using a Geological Analogue —
Quantification of Fault Risk at Wyong, NSW, Australia

J Scott1, R Dimitrakopoulosz, S Li% and K Bartlett*

ABSTRACT

The modelling of fault populations and quantification of fault risk is a
challenge for earth science and engineering applications, including
minerals and coal mining, tunnel construction, forecasting of petroleum
production, and selection of subterranean repositories for the disposal of
toxic waste. This paper discusses a new advance in the use of stochastic
fault simulation methods for the quantification of fault risk. The fractal
properties of a fully known fault population are used as an analogue of
the properties of an undiscovered fault population. The approach is
elucidated through the quantification of fault risk in a prospective
coalfield at Wyong, New South Wales, Australia, and incorporates spatial
patterns of available ‘hard” and ‘soft’ geological data. The method does
not find faults unequivocally; rather the output is a map of fault
probability. Simulations are found to be consistent with the available
information and are statistically and spatially reasonable in geological
terms. Significantly, the analogue approach provides a robust, quantified
assessment of fault risk using limited exploration information.

INTRODUCTION

Faults may have severe impacts in the mining industry.
Unexpected faulting can cause dilution and ore losses in
underground metal mines, shut downs and delays to production
in underground coal mines with consequent severe financial
losses, geotechnical hazards that impact upon safety, and so on.
Examples of the adverse effects of faults in mining are known.
For example, as recently as 2001, Longannet Deep Mine,
Scotland, incurred production losses in the order of 250 000
tonnes of coal as a result of unexpected faulting (BBC News,
2001). In addition to mining, fault risk quantification is an
important part of studies in a variety of earth science and
engineering projects including petroleum reservoir engineering,
groundwater, tunnel construction and the selection of
subterranean repositories for the disposal of toxic waste, where
fault risk may render a project infeasible.

To quantify the uncertainty in geological structures,
mathematical modelling frameworks using stochastic fault
simulation have been developed to take advantage of the fractal
characteristics exhibited by fault populations (Dimitrakopoulos
and Li, 2000). These methods do not identify faults
unequivocally; rather their strength lies in using all available
geological interpretations and exploration data to generate a
series of possible fault population realisations that are then used
to quantify the risk of faulting in a terrain of interest. Such
approaches are necessary because detecting subterranean fault
surfaces directly is difficult and uncertain, even when using
modern remote sensing technologies.

Simulation methods for fault populations based upon various
approaches including fractals have been developed in the
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modelling of petroleum reservoirs (eg Gauthier and Lake, 1993;
Munthe, More and Holden, 1993; Chiles et al, 2000; Mostad and
Gjerde, 2000; Holden et al, 2003) and have been linked to fluid
flow to forecast overall production performance. In the
simulation of fault populations in mining environments,
differences in data and engineering needs present an opportunity
for tailored fault simulation algorithms that can incorporate
qualitative geological interpretations. Such an algorithm is
presented in Dimitrakopoulos and Li (2000) and applications of
it in Li and Dimitrakopoulos (2002). This algorithm is based on
fractal fault size distributions and length-throw statistical
relations, combined with a probability field approach to
‘thinning’” a Poisson process so as to locate fault centres. The
method has been extensively tested, including back-analysis in a
mined-out part of an underground longwall coal mine
(Dimitrakopoulos and Li, 2001), showing excellent performance
in mapping locations of high fault risk as well as documenting
that geological fault maps tend to seriously under estimate fault
risk. The performance of the method relies upon hard fault data
from which robust estimates of the fractal characteristics are
obtained to determine the number, size and proportion of
undiscovered faults. Such hard data are traditionally acquired at
significant cost from sources such as high-resolution 3D seismic
surveys or dense drilling, and are not always available. An
alternative in the absence of hard fault data is to use suitable
geological analogues, a practice adopted in the petroleum
industry to infer spatial statistics in petroleum reservoirs (Walcott
and Chopra, 1991; Chiles ez al, 2000).

A coaliferous prospect at Wyong, New South Wales (NSW),
Australia, presents a not uncommon example of developing a
longwall underground mine where fault information is very
limited. The orientations, sizes and locations of unexposed faults
are not known within the prospect due to a variety of commonly
encountered factors, including the cost of data acquisition,
technical limitations and access restrictions. As a result, input
parameters for the fault simulation must be obtained elsewhere.
In this study, a novel approach to coalfield fault simulation is
presented where a well-known and geologically analogous fault
population in a nearby mined-out coal seam provides the fractal
properties used to make a robust, quantified assessment of fault
risk from limited exploration data within the area of interest.

In the following sections, relevant aspects of fractal theory are
described, the fractal fault simulation algorithm with analogues
is outlined, and issues of hard data, soft data and geological
analogues discussed. Then, a novel application at the Wyong
coalfield, NSW, Australia, is presented, including the mapping of
fault risk over the study area. Issues concerning the integration of
‘soft” data are discussed, including their use and effects. Finally,
conclusions and recommendations are presented.

FRACTAL FAULT SIMULATION WITH GEOLOGIC
ANALOGUES

Some aspects of fractal theory

The fractal properties of fault populations have been recognised
since the 1980s (eg King, 1983; Turcotte, 1986; Childs, Walsh
and Watterson, 1990) and have been investigated in numerous
studies (eg Marret, Ortega and Kelsey, 1999; Berkowitz and
Hadad, 1997). In general, the theory suggests that various fault
parameters are invariant with respect to scale or are
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‘self-similar’, providing a model that can be used for predictive
purposes. In fractal theory, fault size distributions (throw or
length) can be described by a power-law (fractal) model over a
wide range of fault size such that:

log(N,)=0 —PBlog(S) (D

where:

Ns is the cumulative number of faults of size greater than or
equal to fault size S

S iseither length L or throw T

o is a function of the fault density and when o is high, the
fault density is high

B is the fractal dimension of the fault population that defines
the relative number of large and small faults; when B is
high, the number of small faults is high relative to the
number of large faults

Techniques to obtain the fractal dimension [ are discussed
elsewhere (eg Main et al, 1999).

The fractal fault simulation process

The fractal fault simulation method outlined herein follows four
steps.

In the first step, using a given set of available data, the fault
simulation process begins with the inference of fault statistics
and fractal models, which are then used to define relative
numbers of larger-throw to smaller-throw faults, expected lengths
of faults of a given throw and the total number of faults expected
within a study area.

In the second step, the spatial density patterns of known faults
are mapped, and their underlying spatial continuity quantified
with variograms that are subsequently used in the simulation in
the fourth step. The process of mapping fault densities and
quantifying the underlying spatial patterns of faults tests the
reliability of fault interpretations made from multiple sources of
soft data, whilst at the same time it constrains the locations of
simulated faults in a manner consistent with the underlying
spatial patterns of the available data.

In the third step, soft data are numerically coded. This coding
is important as it allows all available geological data not used
elsewhere to be synthesised. In addition, it quantifies the
geological understanding of expert local geologists. Furthermore,
it provides a mechanism for updating simulation results as
exploration continues.

In the fourth step, fault populations are simulated with the
algorithm outlined below (Dimitrakopoulos and Li, 2000;
Dimitrakopoulos, in press):

1. Within a study area A, define a random path to be followed
in visiting locations x to be considered as centres of fault
traces. There are N locations {x; i=1,...,N} to be visited.
The N locations exclude the known fault centres.

2. Generate a realisation of an auto-correlated probability
field {p(x;), i=1,...,N} reproducing the uniform marginal
cumulative distribution function and the variogram 7,(h)
corresponding to the variogram 7Y,(h) of the uniform
transform of the fault densities, A(x;), in the study area A.
Integrate soft data when generating p(x).

3. Estimate at the first location x; the density of an
inhomogeneous Poisson process A(x;) using a planar
Epanecnikov kernel estimator.

4. Use the probability value p(x,) at location x; to thin a
Poisson point process from:

1—p(x,) <Mx,)/ A* 2
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where:

A*  is the density of a corresponding homogenous Poisson
point process and A(x;) < A*

If the above constraint is met, a fault centre exists at
x;, if not, the next node on the random path is visited
until the constraint is met.

5. Randomly select a maximum fault throw from the fractal
model of the fault size distribution in Equation 1.

6.  Grow the fault in opposite directions from the centre of a
fault trace by sampling randomly from the fault strike
distribution and using a distance step and directional
tolerance at each step until the fault length reaches the
length sampled from the length versus maximum throw
power-law model.

7. Repeat points three to six until the total number of faults
satisfies the fractal fault size distribution in Equation 1.

The algorithm outlined above is, in practice, used to simulate a
large number of realisations (or equally likely scenarios) of the
undiscovered fault population. Fault realisations are consistent
with the statistical characteristics of the fault data available,
spatial characteristics of local data and soft information
incorporated. An advantage of the algorithm is its capacity to
incorporate both ‘hard’ and ‘soft’ data, and thus utilise geological
understanding as well as meet specific engineering requirements
of the project. It should be noted that the combination of
simulated fault realisations can be used to generate probability
maps over a study area for faults of sizes of interest.

To aid understanding, the terms ‘hard’ data, ‘drill hole’ data
and ‘soft’ data are further defined. The definitions and examples
are articulated here with the case study that follows in mind but
without loss of generality for the method presented.

‘Hard’ data refers to the most reliable and complete set of fault
data available. Hard data encompass faults mapped during
mining, and the fault locations and maximum fault throws
considered to be known. ‘Drill hole’ data refers to faulting
detected in drill holes. These data are regarded as equally reliable
as hard data, but are incomplete. This is because, although fault
locations are known, no fault throw, strike or length information
is quantifiable. The term ‘soft data’ refers to faulting or faulting
trends interpreted from indirect observations such as the ones
discussed next. Soft data are further recognised as ‘linear’ and
‘trend’ soft data. So-termed ‘linear’ soft data encompass fault
interpretations from sources such as, for example, 2D-seismic
survey lines, air photos, drainage analysis, aeromagnetics, and
structure contours. The locations and orientations of the
interpreted faults are regarded as uncertain and no fault throws or
lengths are quantifiable. So-termed ‘trend’ soft data encompass
background-type information delimited by a polyregion, which is
used to identify regions of higher and lower fault susceptibility.
Examples are mapped stress directions, roof conditions, seam
splits and volcanics; interpretations of volcanics based on
aeromagnetics; interpretations of circular features based on aerial
photography; and expert local geologists’ interpretations of fault
trends and structurally anomalous regions. ‘Soft’ data are
regarded as both less reliable and less complete than hard data or
drill hole data.

Using geological analogues

It is common to find that available hard data are sparsely located.
To circumvent a paucity of available hard data, fractal fault
population statistics may be inferred from completely known and
geologically analogous fault populations. The fractal dimension
and size distribution models obtained can then be used as input
to the fault simulations of the undiscovered fault population.
Simulations are then consistent with the statistical characteristics
of the geological analogue, spatial characteristics of local data
and the soft information incorporated.
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Geological analogues have been used previously in the
modelling of atypical oil reservoirs (eg Research Intelligence,
2004; Ruf and Aigner, 2004; Cronin and Kidd, 1998) and
detailed outcrop observations of natural analogues have already
been incorporated into stochastic models and simulations of
fracture populations in petroleum and geothermal reservoirs
(Chiles et al, 2000). Natural analogues are attractive alternatives
for the study of fault populations both by academics and by
industry. Outcrop analogue investigations contribute to the
understanding of the architecture and behaviour of subsurface
hydrocarbon reservoirs (Ruf and Aigner, 2004). Representative
outcrops of reservoir rocks, or information culled from open-file
sources describing similar reservoir contexts, can reduce
uncertainties and increase confidence in geological models
(GeoScience Ltd, 2004).

In the application of geological analogues to fault risk
assessments, the key question is: Are there geological reasons to
expect a similar frequency of faulting in both the study area and
the analogue area? Where it can be shown that two areas exist
within the same structural domain and where geological controls
on fault development (such as layer thickness and the location of
basement structures) are consistent across both areas, a similar
frequency of faulting may be expected.

To be able to implement fractal models based on a geological
analogue in fault simulations of an unknown population, there
are two prerequisites:

1. the expected number of unexposed faults, determined from
the fractal model of the analogue, must be scaled to the size
of the study area; and

2. drill hole data or soft data must be available within the study
area to help constrain the locations of simulated faults.

CASE STUDY AT WYONG

The case study presented in this section pertains to work
conducted as part of pre-feasibility studies evaluating a
coaliferous prospect of Coal Operations Australia Limited
(COAL) at Wyong, NSW. The Wyong area, located within the
north-eastern margin of the Sydney Basin, contains the last
significant quantity of undeveloped, export-quality thermal coal

N

T 4km

resources in the Newcastle Coalfield, which in 2001 - 2002 saw
production of 20.4 Mt of raw coal. A number of collieries
currently mine coal seams to the immediate north of the study
area. Of particular importance to the evaluation of a potential
underground operation at Wyong is the presence of faults and
their possible effects on longwall operations and related
planning. Related key issues are the very limited access to the
study area for the collection of subsurface information, and the
need to assess fault risk from limited and incomplete hard
information within the study area. This made Wyong a
particularly suitable case for the use of geological analogues in
assessing fault statistics.

Geological setting of the Wyong area

The study area (Figure 1) falls within the southern part of the
Newcastle Coalfield, in the north-eastern part of the Sydney
Basin, NSW, Australia. The coal resources are contained within
the upper part of the Permian Newcastle Coal Measures. The
Lochinvar anticline and Hunter thrust provide regional
geological structural bounds to the west and north of the study
area respectively (Herbert, 2002). Southern and eastern structural
bounds are not well defined; however there is no evidence that
such a structural bound occurs within or between the prospect
and historic coal mines to the northeast. Locally, the lease area is
geologically continuous, separated only by three narrow
conglomerate channels that form seam-splitting bodies. Two of
these channels define the borders of the prospect. Local faulting
is predominantly normal. Some reverse and thrust structures are
known. The character of the faulting differs between the
northwest and the northeast trending orientations, with northwest
trending faults typically of smaller throw and more numerous
than the northeast trending structures. Previous work conducted
by COAL concluded that: ‘the density of northwest-southeast
trending faults and dykes exposed in mine workings to the
northeast is expected to be repeated through the project area’
(BHP Billiton Internal Report, 2002).

For this study, faults are grouped into two populations based
upon orientation. One included northwest trending structures and
the other northeast trending structures. In the interest of brevity,
only the results for the northwest trending population are shown
herein.

Legend: ===== Study area ----- Densely drilled part of study area

O Drillhole @ Faulted Drillhole

----- Soft data (various sources)

FIG 1 - (a) Available drill hole and faulted drill hole data within the study area. (b) Available linear soft data within the study area.
Interpretations of faults and lineaments based upon aeromagnetics, aerial photography, drainage patterns, recent
and reprocessed 2D-seismic and structure contours.
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Available data and the geological analogue

As previously mentioned, the limited number of hard data
available in the current study is typical of the early stages of
minerals exploration and also of projects where access or cost
restrictions apply. In place of hard data within the prospective
area, data analysis for fractal properties is conducted on an
analogue fault population. The fault population used as an
analogue was established in conjunction with expert local
geologists based on regional and local structural characteristics.
The data available on the geologically analogous fault population
used in this study are acquired from mapped faults in mined-out
historic coal mines approximately 9 km northeast of the study
area. The dataset is composed of 1159 normal faults and includes
measurements of fault locations, throw, length and orientation.
Normal faults are typically hinged, with dips ranging from 55° to
75° and maximum throws generally ranging from 0.5 m to 5.0 m
(occasionally up to 15 m) in their central section and zero at their
extremities. While uncommon, low-angle thrust and high-angle
reverse faults do occur along both northeast and northwest
trends. Figure 2 shows the spatial distribution and orientation of
fault traces encountered during historic mine workings. Note that
in the analogue used a heterogeneous spatial distribution of fault
traces and centres is evident, as is the clustering of faults within
discrete locations. The use of a suitable geological analogue
provides, in the absence of hard data in the study area, the best
possible alternative in understanding fault statistics and is
consistent with the known characteristics of local fault
populations.

In the study area, significant drilling data are also available to
record fault intersections. Figure 1 shows:

1. the available drilling data, highlighting fault-intersecting
drill holes; and

2. the sources of soft data available within the study area.

Soft data available from eighteen sources are split into groups
of linear and trend data, as described in a preceding section.
Lithology at Wyong could not be correlated with faulting and is
not used in this study. Expert local geologists incorporated stress
directions and amplitudes into fault trend interpretations.

FIG 2 - Fault traces of faults detected during historic mine
workings.
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Fault population statistics and fractal models

The northwest trending fault population included faults oriented
between 270° and 360°, with a mean orientation of 317° and a
standard deviation of 12°. Figure 3 shows the fault size
distribution obtained from the analogue fault dataset. It is well
defined by a single fractal model over an order of magnitude
from 1.0 m to 14.0 m maximum throw. The fractal model is
described by the equation shown in Table 1 in which T is the
fault throw; Nt is the cumulative number greater than or equal to
a given throw; o is the model intercept and P is the fractal
dimension. A [ value of 1.98 is within the range reported in the
technical literature (eg Cowie and Scholz, 1992). Scaling the
fractal model of the analogue to the size of the study area, the
number of northwest trending faults within the study area
expected to have a throw greater than or equal to 4.0 m is 30.
Scaling was necessary as the study area covers about 60 km?, and
the historic coal mines 31 km?.

TABLE 1

Power-law equation describing the fractal model of fault size
distribution.

Fractal Model
LogN, =—B1logT + o

Log Ny =—1.981log T + 2.67

The length-throw relationship is shown in Figure 4. The scatter
is most likely to be a consequence of sampling limitations. To
calculate a practical and realistic fractal model of the fault
throw-length relationship, a subset of the available data was used.
Available data were ranked according to fault throw and also
ranked according to fault length. Faults were included in the
subset if:

1. the throw rank approached the length rank, and

2. the maximum throw of the fault was greater than or equal
to I m.

The fractal model of the throw-length relationship is described
by the equation shown in Table 2, in which T is the fault throw; N
is the model slope; L is fault length and C is the model intercept.

Analogue Population

Cumulative Number vs Throw

<,
00 o
® 000041 25 1
*

0.75 4

0.25 -

-1 -0.250

-0.75 A

# Available Data _
5 4

¢ Throw > 1.0m

-1.75 -

Log (Cumulative Number/ km ?)

Log Throw (m)

FIG 3 - Fractal model of fault size distribution of geological
analogue.
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Analogue Population
Throw vs Length
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TABLE 3
Variogram model describing continuity of fault centres.

Model type | Direction | Sill | Range (m) | Anisotropy
ratio
Nugget 0
Structure 1| Spherical | Southeast | 0.0755 2210 0.87
(135)
Structure 2| Spherical | Southeast | 0.0293 2710 0.86
(135)
TABLE 4

Ranking of reliability of linear soft data within the study area by

consideration of discussions with expert local geologists and the

comparison of fault spatial patterns from soft data with those of
hard data and drill hole data (1 — most reliable, 7 — least reliable).

‘Linear’ soft data ranked by reliability Rank

Northwest population

2D Seismic (Trial)
2D Seismic (Jilliby Ck)

Seam split mapping

Reprocessed seismic

FIG 4 - Fractal model of the throw-length relationship of geological
analogue.

TABLE 2

Power-law equation describing the fractal model of the
throw-length relationship.

Fractal Model
Log Thax=Nlog (L) - ¢

Log (Tmax) = 1.0 log (L) - 2.05

Continuity of spatial patterns and incorporation
of soft data

Mapping and quantifying underlying fault spatial patterns is
necessary to constrain the locations of simulated faults and, in
turn, produce realistic fault simulations. The underlying spatial
correlation of fault locations within the study area can be
inferred from the density of fault-intersecting drill holes mapped
over the study area. Spatial patterns are modelled using
variograms and quantify the continuity in the spatial patterns of
known faults; they are used in generating the probability field in
step three of the fault simulation method described earlier.
Table 3 shows the variogram model used in simulations of the
northwest trending fault population at Wyong.

Numerating soft geological information

Soft geological information must be numerically coded for it to
be integrated into the fault simulation algorithm. In this process,
all available drilling and soft data are synthesised into a prior
probability map. The reliability of available soft data sources is
tested by comparing the underlying spatial patterns of soft data
interpretations to the underlying spatial patterns of
fault-intersecting drill holes within the study area. The soft data
sources are then ranked and weighted in conjunction with expert
local geologists. Tables 4 and 5 show the ranking of available
soft data. The final step before fault simulation is undertaken is
the generation of a prior probability map for fault locations. The
study area is divided into 200 m x 200 m grid cells, each with a
fault susceptibility determined from the soft and hard data
available. The prior fault probability map is used as input in step
two of the simulation algorithm described earlier.

Orebody Modelling and Strategic Mine Planning

Aeromagnetics

Aerial photography

Drainage analysis

BN RN B e N L N S S

Regional mapping

TABLE 5
Ranking of reliability of trend soft data by consideration of
quantity and type of available data used to define the trend
(1 — most reliable, 7 — least reliable).

‘Trend’ soft data ranked by reliability Rank

Northwest population

Geologists’ low risk zones

Geologists’ high risk zones

Field mapping

Mapped volcanics

Structural anomalies

Volcanic plugs (aeromagnetics)

SO [V (O N ¥ NG S U NN

Circular features (air photos)

Conditional simulation of faults

Fault simulations are generated over 60 km? within the limits of
the study area. Fifty fault realisations are generated in this study
and are used to quantify fault probabilities. Simulation results are
validated and the available data, power-law models of fault size
distribution, fault throw-length relationships and spatial
correlations are reproduced so as to comply with all data
available, including the geological analogue used. The
validations of the fault simulations are not presented here.
Figure 5 shows one result of using the fractal model of the
geological analogue for the fault simulation of the undiscovered
fault population. The simulated faults have a minimum throw of
2.0 m (a), and 4.0 m (b), and the fault population appears
geologically reasonable, with smaller faults clustered about
larger faults and distinct areas of higher and lower fault density
evident. En echelon arrangements of faults, typical of the
surrounds of the study area, can also be inferred from Figure 5.

Fault risk is calculated for each cell as the proportion of all
realisations in which a fault is generated within that cell. Figure 6
shows the probability map resulting from 50 fault population
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(a) Fault Realisation (b)
Fault Throw 2m — 4m

Fault Realisation
Fault Throw > 4m

1325245
North .
(m) . ‘..' ° .
L] o
Nen
1316445
331330 East (m) 339130 331330 East(m) 339130
Legend: ----- Simulated fault ® Available data ----Study area

FIG 5 - Maps of fault population simulations within the study area based upon fault characteristics at historic coal mines.
Fault size cut-off: (a) 2 m throw (b) 4 m throw.

(@) Quantified Fault Risk
Throw cut-off 2m
1325245 : 00200
20.0 -40.0
North m40.0-60.0
ort . m60.0 -80.0
(m) / m80.0 - 100.0
Fault Probability
1316445
331330 East (m) 339130
(b) Quantified Fault Risk
Throw cut-off 4m
1325245 0.0-200
20.0-40.0
m400-60.0
North m60.0-80.0
(m) m80.0 -100.0
Fault Probability
1316445
331330  East (m) 339130

FIG 6 - Maps of fault risk within the study area based upon fault
characteristics at historic coal mines. Fault size cut-off:
(a) 2 m throw (b) 4 m throw.

realisations at a cut-off of 2.0 m throw (a) and 4.0 m throw (b).
Existing faults are shown in black and the fault risk is shown
through a grey scale, with higher fault probabilities being darker
and lower fault probabilities being lighter. Unshaded parts of the
study area have a very low fault probability.

The fault probability map indicates that coal resources are
unlikely to be affected by northwest-trending structures. Mine
planners are able to use the fault probability map to reduce the
risk of encountering structural hazards and impediments by
focusing early stages of mining into low-risk areas as well as
orienting mine layouts in a way that the effects of faulting are
minimised. Further exploration may be targeted to the parts of
the study area that are neither classified as high risk nor low risk
using the available data.
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COMMENTS AND CONCLUSIONS

A new approach to the quantification of geological uncertainty
using limited exploration data has been presented in this paper.
Fractal-based fault simulations are conducted using fractal
characteristics of an analogue fault population and available soft
data. A series of simulations are generated, and the probability of
faulting for any fault size of interest within the study area
represents the corresponding quantified fault risk.

When attempting to characterise geological fault populations,
technological limitations, access restrictions and the expense of
data collection can all impede data acquisition and understanding
of fault uncertainty. In such circumstances, the use of geological
analogues to assess fault risk has two main advantages:

1. the quantification of fault risk, rather than the identification
of faults per se, even beyond the resolution limits of
seismic and into areas that are otherwise inaccessible for
social, environmental or logistical reasons; and

2. the incorporation of hard data, drill hole data and soft data
into the quantification of fault risk such that the continuity
of fault spatial patterns within the study area and/or domain
of the geological analogue are incorporated into fault
population simulations.

A case study was conducted at Wyong, New South Wales,
where sufficient analogue fault information was available from
historic mine workings located 9 km to the northeast of the
prospect. It is possible to simulate a fault population in an area
where minimal data is available using the models of fault
orientation, throw and length inferred from a geological
analogue. The use of the known fault population as a geological
analogue was considered appropriate given the geological
continuity that exists between the study area and the historic
mine site. The algorithm successfully utilises the analogue fractal
models of fault size distribution, and simulations successfully
reproduce the spatial correlations of the available data and are
constrained by the faulting density and susceptibility trends
identified by expert geologists or drilling. The results show that
these simulations can be used to assess the probability or risk
that an area is faulted. This is determined from the proportion of
realisations in which a fault is generated at a given location.

Fault simulations of a northeast trending population are shown.
Based on many simulations, fault risk is very low (<20 per cent)
over the majority of the study area when a cut-off of 4.0 m fault
throw is used and low (mostly <40 per cent) when a cut-off of
2.0 m throw is used. Fault probability maps can be used to
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display the risk of undetected faults, identify those areas
sufficiently explored and those in need of extra investigation,
compare risk at different locations, and enable decision-makers
to choose an appropriate level of risk. Future work could address
the uncertainty associated with fault interpretations from seismic
surveys and undertake back-analysis of fault risk quantified using
a geological analogue.
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The Use of Conditional Simulation to Assess Process Risk
Associated with Grade Variability at the Corridor Sands Detrital

limenite Deposit, Mozambique

M Abzalov1 and P Mazzoni2

ABSTRACT

The Corridor Sands deposits represent the largest known economic
resource of titanium dioxide minerals. The West Block of Deposit 1 alone
contains a measured and indicated resource of 1.7 billion tonnes at
4.14 per cent ilmenite. Total resources in the project are inferred to be
about 16 billion tonnes containing five per cent total heavy minerals
(THM) of which about half is expected to be ilmenite.

A geological model for the West Block was established to describe the
geological variability of the mineralised sand complex, and to provide a
framework for the resource modelling. Six geological domains were
recognised from distinct colour, grain size, silt content and mineralogy
differences. The delineation of domain boundaries in the geological model
was used to constrain the variography and grade interpolation used to
derive the resource model. While the resource model for West Block
carries a high degree of confidence, it is recognised that the drilling density
is such that there will be uncertainty in the model on the predictability of
local grade variations (on a daily or weekly production basis).

A conditional simulation study was conducted to examine the possible
risk at the front end of the plant for local grade variability to exceed the
primary concentrator (PCP) tolerance limits. The study focused on silt
and THM grade in Domain 1 as the two variables of greatest concern to
the PCP. The work demonstrated that for a selective mining unit (SMU)
size of 10 m x 10 m x 12 m, there will be no issues with the PCP ability
to handle silt variability in ROM at the designed maximum tolerance
limit of 25 per cent silt. At a lower plant feed tolerance of 20 per cent
maximum silt then about 1 in 3 SMU of Domain 1 ROM could be
expected to exceed this. In-pit blending with ore from domains with
lower silt content would be required to control PCP feed composition. For
Domain 1 THM, the simulations show that the optimal THM grade range
of six per cent to 15 per cent will be regularly exceeded. The PCP feed
rate can be slowed to accommodate these grade ‘surges’ even if in-pit
blending options were not available.

INTRODUCTION

This paper documents the application of conditional simulation
at the Corridor Sands heavy mineral sand deposit located in the
south-eastern Mozambique (Figure 1).

A distinct feature of the deposit is the presence of an abundant
<45 pm ‘silt fraction’ thought to represent fine weathering
products of the original mineralised sand. The primary
concentrating plant (PCP) is designed to run continuously at up
to 25 wt per cent ‘silt” and 15 wt per cent THM grades. It can
cope with ‘silt’ grades above 25 wt per cent however this can
lead to loss of process efficiency and additional process cost such
as excessive flocculant consumption. ‘Silt’ grade of 3 m drill
samples can occasionally exceed 25 wt per cent which suggests
that average silt grade of small volumes of ore, such as selective
mining units (SMU), can exceed the PCP tolerance limits.

To assess the risk of delivering ore with ‘silt’ or THM grades
exceeding the PCP tolerance level, the spatial distributions of
these variables have been modelled using the sequential Gaussian
simulation (SGS) (Goovaerts, 1997) algorithm implemented
within the ISATIS software (Bleines et al, 2001).
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The SGS method has been primarily applied to confirm that
the PCP as designed is capable of dealing with short-range grade
fluctuations in the resource. Several sizes of the SMUs have been
tested in this study to assess dependence of the recovered grade
on the mining selectivity. A secondary outcome of the work was
a comparison of the conditional simulation model with the
ordinary kriging estimates as an independent validation of the
global resource estimation.

PROJECT BACKGROUND

The Corridor Sands Project is based on the very large deposits of
ilmenite bearing heavy mineral sands near the town of Chibuto in
southern Mozambique (Figure 1). The deposits are about 190 km
north of the capital city Maputo and between 20 and 60 km
inland from the Indian Ocean. They collectively represent the
largest known resource of ilmenite. Deposit 1 alone contains
measured and indicated resources of 2.7 billion tonnes at four
per cent ilmenite. Total resources are in the order of 16.5 billion
tonnes at five per cent THM of which about half is expected to
be ilmenite. The deposits were discovered in 1997 during
exploration of Pleistocene dune sands along the east coast of
Africa. Exploration subsequently focused on the apparently
largest and highest grade Deposit 1.

Three drilling campaigns were completed. Aircore drilling on
1 km spaced N-S traverses in 1998 established inferred resources
at Deposit 1. Aircore drilling on 250 m x 125 m, WNW oriented
grids during 1999 - 2000 established measured and indicated
resources for the East Block and West Block of Deposit 1.
Aircore and triple tube diamond drilling during 2001 - 2002
established proven and probable reserves at West Block
sufficient for the first 25 years of mining. The initial mining area
was drilled on 100 m x 100 m centres and some detailed 25 m
and 50 m grids and crosses were drilled to assist with the
variography. About 1200 holes for 80000 m have been
completed at Corridor to date of which approximately 55 000 m
has been into West Block. A bankable feasibility study (BFS) of
the deposit was completed by WMC Resources in 2002.

The Project envisages the establishment of a fully integrated
heavy mineral sands mining, mineral processing and
beneficiation  operation together with its  associated
infrastructure, including an export facility for shipment of final
products. An open pit mine is planned as a conventional truck
and shovel operation delivering ore from free digging faces to a
two-stage mineral processing plant. A fleet of 100 t trucks will
be used for the first five years of production then 200 t trucks for
the remaining mine life. The PCP will utilise trommels and
desliming cyclones to remove the oversize and silt (<45 um)
fraction. Heavy minerals are recovered from the remaining sand
by wet gravity spirals. The magnetite is stripped off magnetically
to produce a heavy mineral concentrate (HMC). The valuable
heavy minerals, ilmenite, zircon, rutile and leucoxene are then
separated in the mineral separation plant (MSP). A smelting
complex located adjacent to the mining and mineral processing
operations will upgrade the ilmenite to a titanium dioxide slag
containing about 85 per cent titanium dioxide, together with a
high purity foundry iron product. Sale of slag to pigment
producers and iron to foundries will provide the bulk of the
project revenue. A layout of resources and planned infrastructure
at Deposit 1 is shown in Figure 1.
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FIG 1 - Corridor Sands Deposit 1 — resources and planned infrastructure.

GEOLOGY

West Block structure

Six geological Domains were recognised during geological
logging of drill holes, mapping of the trial mining pit, silt and
THM grade interpretation. These six domains show distinct
colour and grain size differences as well as demonstrably
different mineralogy. They were numbered 1 to 6 from surface
down. Subsequently, Domains 1A, 2A, 4A and 5B were found to
have consistently distinct silt and THM contents and spatial
distribution sufficient to warrant subdividing them out of the
original domains. Both the geophysical wire line logging data
and the mineralogical data support the definition and
identification of the individual domains. The domains are
illustrated in Figure 2.

The domains have been shown to be laterally continuous and
can be correlated from section to section along the strike of West
Block. In gross morphology the individual sand bodies that
represent each of the domains are sheet like bodies with lens,
prism (wedge) or ribbon geometries. In cross section Domains 1
to 5 make up a wedge of variably mineralised stratigraphy, which
thickens south eastwards to over 140 m. They apparently
accumulated over a NE striking SE facing bank in the underlying
Domain 6. The contacts between the domains are gently
undulating rather than planar and irregular trough and fill like
contacts are visible in the trial pit mined for metallurgical bulk
samples. The domains are essentially stratigraphic units
representing a superimposition of different depositional facies
and post depositional pedogenic weathering processes, thus they
can be regarded as distinct geological units. Contacts between
the domains are unconformable or low angle unconformities
each representing either a hiatus in deposition or the erosion of
the underlying domain prior to the deposition of the overlying
sequence. Sharp contacts and textural differences between the
stratigraphic units are clearly visible in the trial pit.
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The depositional breaks are sometimes accompanied by
evidence of soil forming process including induration. Contacts,
where seen in the pit, are usually sharp but often appear
gradational in aircore holes. In diamond core, contacts can
appear gradational, inter layered or sharp and sometimes are
accompanied by local colour mottling.

The domain boundaries from the geological model were
critical in constraining the variography used to derive the
resource model. Similarly the domain data allowed more robust
estimates for the valuable heavy minerals because the geology
constrains the distribution patterns for crude ilmenite, zircon and
rutile in West Block.

West Block stratigraphy

Domain 1A represents a distinct silt-depleted zone which mostly
appears to drape over Domain 1 following the current
topographic surface. It is loose and unconsolidated. Domain 1A
is interpreted as a modification of Domain 1 related to the
current land surface and pedogenic development since deposition
of Domain 1.

The main visual distinguishing feature of Domain 1 is its
bright red colour and high silt content. The origin and
depositional environment of this unit is interpreted to be aeolian
but original bedding is not obviously preserved. Domain 1
extends over all of the West Block deposit as a gently undulating
blanket and is a major host of the ilmenite mineralisation. The
thickness of this unit lies mostly in the range of 30 m to 40 m.

Domain 2 and 2A are variants of the same sandy wedge that
separates the more silt-rich Domains 1 and 3. It extends over
most of West Block with the pinch out position running parallel
to but several hundred metres inside the NW edge of West Block.
Domain 3 is a very distinctive unit with a dark red colour and a
high to very high silt content. It is also the most competent unit
and in the trial pit can be seen to be variably indurated.
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FiG 2 - Geological section — West Block initial mining area.

Domain 4A is the more silt rich and higher THM grade variant
of 4. Together they form a south eastwards opening wedge of
essentially lower grade sandy material separating high silt
Domain 3 from the underlying Domain 5.

Domain 5 is a largely sandy unit although the silt content tends
to increase northwards. It usually contains abundant heavy
minerals and grades of up to 40 per cent THM over 3 m intervals
have been intersected in drilling. One of the most striking
features of Domain 5 in the pit is the presence of abundant black
manganiferous rhizoconcretions (rhizoliths). These are made up
of normal Domain 5 sand, which has been cemented by a
mixture of manganese oxide and witherite. The overall geometry
of Domain 5 is that of a flat ribbon with an almost sigmoidal or
lozenge-shaped cross-section on some sections. It runs north
eastwards along the full length of West Block dipping at about
four degrees to the southeast. This Domain could be interpreted
as a littoral sand facies and its general geometry and relationship
to underlying Domain 6 supports this. Domain 5B has essentially
been distinguished as a variant of 5 and usually underlies
Domain 5 with a gradational THM grade decrease or occurs as a
lateral grade transition.

The upper contact of Domain 6 coincides with the base of
mineralisation, or more correctly, with a transition to low or very
low grades of THM (<2 per cent). Low silt content and a yellow
to orange colour is typical of this domain. In general it is coarser
grained than the overlying units and includes some pebble bands.

West Block mineralogy

The mineralogy and chemistry can be considered in terms of
mineralised sand comprising silt (<45 um), oversize material
(>1 mm), light sand, and THM. The heavy minerals can then be
subdivided into magnetic fractions. The mineralogy of the ‘crude
ilmenite’, and that of the ‘non-magnetic’ fractions, which contain
the rutile and zircon, are the important aspects for the recovery
processes.
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The heavy mineral component comprises varying proportions
of magnetite, ilmenite, altered ilmenite, haematite, goethite,
leucoxene, chromite, rutile, anatase, epidote, pyroxene,
amphibole, andalusite, staurolite, zircon, sphene, monazite,
garnet and kyanite. The valuable heavy minerals (ilmenite, rutile,
leucoxene and zircon) are generally finer grained than the other
heavy minerals and are finer grained than the host sand.
Magnetite, ilmenite, altered ilmenite, and chromite make up the
bulk of the ‘magnetic’ and ‘crude ilmenite’ fractions. Rutile,
zircon and andalusite are essentially confined to the
‘non-magnetic’ fraction. The remaining heavy minerals make up
the bulk of the ‘magnetic-others’ fraction.

STUDY SUMMARY

Methodology

Sequential Gaussian simulation (SGS) is a Gaussian based
method of conditional simulation (Chilés and Delfiner, 1999;
Goovaerts, 1997). This method uses data transformed to a
Gaussian distribution with a zero mean and a unit variance
(ie Gaussian anamorphosis) which is then used to simulate
spatial distribution of the variable of interest. Simulated
realisation is achieved by defining a random path through the
grid nodes including the conditioning data, which has been
migrated to the nearest grid nodes and considered as hard data. A
sequential neighbourhood of the target node is established which
includes hard data (original data) and already simulated nodes
used to calculate a local conditioning distribution and derive a
simulated value at the target node. The simulated value is
determined as:

Z,=7Zx+ogU
where:
Zs  is the SGS simulated value

Zk is the simple kriging estimate
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ok is the standard deviation of the kriging estimate
U  isarandom normal function

As the SGS method assumes multiGaussian property of the
studied random variable and its diffusive distribution model,
these assumptions need to be tested prior to application of the
modelling methodology. Border effect can be tested by
calculating the ratios between cross-variograms of the indicators
and indicator variograms (Abzalov and Humphrey, 2002, 2003).
MultiGaussianity can be tested by calculating variograms of
indicators calculated for the chosen data percentiles and
comparing them with indicator variograms calculated for the
same percentiles of the Gaussian transformed data (Goovaerts,
1997).

Implementation

Data analysis and processing

All data used in this study have been obtained from air-core
holes drilled on 100 m x 100 m centres through the IMA area
and locally on 25 m crosses. All holes has been sampled at
regular 3 m intervals and assayed for ‘silt’ and THM contents.
The study database includes 1246 ‘silt’ assays and 1244 THM
assays (Figure 3).

0.100
0.075
0 0
0.02°F
4] 4]

FIG 3 - Histograms (non-declustered data) of the THM and ‘silt’
grades of the 3 m drill hole samples collected from the IMA,
Domaini1 + 1A.
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Data, prior to their Gaussian transformations, has been
declustered to remove bias associated with clustering of the holes
around high-grade areas. A cell declustering method (Goovaerts,
1997) implemented in the Isatis software has been applied in the
present study. The optimal declustering results have been
obtained using 150 x 150 x 3 m moving ‘window’. Statistical
distribution characteristics of the raw and declustered assays are
summarised in the Table 1. A normal score transformation model
has been numerically derived by applying the Hermite
polynomials expansion technique. A frequency inversion method
(Bleines et al, 2001) was utilised for Gaussian transformations of
the raw data.

TABLE 1

Comparison of the declustered and non-declustered (raw) assays.
Initial mining area, Domain 1 + 1A selection.

Raw data Declustered data
THM Mean 8.36 7.89
St Dev 2.85 2.52
“Silt’ Mean 19.16 18.82
St Dev 3.9 3.9

Grade continuity study (variography)

Grade continuity has been analysed by calculating variograms of
the ‘silt’” and THM grades and their transformed values. Data
transformations included calculation of the grade indicator
values and Gaussian transformations. Directional variograms of
the Gaussian variables and their models are presented in Figures
4 and 5. These variograms (Figure 4) show a noticeable
anisotropy with a major anisotropy axis oriented at 100°SE.
Indicator variography, which is routinely used by authors to
enhance the grade distribution patterns, accords well with the
findings of the normally transformed data variography.

Simulation parameters

Sequential type of the search neighbourhood has been utilised for
application of the SGS methodology. The search parameters are
as follows: NX = 70, NY = 70, NZ = 1, where NZ, NY and NZ
are the numbers of grid points extension of the search in the three
axes of the grid. Maximum number of data nodes has been
limited to 35, maximum number of simulated nodes is 27.
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FIG 4 - Experimental semi-variogram (solid lines) and fitted
models (dashed lines) of the normally transformed ‘silt’ values
(SILT_GAUSS) calculated along the major and semi-major
anisotropy axes. Three-metre samples, Domain 1 + 1A, IMA.
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FIG 5 - Experimental semi-variogram (D1) and fitted model (M1) of
the normally transformed THM values (THM_GAUSS) calculated
along the semi-major anisotropy axis. Three metre samples,
Domain 1 + 1A, IMA.
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Initially the grades have been simulated to 5 x 5 x 3 (m)
blocks which later have been combined to a larger blocks, 10 x
10 x 12, 25 x 25 x 12 and 125 x 62.5 x 3 (m) representing the
different SMU sizes.

The simulated ‘silt” and THM values of the 125 x 62.5 x 3 (m)
blocks have been compared with their kriged block grades
obtained by ordinary kriging (OK).

RESULTS AND DISCUSSION

A range of SMU sizes (5 x5 x 3,10 x 10 x 12, 25 x 25 x 12 and
125 x 62.5 x 3 (m)) were tested to assess the effect of mining
selectivity on recovered grade and assess the risk of delivering
ore with high silt levels.

Comparison of OK and SGS grade estimates

Comparison of the average simulated ‘silt’ and THM grades and
their kriged values is shown in Table 2 and presented as
scattergrams in Figures 6 and 7.

Global THM and ‘silt’ grades for Domain 1 + 1A in the IMA
area, estimated by OK method and independently modelled by
SGS method, are statistically insignificant. Differences in the
mean grades obtained by the two methods (OK and SGS) were
0.1 wt per cent of SILT (ie 0.53 per cent of the kriged mean) and
0.22 wt per cent THM (ie 2.27 per cent of the kriged mean).

FIG 6 - Scatter-diagrams comparing THM block grades estimated by ordinary kriging (OK_THM) with their grades obtained by
conditional simulation (SGS model). MEAN = average grade of the 40 equiprobable realisations, {00018} = 18th realisation representing
25th percentile of the ccdf, {00005} = 5th realisation representing 50th percentile of ccdf and {00033} = 33rd realisation representing
75th percentile of the ccdf.
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FIG 7 - Scatter-diagrams comparing ‘silt’ block grades estimated by ordinary kriging (OK_SILT) with their grades obtained by conditional
simulation (SGS model). MEAN = average grade of the 20 equiprobable realisations, {00019} = 19th realisation representing 25th
percentile of the ccdf, {00007} = 7th realisation representing 50th percentile of ccdf and {00018} = 18th realisation representing

75th percentile of the ccdf.

TABLE 2

Comparison of the OK estimates with SGS model. Domain 1 + 1A,
IMA, Corridor Sands.

SILT +2c THM + 20
OK 18.97£5.12 7.93+3.84
SGS 19.07 £5.38 8.15+3.94
Variation -0.10 -0.22
% of OK estimate -0.53 -2.77
Correlation coefficient 0.93 0.97

Recoverable resource estimations

The resources recoverable at the given SMU sizes have been
simulated and presented as grade-tonnage diagrams (Figures 8
and 9). These results suggests that recoverable ‘silt’ grade seems
to be sensitive to the chosen size of SMU (Figure 9). In
particular, if Unit 1 + 1a (IMA area) were mined using 10 x 10 x
12 m SMU sizes, five per cent of the mined ore blocks would
have ‘silt’ grade exceeding 23 wt per cent.

Spatial distribution of the THM and ‘silt’ values is presented
on bench plans showing grade distribution by simulated 5 x 5 x

100
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6 m blocks (Figures 10 and 11). The simulated plans shows a
significant heterogeneity of the ‘silt’ distribution. THM values
are distributed more compactly than ‘silt’ (Figures 10 and 11)
These differences in the spatial distribution patterns accord well
with the simulated grade-tonnage relationships of the THM
grades (Figure 8) which are less sensitive to changing the SMU
size than ‘silt’ grade (Figure 9).

Risk of exceeding plant tolerance thresholds

The multiple realisations of the SGS model have been used to
construct a probability model estimating the likelihood of SMU
grades being below 6 wt per cent THM or exceeding the plant
tolerance limits for ‘silt’). Results of the probabilistic estimation
of the grade ranges are summarised in Figure 12.

Conditional simulation study suggests that risk of delivery
high-‘silt’ (>25 per cent) ore from the Domain 1+ 1A (IMA
area) is negligible if 10 x 10 x 12 m minimum mining blocks are
used. On the other hand, risk of exceeding ‘silt’ tolerance limits
rapidly increases if the actual PCP tolerance is lower than 25 wt
per cent ‘silt’. Thus, approximately one third of the total 10 x 10
% 12 m blocks are characterised by a very high probability (0.75)
of exceeding 20 wt per cent ‘silt’ grade (Figure 12).
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Grade - Tonnage Relationships: IMA, domain 1 + 1A
10 .

—4A— 5x56x3
---4-- 10x10x12

TONNAGE (% of total*)

Cut Off Grade (THM, wt%)
*100% = 27mln. tonnes

FIG 8 - THM grade-tonnage curves, calculated for the different
SMUs.
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FIG 9 - SILT grade-tonnage curves calculated for the different SMUs.
Dashed line 5 x 5 x 3 m blocks; solid line 10 x 10 x 12 m SMU.
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FIG 10 - ‘Silt’ distribution, IMA area, bench 111-117 m RL. Average ‘silt’ values of the 5 x 5 x 6 m blocks as modelled by SGS method.
A — bench location, B — simulated grade values (back-ground) and drill hole data (symbols).

Study of the THM distribution shows that approximately nine
per cent of the 10 x 10 x 12 m blocks can be below 6 wt per cent
THM. Risk of exceeding 15 per cent THM grade in the ore
parcels is small, as conditional simulation results shows that less
than one per cent of SMU will contain high-THM grades
(>15 per cent) (Figure 8). However, compact distribution of the
high-THM mineralisation (Figure 11) suggests that the PCP feed
rate will need to be slowed to accommodate these grade ‘surges’,
particularly if in-pit blending options are not available.

Orebody Modelling and Strategic Mine Planning

SUMMARY AND CONCLUSIONS

Differences of the mean grades obtained by OK and SGS
methods are 0.1 wt per cent of ‘silt” (ie 0.53 per cent of kriged
mean) and 0.22 wt per cent THM (ie 2.27 per cent of the kriged
mean). Similarity of the global means and also the strong
correlation between the block grades obtained by OK
methodology and the SGS technique support the validity of the
OK model.
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FIG 11 - THM distribution, IMA area, bench 111-117 m RL. Average THM values of the 5 x 5 x 6 m blocks as modelled by SGS method.
A —bench location, B — simulated grade values (background) and drill hole data (symbols).
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FIG 12 - Percentage of blocks versus probability of exceeding the
threshold diagram, showing risk of exceeding 25 wt per cent and
20 wt per cent ‘silt’ values for 10 x 10 x 12 m blocks (SMUs) of
IMA Domain 1 + 1A.

The conditional simulation suggests that the risk of delivering
high-‘silt’ (>25 per cent) ore from the Domain 1+ 1A (IMA
area) is negligible if 10 x 10 x 12 m minimum mining blocks are
considered.

The risk of exceeding ‘silt’ tolerance limits rapidly increases if
the actual tolerance is lower than 25 wt per cent ‘silt’.
Approximately one third of the total 10 x 10 x 12 m blocks are
characterised by 75 per cent probability of exceeding a 20 wt
per cent ‘silt’ threshold.

The simulated grade distribution plans reveal significant
short-range variability and discontinuity in the high-silt’ zones.
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Risk Management Through the Use of 2D Conditional
Co-Simulation at an Underground Gold Mine in Western Australia

M Dusci', D R Guibal?, J S Donaldson® and A G W Voortman®

ABSTRACT

Geological and resource variability and uncertainty is a fundamental
source of risk, often having the greatest economic impact on a mining
project. Grade variability should be quantified to enable optimisation of
underground mine design and associated financial decisions. The
management of risk associated with resource uncertainty at the Argo
underground gold deposit, through the implementation of 2D conditional
co-simulation, has led to better informed mine planning decisions.

The Argo meso-thermal lode gold deposit is located in the Archaean
Yilgarn Block of Western Australia owned by Gold Fields Ltd. The
orebody is positioned within a large, structurally complex shear system in
the Kambalda-St Ives structural corridor, below a 60 m thick sequence of
Tertiary sediments. Production history comprises five open pit mining
stages and the deposit is currently being mined from underground.
Resource estimation of the Argo deposit integrates two different
estimation techniques to reflect orebody uncertainty and differing drill
densities; a 3D ordinary kriged (OK) estimation has been utilised in areas
of greater drill densities and geological confidence (the upper part of the
deposit). For the deeper portions of the mine, where the drilling density
makes it difficult to use OK for block sizes appropriate to mining, a 2D
conditional co-simulation is used for modelling horizontal orebody
thickness and gold accumulation. This is based on the assumption that
there is no mining selectivity across structure, which is reasonable as the
horizontal thickness is generally less than 20 m. The simulation method
used is the Gaussian-based Turning Bands method, where variograms and
cross-variograms of thickness and accumulation are reproduced, giving
an accurate picture of their variability at deposit scale. A total of 100
realisations are calculated at a 2.5 m x 2.5 m spacing. These results are
then regrouped into 10 m x 15 m mining units, used for mine planning.

The 2D conditional co-simulation has been integrated into the mine
planning stage with incorporation of mining parameters into the
simulation. This has enabled the simulation to reflect the probability of
achieving ‘stope evaluation cut-off grades’ as a result of grade
uncertainty. The simulated model forms a fundamental part of optimising
the underground mine design and managing risk at the Argo gold deposit.

INTRODUCTION

The Argo gold deposit is located 25 km southeast of Kambalda
within the Archaean Yilgarn Block of Western Australia and is
owned by St Ives Gold Mining Company, a wholly owned
subsidiary of Gold Fields Ltd of South Africa. The orebody was
discovered by WMC in 1991 from aircore drilling an airborne
magnetics target over the Condenser Dolerite Unit and is
positioned within a large structurally complex shear system in
the Kambalda-St Ives structural corridor (Figure 1). Numerous
mineralised surfaces have been mined from open pit and
underground. Mining at Argo is currently underground from four
main surfaces and current reserves are over 4.6 Mt at 5.7 g/t Au
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for 845 koz, with a total mineral inventory in July 2004 of more
than 8 Mt at 6.4 g/t for 1.7 Moz.

Production history at Argo comprises five open pit mining
stages since 1994, terminated at the end of 2003. Underground
development commenced in July 2002 and is presently in
operation. Access to the four main underground ore surfaces is
by a decline starting from within the open pit approximately
100 m below the surface. The underground phase is planned to
operate for seven years, mining a total reserve of 2.7 Mt at 7.1 g/t
Au for more than 620 koz. Based on a gold price of $550/0z the
underground mine has a NPV of $61 M.

As part of continued exploration of the significant gold field, a
large underground drilling program in excess of 19 000 m was
undertaken during 2003 and 2004. It probed additional ore
surfaces in the footwall. This program has delineated in excess of
175 koz in Indicated Resource and 200 koz in Inferred Resource
at a 3.5 g/t Au cut-off. More than 100 koz is projected as further
down-dip potential. There is significant potential to increase the
reserve and resource with increased underground exploration.

The rationale for using a form of co-simulating grade and
thickness of mineralisation is that these parameters form the
basis for underground mine design and therefore greatly affect
the risks related to economic extraction. To make appropriate
design decisions, the mine planner has to be aware of the impact
of this risk, both positive and negative, on the outcome.
Managing these risks should be based on the understanding that
they reflect a potential upside as well as downside, which is a
fundamentally different approach.

LEGEND
N = Proterozoic Dyke

(G O

»'

Granioid

] Merouai Fomation
D Black Flag Group

Dolerite (inchudes
Condenser, Junction
Dolerite

Paringa Basalt
Kapai Slate

Defiance Dolerite
Davon Consols Basatt

D Kambalda Komatiite
[j Lunnon Basalt

FIG 1 - Location plan showing the Argo deposit within the highly
mineralised Kambalda-St Ives structural corridor, close to the
St Ives Mill.
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GEOLOGY, STRUCTURE AND MINERALISATION

The Argo deposit is an Archaean meso-thermal lode gold
deposit, positioned on the western limb of the Kambalda-St Ives
antiform 25 km to the south-east of Kambalda. The Condensor
Dolerite, a 500 m thick subvertical to SW dipping differentiated
sill, hosts the mineralisation at Argo. The Condenser Dolerite is
stratigraphically equivalent to the Golden Mile Dolerite and has
intruded along the contact between the Paringa Basalt and Black
Flag Beds. The most differentiated section of the dolerite is the
most important host for mineralisation.

Gold mineralisation at Argo is predominantly confined to the
Argo shear (Al mineralised surface, Figure 2). The Argo shear is
north striking and west dipping, extending to more than 800 m
down-dip. The shear system extends over a 1 km strike and
attenuates at the contact with the Paringa Basalt to the north, and
the Black Flags Beds to the south. Two east-west trending
subvertical Proterozoic dolerite dykes cross-cut the system. The
south end of the deposit is covered by a sequence of Tertiary
sediments up to 60 m thick.

Different types of gold mineralisation are evident at Argo, with
the majority of metal sourced from primary shear-quartz lode
hosted mineralisation. Mineralisation is also hosted in a
high-grade paleo-placer hosted deposit at the base of the Tertiary
cover sequence, and supergene mineralisation within the Tertiary
sediments and Archaean regolith.

Gold mineralisation at Argo resulted from complex interaction
between structural and host-rock controls. The development of
multiple shear structures in the Argo deposit increased
permeability and localised hydrothermal fluid flow through the
Condenser Dolerite. Rheology and iron chemistry enabled
fluid-wallrock redox reactions to occur, which played an
important role in localising mineralisation (Gressier and Kolkert,
1995).

o 2
SRR e
. w :
- eE
= 0

e R A = 3

FIG 2 - Plan map of the Argo deposit and location of the A1 Shear
(PBS — Paringa Basalt, CBN — Condenser Dolerite, BLF — Black
Flag Beds).
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The variable geometry of the Argo shear zone is a principal
control influencing deformation mechanisms and development of
gold mineralisation. In areas where the Argo shear is shallowly
dipping, the combination of high fluid pressure and low stress
causes brittle failure, characterised by the formation of dilational
vein sets, breccia zones and pervasive silica alteration. In areas
where the Argo shear is steeply dipping, the combination of low
fluid pressures and high normal stress results in ductile shear
failure characterised by intensely developed shear and mylonitic
fabrics with minor extensional veins (Gressier and Kolkert,
1995).

Mineralisation within the Argo shear is typically associated
with quartz-chlorite-biotite-albite-sulfide alteration of the
dolerite host. Mylonites, quartz vein and breccia lodes occur and
mylonites formed subparallel to the shear margin. This fabric
developed from rapid ductile deformation resulting in
re-crystallisation of mineral grains. Where the dip of the shear
flattens, pervasive silica alteration and en-echelon shear veins
overprint pre-existing mylonitic fabric.

The Argo shear is accompanied by a great number of
mineralised satellite structures. These can be divided into two
main structural domains: within the hanging wall of the main Al
ore surface, structures are characterised by a variable strike with
a relatively steep dip, dominated by mylonite; the footwall
structures consist of listric flat-lying structures (Figure 3). The
footwall structures include the Apollo shear, which bounds the
eastern margin of the mineralised system.

MANAGEMENT OF RISK IN RESOURCE
ESTIMATION AND MINE PLANNING

Risk modelling approach

The most important factor in making financial decisions is the
understanding of risk and return. Risk can be described as the
combination of likelihood and magnitude of a particular event
occurring. This comes from the imperfect knowledge of the
outcome, such as is the case with resource estimation. Investment
decisions in the mining industry are continually being made
without full awareness of the impact of risk, both positive and
negative, on the outcome of projects.

Managing risk requires a fundamental change in thinking to
move away from the more traditional approaches of ‘building
conservatism’ into decisions to quantify project risk. The

Current Underground
Development

| West East

FIG 3 - Oblique schematic cross-section of the Argo mineralised
system consisting of a complex array of both steep and shallow
dipping structures. The main mineralised structure is the A1 ore
surface. Current development is contained between the footwall of
the H1 and hanging wall of the A1 ore surfaces.
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understanding of risk reflects a potential upside, not just downside.
It applies to both resource estimation and mine planning.

Currently at Argo, a 3D ordinary kriging (OK) model is used
in regions of the Al ore surface where there is increased
geological understanding and sample data. A  strong
understanding of grade distribution across the lode is required in
this region to enable detailed mine planning.

In the down-dip extension of the Al ore surface, drill spacing
is broader (typically 60 m x 60 m or greater) and this makes it
very difficult to use linear estimation techniques like OK. In
effect, mine planning is based on 10 m (NS) x 15 m (RL) blocks
and 3D (or even 2D) OK of such blocks from scarce data gives
very smooth and conditionally biased estimates, leading to
biased resources and reserves. In addition, the risk associated
with OK or other classical linear estimates (like Inverse
Distance) is difficult to quantify.

The most appropriate solution to the over-smoothing of OK
and to the measure of the risk inherent in the estimation is to use
the now well-known technique of conditional simulation. The
Argo structure shows a relatively low thickness (less than 20 m
in general) and it is reasonable to assume that no mining
selectivity across the lode will be undertaken. Consequently, a
2D modelling approach, which ignores grade variability across
the lode, is seen as applicable.

The 2D simulation

The 2D co-simulation utilises two correlated variables: thickness
(‘tonnes’) and accumulation (‘metal’, or more precisely product
of thickness by grade) as the modelled variables. Grade is not
directly simulated as it is not an ‘additive’ variable. It is
calculated by the ratio of simulated accumulation and simulated
thickness. The weighting of the variables by bulk density should
also be considered for a 2D approach. Several options are
possible for defining these two variables. Because the deposit is
steeply dipping and shows relatively small variations in dip, it
was decided to use horizontal thickness and accumulation.
Description of the variables is as follows:

e Horizontal thickness (HZTK) — thickness of the Al ore
surface calculated perpendicular to the vertical longitudinal
plan on which the 2D simulation is performed.

e Accumulation (ACCUM) - calculated as the product of
HZTK by the full-length composite gold grade across the Al
ore surface defined by the hanging wall and footwall
geological contact. This is represented as a gram*metre
intersection.

e Density — variable bulk densities were not used in the
modelling, because:

e The density of mineralisation has a limited range from
2.64 gm/cm? to 3.26 gm/cm? based on point support. The
variance of this data is 0.09 (gm/cm*)?, which is significantly
reduced by compositing the data across the lode.

e Au and density showed a very poor correlation with a
correlation coefficient of 0.12. It was therefore concluded
that density would have little influence in the simulation
process, and the evaluation of the gold grade in particular.

The properties of conditional simulations are well known.
They reproduce the statistical characteristics (histograms and
correlations) of the variables as well as their spatial correlations
(as measured by variograms and cross-variograms) and they
honour the data.

A detailed conditional simulation study was first completed in
2003. This was followed in April 2004 by a second study using
the results of an infill drilling program.

The introduction of risk management through the use of 2D
conditional co-simulation for grade uncertainty at Argo
Underground has been driven by the philosophy that ‘if you can’t
measure it; you can’t manage it’.

Orebody Modelling and Strategic Mine Planning

REALISATION OF THE CONDITIONAL
SIMULATION

The data

There are 410 drill hole intersections within the A1l ore structure.
Their location is given in Figure 4 and unweighted statistics are
shown in Table 1. Clearly the drilling density decreases sharply
in depth, hence the need for declustering the data: a 50 m x 50 m
declustering cell is used and the corresponding statistics are
shown in parenthesis in Table 1. There are significant
differences, suggesting that the distribution of the variables is not
very homogeneous. Nevertheless, as indicated by the variation
coefficient, the level of variability is not very high for a gold
deposit.

There are indeed non-stationary features in the spatial
distribution of HZTH and ACCUM, as indicated by the graph of
the average of the variables per 50 m slices shown in Figures 5
and 6. The top of the orebody has elevated thickness and
accumulation, linked to a high concentration of Au in the south.
Note that these elevated values coincide with a higher data
density.

Correlations between HZTH and ACCUM (0.57) and ACCUM
and Au (0.71) are significant, but moderate, while HZTH and Au
are uncorrelated (0.03). This is a very interesting result, which
suggests a possible simple model for the joint estimation of
HZTH and ACCUM, the residual model (Rivoirard, 1994).
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FIG 4 - Location of the data.
TABLE 1
Elementary statistics of the data (de-clustered in parenthesis;
for units, see text).
No data Min Max Mean Variance
ACCUM 410 0.03 448.30 57.74 5118.29
(53.61) | (4470.73)
HZTH 410 1.10 45.20 11.15 57.69
(11.38) (71.67)
AU 410 0.01 43.11 4.93 30.99
(4.59) (29.01)
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FIG 5 - Vertical variation of average horizontal thickness per 50 m
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FIG 6 - Vertical variation of average accumulation per 50 m slices.

The conditional simulation method

Despite the local departures from stationarity, and after testing
alternative methods, it was decided to use a standard Gaussian
simulation method; the Turning Bands method. In effect, the
conditioning is relied upon to reflect the local higher thicknesses
and accumulations.

Consequently, both HZTH and ACCUM are transformed into
Gaussian variables gHZTH and gACCUM, with mean O and
variance 1, by a process known as Gaussian anamorphosis,
which models the declustered histogram through a series of 50
orthogonal polynomials. As already mentioned, the use of the
declustered histograms is essential to get a representative picture
of the distribution of both variables.
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The variograms of the Gaussian variables

The experimental variograms are well structured, with a major
axis plunging 45° north, which agrees with the geological trend.
The cross-variogram between gHZTH and gACCUM is very
similar to the two direct variograms. They are all shown in
Figure 7, with the original model fitted to them, using the linear
model of coregionalisation. This model is a combination of a
nugget effect and two spherical models with anisotropic ranges
(55 m and 140 m in the direction plunging 45°, and 30 m and
100 m in the perpendicular direction).

For simulation purposes, the original model is transformed so
that the sills are adjusted to the declustered variances of the
Gaussian values, ie one.

Realisation of the conditional simulation and
validation

A point conditional simulation was performed on a 2.5 m x
2.5 m grid; 100 different realisations were calculated using 800
Turning Bands. The choice of the number of realisations is a
compromise between a requirement to correctly sample the space
of uncertainty and the need for a manageable set of results. As
far as the number of Turning Bands is concerned, a fairly large
number was selected so that the 2D space was well covered. The
number 800 is not predestined as any number over 100 or 200 is
likely to have produced a representative simulation. The data
conditioning was based on kriging with a kriging neighbourhood
chosen after systematic empirical tests (investigating parameters
like kriging efficiency, slope of regression, etc). The resulting
neighbourhood is characterised by an ellipsoid of 310 m by
210 m plunging 45° towards the north, and an octant search with
an optimum of 24 data. The Gaussian values simulated are
back-transformed using the Gaussian anamorphosis models.
Finally, after back-transformation, the average gold grades at the
points are calculated dividing the simulated ACCUM by the
simulated HZTH.

Validation of the simulations was performed at various levels:

e Statistics of the individual point simulations — Not
surprisingly, taking into account the fact that 50 896 points
were simulated from only 410 data, there are significant
variations from one realisation to another, with the average
HZTH varying from 9.6 m to 12 m, the average ACCUM
varying from 43 g/t*m to 62 g/t*m and the average Au grade
varying from 3.85 g/t to 5.6 g/t.

The histograms are consistent with the original histograms
(which is not surprising as they are built directly from the
anamorphosis model) and the correlations between HZTH
and ACCUM are well reproduced.

® Variograms and cross-variograms — These have to be checked
on the Gaussian simulations (before back-transformation).
Again there are fairly large variations from realisation to
realisation, but, in general, the variograms obtained show
similar shapes and ranges to the simulated model. The largest
range is the most variable due to ergodicity issues (the
simulated field size is fairly small). An example is given in
Figure 8.

e Conditioning — This is a matter of visually looking at the
individual realisations; conditioning plays the expected role:
the high-grade zones correspond to high-grade data. Also, as
expected, where the data density is high (top of the
structure), there is much less variability from realisation to
realisation than down dip, where the lack of data means large
fluctuation (and thus higher risk).

Post processing of the simulation for mine
planning

As indicated, mine planning is based on 10 m x 15 m mining
units (SMU). To simulate the behaviour of such units, the point
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FIG 7 - Gaussian models for variograms and cross-variograms.

simulated values are averaged into 10 m x 15 m blocks for each
realisation. As usual, the average grade of the SMU is obtained
by dividing the simulated SMU accumulation by the simulated
thickness.

The effect of this averaging is to reduce the variability between
simulations. As an example, Figure 9 shows two realisations of
the simulated Au grade.

It is instructive to compare these individual simulations to the
average of the 100 realisations, which generates estimates of the
conditional mean of both HZTH and ACCUM. (Figure 10 gives
the corresponding Au values). The latter is close to what would
be obtained by OK; the smoothing effect is quite striking.

The simulation results have multiple uses:

e Building confidence intervals — For any given SMU, from the
100 realisations, it is easy to associate confidence intervals to
the grade, simply by ranking the realisations in increasing
order and finding the quantiles corresponding to given
probabilities. The results can be used to help classify the
resource (by grouping several SMU into larger blocks
associated to production periods).

e Risk analysis — It is possible to calculate for each individual
realisation a mean characteristic (for instance, the average
grade over a cut-off). After ranking the results in increasing
order, it is easy to find the probability for this characteristic
to be below a given threshold, thus getting a handle on the
risk incurred in a project. Figure 11 shows the risk curve
associated to the global mean grade (at a 0.0 g/t Au cut-off):
from it we can state that there is a 20 per cent chance that the
mean grade is below 4.6 g/t Au and a 15 per cent chance that
it is higher than 5.2 g/t Au.

At Argo, the simulations were actually integrated into the
planning process.

Orebody Modelling and Strategic Mine Planning
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USE OF SIMULATION IN UNDERGROUND MINE
PLANNING

The implementation of a conditional simulated model into
underground mine optimisation presented a number of
challenges due to the time-consuming manual methodology of
performing an underground mine design. Completing multiple
underground mine designs on various scenarios, as reflected by a
range of simulations, is not practical to implement as a routine
tool in an operational environment. This is not the case for open
pit optimisation with the utilisation of optimisation software such
as Whittle, which enables multiple scenarios to be evaluated.
Underground mine design shapes are defined by a ‘stope
evaluation cut-off grade’; the economic cut-off grade of a
selective mining unit incorporating mine planning parameters.
The stope evaluation cut-off grades will vary throughout an
underground mine, due to the variable economic costs associated
with mining different ore parcels (eg mining method, trucking
distance, capital development and backfill methods). Dilution
and ore recovery need to be incorporated into the in situ block
estimate grades of the orebody to determine the mining grades.

The challenge in implementing 2D conditional co-simulation
into the mine planning process at Argo resulted from the
differences between mining grades and in situ block simulated
grades. Confidence intervals provided an understanding and
measure of risk for in sifu block simulated grade variability;
however, the model did not quantify the probabilities of
achieving the stope evaluation cut-off grades as required by mine
planning. Stope shapes could not be defined based on the
probabilities to achieve in situ block estimate cut-off grades.
Mine planning factors needed to be incorporated into the
simulated model to reflect mining grades before the simulation
could be fully utilised in the management of risk at Argo
Underground.
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FIG 9 - Example of two realisations of the simulated Au grades of 10 m x 15 m mining units.

Ore recovery and dilution mine planning factors

The main factor affecting ore recovery of the Al orebody is the
requirement for footwall pillars (Figure 12). This is to ensure the
tight filling of the hanging wall contact necessary for
geotechnical support during stoping of the orebody. The
proportion of recovery is dependent on the horizontal thickness
and the dip of the ore surface as defined in Table 2.

Stope ore dilution of 1.4 m of the true thickness is added to the
width of mineralisation at 0 g/t to account for stope over-break. This
dilution is necessary to determine the mining grade of a stope.
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Simulating mining grades

The mining parameters have been added to each of 100
simulations based on the mining assumptions, as shown in Figure
13. This has enabled the calculation of a simulated mining grade
for each selective mining unit, rather than using in sifu simulated
grades for each simulation. The confidence intervals based on the
simulated mining grade from the 100 simulations were
subsequently used in the mine planning process to define the
probability of achieving the stope evaluation cut-off grade
(Figures 14 and 15). This has enabled mine planning to quantify

Orebody Modelling and Strategic Mine Planning
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FIG 10 - Estimation of Au grade for 10 m x 15 m mining units
(obtained by averaging the 100 realisations of the simulation).
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FIG 12 - Cross-section view of the various thicknesses of the A1
ore surface, showing the stope shape and ore drive profiles. The
footwall pillar size is dependent on the thickness of the ore surface.
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TABLE 2

Ore recovery factors associated with footwall pillars due to variable
widths and dips of the A1 ore surface. The ore recovery factor can
be assigned to each block based on the simulated horizontal
thickness and the assigned dip for each 100 simulations.

Horizontal Dip

thickness >60° | 50°1060° | 40°t050° |  <40°
7510 12.5m 0.985 0.99 0.933 1
12510 17.5m 0.922 0.935 0.95 0973
17510225 m 0.844 0.866 0.894 0.93
2251027.5m 0.759 0.79 0.83 0.88

s Calculated Horizontal Design
Break

A OREC - % of lost ore due to
HZTK R Ore Pillar pillars

Constant
Dilution —%
.

Recovered Accumulation = Simulated
Accumulation x OREC

: Recoverable Horizontal Ore Break = Simulated
S0 HZTK Horizontal Thickness x OREC

Horizontal Dilution = 1/sin dip x 1.4m

Calculated Horizontal Design Break =
Recoverable Horizontal Ore Break + Horizontal
Dilution

Cross Section

Calculated Design Break Grade = Recoverable
Accumulation / Calculated Horizontal Design
Break

FIG 13 - Schematic cross-section of the A1 ore surface showing
the calculation of the mine parameter variables added to each of
the 100 simulations, where HZTK is horizontal thickness, and
OREC is equal to the percentage of ore loss due to footwall pillars.
Simulated mining grades can be calculated for each 100
simulations. Probabilities of the mining stope being above the
economic stope cut-off grade can be determined and stope
shapes modified accordingly.

FIG 14 - Long-section probability maps showing variability of
mining grades looking west: (A) at a 3.5 g/t Au stope evaluation
cut-off grade and (B) at a 4.8 g/t Au stope evaluation cut-off grade.

mining grade uncertainty and risk associated with any
underground mine stope, and to define stope shapes based on the
probability of achieving the stope evaluation cut-off grade.

CONCLUSIONS

Conditional co-simulation is a very powerful tool for measuring
first and then managing resource variability and risk. The present
paper shows its applicability to an underground gold deposit,
where it has helped optimise the mine design and planning.
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FIG 15 - Probability map of the A1 ore surface looking east, at a 3.6 g/t Au stope evaluation cut-off grade. The probability of the lower mining
panel achieving a mining grade above 3.6 g/t Au based on different percentage bins is shown in the lower right-hand image. This has proved
an invaluable tool in quantifying mining risk as a result of grade uncertainty.
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Pseudoflow, New Life for Lerchs-Grossmann Pit Optimisation

D C W Muir?

ABSTRACT

The Lerchs-Grossmann (LG) algorithm (1965) has been used for over 30
years for the optimum design of open pit mines. This has been combined
with variable grade cut-off and discounted cash flow (DCF) to optimise
the net present value (NPV) of the cash flow for the life of the mine. The
LG algorithm is a unique, efficient method for solving a special case of
an integer linear programming or network flow problem. More general
network flow methods implemented in the 1970s were only practical for
small problems. The efficiency and effectiveness of the LG method made
it the industry standard. During the 1990s and recently newer algorithms
for Network Flow have been developed (eg push- relabel, pseudoflow)
theoretically more efficient than the LG method. Hochbaum generalised
the LG algorithm to a pseudoflow network model. Two methods, lowest
and highest label, theoretically more efficient than the push-relabel and
other network flow methods, were developed.

Lerchs and Grossmann gave no efficient method of selecting
constraints. Some early implementations were inefficient due to data
structure and constraint selection. Other implementations were more
efficient but the actual details were proprietary to the developers.
Recently some of the newer network flow algorithms have been
implemented (eg push-relabel). This paper will examine an
implementation of the pseudoflow algorithm incorporating the Hochbaum
highest and lowest label methods as well as a relatively efficient generic
LG method. In addition a new, and several old, strategies for developing a
nested sequence of optimum stage pits are examined. These strategies
combined with DCF, Fundamental Tree or other scheduling techniques
provide an efficient method of optimising the NPV of a mine.

INTRODUCTION

This paper discusses variations of the classical Lerchs-Grossmann
(LG) algorithm (1965) for open pit mine design. The
implementation of four methods based on the LG algorithm and
their performance on several actual mineral block models are
discussed. In addition, several strategies for developing a nested
sequence of optimum stage pits are examined. The Optimum Mine
Design methods discussed are:

e [erchs-Grossmann algorithm (Lerchs and Grossmann, 1965);

e Lipekewich and Borgman LG subset algorithm (Lipekewich
and Borgman, 1969);

e Hochbaum Lowest Label Pseudoflow algorithm (Hochbaum,
2001); and

e Hochbaum Highest Label Pseudoflow algorithm (Hochbaum,
2002).

The development of a surface mining venture involves
expenditures of millions of dollars. An optimum ultimate pit,
intermediate stage pits and long-term production scheduling are
used to maximise the net present value (NPV) of the venture.
These planning methods focus on the sequencing of materials to
be mined under technical, economical and environmental
constraints. Other considerations such as the uncertainty in the
data and the inherent risk in the venture will not be covered in this
paper. The papers by Dimitrakopoulos, Farrelly and Godoy
(2002); Godoy and Dimitrakopoulos (2004) and Dimitrakopoulos
and Ramazan (2004) give some insight into those considerations.

The LG 3D pit design algorithm has been used for over 30
years for open pit mine design. It is well known and has been
implemented in commercial software (eg Muir, Whittle and

1. Muir and Associates Computer Consultants Inc, 5531 4th Avenue,
Delta BC V4M 1H2, Canada. Email: dmuir@aebc.com
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MaxiPit). It wasn’t until the 1990s that other efficient network
flow algorithms were developed (eg push-relabel, Goldfarb and
Chen, 1997; pseudoflow, Hochbaum and Chen, 2000). These
algorithms could theoretically solve the pit optimisation problem
more efficiently and some have been implemented commercially
(eg MineMax uses push-relabel). Hochbaum (1997, 2001, 2002)
has extended the recent results from network flow algorithms to
the LG algorithm. These pseudoflow algorithms are based on the
LG algorithm and incorporate lowest label and highest label
methods.

The performance of the four algorithms will be compared on
three different mineral properties. One is an actual gold mine and
two are prospective mines. The first block model is 220 x 119 by
38 benches (994 480 blocks). The second is 450 x 142 by 71
benches (4 536 900 blocks) and the third is 200 x 160 by 55
benches (1760 000 blocks). These models and subsets are
sufficiently large enough for performance data as a function of
the number of blocks and arcs. The largest model has over four
million blocks and 320 million arcs. These models have quite
different grade distributions and slope constraints, which are
reflected in the actual performance of the algorithm. Some other
performance data on an LG algorithm and other network flow
algorithms is given in Hochbaum (1996) and Hochbaum and
Chen (2000).

In the following sections, a brief summary of the LG algorithm
and the pseudoflow labelling methods will be given.
Subsequently, the performance of the various methods will be
compared. Next, the utility of the newer methods is applied to the
fast generation of a sequence of nested pits, optimal for the
volume mined. These included pits form a starting point for NPV
(Lane, 1988; Wharton, 1996; Hanson, 1997), or fundamental tree
scheduling techniques (Ramazan, 2001, 2007, this volume).
Lastly, the conclusions of this study follow.

DEFINITIONS

A weighted directed graph G=(V,M,A) is a set of vertices V with
Mass M (positive or negative) and directed arcs A. An arc
a=[p,q] is a directed edge (p,q) joining two vertices in V. The
weight w(v) of a node v in V is called its mass m,= w(v). The
number of vertices in G is denoted by n=IVl and the number of
arcs is denoted by m=IAl.

A closed subgraph G =(V,M_,A,) is a subset of G such that all
arcs originating in V., also terminate in V, and is called a closure
of the graph. A partial closure is a subset G, in G for which some
but not all arcs originating in G, also terminate in G,.
A maximum closure G,, in G is a closed subgraph of G that has
maximum weight (the total weight of the vertices is maximal).

A rooted tree is an undirected acyclic connected graph 7 with
a designated node as root. All other nodes are usually depicted as
suspended below the root node. A subtree 7, of T denotes the
subtree suspended from node v that contains all the descendants
of v in 7. An immediate descendant of a node v is denoted as
ch(v), a child of v, and the unique immediate ancestor of v is
denoted by p(v), the parent of v. A node in a rooted tree 7 is said
to be at level [ in T if it is at a distance of / edges from the root.

A tree T embedded in G is a set of vertices V- in V such that an
arc in T'is also an arc in G. Given a rooted tree 7 embedded in G,
T, is the subtree suspended from node v and T, ), is the tree
suspended from the edge (v,p(v)). T, = T, where [v,p(v)] or
[p(v),v] is an arc in G. A node v in an embedded subtree T, in G
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is said to support the mass M, (the sum of the weights of all
nodes in 7). The edge e=(v,p(v)) is also said to support the mass
M,. The mass M, supported by a node v is a dynamic value that
depends on the structure of the subtree 7, suspended from v.

We define an extended graph G as the graph G augmented
with a dummy root node x, and arcs going from x,, to all nodes of
G. The tree T, linking x,, to each vertex in G is a spanning tree in
GX. Given an embedded spanning tree T, rooted at x, in GX a
child v of x, in 7, defines an embedded subtree 7, of G. This
subtree is referred to as a branch of G. and that child v of x, is
the root of the branch 7. The branches of the spanning tree 7, in
GX define a forest in G.

An arc in an embedded spanning tree 7, rooted at x, in G¥
either points toward the root (upward) or away from the root
(downward). A downward arc is called a p-edge (plus edge) and
an upward arc is called an m-edge (minus edge). A downward arc
(p-edge) is called strong if it supports a mass that is strictly
positive. An upward arc (m-edge) is called strong if it supports a
mass that is zero or negative. Arcs that are not strong are called
weak. A branch T, of T, suspended from node v is called strong if
the arc [x,,v] connecting v to the root x, is strong, otherwise it is
called weak. All nodes of a strong branch are called strong and
all nodes of a weak branch are called weak.

An embedded spanning tree T, of GX is normalised if the only
strong edges are connected to the dummy root x,. The spanning
tree T, is an example of a normalised tree.

For open pit optimisation the slope constraints in mining (the
arcs of the graph) are not enumerated directly. They are defined
by a support pattern as a recursive precedence relationship.
A support pattern is a set of dependent blocks (usually minimal)
that must be removed before a support block can be removed.
The dependent blocks have their dependent blocks and so on
until the surface is reached. The actual support pattern used
depends on the shape of the blocks, the slope angle and slope
angle accuracy required. The support pattern used by Case 2 has
six levels and Case 3 has eight levels, both have 81 arcs per node.
Multiple support patterns (possibly asymmetric) could be used
throughout the deposit.

LERCHS-GROSSMANN ALGORITHM

The reader is referred to Lerchs and Grossmann (1965); Zhao
and Kim (1992) and Hochbaum (1996, 1997, 2001, 2002) for a
more detailed discussion and proof of the correctness of the LG
algorithm. The algorithm will be described here but not proven.
This description and implementation has been derived from the
above references, private notes and from Muir (1972).

The LG optimisation algorithm finds the maximum closure of
a weighted directed graph; in this case the vertices represent the
blocks in the model, the weights represent the net profit of the
block, and the arcs represent the mining (usually slope)
constraints. The algorithm thus solves a very special case of a
linear programming or network flow problem. Since the problem
is a special subset of the general linear programming problem, it
is only to be expected that an algorithm specifically designed to
solve such a subset may be more computationally efficient. The
basic LG algorithm has been used for over 30 years on many
feasibility studies and for many producing mines. Hochbaum
(1996, 2001, 2002) has extended the LG algorithm with the
concept of pseudoflow on a network flow formulation of the
problem. This formulation of the problem enhances the basic LG
algorithm with a structured strategy for determining the next set
of arcs to process.

more arcs from the subgraph. The sequence of trees developed
contain subsets (the strong branches) whose vertices form a
maximum closure of the embedded tree and a partial closure of
the subgraph and ultimately converge to a maximum closure of
the subgraph.

The algorithm can start with any normalised embedded
spanning tree of a closed extended subgraph GX of the original
graph. In this implementation a dummy vertex x, is created and a
start spanning tree is used which has this dummy vertex as the
root and each vertex of the subgraph G as a branch. Thus it is a
normalised embedded spanning tree 7, of the extended subgraph
G*. In most of the remainder of this discussion the subgraph will
be assumed to be the entire graph without loss of generality. The
maximum closure of a closed subgraph of a graph is contained
within the maximum closure of the entire graph.

The algorithm consists of two steps that are repeated until the
vertices of the strong branches form a maximum closure of the
weighted directed graph G. There is a merger step and a pruning
step (normalisation). The process thus starts with a super optimal
set (the initial strong branches of T,, which is the set of all
positive vertices) that does not satisfy the constraints and
converges to a maximum closed subset that does satisfy the
constraints.

At each stage there are several variables associated with each
vertex or edge of the normalised tree. These represent the weight
of the subtree suspended from an edge or vertex, the type of the
edge (p or m) connecting it to its parent (initially the root x,), and
the status of the edge or vertex (weak or strong). An edge in a
normalised subtree is strong if and only if it is a p-edge and the
weight supported by the edge is positive, by construction and
‘property 3’ (Lerchs and Grossmann, 1965). Other variables are
counters and housekeeping variables. The tree data structure
itself is fairly complex and is represented as sets of linked lists, a
data structure designed to optimise tree traversals and
re-combinations. In a normalised tree all vertices of branches
connected to the dummy root x, are either all strong or all weak.
In the pseudoflow methods priority queues are used to determine
the order of processing strong trees.

Let a=[s,w] be an arc in the original graph linking a strong
vertex to a weak vertex, a so-called weak-over-strong (wos)
relationship. Note that s and w are in different branches since the
embedded spanning tree is normalised. Let w be in the weak
branch T, and let s be in the strong branch T,

Let C, = [s,....,r,Xx,] be the chain of edges (v,p(v)) in T,
connecting s to the dummy root x,.

Let C,, = [w,...,r,,xy] be the chain of edges (u,p(u)) in T,,
connecting w to the dummy root x,.

Merger procedure

The first or merger step generates a new branch 7,

la. Link the weak vertex w in the weak branch T,,, to the strong
vertex s in the strong branch T, .

1b. Reverse each edge (v,p(v)) and its type (p or m) on the path
from the strong vertex s to the root r, of 7, (reverse path of
the chain C,). At r, sever the dummy edge (r,,x,) connecting
the branch 7, to the dummy root x,. This forms the new
chain C,, = [ry...,5W,...,1,Xg] in T, connecting r, to the
dummy root x, Thus the old strong branch is now
suspended from the edge (s,w) and is a subtree of the
merger tree 7,

lc. Compute the new weight supported by each edge on the

. . . chain C,, from r, to the root r,,=r,, of the merged branch 7,
The algorithm as implemented here systematically develops a " s T =T & "
sequence of normalised embedded spanning trees from extended 1d.  Assign the status (weak or strong) to each vertex in the new
closed subgraphs of the graph, which at any stage incorporate branch 7,
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Pruning procedure

The second or pruning step normalises the merged tree 7,

This normalisation prunes the merged tree 7,, by trimming all
strong edges of subtrees to form new branches rooted to the
dummy vertex x,. This only requires that all strong edges on the
chain C,, be severed and the supported subtree be re-rooted to the
dummy root x, to form a new branch. All other edges of the
merged tree 7,, have not changed so they have the same type and

support the same mass. As the original trees T, and T,, were

normalised, none of these other edges are strong and do not need
to be pruned.

2a. Find the first strong edge, say e = (x;,x,) on the chain C,,
but not (r,,x,) thus let Cy;,,, = [Fee. X Xgones IynXpl= Cpe

2b. Sever the edge (xx,) and form the new branches 7, and
T,, rooted at x, with chains C,, = [r,....x;,Xy] and C, = [x,,...,

ra
7,.X] where r,=r,,.

2c. Compute the new weight supported by each edge in the
chains C, and C,,.

2d. Assign the status (weak or strong) to each vertex in the new
branches T, and 7,,,.

2e. Repeat steps a through d on the remaining chain C, of the
pruned branch 7,

The procedure terminates when all the constraints (arcs) of the
original subgraph have been scanned and no further
weak-over-strong conditions exist. The maximum closure of the
subgraph is then the set of vertices contained in the strong
branches. This closure of the subgraph is contained in the
maximum closure of the complete graph, and hence these
vertices can be recorded as forming part of the maximum closure
and deleted. New branches formed from a larger closed subgraph
can then augment the remaining branches. The procedure for
finding the maximum closure is then repeated for this subgraph.
Finally, when the entire graph has been processed, the remaining
weak vertices are not in the maximum closure.

Combined merger and pruning procedure

The operations ¢ and d of the second pruning step are essentially
the same as the corresponding operations in the first merger step.
In practice, as each edge on the chain C,, is traversed in step lc,
the new weight supported by the edge is computed. If it is a
strong edge (x,x,) the edge is severed in step 2b and the new
branches 7,, and 7,, rooted to x, are formed. The weight
supported by each edge in the severed subtree 7, has already
been computed as part of step lc, hence only step 2d has to be
performed on T,,. This procedure is repeated on the next edge on
the chain until all edges except (r,,x,) have been processed. If the
last edge (r,,x,) is strong, the remainder of the merged branch is
strong and the number of weak branches is reduced by one. If the
last edge (r,,x,) is weak then the remainder of the merged branch
is weak. Note that no new weak branches are formed. The only
remaining task is to assign the status of each vertex on the
remainder of the merged branch, step 2d. The merger edge (s,w)
is an m-edge since it points toward the root x,. It initially
supports a positive mass, the entire old strong branch, and hence
is not a strong edge. It can be shown that the merger edge
remains weak even if parts of the old strong branch are pruned.

The critical parts of this procedure from a computational time
viewpoint are:

1. Selecting a weak-over-strong relationship (s, w).

2. Processing the chain C,, linking the root of the strong branch
to the root of the weak branch. This involves inverting edge
links and type, computing the new weight of the edges,
normalising and assigning the status (weak or strong) to
vertices of the normalised branches.

Orebody Modelling and Strategic Mine Planning

The first operation is dependent on efficient search techniques
or processing strategies and the second on efficient tree traversal
and processing methods. Both are dependent on a suitable data
structure. The original paper by Lerchs and Grossmann (1965)
gave no constructive method of processing the branches and no
specific method of selecting the order of processing weak over
strong arcs. Muir (1972) implemented the LG algorithm with
efficient tree data structures and depth first search (DFS) and
breath first search (BFS) techniques. This was a large
improvement over the Borgman (1968) implementation that used
a crude exhaustive search. It is further improvements in the
strength of these operations and in the data structure
representation that give current implementations their speed and
flexibility.

PSEUDOFLOW ALGORITHM

Recent works by Hochbaum (2001, 2002) and Anderson (2001)
have adapted the normalised trees of the LG algorithm to a more
general network flow model with the concept of pseudoflow,
similar to preflow. A pseudoflow on a network satisfies capacity
constraints, but may violate flow balance constraints by creating
deficits and excesses at nodes. A preflow satisfies capacity
constraints, but may violate flow balance constraints by creating
only excesses at nodes. The pseudoflow algorithm solves the
maximum flow problem on general networks and works with
pseudoflows instead of masses. The relationship between the
pseudoflow algorithm and the push-relabel algorithm is clearer
than that between the LG algorithm and the push-relabel
algorithm. The LG and pseudoflow algorithms work with sets of
nodes (branches) that can accumulate either excesses or deficits.
In the pseudoflow formulation of the problem, the mass M,
supported by the root r, of the strong tree is treated as a
pseudoflow and is pushed to the weak root r,, and hence to the
dummy root x, (both source and sink node). The push-relabel
algorithm works with preflows. The push-relabel algorithm
works with nodes (rather than sets of nodes) and the excess at a
node is pushed to those nodes closer to the sink as measured by
distance labels, relabel updates the value of the label.

The pseudoflow algorithm allows for several systematic ways
of processing the weak-over-strong vertices. The best of these
methods are the lowest label and highest label variants. See the
above referenced papers for full details of the pseudoflow
algorithm. Here we will only discuss how to implement the
lowest and highest label methods.

The lowest and highest label methods work with the concept
of a distance label. A distance label for a node is a
non-decreasing function and is non-decreasing with level, within
any generated tree. See Hochbaum (2001) for proof that a
distance label is non-decreasing with level within a tree and for a
weak node v is a lower bound on level (v). This distance label
function is similar to the distance labels introduced by Goldberg
(1985) and those used in network flow methods such as
push-relabel (Goldfarb and Chen, 1997).

In the initial normalised embedded spanning tree 7, all strong
nodes are assigned the label 2 and all weak nodes the label 1. To
efficiently manage the strong branches, a priority queue with
index is created and maintained. A counter keeps track of the
number of strong root nodes and an index list pointing to the first
strong root node with each label is maintained (initially all 0).
Initially all positive nodes are strong and are the roots of their
respective branches. All these nodes have label 2 and are placed
in the queue. At this stage order is arbitrary, since all strong
nodes have label 2 although the actual order determines how
branches are processed. A pointer to the first node with label 2 is
placed in the index list. When selecting the next strong tree to
process the top of the queue (either highest or lowest order) is
selected and removed from the queue. When the merger and
normalisation processes generate a new strong branch it is
inserted into the queue at the top position for that label.
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Lowest label method

In the lowest label method a strong branch of lowest root label L
is extracted from the priority queue of strong branches.
Processing from the root down, nodes of the strong branch with
lowest label L are scanned for a weak dependent of label L-/
(a wos relationship). If a merger arc [s,w] is found the branches
are merged and pruned (normal LG merger/pruning) and any
resulting strong branches are added to the priority queue of
strong branches at the appropriate label of the root. The merger
node s has the same label L as the root node of the strong branch
and as labels are non-decreasing with level, all nodes on the
chain C=[s,...,rs,xy] have label L. Hence, reversing the edges
does not violate the non-decreasing distance rule. The label of w
is L-1 and the label of r,, is 1 since no weak branches are created.
If no weak dependent arc [s,w] is found all nodes in the strong
branch with label L are increased to L+/ and the branch is
inserted back onto the priority queue with root label L+1/ if L <n
(number of nodes). If the new label L+1 > n then the process is
finished. In practice the gap certificate of optimality rule
(Anderson, 2001) is used to determine completion. This rule
states that if the lowest label strong branch has root label L and
there are no nodes with label L-/ then the process can terminate.
An earlier lowest label method (LLP) shown in the case
studies is a method without priority queues. This uses the same
search as the LG algorithm but only merges if the strong node
has Label L and the weak node has label L-/. This was used as a
trial to show that the order of the selection of nodes for next
merger edge is very important .The priority queue data structure
allows for a much more efficient method of selecting nodes.

The lowest label method is particularly suitable for parametric
implementation. The method has features that make it especially
easy to adjust to changes in capacities (weights). This is covered
in the paper by Hochbaum (2001) and is not currently
implemented in the versions discussed here.

Highest label method

The highest label method is similar to the lowest label method
except that the priority queue is reversed and the branch with the
highest (not lowest) label root is processed (Anderson, 2001).
One main difference between the lowest and highest label
methods is in determining early termination. In the lowest label
method, as soon as a gap in the labels exists, the program can
terminate. This is not the case with the highest label method
because if no merger is found the method will increase the root
label and all subnodes with the same label. This branch will still
be of the highest root label and will continue to be processed.
Eventually if there are no mergers there will be a label gap
between the strong and weak nodes. The process cannot be
terminated because other strong branches may exist that have not
been processed. Instead, if a strong branch has root label L and
there are no nodes with label L-/ then that branch is part of the
maximum closure and needs no further processing. In this
implementation, that means its label is set to n and it is not
placed back on the priority queue.

The pseudoflow variants do not modify the generic LG
algorithm weak-over-strong merger process. However, they do
state how and in what order weak-over-strong links should be
processed. There is also a requirement to update node labels and
maintain the priority queue. These methods also give means of
detecting when all weak-over-strong links have been processed
without an exhaustive search needed by the original LG
algorithm. In this implementation a final LG exhaustive scan of
all strong nodes is done to verify that all weak-over-strong arcs
have been processed. This usually takes less than a second even
for large matrices. All the methods give the same optimal
solution although the sequence of mergers and prunings differ for
each case.
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SUBSET AND PREPASS

For most pit designs the arcs are all directed upwards and reflect
the slope constraints on mining. This means that subproblem
decomposition such as level-by-level optimisation (Lipekewich
and Borgman, 1969) can be done. In general, any closed subset
of nodes can be optimised and then augmented with a larger
closed subset and the procedure repeated as often as necessary
until the entire graph has been processed. This is referred to here
as the LG subset and pseudoflow subset methods.

Prepass techniques are methods of generating limiting pits for
the optimisation. There are several reasons for limiting the
number of blocks, depending upon the optimisation method,
memory available and computational time required. Chen (1976)
describes various prepass methods on the profit matrix to limit
the volume to a closed subset containing all profitable blocks to a
given level. This reduces the number of blocks that have to be
optimised and the time for optimisation to that bench.

The largest pit that needs to be considered can be found by
using the set of all positive (profitable) blocks and expanding
them and dependent blocks to the surface. This pit is a closed
subset of the blocks and since it contains all positive blocks it
contains the ultimate pit (a subset of the positive blocks and their
dependents that is of maximum value).

These techniques are quite useful for large problems using the
generic LG methods. For pseudoflow or push-relabel methods,
unless the problem is very large and memory is a problem, the
extra effort for prepass probably would not reduce the overall
time. The program implemented here can use a limiting pit and
also a starting pit (eg a previous stage pit). Neither starting pits
nor limiting pits have been used in the cases studied here. Some
programs (eg Whittle) automatically ignore arcs (constraints) and
blocks that would never be mined. The pseudoflow methods after
initialisation never even look at blocks that are not positive or
within a positive block's dependence volume.

CASE STUDIES

Case 1: 220 x 119 by 38 bench profit matrix

The first example is a 220 x 119 by 38 bench (994 840 blocks)
profit matrix. The blocks are 5 m X 5 m X 5 m and a simple one-
up-one-over and second level Knight's move support pattern
(Lipekewich and Borgman, 1968) is used. This pattern with
five blocks on the first level and eight blocks on the second level
at offsets 1,2 or 2,1 (a Knight’s move in chess) is used to give a
crude approximation to a 45° slope with a total of 13 arcs per
node. Tables 1 and 2 are test results using the above methods. In
Table 2 an interesting result is that with the highest and lowest
label algorithms, the total number of mergers and pruning is
greatly reduced. For example, for the bench 38 run, the number
of mergers and pruning for the LG is 950 175 and 1 703 036,
while for the lowest label it is only 329 599 and 459 454. This
general reduction in the number of mergers and prunings shows
the superiority of the pseudoflow selection of mergers. All
methods give the same optimum result.

In this example to optimise to level 38, the LG takes 25 min
27 sec (1527 sec) to optimise in one pass. It takes10 min 28 sec
(628 sec) with level-by-level optimisation (using a subgraph to a
specific start level and incrementing by two levels to the next
subgraph). The lowest label method time is 9 min 16 sec
(556 sec) and for level-by-level optimisation is 2 min 40 sec
(160 sec) without priority queues. Using priority queues the
lowest label time is 2 min 6 sec (126 sec) and the highest label
time is only 29 seconds. The priority queue lowest and highest
label methods are clearly the fastest. In this case the highest label
method is also superior to the lowest label methods.
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TABLE 1

Optimisation times (seconds) to various pit levels for
220 x 119 x 38 profit matrix.

Bench LG LGS LLP LLPS | LLPQ | HLPQ
26 285 56 186 91 23 9
28 398 94 247 107 35 13
30 632 130 327 125 54 17
32 878 176 410 145 83 28
34 1157 243 480 152 107 27
36 1387 478 541 157 116 28
38 1527 628 556 160 126 29

Legend:

LG Normal Lerchs-Grossmann

LGS Subset Lerchs-Grossmann

LLP Lowest Label Pseudo Flow (no priority queue)

LLPS Subset Lowest Label Pseudo Flow (no priority queue)
LLPQ Lowest Label Pseudo Flow (priority queue)
HLPQ Highest Label Pseudo Flow (priority queue)

TABLE 2
Statistics for level 38 for 220 x 119 x 38 profit matrix.
LG LLPQ HLPQ
Profit value 57 118 058 57 118 058 57 118 058
Blocks removed 95 228 95 228 95 228
Blocks remaining 830 754 830 754 830 754
Branches relinked 950 175 329 599 420 244
Branches pruned 1703 036 459 454 638 088
Time (seconds) 1527 126 29
Legend:
LG Normal Lerchs-Grossmann

LLPQ Lowest Label Pseudo Flow (priority queue)
HLPQ Highest Label Pseudo Flow (priority queue)

Case 2: 450 x 142 by 71 bench profit matrix

The second example is a 450 x 142 by 71 bench (4 536 900
blocks) profit matrix The blocks are 2 m X 6 m X 6 m and a more
accurate and complex six level 53 degree slope support pattern
with a total of 81 arcs per node is used. Table 3 shows test results
using the above methods. The lowest and highest label methods
are clearly superior. An interesting result is that for some runs the
lowest label method is also faster than the highest label method.
The generic LG without subproblem decomposition has quite
large run times for the higher levels. In practice either
subproblem decomposition and/or prepass techniques would
have been used for the LG methods.

Figures 1 and 2 compare the performance of the methods in
Cases 1 and 2 against functions of n.

Case 3: 200 x 160 by 55 bench profit matrix

The third example is a 200 x 160 by 55 bench (1 760 000 blocks)
profit matrix The blocks are 20 m X 20 m X 15 m and a more
accurate and complex eight level 45 degree slope support pattern
with a total of 81 arcs per node is used. This model has good
mineralisation close to the surface and extending to depth. This
makes it relatively easy to optimise. For this example the
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TABLE 3
Optimisation times (seconds) to various pit levels 450 x 142 x 71
profit matrix.

To bench| LG LGS LLP LLPS | LLPQ | HLPQ
31 19 19 71 71 3 3
36 144 97 239 156 11 8
41 1521 1114 1085 556 105 45
46 14737 | 8340 2730 1257 384 146
51 26787 | 18257 | 6621 3622 1369 749
56 35969 | 20857 | 8086 5272 1042 893
61 42165 | 22192 | 9560 6714 652 1003
66 47608 | 22837 | 11654 | 7940 519 1053
71 56843 | 23668 | 12976 | 9153 645 1140

Legend:

LG Normal Lerchs-Grossmann

LGS Subset Lerchs-Grossmann

LLP Lowest Label Pseudo Flow (no priority queue)

LLPS Subset Lowest Label Pseudo Flow (no priority queue)
LLPQ Lowest Label Pseudo Flow (priority queue)
HLPQ Highest Label Pseudo Flow (priority queue)

optimisations are done for volume penalty pits instead of pits to
specific levels. Table 4 shows test results using the above
methods. Here the highest label method is clearly superior to
both the LG and the lowest label methods. An interesting result
is that for some runs the LG method is also faster than the lowest
label method.

STAGE PITS

An optimum ultimate pit and intermediate stage pits are needed
for long-term production scheduling. There are various methods
of generating stage pits, eg optimum pits to different levels,
optimum pits for different mining and milling costs or mineral
prices. Milner (1977) discussed programs implemented at
Gibraltar Mines for the development of long-range mine plans.
An LG 3D pit design program (descendant of Muir, 1972) is used
for pit design and sequencing of stage pits. These pits are optimal
to a specific bench level. A mine simulation program is then used
to produce production schedules and open pit mining equipment
requirements. This method of generating stage pits can be easily
implemented by saving the intermediate pits generated by the LG
level-by-level subset method. Multiple pseudoflow runs can also
generate them quickly. These stage pits, although optimal to a
specific level, have drawbacks. These stage pits are not
necessarily optimal for the volume mined.

A better and relatively easy method of generating intermediate
stage pits is to apply a (volume) penalty to each block in the
model. This is basically equivalent to increasing the mining cost
of all blocks. The larger the penalty the smaller the pit. An
advantage of this method is that the stage pits thus defined have
the property that they are of maximum value for the volume
mined. Also, the profit matrix does not have to be modified
externally. A sequence of pit optimisations can be generated
quickly by applying a sequence of penalty values to the program.
Hochbaum (2001) shows that the lowest label pseudoflow
method is particularly adapted to parametric scaling of profit
values. In this study, a range of parametric scaling is not done
within the program. Complete individual runs for a range of
block penalty values are performed for each method. Internal
parametric scaling within the program would be more efficient
but would make it more difficult to compare timings and
performance.
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Times vs Nodes for Case 1

——k1 n"2

1800

1600 -=k2n*2logn

1400 // —-k3 n"3
1200 - Lerchs

// Grossmann
1000 /

—— LG Subset

800
/ —— LL Pseudoflow
600 -

/,//74* ~ LL Pseudoflow
400 — Subset

— LL Pseudoflow
200 ¥ Priority Queue
% — HL Pseudoflow

Priority Queue

Time

25 30 35 40

To Bench Level

FIG 1 - Optimisation times (seconds) versus nodes for Case 1. Times for various methods to bench levels.

Case 2 Times vs Nodes
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FIG 2 - Optimisation times (seconds) versus nodes for Case 2. Times for various methods to bench levels.
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TABLE 4

Optimisation times (seconds) for various penalties for
200 x 160 x 55 profit matrix.

Penalty LG LGS LLPQ HLPQ
Ultimate (0) 95 66 429 19
500 115 87 301 19
1000 178 112 242 20
1500 290 145 129 19
2000 376 190 105 18
2500 330 217 55 18
3000 498 391 56 27
3500 307 313 20 16
4000 629 483 24 21
4500 1167 572 22 9
5000 265 381 4 3
5500 30 193 3 2
6000 7 99 2 2
6500 4 39 2 2
7000 5 22 1 1
7500 8 12 1 1
8000 3 1 1
8500 2 1 1
9000 1 3 1 1

Legend:

LG Normal Lerchs-Grossmann

LGS Subset Lerchs-Grossmann

LLPQ Lowest Label Pseudo Flow (priority queue)
HLPQ Highest Label Pseudo Flow (priority queue)

There are also drawbacks to this method. Sometimes there is a
pocket of rich ore at depth that is sufficiently rich that even with
large volume penalties it would be part of the optimal volume pit.
It may not be desirable or even practical to actually mine a
narrow cone to such a depth for early stage pits. In a case like
this the optimisation can also be limited to a specific bench. The
volume mined may then be less for that penalty value but would
still be an optimal pit to the actual level and volume mined.
Another method is to apply an increasing penalty with depth, but
this has the disadvantage that the pit is not now optimal for the
volume mined. Any additional constraints limit the solution. See
Ramazan (1996) for further discussion of these methods and
drawbacks.

The volume penalty stage pits generated are of maximum
value for the volume mined and form a sequence of nested pits.
Stage pits for one-year, two-year, five-year, etc targets can be
selected from this sequence. In practice a range of penalty pits is
generated and tonnage and grade tables produced for each pit.
The penalty pits that bracket specific targets are determined and
a new set of penalty pits with finer penalty increments over the
desired ranges can be generated. For Case 3, as shown in Table 4,
the highest label times for penalty pits are quite small. A set of
nested stage pits with a finer increment could be generated in one
set, say 180 pits with penalties ranging from 500 to 9500 in steps
of 100 would take less than 30 minutes. A subset of these pits
can be selected as a set of stage pits.

An interesting result particularly for the LG and lowest label
methods is that penalty pits may take longer to optimise than an
ultimate pit. A common practice for the LG methods was to start
with the smaller highest penalty pit. Subsequent penalty pit
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optimisations with smaller penalty would then use the previous
penalty pit as a starting pit and the ultimate pit (if already
determined) as a limiting pit. That method is another example of
subproblem decomposition and can save time for large problems.
This has not been done here so that actual timings for full
optimisation of penalty pits can be illustrated. These results show
that the time for optimisation depends on the distribution of
block values as well as the total number of blocks and arcs.

Table 4 displays the performance timings for a range of
penalties using four methods. These timings are for the 200
% 160 by 55 bench Case 3 profit matrix.

CONCLUSIONS

The LG generic algorithm is pseudo-polynomial (Hochbaum,
1996), but for the practical cases studied here is more of the
order of (m n?) as shown in Figures 3 and 4. The highest and
lowest label pseudoflow priority queue variants are of the order
of (m n? or (m n log n) if dynamic trees (Sleator and Tarjan,
1983) are used. Here n is the number of blocks (nodes) and m is
the number of arcs (slope constraints). In Case 1 we have m=13n
and in Case 2 we have m=81n. The last n or log n for the order of
the methods is related to the maximum length of the chain C,, for
the merger and pruning step. In the cases studied here the
maximum lengths <1000 <<n. In Figures 1 and 2, the priority
queue methods show this small chain length by having times
more of the order n®. Sleator and Tarjan Dynamic trees were not
used in these implementations since the chain C,, lengths were
relatively small. This empirical study and theory show that the
pseudoflow variants become increasingly more efficient than the
generic LG algorithm as the number of blocks increases. In
practice this means that larger models can now be economically
processed.

In Cases 2, 3 and numerous other trial runs (not included here)
the lowest label method times vary more than the highest label
times. The highest label times are usually shorter, more
consistent and normally increase with problem size. The
performance of the generic LG methods are more like the lowest
label results but are generally slower, but as shown in Case 3 can
be faster.

Pseudoflow methods give new life to the Lerchs-Grossmann
pit optimisation. The highest label method in particular is
consistently faster than the generic LG methods and usually
faster than the lowest label method. The increase in speed can be
from two to 50 times faster than the LG methods, and
theoretically much faster for larger problems.

The highest label method can also be used for the fast
generation of intermediate stage pits. These stage pits optimal for
the volume mined can form a starting point for NPV or
Fundamental Tree scheduling techniques.

The pseudoflow methods can also be applied to more general
network flow problems. The network flow formulation of
Johnson (1968) would be an interesting study. In the 1970s this
method was only capable of solving small problems due to
memory, processor constraints and available algorithms.

Another interesting study would be the use of the normalised
strong trees in the LG and pseudoflow optimised stage pits to
generate the Fundamental Trees defined by Ramazan (2001) and
used by Johnson, Dagdelen and Ramazan (2002).
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Large-Scale Production Scheduling with the Fundamental Tree
Algorithm — Model, Case Study and Comparisons

S Ramazan'

ABSTRACT

Mathematical programming models are theoretically well suited to
optimising long-term production scheduling of open pit mine designs;
however, in most cases to date they have not been able to solve the
scheduling problem because it is too large in size, especially with respect
to the number of integer variables required. Because of this size problem,
scheduling is done using larger blocks, usually formed by aggregating
many mining blocks on the same bench, which may vary from tens to
thousands in number. However, the simple traditional way of re-blocking
neighbouring blocks into larger blocks causes difficulties in establishing
the mine slope requirement and generating an optimal schedule in terms
of maximising the total profit from the mine.

The fundamental tree algorithm, based on linear programming (LP),
has been developed to properly aggregate the blocks and reduce the
problem size in formulating a mixed integer programming (MIP) model
for optimising the production scheduling. This paper presents the
fundamental tree algorithm and discusses how it substantially reduces the
number of binary variables required in formulating the production
scheduling problem as an MIP model and the number of constraints
within the MIP. A case study on a multi-variable large copper mine with
dual ore processors shows that the proposed method significantly
increases the total expected discounted profit from the operation. The
application of MIP for optimisation in large open pit mines is often
considered to be impossible; the proposed algorithm makes it possible by
reducing the problem size significantly.

INTRODUCTION

It is common practice in open pit design for cutbacks to serve as
a guide in the scheduling process after the ultimate pit limits are
determined. Detailed descriptions of the methods for finding the
ultimate pit limits are provided in Hochbaum and Chen (2000).
Some of the commonly used cutback design methods are
discussed in Ramazan (1996), Seymour (1995) and Whittle
(1988). Traditionally, a set of volumes of material that has the
specific attributes suitable for the annual production is identified
as a feasible solution to be mined each year within these
cutbacks. The current scheduling practice is mostly finding more
than one feasible solution and choosing the best one among these
feasible solutions. There is no method available in open pit mine
planning and production scheduling to generate the optimum
solution in maximising net present value (NPV) for any given
mine data.

Although linear programming (LP) type mathematical models
are commonly accepted to be powerful tools in the optimisation
of production scheduling in open pit mining, there is no LP or
mixed integer programming (MIP) model that can be used to
solve production scheduling of any type of large open pit mine.
The large open pit mines require a large MIP model, which
creates difficulties in solving mathematical formulations even
with today’s supercomputing systems, which have multiple
parallel processors. For example, if there are 5000 mining blocks
in a small cutback to be scheduled over three years, it will
require 15 000 binary variables to generate the MIP formulation.
Getting a solution for an MIP model of this size is still very
challenging, even for a small cutback, and impossible for most
real data sets.

1. MAusIMM, Rio Tinto, GPO Box A42, Perth WA 6000, Australia.
Email: salih.ramazan@riotinto.com

Orebody Modelling and Strategic Mine Planning

There have been several attempts to develop and apply
MIP/LP type models in optimising annual production scheduling
in mining operations. Johnson (1968) developed an LP
scheduling model and applied Dantzig-Wolfe (1960)
decomposition principles to decompose the model and apply the
maximum network flow (maxflow) algorithm developed by
Johnson (1968). However, this LP approach uses linear variables
and leads to the mining of fractional blocks. Dagdelen (1985)
used the Lagrangian decomposition method to decompose and
solve a large MIP problem. The drawback of the approach is that
the Lagrangian method might not always converge to an
optimum solution if the Lagrange multipliers cannot result in a
feasible solution. Gershon (1983) presented an LP approach
together with MIP models for optimising mine scheduling. The
author suggests that the models for optimising production
scheduling of open pit mines require too many binary variables
and cannot be solved. Alternative efficient methods for long-term
production  scheduling are presented in Ramazan and
Dimitrakopoulos (2004). However, the reductions associated
with these may not be sufficient for some large open pit mines,
although they are very effective for many cases. Tolwinski
(1998) proposes a method that combines the blocks on the same
bench, termed ‘atoms’, and generates a production schedule
using dynamic programming. However, combining blocks into
atoms may significantly disturb any possibility of achieving the
optimal solution, depending on the size of the atoms, which is
not mentioned. The Milawa algorithm discussed in Whittle
(2000) considers a few benches at each cutback as a variable and
uses a search technique called the ‘step and stride’ algorithm,
discussed in Wharton (2000), to identify the regions of high
value, rather than identifying individual mining blocks. This is a
heuristic approach and doesn’t guarantee an optimal solution.
Godoy and Dimitrakopoulos (2004) applied a simulated
annealing optimisation method for scheduling a large gold mine.
Although the method seems promising, it doesn’t explicitly
include grade blending constraints in its model, limiting its
application for mines with blending problems. Dimitrakopoulos
and Ramazan (2004) developed an LP model that considers
maximising the chance of meeting grade blending requirements
and the feasibility of mining operations providing equipment
access to the blocks in the objective function rather than NPV
maximisation in the objective function. The LP model
application in a laterite nickel-cobalt mine shows successful
results in preventing fractional mining of a block over multiple
time periods and the resultant production schedule is shown to
have a better chance of satisfying the blending constraints. This
LP model needs more testing in terms of satisfying the
sequencing constraints for open pit mines that have significant
depth, or multiple blocks vertically. Similar approaches are
presented in Dimitrakopoulos (in press). Topal et al (2003)
developed a methodology to reduce the number of binary
variables in optimising long-term scheduling at LKAB’s Kiruna
underground mine using aggregation of blocks on the same
machine production. However the paper does not provide a
method for variable reduction or improved efficiency for open pit
mines.

In this paper, the fundamental tree (FT) algorithm is presented.
The algorithm combines the ore blocks with their overlying
waste blocks and some other ore blocks only when such
combination is necessary to support the cost of mining the
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overlying waste blocks. The method prevents unnecessary
aggregation of blocks, minimising errors in achieving slope
sequencing, and also keeps the resolution of the original data by
not averaging out the values of too many combined blocks. The
structure of the algorithm is established in a way that makes the
high economic value aggregates feasible to mine earlier than the
lower aggregates that has substantial impact in generating higher
NPV values. Since this algorithm generates many fundamental
trees for a given deposit model, it gives the MIP scheduling
optimiser the opportunity to be able to generate optimal results.
The algorithm reduces the number of binary variables required
for the MIP formulation of long-term production scheduling.
Since the FT algorithm uses only linear variables in the
mathematical model, it is extremely efficient for large deposits.
A set of combined blocks is called a ‘fundamental tree’ if the
combination of blocks has three properties:

1. it can be mined without violating the slope constraints,
2. it has a positive total economic value, and

3. it cannot be partitioned into smaller trees without violating
1 and 2.

The function of these three properties in generating an optimal
result is discussed in this paper. The LP formulation is an optimal
model in terms of generating the fundamental trees with the
defined properties as discussed in this paper. After generating
fundamental trees, an MIP model is used to optimise the
production scheduling based on the fundamental trees instead of
blocks.

THE FUNDAMENTAL TREE ALGORITHM

The FT algorithm is applied to the blocks within a cutback that
has to be determined using one of the true optimising methods
such as Lerchs and Grossmann’s method (1965) as implemented
by Whittle (1988), or the maxflow algorithm of Johnson (1968).
If the cutback is designed using a heuristic method such as
implementations of the floating cone method by Lemieux (1979),
as presented in Ramazan (1996) or Wang and Sevim (1993), the
LP model formulations would be infeasible due to Equation (3).

Steps of the FT algorithm

The FT algorithm is implemented in seven steps as discussed
below:

searched for positive value nodes. If two or more
positive value nodes on the same level have the same
cone value, the ranks may be assigned randomly, and
two nodes should not be assigned to the same rank.

Step4.  Set up the LP formulation as discussed later in this
paper, using the ranks in Step 3 as coefficients for the
objective function. After the problem formulation is
ready, it can be solved using one of the solvers

available in the market.

Step 5.  Calculate the number of trees generated by the LP
model. Initially, it is assumed that whole network is
one tree. If the number of trees obtained from the
current solution is higher than the previous solution,
keep the currently found arcs between nodes and go to
Step 6 to generate a new network to be used for
iterating the algorithm. If the number of trees obtained
is the same as the number of the trees obtained from
the previous solution, go to Step 7; and the problem is
considered to be at optimal solution. Usually, two or
three iterations are required for convergence.

Step 6. A network is formed by keeping only the arcs that are
between the nodes within the same tree. The arcs that
have no flow are first deleted from the network as
discussed later in this paper. However, all the arcs that
exist between negative value nodes and positive value
nodes within the initial network must also exist within
the starting network for the nodes that are in the same
tree. So if an arc is deleted between two nodes that

belong to the same tree, it is re-added. Go to Step 2.
Step 7. Stop.

In Step 5, some arcs are deleted from the network when there
is no flow on them. This arc deletion leaves the network with the
positive value nodes that are connected to the overlying negative
value nodes and these negative value nodes can be supported by
only the connected positive value nodes. If some of the
connected nodes can be partitioned without violating the slope
requirement and the positiveness of the total economic value, the
partition will occur during iteration process. When there is no
partitioning in a solution, the algorithm will terminate.

lllustration of the steps of the FT algorithm

The hypothetical two-dimensional block model given in Figure 1
is used to show the steps of the algorithm. The node numbers are

Step 1. Generate a network for the blocks within a pit. The - :
arcs in the network represent the node (block) written on the bottom-right of each block and the expected
precedence relationship within the pit. An arc is set economic value from each block is written at the centre.
from each positive value node to all the overlying
negative value nodes on the upper levels that have to Bench1| -2 -3 -1 -1 2
be mined before mining the positive value node. 1 2 3 4 S

Step2.  Determine the cone value CV; for each node i having a Bench 2 +5 6 +3 7 +5 8
positive value within the network. The economic
values of all the nodes connected to node i with an arc
set from node i are summed and referred to as the cone FIG 1 - A hypothetical example block model in two-dimensional
value. section view.

Step 3. Rank the positive value nodes according to their cone . . o

p value stargng from the highest to lowegst and starting Step 1. The block model is represented with an initial network

from the topmost bench (or level) where at least one aStShO‘Enf mn Fl“é‘.lre 2. Adblo6c k7ls cgllsedha node 1tn a
positive value node exists and moving toward the network form. SINCe nodes o, / an ave positive
bottom bench. On the topmost level where more than economic values, the arcs are set from these nodes to
one positive value node exists, the node with the the nodes on the upper bench. It is assumed that_ the
highest cone value is ranked a,s 1. and the second blocks are the same size and have to be mined with a
highest cone value node is assigned to rank 2, and so 45—degrete ds‘éorﬁi angle in all directions, which is
on. Then, the ranking process moves one level down. If represented by the arcs.
there are positive value nodes on that level, the node Step 2. If the economic value of node i is Vi, then CVg =
with the highest cone value is assigned to 1+ (the V6+V1+V2+V3 =+5-2-3-1. That is, CVe=-1. Similarly,
previous largest rank). Otherwise, a lower level is CV7=-2 and CVg=+1.
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FIG 2 - Initial network for the example block model.

Ranks C; are assigned to positive value nodes in order
of their CVj value and the levels where nodes are
located. Since CVg is greater than CVe and CV7, Cg is
setto 1, Ceis set to 2 and C7 is 3.

The problem solution is given in Figure 3 and the
starting network for the next iteration in Figure 4.
Figure 4 is generated by deleting the arcs with no flow
from the previous network. Note that all the arcs that
exist between negative value nodes and positive value
nodes within the initial network are kept for the nodes
that belong to the same tree. The LP formulation and
the figure are explained later in this paper.

Two trees are identified from the network in Figure 4.
Since there are two trees at the current solution, which
is greater than the previous one tree shown in Figure 1,
go to Step 6. It should be noted that the tree
sequencing is to be done by the MIP model, so the
numbering of trees does not refer to the sequencing.

A new network is generated as shown in Figure 4 and
this is used to make the next iteration. The algorithm
now moves to Step 2.

Minimise 2f61+2f62+2f63+3f72+3 f73
+3f7, gzt fgatis
?u?: esc tTo Variable Value
f56<: 3 fse 5.00000
f57<: 5 fs7 0.00200
;8:2 001 fsg 4.00300
f“:3'001 i 2.00100
f2[:1'001 £ 3.00100
f3l:1'001 f3; 1.00100
f4l:2.001 Ty 1.00100
fs‘ f.:O fs 2.00100
e fe1 2.00100
ferttro-fr=0 f 2.99900
f63+f73+f83'f3l:0 f62 000000
Frat s £4=0 £ 0.00200
fisfs=0 gl 0.00000
fsé'fél'fGZ'f()S_O £ 0.00000
fs7'f72'f73u'f74:0 f74 1 00 100
fig-fy3-foa-fzs=0 f:i 1 '00100
fys 2.00100

FIG 3 - The proposed LP model formulation at the initial stage and
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the solution.

FIG 4 - The network model containing two trees (dashed lines)
generated from the initial solution to be used for setting up the

Step 2.

Step 3.

Step 4.

Step 5.

Step 7.

iterative LP model.

The cone value CVg is now 0 (+5-2-3), CV7 is 0 and
CVgis +1.

The ranks are determined using CV;j values. Cg is set to
2, C7is set to 3 and Cg is 1. C¢ and C7 could also be
set as C¢ = 3 and C7 = 2, which wouldn’t make any
difference for the optimisation.

The iterated LP model and its solution are given in
Figure 5 with the current network configuration in
Figure 6. Note that the tree having only one positive
value node can be excluded from the iterative
formulations; it is kept here only for illustration
purposes.

Two fundamental trees are identified at the current
solution from the network in Figure 6. Since the
number of trees from the current solution is the same
as previous solution, the algorithm moves to Step 7.

Stop the algorithm.

The final network generated after solving the iterative LP
model contains two trees, which are referred to as fundamental
trees. It is clear that these trees have the pre-defined three
properties of fundamental trees. First, they can be mined without
violating the slope requirement, by first excavating Tree II and
then, Tree I. Second, each of the trees has a positive economic
value: one has +1 and the other +3 value. Third, these two
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Minimise 2fg+2fs,+315,

g3+ fatss
Subject To
f56<:5
f<=3 Variable Value
fg<=5 fse 5.00000
£,=2.001 fs7 0.00200
£,=3.001 fss 4.00300
f3=1.001 fi¢ 2.00100
f4,=1.001 o 3.00100
f5=2.001 £y 1.00100
fe1-f1=0 £ 1.00100
fﬁz 'th:O fSt 2.00100
f63 'f3l:0 fﬁ] 2.00100
f74+f34-T4=0 foo 2.99900
f85'fSt:0 f72 0.00200
fsé'f6l 'f62'f63:0 fg} 1.00100
fg7 -£7,=0 foa 1.00100
fsg -fg4-f85=0 fgs 2.00100

FIG 5 - The iterative LP formulation and the solution.
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-
Tree I

FIG 6 - The final network formed, indicating two fundamental trees.

fundamental trees cannot be divided into sub-trees without
violating the first and second properties. Splitting Tree I (as
nodes 1 and 6 and nodes 2 and 7) without disturbing the slope
would leave at least one of the trees (nodes 2 and 7) without a
positive value, violating the second property. This small example
illustrates that the LP model successfully finds the fundamental
trees. These properties are further discussed in Ramazan (2001).

THE LP FORMULATIONS FOR GENERATING
FUNDAMENTAL TREES

This section discusses the LP formulation of the fundamental
tree (FT) algorithm as presented in the previous section. The
objective function of the model is the minimisation of arc
connections in the network weighted by the assigned ranks. The
objective function is expressed as:

MinY YK, m

where:

Rp is the rank for a positive value node p

N s the total number of positive value nodes
fpj is the flow sent from node p to node j

After the LP model is completed and solved, if there is a flow
going through the arc, it is kept in the next network. If there is no
flow going through the arc, it is deleted from the network either
permanently, or temporarily to identify the connected nodes.
Thus, the objective function is the minimisation of the
connections between blocks, considering the assigned ranks and
the constraints. It should be noted that the intention is not really
the absolute minimisation of the existing arc connections. The
purpose of this LP model is to find the fundamental trees with
the defined properties, rather than to minimise the connections.

In a given bench, the model considers that the highest cone
value node, say node p, has the highest chance of being able to
support all the negative value nodes on the benches above
preventing node p from being mined. Therefore, if the arcs are
constructed from the highest cone value node (lowest rank), the
number of joint supports for negative value nodes will be
minimised, considering the model constraints. This ranking in
the objective function, together with the model constraints, will
mainly establish the third property of a fundamental tree, which
is that it cannot be partitioned into sub-trees. The coefficients
also have some role in making the fundamental trees obey slope
constraints, although it is not as direct as in Equation (3). Since
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the arc connections are prioritised from higher cone value nodes,
the fundamental trees are generated in a way such that higher
value blocks become feasible for mining before the lower value
blocks for the MIP scheduling model. This is a desirable
condition, although not a pre-requisite for NPV maximisation
during the annual production schedule, because this LP model
generates enough small trees for MIP to be able to aggregate
them in an optimal way.

A positive value node is constrained in a way that it cannot
support a higher cost of waste stripping than the expected
revenue from this block. The constraint formulation is expressed
as below:

f4<V,, for all p’s. 2

si—

where:
fsp  is the flow sent from source node s to node p

vp is the economic value of block p, which is set for only
positive value nodes.

The costs of mining negative value blocks are forced to be
paid by the ore blocks whose accesses are restricted by the
negative value blocks. A small extra value & is also forced to be
sent to negative value nodes to ensure that the precedence
relationship will not be violated by the trees. For example, if
there are three blocks a, b and ¢ to be supported by block d, &
avoids the situation where blocks a and b will be fully supported
by block d and block d will not have any more value to make any
support for c. By avoiding this situation and requiring extra
support by block b if the value of block d is consumed,
connected aggregates become feasible in terms of slope. It
should also be noted that objective function coefficient also has a
role in achieving slope since it will be always better to send
flows from the same block until all the values in that block is
used.

A very small number, such as 0.001, is given to § so that it will
not be ignored by the solver. These constraints also ensure that
the minimum economic value of a tree is greater than or equal to
&, which is strictly positive. This is the first pre-defined property
of a fundamental tree. Without using the & value, if an overlying
negative node is fully supported by an underlying positive value
node, the total value of negative and positive nodes could be
zero, without requiring a joint support. That would not only
generate zero value trees, violating the defined property of the
FT algorithm for being strictly positive, but also cause violation
in the slope requirements. It is by definition that negative value
aggregates are not allowed in the model. If one allows a negative
value aggregate as a tree, the current block model (mining
blocks) is the optimal result in terms of not being able to divide it
into smaller trees and that wouldn’t have any benefit for reducing
binary variables required in MIP optimisation model.

Since the economic values in mining are sufficiently large,
thousands in magnitude, to be approximated to integer values,
the total of the added & values for all the overlying connected
nodes should be kept below 1. Otherwise, some trees may violate
the last pre-defined property of a fundamental tree; that is, one or
more trees may be partitioned into sub-trees having the first two
pre-defined properties of fundamental trees if the & value is set
too high. This constraint formulation is expressed as:

fi=-Vi+&, 3

where:
&  isasmall positive decimal number
Vj is the value of the negative value node j

t is the sink node
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The flow balance must be constructed around negative value
nodes. If the number of positive value nodes from which arcs are
set towards the negative value node j is NP, then the mass
balance constraint around each negative value node is expressed
as:

2&—ﬁ=0 )

p=1

The flow balance around each positive value node must be
established. If the number of waste blocks overlying positive
node p is W, the mass balance constraints for the positive value
nodes are expressed as:

fp=3f, =0 5)
=1

The initial LP formulation and solution for the example
network model given in Figure 2 are illustrated in Figure 3.
Figure 4 is generated by deleting the arcs that are not used by the
LP model from the initial network. The iterative LP formulation
is generated using the current network of the system as stated
earlier in this paper. It should be noted that the number of binary
variables required to formulate the MIP model for scheduling
this small deposit model is only two (a binary for each
fundamental tree) for each period instead of eight (a binary for
each block).

After generating the fundamental trees for a given orebody
model, the annual production scheduling can be formulated as an
MIP model treating each tree as a block having certain attributes.
MIP formulations for optimising long-term production
scheduling can be found in Ramazan (2001) and Ramazan and
Dimitrakopoulos (2004).

A CASE STUDY

The FT algorithm is tested in an application on a large copper
mine containing sulfide ore (milling ore), oxide ore (leaching
ore), gold and silver in South America. The mine can consider
processing 17 000 tonnes of sulfide material per day at the mill
and 3.5 million tonnes of oxide ore per year by the leaching
process.

The orebody model representing the deposit contained
871 875 blocks with dimensions 20 m by 20 m by 10 m. For this
deposit model, four cutbacks are generated using the Whittle 3D
program that uses the L-G method (Lerchs and Grossmann,
1965) to find the nested pits. The number of ore and waste
blocks, and tonnages of sulfide ore (SO), oxide ore (OO), and
waste within each cutback (CB) before haul roads are designed
are given in Table 1. In the table, the blocks that have positive
values are considered to be ore for finding the fundamental trees,
but the ore-waste classification is based on cut-off grade for
production scheduling.

TABLE 1

Tonnages for sulfide ore (SO), oxide ore (OO) and waste within
each cutback (CB) and number of blocks.

Tonnage (million tons) Number of blocks
CBNo| SO 0O | Waste | Total Ore | Waste | Total

1 343 8.56 | 28.90 | 40.90 | 2100 | 2582 | 4682
2 9.85 578 | 66.70 | 82.33 | 2349 | 6712 | 9061
3 19.64 | 226 | 9949 | 121.39| 2844 | 9739 | 12583
4 11.68 | 0.36 | 104.88 | 116.92 | 1457 | 10674 | 12131

Total 44.60 | 16.96 | 299.97 | 361.53 | 8750 | 29707 | 38 457
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The LP model information and number of fundamental trees
found individually for each cutback are given in Table 2. Initially
the total number of blocks requiring an integer variable for each
scheduling period (last period may be excluded) was 38 457,
which is almost impossible to optimise through an MIP model.
The FT algorithm reduced this number of blocks down to 5512
fundamental trees. The number of fundamental trees in a deposit
depends on the economic value of the ore blocks and the cost of
mining the overlying waste material. This dependency appears in
Table 2 such that as the deposit becomes deeper, towards
cutbacks 3 and 4, the ratio of the fundamental trees to ore blocks
decreases.

TABLE 2
LP model and fundamental tree information within cutbacks.
‘ CB1 ‘ CB2 ‘ CB3 ‘ CB4 Total
LP information for the first iteration
Constraints 50 884 | 143 945|337 481 | 629 595
Variables 87722 | 260 707|637 213 | 1222797
Objective non-zeros | 41 520 | 125 823|312 315| 605 333

Fundamental tree numbers

Iteration 1 1883 1644 1624 321
Iteration 2 1883 1661 1640 328
Iteration 3 1661 1640 328 5512

The ratio of FTs to 0.90 0.71 0.58 0.22
ore blocks

Although the LP formulation was very large, the solution time
was always less than five seconds on a PC with 600 MHz
processor for the first iteration. Iterated formulations are much
smaller in size and they were solved almost instantly. Since the
MIP model for optimising open pit production scheduling needs
binary variables, four of the cutbacks are scheduled one at a time
to keep the number of binary variables at a low level so that the
MIP model could be solved.

Table 3 provides details of the MIP scheduling model and
shows that the largest MIP model is set for the third cutback,
which contains 4920 binary variables, 13 557 linear variables,
and over 41 000 constraints. The problem is stopped when the
integer solution reached a 5.5 per cent gap.

TABLE 3

MIP model information for the copper deposit using a 600 MHz PC.

PB1 PB2 PB3 PB4
Constraints 5719 10 158 41 256 3171
Variables — Linear 5711 10 459 13 557 1335
Variables — Binary - 3322 4920 328
Variables — Total 5711 13781 18 477 1663
Objective non-zeros 2735 8433 10 108 996
Percent optimality (%) 100.00 99.3 94.5 100.00
Run time — hr:min:sec | 00:00:01 | 00:04:40 | 00:36:24 | 00:00:04

The scheduling results are summarised in Table 4. Since the
MIP model considers both mill process and leaching in the
optimisation, leaching is performed with full capacity for the first
four years of production with a significant contribution to overall
profit. The mill is fed with more or less the same ore tonnage,
with some variation in grade until the ore is depleted towards the
end. The results shown in Table 4 are produced after the
designing of haul roads and smoothing of pits necessary for
practical operation. Figure 7 shows the plan view of the deposit
with access roads at the end of the mine’s life.
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TABLE 4
Summary results of the annual production schedules (tonnages are in 1000 tons and grades are in per cent).
Years Sulfide Oxide Waste
Mill Leach pad Stockpile Dump tons Total tons

Tons Grade Tons Grade Tons Grade
1 6258 1451 3500 1.316 6533 1.316 58 654 68412
2 6121 1.461 3500 1.268 4929 1.316 67018 76 639
3 6212 1.492 3500 1.108 4111 1.316 66 395 76 107
4 6036 1.543 3500 1.298 961 1.316 68 573 78 109
5 6134 1.387 2093 1.098 67414 75 641
6 6325 1.580 487 0.827 67 090 73 902
7 6277 1.951 316 0.889 52744 59 337
8 1197 2.117 51 0.570 9368 10616
Total 44 560 1.568 16 947 1.209 457 256 518 763
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FIG 7 - Plan view of the deposit with access roads at the end of the mine’s life.

The mine was also scheduled using MINTEC’s M821V18,
Earthworks” NPV scheduler19, and Whittle’s Milawa mine
scheduling programs using the same constraints as the MIP
scheduler using the FT algorithm. Detailed descriptions of the
scheduling process are presented in Bernabe (2001).

The total undiscounted dollar value of the deposit varies within
a narrow range for the different methods. It is around $610.8
million in the NPV scheduler, $612.6 million in the MIP
scheduler with FT algorithm, $614.6 million in the Whittle
Milawa and $620.2 million in the M821V. The discounted cash
flows are calculated at ten per cent rate for each scheduling
technique. The discounted total NPV values generated by the
three traditional methods are similar to each other, around $400
million. However, the total NPV generated by the MIP scheduler
with FT algorithm is $22.2 million more than the Milawa
scheduler in the Whittle Four-X program, which resulted in the
highest NPV among the three traditional methods, and about
$29.5 million more than the NPV scheduler. This refers to about
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seven per cent higher NPV than the available software package
producing the highest NPV. The higher NPV in this specific case
study occurs mainly because the MIP model was flexible in
terms of being able to consider dual processors at the same time
and because the overall scheduling process using the FT
algorithm doesn’t have the simplifying assumptions of traditional
models, such as aggregating the neighbouring blocks on the same
bench.

CONCLUSIONS

In this paper, a fundamental tree (FT) algorithm based on a linear
programming method using only linear variables has been
presented. This method successfully generates fundamental trees,
identified by three defined properties. The defined properties
prevent the aggregated blocks from losing their optimality for the
MIP scheduler. An ore block is aggregated only with the
overlying waste blocks that must be extracted before being able

Orebody Modelling and Strategic Mine Planning
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to extract the ore block and with another ore block only if it is
necessary to support the mining of overlying waste blocks.
Because the number of fundamental trees generated by
aggregating the blocks is sufficiently large for the MIP model to
choose the best combination for an annual schedule, the MIP
model can achieve optimality. As well, the MIP-type
mathematical models are powerful for solving difficult blending
problems. Since the FT algorithm reduces the number of binary
requirements and the model size significantly, it is possible to
apply the MIP model to produce correct blending requirements
in operations requiring some level of accuracy in the blending of
grade and ore quality elements, such as iron ore, copper and
nickel deposits.
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