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The interpretation of geochemical survey data

Eric C. Grunsky
Geological Survey of Canada, Natural Resources Canada, Ottawa, Ontario, Canada K1A 0E9

(e-mail: egrunsky@nrcan.gc.ca)

ABSTRACT: Geochemical data are generally derived from government and industry
geochemical surveys that cover areas at various spatial resolutions. These survey data
are difficult to assemble and integrate due to their heterogeneous mixture of media,
size fractions, methods of digestion and analytical instrumentation. These assembled
sets of data often contain thousands of observations with as many as 50 or more
elements. Although the assembly of these data is a challenge, the resulting integrated
datasets provide an opportunity to discover a wide range of geochemical processes
that are associated with underlying geology, alteration, landscape modification,
weathering and mineralization. The use of data analysis and statistical visualization
methods, combined with geographical information systems, provides an effective
environment for process identification and pattern discovery in these large sets of
data.

Modern methods of evaluating data for associations, structures and patterns are
grouped under the term ‘data mining’. Mining data includes the application of
multivariate data analysis and statistical techniques, combined with geographical
information systems, and can significantly assist the task of data interpretation and
subsequent model building. Geochemical data require special handling when
measures of association are required. Because of its compositional nature logratios
are required to eliminate the effects of closure on geochemical data. Exploratory
multivariate methods include: scatterplot matrices (SPLOM), adjusting for censored
and missing data, detecting atypical observations, computing robust means, correla-
tions and covariances, principal component analysis, cluster analysis and knowledge
based indices of association. Modelled multivariate methods include discriminant
analysis, analysis of variance, classification and regression trees neural networks and
related techniques. Many of these topics are covered with examples to demonstrate
their application.

KEYWORDS: geochemistry, data analysis, visualization, statistical methods, data interpretation,
review

A review of contributions to the Exploration 1977, 1987 and
1997 conferences held in Toronto in the field of exploration
geochemistry and the interpretation of regional geochemical
survey data provides a perspective and appreciation of the
very powerful tools that geoscientists now have at their
disposal. Boyle (1979) described the first part of the twentieth
century when rapid advancements were made in the recogni-
tion of primary and secondary dispersion haloes: development
of accurate and rapid analytical methods (e.g. the development
of atomic absorption spectroscopy, fluorimetry, chromatog-
raphy, neutron activation analysis, mass spectrometry);
improvements in sampling technologies; radiometric methods,
airborne geochemical sampling methods; improvements in
field techniques and access (helicopters); heavy minerals in
glacial media; and developments in statistical and computer
techniques. At that time, Boyle also pointed out that further
research was required to understand the trace and major
element chemistry of rocks and their geochemical relationship
to metallogenic belts. Boyle also noted that future research

should focus on the identification of mineral deposits at
depth, and for countries such as Canada, the evaluation of
basal till geochemistry is an effective means of exploration for
metallic mineral deposits. The role of government surveys in
the collection of various geological media and subsequent
geochemical analysis was considered paramount for a success-
ful mineral exploration strategy for any country. Boyle dis-
cussed the term ‘vectors’ as a means to identify mineral
deposits through the evaluation of patterns and trends in
geochemical data in both two and three dimensions.

At the time of Exploration 77, the use of geochemical data
in glacial terrains, (Bølviken & Gleeson 1979), non-glaciated
terrains (Bradshaw & Thomson 1979), lithogeochemistry
(Govett & Nichol 1979), biogeochemistry (Brooks 1979;
Cannon 1979), stream sediment geochemistry (Meyer et al.
1979), lake sediments (Coker et al. 1979) and hydrogeochemis-
try were well advanced. The fundamentals of these develop-
ments are still applicable today. There have been refinements
in methods of extraction (digestion methods and selective
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leaches), improvements in detection limits and better under-
standing of the sedimentary environments of stream, lake,
glacial and weathered environments. Howarth & Martin (1979)
provided the basics of evaluating geochemical data, the princi-
ples of which are still in use today. The term ‘integration’ was
already in use in the 1970s when it was realized that several
types of geoscience data could be merged using computer-
based methods (Coope & Davidson 1979).

The Exploration ’87 meeting contained similar discussions
along the lines of weathered terrains (Butt 1989; Mazzucchelli
1989; Smith 1989), glaciated terrains (Coker & DiLabio 1989;
Shaw 1989), stream sediments (Plant et al. 1989), lake sedi-
ments (Hornbrook 1989), biogechemistry (Dunn 1989), and
bedrock geochemistry (Govett 1989). In addition, the role of
computers, databases and computer-based methods for use in
mineral exploration were distinct contributions to the meeting
(Garrett 1989a; Harman et al. 1989; Holroyd 1989) and expert
systems were introduced as a means for decision-making in
exploration (Campbell 1989; Martin 1989). Exploration ’87 also
contained more results on the benefits of integrated exploration
strategies.

Exploration ’97 covered much of the same material of
advances in geochemical exploration methods for the geo-
chemistry of glaciated terrains (Klassen 1997; McClenaghan
et al. 1997), the geochemistry of deeply weathered terrains
(Mazzucchelli 1997; Smith et al. 1997), geochemistry of stream
sediments (Fletcher 1997), lake sediment geochemistry (Friske
1997; Davenport et al. 1997a), lithogeochemistry (Franklin
1997; Harris et al. 1997), plus developments in extraction
techniques for the enhancements of geochemical responses
(Bloom 1997; Hall 1997; Smee 1997). Closs (1997) emphasized
that careful sample design and objectives are the fundamental
tenets of exploration geochemistry, which had not changed in
the previous 30 years. Integrated exploration information
management was a major focus at the Exploration ’97 confer-
ence with significant contributions by Bonham-Carter (1997),
Davenport et al. (1997b), de Kemp & Desnoyers (1997) and
Harris et al. (1997) along with the early developments on the
use of the world wide web (internet) by Cox (1997).

Prior to the arrival of Geographic Information Systems
(GIS) and desktop statistical computing packages, exploration
geochemistry was limited in scope in terms of extensive data
analysis. Textbooks such as those by Hawkes & Webb (1962),
Rose et al. (1979) and Levinson (1980) provided the foundation
for exploration geochemistry strategies and defined the princi-
ples for planning, executing and interpreting geochemical
surveys. These texts were written before the development of
GIS or easily accessible statistical packages. As a result, they
offered limited treatment for a statistical analysis of geochemi-
cal survey data. In the late 1980s, GIS began to play an
increasingly important role in the display and management of
spatially referenced data (e.g. geochemical data). These systems
required large computers and specialists in the management and
maintenance of the software. GIS have evolved into ‘Desktop
Mapping’ systems that allow users of personal computers to
display, query, manage, and to a limited extent analyse spatially
referenced data.

Geochemical surveys are an important part of geoscience
investigations in both mineral exploration and environmental
monitoring. The International Geological Correlation Program
(IGCP Project 259 (Darnley et al. 1995) summarized the value
of geochemical surveys for both exploration and global change
monitoring. This report contains recommendations for sam-
pling strategies, data management, analytical methods and
numerous other topics for the development of a global network
of geochemical knowledge. A soil or lake sediment survey can

consist of collecting several thousand specimens and be ana-
lysed for at least 50 elements. Analysing and interpreting these
large sets of data can be a challenge. Data can be categorical
(discrete numeric or non-numeric) or continuous in nature. To
extract the maximum amount of information from these data,
various multivariate data analysis techniques are available. In
many cases, these techniques reduce these large datasets into a
few simple diagrams that outline the principal geochemical
trends and assist with interpretation. The trends that are
identified may include variation associated with underlying
lithologies, zones of alteration, and in special cases, zones of
potentially economic mineralization. Areas of mineralization
are typically small in geographic extent and less likely to be
‘sampled’ in the course of regional geochemical sampling
survey. Thus, they can be considered as rare events relative to
the regional geochemical signatures within a study area and they
will commonly be under-represented within a population. This
means that they may be observed as atypical or masked by the
main mass of the population.

The term ‘sample’ in statistical literature, usually refers to a
selection of observations from a population. In the lexicon of
geoscientists, specimens of soil, rocks, stream sediments and
other such media, are generally called ‘samples’. This has been
a source of confusion between the geoscience and the statistical
communities. Within this contribution, specimens (i.e. the
geochemist’s samples) that have been collected in the field are
referred to as ‘specimens’ and the data derived from them as
‘observations’. Elements are the geochemical entities that
become variables in the application of statistics. The terms
‘variable’ and ‘element’ are used interchangeably in this contri-
bution. Specimen collection strategies are an important part of
any geochemical survey programme. Garrett (1983, Chapter 4)
provides a useful discussion on various approaches for sam-
pling media for geochemical surveys.

The evaluation and interpretation of geochemical data rely
on understanding the nature of the material that has been
sampled. Different materials require a variety of methods and
techniques of data analysis for the interpretation of geochemi-
cal results. In the case of surficial sedimentary materials (glacial
till, lake and stream sediments), different size fractions of
specimens can reflect different geological processes. The choice
of size fraction can have a profound influence on the inter-
pretation of the geochemistry of an area. In any geochemical
survey the material for study should be carefully collected and
classified in order to provide any clues about the underlying
geochemical processes.

Quality control is an essential part of assessing geochemical
data. All data should be initially examined for analytical reliabil-
ity and screened for the identification of suspect analyses.
Typically, this is done using exploratory data analysis (EDA)
methods. Issues of quality control, analytical accuracy and
precision are beyond the scope of this contribution; however, it
is briefly discussed in the section, ‘Special Problems’.

Five sets of data have been used in this contribution.

1. Lithogeochemical data from Ben Nevis township, Ontario, Canada
(Plate 1). Rock specimens were collected as part of a study to
examine the nature of alteration and associated mineraliza-
tion in a sequence of volcanic rocks (Grunsky 1986a, b).
Two significant Zn–Ag–Cu–Au occurrences have been
investigated in this area: the Canagau Mines deposit and the
Croxall property (Grunsky 1986a). The results of a detailed
lithogeochemical sampling programme outlined a zone of
extensive carbonatization associated with the Canagau
Mines deposit. The alteration consists of a large north–south
trending zone of carbonate alteration with a central zone of
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silica enrichment with gold and copper sulphide mineraliza-
tion. A lesser zone of carbonatization is associated with the
Croxall property. Small isolated zones of sulphide minerali-
zation occur throughout the area. The specimens were not
collected over a regular grid but were collected wherever
rock outcrops could be located in the field. The geology of
the area and the specimen locations are shown in Plate 1.
Lithogeochemical sampling was carried out over the area in
1969, 1972 and 1979–1981. A total of 825 specimens were
analysed for SiO2, Al2O3, Fe2O3, FeO, MgO, CaO, Na2O,
K2O, TiO2, P2O5, MnO, CO2, S, H2O+, H2O�, Ag, As,
Au, Ba, Be, Bi, Cl, Co, Cr, Cu, F, Ga, Li, Ni, Pb, Zn, B, Mo,
Sc, Sn, Sr, V, Y, U and Zr. Initially, the major element oxides
were assessed using a multivariate procedure known as
‘correspondence analysis’ that is documented in Grunsky
(1986a). Details on the geology, sampling methodology and
mineral occurrence descriptions can be found in Grunsky
(1986b). A regional picture of the alteration and prospectiv-
ity for volcanogenic massive sulphide deposits can be found
in Hannington et al. (2003).

2. Lake sediment survey data from the Batchawana district, Ontario,
Canada (Plate 2). This set of survey data, consisting of 3047
lakes sediment specimens collected between 1989–1995,
from a series of lakes that overlie a Precambrian volcanic-
sedimentary sequence that has been intruded by granitic
rocks (Grunsky 1991). The lake sediments in the area are
derived from the underlying bedrock (shown in the legend),
glacial overburden and organic matter (not shown). Glacial
till, outwash sand, lacustrine deposits and recent re-worked
glacial deposits blanket the area in varying thickness. Bed-
rock exposure is less than 5% of the area with most of the
glacial overburden being less than 3 m.

3. Data from the island of Sumatra, Indonesia. This dataset, from a soil
survey over a Cu–Au prospect on the island of Sumatra,

Indonesia, provides an example of how multivariate data analy-
sis and digital elevation data can be used to isolate geochemical
responses related to different processes. A geochemical survey
was carried out on a grid of lines 100 m apart with sampling
sites every 25 m. The geology is poorly understood because of
extensive weathering in the tropical climate. The mineralization
of Cu and Au occurs in breccia zones that are associated with
a felsic intrusion and appear to be structurally controlled as en
echelon fractures that parallel the great Sumatra fault. Plate 3
shows the generalized geology for the area.

4. The Campo Morado mining camp in the Guerrero state of Mexico.
This camp hosts seven precious-metal-bearing volcanogenic
massive sulphide deposits in the complexly folded and
faulted Guerrero terrain (Oliver et al. 1996; Rebagliati 1999),
shown in Plate 4. A total of 29 221 samples were collected
over a soil grid comprising 25 m sample spacing along lines
and each line was 100 m apart. The field samples were
analysed for Al, Fe, Ca, K, Mg, Na, Ti, Au, Ag, As, Ba, Cd,
Co, Cr, Cu, Hg, Mn, Mo, Ni, P, Pb, Sc, Sr, V, W and Zn
using aqua regia digestion and ICP-ES. A digital elevation
model (DEM) was created at 25 m resolution. Plate 4 shows
the location of each sample point and is coloured according
to the lithology over which the sample was collected. The
high density of sampling yields a detailed picture of the
lithologies of the area as shown in the figure. Principal
component analysis (PCA) was carried out on the data and
revealed several significant patterns related to lithological
variation and mineralization.

5. Kimberlite bodies from Fort à la Corne Saskatchewan (Fig. 1).
Five kimberlite phases from the Fort à la Corne area of
Saskatchewan have been analysed for major and trace
element geochemistry. These five phases are shown to be
statistically distinct and can be used to form the basis of a
classification scheme for scoring unknown samples
(Grunsky & Kjarsgaard 2008). Because of confidentiality
requirements, geographic coordinates are not presented
with these results.

GEOCHEMICAL DATA MINING

Data mining involves the use of automatic and knowledge-
based procedures for the recognition of patterns that can be
attributed to known processes (i.e. crystal fractionation, hydro-
thermal alteration, weathering). Common forms of data mining
involve supervised and unsupervised pattern recognition. Unsu-
pervised data mining includes techniques such as cluster analy-
sis, principal component analysis, exploratory data analysis,
multivariate ranking of data, neural networks and empirical
indices. These methods vary from automatic, semi-automatic,
to manual in the degree of pattern delineation. The use of a
fully automatic method does not guarantee a result that
necessarily represents the best view or meaningful structure in
the data. Caution must be applied in using such techniques.
Supervised methods include discriminant analysis, canonical
variate analysis, model-based clustering, neural networks, sup-
port vector machines and cell automata. All require a priori
assumptions and/or ‘target’ and ‘background’ definitions to
which unknown data can be classified. Typically, target popu-
lations represent sets of geochemical data that define mineral
exploration targets.

Visualization of geochemical data

Visualization is one of the most effective ways of evaluating
data. The human eye is more adept at recognizing patterns from
pictures than with tables of numbers. Geochemists need to

Fig. 1. Location map of the Fort à la Corne kimberlite field,
Saskatchewan, Canada.
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evaluate data comparatively in both the spatial domain (geo-
graphic location) and the variable (element/oxide) domain.
When a single element’s data are being evaluated, simple plots
such as probability plots (Sinclair 1976; Stanley & Sinclair 1987,
1989; Stanley 1987), histograms, or box plots can be used.
However, there are many other ways to evaluate data graphi-
cally. Many of these methods have been outlined by Cleveland
(1993). Garrett (1988) developed a data analysis, statistics and
visualization system, IDEAS, that provides a multitude of
methods that are useful to the exploration geochemist. This
package was recently replaced by another package, ‘rgr’ (Garrett
& Chen 2007) and is available from www.r-project.org. Reimann
et al. (2008) have published a book that provides methods for
evaluating geochemical data in an environmental context using R.

Even the field of statistical evaluation of data has changed
significantly in the past 10 years. This is exemplified by texts
that combine extensive visualization techniques (Sarkar 2008)
together with modern statistical methods (Venables & Ripley
2002).

This contribution has made extensive use of the data analysis
and statistical analysis software package, R (R-Development
Core Team 2008), which provides a number of powerful tools
for manipulating and visualizing data. Most of the statistical
graphics herein have been created using R. The application of
this environment for geoscience applications is described by
Grunsky (2002a).

Geographical information systems

GIS represent digital visualization of spatially-based data on a
map. GIS require a spatial definition of the data plus attribute
tables that contain information relevant to the specified geo-
graphic locations and the representation of geochemical data.
Examples of this have been presented by Mellinger et al. (1984),
Gaál (1988), Kuosmanen (1988), Bonham-Carter (1989a, b),
George & Bonham-Carter (1989), Hausberger (1989) and
Mellinger (1989). In particular, GIS facilitates the organized
storage and management of spatially-based data that are linked
to a number of other features or other geo-referenced data sets.
Bonham-Carter (1994) has written a monograph of geoscience
applications using GIS and Harris (2006a) has edited a volume
on GIS applications in the Earth sciences covering a wide range
of topics in which geochemistry is covered by Cheng (2006),
Grunsky (2006), Harris (2006b) and Wilkinson et al. (2006).

As geoscience information and data become available in
ever-increasing volumes, exploration programmes and govern-
ment research programmes involve significant amounts of data
compilation. The compiled datasets are subsequently placed
into GIS and integrated with other geoscience information.
Recent developments in the use of GIS together with data
compilation programmes have been discussed in Wilkinson
et al. (1999) and Harris et al. (1997, 1999, 2000) and a book with
a chapter on the evaluation of geochemical data using GIS
(Harris 2006a, Chapters 12–16).

Depending on the nature of the geochemical data (stream
sediment, soil, lake sediment, or lithogeochemical), various
types of analysis can be performed that are dependent on the
type of associated data present. Point, polygon (vector) and
raster (regular array cells) features can be overlain, merged and
analysed through the associated map merging and database
querying tools. Raster image grid cells can be considered as
points provided there is an associated attribute record of data
with each grid cell.

Desktop mapping systems have evolved to the point that
they are cheaper and less complex, are easier to use and offer an
effective way for the geochemist to evaluate data. Thus, the

goals of the geochemist can be achieved faster and at less cost.
As digitally based map and attribute data are being created
continually, there has been an increasing demand to view and
assess these data without the use of complex GIS. In its
simplest form, a desktop mapping system has significant
advantages in exploration geochemistry. Geochemical data can
be loaded and visualized in both the geochemical space and the
geographical space very quickly. Geochemical data can also be
processed using a number of statistical or other data analysis
techniques from which the results can also be loaded into a
desktop mapping system. The permutations and combinations
of data layer manipulation provide a wide variety of ways of
examining and interpreting data.

Image processing

When the sampling density of geochemical data is adequate, it
is desirable to produce maps that represent smoothed gridded
data and coloured/shaded surfaces. Smoothed, gridded data
can be considered a raster image. Image analysis is primarily
used for presentation purposes to enhance the results of an
analysis or to show variation within data. Image analysis
manipulates integer-scaled raster data using a number of
matrix-based methods and after the use of additional integer-
scaling procedures represents the resulting transformed data on
various graphical output devices using colour (e.g. intensity,
hue, saturation, RGB, CMYK). Richards & Jia (1999) provide
an introduction to image processing methods. Carr (1994)
provides an introduction to image processing in geological
applications and Gupta (1991) and Vincent (1997) provide
comprehensive reviews of remote sensing applications in
geology. Rencz (1999) contains a collection of papers covering
the topic of remote sensing in the Earth sciences and Pieters &
Englert (1993) covers the topic of remote geochemical analysis
through the evaluation of satellite spectroscopy.

Exploratory data analysis (EDA)

Exploratory data analysis is concerned with analysing geo-
chemical data for the purpose of detecting trends or structures
in the data. These features can provide insight into the
geochemical/geological processes from which models can be
constructed. Exploratory methods of data analysis include the
evaluation of the marginal (individual) distributions of the data
by numerical and graphical methods. These include the use of
summary tables (minimum, maximum, mean, median, standard
deviation, 1st and 3rd quartiles), measures of correlation,
covariance and skewness. Graphical methods include histo-
grams, probability (quantile–quantile) plots, box plots, density
plots and ScatterPLOt Matrices (SPLOM). More sophisticated
data visualization can be carried out using packages such as the
‘lattice’ library that is available in R (Sarkar 2008). The spatial
presentation of data summaries can be incorporated into a GIS
using features such as bubble and symbol plots, and interpo-
lated grids.

Multivariate methods include the use of PCA, cluster
analysis, Mahalanobis distance plots, empirical indices and
various measures of spatial association.

Target and background populations

In an exploration programme, geochemical background repre-
sents a population of observations that reflect unmineralized
ground. Background may be a mixture of several populations
(gravel–sand–clay or granitoid–volcanic–sedimentary litholo-
gies). The separation of the background population into similar

E. C. Grunsky30

 at Cornell University on November 19, 2012http://geea.lyellcollection.org/Downloaded from 

http://geea.lyellcollection.org/


subsets that represent homogeneous multivariate normal popu-
lations is important and forms the basis of the modelled
approach of geochemical data analysis. This can be achieved
using exploratory methods such as PCA, methods of spatial
analysis, Mahalanobis distance plots and cluster analysis.

A group of specimens that represent an entity under
investigation (features of geochemical alteration or mineraliza-
tion) is termed the ‘sample’ population, from which inferences
will be made about the ‘target’ population that cannot be
sampled in its entirety. These populations are derived from
specimens collected from orientation studies over known
mineral deposits or areas of specific interest.

Sample populations, whether representing background or
other populations, represent training sets with unique charac-
teristics. These training sets are generally distinct from one
another through their statistical properties, although it is
common for training sets to overlap. Unknown specimens can
be tested against these populations to determine if they have
similar characteristics. Probability-based methods can deter-
mine if the unknown specimen belongs to none, one or more
of the populations.

A case study is presented where distinctions between kim-
berlites from the Fort à la Corne area, Saskatchewan have been
statistically determined based on their multi-element signatures.

Special problems

Problems that commonly occur in geochemical data include:

+ many elements have a ‘censored’ distribution, meaning that
values at less than the detection limit can only be reported as
being less than that limit;

+ the distribution of the data is not normal;
+ the data have missing values. That is, not every specimen has

been analysed for the same number of elements. Often,
missing values are reported as zero, which is not the same as
a specimen having a zero amount of an element. This can
create complications in statistical applications;

+ combining groups of data that show distinctive differences
between elements where none is expected. This may be the
result of different limits of detection, instrumentation or
poor Quality Assurance/Quality Control (QA/QC) proce-
dures. Levelling of the groups is required;

+ the constant sum problem for compositional data.

These problems create difficulties when applying math-
ematical or statistical procedures to the data. Statistical proce-
dures have been devised to deal with all of these problems. In
the case of varying detection limits, the data require separation
into the original groups so that appropriate adjustments can be
applied to the groups of data.

To overcome the problems of censored distributions, pro-
cedures have been developed to estimate replacement values
for the purposes of statistical calculations. When data have
missing values, several procedures can be applied to impute
replacement values that have complete analyses. This will be
discussed in more detail further on in the text.

Plate 5 summarizes the problems of censoring, non-
normality and the discrete differences in the data due to
analytical resolution. The image is a shaded relief map derived
from the density of observations of As v. Au. The ‘valleys’
represent limits in data resolution near the lower limit of
detection for Au. The actual limit of detection appears as a
‘wall’ at the zero end of the Au axis. In contrast, As displays a
continuous range of values without the same resolution or
detection limit problems exhibited by Au.

Standard numerical and statistical methods have been devel-
oped for data analysis where the values being considered add to
a constant sum (e.g. whole rock analyses summing to 100%).
This is discussed in more detail below.

Quality assurance and quality control of geochemical data
require that rigorous procedures be established prior to the
collection and subsequent analysis of geochemical data. This
includes the inclusion of certified reference standards, randomi-
zation of samples and the application of statistical methods for
testing the analytical results. Historical accounts of ‘Thompson
and Howarth’ plots for analytical precision studies can be found
in Thompson & Howarth (1973, 1976a, b, 1978). Additional
discussion on the subject was most recently covered by Stanley
(2003, 2006) and Garrett & Grunsky (2003).

Compositional data

Geochemical data are reported as proportions (weight %, parts
per million, etc.) For a given observation compositional pro-
portions (i.e. weight %) always sum to a constant (100%). As a
result, as some measures increase, others are ‘forced’ to
decrease to keep the sum constant. Because compositional data
occur only in the real positive number space, the calculation of
statistical measures, such as correlation and covariance, can be
misleading and result in incorrect assessment of correlation or
other measures of association. It is dangerous to make the
assumption that closure has no effect on the outcome of any
statistical measure. Raw compositional data is useful for observ-
ing stoichiometric trends in data (e.g. Grunsky & Kjarsgaard
2008); however, any type of regression or procedure that
requires statistical measures necessitates the use of logratios
which are described below.

Aitchison (1986) developed a methodology for data analysis
and statistical inference of compositional data using logratio
transformations. These transformations project the composi-
tional data into the entire (positive and negative) real number
space, which allows standard statistical procedures to be
applied. These methods are gaining popularity and examples of
application to geochemical data are given by Aitchison (1990),
Grunsky et al. (1992) and Buccianti et al. (2006). The approach
has also been extended into spatial data processing that is
commonly used in ore reserve estimation (Pawlowsky 1989).
Recent work by Barcelo et al. (1995, 1996, 1997), Martin-
Fernandez et al. (1998, 2000) Pawlowsky-Glahn & Buccianti
(2002) and von Eynatten et al. (2002, 2003) document methods
and issues around the treatment of compositional data.
Aitchison (1997) provides a very readable account of compo-
sitional data issues. Appendix 1 provides a basic description of
the use of logratios. Buccianti et al. (2006) provide the most
recent developments in the field of compositional data analysis.
A package for compositional data analysis (van den Boogaart &
Tolosana-Delgado 2008) known as ‘compositions’ provides a set
of tools for evaluating compositional data using the R statistical
package (www.r-project.org).

Most geochemical survey data comprise trace element
measurements that are reported as parts per million (ppm). The
reporting in ppm constitutes the potential for closure, the trace
element concentrations may interfere with each other particu-
larly when one or more of the elements of interest is close to
zero. The application of a centred logratio transformation (clr)
will provide more reliable and statistically defensible results
than the use of raw data. The use of the isometric logratio (ilr)
(Egozcue et al. 2003), where balances between the elements are
constructed, provides orthonormal basis in the compositional
data space in which statistical and vector calculations can be
applied.
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SUMMARIZING GEOCHEMICAL DATA

Univariate data summaries

The following description of data exploration is based on
examining univariate populations. EDA plots are shown in
Figures 2a–d and 3a–d. These plots are often useful when
grouped together as they provide different ways of summariz-
ing data. Data summaries, in combined graphical and text form,

provide a basis for context and comparison of different data
types.

Histograms

The histogram is one of the most popular graphical means of
displaying a distribution since it reflects the shape similar to
theoretical frequency distributions. Figures 2a and 3a illustrate
how the histogram can be used to display the distribution of
Al and As in lake sediments. These two elements have been
chosen to demonstrate two very different geochemical
responses. Aluminium is ubiquitous in the lake sediments,
mostly derived from aluminosilicates such as feldspars and
some clay minerals (kaolinite). Aluminium abundance is largely
controlled by rock types such as granites and volcanic rocks.
Figure 2a illustrates the range of Al values from sediments in
lake catchments. The distribution appears polymodal, which
could lead to the interpretation that the lake sediments have
been derived from several different lithologies. In the Batcha-
wana area of Ontario, these lithologies are granite gneiss,
migmatite, granitoid intrusions, metasediments and metavol-
canic rocks. However, on closer examination, these ‘peaks’
appear to be artefacts of the analytical method (varying
detection limits) and can create difficulties with the interpreta-
tion. Other graphical methods that are discussed below are
better suited for interpreting these data.

Arsenic is much less abundant in the country rocks of the
area. When it is present, it is usually associated with sulphide
minerals. Relative to Al, elevated amounts of As are a ‘rare
event’. This is reflected in the histogram of Figure 3a where
most As values are below 10 ppm. The shape of this kind of
distribution is commonly thought of as ‘lognormal’. However,
such a distribution may be the result of mixtures of value from
different distributions where the number of values in the lower
range is greater than the values in the upper range.

For constructing a histogram, a number of objective proce-
dures have been established as initial starting points for interval
selection (see Venables & Ripley 2002, p. 112). If the nature of
the distribution is normal or close to normal then Sturge’s rule
can be applied. Sturge’s rule sets the number of intervals equal
to log2n +1 where n is the number of observations. Sturge’s rule
does not work well if the distributions are not normal. If the
number of intervals is too few, then the finer details of the
distribution are smoothed over. If the number of intervals is
too many, then the distribution appears discontinuous.

Histograms can be tuned by experimenting with starting
points, cut-off points and interval selections. This process is
subjective and when the end points and intervals are well
chosen, a meaningful interpretation is likely. Conversely, if the
end points and intervals are poorly chosen, an incorrect
interpretation, or no significant interpretation can be obtained.

Box plots

The box plot is a method used to display order statistics in a
graphical form (Tukey 1977). The main advantage of the box
plot is that, unlike the histogram, its shape does not depend on
a choice of interval. Providing the scale of presentation is
reasonable, the box plot provides a fast visual estimate of the
frequency distribution. A box plot for As in lake sediments is
shown in Figure 3b.

Within a box plot, the box is made up of the median (50th
percentile), left and right hinges (25th and 75th percentile, or
first and third quartile). The ‘whiskers’ are the lines that extend
beyond the box. Several variations exist on the graphical
presentation of box plots. The extreme ends (maximum and

Fig. 2. Exploratory Data Analysis (EDA) plot of Al in lake
sediments, Batchawana area, Ontario. Note the distinct polymodal
nature of the distribution. The Q–Q plot suggests that this polymo-
dal appearance may be due to lack of precision in the chemical
analysis.

Fig. 3. Exploratory Data Analysis (EDA) plot of As in lake
sediments, Batchawana area, Ontario. Arsenic exhibits a log-normal
type of distribution. Extreme values (outliers) influence the shape of
the distributions in all four plots.

E. C. Grunsky32

 at Cornell University on November 19, 2012http://geea.lyellcollection.org/Downloaded from 

http://geea.lyellcollection.org/


minimum values) of the data are marked by vertical bars at the
end of the whiskers. Alternatively, the whiskers can extend to
the ‘fences’, which are defined as the last value before
1.5�midrange beyond the hinges of the data. Observations
that plot beyond 3�midrange are plotted as bars or special
symbols. The location of the median line within the box gives
an indication of how symmetrical the distribution is within the
range of the upper to lower hinge (midrange). The lengths of
the whiskers on each side of the box provide an estimate of the
symmetry of the distribution. Notches can also be added to the
diagram, which identify the width of the confidence bounds
about the median. Notches are evident in the box plot of Figure
2b, where the distribution of Al is not highly skewed. The
notches are not visible in Figure 3b because of the skewed
nature of the data and the scaling of the plot.

When using these plots to compare datasets representing
different lithologies, and so on, the notches provide an informal
statistical analysis. If the notches do not overlap, it is evidence
that the difference between the medians is significant.

Density plot

The distribution of data can also be described graphically
through the use of density plots. Density plots are smooth
continuous curves that are derived from computing the prob-
ability density function of the data. The density plot is similar
to the histogram; however, the curve actually represents an
estimate of the probability density function. Density estima-
tion involves the use of smoothing procedures to compute
the curves and is described in Venables & Ripley (2002,
p. 126–132). Density curves can be modified by specifying the
range of the data from which the smoothing and estimation is
calculated.

Figure 2c shows a density plot for Al in lake sediments. The
polymodal nature of Al is shown more clearly than in Figure 3a
and b. Figure 3c shows the density plot for As where the
skewed nature of the distribution is illustrated by the sharp
single peak followed by a long tail.

Quantile–quantile (Q–Q) plots

Quantile–quantile (Q–Q) plots are a graphical means of com-
paring a frequency distribution with respect to an expected
frequency distribution, which is usually the normal distribution.
Q–Q plots are equivalent to normal probability plots that have
been extensively used by Sinclair (1976) for the analysis of
geochemical data. Stanley & Sinclair (1987, 1989) and Stanley
(1987) have written extensively on the use of probability plots
for dissecting populations. A general description of Q–Q plots
can be found in Venables & Ripley (2002, p. 108). These plots
are generated by calculating quantile values for the normal
frequency distribution (value of the normal frequency distri-
bution over the range of probability, 0.0–1.0) and then plotting
these against the ordered observed data. If a frequency distri-
bution is normally distributed, when the quantile values are
plotted against the ordered values of the population, the plot
will be a straight line. If the frequency distribution of the
population is skewed or the population is polymodal, the Q–Q
plot will be curved or discontinuous. The advantage of the
Q–Q plot is that each individual observation is plotted and thus
the detailed characteristics of groups of observations can be
observed.

Figure 2d shows a plot for Al in lake sediments. The plot
provides some insight into the nature of the data that is not
shown by any of the other three plots (Fig 2a–c). The ‘stepped’
nature of the plot suggests that many values of the data are not

continuous but are reported as discrete values rounded off at
the nearest percentage value. The step-like pattern indicates
that measurements were made in 1% increments for some of
the data and in 0.01% increments for other data. In fact, the
pattern that is observed is a mixture of four surveys, three of
which have a resolution of 1% for Al, and the fourth survey has
a resolution of 0.01%. The departure of the stepped plot from
the straight line indicates that it is a slightly skewed distribution.
Figure 2d shows the Q–Q plot for As which clearly reveals the
non-normal nature of the distribution by its non-linearity. Q–Q
plots are also useful for identifying extreme values at the tails of
the distribution. The line that cuts through the data represents
the intersection at the 25th and 75th percentiles of the data.
In the case of the As data (Fig. 3d), the distribution is very
skewed.

Summary statistical tables

Summary statistical tables are useful descriptions of data when
quantitative measures are desired. Summary statistical tables
commonly include listings of the minimum, maximum, mean,
median, 1st quartile, and 3rd quartiles. Measures of dispersion
include the standard deviation, median absolute deviation
(MAD), and the coefficient of variation (CV). The coefficient
of variation is useful because the dispersion is expressed as a
percentage (the mean divided by the standard deviation), so it
can be used as a relative measure to compare different
elements. An example of a summary table for a selected group
of elements from the lake sediment data is shown in Table 1.
The table lists minimum, maximum, mean, median and selected
percentile values for 35 elements and loss on ignition (LOI).
Comparison of the mean and median values for each of the
elements shows that many of them are significantly different
from each other. This implies that the distributions for these
elements are not normal and are likely skewed.

Summary tables are useful for the purpose of publishing
actual values; however, graphical methods, as previously
described, provide visualization about the nature of distribu-
tions and the relationships between observations. The values of
a summary table are best interpreted when used in combination
with graphical summaries.

Spatial presentation

It is particularly meaningful to display geochemical survey data
in a geographical context. As discussed previously, GIS is a very
useful tool for evaluating geochemical data during the explora-
tory analysis phase. Plate 6a shows a symbol plot of As from
lake sediments in the Batchawana area of Ontario. Each symbol
represents a collection site. The number of symbols and the
symbol sizes were chosen based on an evaluation of the
accompanying EDA plot in Plate 6b. An initial view of the EDA
plot for As showed that the distribution was positively skewed
and the plot was difficult to interpret. A log10 transform was
then applied to the data values and the resulting EDA plot was
much easier to interpret. The EDA plot of Plate 6b shows at
least four distinct populations. The first population ranges in
values from <�0.02–0 log10 scale (0.9–1 ppm) and is related to
the many specimens with As values close to the detection limit.
The second population ranges from 0–1.2 log10 scale (1–16
ppm) and reflects background As values associated with the
geology. The third population ranges from 1.2–1.6 log10 scale
(16–40 ppm) and occurs mainly in the south-central part of the
Batchawana greenstone belt in an area where there is known
pervasive carbonate alteration associated with shear zones. The
fourth population ranges from 1.6–2.0 log10 scale (40–100 ppm)
and represents areas where there are known sulphides.
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The choice of symbol size and colour can be used to
illustrate patterns of similarity and difference between several
elements in the data. If the goal is to illustrate atypical
observations, then once a background range of values has been
established, observations that exceed the limit of the back-
ground can be assigned unique colours or different sized
symbols. If the distribution of the data is non-normal and the
observations of interest are in the positive tail of the distri-
bution, then a logarithmic scale can be used to assign symbol
sizes.

Kürzl (1988) and Reimann et al. (2005) suggest a unique
approach by creating symbols based on EDA methods. Using
the divisions within a box plot, the median value (Q2) and the
interquartile range Q1–Q3 (r), the upper fence (Q3 +
1.5*(Q3 � Q1), the lower fence (Q1 � 1.5*(Q3 � Q1),
lower outside values (Q1 � 3*(Q3 � Q1)), and upper outside
values (Q3 + 3*(Q3 � Q1)) can be used to define unique
symbols which express the ranking of an observation. An
example of a seven-symbol set can be defined as:

1. < lower outside values
2. lower outside values to the lower fence
3. lower fence to Q1
4. Q1 to Median (Q2)
5. Median (Q2) to Q3
6. Q3 to upper fence
7. upper fence to upper outside values
8. > upper outside values 5 Q3 to Q3 + 1.5*r

Application of geostatistical techniques for evaluating the spatial
continuity of geochemical processes

Contouring or imaging techniques are most reliable when the
sampling density is sufficient enough so that variation between
sample sites is minimal for the purposes of the sampling survey.
Subjective judgment is often employed for a decision to use
contouring or imaging techniques. If the sampling density is
high, but the investigator believes that the geochemical
response between sample sites is predictable, then contouring
or imaging may be an appropriate means of visually describing
the data. If the geochemical variability between sampling sites is
unknown or large then it is better to use point or bubble plots
as described previously. A quantitative way of assessing spatial
variability can be carried out by the use of geostatistical
procedures. The construction of a semi-variogram or correlo-
gram can provide a measure of the spatial continuity/variability
of a specific element. A semi-variogram measures the average
variance between sample points at specific distances (lags).
Generally, as the distance increases between any pair of points,
the variance is expected to increase, the limit of which is the
total variance of all of the data. In the correlogram, as the
distance between any pair of points increases, the average
correlation between the points decreases, eventually decaying to
zero. Isaaks & Srivastava (1989, Chapter 4) describe a number
of detailed methods for evaluating the spatial continuity of data.
The effectiveness of employing geostatistical methods relies on
an adequate sampling density in terms of representing the actual

Table 1. Summary statistics for lake sediments, Batchawana Area, Ontario.

Element Units LLD Num
Obs

Min 1% 5% 10% 25% Median
(50%)

Mean 75% 90% 95% 99% Max Std.
Dev.

MAD CV

LOI weight % 2.96 3019 3 8.6 20.55 27 35 44 44 53 61 65.8 76.08 91.5 13.7 13.3 0.3
Ag ppm 0.2 2900 0.2 0.2 0.2 0.2 0.2 0.5 0.7 1 1 1 1 72 1.5 0.4 2.3
Al weight % 0.36 3047 0.4 0.64 0.93 1 1.52 2 2.5 3 4 5 6 8 1.2 1.4 0.5
As ppm 0.5 3046 0.5 0.6 0.9 1 1 1.2 2.2 2 4 6 17 96 4 0.4 1.8
Au ppb 1 3042 1 1 1 1 1 1 2.1 3 5 5 8 64 2.1 0 1
Ba ppm 30 3047 30 50 70 80 109 148 167.8 210 290 340 440 680 85.2 71.2 0.5
Be ppm 0.5 3047 0.5 0.5 0.5 0.5 0.5 0.5 0.8 1 1 1 2 54.1 1 0 1.3
Bi ppm 2 3047 2 2 2 2 2 2 2.9 5 5 5 6 10 1.4 0 0.5
Br ppm 1 3046 1 3 6 8.5 14 22 25.6 34 48 57.4 76.7 132 16.1 14.1 0.6
Ca weight % 0.23 2685 0.2 0.43 0.56 0.66 0.89 1 1 1.04 1.35 1.58 2 9.1 0.4 0.1 0.4
Cd ppm 0.2 3047 0.2 0.2 0.5 0.5 0.6 1 1 1 2 2 3 6 0.6 0.3 0.5
Co ppm 1 3047 1 1 2 3 4 6 6.9 9 11 13 21 105 5 3 0.7
Cr ppm 1 3047 1 8 12 15 20 27 31.3 38 49 63 99 328 18.2 13.3 0.6
Cu ppm 2 3047 2 7 11 14 20 29 34.2 41 60 74 120 441 24.3 14.8 0.7
Fe weight % 0.14 2649 0.1 0.2 0.31 0.4 0.63 1 1 1 1.7 2 4 15 0.7 0.3 0.7
Hf ppm 1 3046 1 1 1 1 1 2 2.3 3 4 5 7 30 1.4 1.5 0.6
K ppm 0.05 1809 0.1 0.09 0.13 0.15 0.21 0.3 0.5 0.69 1 1 1.36 2 0.3 0.3 0.7
La weight % 1 3046 1 5 9 11 17 25 29 36 49 60 95 408 19.3 13.3 0.7
Lu ppm 0.1 1605 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.4 1 2 0.2 0 0.7
Mg weight % 0.04 1636 0 0.06 0.08 0.09 0.12 0.2 0.3 0.32 0.5 0.99 1 2 0.2 0.1 0.9
Mn ppm 20 3047 20 30 42 50 70 114 159.8 195 295 415 745 3410 168 77.1 1.1
Mo ppm 1 3047 1 1 1 1 1 2 2.3 3 4 5 10 84 3.2 1.5 1.4
Na weight % 0.03 1999 0 0.06 0.09 0.12 0.21 0.5 0.7 1 1.25 1.94 2.19 4 0.5 0.5 0.8
Ni ppm 3 3047 3 6 8 10 12 16 17.3 21 26 31 44 153 7.9 5.9 0.5
P ppm 150 2197 150 260 340 400 540 820 941 1240 1630 1890 2410 4700 508.6 474.4 0.5
Pb ppm 2 3047 2 2 4 4 6 10 11.6 14 19 22 35 1340 27.3 5.9 2.4
Sb ppm 0.1 1627 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.3 1 7 0.3 0 1.8
Sc ppm 0.1 3046 0.1 1.7 2.4 3 4 5 5.2 6.1 8 9 12 19 2.2 1.5 0.4
Sr ppm 12 3047 12 21 29 32 42 60 78.3 95 153 195 276 427 54.3 34.1 0.7
Ta ppm 0.5 3046 0.5 0.5 0.5 0.5 0.5 2 1.4 2 2 2 2 3 0.7 0 0.5
Th ppm 0.4 3044 0.4 1 1.2 1.7 2 3 3.3 4 5.2 6 9 26 1.7 1.5 0.5
Ti weight % 0.009 1557 0 0.02 0.029 0.032 0.047 0.1 0.1 0.103 0.137 0.16 0.21 0.3 0 0 0.5
U ppm 0.1 3009 0.1 0.3 0.6 0.9 1 2 4.2 4.1 9.3 16 34 195.5 7.5 1.5 1.8
V ppm 5 3047 5 7 10 12 16 24 27.1 34 46 54 79 301 15.9 13.3 0.6
W ppm 1 3046 1 1 1 1 1 1 1.7 2 2 3 8 46 1.7 0 1.1
Zn ppm 13 3047 13 21 36 45 62 86 98.6 118 155 184 361 952 68.1 38.5 0.7
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variation of the data as well as the spatial distribution of the
points themselves.

A large number of freeware and commercial geostatistical
software packages are now available for carrying out geostatis-
tical analysis. The website www.ai-geostats.org provides a list of
software that is currently available. A geostatistical package,
‘gstat’ has been written for the R programming environment
(Pebesma 2004), which is freely available from the Compre-
hensive R Archive Network (R-DEVELOPMENT CORE
TEAM) (see: www.r-project.org). Deutsch & Journel (1997)
provide a library of software routines in Fortran (GSLIB). A
general introductory discussion on spatial statistics can be
found in Venables & Ripley (2002, Chapter 15) and Davis
(2002, Chapter 5).

If the spatial sampling density appears to be continuous then
it may be possible to carry out spatial prediction techniques
such as spatial regression modelling and kriging. A major
difficulty with the application of spatial statistics to regional
geochemical data is that the data seldom exhibit stationarity.
Stationarity means that the data have some type of location
invariance, that is, the relationship between points is the same
regardless of geographic location. Thus, interpolation tech-
niques such as kriging must be applied cautiously, particularly if
the data cover several geochemical domains in which the same
element has significantly different spatial characteristics.

Evaluation of the variogram or the autocorrelation plots can
provide insight about the spatial continuity of an element. If the
autocorrelation decays to zero over a specified range, then this
represents the spatial domain of a particular geological process
associated with the element. Similarly, for the variogram, the
range represents the spatial domain of an element, which
reaches its limit when the variance reaches the ‘sill’ value, the
regional variance of the element. Theoretically, at the origin (lag
= 0), the variance should be zero. However, typically, an
element may have a significant degree of variability even at
short distances from neighbouring points. This variance is
termed the ‘nugget’ effect.

Figure 4 displays four semi-variograms for Zn from the
Batchawana lake geochemistry survey data covering an area of

95 km (east–west) and 62 km (north–south). Semi-variograms
have been calculated for four preferred orientations: east–west,
(0�), north–south (90�), NE–SW, (45�) and SE–NW (135�),
using a search angle tolerance of 22.5�. The y-axis of each figure
is the semi-variance and the x-axis is the lag interval. The
maximum lag distance was chosen as 20 000 m and the lag
interval was selected as 200 m. The selection of a suitable lag
distance can be made by visually examining the distribution of
sample sites; geostatistical software packages can also determine
optimum lag intervals. These figures were generated using the
gstat package from R. Each figure has been fitted with an
exponential model. The most regular semi-variograms appear
for the 135� and 90� orientations. This is no surprise given that
that there are two primary stratigraphic orientations in the area,
one trending east–west and the other trending SE–NW. The
orientations of 0� and 90� display different nugget values, with
the lowest nugget occurring with the east–west orientation, also
suggesting better correlation between adjacent points in that
direction. All four semi-variograms display periodicity, which
indicates that there is heterogeneity in the spatial structure of
the data, most likely reflecting changes in the underlying
geology (granite vs. greenstone).

The use of kriging makes some assumptions about the
spatial uniformity (stationarity) properties of the data. In many
cases, particularly in regional sampling programmes, there are
several lithological domains in which elements have different
spatial ranges. Kriging can account for various types of spatial
drift in datasets; however, the error in the kriged estimates
tends to increase.

The use and application of geostatistical methods is a
combination of art and science. Skill, knowledge and experience
are required to use geostatistical techniques effectively. It
requires considerable effort and time to model and extract
information from spatial data. The benefit of these efforts is a
better understanding of the spatial properties of the data which
permits better estimates of geochemical trends. However, they
must be used and interpreted with the awareness of problems
with techniques of interpolation and the spatial behaviour of
the data.

Fractal methods

The use of fractal mathematics is playing an increasingly
important role in the geosciences. Carr (1994) gave a good
introduction into the use of fractal methods in the geosciences.
Cheng & Agterberg (1994) have shown how fractal methods
can be used to determine thresholds of geochemical distribu-
tions on the basis of the spatial relationship of abundance. They
have shown that where the concentration of a particular
component per unit area satisfies a fractal or multifractal model,
then the area of the component follows a power law relation-
ship with the concentration. This can be expressed mathemati-
cally as:

As� # vd ~ ���1

As� . vd ~ ���2

where A(�) denotes an area with concentration values greater
than a contour (abundance) value greater than �. This also
implies that A(�) is a decreasing function of �. If � is
considered the threshold value then the empirical model shown
above can provide a reasonable fit for some of the elements.

In areas where the distribution of an element represents a
continuous single process (i.e. background) then the value of �
remains constant. In areas where more than one process has
resulted in a number of superimposed spatial distributions,

Fig. 4. Semi-variogram of Zn from lake sediments, Batchawana area,
Ontario. Semi-variograms are derived for four different orientations.
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there may be one or more values of � defining the different
processes.

An example of the use of concentration v. area plots is
shown for As derived from lake sediments collected over the
Batchawana area. Plate 7 shows a colour contoured image of As
values superimposed on the sample sites, and, as well, a plot of
log10 As concentration v. log10 area occupied by each contour
interval. Distinct changes in the slope of the plot represent
breaks based on the spatial distribution of the data and each
break represents a threshold between populations of data
possibly derived from different processes. There are three
distinct trends shown on the concentration–area plot of Plate 7.
The regional background is characterized by a straight line of
points ranging from 0.7 (5 ppm) to 1.3 (20 ppm). Interpolated
As values greater than 5 ppm and less than 20 ppm are shown
as red, blue and cyan. This represents the regional background
of the area. The group of points that form a straight line from
1.3 (20 ppm) to 1.6 (40 ppm) represent the next population
reflecting As associated with mineralization and anthropogenic
effects. Anthropogenic effects are prevalent in the eastern part
of the map area, whereas As values associated with potential
mineralization are shown in the central and western part of
the map area. Values above 1.6 (40 ppm) represent a small
population of observations that are greater than 40 ppm
(shown as orange and red on the map). These observations
occur in the SE portion of the map area and may represent
areas of mineralization.

Cheng et al. (2000) have also implemented the use of
power-spectrum methods to evaluate concentration–area plots
derived from geochemical data. By the application of filters,
patterns can be detected related to background and noise, thus
enabling the identification of areas that are potentially related to
mineralization. More details on this methodology can be found
in Cheng (2006).

Multivariate data summaries

Scatterplot matrix

The ScatterPLOt Matrix (SPLOM) is a useful graphical multi-
variate method for visually assessing the relationships between
variables. When categorical information is available, colour can
be used to show differences between the categories.

Two areas were chosen from the Ben Nevis mapsheet (Plate
8): one representing an area of carbonate alteration and the
other, an area of metavolcanics without carbonate alteration.
Figure 5 shows a scatterplot matrix of a selected number of
elements from the two areas. The matrix highlights associations
and patterns in the data. There is a clear distinction between the
altered and unaltered observations for CO2 with Co, Cu and Cr.
CO2 shows an overall increase for the altered specimens,
whereas the abundances of Cu, Cr and Co vary widely in a suite
of specimens from the carbonate alteration zone. The distri-
bution patterns for these elements can be studied further using
other graphical measures such as box plots.

Multiple box plots

In Figure 6, box plots for nine elements from the Ben Nevis
lithogeochemistry data show that there are clear differences in
the geochemistry between the two areas. Box plots are a
convenient way of summarizing the differences between groups
of data. Note that there is a distinct shift in the median value
data for CO2 and Li (an increase) and a corresponding decrease
in Ca and Sr for the specimens from the altered area. This is
consistent with studies that indicate that there is overall loss of
Ca and Sr in the zone of carbonate alteration, and an increase

of Li and Na. Chromium, Na, Ni, Cu and Co show greater
variability in the altered area. The greater variability is due to a
breakdown of the original mineralogy accompanied with the
addition of CO2, Si, Li, Cu and several other elements that are
associated with hydrothermal activity and mineralization.

Lattice graphics

Lattice graphics is a special graphics library in R that enables
multivariate summaries of data for more effective visualization
and subsequent interpretation (Sarkar 2008). For example, a
correlation matrix can be expressed graphically as illustrated in
Plate 9: this is a graphical expression of the correlation matrix
of the lithogeochemical data from the Ben Nevis, Ontario area.

The colour ramp, on the right side of the figure, gives the
scale of the correlation coefficient �1 (blue) to +1 (red). Thus
the positive, negative and neutral associations of the elements
can be quickly assessed.

DIFFERENTIATING GEOCHEMICAL
BACKGROUND FROM ANOMALIES

The recognition of a geochemical anomaly requires that a
geochemical background has been established, which in itself
can be difficult to define. Geochemical values that depart from
the background, that is, those values which are atypical, may be
anomalous. Howarth & Sinding-Larsen (1983, p. 208) discuss
the concept of anomaly and suggest that anomalous concen-
trations are those values that exceed a given threshold. Work-
shops held by the Association of Exploration Geochemists
(AEG) in 1983 and 1985 (Garrett 1984; Aucott 1987) failed to
give any formal definitions and concluded that an anomaly is a
desired level of abundance in which the geologist has a
particular interest and is different from the regional or back-
ground values. Joyce (1984, p. 15) discusses the definition of an
anomaly in terms of an adequate definition of background.

Historically, values exceeding the 98th percentile were scru-
tinized for their potential to be identified as geochemical

Fig. 5. Scatterplot matrix of altered and unaltered metavolcnics from
the Ben Nevis area of Ontario. Carbonate altered rocks cluster
differently from the non-altered rocks.
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anomalies. As well, the threshold was defined as the mean � 2
standard deviations (Hawkes & Webb 1962; Howarth 1983, p.
208). This definition was based on the assumption of normality
of the data. However, with the introduction of computer-based
methods for evaluating geochemical data, the ability to study
sample populations and the nature of geochemical distributions
has provided powerful tools for the identification of outliers
and specimens that might be related to mineralization targets
(anomalies). As a result, the use of choosing thresholds based
on the calculation of the mean � 2 standard deviations is no
longer recommended (see Rose et al. 1979; Levinson 1980;
Garrett 1989b). Filzmoser et al. (2005) describe an approach to
outlier and anomaly detection using robust methods and
adaptive techniques for recognizing outliers.

The threshold and pathfinder elements

An important goal of the investigation of geochemical data is the
detection of spatially continuous zones of elevated values of a
strategic element that exceed a specified threshold value. Obser-
vations that exceed the threshold are termed ‘anomalies’. Joyce
(1984, p. 9–13) provides a detailed description of indicator and
pathfinder elements and minerals that can be used in exploration
strategies. Garrett (1991) defined the threshold as the outer limit
of background variation; the term ‘outer’ is used instead of
‘upper’. This allows the definition to include both ‘upper’ and
‘lower’ limits, as it is common in some geochemical environments
for depletion haloes to be as important as enrichment haloes.
Reimann et al. (2005) further refined the definition of threshold
and background based on robust methods.

The concept of threshold can be extended from single
element to multi-element data by the use of multivariate statistical
methods such as the use of the Mahalanobis distance (Garrett
1989c). In the multivariate case, the threshold can be selected on

the basis of examination of Mahalanobis distance plots or some
other more robust measure of background and departures from it.

Observations from distributions that represent processes of
interest (mineralization or anthropogenic effects) usually over-
lap with observations from background distributions such that
the threshold is more likely a range of values where the two
distributions overlap. Rather than choose a specific threshold
value, it may be better to assign a probability of the likelihood
of an unknown specimen belonging to each population. In
geochemical surveys, anomalies have a spatial association and
are small and only occupy a fraction of the area that is covered
by the regional population.

Plate 10 shows the threshold as determined by a visual
inspection of the Q–Q plot. In this case, the threshold for K2O
is chosen at 2.5 %, which is considered above the usual range
of values for volcanic rocks. The values that exceed the
threshold can be identified on the map by choosing a symbol
size or colour to identify them.

Mineral deposits are often characterized by a unique suite of
elements whose values exceed the threshold of the surrounding
background material. These elements are called pathfinder ele-
ments and often have a greater spatial extent relative to the target
being sought. In the Ben Nevis metavolcanic sequence, K can be
considered as a pathfinder element. Elevated values of K are
typically associated with epithermal Au deposits. Examination of
the distribution of K2O in Plate 10b suggests that values above
2.5 wt% K2O are atypical and that value defines the threshold.
The map of K2O values in Plate 10a indicates that K2O values
greater than 2.5 wt% are associated with the two known mineral
occurrences as well as several other sulphide-bearing occurrences.

Outliers or anomalies?

An outlier can be defined as an observation with a value that
is distinctively different from observations with which it is

Fig. 6. Box plots showing the character
of selected elements between the
altered and unaltered sites.
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intimately associated. If a threshold has been defined, then an
outlier, by default, exceeds the threshold. Outliers may be of
significance from an exploration or contamination point of
view. An outlier may define a mineralized zone (anomaly) or
a value that is above an accepted environmental background
level. Outliers can also be artefacts of erroneous analytical
results or data entries. An outlier can be identified as a
geochemical anomaly if it exceeds the threshold, is not the
result of an analytical problem, or assigned to an improper
population. In other words, an anomaly is associated with a
process of interest (alteration or mineralization), whereas an
outlier is a value without an interpretation that requires
further assessment.

Outliers should always be examined carefully to be certain
that the observed values are not the result of an error. An
observation that is an outlier in one group may be indistinguish-
able (masked) from other observations within another group.
In practice, outliers are assessed by a graphical examination of
the upper and lower rankings of the data and the identification
of observations that occur as distinct breaks from the back-
ground population. The application of a transformation may be
sufficient to separate the background from outliers.

Plate 11a shows a Q–Q plot of As from the lake sediment
data. Arsenic, a pathfinder element, is commonly associated
with gold deposits. An examination of the plot shows that
‘breaks’ occur at the approximate values of 20, 25 and 35 ppm.
In comparison with the fractal approach, the break at 20 ppm
is equivalent to the abrupt change in slope in Plate 7, where the
concentration–area plot identifies a distinct change in the data
population at a value of log10As=1.3 (19.95 ppm). These
breaks most likely represent distinct populations that can be
attributed to different source lithologies. The breaks are used as
the basis for a change in symbol sizes on the map of Plate 11b.
There are six extreme values that occur above the level of
35 ppm, which is considered to be the threshold. These values
can be considered as anomalies because of the break in the
slope of the curve and the distance between these values and
the bulk of the population. These outliers would be of interest
in a mineral exploration programme.

In the case of two or more (multi-modal) populations it is
necessary to decompose the populations into separate distinct
populations through the analysis of Q–Q plots, probability
plots or by computer-based means (Sinclair 1976; Stanley 1987;
Bridges & McCammon 1980). Garrett (1989c), Filzmoser et al.
(2005) and Filzmoser & Hron (2008) have developed methods
for outlier detection in multivariate data using a multivariate
outlier plot, which identify observations that appear to belong
to a population different from the main population. This has
obvious benefits in evaluating geochemical data for observa-
tions associated with alteration or mineralization.

Truncated and censored data

When an analytical procedure detects the presence of an
element, but the value is too low to be accurately quantified,
the value is reported as ‘less than the limit of detection’ (lld).
The same applies for values that exceed the upper limit of
detection. The lower/upper limits of detection are the limits of
reliable quantification by the analytical procedure. Typically, a
laboratory will report the value prefixed with a ‘<’ for a value
less than the lld or ‘>’ for a value that exceeds the upper limit
of detection. When a group of values contains observations that
exceed the detection limits, the effect is called ‘censoring’.

Figure 7 shows the distribution of Co in metavolcanics
collected during a lithogeochemical sampling programme in the
Ben Nevis township area of Ontario. The analytical procedure

for Co has a lower limit of detection of 5.0 ppm and 85 out of
the 824 observations fall below that limit. The histogram of
Figure 7a shows a bar with a high frequency of observations at
the lowest end of the scale. This bar represents the 85 values
that are less than the detection limit. The Q–Q plot (Fig.7d)
shows these values as a flat part of the distribution at the left
side of the figure. The box and density plots (Fig. 7b, c) do
not show the censored values as clearly. Historically, censored
data were handled by applying a substitute value, somewhere
between 1/3 to 1/2 of the actual detection limit. As the
number of observations below the lld (censored) increases,
then this estimate will produce inaccurate estimates of the mean
and variance (see Sanford et al. 1993).

Several techniques have been developed to minimize the
problem of censored data. The problem of censored data becomes
more important when means of elements and covariances between
elements are required. Using an arbitrary ‘replacement’ value (i.e.
1/2 or 1/3 the lld) can introduce bias in the computation of the
moments of the distribution. However, if the nature of the
distribution can be assumed as normal, then the replacement value
of the censored data and parameters of the distribution (mean,
variance) can be estimated based on the portion of the distribution
that is not censored. The process of finding suitable replacement
values is known as ‘imputation’ in the statistical literature. Esti-
mates of the distribution parameters are obtained using the EM
algorithm (Dempster et al. 1977), and is discussed by Chung (1985,
1988, 1989) and Campbell (1986). From these characteristics, an
estimate can be made as to how the data are distributed below the
lld. The assumption of normality is essential for the EM algorithm
to work. Campbell (1986) invokes an algorithm to transform the
data to normality using Box-Cox. Sanford et al. (1993) have
developed a method that allows for the calculation of a suitable
replacement value based on a maximum likelihood approach.
Helsel (1990) provides a detailed discussion on dealing with
missing data in environmental studies. Chung (1985, 1989),
Campbell (1986) and Lee & Helsel (2005, 2007) have published
computer procedures that estimate the mean and variance of
censored distributions by calculating a replacement value that is
derived from the characteristics of the uncensored portion of the
sample population. Dickson & Giblin (2007) have used self-
organizing maps as a means of finding suitable replacement values.

Fig. 7. Cobalt (ppm) in metavolcanics, Ben Nevis Township,
Ontario, Canada.
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Robust estimation

The presence of extreme or atypical values in a sample popu-
lation can have a dramatic effect on the estimation of the mean
and variance, which in turn will affect the estimation of
correlation and covariance with other variables. As these
measures of association are used by many statistical techniques,
it is useful to minimize the influence of atypical observations.
Methods of robust estimation are primarily concerned with
minimizing the influence of observations that are atypical. There
are several methods for determining robust estimates of location
(mean/median) and scale (variance). Robust estimation proce-
dures can be applied to both single and multivariate populations.
Good reviews on robust statistics can be found in Venables &
Ripley (2002, Chapter 5.5) and Daszykowski et al. 2007).

Geochemical distributions are often positively skewed and
lognormal in appearance. The skewed nature is commonly
attributed to a mixture of different populations and/or the
presence of outliers. For such distributions, a robust estimate of
the mean will be less than the standard estimate of the mean
because the influence of the long tail and outliers is reduced.

Methods for robust estimation of location and scale include
trimmed means, adaptive trimmed means, dominant cluster
mode, L-estimates, M-estimates and Huber W-estimates (see
Grunsky 2006).

Transformation of data

Statistical testing and comparison between groups of data
usually requires the estimation of means, variances and covari-
ances. Most statistical procedures assume that the populations
being tested are normal in nature. If there are outliers (extreme
data values) or a mixture of populations (polymodal or skewed
distributions) then the assumption of normality is violated. In
right-skewed distributions (the most common effect observed
with geochemical data), estimates of the mean exceed the
median value. Similarly, the estimation of the variance is
inflated for a skewed distribution. The skewed nature of the
data can be overcome by applying a suitable transformation
that shifts the values of the distribution such that it becomes
normally distributed. It has been common in the geological
literature to apply logarithmic transformations to data as a way
to correct for a positive skew. The application of transforma-
tions to data should be carefully applied to avoid masking the
presence of multiple populations and outliers (Link & Koch
1975). If transformations are applied to data to minimize the
effect of skewness, then Q–Q plots of the transformed data
should be examined for changes in slope or breaks in the line,
as these features might suggest the presence of two or more
populations.

Transformations that can be applied are:

+ linear scaling

y = kx or y = sxi � x̄d ⁄ s

where s is the standard deviation,
+ exponential y=ex

+ Box-Cox generalized power transform

y = sx� � 1d ⁄ �, y = lnsxd for � = 0.

The linear scaling transformations do not change the shape of
the distribution; however, the degree of dispersion (variance)
can change. The logarithmic, exponential, and Box-Cox gener-
alized power transforms, or log10 modify both the shape and
the dispersion characteristics of the distributions and are the
transformations most commonly used. Howarth & Earle

(1979) provided a computer program for estimating parameters
for the generalized Box-Cox power transform based on the
optimization of skew and kurtosis and the optimization of the
maximum likelihood criterion of Box & Cox (1964). Lindqvist
(1976) published a computer program (SELLO) for transform-
ing skewed distributions based on minimizing skew.

In EDA, transformations are useful in assessing whether
outliers are the result of a non-normal frequency distribution or
are truly atypical values. The distribution should be examined
for outliers both before and after a transformation has been
applied to the data. Once any outliers are eliminated, the data
should be re-examined for outliers as above until all are
identified and eliminated. Campbell (1986) prepared computer
programs that account for atypical values in the estimation of
transformations and robust estimates of means and variances.
Stanley (2006) discusses the application of transformations to
maximize geochemical contrast and improve data presentation.

Figure 8 shows the effect of applying four different trans-
formations on Ni for lake sediments from the Batchawana area
of Ontario. The data are represented on Q–Q plots. Figure 8a
shows the untransformed data; Figure 8b shows the log10
transformation of the data; Figure 8c shows a square root
transformation; and Figure 8d shows a Box-Cox generalized
transformation with a value of � determined after the top 5%
of the data were trimmed. The resulting value of �=0.08 is
close enough to zero that there is little difference between the
log transform of Figure 8b and 8d.

Discussions on the application of transformations of geo-
chemical data have traditionally been based on raw analytical
values and the potential problems associated with closure have
not been taken into account. Further research is required in this
field.

LEVELLING GEOCHEMICAL SURVEY DATASETS

Regional exploration programmes and integration projects
often involve the assembly of diverse sets of data. A common
problem associated with the assembly of geochemical survey
datasets is known as levelling. Levelling involves the adjustment
of values of an element from one survey to be similar to the

Fig. 8. Ni in lake sediments, Batchawana area, Ontario.
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values of another survey. This ‘similarity’ implies that the
means, medians and variations are similar, or in other words,
have the same parametric characteristics. Levelling geochemical
survey data involves many assumptions and is mitigated by
many factors, which are discussed below.

In many geochemical studies, the integration of several
sets of data is necessary. Geochemical surveys may have
been carried out over an extended period of time during
which field sampling methods, sample preparation, methods
of digestion and analytical instrumentation may have
changed. Thus, there is the potential for a large degree of
heterogeneity in the data that is not based on the underlying
geology. It is not advisable to level the results of geochemi-
cal data derived from different methods of collection
(media), preparation (digestion) or analytical methods. The
detection limits may be different and there may be system-
atic shifts between the groups of data. In order to use these
data effectively, one or more sets of data must be adjusted.
This is known as levelling. One set of data is chosen against
which all other sets of data will levelled. The relationship of
each element is compared and an adjustment is made
through the application of a linear transformation. Given an
observation x, with (i=1, . . .n) variables,

yi = axi + b

xi is the unadjusted variable for observation x,
yi is the adjusted variable for observation x,
a represents the slope of the line in the transformation,
b represents the intercept or additive adjustment.

The adjustment can be determined through regression
methods. Non-linear transformations may also be applied if
necessary. Figure 9 shows the types of levelling scenarios that
can be encountered. The x and y axis of each figure shows the
values of the quantiles (values at 5, 10, 15, etc. percentiles) for
the two variables. With exception of Figure 9e, each scenario
shows a possible relationship that will permit levelling. Figure
9e shows a random association between the two variables and
in this case levelling is not possible. A detailed example of
levelling geochemical data is provided below.

There are several challenges in levelling data, the first of which
is the choice of data against which to level everything else.
Considerable time should be spent on assessing the variability of
each element across all of the surveys to be levelled. There may or
may not be one set of survey data that can be used as the
benchmark dataset, for all elements. Choosing when an element
requires levelling must be carried out with caution. Comparing
values on maps using bubble plots can be misleading, unless the
data are evaluated using the same range and scaling.

Assembling a large number of geochemical surveys and
evaluating the need for levelling can be a challenging prob-

lem. Trepanier (pers. comm. 2006; Identifcation de domains
géochemiques à partier des levés régionaux de sediments de
fond de lacs, Projet 2004–09. Presentation at the Consortium
de recherche en exploration minérale) developed an iterative
and adaptive method for levelling a large number of surveys.
The method assumes that, for each element, one set of survey
data represents the standard by which all other surveys will be
levelled. All data are stored in a database and an automatic
procedure is invoked to search through and adjust the data
for each element. The method is computationally intensive
and time-consuming.

As shown in Figure 9, there are four typical scenarios for
levelling between two datasets. Note that in Figure 9, the values
that are plotted are the values at specified quantiles of the data
(i.e. 5, 10, 15, . . . 90, 95th percentiles). The worst possible
scenario is shown in Figure 9e where no levelling is possible
because no linear relationship exists between the two sets of
data. It is also possible that a non-linear shift or multiplier will
level two datasets. Graphical inspection of quantile plots
between two sets of data should be carried out prior to
assessing the type of levelling required.

Daneshfar & Cameron (1998) have demonstrated a method
of levelling geochemical data described in Darnley et al. (1995)
that accounts for the geology that underlies geochemical data
survey sites. The method requires the use of GIS and a
statistical package that computes quantiles and linear regression.

A strategy for levelling several datasets involves the deter-
mination of which dataset should be chosen for all of the other
databases to be levelled against. The choice of this dataset, the
‘standard dataset’, will depend on the following factors: spatial
proximity of the two datasets; accuracy and precision of the
standard dataset; and that the standard dataset contains enough
specimens and enough elements so that the other datasets can
be levelled to it.

The integration of geochemical survey datasets requires
the identification of several key parameters so that the data
can be accurately interpreted, that is: type of media; method
of preparation; method of digestion; method of analysis; and
lower and upper limits of detection.

If levelling involves geochemical datasets where these char-
acteristics are different then it may be unwise to attempt to level
the data. An alternative approach is to map the departure from
the median or some other measure that characterizes individual
specimens against the distribution for a particular area. Non-
spatial levelling is often required (i.e. adjusting location and
scale) to remove boundary effects and the comparison of
different analytical methods. The following discussion describes
some of the challenges associated with levelling geochemical
survey datasets.

The lower and upper limits of detection are commonly
different between geochemical survey reports. This is due to

Fig. 9. Levelling scenarios for geochemical data.
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Plate 1. General geology of the Ben Nevis Township area, Ontario, Canada.

Plate 2. General geology of the Batchawana area, Ontario, Canada.
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the nature of the method of analysis and the developments
in the analytical procedures that have taken place over time.
As the technology of geochemical analysis improves, the
lower limits of detection also decrease. Thus, when merging
geochemical survey datasets, the choice of a replacement

value for the lower limit of detection (lld) may become an
issue. A straight replacement method of a single value will
not be sufficient because the replacement value is used only
to ensure a better estimate of the mean and variance of the
data. Varying detection limits within a large dataset assem-
bled from many sources may create significant problems
when deciding on a replacement value. One approach is to
set the lower limit of detection at the weighted median value
for the range of llds in the dataset. A replacement value can
then be determined based on the number of observations
and associated llds.

Levelling geochemical survey datasets: an example
using lake sediments in Northern Ontario

Plate 12 shows sites for five different lake sediment surveys in
the Batchawana greenstone belt of Northern Ontario. These
five surveys were collected during the 1980s by Fortescue &
Vida (1989, 1990, 1991a, b). Hamilton (1995) describes the
results of the survey conducted by Fortescue in the Cow River
Area. The area is an Archaean volcano-sedimentary terrane
within the Abitibi-Wawa subprovince of the Superior Province.
The geology of the area is described by Grunsky (1991).

Plate 3. Location of the soil survey
area, Island of Sumatra, Indonesia.

Plate 4. Lithologies of the Campo Morado area, Mexico.

Plate 5. Density plot of arsenic versus gold displaying censoring and
quantization of the analytical data.
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Plate 6. (a) Exploratory data analysis
of arsenic in lake sediments, Bathawana
area, Ontario. (b)Arsenic (log10) in
lakes sediments, Batchawana area,
Ontario.
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Regional lake sediment surveys were carried out in five
areas: Pancake Lake, Trout Lake, Hanes Lake, Montreal
River and Cow River. The sampling programme was carried

out over several years and the methods of analysis were
similar for all five datasets. However, a levelling problem
does exist amongst the survey areas. The greatest difference

Plate 7. Arsenic from lake sediments, Batchawana area, Ontario. The contoured image reflects the area associated with each As contour level.
The corresponding concentration–area plot display changes in slopes, which reflect changes in spatial patterns. These changes are associated in
differences in geology, anthropogenic effects and mineralization.

Plate 8. Map of altered/unaltered sampling sites in the Ben Nevis Township area.
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between geochemical data exists between the Cow River
map sheet and the adjacent Montreal River and Hanes Lake
survey areas.

Figure 10 shows the range of values for Zn over the five areas
in the Batchawana area. The interquartile range, shown in the solid
box, is significantly higher for the Cow River data than for the
other survey areas. However, the Cow River area also contains
abundant mafic volcanic rocks of tholeiitic affinity that would
naturally tend to have higher Zn values relative to the other survey
areas which are composed of a mixture of tholeiitic and calc-

alkaline volcanics, sediments and granitoid rocks. Plate 13 shows a
map of Zn values throughout the region. The levels of Zn in the
Cow River area (NE corner) are high relative to the other areas.
There are a number of high Zn values within the centre of the
volcanic sequence and these could be considered legitimate.
However, the Cow River background Zn values appear to be
10–20 ppm higher than the background for the adjacent areas.

Using the approach outlined by Daneshfar & Cameron
(1998), a quantile regression technique was applied. The
procedure involves selecting ‘bands’ of specific distances (5, 10,
15, 20, 25 km, or some suitable scale depending on the nature
of the surveys) between adjacent map sheets from which
quantile regression is carried out for each of the bands. The

Plate 9. Correlation matrix expressed in terms of colour. The scale
bar on the right of the matrix provides the measure of correlation
based on colour.

Plate 10. K2O map across Ben Nevis Township. Separation of atypical K2O values.
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reasoning for choosing bands is that an optimum distance,
which results in the selection of an optimal number of
specimens, will result in a best-fit quantile regression formula
for levelling.

Plate 14 shows the selection of bands that were made for
levelling the Cow River survey area against the Hanes Lake
survey area. Bands were selected at the 5, 10, 15, 20 and 25 km
ranges in a north–south direction.

Plate 11. Map of atypical As (ppm) across the Batchawana area, Ontario.

Plate 12. Lake sediment survey sites across the Batchawana area, Ontario.
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Plate 14. Band selection for quantile regression. Zn in lake sediments, Batchawana area, Ontario.

Plate 13. Unlevelled Zn values in lake sediments, Batchawana area, Ontario.
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For each of these bands, a linear regression was carried out.
A measure, D, is used to determine which band provides the
best quantile regression. D is defined as:

D = o wi fsqide
� sqide�g2 where

wi is the assigned weight to the ith quantile,
(qi )e is the ith quantile in band of width e
(qi )e# is the ith quantile in band of width e# in the adjacent

map sheet
e is the width of the band expressed as a measure of distance

(i.e. m or km).
The weights favour quantile pairs at or near the median

(50th percentile) of the distribution and are based on the
ordinates of a normal distribution (weight for the median value
= 0.399). These weights are listed in Table 2.

The work by Daneshfar & Cameron (1998) was originally
carried out in British Columbia where the adjoining map sheets
show broad geological similarity. When the same approach was
tried in the Batchawana area the selection of bands of appro-
priate size became problematic.

Because of the deformed nature of the rocks and the sub-
vertical stratigraphy, there is a significant variation in geochemical
character over short distances. Figure 11a shows the results of
the values of D applied to the five band selections and it is clear
that the 5 km and 25 km bands have the lowest D values. The
difference in D values for the different band selections is mostly
due to the diversity of lithologies associated with each band. For
the 5 km band, the lithologies are similar on both sides of the
survey boundary: mafic volcanic and granitoid rocks. However, for
the 10, 15 and 20 km bands, Plate 14 shows that there is a range of
lithologies within the bands between the two surveys and the

Plate 15. Levelled Zn values after applying quantile regression based on the 25 km band selection. See text for a detailed explanation.

Fig. 10. Boxplots of Zn from the five survey areas, Batchawana area,
Ontario.
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lithologies are most dissimilar for the 15 km band. At the 25 km
band, it is not surprising that the D value is lowest for the similar
range of lithologies between the two survey areas and was thus the
best band for the quantile regression methodology.

Quantile regressions were computed for both the 5 and
25 km bands (Fig. 11 b, c) using the weights for each quantile,
which are shown in Table 2.

In Daneshfar & Cameron (1998) the weight for the 95th
percentile was chosen as 0.103. For this application, many of the
values for the Cow River Zn data were atypical and represented
a group of specimens unique to Zn mineralization within the
mafic volcanic sequence. There was no equivalent Zn response in
the Hanes Lake survey area. Thus, the 95th percentile weight was
changed from 0.103 to zero so that the effects of these large Zn
values did not bias the levelling of the background.

The values of D, regression coefficients (intercept, slope)
and plot of the quantiles for the 5 km band selection are shown
in Figure 11b and for the 25 km band selection in Figure 11c.
From the two plots, it can be seen that the 25 km band is a
better fit and the results from this regression were used to
adjust the Zn values in the Cow River survey area. Note that
the results of this regression are equivalent to the shift and
multiplier effect as shown in Figure 9d.

The results of applying the regression to the Cow River
survey data for Zn are shown in Plate 15. The levelling
procedure has had a significant effect on the lower values of Zn
in the granitoid terrane but left the upper values, associated
with the mafic volcanic rocks and some Zn rich zones within
the volcanic sequence, relatively unaffected.

Levelling, using GIS and statistical procedures can produce
an optimal result and a combination of these tools is a
recommended way to level geochemical survey data.

MULTIVARIATE DATA ANALYSIS TECHNIQUES

Multivariate data analysis techniques such as PCA, cluster analy-
sis, non-linear mapping and projection pursuit regression pro-
vide numerical and graphical means by which the relationships
of a large number of elements and observations can be studied.
These techniques typically simplify the variation and relation-
ships of the data in a reduced number of dimensions, which
may commonly be tied to specific geochemical/geological pro-
cesses. The basics of multivariate data analysis techniques can
be found in Jöreskog et al. (1976), Howarth & Sinding-Larsen
(1983), Krzanowski (1988), Reyment & Jöreskog (1993) and
Davis (2002). Mellinger (1987) provides a systematic approach
to the application of multivariate methods in geological studies.
Other methods include non-linear mapping (Sammon 1969),
projection pursuit (Friedman 1987), multi-dimensional scaling
(Kruskal 1964) and self-organizing maps (Kohonen 1995). A
recent technique, independent components analysis (Comon
1994), is similar to the method of projection pursuit.

Incorporation of the spatial association with multi-element
geochemistry involves the computation of auto- and cross-
correlograms or co-variograms. This field of study falls into the
realm of geostatistics, which is not covered in this contribution.
A number of texts are available that provide details on
geostatistics (David 1977, 1988; Journel & Huijbregts 1978;
Isaaks & Srivastava 1989).

Grunsky (1986a) employed the use of PCA and clustering
methods to evaluate the lithogeochemistry of Archaean vol-
canic terrains from which a number of geological processes
were inferred, ranging from primary compositional variation to
alteration and associated mineralization. This is discussed in
greater detail below.

Table 2. Weights used for quantile regression in levelling geochemical data.

Regression weights

Quantile 5 10 20 30 40 50 60 70 80 90 95
Weight 0.103 0.175 0.28 0.348 0.386 0.399 0.386 0.348 0.28 0.175 0

Fig. 11. Selection of optimum band width and quantile regression
for Zn in lake sediments, Batchwawana area, Ontario.
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Multivariate techniques that have been developed specifi-
cally for geochemistry include various empirical techniques
such as the chalcophile and pegmatophile indices developed by
Smith & Perdrix (1983), which were used to outline areas of
potential base and precious metal mineralization in the Yilgarn
craton of Western Australia.

Robust estimation of mean and covariance matrices

Many multivariate methods require estimates of correlation or
covariance so that interrelationships between the variables can be
quantified. Estimates of correlation/covariance are sensitive to
the presence of outliers in the data that can bias the results. The
influence of outliers can be reduced by applying robust methods
to the estimation of the means, correlations and covariances
between variables. In multivariate analysis, the distance of an
observation to a centroid is estimated by the Mahalanobis
distance which depends on an estimate of the multivariate mean
and covariance. The Mahalanobis distance is defined as:

D2 = fx � x̄g�C�1fx � x̄g
where:
x is a vector of variables for a given observations;
x̄ is a vector of the group mean;
C�1 is the inverse of the covariance matrix.
There are many techniques for determining robust estimates

of mean and variances for individual populations (Rock 1987,
1988). Robust estimates can be determined for each individual
variable or simultaneously for all variables. Multivariate estimates
are affected by observations with missing values (no value) in any

one of the individual variables. These must be discarded or have
some suitable replacement value. Additionally observations that
are censored (less than the detection limit) must have a proper
replacement value as discussed previously. Campbell (1980) gave
some early insight into the application of robust procedures in
multivariate analysis. Venables & Ripley (2002, p. 336) provided
a good discussion on robust estimation methods.

Two methods can be used to obtain robust multivariate
estimates of means and covariance:

1. Minimum Volume Ellipsoid (MVE). A multivariate method of
determining means and correlations/covariances with mini-
mal effect from outliers based on finding a hyperellipsoid
that contains a subset of ‘good’ observations that minimize
the volume of the ellipsoid. A geochemical application of
this method is given by Chork (1990).

2. Minimum Covariance Determinant (MCD) Estimatio. This
method works by minimizing the determinant (a measure of
ellipsoid volume) of the covariance matrix based on a
symmetric Gaussian hyperellipsoid. The method is faster
than the minimum volume ellipsoid but has a lower
breakdown point (Rousseeuw & van Driessen 1999). The
determinant is based on a minimum number of ‘good’
observations. As the determinant decreases, the dispersion
of the ellipsoid decreases with a corresponding drop in the
estimates of central values, resulting in a ‘robust’ estimate.

If there are many observations with values at the same
detection limit, a condition of collinearity occurs, which has a
direct effect on the covariance matrix. If there are too many
identical observations, the method fails. However, by increasing

Fig. 12. Quantile–quantile plots of log-centred major and trace elements for the Ben Nevis lithogeochemical data.
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the number of observations, the methods will generate less
robust estimates. In the case of non-normal skewed distribu-
tions, the means and covariances will be affected. This type of
problem is typically encountered when a percentage of the
observations have elements with abundances below the detec-
tion limit (censored data) and increases the likelihood of
collinearity problems.

An example of applying multivariate robust estimates is
shown in Table 3 where estimates of the mean for 12 elements
are given for 825 lithogeochemical observations from the Ben
Nevis Township lithogeochemical data set. In this table, only
estimates of the mean are shown. Classical estimates of the
mean, based on univariate statistics, multivariate classical esti-
mate, minimum volume ellipsoid and minimum covariance
determinant methods are shown. Compared with classical
methods of estimation, the robust estimate tends to minimize
the effect of those distributions that are skewed.

For the minimum covariance determinant method, two
estimates are shown based on two groups of ‘good’ observa-
tions. The initial estimate for the MCD used 419 observations
based on an initial starting formula of (825 observations + 12
variables + 1)/2. Because of the large number of observations
with values at the detection limit, the initial MCD estimate was
singular. The MCD was applied using 540 and 800 observa-
tions. Table 3 shows that as the number of ‘good’ observations
increases, the mean value tends towards the standard estimate-
where the effect of the long tailed skewed distribution increases
the estimate of the mean for several elements.

PRINCIPAL COMPONENT ANALYSIS

The objective of Principal Component Analysis (PCA) is to
reduce the number of variables necessary to describe the
observed variation within a dataset. This is achieved by forming
linear combinations of the variables (components) that describe
the distribution of the data. These linear combinations are
derived from some measure of association (i.e. correlation or
covariance matrix). Davis (2002, Chapter 6) gives a very readable
account of the mathematics of PCA. More complete discussions
on the theory and application of PCA can be found in in Jöreskog
et al. (1976), Jolliffe (2002) and Jackson (2003). Appendix 2
provides a simple geometric description of PCA.

A method of PCA known as simultaneous RQ-mode
principal component analysis (Zhou et al. 1983) has the
advantage of presenting the principal component scores of the
observations and the variables (elements) at the same scale,
which permits plots of the observations and variables on the
same diagram. This method is similar to the biplot method of
Gabriel (1971). The interpretation of the results of PCA is
usually oriented on placing a geological/geochemical interpreta-
tion on the linear combinations of elements (loadings) that
comprise the components. This method has been implemented
in the S programming language (Grunsky 2001).

Ideally, each principal component might be interpreted as
describing a geological process such as differentiation (partial

melting, crystal fractionation, etc.), alteration/mineralization
(carbonatization, silicification, alkali depletion, metal associ-
ations and enrichments, etc.) and weathering processes
(bedrock–saprolite–laterite). In lithogeochemical, weathered
profile, lake sediment and stream sediment surveys, the first and
second components commonly reveal relationships of observa-
tions and variables that reflect underlying lithological variation.
In areas of thick overburden such as glacial till, alluvium or
colluvium, the linear combinations of variables and the plots of
the loadings may not be so easy to interpret as they may reflect
a mixture of several surficial processes.

Maps of the principal component scores of the observations
can be useful in understanding geochemical processes. If a
component expresses underlying lithologies, then a map of that
component will clearly outline the major lithological variation
of the area. Components that outline other processes such as
mineralization or alteration can also be expressed clearly on
maps that display the component scores (e.g. Grunsky 1986a).

The measure of association, or metric, can have a significant
effect on the derivation of principal components. Covariance
relationships between the elements reflect the magnitude of the
elements and thus elements with large values tend to dominate
the variance–covariance matrix. This has the effect of increas-
ing the significance of these elements in the results of the PCA.
The correlation matrix represents the inter-element correla-
tions, which is actually the standardized equivalent of the
variance–covariance matrix. Other metrics of association can
be used and this is discussed by Jöreskog et al. (1976) and Davis
(2002). If the distributions of the elements are non-normal or
there is a presence of outliers the estimates of correlation/
covariance may be affected and it may be necessary to apply
robust procedures (Zhou 1985, 1989).

In situations where there are outliers or atypical observa-
tions, or where the marginal distributions are not normal, a
number of choices can be made:

1. If the marginal distribution is censored, find a suitable replace-
ment value so that the mean and variance is a good estimate of
the population mean and variance. This can be done by:

a) assigning a replacement value that is c. ½ to % the
censored value;

b) using statistical procedures to estimate (impute) a
replacement value based on the statistical characteristics
of the uncensored portion of the data (i.e. the EM
method) discussed previously.

2. If there are outliers present:

a) remove the outliers from the calculation for means and
covariances;

b) apply robust procedures that minimize or eliminate the
effect of these values.

Rare events, such as mineral occurrences or deposits,
are usually under-represented in regional geochemical
survey sampling schemes. A chemical signature that may be

Table 3. Robust and non-robust estimates of central values, Ben Nevis Township lithogeochemistry.

Method Ba Co Cr Cu Li Ni Pb Zn Sr V Y Zr

Univariate mean 208 23 83 56 17 78 17 89 135 132 24 132
Classical robust estimate 208 23 83 56 17 78 17 89 135 132 24 132
Univariate median 170 24 68 42 14 85 5 74 120 150 21 130
Minimum volume ellipsoid 194 22 81 38 15 78 7 73 140 139 26 138
Minimum covariance determinant 800 observations 207 23 84 47 17 79 10 78 136 133 24 132
Minimum covariance determinant 540 observations 198 22 82 39 15 79 6 73 140 139 25 136
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diagnostic of a unique geological event may show up as a
linear combination of elements with a lesser principal com-
ponent. Thus, it is important to scan all of the components to
check for such features.

The following examples illustrate the use of PCA from the
Ben Nevis metavolcanic data (see Plate 1). As it is a ‘compo-
sitional’ set of data, it sums to a constant (100%). The data
were transformed using the logcentred transformation method
described previously. The distributions for these transformed
variables are shown in Figure 12.

The results of the PCA are shown in Table 4 where the
eigenvalues, R-mode loadings, as well as the relative and actual
contributions of the variables are presented. Results are shown
for the first seven components only, which accounts for more
than 72% of the variation in the data. The accompanying
screenplot displays the successive eigenvalues for all of the
components.

The R-mode loadings are the eigenvectors scaled by multi-
plying, in order, each of the eigenvectors by the square root of
the eigenvalues. The first component accounts for 34% of the
overall variation of the data as shown by the eigenvalues. The
relative and actual contributions shown in Table 4 provide
details on the relative significance of the variables. The relative
contribution is the contribution that a variable makes over all of
the components. The actual contribution is the contribution
that a variable makes within a given component.

Biplots of PC1 v. PC2 and PC1 v. PC3 are shown in Figures
13 and 14, respectively. The scores of the observations are shown
as crosses and the scores of the elements are shown as their
name. Figure 13 (PC1 v. PC2) shows that the compositions of
the mafic (Ni, Cr, Co, Mg, Fe) rocks plot on the positive side of

PC1. Rocks reflecting felsic metavolcanic rocks (Si, Zr, Ba, K, Y,
Al) plot on the negative side of PC1. Observations with relative
enrichment in CO2, S, Li, Pb and Cu, plot along the positive side
of the C2 axis. Figure 14 is a biplot of the first and third
components where samples with relative enrichment in S and Cu
plot along the negative side of the PC3 axis.

Examination of the relative contributions for the first
component shows that elements such as Si, Al, Mg, K, Ba, Co,
Cr, Ni, V and Zr are accounted for primarily by this compo-
nent. The actual contribution shows that the variation is spread
almost equally amongst Si, Mg, K, Ba, Co, Cr, Ni, V and Zr
within the first component (see Table 4). The relative contri-
butions of the second component suggests alteration of the
volcanic rocks with high loadings for CO2, S, Li, Sr, Ti, Na, Ca,
Fe3+ and Al. The relative contributions of the third component
suggest alteration associated with more mafic rocks as indicated
by Fe2+, Mn, CO2, S, H2O+, Cu and Li.

The Q-mode scores were interpolated to a 100 m resolution
grid by kriging. Plate 16 shows an interpolated image of the first
principal component. The distinction between the mafic and
felsic volcanic rocks is evident by the colour map of the image.
Green and blue areas are associated with felsic rocks and red to
yellow areas are associated with mafic rocks as shown in the
relationships of the observations and elements in Figure 13.

Plate 17 shows an image of the second principal component,
which accounts for 11% of the variation in the data. The plot
of PC1 v. PC2 in Figure 13 shows that the second component
has Cu, Li, S, Pb and CO2 associated with positive values of
PC2. The image of Plate 17 shows that areas in red–yellow
correspond to the zones of carbonate alteration and minerali-
zation that are present around the Canagau Mines deposit and
the Croxall property.

Plate 18 is an image of the third principal component (7.8%
of the variation in the data). Areas associated with S and Cu
enrichment are evident, most notably around the Canagau
Mines Cu–Au deposit in the eastern part of the image. These
areas are also adjacent to areas of CO2, Li, and Zn enrichment,
which represent altered and mineralized country rocks that
surround the S–Cu zones of relative enrichment. Figure 14
shows that positive values correspond with areas of increased
CO2, Li, and Zn enrichment and negative values with S and Cu
enrichment.

Much more information can be obtained by examining all of
the principal components. Other components exhibit zoning of
Ca around the main zone of carbonate alteration and K has an
association with S at the mineral occurrences. The fourth
component highlights the relationship between Zn and S at
both the Canagau and Croxall properties. However, the illus-
tration of the first three components shows that PCA is an
effective method for exploring the structure of the geochemical
data and assisting in deriving models of geochemical processes
by the use of graphics and geographic representation.

PCA has many different uses in evaluating geochemical data,
including the development of empirical indices for specific
element targeting (see sections on Empirical indices and
Weighted sums).

CLUSTER ANALYSIS METHODS

Cluster analysis methods are useful as an exploratory tool for
detecting groups of multi-element data that may not be readily
observable in simple scatter plots or through the use of
methods such as PCA. The main objective of clustering
algorithms is to identify distinct natural groupings within
multi-dimensional data. Clustering methods can be broadly
divided into hierarchical and non-hierarchical methods. The

Fig. 13. Biplot of the first two principal components for the Ben
Nevis lithogeochemical log-centred data.

Fig. 14. Biplot of the first and third principal components for the
Ben Nevis lithogeochemical log-centred data.
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Table 4. Principal components analysis of Ben Nevis lithogeochemical data. Analysis
carried out on log-centred data.

Eigenvalue

PC1 PC2 PC3 PC4 PC5 PC6 PC7

� 8.93 2.86 2.03 1.56 1.28 1.15 0.99
% 34.38 11.00 7.83 6.03 4.94 4.41 3.80
^% 34.38 45.38 53.22 59.24 64.18 68.59 72.39

R-Loadings values <0 in italics

PC1 PC2 PC3 PC4 PC5 PC6 PC7

SiO2 �0.87 �0.26 0.03 �0.06 0.04 �0.06 0.11
Al2O3 �0.72 �0.48 �0.01 �0.07 0.18 �0.15 0.18
Fe2O3 0.17 �0.48 �0.16 �0.55 �0.01 �0.06 0.18
FeO 0.63 �0.15 0.46 �0.25 �0.03 0.03 0.11
MgO 0.86 �0.03 0.16 �0.09 0.19 0.14 0.02
CaO 0.40 �0.47 0.01 0.40 �0.25 �0.28 0.10
Na2O �0.36 �0.44 �0.06 0.40 0.15 0.15 0.04
K2O �0.69 0.19 �0.08 �0.03 0.34 �0.16 �0.27

TiO2 0.43 �0.60 0.02 �0.12 0.02 �0.14 �0.08

P2O5 �0.12 �0.29 0.10 �0.01 �0.14 0.79 �0.24
MnO 0.20 �0.25 0.57 �0.01 �0.47 �0.31 �0.07
CO2 �0.35 0.42 0.37 0.51 �0.24 �0.16 0.02
S �0.30 0.49 �0.41 �0.28 �0.37 0.07 0.07
H2Op 0.47 0.07 0.43 �0.38 0.27 �0.03 0.30
Ba �0.76 0.00 �0.06 �0.03 0.39 �0.16 �0.20

Co 0.88 �0.15 �0.11 0.03 0.05 �0.04 �0.05

Cr 0.86 0.03 �0.03 0.12 �0.02 0.20 �0.11

Cu 0.31 0.29 �0.55 �0.24 �0.18 �0.15 0.04
Li 0.06 0.49 0.56 0.10 0.39 0.09 0.20
Ni 0.92 0.04 �0.08 0.10 0.07 0.08 �0.05

Pb �0.47 0.33 0.04 �0.17 �0.14 0.12 0.44
Zn �0.16 0.01 0.31 �0.40 0.02 �0.16 �0.55

Sr �0.11 �0.53 �0.28 0.21 0.21 0.05 0.24
V 0.80 �0.07 �0.22 0.04 0.13 �0.13 �0.07

Y �0.67 �0.37 0.21 �0.13 �0.27 0.13 �0.02

Zr �0.80 �0.22 0.16 �0.13 �0.09 0.13 0.00

Relative Contributions values <10 in italics

PC1 PC2 PC3 PC4 PC5 PC6 PC7

SiO2 76.63 6.93 0.11 0.42 0.16 0.38 1.13

Al2O3 51.37 23.50 0.01 0.46 3.28 2.32 3.21

Fe2O3 2.82 22.97 2.57 30.83 0.02 0.41 3.21

FeO 40.09 2.39 20.99 6.04 0.10 0.08 1.23

MgO 74.13 0.08 2.57 0.85 3.52 1.92 0.05

CaO 15.68 21.67 0.01 16.36 6.45 8.04 0.94

Na2O 13.08 18.99 0.42 16.27 2.17 2.15 0.19

K2O 48.18 3.78 0.66 0.09 11.60 2.44 7.38

TiO2 18.84 35.64 0.03 1.51 0.05 1.87 0.60

P2O5 1.53 8.51 1.03 0.01 1.89 62.58 5.68

MnO 4.19 6.41 32.38 0.01 22.15 9.47 0.43

CO2 12.34 17.52 13.93 25.77 5.67 2.47 0.05

S 8.95 24.51 16.44 7.59 13.50 0.43 0.54

H2Op 21.91 0.53 18.59 14.41 7.24 0.07 8.99

Ba 57.25 0.00 0.37 0.09 15.04 2.67 3.82

Co 78.41 2.27 1.10 0.06 0.24 0.14 0.24

Cr 74.12 0.08 0.12 1.35 0.04 4.06 1.18

Cu 9.44 8.52 30.45 6.00 3.17 2.19 0.15

Li 0.38 23.88 31.60 0.97 15.43 0.79 4.04

Ni 84.74 0.16 0.59 1.07 0.55 0.66 0.25

Pb 22.52 10.69 0.16 2.75 1.99 1.50 18.97
Zn 2.69 0.00 9.60 15.86 0.05 2.66 30.15
Sr 1.24 27.99 8.04 4.41 4.47 0.27 5.80

V 64.40 0.46 4.92 0.18 1.60 1.61 0.54

Y 45.31 13.64 4.50 1.62 7.16 1.74 0.04

Zr 63.61 4.98 2.45 1.69 0.85 1.80 0.00

Actual Contributions values <10 in italics

PC1 PC2 PC3 PC4 PC5 PC6 PC7

SiO2 8.57 2.42 0.05 0.27 0.12 0.33 1.15
Al2O3 5.75 8.21 0.00 0.29 2.56 2.02 3.25
Fe2O3 0.32 8.03 1.26 19.68 0.02 0.36 3.24
FeO 4.48 0.84 10.31 3.86 0.08 0.07 1.25
MgO 8.29 0.03 1.26 0.54 2.74 1.67 0.05
CaO 1.75 7.57 0.01 10.44 5.02 7.01 0.95
Na2O 1.46 6.64 0.21 10.39 1.69 1.87 0.19
K2O 5.39 1.32 0.32 0.05 9.04 2.13 7.47
TiO2 2.11 12.46 0.01 0.96 0.04 1.63 0.61
P2O5 0.17 2.97 0.51 0.01 1.47 54.55 5.75
MnO 0.47 2.24 15.90 0.01 17.25 8.25 0.44
CO2 1.38 6.12 6.84 16.45 4.42 2.15 0.05
S 1.00 8.57 8.07 4.84 10.52 0.38 0.55
H2Op 2.45 0.19 9.13 9.20 5.64 0.06 9.10
Ba 6.41 0.00 0.18 0.06 11.71 2.33 3.86
Co 8.77 0.79 0.54 0.04 0.19 0.12 0.24
Cr 8.29 0.03 0.06 0.86 0.03 3.54 1.20
Cu 1.06 2.98 14.95 3.83 2.47 1.91 0.15
Li 0.04 8.35 15.52 0.62 12.02 0.69 4.08
Ni 9.48 0.05 0.29 0.68 0.43 0.58 0.26
Pb 2.52 3.74 0.08 1.75 1.55 1.31 19.20
Zn 0.30 0.00 4.72 10.13 0.04 2.32 30.52
Sr 0.14 9.78 3.95 2.81 3.48 0.24 5.87
V 7.20 0.16 2.42 0.12 1.24 1.40 0.55
Y 5.07 4.77 2.21 1.03 5.58 1.52 0.04
Zr 7.12 1.74 1.20 1.08 0.66 1.57 0.00
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following example shows the use of k-means clustering as a
method for partitioning multivariate geochemical data. Davis
(2002) is a good introductory review of clustering methods;
Sinding-Larsen (1975) used clustering methods for the initial
subdivision of a heterogeneous geochemical area; Jaquet et al.
(1975) gave a detailed analysis of lake sediment geochemistry
using clustering procedures; Howarth & Sinding-Larsen (1983)
provided a general discussion of clustering methods applied to
geochemical exploration; and Grunsky (1986a) has shown how
dynamic cluster analysis (Diday 1973) was used to detect
different types of mineralization based on distinct geochemical
differences between the mineral occurrences. The use of fuzzy
clustering methods in geochemistry was introduced (Bochang
& Xuejing 1985).

Hierarchical clustering is based on the linking of variables
(R-mode) or observations (Q-mode) through measures of
similarity. The relationships between the variables or observa-
tions can be graphically expressed using a dendrogram. Indi-
vidual clusters can be discriminated by choosing an appropriate
value of linkage, which separates internally similar groups of
objects into dissimilar groups. Hierarchical clustering assumes
that all variables are linked at some level, which may not be a
reasonable assumption in some instances.

The correlation coefficient (R-mode) is the most common
measure of similarity for clustering. For Q-mode analysis
(similarities between the observations), the Euclidean distance
can be used as a measure of proximity by which observations
can be clustered. However, when the number of observations is
large the computation becomes intractable.

Arbitrary origin methods are non-hierarchical and may offer
some advantage over hierarchical methods since the clusters are
formed based on multivariate similarities (proximities) rather
than individual correlation coefficients. These methods start
with an initial number of cluster centres that can be specified or
randomly chosen. Each observation is allocated to one of the
groups based on proximity to the group centres. The process is
iterative and group centres change until a stable solution results.
Methods such as K-means (McQueen 1967; Everitt 1974;
Hartigan 1975) or dynamic cluster analysis (Diday 1973) are
examples of these techniques. Kaufman & Rousseeuw (1990)
also describe a number of clustering methods.

K-means clustering

K-means cluster analysis is a method that starts with an initial
‘guess’ of the cluster centres. The distance of each observation
from each cluster centre is measured and then provisionally
assigned to the closest cluster centre. A new cluster centre is
calculated based on the designated observations for each
previous centre. The process is iterative until it converges on
stable centres. The method requires an initial choice of the
number of cluster centres. If the number is too great, there will
be many small clusters that have few points. If the number of
centres is too few, then the structure of the data may not be
realized. A disadvantage of the procedure is that a less than
optimal clustering may result if the initial cluster centres do not
fall in distinct clusters (Davis 2002, p. 500). Venables & Ripley
(2002) provide a method by which a suitable number of
starting clusters may be determined by using a combination of
hierarchical clustering and PCA.

It is common to apply non-hierarchical clustering methods
to principal component scores. If one or more principal
components can be inferred to represent specific geological/
geochemical processes, then the application of cluster analysis
can provide further insight in how those processes may be
related. Additionally, the component plots provide a reduced

set of dimensions for viewing the multi-element associations of
the data and thus provide additional visual assistance in
examining grouped associations.

K-means clustering was applied to the logcentred trans-
formed Ben Nevis township metavolcanic data. The number of
clusters was set at 10, based on the perceived variation in the
rock types (felsic metavolcanics, mafic volcanics, mafic intru-
sions, granite) as well as the two known mineralization zones
that have surrounding alteration. The results of the clustering
are shown in Plate 19. Each observation is labelled with the
group number to which it was assigned. Several clusters
(Groups 1, 2, 5, 6, 8 and 10) are associated with the distinctions
between mafic and felsic metavolcanic rocks. Groups 3 and 9
are directly associated with mineralization. Observations that
belong to these groups occur where there is known minerali-
zation. There are also two clusters associated with carbonate
alteration (Groups 4 and 7), which occur in the eastern part of
the map area. It is apparent that the observations assigned to
each group not only share similar geochemical characteristics
but also have close spatial associations, as shown in Plate 19.

Multivariate ranking using the Mahalanobis distance: a
multivariate extension of Q–Q plots

The use of the covariance matrix as a tool for distinguishing
background from anomalous populations is well established
in geochemical research (Garrett 1989c, 1990; Chork 1990).
Filzmoser et al. (2005) have written a library of routines
(‘mvoutlier’) that is available as part of the R environment
(www.r-project.org/cran). The covariance matrix contains
information on the variability of the elements as well as their
inter-relationships. The multi-element data constitute a
hyper-ellipsoid in multi-dimensional space. The mean value
of each element defines the centroid of this hyper-ellipsoid
and the distance from each observation point to the centroid
is the Mahalanobis distance. In a multivariate normal popu-
lation, most observations lie within an expected radius of the
centroid, which defines the background group of observa-
tions. However, if outliers are included in the data, the shape
of the hyper-ellipsoid will change. This resulting distortion
affects the location of the centroid and thus affects the
Mahalanobis distance for all of the observations. In such
cases, the application of robust procedures is recommended.

Outliers can be distinguished from the main background
population by determining the Mahalanobis distance of each
observation from the group centroid. The distances can be
compared to the ‘expected’ distances of a multivariate normal
population (cumulative probability with the number of
degrees of freedom defined as the number of variables) by
the use of �2 values as defined by Garrett (1989c). If the
population is multivariate normal, then the plotted pairs form
a straight line. If the population contains outliers, then the
observed Mahalanobis distances (D2) are greater than the
expected �2 quantiles and the plot becomes non-linear.
However, the �2 distribution is long-tailed near the extreme
ends of the distribution and this property may mask outliers
with large Mahalanobis distances. An alternative to the use of
the �2 values is the cubed root of a normal distribution, which
does not have the long tail property of the �2 distribution and
is thus less likely to mask outliers.

The lake sediment survey data from the Batchawana area of
Ontario were evaluated for the potential to host Cu, Zn and
precious metal deposits. A suite of elements (Cu, Zn, As, Sb and
W) was chosen to test the possibility that these elements could
identify potential mineral deposits. For these data, censored
values were replaced with estimates from the EM method for
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determining replacement values for censored distributions.
Because these data are compositional, they were normalized to a
constant sum and then transformed using logratios.

Figure 15 shows a series of ranked Mahalanobis distance
plots versus the cubed root of a normal distribution for
different degrees of trimming. The first figure shows a plot of
all of the observations. The plot displays a curved line with
several outliers at the positive end of the curve, suggesting that
there are observations which are not part of a multivariate
normal population. Each successive plot is the data with the
outliers from the previous plot removed. For each plot, a new
centroid and corresponding Mahalanobis distances were
re-computed. Trimming of the data in the 7% to 10% range
yields a reasonably straight curve which suggests that the
trimmed observations could be considered atypical and warrant
further investigation.

The 10% of data that were trimmed data were then
re-inserted into the data matrix from which the D2 values were
computed based on the covariance from the other 905 of the
data. The ranked multivariate distance values are plotted on the
map and graph in Plate 20. Observations with high D2 values
are locales of interest and warrant further investigation. Note
that observations, which are atypical, are not necessarily geo-
chemically ‘anomalous’. No multivariate equivalent of a
threshold was established, although the 10% trim could be used
as an initial starting point in establishing the threshold.

The use of empirical indices

The existence of pathfinder elements has prompted the use of
several numerical procedures through which selected elements
can be used in an exploration programme by creating minerali-
zation potential indices based on the weighted sum scores of
the pathfinder elements. Empirical indices can be determined
from selected elements that are associated with specified

geochemical processes. The techniques used in this approach
are described by Garrett et al. (1980), Chaffee (1983), Smith &
Perdrix (1983), Smith et al. (1987) and Garrett (1991). Garrett
& Grunsky (2001) have reviewed objective comparisons of
various weighting schemes used to highlight observations
defined by pathfinder elements.

In many geochemical studies, several pathfinder elements
may be identified for defining target areas (mineralization,
anthropogenic sources). These pathfinder elements may be
chosen based on geological/geochemical knowledge of the
processes of interest. Combining these pathfinder elements
together through a multivariate ranking scheme is a potentially
useful tool for defining multi-element anomalies. Defining the
pathfinder elements can be based on geological knowledge or
through the use of data analysis/discovery procedures dis-
cussed previously, such as PCA and cluster analysis. These
methods can reveal relationships in the data that may be directly
related to underlying lithologies or processes of interest (min-
eralization, anthropogenic effects) from which pathfinder ele-
ments can be determined.

Chaffee (1983) developed a method of scoring observations for
anomaly potential. Each element is evaluated such that the range
of values are subdivided into four groups, by thresholds, with
corresponding scores that represent background (0), weakly
anomalous (1), moderately anomalous (2), and strongly anomalous
(3). These ranges are derived from orientation studies over areas
where the range of values and underlying geochemical distributions
are reasonably well understood. Each is then assessed with respect
to each element. Observations with the highest scores are consid-
ered anomalous and are targeted for further follow-up.

Smith & Perdrix (1983), Smith et al. (1987) and Smith et al.
(1989) made use of three indices derived from geochemical
trends that were noted in the laterite geochemistry of the Yilgarn
Block of Western Australia. A group of pathfinder elements, As,
Sb, Bi, Mo, Ag, Sn, and W, form the basis of these empirical

Fig. 15. Mahalanobis distance (D2) plots of a multi-element suite (Cu, Zn, As, Sb, W) of lake sediment data. Successive trimming of the outliers
defines a homogeneous background population. The deleted outliers are then follow-up for their potential as sites of mineralization.
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indices known as CHI-6*X, NUMCHI, and PEG-4. These
indices show elevated values of these pathfinder elements in
lateritic materials associated with greenstone belts, shear zones,
base metal and precious metal deposits (CHI-6*X and PEG-4).
These indices are based on simple equations as follows.

The coefficients provide weighting to the elements such
that observations with elevated chalcophile values have high
CHI-6*X or PEG-4 indices. These coefficients were derived
for lateritic materials only. The coefficients need to be
altered for other materials. The CHI-6*X index is suited
more to isolating observations with elements associated with
precious metal deposits, whereas the PEG-4 index is suited
for isolating observations with elements associated with
pegmatophile environments, such as Sn deposits within
granitoid terrains.

The NUMCHI index is a score of the number of elements
that exceed the threshold for each element. Thus for a given
specimen, if nine elements exceed their respective thresholds,
then the NUMCHI index will have a value of 9. As discussed
previously, threshold values are chosen from visual inspection
of summary tables, order statistics, Q–Q plots etc.

Weighted sum index

Garrett et al. (1980, p.144) suggested the use of a linear
combination of a group of indicator elements that give a
weighted sum. In a multi-element survey, those elements which
are considered pathfinders are given more weight than elements
that may be more diagnostic of background. The choice of
weights may be based on the knowledge of the investigator.
Alternatively, principal component loadings may be used as a
starting point. Examples of the use of this index are given by
Garrett et al. (1980) and Garrett & Grunsky (2001).

INTEGRATION OF MULTI-ELEMENT
GEOCHEMISTRY AND DIGITAL TOPOGRAPHY:
AN EXAMPLE OF PROCESS IDENTIFICATION,

INDONESIA

Modern methods of data management including the use of
desktop database management systems (DBMS) combined
with GIS that can produce images of multiple datasets simul-
taneously provide significant assistance in the management and
presentation of geochemical data. In many areas of the world,
digital base maps can be acquired from local governments that
typically include lakes, rivers, streams, road networks and other
topographic information that is useful in the orientation and
interpretation of geochemical data. In addition, digital topogra-
phythat provides a topographic relief backdrop for the interpreta-
tion of geochemical data may also be available. Digital geological
maps are now routinely provided by many geological surveys,
together with mineral occurrence inventory databases that have
been accumulated from both geological survey and private
company data.

Digital topography offers a unique view of data in that it
provides a ‘real world view’ of the data over the terrain. When
digital air photos or satellite imagery are integrated with digital
topography and viewed using image processing systems with
three dimensional rendering ability, the viewer gets a sense of
looking at the terrain from an aircraft. Interpolated geochemical
images can generally be interpreted more effectively when
merged with digital topography and viewed in a similar manner.
Grunsky & Smee (1999) demonstrated the usefulness of
integrating digital elevation data with multi-element geochem-
istry from a soil survey on the island of Sumatra in Indonesia.
Cheng et al. (2000) also demonstrated the use of fractal

methods for isolating the patterns associated with Cu enrich-
ment in the area.

Difficulties were encountered when the interpretation of
selected elements was attempted and the observed patterns
appeared to be discontinuous and erratic. However, the applica-
tion of multivariate statistical methods identified two distinct
geochemical associations: recent volcanic ash, and a saprolitic soil
profile containing a mineralized zone of Cu associated with mafic
volcanic rocks. Plate 3 shows the soil sampling grid from which
1665 samples were collected and analysed for Au, Cu, Pb, Zn, As,
Sb, Ba, Ca, Cd, Co, Cr, Fe, Ga, K, La, Li, Mg, Mn, Nb, Ni, Sc, Sr,
Ti, V, Y, Zr, and Hg, using aqua regia digestion and ICP-ES.

The results of the application of a PCA applied to the
logcentred data in which two distinct sample populations
representing saprolite and ash and a trend of Cu enrichment
associated with Cu mineralization are shown in Figure 16. The
bi-modal population, seen along the C1 axis of the biplot
represents material that is interpreted to be volcanic ash that
overlies the saprolitic soils.

Plate 21 shows a draped image of the interpolated scores of
the first principal component draped over a 25 m DEM,
derived from the scores of population on the positive side of
the C1 axis (Fig. 16). The elevation ranges from 1180–1350 m.
Note that the cyan-green-yellow-red areas represent the inter-
polated positive scores of the first principal component. These
areas have been interpreted to be volcanic ash occurring along
hill tops and the eastern slopes of the hills. This interpretation
is supported by observations of the sampled media and reports
by geologists in Indonesia where this phenomenon is com-
monly observed. The second component draped over the
DEM (Plate 22) represents the Cu-enrichment trend and is
associated with mafic volcanic rocks trending northwesterly
along the western slopes and coincident with the regional
stratigraphy.

This example highlights the effective use of multivariate
statistical methods for distinguishing between different sample
media as well as the isolation of geochemical trends that define
zones of possible mineralization. The use of these types of
multivariate methods isolates relationships of the elements that
are difficult or impossible to see by examining individual
elements. The application of multivariate techniques integrated
with digital elevation models provides a more effective way of
visualizing and interpreting elemental data.

ANALYSING LARGE GEOCHEMICAL DATASETS:
AN EXAMPLE FROM THE CAMPO MORADO

DISTRICT, MEXICO

The Campo Morado mining camp in the Guerrero state of Mexico
hosts seven precious metal-bearing volcanogenic massive sulphide
deposits in the complexly folded and faulted Guerrero terrain
(Oliver et al. 1996; Rebagliati 1999). Approximately 29 221 samples
were collected over a soil grid comprising 25 m sample intervals
along lines and spaced 100 m apart. The field samples were
analysed for Al, Fe, Ca, K, Mg, Na, Ti, Au, Ag, As, Ba, Cd, Co, Cr,
Cu, Hg, Mn, Mo, Ni, P, Pb, Sc, Sr, V, W and Zn using aqua regia
digestion and ICP-ES. A DEM was created at 25 m resolution.
PCA was carried out on the data and revealed several significant
patterns related to lithological variation and mineralization.
Because of the high topographic relief in the area, the problem of
transported material from weathering has the potential to result in
false anomalies that are often due to hydromorphic dispersion and
down-slope creep. When the results of the PCA are draped over
the topography, there is an increased ability to distinguish
anomalies associated with hydromorphic dispersion from those
associated with a bedrock source.
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Plate 16. Image of the first principal component derived from the log-centred lithogeochemical data, Ben Nevis Township, Ontario. This image
outlines the lithological variation.

Plate 17. Image of the second principal component derived from the log-centred lithogeochemical data, Ben Nevis Township, Ontario. This
image outlines the zones of carbonatization.
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The biplot of Figure 17 shows a dominant trend associated with
mineralization. This is due to the high density of sampling over
mineralized terrain that is closely associated with sedimentary

horizons within the volcanic assemblage of the area. The ‘horse-
shoe’ effect in Figure 17 is due to the correlation between the two
trends; highly mineralized samples are depleted in Na and K and

Plate 18. Image of the third principal component derived from the log-centred lithogeochemical data, Ben Nevis Township, Ontario. This image
outlines the sulphide and mineralized occurrences.

Plate 19. K-mean clustering of the log-centred lithogeochemical data, Ben Nevis Township, Ontario. Specific groups are associated with
distinctive lithologies and zones of alteration and mineralization.
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subsequently slightly more enriched (relatively) in elements associ-
ated with intermediate to mafic volcanic rocks.

A planimetric image of the second principal component
over a shaded relief image of the DEM is given in Plate 23.
Felsic volcanic rocks (red and yellow) are distinguished from
mafic volcanic rocks (blue). Felsic rocks show relative enrich-
ment in K and Na, while the mafic rocks show relative
enrichment in Fe, Co, Ti, Mg, Cr, Al, Sc, and V. The areas
highlighted in green represent lithologies of intermediate com-

positions and are mostly mudstones, argillites and sandstones.
These are the host rocks for several of the mineral deposits in
the Campo Morado area. The same image is shown in Plate 24
where it is draped over the DEM of the area. The first principal
component highlights areas of relative enrichment of Ag, Zn,
Au, As, Pb, Hg, Sb and Cu. These areas, shown in red and
yellow, are potential sites of mineralization (Plate 23). This
image is a three-dimensional rendering over the DEM. Exami-
nation of these areas in conjunction with the DEM assists in
setting priorities for follow-up. Anomalies that lie along river-
beds or show significant dispersion must be treated with

Plate 21. Interpolated scores of the first principal component draped
over a digital elevation model for the area. Also shown is a histogram
of the scores for the first principal component. The positive (right)
side of the histogram is coloured and the corresponding colours are
shown draped over the DEM. These areas are interpreted to be
recent volcanic ash that have accumulated on hill tops and the
windward-lee side of slopes.

Plate 22. Interpolated scores of the second principal component
draped over the digital elevation model. The image shows the Cu
enrichment trend is mostly exposed along the valley walls in areas
where the weathering is likely to be most active.

Plate 23. Plot of the interpolated PC1 scores over the digital terrain
model in the Campo Morado area, Mexico. Areas highlighted in red
are elevated in Au, Cu, Ag, Pb and Zn values. The image is termed
as an ‘index of mineralization’.
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caution due to the effects of hydromorphic and downslope
creep dispersion effects.

CLASSIFYING GEOCHEMICAL DATA: AN
EXAMPLE USING KIMBERLITE GEOCHEMISTRY

A suite of kimberlites has been evaluated, from an area in
central Saskatchewan, Canada. A suite of 263 lithogeochemical
samples selected from drill core was studied by Grunsky &
Kjarsgaard (2008). This study followed an initial evaluation of
the application of geochemical to characterize kimberlitic pro-
cesses. (Kjarsgaard et al. 1997). On the basis of macroscopic
core-logging observations, the data were partitioned into four

distinct suites representing phases of the kimberlitic eruptions
and contamination with surrounding country rock. The empha-
sis on this evaluation will be on the discrimination between the
various eruptive phases and diamond-bearing versus non-
diamond-bearing phases. In this example, the geographic coor-
dinates have not been made available. As a result, a geospatial
analysis has not been carried out.

The following major element oxides and trace elements were
used in the evaluation: SiO2, TiO2, Al2O3, Fe2O3, MgO, CaO,
Na2O, K2O, P2O5, Rb, Nb, Zr, Th, V, Cr, Co, Ni, La, Er, Yb,
Y and Ga. Initially, the data were plotted as a large scatterplot
matrix to examine the distributions and associations amongst all
of the major element oxides and trace elements. Figure 18a and
b shows a scatterplot matrix for Yb, P, La, and Zr. These four
elements show a range of compositional variation that reflects
kimberlite fractionation. Figure 18a shows distinct differences
between the kimberlite phases with clearly defined linear
relationships that reflect the stoichiometry of the individual
mineral assemblages. Figure 18b shows the same elements after
applying a logcentre transform. The overall distinctiveness of
the individual kimberlite phases is readily apparent; however,
the logcentre transform has distorted the linear stoichiometric
relationships. Figure 18b provides the basis for calculating
statistical measures of association through the application of a
logcentred transform. Both figures are important and useful in
understanding the nature of the multivariate geochemical rela-
tionships in kimberlitic rocks. Note that the phases of kimber-
lite show variable degrees of distinction. In both Figure 18a and
18b, the early- (eJF) and mid-Joli Fou (mJF) phases are less
distinct than those of the late-Joli Fou (lJF), Cantuar and Pense
phases. Note, also, that the phases do not appear to be
homogeneous in their distribution, which can cause some
difficulty in describing their differences within a statistical
framework.

RQ-mode PCA was applied to the centred logratio data and
the results are shown in Table 5. Nearly 90% of the data
variation is accounted for by the first seven components. These
components were subsequently used to find groups in the data

Plate 24. The index of mineralization is draped over the digital
terrain model and rendered in 2.5D. This enhances the interpretation
of mineralization with respect to the terrain variation.

Plate 25. Biplot of the first two principal components derived from the
kimberlite lithogeochemical data. Each kimberlite phase is shown by a
different symbol and colour. The scores of the samples are shown as
symbols. The corresponding scores of the elements are plotted as the
element symbol.
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and apply linear discriminant analysis. Grunsky & Kjarsgaard
(2008) provide further details on the evaluation and interpreta-
tion of the lithogeochemical data including the use of k-means
cluster analysis as a means to confirm the distinctive groupings
of the kimberlite phases.

Plate 25 shows a biplot of the first two principal compo-
nents with the observations coloured to represent the four
phases of the kimberlite data based on core-logging criteria.
These two components represent more than 65% of the total
variation and formed the basis of a subsequent cluster analysis.
The overlap of the groups is shown clearly in this figure. For
the most part, the groups are distinct, but the early-Joli Fou,
Cantuar and Pense phases are inhomogeneous. As a result,

there is likely to be some confusion when classifying unknown
samples. However, the scenario, as presented here, is typical of
geochemical classification problems.

Following the initial evaluation of the data using PCA, the
data were subjected to a k-means cluster analysis using software
from Venables & Ripley (2002). It was reasoned that, from the
patterns exhibited in the first two principal components and
from observations based on core-logging studies, the five
phases of kimberlites could be discriminated using the group of
22 elements. The k-means cluster analysis for five groups was
carried out on the first seven principal components and the
results of the analysis are shown graphically in Plate 26. The
choice of five groups was based on petrographical evidence
combined with the observed clusters through several trial and
error procedures of using k-means clustering. A choice of five
groups split the data into groups that were coincident with the
five major kimberlite phases. Plate 26 shows that the early-Joli
Fou and Pense phases are clustered into Groups 3 and 5. On
the other hand, the mid- and late-Joli Fou groups are suffi-
ciently distinguished as separate groups (1 and 4). The Cantuar
phase (Group 2) shows a small amount of overlap with the
Pense phase.

Given the statistically distinct groups based on the k-means
clustering, linear discriminant analysis was applied to the data
using the phases of the kimberlite as classified based on
core-logging observations. Linear discriminant analysis (lda)
was applied to the seven principal components derived from
the geochemical data using methodology described by Venables
& Ripley (2002). For discriminant analysis, a centred logratio
covariance results in a singular matrix because the inverse of the
covariance is required. For this reason a logratio transformation
was applied using Ga as the divisor. The results of the analysis
are shown graphically in Plate 27. The plot reveals reasonably
good discrimination between the suites of kimberlites.
Although there is overlap between the groups, the overall
discrimination is quite good.

Diamond content is directly related to specific suites in the
kimberlites. Elevated diamond content is associated with those
samples affiliated with more mafic material, most notably in the
rocks of suite B. The posterior probabilities generated by the
linear discriminant analysis show that the designated suites are
clearly separable on the basis of lithogeochemistry.

Table 6 provides measures of the types of errors that
occurred in the classification. The overall accuracy of 91.9%
is the percentage ratio of the total number of correctly
classified observations divided by the total number of obser-
vations for all eruptive phases. The terms used in the
measures of accuracy are described in Appendix 3. The error
of commission for each eruptive phase is the percentage of
observations belonging to another eruptive phase, yet
assigned the eruptive phase of interest. These errors are
5.3%, 6.7%, 16.0%, 17.9% and 9.5%, respectively, for the
eJF, mJF, lJF, Pense and Cantuar eruptive phases. This is also
reflected by examining the rows of the confusion matrix
(Table 6) that show to which eruptive phases some of the
observations have been assigned. The error of omission for
each eruptive phase is the percentage of observations that
belong to a given eruptive phase but have been assigned to
another eruptive phase. These errors are 3.9%, 17.8%, 4.0%,
21.4% and 4.8%, respectively, for the eJF, mJF, lJF, Pense
and Cantuar eruptive phases. The columns of the confusion
matrix (Table 6) indicate to which eruptive phase the
observations have been assigned.

The user accuracy of Table 6 is a measure of percentage ratio,
for each eruptive phase, of correctly classified observations
divided by the total number of observations that has been

Plate 26. K-means clusters for five groups from the kimberlite data based
on 7 principal components. The observations are labeled according to suite
membership and coloured according to K-means group membership.

Plate 27. Linear discriminant plot of the first discriminant functions.
Note the overlap between the kimberlite phases. See text for a more
detailed explanation.
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Plate 28. Planimetric map of lithologies and sample location points in the central Noranda area, Quebec.

Plate 29. A map of posterior probability for a given sample being classed as a calc-alkaline rhyolite as described in the text.
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Plate 30. Normative corundum values plotted on the geological map of the central Noranda area. High normative corundum indicates a relative
enrichment of Al over the alkali elements (Ca, Na, K) and is a likely indicator of alteration through alkali mobility.

Plate 31. Three dimensional visualization of normative corundum using data spheres of normative corundum and volcanic isosurfaces derived
from probability estimates of volcanic class designation.
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assigned to each eruptive phase. The producer accuracy of
Table 6 is a measure, for each eruptive phase, of the number
of observations correctly classified divided by the number of
observations that actually belong to the eruptive phase. Both
measures of accuracy show high values for the eJF, mJF, and
lJF phases and a lower accuracy for the Pense and Cantuar
eruptive phases. This lower accuracy is a reflection of the
higher degree of dispersion of the Pense and Cantuar
observations and subsequent overlap with other eruptive
phases.

The use of principal component analysis as a mechanism for
classifying the data is based on the ability to recognize distinc-
tive geochemical processes, as outlined previously. The appli-
cation of the discriminant analysis applied to the first seven
components confirms that these linear combinations of data
describe variation associated with specific processes and that
the classification accuracies are acceptable.

APPLICATION OF LITHOGEOCHEMISTRY IN A
3D ENVIRONMENT, NORANDA CAMP, QUEBEC

Recent studies of a large lithogeochemical database from
Ontario and Quebec, Canada, have highlighted the usefulness
of using three-dimensional imaging from a set of diverse
geological data for the purpose of geological modelling and
mineral exploration projects. Data from various sources in
Ontario have been assembled into an Open File Report (Hillary
et al. 2008) that contains databases that can be used for
subsequent evaluation by mineral exploration companies and
detailed mapping in geological surveys.

A group of 17 164 lithogeochemical samples were processed
using the R statistical package. These data were derived from

Fig. 16. Biplot of the first two principal components of the soil
survey geochemical data from the island of Sumatra. Note the two
distinct populations that represent the saprolite and volcanic ash.

Fig. 17. Biplot of the first two principal components from the
geochemistry of the Campo Morado soil survey data. Note the
significant correlation of PC1 with PC2, which is the result of relative
depletion of Na and K from the volcanic rocks and the mineralized
areas.

Fig. 18. Scatterplot matrix of elements associated with kimberlite
magma fractionation. Plate 24a shows the distinctions between the
kimberlite phases in different symbols and colours for the raw
untransformed data. Plate 24b shows the same data after the
application of a logcentre transform. See the text for a more detailed
explanation.
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government surveys and mineral industry drill-hole data in both
surface geographic coordinates and three-dimensional geographic
coordinates. The data were compiled and organized as follows:

1. Use samples with the following minimum information:
SiO2, Al2O3, FeO, MgO, CaO, Na2O, K2O, P2O5, MnO,
TiO2 and LOI (loss on ignition).

2. Cation equivalent values were computed for each sample.
3. Normative minerals were computed using a standard Barth-

Niggli normative classification scheme.
4. The samples were classed according to the two volcanic

classification schemes of Irvine & Baragar (1971) and Jensen
(1975).

5. The samples were logcentre transformed and then classified
using a linear discriminant analysis based on reference
groups defined by Grunsky et al. (1992).

Plate 28 shows a planimetric map of the samples projected to
the surface. Drill-hole sample data are projected onto the
surface resulting in a denser pattern of points that is not actually
present on the surface.

Grunsky et al. (1992) developed a set of reference groups
representing typical volcanic compositions using the classifica-
tion of scheme of Jensen (1975). Each composition from the
central Noranda area was classified using a linear discriminan-
tanalysis as documented in Venebles & Ripley (2002). Posterior
probabilities of rock type membership were derived for each
sample from which maps can be created that depict the
likelihood of rock type based solely on the lithogeochemistry. A
logcentred transform was applied to the data and reference
groups prior to the classification. For the classification, LOI
was used as the divisor for the logratio transform. Plate 29
shows a map of the likelihood of a sample being classified as a
rhyolite. The application of this type of scoring is that it
provides a classification that is independent of the geological

map and can help define lithologies in areas where the surface
or subsurface geology is not known.

Many methods exist for assessing alteration of volcanic rocks.
An initial measure of alkali alteration and migration can be
demonstrated through the calculation of normative mineral
procedures. The use of normative mineral procedures is well
established (Yegorov et al. 1988; de Caritat et al. 1994; Cohen &
Ward 1991; Merodio et al. 1992; Rosen et al. 2000; Piche & Jebrak
2004). When corundum occurs in the calculated norm (Plate 30),
it generally signifies the mobility of Na, K and Ca, which can be
associated with alteration signatures associated with base- and
precious-metal mineralization.

Plate 31 shows normative corundum (diagnostic of alkali
alteration) plotted in GoCad� by Eric de Kemp (Geological
Survey of Canada, pers. comm.) indicating an association with
known mineral deposits in the central Noranda camp area.
The map is a down-plunge multi-parameter 3D model of
northern Central Noranda mining camp, Quebec, Canada,
combining ore bodies, regional geometry, structural observa-
tions, a lithological simulation and a geochemical classifica-
tion. Volcanogenic Massive Sulphide (VMS) deposits are
depicted as orange irregular surfaces with the Horne mine in
the foreground (lower left inset). The deformed stratigra-
phic grid (in green) represents the mean of realizations for
felsic volcanic lithologies with bright orange (90%) and blue
(< 10%) probabilities. An exhalite stratigraphic unit
(C-Horizon) is shown as a white surface (inset upper left)
contoured at 1 km depth intervals with outcrop dip measure-
ments depicted as blue-red tablets with a Wulff net plot of 42
structural observations. Variably sized spheres (green–red)
represent normative corundum values > 5%. Geochemically,
highly altered zones are represented by the largest red
spheres. An east–west horizontal white cylindrical scale bar is
shown at the ground elevation.

Table 5. RQ-Mode principal components analysis of the 5 phase kimberlite data.

Eigenvalues PC1 PC2 PC3 PC4 PC5 PC6 PC7

� 7.54 7 2.34 0.85 0.84 0.6 0.55
�% 34.41 31.94 10.66 3.89 3.82 2.74 2.5
��% 34.41 66.36 77.01 80.9 84.73 87.47 89.97

R-Scores Values <0 in italics

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Si �0.95 �0.11 �0.14 �0.09 �0.06 0.04 �0.08

Ti �0.1 �0.8 �0.02 0.16 �0.31 0 0.31
Al �0.28 0.61 �0.61 0.13 0.07 �0.03 �0.08

Fe �0.89 �0.34 0 �0.14 0 �0.01 �0.1

Mg �0.88 �0.33 �0.19 �0.09 0.06 �0.05 �0.11

Ca 0.23 �0.26 0.54 0.35 0.57 0.32 �0.01

Na 0.27 0.73 0.09 0.08 �0.37 0.38 0.01
K 0.25 0.88 0.18 �0.08 0.06 �0.28 0.07
P 0.41 �0.67 0.25 �0.2 0.2 �0.15 �0.24

Rb 0.29 0.84 0.19 �0.07 0.03 �0.32 0.12
Nb 0.4 �0.87 0.09 0.08 �0.15 �0.04 �0.02

Zr 0.62 �0.61 �0.24 0.07 �0.12 �0.05 0.06
Th 0.57 �0.69 �0.01 0.03 �0.2 �0.02 �0.19

V �0.28 �0.7 �0.09 0.16 0.24 �0.22 0.4
Cr �0.76 �0.4 �0.15 0.12 �0.04 0.04 0.1
Co �0.89 �0.34 0.07 �0.13 0.02 0.02 �0.02

Ni �0.93 �0.22 0.07 �0.16 0.03 0.05 �0.05

La 0.55 �0.78 0.11 �0.03 �0.08 �0.07 �0.1

Er 0.56 �0.17 �0.57 �0.18 0.2 0.06 �0.05

Yb 0.42 �0.01 �0.64 �0.37 0.19 0.25 0.26
Y 0.72 �0.37 �0.4 �0.12 0.06 �0.01 �0.07

Ga �0.14 0.2 �0.69 0.56 0.06 �0.13 �0.2
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A STRATEGY FOR GEOCHEMICAL DATA
ANALYSIS

Every set of geochemical data and area requires a unique
approach in the application of methods to analyse and assess the
data. The evaluation of geochemical data is an iterative and
adaptive process. The methods of data analysis and visualization
in both the geochemical and geographic spaces change through-
out the procedure of discovery of geological/geochemical
processes. Below is a list of suggested ways to evaluate data that
should be considered in any investigation. Of course, not all
steps are necessary or appropriate, but should serve as a
guideline for a thorough investigation of geochemical data.

Preliminary data analysis

+ Know your data! There is no substitute for spending time by
evaluating the data using a wide variety of procedures so that
associations and structures in the data can be identified.

+ Examine each element with histograms, box plots, Q–Q
plots, scatter plot matrix and summary tables.

+ Use bubble or symbol maps to show the range and spatial
variability of the elements of interest.

+ Interpolated images can be used where appropriate.
+ Trim the distribution of each element of gross outliers.
+ Investigate outliers for each element (analytical error or

atypical value?).
+ Adjust data for censored values if required.
+ Consider the application of logratio transformations (logcen-

tred, isometric logratio) so that compositional data can be
evaluated without the effect of ‘closure’. This is necessary if
measures of association are required (correlation, covariance).

+ Apply measures of association using standard, as well as,
robust procedures. Examine the differences and scrutinize
the outliers.

+ Test the data to see if the identification of patterns and
outliers is improved by the use of transformations. Apply
Box-Cox power transformations using observations below
the 95th–98th percentile to determine the optimal transfor-

mation. The choice of transform parameters can be chosen
visually (Q–Q plots, box plots, histograms) or by semi-
automatic means.

+ Examine scatter plots and Q–Q plots for the presence of
multiple populations.

+ If assembling datasets from diverse sources, examine the
requirement for levelling.

Exploratory multivariate data analysis

The following is a summary of exploratory multivariate techniques.

+ Create a scatter plot matrix of the raw data and transformed
(logcentred ratios, isometric logratios) data. Look for trends/
associations.

+ Use robust estimates to compute means and covariances to
enhance the detection of outliers.

+ Apply dimension-reducing techniques, such as PCA, to
identify patterns and trends in the data. Other methods such
as non-linear mapping, multi-dimensional scaling and self-
organizing maps may help discover structure in the data.

+ Use geographic maps of the component scores to assist in
identifying spatially-based geochemical processes.

+ Apply methods such as cluster analysis to isolate groups of
observations with similar characteristics and atypical obser-
vations. Specific groups of interest can often be isolated
using these methods. Maps of the locations of the groups
can help to examine the spatial continuity of the groups.

+ Use robust Mahalanobis distance plots (D2) applied to
transformed data to assist in isolating outliers based on a
selected number of elements of interest. Maps of large
distances (>95th percentile) can assist in identifying obser-
vations or groups of observations of interest.

+ Calculate specifically tailored empirical indices in areas
where multi-element associations are well understood. The
indices are based on a linear combination of pathfinder
elements with coefficients that are selected for each area and
commodity being sought. Observations with high indices
can be investigated for mineralization potential.

Table 6. Measures of confusion, accuracy and error based on the PC.

Overall Accuracy (%) 91.9

Confusion (numbers) eJF mJF lJF Pense Cantuar Total

eJF 146 4 0 4 0 154
mJF 2 37 1 0 0 40
lJF 0 4 24 0 0 28
Pense 4 0 0 22 1 27
Cantuar 0 0 0 2 20 22
Total 152 45 25 28 21

Confusion (%) eJF mJF lJF Pense Cantuar Total (%)

eJF 94.8 2.6 0.0 2.6 0.0 100.0
mJF 5.0 92.5 2.5 0.0 0.0 100.0
lJF 0.0 14.3 85.7 0.0 0.0 100.0
Pense 14.8 0.0 0.0 81.5 3.7 100.0
Cantuar 0.0 0.0 0.0 9.1 90.9 100.0
Total (%) 114.6 109.4 88.2 93.2 94.6

Error/Accuracy eJF mJF lJF Pense Cantuar

Errors of Commission (%) 5.3 6.7 16.0 17.9 9.5
Errors of Ommission (%) 3.9 17.8 4.0 21.4 4.8
User Accuracy (%) 96.1 82.2 96.0 78.6 95.2
Producer Accuracy (%) 94.8 92.5 85.7 81.5 90.9
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+ Visualize the results! Use GIS for visualizing data analysis/
statistical results. Use the visualization features in programs,
such as R, for a better understanding of the data.

Modelled multivariate data analysis

+ Where target and background groups have been established,
use procedures such as linear discriminant analysis (and
variants) for testing the ability to classify sample groups of
interest and to determine which elements provide the best
discriminating power.

CONCLUDING COMMENTS AND FUTURE
DIRECTIONS

Garrett (1989a) stated that the power of computers and
capability of software would continue to grow along with a
corresponding decrease in price. Almost 20 years later, that
prediction still holds. Computers are not only more powerful,
but they are more portable, which permits the most sophisti-
cated processing even in the most remote parts of the planet.
Developments in software, in terms of the amount of data
capacity, developments in three-dimensional visualization and
statistical methods have made enormous contributions to the
way that exploration geochemists can evaluate and integrate all
types of geoscience data. The rapid expansion of the internet
has allowed new statistical communities to grow, such as the R
project (www.r-project.org) in which thousands of statisticians
and users throughout the world develop and contribute to an
open source statistical software environment. Recent develop-
ments in freely available software (Grunsky 2002b) will make it
easier to integrate geochemical data with geospatial data. In the
R community, new statistical developments can be available to
users within weeks and to anyone who has internet access.
There is no doubt that this type of cooperative approach to the
sharing of knowledge will increase the ability of geoscientists to
extract as much information from their data as possible.

Another factor that has contributed to significant advance-
ments in evaluating regional geochemical data is the ubiquitous
development of internet resources for geochemical data avail-
ability. In addition, internet resources have contributed signifi-
cantly to information on how to evaluate geochemical data. The
internet itself is one of the first places one starts to ‘mine’ for data.

Discussions on the application of transformations of geo-
chemical data have traditionally been based on raw analytical
values and the potential problems associated with closure have
not been taken into account. Further research is required in this
field. There is ongoing research at the University of Girona,
Spain, where the issues of evaluating compositional data are
being addressed. Emphasis is being placed on research and the
development of tools for the user.

Surprisingly, the scientific literature on levelling geochemical
data is sparse. Levelling is routinely carried out in geophysical
and geochemical programmes; however, a formal review of
procedures has not yet been published. A full review of
levelling methods applied to geochemical survey data is due.

Integrating spatially referenced data together with multivari-
ate observations is an area that is undergoing many interesting
developments. The use of fractals has been shown to highlight
different spatial patterns that are attached to multivariate
patterns and trends (e.g. Cheng & Agterberg 1994). Similarly
the integration of multivariate statistics with geostatistical
analysis is developing and will lead to new methods for
extracting spatially-dependent multivariate patterns and trends.

Current implementations of statistics with GIS are not fully
integrated and spatial statistics that are employed by GIS or

image analysis systems offer limited analytical and developmen-
tal capability. Increased integration of multivariate methods
together with spatial analysis will provide a comprehensive
approach to assessing all spatially reference multivariate data.
Multivariate geostatistics, which incorporates both the spatial
and inter-element relationships, has been studied by only a
few. Grunsky & Agterberg (1988, 1992), Grunsky (1990) and
Wackernagel & Butenuth (1989) discuss two approaches to
multivariate geostatistics. Bailey & Krzanowski (2000),
Christensen & Amemiya (2003) and Krzanowski & Bailey
(2007) discuss approaches to ‘spatial factor’ methods. Such
methods will permit the simultaneous evaluation of geo-
chemical processes within the geochemical and geospatial
domain. The long-term benefit of this will be to identify
geochemical processes as a function of spatial scale (sam-
pling density) and will permit further discrimination between
geochemical background and mineralization.

There are many data analysis and statistical methods avail-
able to assess geochemical data. This manuscript has reviewed
and demonstrated the application of some of the more popular
methods. Geochemists are encouraged to investigate the devel-
oping world of data analysis and statistical methods through
projects such as R (www.r-project.org).
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leagues at CSIRO, Australia, and the Geological Survey of Canada
and in the mineral exploration industry. Most notably, this includes
Frits Agterberg, Norm Campbell, Graeme Bonham-Carter, Bob
Garrett, Bruce Kjarsgaard, Harri Kiiveri, Barry Smee, Ray Smith and
Jeremy Wallace. An earlier vision of this manuscript has also
benefited from reviews by Robert Jackson, David Lawie and Graham
Closs. The author gratefully acknowledges the contribution of Eric
de Kemp for providing the 3D imagery of the processed geochemi-
cal data from the Noranda area of Quebec. The author wishes to
acknowledge thanks to the following for permission to use their data:
Ontario Geological Survey and the Ontario Ministry of Natural
Resources for the provision of the digital elevation data for the Ben
Nevis area of Ontario; Farallon Mining Ltd and Mark Rebagliati of
Hunter Dickinson Inc., Vancouver, are also gratefully acknowledged
for their full cooperation and permission to present the results of the
Campo Morado geochemical study. Shore Gold Inc. is also thanked
for permission to present the results of the kimberlite geochemical
data from the Fort à la Corne area, Saskatchewan. This is Geological
Survey of Canada contribution number: 20090302.

APPENDIX 1

Logratios and compositional data

Compositional data should be adjusted by the use of logratios.
A compositional vector x defined by D component variables
(elements). By definition, this vector will sum to a constant
(100%) and as a result, the composition can be described by
D�1 of the variables. A composition x can be transformed by

yi = logsxi ⁄ xDd si = 1, . . . , D � 1d
There is no loss of information by choosing one of the

variables as a divisor. This transformation is known as the
‘additive logratio’ (alr). The resulting logratio coordinates can-
not be projected onto orthogonal axes because the axes are at
60� (Pawlowsky-Glahn & Egozcue 2006) and create difficulties
when comparing compositions using different denominators.
In particular, measures of distances between alr-transformed
observations are not equal when using different denominators
and the angles between vectors cannot be computed using a
standard Euclidean inner product.

An alternative way of transforming a compositional vector is
by applying the logcentered ratio, namely:
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zi = logsxi ⁄ gsxDdd si = 1, . . . , Dd,

where g(xD) is the geometric mean of the composition.
The logcentered ratio (clr) is useful because it preserves
all of the variables in the composition. However, the
inverse of the covariance matrix for this transform is
singular, which requires a special generalized inverse
procedure for computation.

An important aspect of assessing compositions is the
calculation of an adequate measure of variability. This is done
by the creation of a variation matrix, T defined by:

�ij = varhlogsxi ⁄ xjdj si = 1, . . . , d; j = i + 1, . . . , Dd
and the mean, E, is expressed as:

�ij = Ehlogsxi ⁄ xjdj si = 1, . . . , d; j = i + 1, . . . , Dd
The variability matrix T summarizes the contribution that

any pair of variables makes in a sub-compositional analysis. For
example, consider a major element oxide composition consist-
ing of SiO2, Al2O3, MgO, FeO, CaO, Na2O, K2O, TiO2 and
MnO. A sub-composition may be interested in examining the
relationships of MgO, FeO and Na2O. The amount of compo-
sitional variability that these elements will account for can be
expressed by the sum of (�MgO,FeO, �MgO,Na2O, �FeO,Na2O). This is
an important concept in understanding the significance of
sub-compositional data which will never fully explain the
overall variation of the data.

More recent developments by Egozcue et al. (2003) have
identified the isometric logratio (ilr), which is a transformation
that defines compositional vectors in an orthonormal basis. A
very simple explanation of this transformation is described in
Pawlowsky-Glahn & Egozcue (2006). The application of the ilr
transform requires the construction of ‘balances’, which are
ratios of selected variables into groups (i.e. elements associated
with a fractionation process versus elements associated with
alteration). These balances are used to construct new variables
that exist in an orthonormal base from which standard Eucli-
dean measures can be calculated (mean, variance, etc.).

APPENDIX 2

The method of RQ-mode principal component analysis

Given a data matrix of m variables and n observations, a data
matrix X can be scaled (i.e. correlation or covariance) to
produce a m � n matrix W where

W = V�1⁄2U � where � = diagonal matrix of eigvenalues

V = eigenvector matrix of n � m WW#
U = eigenvector matrix of m � m W#W

By use of the Eckhart-Young theorem (Reyment & Jöreskog
1993), W can be re-written as

W = FRARsR-mode solutiond where FR = V and AR = �1⁄2U �

or

W = AQF QsQ-mode solutiond where AQ = V�1⁄2 and F Q = U �

FR and FQ represent the factor loadings for both the R and Q
mode solutions, and AR and AQ represent the coordinates of
the variables and objects (the scores) in the same factor space
and can be plotted on the same figures. W is scaled to permit
the projection of both FR and FQ in the same coordinate space.
W can be standardized by:

Wij = s1 ⁄ n1⁄2dsxij � x̄jd where x̄j = 1 ⁄ no xij si = 1, nd
which yields a variance covariance matrix from the minor
product matrix W#W. W can also be standardized by:

Wij = ssjn
1⁄2d�1sxij � x̄jd where Sj = fs1 ⁄ ndo sxij � x̄jd2g1⁄2

si = 1, nd
which results in a correlation matrix from the minor product
matrix W#W.

The advantage of plotting both the scores of the variables
and objects on the same diagram is that the relationships
between the two can be more clearly observed. Samples with
relative abundance of one variable over another will plot near
the location of the score for that variable. Grunsky (2001) has
written program code for this method of PCA for both the
S-Plus and R computing environments.

The relative contribution is the contribution that a variable
makes over all of the components. It is defined as follows. For
m variables (i=1,. . ..,m), p components (j=1,. . .,p), (p � m) and
the R-mode loadings given by AR, the relative contribution rcij
for a variable j is:

rcij = 100 * (AR
ij ⁄ o

j=1

p

AR
ij )

The actual contribution is the contribution that a variable
makes within a given component. Similarly, the actual contri-
bution is defined as follows. For m variables, p components
(p � m) and the R-mode loadings given by AR, the actual
contribution acij for a variable j is:

acij = 100 * (AR
ij ⁄ o

i=1

m

AR
ij )

The following simple example illustrates the method of PCA.

RQ PCA Example.
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The lithogeochemical data from the Ben Nevis township
area in Ontario represents a suite of metavolcanics comprised
of calc-alkalic basalt, anadesite, dacite and rhyolite. The
sequence has also been intruded by tholeiitic mafic sills and
granodiorite stocks. A plot of Cr v. Ni clearly shows the three
main groups of the data.

The figure on the previous page top shows the linear
relationship of Cr and Ni that is related to the mineralogy of the
volcanic rocks. Rocks rich in minerals containing Cr–Ni (i.e.
pyroxenes) are enriched in Cr and Ni whereas rocks that are
poor in Cr–Ni bearing minerals (i.e. rhyolites, granites) are
depleted in Cr and Ni. The results of the principal components
reflect this same relationship. The three groups of data are still
evident in the scatter plot of PC1 v. PC2. The loadings of Cr
and Ni reveal the following information. Observations that plot
on the positive side of the PC1 axis closer to the loadings of Cr
and Ni are enriched in those elements and observations that
plot on the negative side of the PC1 axis are depleted in Cr and
Ni. In addition, observations that plot on the positive side of
the PC2 axis are relatively enriched in Cr whilst those observa-
tions that plot on the negative side of the PC2 axis are relatively
enriched in Ni and relatively depleted in Cr. Using the method
of PCA, patterns in the resulting plots can assist in producing
meaningful interpretations of the data.

PCA also reveals information about significance of each
component. The first component (PC1) accounts for more
than 92% of the variation in the data and the second compo-
nent (PC2) accounts for c. 8% of the variation. Thus the first
component is interpreted as the most significant and reflects
the dominant geochemical process. The second component
reflects a subtle feature that might be related to Cr–Ni variation
in the more mafic observations.

APPENDIX 3

Measures of accuracy

+ Confusion matrix: a cross-referenced matrix of classified
samples for each class. Ideally, there should be zeros in every
element of the matrix except along the diagonal. Each column
represents a training class and the values in the column
correspond to the classification results applied to that particular
training class. The values can be expressed in the actual number
of samples, or as a percentage.
+ Commission: Errors of commission represent samples that
have been incorrectly classified as belonging to the class of
interest.
+ Omission: Errors of omission represent samples that belong
to a class of interest but have been classified incorrectly.
+ Producer accuracy:a measure of correctly classified samples
divided by the total number of samples used in the classification
for a specific class of interest.
+ User accuracy: a measure of correctly classified samples
divided by the total number of samples classified to the specific
class of interest.
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