АКАДЕМИЯ НАУК СССР СИБИРСКОЕ ОТДЕЛЕНИЕ ИНСТИТУТ ГЕОЛОГИИ И ГЕОФИЗИКИ

ПРЕПРИНТ

НЕСТАЦИОНАРНОЕ ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ В БЛИЖНЕЙ ЗОНЕ

НОВОСИБИРСК-1971

АКАДЕМИЯ НАУК СССР СИБИРСКОЕ ОТДЕЛЕНИЕ

ИНСТИТУТ ГЕОЛОГИИ И ГЕОФИЗИКИ

ПРЕПРИНТ

НЕСТАЦИОНАРНОЕ ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ . В БЛИЖНЕЙ ЭОНЕ

Новосибирск-1971

Ответственный редектор доктор технических неук профессор А.А.КАУФМАН

А.А.Кауфман, М.М.Гольдман

НЕСТАЦИОНАРНОЕ ПОЛЕ ЭЛЕКТРИЧЕСКОГО ДИПОЛЯ В БЛИЖНЕЙ ЗОНЕ

Рассмотрим некоторие ссобенности в поведении поля электрического диполя, расположенного на поверхности горизонтальнослоистой среды, когда расстояние между источником поля и точкой измерения меньше суммарной мощности плестов (ближняя вона).

Кек известно, выражения для компонент гармонического поля E₂ и Hy. имеют вид /I/:

$$E_{x} = \frac{PP_{e}}{2\pi} \left[M_{s} \sin^{a} \gamma \cdot \left(M_{a} + M_{b} \right) \frac{\cos 2\gamma}{\pi} - M_{a} \cos^{a} \gamma \right]$$
(1)

$$H_{y} = \frac{P}{2\pi} \left[N_{y} \frac{\cos 2Y}{2} - N_{z} \sin^{z} Y \right]$$
⁽²⁾

Здесь:

$$M_{s} = \kappa_{s}^{2} \int_{0}^{\infty} \frac{m}{m + \frac{m_{s}}{R}} \mathcal{I}_{s}(mz) dm; \quad M_{z} = \int_{0}^{\infty} \frac{m_{s}}{R} \mathcal{I}_{s}(mz) dm$$

$$M_{s} = \kappa_{s}^{2} \int_{0}^{\infty} \frac{1}{m + \frac{m_{s}}{R}} \mathcal{I}_{s}(mz) dm; \quad M_{s} = \int_{0}^{\infty} \frac{m m_{s}}{R} \mathcal{I}_{s}(mz) dm$$
(3)

$$N_{1} = \int_{0}^{\infty} \frac{m}{m + \frac{m_{1}}{R}} \mathcal{I}_{e}(mz) dm; \quad N_{2} = \int_{0}^{\infty} \frac{m m_{1}}{R(m + \frac{m_{1}}{R})} \mathcal{I}_{e}(mz) dm \quad (4)$$

где $\mathcal{J}_{0}(m\tau)$ и $\mathcal{J}_{1}(m\tau)$ – функции Бесселя; $K_{i}^{2} = i_{j}, \mu_{0} \omega$ – волновое число первого пласта, мощнооть которого h_{i} ; μ_{0} – магнитная проницаемость среды, равная 47 IO⁻⁷ гн/м; P – момент диполя, направленный вдоль ося \mathcal{I} ($p \cdot \mathcal{I} dx$); χ – расстояние от диполя до точки измерения: $m_{i} = \sqrt{m^{2} - K_{i}^{4}}$, Ψ – азимут точки измерения (на оси диполя $\Psi=0$).

В трехслойной среде имеем:

$$R = cth \left[m, h, + ar oth \frac{m_s}{m_a} eth \left(m_a h_a + ar oth \frac{m_a}{m_a} \right) \right]$$

$$\overline{R} = cth \left[m, h, + ar oth \frac{m_s}{m_a} + ar oth \left(m_a h_a + ar oth \frac{m_a}{m_a} + ar oth \frac{m_a}{m_a} \right) \right]$$
(5)

Будем считать, что момент диполя изменяется со временем как ступенчатая функция:

$$P_{x}(t) = \begin{cases} P_{x} & t < 0 \\ 0 & t > 0 \end{cases}, \tag{6}$$

которую можно представить следующим образом:

$$\rho_x(t) = \frac{\rho_x}{2\pi} \int \frac{e^{-i\omega t}}{i\omega} d\omega$$
 (7⁸)

ИЛИ

$$p_{\alpha}(t) = \frac{p_{\alpha}}{2} + \frac{p_{\alpha}}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-i\omega t}}{i\omega} d\omega \qquad (7^{6})$$

В формулах (7⁶) и (7⁶) контуры интегрирования отличаются махду собою: в первом случае контур интегрирования не проходит через точку $\omega = 0$, а во втором случае интеграл понимается в смысле главного значения и переменная интегрирования ω принимает только действительные значения.

Таким образом, для нестационарного процесса в режиме выключения $\mathcal{P}(t)$ имеем:

$$\varphi_{-}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\varphi(\omega)}{i\omega} e^{-i\omega t} d\omega$$
 (8⁸)

ИЛИ

где \mathcal{P}_{o} = Значение соответствующей компоненты постоянного целя, $\mathcal{P}(\omega)$ = комплексная амплитуда этой компоненты. Формула (8⁶) является йсходной при определении вестационарного поля путем численного интегрирования вдоль действительной оси ω . Учитывая известные свойства реальной и мнимой части комплексной амплитуды $\mathcal{P}(\omega)$:

$$Re P(\omega) = Re P(-\omega); \quad dm P(\omega) = -dm P(-\omega)$$

вместо (8⁶) получаещя

$$\varphi_{-}(t) = \frac{2}{\pi} \int_{0}^{\infty} \frac{\mathbf{I}_{m}\varphi_{(w)}}{\omega} \cos \omega t \, d\omega$$

ИЛИ

Тэй йак спектр ступенчатой функций

 $\begin{array}{l}
P_x(t) = \begin{cases}
O & t < O \\
P_x & t > O \\
P_x(t) = \begin{cases}
P_x(t) = \frac{1}{c} & 0 \\
P_x(t) = \frac{1$

(9)

ме включения можно представить следурани обрезом!

$$\mathcal{P}_{+}(t) = \mathcal{P}_{o} - \frac{2}{\pi} \int \frac{\int m \mathcal{P}(w)}{w} \cos w t \, dw$$

ИЛИ

$$\mathcal{P}_{+}(t) = \frac{\ell}{J_{c}} \int_{\omega}^{\infty} \frac{Re \,\mathcal{P}(\omega)}{\omega} \sin \omega t \, d\omega \qquad (10)$$

Согласно (9) и (IO) в каждый момент времени нестационарного поля в режимах включения и выключения отличаются на величину соответствующей компоненты постоянного поля:

$$\mathcal{P}_{+}(t) + \mathcal{P}_{-}(t) = \mathcal{P}_{o} \tag{II}$$

Как извество ///, в комент вилючения тока для электричес-

В частности

Представим постоявное электрическое поле диполя на поверхности, горизонтально-слоистой среды в виде суммы двух слагаемых:

$$E_{ox} = E_{ox}^{(1)} + E_{ox}^{(2)}$$

Первое слагаемое - это поле диполя на поверхности однородного

полупространства с уделъным сопротивлением / , созданное зарядами, расположенными на поверхности электродов диполя:

$$E_{ox}^{(1)} = \frac{P_{P_{1}}}{2\pi \tau^{3}} (3\cos^{2}\varphi - 1)$$

Источниками поля \mathcal{E}_{ox} являются электрические заряды, возникающие на границах сред с различным удельным сопротивлением. Эта часть поля содержит информацию о геоэлектрических параметрах среды, но вблизи электрического диполя преобладает первичное поле $\mathcal{E}_{ox}^{\prime \prime}$. Таким образом, согласно (II-I3), для электрической компоненты в момент выключения имеем

(13)

$$E_{x-} = E_{ox} - E_{x+} \qquad \text{или} \qquad E_{x-} = E_{ox}^{(4)} + \frac{p_{f_{x}}}{2\pi \tau^{3}} \qquad (14)$$

$$t \to 0$$

Эта формула справедлива независимо от расстояния до источника.

Предположим, что через диполь пропускается постоянный ток 25 и в некоторый момент времени $t=t_0$ уменьшается вдвое. Тогда полное поле можно рассматривать как поле совданное постоянным током 7 и ступенчатой функцией:

$$\mathcal{J}(t) = \begin{cases} \mathcal{J} & t < t_o \\ o & t > t_o \end{cases}$$

В экваториальной плоскости согласно (13, 14) полное поле не зависит от первичного поля E_{ac} и определяется только по – верхностными зарядами, возникающими не горизонтальных поверяностях раздела:

$$E_x = E_{ox} + E_{x-} = 2E_{ox}^{(2)}$$
 (15)

Аналогично, изменив функцию возбуждения, можно выделить поле L_{os} при измерении на оси диполя, а также при исследовании нестационарного процесса в режиме включения. Следовательно, принципиэльно возникает возможность осуществления в благоприятных геологических условиях дипольных зондирований с относительно малыми разносами, но с достаточно большой глубинностью исследования. Так как магнитное поле постоянного тока в горизонтальнослоистой среде остается таким же, как в однородном полупространстве, то для ранней стадии имеем:

 $E_{x} = E_{ox}^{(2)} + \frac{P_{P_{x}}}{2\pi x^{3}}; \quad B_{y-} = \frac{P_{M_{o}}}{4\pi x^{2}} \cos 2\theta; \quad B_{z-} = -\frac{P_{M_{o}}}{4\pi x^{2}} \sin \theta$ (16) 1 - - < 3, 0; Ti = VET Pit. 10"

Теперь рессмотрим поведение поля в поздней стадии становления для двухолойной среды. Асимптотические выражения для компонент поля находим, применяя методику, описанную в работе/2/ и принцип взеимнооти.

8) P2 7 00 $E_{s}(t) \cong \frac{P_{s}R_{s}}{L_{s}t} \left[\frac{\sqrt{S}}{6\sqrt{t}} \left(\frac{\chi_{s}R_{o}}{t} \right)^{2} - \frac{1}{16} \left(S - 1 \right) \left(\frac{\chi_{s}R_{o}}{t} \right)^{2} h_{s} - \right]$ 40 1/252 - 2 hi 5(5-1) (X1 Mo) 5/2] By (t) = PMo [VeMo - 2 V ft (S-1) (Vi Mo 3/2 h, + + 16 (5-1) hi + (cos 24-2) 5 22 (12 Mb 12 7 956 (I7)(Mog) 5/2 [22 5/2 + 2 h, V5 (1-5) (85-9)] 140 VE t 5/2

Здесь 5 = 12 σ) $\rho_2 = \infty$ En (t) ~ PMo [Mo Vihi - Ki Mo hi] $B_{y}(t) \approx \frac{P_{s}M_{o}}{4\pi} \left[\frac{1}{8} \left(\frac{Y_{1}M_{o}}{t} \right)^{2} h_{1} - \frac{5}{2y} \left(\frac{Y_{1}M_{o}}{t} \right)^{4} h_{1} \right]$ (18) B3 (t) ~ - P.M. 2 sing S' [1 - 3.M. Shi]. FAR S=X.h.

В табл. I приведены минимальные значения параметра $\frac{\mathcal{L}_{x}}{\mathcal{L}_{x}}$, для которых формулы (I7 – I8) определяют поле с относительной погрешностью, не превышающей 5%.

Таблица І

12 X1	0	I 100	-	1 50	-1-25	16	1 B	I 4	IZ	При	мөчөниө
E.	23	130		90	54	20	20	19	19	r	T
By	23	90	-	64	45	45	32	27	16	h.	- 1
								Π	одол	жение т	вбл. І
12	2	4	8	16	25	50	IO	0	200	500	1000
Ez	19	23	23	23	23	38	5	3	90	I28	215
-									·		

В поздней стедии стеновления преобладает горизонтельная компонента магнитного поля, и, как было отмечено в /2/, этот Факт следует принимать во внимание при измерении вертикальной составляющей поля, особенно в условиях сложного рельефа местности.

Если пласт расположен на непроводящем основании, то компоненты поля диполя E_x и B_y связаны с продольной проводимостью пласта в меньщей степени, чем составляющие поля магнитного диполя.

Для определения временных характеристик поля были выполнены расчеты для сред с днумя и тремя горизонтальными поверхностями раздела. При вычислении интегралов, описывающих гармонический режим, использовался метод Гаусса. Этот метод совместно со способсм Филона был применен и для расчетов интеграла Фурье (9).

Введем кажущееся удельное сопротивление $\mathcal{I}_{\mathcal{T}}$ следующим образом:

 $\frac{\mathcal{P}_{\underline{r}}}{\mathcal{P}_{\underline{r}}} = \left(\frac{E_{\underline{x}}}{E_{\underline{x}}}\right)^{\underline{x}} \qquad \text{if } \frac{\mathcal{P}_{\underline{r}}}{\mathcal{P}_{\underline{x}}} = \frac{\mathcal{B}_{\underline{y}}}{\mathcal{B}_{\underline{y}}} \tag{19}$

На рис. 1.2 приведены примеры кривых $\frac{\mathcal{F}_{\mathcal{F}}}{\mathcal{F}_{\mathcal{F}}}$ для двухслойной среды. Шифр кривых – величина $\frac{\mathcal{F}_{\mathcal{F}}}{\mathcal{F}_{\mathcal{F}}}$. В поздней стадии становления кривые $\frac{\mathcal{F}_{\mathcal{F}}}{\mathcal{F}_{\mathcal{F}}}$ приближаются к правым асимптотам – $\frac{\mathcal{F}_{\mathcal{F}}}{\mathcal{F}_{\mathcal{F}}}$. В момент выключения кривые $\frac{\mathcal{F}_{\mathcal{F}}}{\mathcal{F}_{\mathcal{F}}}$ стремятся к единице, так как магнитное поле постоянного тока, как было уже отмечено, не измечяется при введении в модели среды горизон – тальных слоёв. Кривые $\mathcal{F}_{\mathcal{F}}$, соответствующие средам с плохо проводящим основанием имеют промежуточную асимптоту S(S – продольная проводимость). В этой области параметров токи почти равномерно распределены по вертикали в пласте и ещё незначительно проникают в основание.

Е В заключение приведем асимптотические выражения компоненты в поздней стадии для трехслойной орады.

puc. I

puc. 2

 $E_{2}(t) = \frac{RR_{1}}{2\pi} \left[\frac{VS_{3}}{6\sqrt{k}} \left(\frac{V_{1}H_{0}}{t} \right)^{3/2} - \frac{1}{16} \left(\frac{V_{1}H_{0}}{t} \right)^{2} A_{1} - \frac{2A_{2} + t^{2}S_{0}}{40\sqrt{x}S_{3}} \left(\frac{V_{1}H_{0}}{t} \right)^{2/2} \right]$

Эдесь $A_1 = h_1 (S_3 - 1) + h_2 (S_3 - S_L)$ $A_{s} = h_{1}^{2} (1 - S_{3}) S_{3} + 2h_{1} h_{2} \frac{S_{2} - S_{3}}{S_{2}} (2S_{2}S_{3} - S_{3}) + h_{2}^{2} (S_{2} - S_{3}) S_{3}$

Ка и Ка - соответственно мощности первого и второго пласта;

$$S_2 = \frac{V_2}{V_1} ; \quad S_3 = \frac{V_3}{V_1}$$

Если нижняя среде изолятор (🏑 = 0), то

 $E_{x}(t) = \frac{P}{16\pi} \left[\left(\frac{M_{0}}{t} \right)^{2} S' - 2 \left(\frac{M_{0}}{t} \right)^{3} h_{1} \left\{ (2 S - S_{1} + v_{1} S_{2}) S - \right\} \right]$ - 1 (V1 5 + 5 + 35 5)]] (21)

глө

 $S = S_1 + S_2$; $S_1 = h_1 V_1$; $S_2 = h_2 S_2$; $v_1 = \frac{h_2}{h_1}$. I. Ваньян Л.Л., Становление электромагнитного поля и его использование для решения задач структурной геологии. "Нау ка", 1966 г.

2. Кауфман А.А., Морозова Г.М. Теоретические основы метода зондирований становлением поля в ближней воне. "Наука", 1970 г.

3. Обухов Г.Г., Структурные электроразведочные исследования с близко расположенными приемными и питающими установками. Прикладная геофизика, № 58, 1970 г.

4. Фролов П.П.,О становлении электромагнитного поля. Известия АН СССР, серия геофиз., № 7, 1963 г.

5. Шейнман С.М., Об установлении электромагнятных полей в земле. Прикладная геофизика, № 3, 1947 г.

М.М.Гольдмен, А.А.Кеуфмен

О ВЛИЯНИИ АНИЗОТРОПИИ В МЕТОДЕ СТАНОВЛЕНИЯ ПОЛЯ В БЛИЖНЕЙ ЗОНЕ

Резвитие теории и методики зондирований становлением поля в ближней зоне в настоящее время связано, главным образом, с индуктивными способами возбуждения поля. Вместе с тем представляет интерес детальное изучение нестационарных полей заземленных источников (электрический диполь, линия конечной длины, бесконечно длинный кабель и т.д.). На основе известных решений в отатье приведены дополнительные, существенные для понимания поздней и ранней стадий становления данные о поле электрического диполя на поверхности проводящего анизотропного полупространотва.

Выражения для компонент электрического поля при выключении имеют вид /2/:

$$E_x = \frac{\rho}{2I_{f_x} \tau^3} e_x; E_y = \frac{\rho \sin 2\Psi}{4I_{f_x} \tau^3} e_y, \quad (I)$$

где .

$$\begin{aligned} e_{x} &= \mathcal{P}(u_{t}) - \frac{2}{\sqrt{\pi}} u_{t} e^{-u_{t}^{2}} + \left[\left(1 - 3\cos^{2}\varphi \right) \mathcal{P}(u_{t}) + \frac{2}{\sqrt{\pi}} u_{t} e^{-u_{t}^{2}\cos^{2}\varphi} \right] - \Lambda \left[\left(1 - 3\cos^{2}\varphi \right) \mathcal{P}(u_{n}) + \frac{2}{\sqrt{\pi}} u_{n} e^{-u_{n}^{2}\cos^{2}\varphi} \right], \end{aligned}$$
(2)

$$e_{y} = \frac{2}{\sqrt{2}} u_{e} e^{-u_{e}^{2}} - 3 \mathcal{P}(u_{e}) - \Lambda \left[\frac{2}{\sqrt{2}} u_{n} e^{-u_{n}^{2}} - 3 \mathcal{P}(u_{n}) \right].$$
(3)

Здесь ρ - момент диполя; κ и φ - соответственно редиус и эзимут точки измерения; Λ - коэффициент енивотропии $\Lambda = \sqrt{\frac{1}{p_n}}$; j_z и j_n - продольная и поперечная проводимости среды.

Магнитные компоненты B_x , B_y и B_z на поверхности однородного полупространства не зависят от параметра аниаотропии и, согласио /6/:

$$B_{x}^{bncn} = -\frac{\rho \mu_{o} \sin 2\Psi}{4 \pi r^{2}} b_{x}; \quad B_{y}^{bncn} = -\frac{\rho \mu_{o}}{4 \pi r^{2}} b_{y}; \\ B_{z}^{bncn} = -\frac{\rho \mu_{o} \sin \Psi}{4 \pi r^{2}} b_{z}, \qquad (4)$$

где

$$\boldsymbol{b}_{x} = e^{-\frac{u_{x}^{2}}{2}} \left[I_{o}\left(\frac{u_{x}^{2}}{2}\right) + 2I_{o}\left(\frac{u_{e}^{2}}{2}\right) \right] - 1 \quad (5)$$

$$b_{y} = \left\{ \left[I_{o} \left(\frac{u_{e}^{2}}{2} \right) + 2 \left[\left(\frac{u_{r}^{2}}{2} \right) \right] \cos 2\gamma - \left[\left(\frac{u_{e}^{2}}{2} \right) \right\} e^{-\frac{u_{e}^{2}}{2}} - \cos 2\gamma ; \quad (6) \right] \right\}$$

$$\mathcal{B}_{\underline{z}} = \frac{3}{\sqrt{\underline{z}}} \frac{e^{-u_{e}}}{u_{e}} + \left(1 - \frac{3}{2u_{e}^{2}}\right) \mathcal{P}(u_{e}). \tag{7}$$

Здесь

$$\mu_{o} = 4 \mathcal{I} \cdot 10 \quad \text{tr} / \mu ;$$

$$\mu_{e} = \frac{\mathcal{I} \sqrt{2}}{\mathcal{I}_{e}} + , \quad \mathcal{I}_{e} = 2 \mathcal{I} \sqrt{\frac{2 \mathcal{E}}{\mathcal{I}_{e}}} ;$$

$$\mathcal{I} = \text{BPBMA};$$

$$\mathcal{P}[\mathbf{x}] = \frac{2}{\sqrt{\mathcal{I}}} \int_{0}^{\mathbf{x}} e^{-\frac{s^{2}}{\mathcal{I}_{e}}} ;$$

$$I_{o}(\mathbf{x}) \quad u \quad I_{*}(\mathbf{x}) = \text{модифицированные функции Бесселя нулевого}$$

Таблица І

I. S. S.		Ву		
Tt.	θχ	Ψ=0	$\varphi = \frac{\mathcal{H}}{R}$	ßz
0,II3I·I0 ^I	0,1000.100	-0,7174.100	0,4447·10 ⁰	0,9027.100
0,1345	0,9999	-0,6664	0,3499	0,8624
0,1600	0,9985	-0,6076	0,2453	0,8057
0,1903	0,9877	-0,54II	0,1367	0,7273
0,2263	0,9476	-0,4683	0,3575·IO ^{-I}	0,6258
0,269I	0,8585	-,0,3926	-0,4370	0,508I
0,3200	0,7225	-0,3187	-0,9330	0,3882
0,3805	0,5642	-0,25II	-0,II40·I0 ⁰	0,2804
0,4525	0,4124	-0,1928	-0,1135	0,1931
0,5382	0,2858	-0,1450	-0,1009	0,1280
0,6400	0,1900	-0,1073	-0,8343·10 ⁻¹	0,8240·IO ^{-I}
0,76II	0,1225	-0,7842.10 ⁻¹	-0,6579	0,5188
0,905I	0,77I5·I0 ^{-I}	-0,5678	-0,5021	0,3215
0,1076·10 ²	0,4781	-0,4084	-0,3746	9691,0
0,1280	0,2928	-0,2923	-0,2751	0,1196
0,1522	0,1778	-0,2085	-0,1992	0,7216.10-2
0,1810	0,1073	-0,1483	-0,1439	0,4336
0,2153	0,6447·IO ⁻²	-0,1054	-0,1031	0,2583

Таблице 2

$\frac{7_4}{2}$ e_x $\frac{9}{2} = 0$ $\frac{9}{2} = \frac{1}{2}$ 0,1131 10 ^I 0,1995 10 ^I 0,5003 10 ⁰ 0,1494 10 ^I 0,13450,19650,50270,14620,16000,18720,51170,13600,19030,16840,52830,11560,22630,14140,53830,8754 10 ⁰ 0,26910,11060,51820,58800,32000,8128 10 ⁰ 0,45870,35420,38050,56690,37200,19490,45250,37920,27940,9984 10 ^{-I} 0,53820,24580,19730,48460,64000,15560,13290,22600,76110,9673 10 ^{-I} 0,8650 10 ^{-I} 0,10230,90510,59390,54860,4533 10 ⁻² 0,1076 10 ² 0,36130,34150,19800,12800,21840,20980,8604 10 ⁻³ 0,15220,13130,12770,36790,18100,7875 10 ⁻² 0,7718 10 ⁻² 0,15650,21530,47090,46640,6511 10 ⁻⁴		Sector States and	A = 1,5	and a second	
$\Psi = 0$ $\Psi = I/2$ Ψ 0,II3I I0 ^I 0,I995 I0 ^I 0,5003 I0 ⁰ 0,I494 I0 ^I 0,I3450,19650,50270,I4620,I6000,18720,51170,I3600,19030,I6840,52830,I1560,22630,I4I40,53830,8754 I0 ⁰ 0,26910,I1060,51820,58800,32000,8128 I0 ⁰ 0,45870,35420,38050,56690,37200,19490,45250,37920,27940,9984 I0 ^{-I} 0,53820,24580,19730,48460,64000,15560,13290,22600,76110,9673 I0 ^{-I} 0,8650 I0 ^{-I} 0,10230,90510,59390,54860,4533 I0 ⁻² 0,1076 I0 ² 0,36130,34150,19800,15220,13130,12770,36790,18100,7875 I0 ⁻² 0,7718 I0 ⁻² 0,15650,21530,47090,46640,6511 I0 ⁻⁴	<u><i>T</i></u>	an the state of the second			
$0,1131 10^{I}$ $0,1995 10^{I}$ $0,5003 10^{0}$ $0,1494 10^{I}$ $0,1345$ $0,1965$ $0,5027$ $0,1462$ $0,1600$ $0,1872$ $0,5117$ $0,1360$ $0,1903$ $0,1684$ $0,5283$ $0,1156$ $0,2263$ $0,1414$ $0,5383$ $0,8754 10^{0}$ $0,2691$ $0,1106$ $0,5182$ $0,5880$ $0,3200$ $0,8128 10^{0}$ $0,4587$ $0,3542$ $0,3805$ $0,5669$ $0,3720$ $0,1949$ $0,4525$ $0,3792$ $0,2794$ $0,9984 10^{-1}$ $0,5382$ $0,2458$ $0,1973$ $0,4846$ $0,6400$ $0,1556$ $0,1329$ $0,2260$ $0,7611$ $0,9673 10^{-1}$ $0,8650 10^{-1}$ $0,1023$ $0,9051$ $0,5939$ $0,5486$ $0,4533 10^{-2}$ $0,1076 10^{2}$ $0,3613$ $0,3415$ $0,1980$ $0,1280$ $0,2184$ $0,2098$ $0,8604 10^{-3}$ $0,1522$ $0,1313$ $0,1277$ $0,3679$ $0,1810$ $0,7875 10^{-2}$ $0,7718 10^{-2}$ $0,1565$ $0,2153$ $0,4709$ $0,4664$ $0,6511 10^{-4}$		¥ = 0	4 = \$/2	ey	
$0,1345$ $0,1965$ $0,5027$ $0,1462$ $0,1600$ $0,1872$ $0,5117$ $0,1360$ $0,1903$ $0,1684$ $0,5283$ $0,1156$ $0,2263$ $0,1414$ $0,5383$ $0,8754 10^0$ $0,2691$ $0,1106$ $0,5182$ $0,5880$ $0,3200$ $0,8128 10^0$ $0,4587$ $0,3542$ $0,3805$ $0,5669$ $0,3720$ $0,1949$ $0,4525$ $0,3792$ $0,2794$ $0,9984 10^{-1}$ $0,5382$ $0,2458$ $0,1973$ $0,4846$ $0,6400$ $0,1556$ $0,1329$ $0,2260$ $0,7611$ $0,9673 10^{-1}$ $0,8650 10^{-1}$ $0,1023$ $0,9051$ $0,5939$ $0,5486$ $0,4533 10^{-2}$ $0,1076 10^2$ $0,3613$ $0,3415$ $0,1980$ $0,1280$ $0,2184$ $0,2098$ $0,8604 10^{-3}$ $0,1522$ $0,1313$ $0,1277$ $0,3679$ $0,1810$ $0,7875 10^{-2}$ $0,7718 10^{-2}$ $0,1565$ $0,2153$ $0,4709$ $0,4664$ $0,6511 10^{-4}$	0,II3I 10 ^I	0 ,1995 10¹	0,5003 IO ⁰	0,1494 IO ¹	
$0,1600$ $0,1872$ $0,5117$ $0,1360$ $0,1903$ $0,1684$ $0,5283$ $0,1156$ $0,2263$ $0,1414$ $0,5383$ $0,8754 10^0$ $0,2691$ $0,1106$ $0,5182$ $0,5880$ $0,3200$ $0,8128 10^0$ $0,4587$ $0,3542$ $0,3805$ $0,5669$ $0,3720$ $0,1949$ $0,4525$ $0,3792$ $0,2794$ $0,9984 10^{-1}$ $0,5382$ $0,2458$ $0,1973$ $0,4846$ $0,6400$ $0,1556$ $0,1329$ $0,2260$ $0,7611$ $0,9673 10^{-1}$ $0,8650 10^{-1}$ $0,1023$ $0,9051$ $0,5939$ $0,5486$ $0,4533 10^{-2}$ $0,1076 10^2$ $0,3613$ $0,3415$ $0,1980$ $0,1280$ $0,2184$ $0,2098$ $0,8604 10^{-3}$ $0,1522$ $0,1313$ $0,1277$ $0,3679$ $0,1810$ $0,7875 10^{-2}$ $0,7718 10^{-2}$ $0,1565$ $0,2153$ $0,4709$ $0,4664$ $0,6511 10^{-4}$	0,1345	0,1965	0,5027	0,1462	
$0,1903$ $0,1684$ $0,5283$ $0,1156$ $0,2263$ $0,1414$ $0,5383$ $0,8754 10^0$ $0,2691$ $0,1106$ $0,5182$ $0,5880$ $0,3200$ $0,8128 10^0$ $0,4587$ $0,3542$ $0,3805$ $0,5669$ $0,3720$ $0,1949$ $0,4525$ $0,3792$ $0,2794$ $0,9984 10^{-1}$ $0,5382$ $0,2458$ $0,1973$ $0,4846$ $0,6400$ $0,1556$ $0,1329$ $0,2260$ $0,7611$ $0,9673 10^{-1}$ $0,8650 10^{-1}$ $0,1023$ $0,9051$ $0,5939$ $0,5486$ $0,4533 10^{-2}$ $0,1076 10^2$ $0,3613$ $0,3415$ $0,1980$ $0,1280$ $0,2184$ $0,2098$ $0,8604 10^{-3}$ $0,1522$ $0,1313$ $0,1277$ $0,3679$ $0,1810$ $0,7875 10^{-2}$ $0,7718 10^{-2}$ $0,1565$ $0,2153$ $0,4709$ $0,4664$ $0,6511 10^{-4}$	0,1600	0,1872	0,5117	0,1360	
$0,2263$ $0,1414$ $0,5383$ $0,8754 10^{0}$ $0,2691$ $0,1106$ $0,5182$ $0,5880$ $0,3200$ $0,8128 10^{0}$ $0,4587$ $0,3542$ $0,3805$ $0,5669$ $0,3720$ $0,1949$ $0,4525$ $0,3792$ $0,2794$ $0,9984 10^{-1}$ $0,5382$ $0,2458$ $0,1973$ $0,4846$ $0,6400$ $0,1556$ $0,1329$ $0,2260$ $0,7611$ $0,9673 10^{-1}$ $0,8650 10^{-1}$ $0,1023$ $0,9051$ $0,5939$ $0,5486$ $0,4533 10^{-2}$ $0,1076 10^{2}$ $0,3613$ $0,3415$ $0,1980$ $0,1522$ $0,1313$ $0,1277$ $0,3679$ $0,1810$ $0,7875 10^{-2}$ $0,7718 10^{-2}$ $0,1565$ $0,2153$ $0,4709$ $0,4664$ $0,6511 10^{-4}$	0,1903	0,1684	0,5283	0,1156	
$0,2691$ $0,1106$ $0,5182$ $0,5880$ $0,3200$ $0,8128 10^0$ $0,4587$ $0,3542$ $0,3805$ $0,5669$ $0,3720$ $0,1949$ $0,4525$ $0,3792$ $0,2794$ $0,9984 10^{-1}$ $0,5382$ $0,2458$ $0,1973$ $0,4846$ $0,6400$ $0,1556$ $0,1329$ $0,2260$ $0,7611$ $0,9673 10^{-1}$ $0,8650 10^{-1}$ $0,1023$ $0,9051$ $0,5939$ $0,5486$ $0,4533 10^{-2}$ $0,1076 10^2$ $0,3613$ $0,3415$ $0,1980$ $0,1280$ $0,2184$ $0,2098$ $0,8604 10^{-3}$ $0,1522$ $0,1313$ $0,1277$ $0,3679$ $0,1810$ $0,7875 10^{-2}$ $0,7718 10^{-2}$ $0,1565$ $0,2153$ $0,4709$ $0,4664$ $0,6511 10^{-4}$	0,2263	0,1414	0,5383	0,8754 IO ⁰	
$0,3200$ $0,8128 10^0$ $0,4587$ $0,3542$ $0,3805$ $0,5669$ $0,3720$ $0,1949$ $0,4525$ $0,3792$ $0,2794$ $0,9984 10^{-1}$ $0,5382$ $0,2458$ $0,1973$ $0,4846$ $0,6400$ $0,1556$ $0,1329$ $0,2260$ $0,7611$ $0,9673 10^{-1}$ $0,8650 10^{-1}$ $0,1023$ $0,9051$ $0,5939$ $0,5486$ $0,4533 10^{-2}$ $0,1076 10^2$ $0,3613$ $0,3415$ $0,1980$ $0,1280$ $0,2184$ $0,2098$ $0,8604 10^{-3}$ $0,1522$ $0,1313$ $0,1277$ $0,3679$ $0,1810$ $0,7875 10^{-2}$ $0,7718 10^{-2}$ $0,1565$ $0,2153$ $0,4709$ $0,4664$ $0,6511 10^{-4}$	0,2691	0, II0 6	0,5182	0,5880	
$0,3805$ $0,5669$ $0,3720$ $0,1949$ $0,4525$ $0,3792$ $0,2794$ $0,9984$ 10^{-1} $0,5382$ $0,2458$ $0,1973$ $0,4846$ $0,6400$ $0,1556$ $0,1329$ $0,2260$ $0,7611$ $0,9673$ 10^{-1} $0,8650$ 10^{-1} $0,9051$ $0,5939$ $0,5486$ $0,4533$ 10^{-2} $0,1076$ 10^2 $0,3613$ $0,3415$ $0,1980$ $0,1280$ $0,2184$ $0,2098$ $0,8604$ 10^{-3} $0,1522$ $0,1313$ $0,1277$ $0,3679$ $0,1810$ $0,7875$ 10^{-2} $0,7718$ 10^{-2} $0,2153$ $0,4709$ $0,4664$ $0,6511$ 10^{-4}	0,3200	0,8128 10 ⁰	0,4587	0,3542	
$0,4525$ $0,3792$ $0,2794$ $0,9984$ 10^{-1} $0,5382$ $0,2458$ $0,1973$ $0,4846$ $0,6400$ $0,1556$ $0,1329$ $0,2260$ $0,7611$ $0,9673$ 10^{-1} $0,8650$ 10^{-1} $0,9051$ $0,5939$ $0,5486$ $0,4533$ 10^{-2} $0,1076$ 10^2 $0,3613$ $0,3415$ $0,1980$ $0,1280$ $0,2184$ $0,2098$ $0,8604$ 10^{-3} $0,1522$ $0,1313$ $0,1277$ $0,3679$ $0,1810$ $0,7875$ 10^{-2} $0,7718$ 10^{-2} $0,2153$ $0,4709$ $0,4664$ $0,6511$ 10^{-4}	0,3805	0,5669	0,3720	0,1949	
$0,5382$ $0,2458$ $0,1973$ $0,4846$ $0,6400$ $0,1556$ $0,1329$ $0,2260$ $0,7611$ $0,9673 \ 10^{-1}$ $0,8650 \ 10^{-1}$ $0,1023$ $0,9051$ $0,5939$ $0,5486$ $0,4533 \ 10^{-2}$ $0,1076 \ 10^2$ $0,3613$ $0,3415$ $0,1980$ $0,1280$ $0,2184$ $0,2098$ $0,8604 \ 10^{-3}$ $0,1522$ $0,1313$ $0,1277$ $0,3679$ $0,1810$ $0,7875 \ 10^{-2}$ $0,7718 \ 10^{-2}$ $0,1565$ $0,2153$ $0,4709$ $0,4664$ $0,6511 \ 10^{-4}$	0,4525	0,3792	0,2794	0,9984 10 ⁻¹	
$0,6400$ $0,1556$ $0,1329$ $0,2260$ $0,7611$ $0,9673$ 10^{-1} $0,8650$ 10^{-1} $0,1023$ $0,9051$ $0,5939$ $0,5486$ $0,4533$ 10^{-2} $0,1076$ 10^2 $0,3613$ $0,3415$ $0,1980$ $0,1280$ $0,2184$ $0,2098$ $0,8604$ 10^{-3} $0,1522$ $0,1313$ $0,1277$ $0,3679$ $0,1810$ $0,7875$ 10^{-2} $0,7718$ 10^{-2} $0,2153$ $0,4709$ $0,4664$ $0,6511$ 10^{-4}	0,5382	0,2458	0,1973	0,4846	
$0,7611$ $0,9673$ 10^{-1} $0,8650$ 10^{-1} $0,1023$ $0,9051$ $0,5939$ $0,5486$ $0,4533$ 10^{-2} $0,1076$ 10^2 $0,3613$ $0,3415$ $0,1980$ $0,1280$ $0,2184$ $0,2098$ $0,8604$ 10^{-3} $0,1522$ $0,1313$ $0,1277$ $0,3679$ $0,1810$ $0,7875$ 10^{-2} $0,7718$ 10^{-2} $0,2153$ $0,4709$ $0,4664$ $0,6511$ 10^{-4}	0,6400	0,1556	0,1329	0,2260	
$0,9051$ $0,5939$ $0,5486$ $0,4533$ 10^{-2} $0,1076$ 10^2 $0,3613$ $0,3415$ $0,1980$ $0,1280$ $0,2184$ $0,2098$ $0,8604$ 10^{-3} $0,1522$ $0,1313$ $0,1277$ $0,3679$ $0,1810$ $0,7875$ 10^{-2} $0,7718$ 10^{-2} $0,2153$ $0,4709$ $0,4664$ $0,6511$ 10^{-4}	0,76II	0,9673 IO ^{-I}	0,8650 IO ^{-I}	0,1023	
$0,1076 \ 10^2$ $0,3613$ $0,3415$ $0,1980$ $0,1280$ $0,2184$ $0,2098$ $0,8604 \ 10^{-3}$ $0,1522$ $0,1313$ $0,1277$ $0,3679$ $0,1810$ $0,7875 \ 10^{-2}$ $0,7718 \ 10^{-2}$ $0,1565$ $0,2153$ $0,4709$ $0,4664$ $0,6511 \ 10^{-4}$	0,9051	0,5939	0,5486	0,4533 10-2	
0,1280 0,2184 0,2098 0,8604 10 ⁻³ 0,1522 0,1313 0,1277 0,3679 0,1810 0,7875 10 ⁻² 0,1718 10 ⁻² 0,1565 0,2153 0,4709 0,4664 0,6511 10 ⁻⁴	0,1076 10 ²	0,3613	0,3415	0,1980	
0,1522 0,1313 0,1277 0,3679 0,1810 0,7875 10 ⁻² 0,7718 10 ⁻² 0,1565 0,2153 0,4709 0,4664 0,6511 10 ⁻⁴	0,1280	0,2184	0,2098	0,8604 10-3	
0,1810 0,7875 10 ⁻² 0,7718 10 ⁻² 0,1565 0,2153 0,4709 0,4664 0,6511 10 ⁻⁴	0,1522	0,1313	0,1277	0,3679	
0,2153 0,4709 0,4664 0,6511 10-4	0,1810	0,7875 10-2	0,7718 10-2	0,1565	
	0,2153	0,4709	0,4664	0,6511 10-4	

		The second second second	
		<u> 1</u> = 2	A Stranger
<u> </u>			
2	¥= 0	4=32	ey
0,1131 10 ¹	0,2884 IO ^I	0,1098 10 ⁻¹	0,2873 10 ^I
0,1345	0,2678	0,3901	0,2639
0,1600	0,2346	0,9760	0,2248
0,1903	0,1932	0,1842 IO ⁰	0,1748
0,2263	0,1500	0,2721	0,1228
0,2691	0,1105	0,3249	0,780I 10 ⁰
0,3200	0,7771 100	0,3253	0,4518
0,3805	0,5255	0,2836	0,2419
0,4525	0,3442	0,2225	0,1217
0,5382	0,2198	0,1615	0,5830 10 ⁻¹
0,6400	0,1377	0,1108	0,2695
0,7611	0,8507 10 ⁻¹	0,7294 10-1	0,1213
0,9051	0,5198	0,4663	0,5351 10-2
0,1076 102	0,3152	0,2919	0,2332
0,1280	0,1900	0,1800	0,1006
0,1522	0,1141	0,1098	0,4300 10-3
0,1810	0,6833 10-2	0,6650 10 ⁻²	0,1830
0,2153	0,4083	0,4007	0,7630 10-4

в порвого порядков.

В таблицах I, 2, 3 приведены значения компонент поля как функций параметра $\frac{\zeta_r}{2}$. Из рисунков I, 2 видно, что на кривых стеновления компоненты $e_x (\varphi_z \frac{x}{2})$ имеется максямум, координаты которого зависят от коэффициента анизотропии. Эта особенность в поведении поля e_x может быть иопользована для оценки коэффициента анизотропии Λ .

Рассмотрим предельные случаи.

I. Пусть переметр $\frac{\tau_{e}}{\tau} \rightarrow 0$. Используя всимптотические вырежения для функций $\Psi(u)$, $I_{o}(u)$ и $I_{*}(u)$ при $u \rightarrow \infty$, имеем: $E_{x}^{\text{болкл.}} = \frac{\rho}{2\pi} \frac{i}{\gamma_{e}} \left[(2-\Lambda) - 3(1-\Lambda) \cos^{2}4 \right]$, $E_{x}^{\text{болкл.}} = \frac{3\rho}{4\pi} \frac{i}{\gamma_{e}} \left[(\Lambda - 1) \sin 24 \right]$; $B_{x}^{\text{болкл.}} = \frac{\rho}{4\pi} \frac{\rho}{\gamma_{e}} \left[1 - \frac{\delta t}{2} \frac{1}{(\tau_{e}+\mu_{o})^{\gamma_{e}}} \right]$, $B_{y}^{\text{болкл.}} = \frac{\rho}{4\pi} \frac{\rho}{2\pi} \left[\cos 24 - \frac{2(3\cos 24 - 1)t}{2\sqrt{\pi}} \frac{1}{\tau_{e}} - 1 \right]$, $\frac{\tau_{e}}{\tau} < 2$ (9) $B_{z}^{\text{болкл.}} = \frac{\rho}{4\pi} \frac{\rho}{2\pi} \left[\frac{\delta t}{2} \left[\frac{\delta t}{2\gamma_{e}} + \mu_{o}} - 1 \right]$, $\frac{\tau_{e}}{\tau} < 2$.

Влияние электропроводности среды и ресстояния до источнике у магнитных компонент завемленного диполя в ранней стадии такое же, как в волновой зоне гармонического режима. Электрические компоненты \mathcal{E}_x и \mathcal{E}_y , в отличие от волновой зоны, зависят от поперечного удельного сопротивления среди. Это можно объяснить следующим образом. В гармоническом режиме при $|\kappa_i \in | > 1$ горизонтальные компоненты имеют вид:

$$E_x = \frac{\rho}{2I_{fe}^2 x^3} (3 \cos^2 \varphi - 2); \quad E_y = \frac{3\rho}{4I_{fe}^2 x^3} \sin 2\varphi, \quad (10)$$

в вертикальная компонента E_z (при z >0) в волновой зоне экспоненциально затухает /I/:

$$E_{\frac{2}{2}} = \frac{3\rho x z}{2\pi y_{e}} \frac{\Lambda e^{i\kappa_{n}\sqrt{z^{*}}\Lambda^{*}z^{*}}}{(z^{*}_{+}\Lambda^{*}z^{*})^{3/2}} \left[1 - i\kappa_{n}\sqrt{z^{*}+\Lambda^{*}z^{*}} - \frac{\kappa_{n}^{*}}{3}(z^{*}+\Lambda^{*}z^{*}) \right] \qquad (II)$$

Здеов К. и К. - волновые числа (К. = /4, но ш,

К_n = √(¿_n, µ_o ω) . Это существенное различие между компонентами приводит к тому, что в волновой зоне электрическое поле в земле практически поляризовано горизонтально /I/. Применяя преобразование Фурье к формуле (II), получаем:

$$E_{z}^{\text{force,}}(t) = \frac{3\rho z x \Lambda}{2 \pi y_{e} R_{A}^{s}} \left[\varphi(U_{n}) - \frac{2}{\sqrt{2}} U_{n} e^{-U_{n}^{z}} \left(1 + \frac{2}{3} U_{n}^{z} \right) \right], \qquad (12)$$

где

$$U_n = \frac{R_A}{2} \sqrt{\frac{4\pi M_e}{\xi}} ; \quad R_A = \sqrt{\tau^4 + \Lambda^2 z^2} ; \quad z > 0$$

В ранней стадии становления, при U, »1 :

$$\mathcal{E}_{z} \approx \frac{3\rho_{xeA}}{2\pi_{fe}R_{A}^{s}}$$
(13)

Поэтому в этом случае неяьзя пренебрегать вертикельной компонентой плотности токе.

В режиме включения:

$$E_{*}^{ben}(t) \rightarrow \frac{P}{2\overline{x}_{fe}^{*} \overline{z}^{*}} \left(3\cos^{4} \overline{y} - \overline{z} \right),$$

$$E_{y}^{ben}(t) \rightarrow \frac{3P}{4\overline{x}_{fe}^{*} \overline{z}^{*}} \sin 2\overline{y}, \qquad \frac{\overline{z}_{e}}{\overline{z}} < 2 \qquad (14)$$

$$E_{z}^{ben}(t) \rightarrow 0, \quad (\overline{z} > 0).$$

Из сопоставления формул (I4) с (I0) и (II) видно, что при вилючении выражения для горизонтальных компонент в ран ней стадии и в высокочастотной части спектра не отличаются друг от друга, Вертикальная компонента \mathcal{E}_{s} в начальный момент равна нудю и здектрическое поле не вависит от поперечного удельного сопротивления.

В момент вилочения завемленного диполя в формировании электрического поля учествуют как варяды диполя, тек и токи, индуцируемие в среда. При этом в первый момент токи концентрируются вбливи источника, как и в случее волновой зоны гармонического диполя. Поэтому в режиме вилочения поведение электрических компонент в ранней стадии полностью соответствует случаю волновой зоны. В режиме выключения в формирова нии электрических компонент не участвуют заряды ваземлений, и поведение электрических компонент отлично от волновой зоны гармонического диполя. Это различие в поведении компонент поля в ранней стадии при включения и выключении, в принципе, может быть использовано для определения козффициента анизотропии Λ .

COTRECHO (8) $\underline{\mathbf{H}}$ (I4) $\Lambda = 2\left(\frac{\underline{E}_{x}}{\underline{E}_{x}} + 1\right), \quad \mathbf{\Pi} \underline{\mathbf{\mu}} \quad \Psi = \frac{\mathcal{R}}{2}, \quad (15)$ $\Lambda = \frac{1}{2}\left(\frac{\underline{E}_{x}}{\underline{E}_{x}} + 1\right), \quad \mathbf{\Pi} \underline{\mathbf{\mu}} \quad \Psi = 0$ $\Lambda = \frac{\underline{E}_{y}}{\underline{E}_{y}} + 1, \quad \mathbf{\Pi} \underline{\mathbf{\mu}} \quad \Psi = 0, \quad (16)$

II. Применяя разложение интеграла вероятности и модифицированных функций Бесселя по малому параметру

$$\begin{aligned} \mathcal{P}(u) &\rightarrow \frac{2}{\sqrt{\pi}} \left(u - \frac{u^3}{3} + \frac{u^5}{10} \right); \\ I_a(u) &\rightarrow 1 + \frac{u^2}{4} + \frac{u^4}{64}; \quad I_* \rightarrow \frac{u}{2} + \frac{u^3}{16}, \end{aligned}$$

получезы прибликенные формулы для компонент поля, когда иереметр — знечительно больше единицы (большие времене, относительно небельшея продольная проводимость среды, шалые расстояния от точки наблидения до источника):

$$E_{x} = \frac{p}{2\sqrt{2}\sqrt{3}} \frac{\frac{1}{2\sqrt{2}\sqrt{3}}}{\frac{1}{2\sqrt{4}}} \left[1 + \frac{1}{\sqrt{2}}\right];$$

$$E_{y} = \frac{p}{320} \frac{4in 2Y}{\sqrt{3}} \frac{x}{2} \frac{1}{\sqrt{4}} \frac{\sqrt{4}}{\sqrt{2}} \frac{1}{\sqrt{2}} \left[1 - \frac{1}{\sqrt{7}}\right];$$

$$B_{z} = \frac{p}{\sqrt{6}} \frac{x}{\sqrt{6}} \frac{x}{\sqrt{2}} \frac{x}{\sqrt{6}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{6}} \frac{1}{\sqrt{6}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{6}} \frac{1}{\sqrt{6}}$$

Таким образом, электрическое поле в коздией стадий, в основном, направлено вдоль оон диполя и является функцией параметра анизотронии. В отличие от электрического поля магнитного диполя компонента E_{z} менее чувствительне к изменениям удельной проводимости среды.

В заключение приводом выражения для производных по времени от компонент изгнятного поля:

$$\frac{\partial b_{x}}{\partial t} = \frac{2u_{e}^{*}}{V_{e}M_{o}t^{*}} \left\{ I_{*} \left(\frac{u_{x}}{2} \right) \left[u_{e}^{*} + 4 \right] - I_{o} \left(\frac{u_{x}}{2} \right) u_{e}^{2} \right] e^{-\frac{u_{e}^{*}}{2}};$$

$$\frac{\partial b_{y}}{\partial t} = -\frac{4u_{e}^{*}}{t_{e}^{*}} \left\{ u_{e}^{*} \left[I_{o} \left(\frac{u_{e}^{*}}{2} \right) - I_{*} \left(\frac{u_{e}^{*}}{2} \right) \right] \frac{\cos 2\Psi - 1}{2} + I_{*} \left(\frac{u_{e}^{*}}{2} \right) \left[1 - 2\cos 2\Psi \right] \right\} e^{-\frac{u_{e}^{*}}{2}};$$

$$\frac{\partial b_{e}}{\partial t} = \frac{4u_{e}^{*}}{\sqrt{t_{e}^{*}}} \left[\left(1 - 2\cos 2\Psi \right) \right] e^{-\frac{u_{e}^{*}}{2}};$$

$$\frac{\partial b_{e}}{\partial t} = \frac{4u_{e}^{*}}{\sqrt{t_{e}^{*}}} \left(\frac{3}{u_{e}^{*}} + 2 \right) e^{-u_{e}^{*}} - \frac{6}{t_{e}} \frac{\Phi}{T} \left(u_{e} \right).$$
(19)

Таблица 4

$\frac{\tau_i}{r}$	<u>28,</u>	ų = 0	$\varphi = \frac{\pi}{2}$	<u> dbz</u> dt
0,1131.10 ¹	0,1214	0,8411·10 ¹	-0,1587·10 ²	-0,6000
0,1345	0,9759.IO ^{-I}	0,6903	-0,1261.10 ²	-0,5996
0,1600	0,7601	0,5587	-0,9616·10 ¹	-0,5948
0,1903	0,5575	0,4409	-0,674I	-0,5680
0,2263	0,3721	0,3335	-0,4107	-0,4962
0,2691	0,2214	0,2379	-0,2049	-0,3821
0,3200	0,1175	0,1588	-0,7627·10 ⁰	-0,2577
0,3805	0,5650 · IO ^O	0,9954.10 ⁰	-0,1346	-0,1547
0,4525	0,2506	0,5905	0,8928·10 ⁻¹	-0,8456·10 ⁰
0,5382	0,1045	0,3352	0,1261·10 ⁰	-0,430I
0,6400	0,4163·10 ⁻¹	0,1838	0,1006	-0,2074
0,76II	0,1603	0,9828.IO ^{-I}	0,6622·10 ⁻¹	-0,9620.10 ⁻¹
0,905I	0,6025 • 10-2	0,5156	0,395I	-0,4338
0,1076.10 ²	0,2225	0,2668	0,2223	-0,1917
0,1280	0,8112.10-3	0,1367	0,1205	-0,8346.10-2
0,1522	0,2931	0,6956.10-2	0,6370·IO ⁻²	-0,3599
0,1810	0,1053	0,3521	0,33II	-0,1540
0,2153	0,3763.10-4	0,1776	U,I70I	-0,6584.10-3

В таблице 4 приведены значения 36, 36, 38, в 38висиности от 2 (y. H. 22=1). Соглесно (9) и (18), имеем $npu \quad \frac{\mathcal{T}_e}{\mathcal{T}} < 2 ;$ $\frac{\partial B_s}{\partial t} = \frac{3\rho}{2T_{1s}z^4} \quad sin \ 4,$ $\frac{\partial B_x}{\partial t} = - \frac{3\rho \mu_0}{4 \pi t^3 (\mathbf{I}_{b_x} \mu_0 t)^{\gamma_0}} sin 24,$ $np = \frac{\tau_e}{\tau} < 1;$ (20) $\frac{\partial B_{y}}{\partial t} = - \frac{p\mu_{o}}{\sqrt{3}\tau^{3}} \frac{3cod 24 - 1}{\sqrt{3}\gamma_{e}};$ H $\frac{\partial B_x}{\partial t} = -\frac{P_{Y_2} H_0^3 \chi^2}{535 \pi t^3} \sin 29;$ при 2. > 16.

(21)

ЛИТЕРАТУРА

 $\frac{\partial B_{y}}{\partial t^{v}} = -\frac{P_{te}}{E_{t}} \frac{\mu_{0}^{2}}{\pi t^{2}};$

3Ba = Pha Ho 12 2 in 4.

I. Веньян Л.Л., Основы электромагнитных зондирований. Москва, изд-во "Недра", 1965 г.

2. Давидов В.М., Дмитриев В.И., К обоснованию новой модификации метода становления, использующей скорость установления электрического поля зевемленного диполя. Резведочная гасфизика, № 42, 1970.

3. Заборовский А.И., Переменные электромегнитные поля в электрорэзведке. Изд-во МГУ, 1960.

4. Кауфман А.А., Морозова Г.М., Теоретические основы метода зондирований становлением поля в ближней зоне. Изд-во "Hayka", 1970.

5. Четаев Д.Н., О поле инзкочестотного электрического диполя, лежещего на поверхности однородного анизотропного проводящего полупространства. **ПТ9**, **Т.1X10**, **№ П1**, 1962.

6. Пейнизн С.М., Об установления электронатичных нолей в Замле. Прикладная госфизика, вып. 3. Гостоптехиздат, 1947.

26

А.А.Кәуфмән, А.М.Көтәнский

ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ ГОРИЗОНТАЛЬНОГО МАГНИТНОГО ДИПОЛЯ В СРЕДАХ С ГОРИЗОНТАЛЬНЫМИ ПОВЕРХНОСТЯМИ РАЗДЕЛА

В работе рассмотрено поле горизонтального мегнитного диполя в изотропной среде о одной и двумя горизонтальными поверхностями раздела в экваториальной плоскости на оси перпендикулярной напластованию, что в известной мере, соответствует условиям измерения в скважинах.

§ I. Магнитное поле в среде с одной горизонтальной поверхностью раздела

Поместим диполь в начало координат и направим момент М диполя вдоль оси х:

$$\vec{M} = M_0 \vec{e}^{i\omega \xi} \vec{x}_0 \tag{I.I}$$

Здесь Mo=Jh5 (J - сила тока, и и 5 - число витков и площадь). Уравнения поля принимают вид:

$$\operatorname{vot} \vec{E} = i\omega_{\mu}\vec{H} \qquad \operatorname{vot} \vec{H} = \delta\vec{E} \qquad (I.2)$$
$$\operatorname{div} \vec{E} = 0 \qquad \operatorname{div} \vec{B} = 0$$

Положим

$$\vec{E} = i\omega_{\mu} \cot \vec{\Pi}$$
(I.3)

и, подставляя (І.З) в (І.І), имеем:

Принимая $\mathcal{U} = -di \sqrt{7}$, получаем для потенциала уравнение

$$\nabla^2 \vec{n} + k^2 \vec{n} = 0 \tag{I.4}$$

Здесь 2 = : 6µ W . Связь между потенциалами и полем определяется соотношениями :

$$\vec{E} = i\omega_{\mu} \cos t \, \vec{n} \qquad (1.5)$$

$$\vec{H} = k^{2} \, \vec{n} + g_{2} \, c_{3} \, d_{ij} \, \vec{n} \qquad (1.5)$$

Будем искать решение для поля, полятая компоненту $/7_{y} = O$ Согласно (I.5)

$$E_{x} = i\omega_{\mu} \frac{\partial \Pi_{z}}{\partial y} \qquad E_{y} = i\omega_{\mu} \left(\frac{\partial \Pi_{x}}{\partial z} - \frac{\partial \Pi_{z}}{\partial x} \right) \qquad E_{z} = -i\omega_{\mu} \frac{\partial \Pi_{x}}{\partial y}$$

$$H_{x} = k^{2} \Pi_{x} + \frac{2}{\partial x} div \Pi$$

$$H_{y} = \frac{2}{\partial y} div \Pi$$

$$H_{z} = k^{2} \Pi_{z} + \frac{2}{\partial z} div \Pi$$
(I.6)

Для непрерывности тангенциальных компонент поля на поверхности раздела г - / достаточно обеспечить непрерывность величив //2 //x //2 , К³/7х и с//у/? . Таким образом, дия компонент вектор-потенциала получаем две группы условий

$$k_{1}^{2} \Pi_{1x} = k_{2}^{2} \Pi_{2x}$$

$$\frac{\partial \Pi_{1x}}{\partial z} = \frac{\partial \Pi_{2x}}{\partial z}$$
(I.7)

K

$$\Pi_{12} = \Pi_{22}$$

$$\dim \Pi_{1} = \dim \Pi_{2}$$

$$(I.8)$$

Первичное поде диноля в однородной среде имеет только одну компоненту

или

$$\Pi_{ix}^{(0)} = \frac{M}{4\sqrt{r}} \int_{0}^{\infty} \frac{m}{m_{i}} e^{-m_{i}/\delta} \int_{0}^{0} (m^{n}) dm$$

где /м, = у/м²-4,² . Поэтому компоненту Л_× представим в виде:

$$\Pi_{1x} = \frac{M}{4\pi} \int_{0}^{\infty} \frac{m}{m_{1}} e^{m_{1}/2t} + A_{m} e^{m_{1}^{2}} \int_{0}^{\infty} (m_{1}^{2}) dm$$

$$\Pi_{2x} = \frac{M}{4\pi} \int_{0}^{\infty} B_{m} e^{-m_{1}^{2}} \int_{0}^{\infty} (m_{1}^{2}) dm$$
(I.9)

Здесь №2 = Vm²-K²₂ . Из граничных условий при z=4 имеем:

/

$$\frac{m}{m}e^{mh} + f_{m}e^{m,h} = sB_{m}e^{m,h}$$

$$-me^{m,h} + m, A_{m}e^{m,h} = -m_{2}B_{m}e^{m,h}$$

Отсюда

$$\mathcal{A}_{m} = \frac{m}{m_{i}} \frac{5m_{i} - m_{2}}{5m_{i} + m_{2}} e^{-2m_{i}k}$$

$$\mathcal{B}_{m} = \frac{2m}{5m_{i} + m_{2}} e^{(m_{i} - m_{2})k}$$
(I.10)

$$\Gamma_{AB} = \frac{\delta_{2}}{\delta_{1}} \qquad H$$

$$\int_{1\times}^{1} = \int_{0\times}^{1} + \frac{M}{4vT} \int_{0}^{\infty} \frac{m}{m_{1}} \frac{Sm_{1}-m_{2}}{Sm_{1}+m_{2}} e^{-2m_{1}h_{1}+m_{1}E} \int_{0}^{1} (m_{1}) dm$$

$$\int_{2\times}^{1} = \frac{M}{4vT} \int_{0}^{\infty} \frac{2m}{Sm_{1}+m_{2}} e^{-(m_{1}-m_{2})h_{1}-m_{2}E} \int_{0}^{1} (m_{2}) dm$$
(I.II)

Из непрерывности Лі ГЛ следует, что

$$\frac{\partial}{\partial x} \left(\Pi_{1x} - \Pi_{2x} \right) = \frac{\partial}{\partial z} \left(\Pi_{2z} - \Pi_{1z} \right)$$

Так как

$$\frac{\partial \Pi_{x}}{\partial x} = \frac{\partial \Pi_{x}}{\partial 2} \frac{\partial^{2}}{\partial x} = \cos \varphi \int F(m) e^{\pm m \cdot 2} J(m \cdot 2) dm$$

то для выполнения условия непрерывности div Л, решение для //2 представим в виде:

$$I_{12} = \cos \varphi \int_{C_m}^{\infty} e^{m_z} J_i(m_z) dm$$

$$I_{22} = \cos \varphi \int_{D_m}^{\infty} \overline{D}_m e^{-m_z z} J_i(m_z) dm$$

Согласно (1.8) имеем:

$$C_{m} e^{m_{i}k} = D_{m} e^{m_{k}k}$$

$$(s-1) m B_{m} e^{m_{k}k} = m_{k} D_{m} e^{m_{k}k} + m_{i} C_{m} e^{m_{k}k}$$

$$(1.12)$$

и решая систому (І.І2), находим:

$$C_{\mu} = \frac{(s-1)}{m_{1}+M_{2}} B_{\mu} \tilde{e}^{(M_{1}+M_{2})h}$$

$$D_{m} = \frac{(s-1)}{M_{1}+M_{2}} B_{\mu}$$
(I.I3)

HTON,

(I.I4)

Магнятное поле на осн Z имеет только компоненту / ,

для которой, согласно (I.6) и (I.I4) имеем:

$$h_{13} = h_0 - \int \phi_1(m) e^{m_1 2} d(m 2)$$

$$h_{2x} = -\int_{0}^{\infty} \phi_{2}(m) e^{m_{2}^{2}} d(m_{2})$$
 (1.15)

Здесь // - мегнитное поле, выраженное в единицах поля в во-

$$h_x = \frac{H_x}{H_0}$$
; FAR $H_0 = -\frac{H}{4\pi^2}3$ (Z - AANNO 30HAO),

$$h_0 = e^{ik_1 z} (1 - ik_1 z - k_1^2 z^2)$$

$$\phi_{i} = \left(k_{i}^{2} z^{2} - \frac{m^{2} z^{2}}{2}\right) \frac{m}{m_{i}} \frac{Sm_{i} - m_{2}}{Sm_{i} + m_{2}} e^{2m_{i} h} +$$

$$\phi_{2} = \left(k_{2}^{2} z^{2} - \frac{hn^{2} z^{2}}{2} \frac{m_{1} + s_{m_{2}}}{m_{1} + m_{2}}\right) \frac{2m}{sm_{1} + m_{2}} \tilde{e}^{-(m_{1} - m_{2})} h \qquad (1.16)$$

Рассмотран новедение поля в низкочастотной части снеятра, когда длива волны в обекх средах превывает расстояние от диполя до гранные и дливу зонда. При полученые асимптотических формул поступые следующие образон /2/: на интервале интегрирование выделии два участие: внутренный (О</из</из. 4.1) и внешний (m > mo). На внешнем участие радинали /м. и //2 могут быть разложены в ряд по степенны ///2 и ///2. Поэтому интеграл на внешнем участие представляется в виде ряда тольно с четными степенным / . На внутренней участие экспененты разлагаются в ряды (ма < 1) и интеграл на этом участие может быть сведен к сумме табличных интегралов, представления ноторых в виде рядов по степеням / не вызывает трудностей. В отличие от интеграла на внешнем участие, эти ряды могут содержать нечётные степени & и логарифмические члены. Так, например, поле в среде, где расположен источник, может быть представлено в виде:

$$R = h_{iX} = [+ a_i \left(\frac{2}{\delta_i}\right)^3]$$

$$J_{in} h_{iX} = b_i \left(\frac{2}{\delta_i}\right)^2 + a_i \left(\frac{2}{\delta_i}\right)^3 \qquad \left(\frac{2}{\delta_i} \ll 1, \frac{2}{\delta_i} \ll 1\right)$$

$$3 \text{десь} \quad \delta_i = \sqrt{2/\delta_i} \mu \omega \quad ; \quad \delta_2 = \sqrt{2/\delta_i} \mu \omega \quad \mu$$

$$a_i = \frac{2}{S^2 - i} \int \frac{4}{3} S^2 - \frac{4}{3} S \sqrt{S} - \frac{1}{5} S^2 \sqrt{S} + \frac{1}{5} S + \frac{2}{5} S^2 \sqrt{S} - \frac{2}{15} + \frac{1}{5} S^2 \sqrt{S} + \frac{1}{5} S + \frac{2}{5} S^2 \sqrt{S} - \frac{2}{15} + \frac{1}{5} S^2 \sqrt{S} + \frac{1}{5} S^2 \sqrt{S} + \frac{1}{5} S^2 \sqrt{S} - \frac{2}{15} + \frac{1}{5} S^2 \sqrt{S} + \frac{1}{5} S^2 \sqrt{S} - \frac{2}{15} + \frac{1}{5} S^2 \sqrt{S} + \frac{1}{5} S^2 \sqrt{S} - \frac{2}{15} + \frac{1}{5} S^2 \sqrt{S} + \frac{1}{5$$

гдө

$$l_{1} = l_{n} \frac{\sqrt{s+1} - 1}{\sqrt{s+1} + 1} \qquad l_{2} = l_{n} \frac{\sqrt{s+1} - \sqrt{s}}{\sqrt{s+1} + \sqrt{s}}$$

Теперь обратимся к высокочастотной части спактра и для получения асимптотических формул воспользуемся значениями интегралов при //2/ -> <>> :

$$\int e^{-\Lambda \kappa} \Lambda^n d\Lambda \simeq A(n) (\kappa z)^{\frac{h+1}{2}} e^{-kz}, \Lambda_{\kappa} = \sqrt{\Lambda^2 + 2^2} (1.19)$$

Здесь $\beta(n) - \phi$ ункция от n, которая для первых трех значений /з равна I, $\sqrt{\pi/2}$ и 2.

Отметим, что интегралы типа (I.I9) при нечётных и сводятся к элементарным функциям, а для чётных значений и выражаются через модифицированные функции Бесселя \mathcal{K}_n («я)

После элементарных преобразований для исля в первой среде имеем: $h_{1} \approx h_{0} - k_{1}^{2} z^{2} \frac{\sqrt{5} - 1}{\sqrt{5} + 1} \frac{1}{2d - 1} e^{ik_{1} \frac{2}{2}(2d - 1)} \approx h_{0} \quad (I.20)$ $\left(d = \frac{h}{2} > 1\right)$

Как и следовало ожидать, в результате скин-эффекта, поле становится таким же как в однородной среде с проводимостью

8, Но, если диполь или точка, где измеряется поле, находятся на поверхности раздела, то независимо от частоты, поле зависит от электропроводности второй среды.Согласно (I.20)

$$k_{1} \simeq -k_{1}^{2} z^{2} \frac{2\sqrt{5}}{\sqrt{5}+1} e^{ik_{1} z} \qquad (d=1) \qquad (1.21)$$

В заключение отметим одну интересную особенность в распределении токов, когда удельная проводимость среды, гдо расположен диполь, равна нулю. В этом случае, как нетрудно показать, в проводящей среде индуцированные токи не имеют вертикальной компоненты, распределены симметрично относительно плоскости У токовые линии не пересекают эту плоскость.

§ 2. Магнитное поле горизонтального диполя в пластах ограниченной мощности

Поместим магнитный диполь внутри пласта. Тогда, согласно результатам, полученным в § I, выражение для компонент потенциала имеет вид:

 $\Pi_{ix} = \frac{M}{L_{ix}} \int D_i e^{m_i z} J_o(mz) dm$ 1712 = M cosp F, emiz J, (m2) dm $(2 < -h_2)$ $\Pi_{2x} = \frac{H}{L_{\pi}} \int \left[\frac{m}{m} e^{m_{2}/2} \right] D_{2} e^{m_{2}2} + D_{3} e^{-m_{2}2} \int J_{3} (m_{3}) dm$

$$\Pi_{2\bar{z}} = \frac{M}{4\pi} \cos \varphi \int_{0}^{\infty} [f_{\bar{z}} e^{m_{z}\bar{z}} + f_{\bar{z}} e^{m_{z}\bar{z}}] J_{i}(m_{\bar{z}}) dm
(-h_{z} < \bar{z} < h_{i})
\Pi_{3\bar{x}} = \frac{M}{4\pi} \int_{0}^{\infty} D_{i} e^{-m_{i}\bar{z}} J_{o}(m_{\bar{z}}) dm
\Pi_{3\bar{z}} = \frac{M}{4\pi} \cos \varphi \int_{0}^{\infty} f_{\bar{y}} e^{m_{z}\bar{z}} J_{i}(m_{\bar{z}}) dm (2 > h_{i})
(2.1)$$

Из системы граничных условий при 2 = 4, и 2 = -42, поступая аналогично выкладная § I, находим ноэфициенты D, -D, , $F_i - F_y$

Приведен вырежение для горизонтельной компоненты поля на оси 2 в случае симметричного расположения зонда относятельно границ пласта

$$\begin{split} h_{x} &= h_{0X} - \int_{0}^{\infty} \frac{1}{2} \frac{1}{$$

Анэлогично выводится формула для поля, когда длина зонда больша мощности пласта, и датчики зояда расположены по обе стороны от границ пласта

$$h_{\chi} = \int \left\{ \frac{\bar{m}^{2}}{2} S - k_{2}^{2} z^{4} + \frac{\bar{m}^{2} \bar{m}_{1}^{2}}{2(\bar{m}_{1} + \bar{m}_{2})d_{2}} (S-1)^{2} (1 - \bar{e}^{2d} \bar{m}_{1}) \right\} \times$$

(2.3)

$$\frac{4 \overline{m} \overline{m_2}}{(S\overline{m_1} + \overline{m_2})^3} d_1 = (d M_2 + (1 - d)\overline{m_1}) d\overline{m} \quad (d \leq 1)$$

Поскольку в выражениях для поля (2.2-2.3) отсутствуют быстро осциллирующие множители, то численное интегрирование не вызывает серьезных трудностей и может быть выполнено с использованием схемы Гаусса.

При симметричном положении детчиков зонде относительно границ пласта поле определяется тремя параметрами: $\rho = \frac{2}{2}$,

5 = $\frac{\chi_{H}}{\chi_{0}}$ и $\chi = \frac{H}{2}$. Эдесь 2- длина зонда, H - мощность пласта, G_{h} - толщина скин-слоя в пласте и 5 - отношение удельных проводимостей пласта и вмещающей среды.

Расчёты были выполнены для следующих значений парамет ров:

и результаты представлены в виде амплитудных и фезовых частотных характеристик поля. Кроме того были ресчитаны функции б_к, где

$$\frac{\delta_{\kappa}}{\delta_{n}} = \frac{A}{A}.$$
(2.4)

(А и А. - соответственно эмплитуды вторичного поля в плясте и однородной среде с удельной проводимостью б_и).

Анэлиз мэгнитного поля начнам с области относительно низких частот, когда $\rho = \frac{2}{\delta_n} \rightarrow 0$, и зонд расположен внутри пласта.

Для получения низкочастотной асимптотики воспользуемся

методикой, описанной в § I. Выражения для активной и реактив ной компонент вторичного поля имеют вид:

$$Re h_{x} = \frac{4}{3} \left(\frac{2}{\delta_{\theta}}\right)^{3}$$

$$J_{m} h_{x} = -\left(\frac{2}{\delta_{n}}\right)^{2} \left[1 - 2\frac{S-I}{S+I} \int_{0}^{\infty} \frac{I - \frac{S-I}{S+I}}{I - \left(\frac{S-I}{S+I}\right)^{2}} e^{-2dM} e^{-dM} dM$$

$$+ \frac{I-S}{2dS} \left[3 + \frac{4}{3} \left(\frac{2}{\delta_{\theta}}\right)^{3}$$
(2.5)

Существенно, что реактивная компонента поля в низкочастотной части спектра совпадает с реактивной компонентой поля в однородной среде с удельной проводимостью de . Аналогичный результат получается и при возбуждении поля вертикальным магнитным диполем. Это означает, что поверхностные заряды, возникающие на границах между пластом и вмещающей средой, в области достаточно низких частот влияют только на активную компоненту поля. Поэтому можно ожидать, что в поздней стадии становления поле не зависит от ориентации магнитного диполя.

Представим активную компоненту Jrah, в виде суммы двух слагаемых:

$$J_m h_x = h_x^{(1)} + h_x^{(2)}$$

: дө

$$h_{\rm X}^{(1)} = -\left(\frac{2}{\delta_{\rm N}}\right)^2 \left(1 - \frac{1}{2\alpha}\right) - \left(\frac{2}{\delta_{\rm S}}\right)^2 \frac{1}{2\alpha}$$

И

$$h_{x}^{(2)} = \left(\frac{z}{s_{n}}\right)^{2} 2F(\beta, d)$$
(2.6)

Здесь

$$F(\beta, d) = \beta \int_{0}^{\infty} \frac{1 - \beta e^{-dm} chm}{1 - \beta^{2} e^{-2dm}} e^{-dm} dm \qquad (2.7)$$

 $\beta = \frac{S-1}{S+1}; -1 < \beta < 1$

И

С точностью до знака поле 4 совпадает с вертикальной компонентой 🛵 вертикального магнитного диполя в области малого параметра и состоит из двух частей, кождая из которых зависит только от удельной проводимости одной среды. Поэтому можно ввести понятие геометрических факторов. Согласно (2.6), поло-**ENM**

 $Q_n(d) = 1 - \frac{1}{2d} \qquad Q_g(d) = \frac{1}{2d} \qquad Q_n(d) + Q_g(d) = 1$ $h_{x}^{(i)} = -\frac{\mu\omega z^{2}}{2} \left[\delta_{n} Q_{n}(d) + \delta_{g} Q_{g}(d) \right]$ (2.8)

Выражение для геометрических факторов такое же как и при воз буждении поля вертикальным магнитным диполем.

Во второе слагаемое $h_{4}^{(2)}$ входит функция $F(\beta, d)$, которая зависит от отношения проводимостей сред, точнее от параметра д. Появление этой части поля можно объяснить следующим образом. Под действием первичного электрического поля диполя в воздухе в среде возникают токи и поверхностные заряды, плотность K0-торых

$$5(a) = \frac{1}{2\pi} \frac{s-1}{s+1} E_n^{CP}(a)$$
(2.9)

где $F_n^{c_r}(\omega)$ - значение нормальной компоненты поля, создан ной первичным полем, и полем всех индуцированных зарядов за исключением заряда в точке Q. В рассматриваемом приближении поле электрических зарядов, так же, как и первичное поле, прямо пропорционально частоте. Представим (2.5) в виде:

$$J_{m}h_{x} = -\frac{\mu\omega^{2}}{2} \left[\delta_{n} Q_{n}^{*}(d,s) + \delta_{g} Q_{g}(d) \right] \qquad (2.10)$$

Здесь $Q_n^*(a,s) = 1 - \frac{1}{2d} - 2F(B,d)$

Прэктически, при 5>10 и 5<0,1, функция F(G, d) не за-

висит от 5 .

Если удельное сопротивление пласта больше удельного сопротивления вмещающей среды ($\leq < I$), то электрическое поле зарядов увеличивает электрическое поле внутри пласта и относи – тельное влияние пласта возрастает. В более проводящем пласте электрическое поле зарядов ослабляет первичное поле и при определенных условиях функция $Q_n^{\#}$ может обратиться в нуль и изменить знак.

В табл. І приведены значения функций $Q_n^* + \frac{1}{5}Q_n^* u F(\beta, d)$. Рункция $F(\beta, d)$ выражается через гипергеометрический ряд $\int_{-1}^{1} (G, b, c; 2)$:

$$F(\beta, d) = \frac{13}{2} \left\{ \frac{1}{\beta d} \ln \frac{1+\beta}{1-\beta} - \frac{\beta}{1-\beta} + \frac{1}{2d+1} \frac{1}{2} + \frac{1}{2d}, 2 + \frac{1}{2d}; \beta^2 \right\}^{-1}$$

$$-\frac{\beta}{\frac{1}{2d-1}} {}_{2}F_{i}\left(1,1-\frac{1}{2d},2-\frac{1}{2d};\beta^{2}\right)\right\} \qquad (2.11)$$

и частном случае, когда длина зонда равна мощности Пласта (Д = -I), F(β, L) выражается через элементарные функции

$$F(p, d) = \frac{1}{2} - \frac{1}{5^2 - 1} \ln S$$
(2.12)

для эктивной компоненты поля 2 имеем:

$$J_m h_x = -\left(\frac{2}{\delta n}\right)^2 \left[-\frac{1}{2} + \frac{2}{S^2 - 1} \ln S \right] - \frac{1}{2} \left(\frac{2}{\delta B}\right)^2$$

іри больших значениях *Д* функция *Г(р,д)* убывает обратно пропорционально *Д* :

$$F(\beta, \alpha) \simeq \frac{1}{\alpha} \ln \frac{25}{5+1} \qquad (\alpha \not\exists \gamma \noti) \qquad (2.13)$$

и величина $Q_n^*(\mathcal{A}, S)$ остается положительной при всех S. Нетрудно показать, что при $S \longrightarrow \mathcal{O}$ (удельное сопротивление пласта возрастает), поле $h_{\pi}^{(2)}$ стремится к нулю.

Асимптотическое выражение для поля, когда пласт расположен внутри зонда, выводится аналогично

Таблица І.

d		2		4	8	-	I6	
S	F(B,d)	$Q_n^* + \frac{Q_R}{S}$	F(B,d)	$Q_n^* + \frac{Q_e}{s}$	F(B,d)	$Q_n^* + \frac{Q_s}{s}$	F(prd)	$Q_n^{*} + \frac{Q_s}{5}$
<u> </u>	203 ₁₀ 1	.368 ₁₀ 2	103 ₁₀ 1	.189 ₁₀ 2	520	.9 9 8 ₁₀ 1	260	•549 _{I0} I
<u>I</u> 32	142 ₁₀ 1	.II6 ₁₀ 2	703	.628 _{I0} I	35I	• ³⁶⁴ 10 ^I	- .I75	.232 ₁₀ 1
<u>1</u> 8	763	.428 ₁₀ 1	377	.263 ₁₀ 1	188	.181 ₁₀ 1	940 _{I0} -I	.I4I _{I0} I
<u>1</u> 2	205	.166 ₁₀ 1	102	.133 ₁₀ 1	507 ₁₀ -1	.II6 _{I0} I	253 ₁₀ -1	.108 ₁₀ 1
2	.142	.59I	.717 ₁₀ -1	.794	.359 ₁₀ -1	.897	.180 ₁₀ -1	.948
8	.277	.288	.142	.606	.718 ₁₀ -1	.802	.359 _{I0} -I	.901
32	.314	.129	. I64	.552	.825 ₁₀ -1	.774	•414 ₁₀ -1	.887
I28	.324	.105	•I69	•538	• ⁸⁵⁴ 10 ⁻¹	.767	.428 ₁₀ -1	.883

Рис. 1а

рис. 1б

Non Non шифр кривых <u>ва</u> <u>h</u> = 4 1/128 10 1/64 1/32 1/18 1/8 2 1/4 10 0 2 5 0n 128 5, 5 2

puc. 2

 $J_m h_x = -\left(\frac{z}{\delta n}\right)^2 \left\{\frac{4}{(s+t)^2} \int_{0}^{\infty} \frac{e^{-m} dm}{1 - \left(\frac{s-1}{s+t}\right)^2} e^{-2dm} - \frac{d}{2}\right\} - \left(\frac{z}{\delta 6}\right)^2 \frac{d}{2} (2.14)$ $Reh_{x} = \frac{4}{3} \left(\frac{2}{8\rho}\right)^{3}$ $(\measuredangle \leq 1)$

Здесь интеграл также выражается через гипергеометрическую функцию.

Теперь рассмотрим другой предельный случай, когда параметры $|k_n z| \gg 1$ и $|k_c z| \gg 1$. По существу, вывод асимптотических формул такой же, как в § І. Появление в данном случае в знаменателе подинтегральной функции членов вида $/-\overline{k_{12}} \in \mathbb{Z}^{2d/n_2}$ не усложняет вывода, так как отличие этих членов от единицы дает экспоненциально малую поправку к ислучаемым асимптотикам. Гак, при d = 1 имеем

$$h \simeq -\left(\frac{2}{\sqrt{5}+1}\right)^2 k_h^2 z^2 e^{ik_h z}$$
(2.15)

На рис. I-2 приведены примеры амплитудных и фазовых кри вах, а также кривые кажущейся проводимости.

ЛИТЕРАТУРА

I. Кауфман А.А., Теория индукционното каротажа. Изд-во

2. Коуфман А.А., Морозова Г.М., Теоратические основы мелая зондирований становлением поля в ближней зоне. Изд-во "Наука", 1970.

 Ваньян Л.Л., Основы электромзгнитных зондирований. Москва, изд-во "Недра", 1965.

В.С. Кривопуцкия

ПРОВОДЯЩИЙ СФЕРОИД В ОДНОРОДНОМ МАГНИТНОМ ПОЛЕ

Теория индуктивной рудной электроразведки в значительной мере развивалась на основе анализа электромагнитных полей, представление о которых было получено из решения известных задач о дифракции на шаре и круговом цилиндре, помещенных в однородную проводящую среду. Среди этих задач наиболее простыни являются задачи, в которых первичное поле однородное, и окружающая Map и цилиндр среда обладает бесконечно большим удельным сопротивлением. Как известно, поле проводящего шара в воздухе 9квивалентно точечному магнитному диполю, а поле кругового цилиндра - линейному диполю. В обоих случаях моменты диполей определяются интенсивностью первичного однородного магнитного поля и параметрами проводника. Но при переходе к телам более CIOXной формы, например, к сфероидам, решение не удается получить в виде, удобном для расчета. Это объясняется следующим образом. Уравнение Гельмгольна допускает в сфероидальной системе KOODдинат разделение перемовных, в результате получается два обыкворенных дифференциальных уравнения второго порядка, решениен которых являются присоединенные функции Лекандра. Аргумент накдой функции Лехандра зависит от волнового числа соответствурной области. Поэтому эти функции для внутренней и внешней областой сфороида всортогональны между собов. При обеспечении непрерывности тангенциальных компонент электрического и магнитного волей на поверхности сфероила возникает равенство CYNN. оцисывающих поле в каждой области. Так как функции, вхоляние в ате суще не ортогональны, то из равенства суми не следует равонство амилитуд соответствующих сфероидальных гарионик, иныме словами, не происходит расцепление на системи из двух уравнений с двумя неизвестными, как это имест место в задачах с варон и круговым цилиндром. Для определения этих коэффициентов необходино представить сфероидальные функции в одной области в виде ряда по собственные функциям другой области. Эта операция приводит в. бесконечной системе с бесконечные числов неизвестных. алгоритым решения для которых, в общем случае, не разработаны.

43

Более перспективным является решение систем интегральных уравнений. При осевой симметрии задача сводится к системе двух интегральных уравнений относительно тангенциальных компонент поля по образующей сфероида [3]. Методика решения систем интегральных уравнений, расчет функций Грина, выделение особенностей - все это выходит за пределы круга вопросов, рассматриваемых в статье. В качестве примера на рис. І приведены амплитудные и фазовые частотные характеристики поля. Лифр кривых - величина отношения осей сфероида 🖉 . Как видно из рис. 1 в соласти низких частот, когда длина волны значительно больше горизонтальной оси сфероида, поле прямо пропорционально частоте и удельной проводимости. Выражение для поля в низкочастотной части спектра может быть получено следующим образом. Первичное магнитьое поле, направленное вдоль оси Z , индуцирует вихревое электрическое поле, которое имеет только компоненту Е 🖉 🖆 <u>і Ших</u> Но. На оси сфероида электрическое поле равно нули и растет по мере удаления от центра. Такое поде может быть совдано в ограниченной области круговой петлей больших размеров, центр которой лехит на оси 2 . Поскольку первичное электрическое поле нигде не пересекает поверхность раздела, то на ней нет зарядов, и единственным источником поля являются викревые токи в проводнике. Если пренебречь взаниодействиен нехду токани (низкие частоты, большое удельное сопротивление среды), то нлотность токов оказывается прямо пропорилональной частоте и удеяьной проводимости. Применяя закон Био-Сазара и интегрируя по сечению сфероида, получаем выражение для визкочастотной части споктра поля в виде двойного интеграля [].

Теперь расскотрии пругой крайны снучай, погда длина волны значительно веньше осей сфероида. В результать скли-лфента токи подилизотся и потерхности, и инутри проводника поле стренится и нуло. Поэтоку на поверхности сфероида тантенциальная компонента электрического поля стремится ч нулю, и задача определения поля в воздухе сводится и репанию уравнения $\Delta E_{\varphi} \vec{f}_{\phi} = 0$ с условиев $E_{\varphi} = 0$ на поверхности проводника. Нетрудно показоть, что решение этой задачи может быть занисано в виде [2]:

$$E_{\varphi}^{a} = - E_{\varphi}^{o} \frac{a \operatorname{zctg} \eta - \frac{\eta}{1 + \eta^{2}}}{\operatorname{arctg} \eta_{o} - \frac{\eta_{o}}{1 + \eta^{2}}}, \quad \eta > \eta_{o};$$

здесь § и / - сфероидальные координаты, связанные с цилиедрическими соотновениями:

$$Z = C \xi \eta; \quad Z = C \left(1 + \eta^2\right)^{4/2} \left(1 - \xi^2\right)^{4/2};$$

$$C = \sqrt{\alpha^2 - \beta^2}; \quad \text{FRe} \quad \alpha = 6 \left(1 + \eta^2\right)^{4/2};$$

 $\mathcal{B} = \langle \gamma o ; \mathcal{A}, \mathcal{B} - cootBetctBethe сольшая в малая$ оси сфероида. В области высоких частот поле яерестает зависетьот частоти и проводимости и сдвинуто по фазе за 180° относительно первичного поля.

Хримення условие Леоктовича, можно получить нысокочастотнув асимптотику, справед жлую в более вироком спентре частот. В этом случае граничное условие на поверхностк имеет выд

$$\frac{Eq}{Hp} = \sqrt{\frac{i\omega \mu}{8}}$$

Intepatypa

1. А.А. Кауфиза. Теория видукцисаного народака. Изд. "Наука", 1965.

2. Дя.А. Страттов. Тоория электромагиствана. ПИЗ, 1948.

 Л.А. Табаровский. Постровние интегральных уравнений для задач дифракции нетодом всеомогательных доточныков. Новосибирск, 1971.

СОДЕРЖАНИЕ

А.А.Кауфман, М.М.Гольдман. Нестационарное поле электричес-	
кого диполя в ближней зоне	3
М.М.Гольдман, А.А.Кауфман. О влиянии анизотропии в методе	
становления поля в ближней зоне	<u>I</u> 4
А.А.Кауфман, А.М.Каганский. Электромагнитное поле горизон-	
тального магнитного диполя в средах с горизонтальными по~	
верхностями раздела	27
В.С.Кривопуцкий. Проводящий сфероид в однородном магнит-	
ном поле	43

.

Отв. редактор А.А. КАУФМАН

Подписано к печати	2. All. 1971p.	MH 15243
Бумага 60х84/16.	Печ.л. 3.0	Учизд.д. 2.7
Тираж 300.	Заказ 524	Цена 19 коп.