

РГУ нефти и газа им. И.М.Губкина Z.S. Aliev, L.V. Samuylova, D.A. Marakov

NATURAL GAS RESERVOIRS AND WELLS TEST ANALYSIS

A Textbook

MOSCOW - 2011

З.С. Алиев, Л.В. Самуйлова, Д.А. Мараков

ГАЗОГИДРОДИНАМИЧЕСКИЕ ИССЛЕДОВАНИЯ ГАЗОВЫХ ПЛАСТОВ И СКВАЖИН

Учебное пособие

Допущено Учебно-методическим объединением вузов Российской Федерации по нефтегазовому образованию в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению подготовки бакалавров 131000 «Нефтегазовое дело», по представлению Ученого совета Российского государственного университета нефти и газа имени И.М. Губкина

МОСКВА - 2011

Рецензенты:

А.З. Саушин, д.т.н., профессор (Астраханский государственный технический университет); А.И. Пономарев, д.т.н., профессор, зав. каф. разработки газовых и газоконденсатных месторождений (Уфимский государственный нефтяной технический университет), Советник ген. директора «Газпром добыча Уренгой»

Алиев З.С., Самуйлова Л.В., Мараков Д.А.

А50 Газогидродинамические исследования газовых пластов и скважин: Учебное пособие для вузов. – М.: МАКС Пресс, 2011. – 220 с. ISBN 978-5-317-03893-9

> В учебном пособии рассмотрены различные методы газогидродинамических исследований газовых и газоконденсатных пластов и скважин. Представлено около ста задач с примерами решения. Рассмотрены методы определения физико-химических свойств газа, термобарических условий, дебита при различных конструкциях скважин. Приведены примеры обработки испытаний скважин на стационарных и нестационарных режимах фильтрации.

> Учебное пособие предназначено для молодых специалистов научно- исследовательских институтов и газодобывающих предприятий, студентов и магистрантов, обучающихся по специальности «Разработка и эксплуатация газовых и газоконденсатных месторождений».

> > УДК 622.2(075.8) ББК 33.131я73

ISBN 978-5-317-03893-9

содержание

ГЛАВА 1

Физико-химические свойства газа, газоконденсатной смеси, используемые при определении термобарических параметров газовых и газоконденсатных пластов и скважин

1.1. Критические параметры природных газов и их компонентов	7
1.2. Плотность газа	13
1.3. Коэффициенты сверхсжимаемости газов	17
1.4. Вязкость газа	29
1.5. Влагосодержание газа	33
1.6. Теплоемкость газа	38
1.7. Теплопроводность газа	45
1.8. Дросселирование газа. Коэффициент Джоуля-Томсона	50
1.9. Гидратообразование газов	53

ГЛАВА 2

Определение давления, температуры и дебита газовых и газоконденсатных скважин

2.1.	Определение давления на забое вертикальных остановленных сква-	
	жин	63
2.2.	Определение забойного давления работающих вертикальных сква-	
	жин	67
2.3.	Определение забойного давления газовых скважин различных кон-	
	струкций	79
2.4.	Определение давления в горизонтальных газовых скважинах	88
2.5.	Температура газовых месторождений1	115
2.6.	Распределение температуры по стволу горизонтальной скважины 1	127
2.7.	Определение расхода газа при критическом течении. Приближенное	
	определение расхода газоконденсатной смеси 1	134

ГЛАВА З

Газогидродинамические методы исследования газовых и газоконденсатных скважин на стационарных режимах фильтрации

3.1.	Приток газа к скважине
3.2.	Определение коэффициентов фильтрационного сопротивления а и b 145
3.3.	Ускоренные методы исследования скважин с длительной стабилиза-
	цией давления и дебита на квазистационарных режимах фильтрации 160
3.4.	Использование кривых стабилизации забойного давления и дебита
	газовых скважин для определения коэффициентов фильтрационно-
	го сопротивления и параметров пласта

ГЛАВА 4

Газогидродинамические методы исследования скважин на нестационарных режимах фильтрации

4.1. Определение параметров пласта по данным исследования верти-
кальных скважин на нестационарном режиме фильтрации газа
4.2. Методы обработки КВД177
4.3. Влияние различных факторов на форму КВД, снятых в газовых
скважинах
4.4. Учет влияния различных факторов на форму кривых восстановле-
ния давления
4.4.1. Приток газа к скважине после ее закрытияя. 183
4.4.2. Учет неизотермичности процесса восстановления давления
4.4.3. Влияние неоднородности пластов по площади на форму КВД 189
4.5. Определение параметра анизотропии пласта по КВД
Приложение
Список использованной литературы215

Глава 1

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ГАЗА, ГАЗОКОНДЕНСАТНОЙ СМЕСИ, ИСПОЛЬЗУЕМЫЕ ПРИ ОПРЕДЕЛЕНИИ ТЕРМОБАРИЧЕСКИХ ПАРАМЕТРОВ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ ПЛАСТОВ И СКВАЖИН

1.1. Критические параметры природных газов и их компонентов

Критическим называется такое состояние вещества, при котором исчезает граница между его газовой и жидкой фазами и свойства этих фаз становятся равными. Для природного газа, являющегося смесью углеводородных и неуглеводородных компонентов, критические параметры (давление, температура, плотность, объем и т.д.) определяются как псевдокритические по составу газа.

При известном составе газа, если содержание метана составляет 95%, псевдокритические параметры $P_{\text{пкр}}$ и $T_{\text{пкр}}$ определяются по формулам:

$$P_{\text{n.kp}} = \sum_{i=1}^{n} x_i P_{\text{kp},i} ; T_{\text{n.kp}} = \sum_{i=1}^{n} x_i T_{\text{kp},i} , \qquad (1.1)$$

где x_i – доля *i*-го компонента в газе; P_{spi} , T_{spi} – критические давление и температура *i*-го компонента в смеси, значения которых приведены **в таблице 1.1.**

Для более точного определения псевдокритических параметров газовых смесей $P_{_{\rm п.кр}}$ и $T_{_{\rm п.кр}}$ газоконденсатных месторождений рекомендуется использовать формулы:

$$P_{\text{II.Kp}} = \frac{K}{J^2}; T_{\text{II.Kp}} = \frac{K}{J},$$
 (1.2)

(1.3)

где

$$\left[\left(\sum x_i P_{\kappa p,i}\right)^{0.5}\right]^{-2} = 3 \sum x_i P_{\kappa p,i} = 3 \left[2^{-4} \left(P_{\kappa p,i}\right)^{-4}\right]^{-4}$$
Для газов, содержащих полярные компоненты, т.е. H,S, H₂O и т.д. более

 $K = \left[\frac{\sum x_i T_{\text{KP},i}}{\sum x_i T_{\text{KP},i}} \right]^2; \quad I = \frac{1}{2} \frac{\sum x_i T_{\text{KP},i}}{\sum x_i T_{\text{KP},i}} + \frac{2}{2} \left[\sum x_i \left(\frac{T_{\text{KP},i}}{\sum x_i T_{\text{KP},i}} \right)^{0.5} \right]^2.$

Для газов, содержащих полярные компоненты, т.е. H_2S , H_2O и т.д. более 5%, псевдокритические параметры должны быть определены по формуле:

$$P_{\text{m.kp}} = T_{\text{m.kp}} \sum_{i=1}^{n} \frac{x_i z_{\text{Kp},i}}{J^2}; \ T_{\text{m.kp}} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j \left(T_{\text{Kp},i} T_{\text{Kp},j} \right)^{0.5}, \tag{1.4}$$

$$J^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} \left[0.5 \left(\frac{Z_{\text{kp},i} T_{\text{kp},i}}{P_{\text{kp},i}} \right)^{\frac{1}{3}} + 0.5 \left(\frac{Z_{\text{kp},j} T_{\text{kp},j}}{P_{\text{kp},j}} \right)^{\frac{1}{3}} \right]^{\frac{3}{3}}.$$
 (1.5)

	_
	5
	57
	Ä.
	\leq
	Ę.
	2
	2
	0
	\square
	Ζ
	Ηų.
	H
	5
	\leq
	Ζ
	d
	F.
	Ä.
	H.
	α
	\geq
	Ζ
	$\overline{}$
	X.
	2
1	
	<u> </u>
	B
	\geq
	T
	÷.
	5
	2
	$\tilde{\omega}$
	\odot
	Ψ
	Б.
	$\overline{\mathbf{v}}$
	\sim
	\leq
	\sim
	ř
	1
	Ξ
	0
	-

00

воляной пар Сероволорол ептан Кислорол Двуокись Окись углерода п-пентан і-пентан n-ortan Ronopol пропан п-бутан і-бүтан D-FERCAH VILIEDOLLA метан BORIYA Гелий PINTB Аргон ЭТАН A30T Параметр CH₄ C-H. C_3H_8 n-C₄H₁₀ i-C₄H₁₀ n-C₅H₁₁ i-C₅H₁₂ n-C₆H₁₄ n-C2H16 n-C8H18 H-O 01 H-H-S CO₁ CO He Химическая формула No. Ar Hg Молекулярные: 16.043 30.068 44 094 58,120 58,120 72,151 72,151 86,178 100,198 114.22 28.016 28.96 18 016 32.00 2,016 34.082 44,011 28.011 4.00 39,95 200.59 масса объем 22.36 22,16 21.81 21.75 21.50 20.87 20.87 22.42 22,47 22,71 22,404 22.40 23.45 22.43 22,14 22,26 22.41 18,019 Плотность, кг/м³ upu T=273.16 K 0.717 1.356 2.010 2.668 2.703 3.457 3.457 3.845 4.459 5.030 1.250 1.293 0.768 1.429 0.0899 1.539 1.977 1.250 0.178 1.784 3.595 при Т=293,16 К 0.668 1.263 1.872 2.486 2.518 3.221 3.221 3.583 4.155 4.687 1.165 1.205 0.750 1.331 0.0837 1.434 1.842 1.165 0,166 1.662 13.546 в жидком состоянии при температуре кинения 416 546 585 582 600 625 637 664 Объем в газовой фазе после испарения жилкости. 442.1 272.9 229,4 47.06 26,97 420,63 24,89 19,27 30,27 211,84 311.1 237.5 204,6 206,6 182 приведенный к T=273,16 К, м³/м³ 29,27 Газовая постоянная, м/⁰С 52,95 28,19 19,23 14,95 14,95 11,75 11.75 9,89 8,46 7.42 30,26 Кригические параметры: 225.5 232,5 225,2 плотность, кг/м 162,0 210,0 232 304 32 41 31 349 468 301 69.3 531 132.40 154.78 33.25 373,6 304.2 132.93 5.2 150.72 температура, К 190.55 305.43 369.82 408.13 425.16 469.65 460.39 507.35 540.15 568.76 126.26 4.333 3.871 3.719 3.435 3.072 2,790 2.535 3.465 13.24 1.325 9,185 7.527 0.234 4.959 давление, МПа 4.695 4.976 3.448 5.18 3,568 0,0062 0,0047 0,0044 0,0044 0,0043 0,0043 удельный объем, м³/кг 99,5 | 148,0 | 200,0 | 263,0 | 255,0 молярный объем, 10⁻⁶ м³/моль 311 308 368 0,277 0,283 0,274 0,291 0,23 0,268 0,274 коэффициент сверхсжимаемости 0,290 0,285 0,269 0,268 0,264 Парамстры потенциалов: k. K 140 236 206 217 208 269 269 423 288 333 91.5 78.6 3,541 2,968 3.49 3,996 3.59 2.57 3.423 3.808 4,384 5,420 5,819 5,869 6,099 6,057 5,916 7,00 7,407 3,681 3,711 0,21 σ, δ Фактор ацентричности 0,0104 0,0986 0,1524 0,1849 0,2010 0,2539 0,2223 0,3007 0.3498 0.4018 0,040 0.019 0.100 0.231 0,246 Коэффициент дипамической вязкости при 0.0103 0.0083 0.0075 0.0069 0.0069 Г=273.16 К. мПа-с Температура, К: 111,86 184,56 230,90 263,06 272,66 300,96 398,86 100.090,16 211,4 87,5 кипения 309,26 341,86 371,56 77,36 78,8 20 194,7 81,7 4,3 54.36 плавления 90.66 100.66 128.16 138.16 113.26 143.46 177.86 182.56 216.36 63.16 0 Теплоемкость при Т=273,16 К, Дж/кг-град: 0.5172 0.3934 0.3701 0.3802 0.3802 0.3805 при постоянном давлении Ср 0.3805 0.3827 0.3846 0.3856 0.24 0.2397 0.4441 0.2185 3.3904 0.253 0.1946 0.2483 1.260 1.243 0.0335 0.3936 0.3273 0.3252 0.3466 0.3466 0.3533 0.3533 0,3600 0,3652 0,3686 0,1770 0,1712 0,3469 0,156 2,4045 0.192 0.1496 0.1774 0.760 при постоянном объеме С. 0,026 0,016 0,013 0,011 0,010 0,0106 0.0096 0.0092 0.0084 0.020 0.021 0.015 Генлопроводность при T=273,16 K, Вт/м-град 0.0106 0.148 0.011 0.012 Геплота при Т=273,16 К, кДж/кг: 427 испарения 570 490 352 394 75.5 60.8 95.2 80.0 77.6 плавления

Θ

Таблица 1.1.

Физико-химические свойства компонентов природного газа при P=0,1013 MIIa

При наличии в составе газа кислых компонентов до 50% H₂S, CO₂ и при условии, что концентрация каждого из них не превышает 25%, псевдокритические параметры должны быть определены с учетом наличия этих компонентов по формулам:

$$P_{_{\rm HK}}^* = P_{_{\rm HK}} T_{_{\rm HK}}^* / \left[T_{_{\rm HK}} + x_{n_2 s} \left(1 - x_{n_2 s} \right) \cdot \varepsilon \right] , \qquad (1.6)$$

где

$$\varepsilon = 14x_{u_{2s}}^{-0.36}x_{co_{2}}^{-0.8} + 0.81x_{u_{2s}}^{0.7}; \qquad (1.7)$$

 $x_{\mu_2 8}$, x_{co_2} – соответственно мольные доли сероводорода и углекислоты в газе проектируемого месторождения.

Молекулы реальных газов имеют конечные размеры и форму и оказывают значительное взаимное влияние. Поэтому для характеристики реальных газов необходимо учесть параметры, связанные молекулярным взаимодействием.

Молекулы простых газов имеют сферическую форму, для них схемы притяжения, которые действуют по линии, соединяющей их центры, пропорциональны расстоянию в шестой степени. Для газов с несферической формой молекул схемы притяжения или отталкивания состоят не только из сил между центрами молекул, но и из дополнительных нецентричных сил. Для учета дополнительных нецентричных сил между молекулами газа несферической формы введен дополнительный параметр, названный ацентрическим фактором.

Он является одним из параметров, оценивающих отклонения газов со сложной формой молекул от газов со сферической формой молекул. Для отдельных компонентов газов значения ацентрического фактора приведены в **таблице 1.1**.

Приближенно ацентрический фактор компонентов может быть определен формулой:

$$\omega_{i} = 0,4286 \frac{\lg P_{\rm Kp,i}/P_{\rm ar}}{T_{\rm Kp,i}/T_{\rm KMI,i} - 1} - 1, \qquad (1.8)$$

где $T_{\text{капл}}$ – температура кипения *i*-го компонента, значение которой определяется из таблицы 1.1.

Приведенные параметры газа определяются как отношение произвольного значения давления и температуры к их критическим параметрам, т.е. как $P_{\text{int}} = P/P_{\text{int}}$ и $T_{\text{int}} = T/T_{\text{int}}$.

Задача 1 – Определение псевдокритических параметров газа при известном составе по правилу аддитивности.

Определить псевдокритические давление и температуру при заданном составе смеси по формуле (1.1). Исходные данные и пример расчета представлены в **таблице 1.2**.

Номер комп-та	Компонент	Молярный состав газа	Молекул. масса комп-та	$\mathbf{M}_{_{1}}^{*}\mathbf{X}_{_{1}}$	Критич. давление компонента	$\mathrm{P}_{_{\mathrm{Kp}}}\ast\mathrm{X}_{_{\mathrm{i}}}$	Критич. темп-ра компонента	$\mathrm{T}_{\mathrm{sp}}^*\mathrm{X}_{\mathrm{j}}$
		X1	M1		$\mathbf{P}_{_{\mathrm{kpi}}}$		L _{kpi}	
		дол.ед.	Г/МОЛЬ		MIIa		K	
1	CH_4	0,8844	16,043	14,188	4,6	4,0682	190,6	168,57
2	C_2H_6	0,0223	30,07	0,6706	4,88	0,1088	305,4	6,8104
3	C_3H_8	0,0303	44,097	1,3361	4,24	0,1285	369,8	11,205
4	$C_{s}H_{10}$	0,0065	58,124	0,3778	3,65	0,0237	408,1	2,6527
5	C_5H_{12}	0,0097	85	0,8245	3,502	0,034	512,3	4,969
6	N_2	0,0095	28,013	0,2661	3,39	0,0322	126,2	1,1989
7	CO	0,0035	44,01	0,154	7,38	0,0258	304,2	1,0647
8	H ₂ S	0,0338	34,08	1,1519	8,93	0,3018	373,2	12,614
Сумма		1		18,969		4,7231		209,08

Пример расчета псевдокритических параметров газа при известном составе

 $P_{\rm mc}$ =4,72 MПa $T_{\rm mc}$ =209,08 $^{\circ}$ K

Задача 2 – Определение псевдокритических параметров пластовой смеси газоконденсатных месторождений.

Исходные данные и пример расчета представлены в **таблице 1.3**. Определить псевдокритические давление и температуру при известном составе пластовой смеси газоконденсатной залежи по формуле (1.2).

$$K = \left[\frac{\sum x_i T_{\text{kp},i}}{\left(\sum x_i P_{\text{kp},i}\right)^{0.5}}\right]^2 = \left[\frac{209,08}{\left(4,7231\right)^{0.5}}\right]^2 = 9255,57,$$

$$J = \frac{1}{3} \frac{\sum x_i T_{\text{kp},i}}{\sum x_i P_{\text{kp},i}} + \frac{2}{3} \left[\sum x_i \left(\frac{T_{\text{kp},i}}{P_{\text{kp},i}}\right)^{0.5}\right]^2 = \frac{1}{3} \cdot \frac{209,08}{4,7231} + \frac{2}{3} [6,6372]^2 = 44,1246,$$

$$P_{\text{fl,kp}} = \frac{K}{J^2} = \frac{9255,57}{44,1246^2} = 4,75381 \text{ MHa},$$

$$T_{\text{fl,kp}} = \frac{K}{J} = \frac{9255,57}{44,1246} = 209,76 \text{ K}.$$

		6	-5		~		~		,5	
Іомер комп-та	Компонент	Молярный с став газа	Молекул. ма са комп-та	$\mathbf{M_{i}}^{*}\mathbf{X_{i}}$	Критич. давление компонента	$P_{_{K\beta}}*X_{_{j}}$	Критич. темп-ра компонента	$T_{_{V\!$	$\chi^*_{\mathrm{r}}(T_{\mathrm{spil}}/P_{\mathrm{spil}})^\wedge 0$	
H		Xi	Mi]	$\mathbf{P}_{_{\mathrm{kpi}}}$		$T_{_{\rm Kpi}}$		
		дол.ед.	г/моль		МΠа		K			
1	CH_i	0,8844	16,043	14,188	4,6	4,0682	190,6	168,57	5,69287	
2	C_2H_6	0,0223	30,07	0,6706	4,88	0,1088	<u>305,4</u>	6,8104	0,17641	
3	C_3H_8	0,0303	44,097	1,3361	4,24	0,1285	369,8	11,205	0,28297	
4	$C_A H_{to}$	0,0065	58,124	0,3778	3,65	0,0237	408,1	2,6527	0,06873	
5	C_5H_{12}	0,0097	85	0,8245	3,502	0,034	512,3	4,969	0,11731	
6	N,	0,0095	28,013	0,2661	3,39	0,0322	126,2	1,1989	0,05796	
7	CO_2	0,0035	44,01	0,154	7,38	0,0258	304,2	1,0647	0,02247	
8	H_2S	0,0338	34,08	1,1519	8,93	0,3018	373,2	12,614	0,2185	
Сумма Σ		1		18,969		4,7231		209,08	6,6372	

Пример расчета псевдокритических параметров пластовой смеси газоконденсатной залежи

Задача 3 – Определение псевдокритических параметров пластовой смеси при наличии полярных компонентов более 5%.

Исходные данные и пример расчета представлены в **таблице 1.4**. Определить псевдокритические давление и температуру при известном составе пластовой смеси с содержанием полярных компонентов более 5% по формуле (1.4–1.5).

$$J^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} \left[0,5 \left(\frac{Z_{\text{KP},i} T_{\text{KP},i}}{P_{\text{KP},i}} \right)^{\frac{1}{3}} + 0,5 \left(\frac{Z_{\text{KP},j} T_{\text{KP},j}}{P_{\text{KP},j}} \right)^{\frac{1}{3}} \right]^{3} = 10,625$$
$$T_{\text{II,KP}} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} \left(T_{\text{KP},i} T_{\text{KP},j} \right)^{0.5} = 226,53 \,^{0}\text{K},$$
$$P_{\text{II,KP}} = T_{\text{II,KP}} \sum_{i=1}^{n} \frac{x_{i} z_{\text{KP},i}}{J^{2}} = 226,53 \sum_{i=1}^{n} \frac{0.266}{10,625} = 5,6709 \text{ MIIa}.$$

Номер комп-та	Компонент	иолярный состав Таза таза	Молекул. масса <i>Woлekyn.</i> масса комп-та	$M_{i}^{*}X_{i}$	критич. давление <i>i</i> ^{3%} Критич. давление компонента	$\mathbf{p}_{_{\mathrm{ap}}}^*\mathbf{X}_{_{\mathrm{i}}}$	Критич. темп-ра компонента	$T_{_{\kappa\rho}}*X_i$	Ζκρ	J^2	Tni	_{Zi} *X;
1	CH	0,851	16,043	13,6525	4,6	3,9146	190,6	162,2	0,29	7,4952	182,03	0,2468
2	C_2H_6	0,0223	30,07	0,6705	4,88	0,10882	305,4	6,8104	0,285	0,3416	6,0379	0,0064
3	C _o H _s	0,0303	44,097	1,3361	4,24	0,12847	369,8	11,205	0,277	0,7684	9,0276	0,0084
4	C ₁ H ₁₀	0,0065	58,124	0,3778	3,65	0,02373	408,1	2,6527	0,28	0,2673	2,0344	0,0018
5	$C_5H_{1\rightarrow +}$	0,0097	85	0,8245	3,502	0,034	512,251	4,969	0,27	0,6397	3,4014	0,0026
6	H,S	0,0802	34,08	2,7332	8,93	0,71619	373,2	29,931	0,4	1,1128	24,004	0,0321
C	умма	1		19,5948	29,802	4,92578		217,77		10,625	226,53	0,266

Пример расчета псевдокритических параметров пластовой смеси при наличии полярных компонентов более 5%

Задача 4 – Определение фактора ацентричности.

Исходные данные и пример решения представлены в **таблице 1.5**. Определить фактор ацентричности по известным температурам кипения компонентов по формуле (1.8).

Исходные данные: *P*=20 МПа, *T*=323 [°]К.

Таблица 1.5

r		I							[I	
Номер комп-та	Компонент	X Молярный состав газа	<i>W</i> олекул. масса комп-та	$M_1^*X_1$	Критич. давление і. компонента	$\mathrm{P}_{\mathrm{sp}}^{*}\mathrm{X}_{\mathrm{i}}$	Критич. темп-ра компонента	$\mathrm{T}_{\mathrm{sp}}^*X_{\mathrm{s}}$	темп-ра кипения компонента	ω,	$\omega_i^* X_i$
		дол. ед.	г/ моль		МΠа		К		К		
1	2	3	4	5	6	7	8	9	10	11	12
1	CH_4	0,8844	16,043	14,1884	4,6	4,0682	190,6	168,567	111,86	0.01242	0,01098
2	$C_{2}H_{a}$	0,0223	30,07	0,6705	4,88	0,1088	305,4	6,81042	184,56	0,105247	0,00234
3	C_3H_8	0,0303	44,097	1,3361	4,24	0,1285	369,8	11,2049	230,9	0,159469	0,00483

Пример расчета фактора ацентричности

Продолжение табл. 1.5

1	2	3	4	5	6	7	8	9	10	11	12
4	C_4H_{10}	0,0065	58,124	0,3778	3,65	0,0237	408,1	2,65265	263,06	0,214456	0,00139
5	$C_{5}H_{12+}$	0,0097	677,1599	6,5684	3,555	0,034	460,0	4,462	300,96	0,257837	0,00250
6	\mathbf{N}_{2}	0,0095	28,013	0,2661	3,39	0,0322	126,2	1,1989	77,36	0.038822	0,00036
7	$-CO_2$	0,0035	44,01	0,1540	7,38	0,0258	304,2	1,0647	194,7	0,42362	0,00148
8	H ₂ S	0,0338	34,08	1,1519	8,93	0,3018	373,2	12,6142	211,4	0,092453	0,00312
	Сумма	1		24,7134		4,7236					0,02703
	Mc5+	85									
	R_0c5+	677,1599									

1.2. Плотность газа

Плотность – это отношение массы газа к единице его объема. Единица измерения плотности – кг/м³. Плотность газа при стандартных условиях, т.е. при P=0,098 МПа и T_{c1} =293 К, может быть определена по формуле:

$$\rho_{\rm cr} = M/\upsilon_{\rm cr} = M/24, 04 = \sum_{i=1}^{n} x_i M_i / 24, 04, \qquad (1.9)$$

где *М* – молекулярная масса газа, *x*, – мольная доля *i*-го компонента; *M*, – молекулярная масса *i*-го компонента; *v*, – объем одного моля *i*-го компонента.

Значения М, и v,, приведены в таблице 1.1.

Плотность газов зависит от их состава, давления и температуры. Плотность газа при заданных давлении и температуре определяется по известной плотности при нормальных или стандартных условиях по формуле:

$$\rho = \rho_{cT} \frac{PT_{cT}}{P_{aT}ZT}, \qquad (1.10)$$

где ρ_{c1} – плотность газа при стандартных условиях, т.е. при *P*=0,098 МПа и T_{c1} =293 К, значение которой для отдельных компонентов берется из таблицы 1.1.

При наличии влаги – водяных паров в газе, его плотность определяется по формуле:

$$\rho_{\rm BH} = \rho_{\rm cT} \left[1 + \frac{P_{\rm aT} ZTW}{PT_{\rm cT}} (\rho_{\rm BH} / \rho_{\rm cT} - P_{\rm BH} / P) \right], \qquad (1.11)$$

где *W* – влагосодержание газа при условиях *P* и *T*, определяется согласно методам, изложенным в пункте 1.5; $\rho_{\scriptscriptstyle BN}$ – плотность насыщенного водяного пара; *P*_{\scriptscriptstyle BN} – давление насыщенного водяного пара.

Значения $\rho_{\text{во}}$ и $P_{\text{во}}$ приведены в **таблице 1.6**.

Т, К	Р _{ви} , МПа	$ρ_{\rm BH}$ κγ/m ³	Т, К	Р _{ви} , МПа	$ρ_{\rm BH}$ κγ/m ³	Т, К	ρ _{ви} , МПа	$ρ_{\rm BH,} \kappa \Gamma / M^3$
273	0,000611	0,00485	300	0,003564	0,02576	327	0,015002	0,0998
274	0,000656	0,00519	301	0,003778	0,02722	328	0,015740	0,1044
275	0,000706	0,00556	302	0,004004	0,02875	329	0,016509	0,1092
276	0,000757	0,00594	303	0,004241	0,03036	330	0,017311	0,1142
277	0,000804	0,00636	304	0,004491	0,03220	331	0,018146	0,1193
278	0,000882	0,00679	305	0,004753	0,03381	332	0,019015	0,1257
279	0,000934	0,00726	306	0,005029	0,03565	333	0,019917	0,1307
280	0,001001	0,00775	307	0,005318	0,03758	334	0,020859	0,1360
281	0,001072	0,00826	308	0,005622	0,03960	335	0,021839	0,1420
282	0,001147	0,00882	309	0,005940	0,04172	336	0,022849	0,1482
283	0,001227	0,00940	310	0,006274	0,04393	337	0,023909	0,1546
284	0,001312	0,01001	311	0,006624	0,04623	338	0,025007	0,1630
285	0,001401	0,01066	312	0,006991	0,04564	339	0,026144	0,1682
286	0,001496	0,01134	313	0,007375	0,05115	340	0,027243	0,1753
287	0,001597	0,01206	314	0,007777	0,05376	341	0,028557	0,1827
288	0,001704	0,01282	315	0,008198	0,05659	342	0,029832	0,1903
289	0,001817	0,01363	316	0,008639	0,05935	343	0,031156	0,1982
290	0,001936	0,01447	117	0,004099	0,06234	344	0,032529	0,2064
291	0,002062	0,01536	318	0,009582	0,06545	345	0,033960	0,2148
292	0,002196	0,01630	319	0,010085	0,06868	346	0,035431	0,2236
293	0,002337	0,01729	320	0,010612	0,07205	347	0,036961	0,2326
294	0,002485	0,01833	321	0,011169	0,07557	348	0,038550	0,2420
295	0,002642	0,01942	322	0,011735	0,07923	349	0,040187	0,2516
296	0,002507	0,02057	323	0,012335	0,08302	350	0,041894	0,2605
297	0,002982	0,02177	324	0,012960	0,08696	351	0,043649	0,2718
298	0,003166	0,02304	325	0,013612	0,09107	352	0,045473	0,2824
299	0,003360	0,02437	326	0,014293	0,09535	353	0,047356	0,2923

Зависимости плотности и давления насыщенного пара воды от температуры

Величины поправок на плотность сухих газов при различных температурах приведены в **таблице 1.7**. Эти поправки на влажность добавляются или вычитаются из плотности сухого газа в зависимости от знака поправок, указанного в таблице 1.7.

При неизвестном компонентном составе плотность газоконденсатной смеси определяется по формуле

$$\rho_{\rm cM} = \frac{\rho_{\rm r} Q_{\rm r} + \rho_{\rm R} Q_{\rm \kappa}}{Q_{\rm r} + \alpha Q_{\rm \kappa}}, \qquad (1.12)$$

где $\rho_{\rm e}$, ρ_{κ} – плотности отсепарированного газа и конденсата; $Q_{\rm e}$, $Q_{\rm s}$ – дебиты газа и конденсата; α – кажущийся объемный коэффициент конденсата при условиях определения плотностей $\rho_{\rm ess}$, $\rho_{\rm c}$ и ρ_{κ} . Значение α при стандартной температуре определяется по формуле:

$$\alpha = 24,04 \cdot \rho_{\rm s}/M_{\rm s},\tag{1.13}$$

где M_* – молекулярная масса конденсата, кг/моль.

Таблица 1.7

Плотность		Поправки (в%) при температуре										
сухого газа, кг/м ³	283	288	293	298	303	308	313	318	323 К			
0,4	+1,2	+1,5	+2,0	+2,7	+3,4	+5,5	+6,4	+7,0	+8,5			
0,5	+0,7	+0,9	+1,2	+1,5	+1,9	+2,4	+2,9	+3,5	+4,3			
0,6	$^{+0,4}$	+0,5	+0,6	+0,7	+0,9	+1,0	$^{+1,2}$	+1,4	+1,6			
0,7	+0,1	$\pm 0,1$	+0,2	+0,2	+0,2	$^{+0,4}$	0	-0,1	-0,3			
0,8	0	-0,1	-0,1	-0,2	-0,4	-0,6	-0,9	-1,3	-1,7			
0,9	-0,2	-0,3	-0,4	-0,6	-0,8	-1,2	-1,6	-2,2	-3,0			
1,0	-0,3	-0,4	-0,6	-0,8	-1,1	-1,6	-2,1	-2,9	-3,9			

Поправки к плотности сухого газа на его влажность

Задача 5 – Определение плотности природного газа в стандартных условиях.

Определить плотность отдельных компонентов природного газа в стандартных условиях, затем по формуле (1.9) определить плотность смеси. Исходные данные и пример решения задачи представлены в **таблицах 1.8–1.9**.

Таблица 1.8

Исходные данные для определения плотности смеси газов в атмосферных условиях

		Молярный состав	Молекул. масса	Объем одной
Номер		газа	комп-та	молекулы газа
комп-та	Компонент	$oldsymbol{X}_i$	$oldsymbol{M}_i$	V_i
		дол.ед.	г/моль	м ³ /моль10 ⁻²
1	CH_4	0,9409	16,043	22,36
2	C_2H_6	0,0223	30,07	22,16
3	C_3H_8	0,0303	44,097	21,81
4	$C_{4}H_{10}$	0,0065	58,124	21,75
Сумма		1		

Параметр	Значение	Размерность
$V_{\scriptscriptstyle{ m CM}}$	22,33491	м ³ /моль*10 ⁻³
$M_{_{ m CM}}$	17,47936	кг/моль* 10^3
ρ	0,782603	$\mathrm{Kr}/\mathrm{M}^{3}$

Пример определения плотности смеси газов в атмосферных условиях

Задача 6 – Определение плотности природного газа в заданных условиях.

Плотность смеси при заданных давлении и температуре определяется по формуле (1.10).

Исходные данные: Заданы текущее давление P=14,71 МПа и текущая температура T=303 [°]К. Коэффициент сжимаемости принят равным единице (z=1). Состав смеси и плотность в атмосферных условиях аналогичны значениям, полученным в задаче 5.

$$\rho = \rho_{cT} \frac{PT_{cT}}{P_{aT}ZT} = 0,78 \frac{14,71 \cdot 293}{0,1013 \cdot 1 \cdot 303} = 109,53 \frac{\kappa z}{m^3}.$$

Задача 7 – Определение плотности природного газа при наличии водяных паров.

Исходные данные аналогичны задаче 6. Плотность смеси при наличии водяных паров определяется по формуле (1.11).

Р_{вп} и ρ_{вп} определяются из таблицы зависимости плотности и давления насыщенного водяного пара от температуры (таблица 1.6): *P*_{вп}=0,004241 МПа, ρ_{вп}=0,03036 кг/м³. Влагосодержание природного газа *W*=5,14 г/м³.

$$\rho_{\rm BII} = \rho_{\rm cr} \left[1 + \frac{P_{\rm ar} ZTW}{PT_{\rm cr}} (\rho_{\rm BII} / \rho_{\rm cr} - P_{\rm BII} / P) \right] = 0.78 \left[1 + \frac{0.1013 \cdot 1 \cdot 303 \cdot 5.14}{14.71 \cdot 293} \cdot \left(\frac{0.03036}{0.78} - \frac{0.004241}{14.71} \right) \right] = 0.7811 \frac{\kappa z}{m^3}.$$

Задача 8 – Определение плотности газоконденсатной смеси при неизвестном компонентном составе.

Плотность газоконденсатной смеси при неизвестном компонентном составе определяется по формуле (1.12), пример решения задачи представлен ниже.

Исходные данные: плотность газа после сепаратора при 293°К и атмосферном давлении $\rho_r = 0,723 \kappa z/m^3$, плотность конденсата $\rho_\kappa = 740 \kappa z/m^3$, содержание конденсата в газе $300 \cdot 10^{-6} m^3/m^3$, дебит газа $Q = 200 \, mbic.m^3/cym$, молекулярная масса конденсата $M = 149 \kappa z/\kappa monb$. Определяем суточный дебит конденсата:

$$Q_{\rm s} = 300 \cdot 10^{-6} \cdot 200 \cdot 10^3 = 60 \, {\rm m}^3 / {\rm cym}$$

По формуле (1.13) определяем а=24,04·р./М.=24,04·740/149=119,2.

$$\rho_{\rm CM} = \frac{\rho_{\rm r} Q_{\rm r} + \rho_{\rm K} Q_{\rm K}}{Q_{\rm r} + \alpha Q_{\rm K}} = \frac{0.723 \cdot 200 \cdot 10^3 + 740 \cdot 60}{200 \cdot 10^3 + 119.2 \cdot 60} = 0.912 \frac{\kappa z}{m^3},$$

1.3. Коэффициенты сверхсжимаемости газов

Коэффициент сверхсжимаемости газов — это отношение объема о при заданных значениях P и T к объему этого газа, определенному при идентичных P и T по законам идеального газа о_{на}. Коэффициент сверхсжимаемости характеризует отклонение объема реального газа от объема «идеального». Формула, связывающая основные параметры газа — объем, давление и температуру, называется уравнением состояния газа. Уравнение состояния идеального газа получено из условия отсутствия межмолекулярных взаимодействий и без учета объема самих молекул и имеет вид

$$\boldsymbol{\upsilon}_{\mu\nu} = nRT/P, \tag{1.14}$$

где *n* – число молей газа; *R* – универсальная газовая постоянная; *T* и *P* – температура и давление газа.

Уравнение состояния реального газа может быть представлено в виде:

$$v = nZRT/P. \tag{1.15}$$

Универсальная газовая постоянная *R* выражает работу одного моля газа при повышении его температуры на один градус и в системе СИ имеет размерность Дж/кмоль град.

Коэффициент сверхсжимаемости газа Z зависит от состава газа, давления и температуры. Значение коэффициента может быть определено графическим и аналитическим способами. Способ определения следует выбирать исходя из требуемой точности его значения. Наиболее простым способом определения Z является графический. Для определения Z природных газов, содержащих не более 2% (мольных) высококипящих углеводородов C_{5+} , 2% ароматических углеводородов и около 5% полярных и кислых компонентов, можно использовать графическую зависимость Z от приведенного давления P_{mp} и приведенной температуры T_{mp} , показанных на **рисунках 1 и 2**. На **рисунках 3÷5** приведены зависимости Z от P и T для N₂, CO₂ и H₂S.

При более высоком содержании в газе высококипящих углеводородов С₅₊ и полярных компонентов коэффициент сверхсжимаемости Z следует определять с учетом ацентричного фактора по формуле:

$$Z = Z^{(0)} + \omega_{\rm CM} Z^{(1)}, \qquad (1.16)$$

где $Z^{(0)}$, $Z^{(1)}$ – коэффициенты, определяемые из графиков зависимостей $Z^{(0)}$ и $Z^{(1)}$ от приведенных параметров $P_{_{up}}$ и $T_{_{up}}$, показанных на **рисунках 6 и 7**; $\omega_{_{CM}}$ – фактор ацентричности, определяемый по известному составу газа по формуле:

$$\omega_{\rm cM} = \sum_{i=1}^{n} \omega_i x_i, \qquad (1.17)$$

где ω_i – фактор ацентричности *i*-го компонента, определяемый по формуле (1.8).

Псевдокритические параметры, необходимые для определения $P_{_{\rm IIP}}$ и $T_{_{\rm IIP}}$, с помощью которых из графиков находят $Z^{(0)}$ и $Z^{(1)}$, должны быть определены в зависимости от состава газа.

Если в газе содержится более 5% CO₂, то значение *Z* должно быть рассчитано следующим образом:

- по формулам (2.3) вычисляют псевдокритические давление $P_{_{\Pi K}}$ и температуру $T_{_{\Pi K}}$;
- вычисляется фактор ацентричности смеси $\omega_{_{CM}}$, исключая из нее $CO_{_2}$, по формуле:

$$\omega_{y_{\Gamma,n}} = \sum_{i=1}^{n-1} x_i \omega_i / \sum_{i=1}^{n-1} x_i; \qquad (1.18)$$

– по известной величине ω_{угл} и концентрации CO₂ в газе из графика, показанного на рисунке 8а и б, определяется величина ε, являющейся температурной поправкой для используемой при расчетах псевдокритической температуры. При наличии в газе CO₂ и H₂S значение ε может быть рассчитано и по формуле:

$$\varepsilon = 528\omega_{yest}(A - A^2) + 5(B^{0.5} - B^2), \qquad (1.19)$$

где A – суммарные мольные доли CO₂ и H₂S в газе; B – мольная доля H₂S. Зная $P_{_{\Pi K}}$, T_{ак} и ω , вычисляют новые псевдокритические параметры:

$$P_{_{\Pi K}}^{*} = P_{_{\Pi K}} T_{_{\Pi K}}^{*} / T_{_{\Pi K}}; T_{_{\Pi K}}^{*} = T_{_{\Pi K}} - \varepsilon.$$
(1.20)

Зная *P*_{ик}, *T*_{ок} и ω, вычисляют новые псевдокритические параметры.

По известным величинам заданных P и T и вычисленным P_{mk} и T_{mk}^{*} рассчитывают приведенные параметры:

$$P_{\rm np} = P / P_{\rm nk}^*; \ T_{\rm np} = T / T_{\rm nk}^*.$$
 (1.21)

Используя графики (рисунок 5–6), определяют $Z^{(0)}$ и $Z^{(1)}$, а затем, используя формулу (1.19), вычисляют значение *Z*.

При наличии в газе CO₂ и H₂S коэффициент сверхсжимаемости *Z* определяется аналогичным образом, с той лишь разницей, что при вычислении фактора ацентричности ω_{yra} по формуле (1.18) из состава газа исключается не только CO₂, но и H₂S.

Для газов сеноманской залежи значение Z с приемлемой точностью может быть определено из графика зависимости Z от $P_{\mu\nu}$ и $T_{\mu\nu}$, показанной на рис. 2 или по формуле:

$$Z = [0,4 lgT_{np} + 0,73]^{P_{np}} + 0,1P_{np}.$$
 (1.22)

Для более точных расчетов коэффициент сверхсжимаемости природных газов Z должен быть определен по кубическим уравнениям состояния газов, наиболее широкое распространение среди которых получили уравнения Соаве, Редлиха–Квонга, Пенга–Робинсона. При этих методах расчета присутствие в газе кислых компонентов практически не влияет на величину погрешности при определении Z, если расчеты ведутся с учетом коэффициентов взаимодействия.

Рис. 1. Зависимость коэффициента сверхсжимаемости Z метана от приведенных давления и температуры

Рис. 2. Зависимость коэффициента сверхсжимаемости Z природного газа от приведенных давления и температуры

Рис. 3. Зависимость коэффициента сверхсжимаемости Z азота от давления и температуры

Рис. 4. Зависимость коэффициента сверхсжимаемости Z углекислого газа от давления и температуры

Рис. 5. Зависимость коэффициента сверхсжимаемости Z сероводорода от давления и температуры

Рис. 6. Зависимость коэффициента сверхсжимаемости Z(0) простых веществ от приведенных давления и температуры

Рис. 8. Зависимость псевдокритической температурной поправки є от концентрации в смеси СО, и фактора ацентричности ю

Для определения коэффициента сверхсжимаемости *Z* кубические уравнения состояния решаются относительно *Z*. Имеющее достаточно высокую точность уравнение Редлиха–Квонга для определения *Z* записывается в виде:

$$Z^{3} - Z^{2} + Z[a_{\rm cm} + b_{\rm cm}^{2}P - b_{\rm cm}]P - a_{\rm cm}b_{\rm cm}P^{2} = 0, \qquad (1.23)$$

 $a_{\rm cm} = x_i a_i; b_{\rm cm} = x_i b_i,$

где

$$a_{i} = 0,4275R^{2}T_{k,i}^{2.5} / (P_{k,i} \cdot T^{2.5}); \ b_{i} = 0,0867RT_{k,i} / P_{k,i}.$$
(1.24)

Уравнение (1.22) дает искомую точность для газообразных компонентов и их смесей. Наличие в смеси компонентов в жидком состоянии, а также молекул различного строения резко увеличивает погрешность расчетов.

Наиболее точно коэффициент сверхсжимаемости *Z* определяется из уравнения состояния Пенга–Робинсона, имеющего относительно *Z* вид:

$$Z^{3} - (1 - A)Z^{2} + (A - 3B^{2} - 2B)Z - (AB - B^{2} - B^{3}) = 0, \qquad (1.25)$$

$$A=aP/R^{2}T; B=bP/RT;$$
(1.26)

$$a = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j (1 - C_{ij}) (a_i a_j)^{0.5}; \ b = \sum_{i=1}^{n} x_i b_i , \qquad (1.27)$$

$$a_i = 0.45724R^2 T_{ki}^2 \alpha_i / P_{ki}; \ b_i = 0.0778R T_{ki} / P_{ki}, \tag{1.28}$$

$$\alpha_{i} = [1 + m_{i}(1 - T_{\text{npi}}^{0.5})]^{2}; \ m_{i} = 0,37464 + 1,54226\omega_{i} - 0,26992\omega^{2}.$$
(1.29)

Значения коэффициента С_ив формуле (1.30) приведены в таблице 1.10.

Таблица 1.10

KOMTOREUTLI	Cli												
газа	N ₂	CO ₂	H ₂ S	CH₄	C ₂ H ₆	C_3H_8	n-C4H10	n-C5H12	n-C ₆ H ₁₄	$n-C_7H_{16}$	n-C ₈ H ₁₈	n-C9H20	n-C ₁₀ H ₂₂
N ₂	0	0	0,130	0,025	0,010	0,090	0,095	0,100	0,110	0,115	0,120	0,120	0,123
CO2	-	0	0,135	0,105	0,130	0,125	0,115	0,115	0,115	0,115	0,115	0,115	0,115
H₂S	1	1	0	0,070	0,085	0,080	0,075	0,070	0,060	0,060	0,060	0,060	0,055
CH_4		1		0	0	0,010	0,025	0,030	0,030	0,035	0,040	0,040	0,045
C_2H_6	1	-	1	-	1	0,005	0,010	0,010	0,020	0,020	0,020	0,020	0,020
C_3H_8			1	-	Ľ.	0	0	0,005	0,005	0,005	0,005	0,005	0,005
$n-C_4H_{10}$	-	100	1	-		-	0	0,005	0,005	0	0	0,005	0,005
$n-C_5H_{12}$	-		1	-	-			0	0	0	0	0	0
$n-C_6H_{14}$	_	-	_	_	_				0	0	0	0	0
$n-C_7H_{16}$	-		-	—	-	-		-	-	0	0	0	0
n-C8H18	-		1	-	~	-	-	-	nor contract of the second sec	max	0	0	0
$n-C_0\overline{H_2}$		-		~	-	j	(-1)	-	num.	-		0	0
n-C10H22				~	~	-	-	-	-	-	÷.	0	0

Значение коэффициента Сіј в формуле (1.27)

Задача 9 – Определение коэффициента сверхсжимаемости по отношению объемов реального и идеального газов.

Коэффициент сверхсжимаемости по отношению объемов реального и идеального газов определяется по формулам (1.14–1.15). Исходные данные представлены в **таблице 1.11**, пример решения в **таблице 1.12**.

Исходные данные для определения коэффициента сверхсжимаемости по отношению объемов реального и идеального газов

Параметр	Значение	Размерность
R	8,31	Дж/(кмоль*К)
Р	14,71	ΜПа
Т	303	К
n	1	моль

Таблица 1.12

Пример определения коэффициента сверхсжимаемости по отношению объемов реального и идеального газов

Параметр	Значение	Размерность
$V_{_{ m BA}}$	171171,31	M ³
$V_{ m pean}$	160	M ³
Z	0,93447361	

Задача 10 – Определение коэффициента сверхсжимаемости с учетом фактора ацентричности.

Коэффициент сверхсжимаемости с учетом фактора ацентричности определяется по формуле (1.16), фактор ацентричности смеси определяется по формуле (1.17). Исходные данные для решения задачи представлены в **таблице 1.13**.

Таблица 1.13

Исходные данные для определения коэффициента сверхсжимаемости с учетом фактора ацентричности

		Молариий	Молекул.	Критич.	Критич.	Темп-ра
Hower		состав газа	масса	давление	темп-ра	кипения
помер	Компонент	COCIADIASA	комп-та	компонента	компонента	компонента
комп-та		X_i	M_i	$P_{_{\mathrm{kp}i}}$	$T_{_{ m kp}i}$	$T_{_{ m kp}i}$
		дол. ед.	г/моль	МΠа	К	К
1	CH_4	0,8844	16,043	4,6	190,6	111,86
2	C_2H_6	0,0223	30,07	4,88	305,4	184,56
3	C_3H_8	0,0303	44,097	4,24	369,8	230,9
4	$C_{s}H_{10}$	0,0065	58,124	3,65	408,1	263,06
5	$C_5 H_{12+}$	0,0097	85	3,555	460,000	300,96
6	N ₂	0,0095	28,013	3,39	126,2	77,36
7	CO_2	0,0035	44,01	7,38	304,2	194,7
8	H_2S	0,0338	34,08	8,93	373,2	211,4

Номер комп-та	Компонент	Молярный со- став газа	Молекул. масса комп-та	$M_i^*X_i$	ад Критич. давле- ние компонента	$P_{_{\rm kp}}^{}*X_{_{i}}$	д Критич. темп-ра компонента	$T_{kp}^*X_i$	темп-ра кипения компонента	O _j	$\omega_i^{\ \ \ \ } X_i$
		дол. ед.	г/моль		МПа		К		К		
1	CH_4	0,8844	16,043	14,188423	4,6	4,06824	190,6	168,566	111,86	0,0124	0,01098
2	$C_{3}H_{6}$	0,0223	30,070	0,67056	4,88	0,10882	305,4	6,810	184,56	0,1052	0,00235
3	C_2H_8	0,0303	44,097	1,33614	4,24	0,12847	369,8	11,204	230,9	0,1595	0,00483
4	$C_{4}H_{10}$	0,0065	58,124	0,37780	3,65	0,02372	408,1	2,653	263,06	0,2144	0,00139
5	C.H	0,0097	85,000	0,82450	3,555	0,03400	460,0	4,462	300,96	0,2578	0,00250
6	N.	0,0095	28,013	0,26612	3,39	0,03220	126,2	1,199	77,36	0,0388	0,00037
7	CO.	0,0035	44,010	0,15403	7,38	0,02583	304,2	1,065	194,7	0,4236	0,00148
8	H.S	0,0338	34,080	1,15190	8,93	0,30183	373,2	12,614	211,4	0,0925	0,00312
	Сум- ма	1		18,969497		4,72361		208,574			0,02703

Определение фактора ацентричности смеси

Таблица 1.15

Параметр	Значение	Размерность
P _{un}	20	МПа
T _{un}	323	К
$P_{_{ m HD}}$	4,234046668	
$T_{ m nn}$	1,548608	
ω _{em}	0,027034166	
Z(0)	0,8	(графически)
Z(1)	0,22	(графически)
Z	0,805947516	

Определение коэффициента сверхсжимаемости с учетом фактора ацентричности

Задача 11 – Определение коэффициента сверхсжимаемости при наличии полярных компонентов.

Коэффициент сверхсжимаемости при наличии полярных компонентов более 5% определяется по формуле (1.16). Фактор ацентричности и критические параметры смеси аналогичны значениям, полученным в задаче 10.

Таблица 1.16

Исходные данные для определения коэффициента сверхсжимаемости

Параметр	Значение	Размерность
$P_{_{ m WD}}$	4,7236135	МПа
$T_{_{ m ND}}$	208,57441	К

25

		1
Параметр	Значение	Размерность
P_{aa}	20	МПа
T_{aa}	323	К
$P_{\rm m}$	4,234046668	
T_{m}	1,548608	
$\omega_{_{\rm CM}}$	0,027034166	
Z(0)	0,8	(графически)
Z(1)	0,22	(графически)
Z	0,805947516	

Продолжение табл. 1.16

Таблица 1.17

Определение коэффициента сверхсжимаемости при наличии полярных компонентов

Параметр	Значение	Размерность
ω_{cm}	0,027034166	МПа
P_{nn}	20	К
$T_{_{mn}}$	323	
$P_{_{ m HD}}$	4,205214466	
$T_{_{ m HD}}$	1,544545555	
Z(0)	0,912	
<i>Z</i> (1)	0,295	
a*	2,035E-19	M ³
β*	2,746E+30	
£	0,23	
J*	1712,374	
$T_{_{\rm II, MD}}$	209,123	К
P_{nm}	4,756	МПа
Z	0,919975079	

Задача 12 – Определение коэффициента сверхсжимаемости с учетом фактора ацентричности при наличии более 5% СО₂.

Коэффициент сверхсжимаемости при наличии СО₂ более 5% определяется по формуле (1.16), пример решения задачи представлен в **таблице 1.18**. Фактор ацентричности и критические параметры смеси аналогичны значениям, полученным в **задаче 10**.

Параметр	Значение	Размерность
Ω _{vr} ,	0,024646798	
$P_{\mu \mu}$	20	МΠа
T_{nn}	323	К
З	2,124115602	
A	0,1038	
В	0,0338	
$T_{_{\rm II,MD}}$	215,03104	К
$P_{\mu\nu\rho}$	4,92649	МΠа
$T_{n,\infty}^{*}$	212,9069244	К
$P_{\mu\nu\nu}^*$	4,877825239	МПа
$P_{\rm m}^{*}$	4,100187896	
$T_{\mu\nu}^{*}$	1,517094857	
Z(0)	0,8	
Z(1)	0,2	
Z	0,80492936	

Определение коэффициента сверхсжимаемости при наличии СО, более 5%

Задача 13 – Определение коэффициента сверхсжимаемости по уравнению Редлиха–Квонга.

Коэффициент сверхсжимаемости по уравнению состояния Редлиха–Квонга определяется по формуле (1.22), пример решения задачи представлен в **таблицах 1.20** и **1.21**. Заданны текущее давление P=14,71 МПа и текущая температура T=303 [°]К.

Таблица 1.19

Номер	Компонент	Молярный состав газа	Молекул. масса комп-та	Критич. давление компонента	Критич. темп-ра компонента
комп-та		<i>X</i> , дол. ед.	M_i $\Gamma/$ моль	$P_{_{ m kp}i} \ { m M\Pi a}$	$rac{T_{_{\mathrm{kp}i}}}{\mathrm{K}}$
1	CH_4	0,92	16,043	4,6	190,6
2	C_2H_6	0,06	30,07	4,88	305,4
3	C_3H_8	0,02	44,097	4,24	369,8

Исходные данные для решения задачи по определению коэффициента сверхсжимаемости по уравнению Редлиха-Квонга

Пример определения вычислительных коэффициентов
по уравнению состояния Редлиха–Квонга

Номер комп-та	Компонент	Молярный состав газа	Молекул. масса комп-та	Критич, давле- ние компонента	Критич. темп- ра компонента	a_i	X_{iai}	b_i	$X_{_{ibi}}$
		<i>X</i> , дол. ед.	M_i г/моль	$P_{_{\kappa ho ho}} M\Pi$ a	$egin{array}{c} T_{\kappa hoi}\ \mathbf{K} \end{array}$				
1	CH_{i}	0,92	16,043	4,6	190,6	0,050352497	0,0463243	0,000995	0,000915
2	C_2H_6	0,06	30,07	4,88	305,4	0,154249713	0,009255	0,001503	0,000090
3	C ₂ H ₈	0,02	44,097	4,24	369,8	0,286432975	0,0057287	0,002095	0,000042

Таблица 1.21

Пример определения коэффициента z по уравнению состояния Редлиха–Квонга

Параметр	Значение
	0,05715004
b _{см}	0,001227556
Z	0,8006

Задача 14 – Определение коэффициента сверхсжимаемости по уравнению Пенга–Робинсона.

Коэффициент сверхсжимаемости по уравнению состояния Пенга–Робинсона определяется по формуле (1.25), пример решения задачи представлен в **таблице 1.22**. Заданы текущее давление *P*=5,01 МПа и текущая температура *T*= 289 [°]K. Критические параметры смеси T_{so} = 180,478 [°]K, P_{so} =4,24 МПа.

Таблица 1.22

Параметр	Значение
ω	0,03748846
m	0,432077611
$T_{ m m}$	1,6013
P_{m}	1,1816
$a_{_{ m vn}}$	242422,8344
b	27,50322927
(T)	1,0304
a(T)	249802,1891
A	0,2171
В	0,0574
Ζ	0,845819724

Пример определения коэффициента z по уравнению состояния Пенга–Робинсона

1.4. Вязкость газа

Вязкость – физическое свойство вещества, которое проявляется при движении и характеризует сопротивляемость скольжению и сдвигу одной части относительно другой. Величина силы внутреннего трения между двумя движущимися слоями пропорциональна площади соприкосновения этих слоев и изменению скорости движения в направлении, перпендикулярном плоскости соприкосновения слоев. Коэффициент пропорциональности между силой внутреннего трения и произведением площади на изменение скорости движения называется коэффициентом динамической вязкости. Размерность коэффициента динамической вязкости: сила время/(длина)², т.е. H·c/м²или Па·с.

На **рисунке 9** приведены зависимости для определения коэффициента приведенной динамической вязкости μ_{np}^* природных газов при различных давлениях и температурах.

Рис. 9. Зависимость приведенной вязкости µ^{*} _{пр} от приведенных давления и температуры

Величина μ_{np}^{*} определяется по формуле:

$$\mu_{\rm np}^* = \mu(P,T) / \mu_{\rm ar}(P_{\rm ar},T), \qquad (1.29)$$

где μ_{ar} — коэффициент вязкости газа при атмосферном давлении P_{ar} =0,098 МПа и заданной температуре, который определяется по формуле:

$$\mu_{\rm ar} = \sum_{i=1}^{n} \mu_i x_i M_i^{0.5} / \sum_{i=1}^{n} x_i M_i^{0.5}, \qquad (1.30)$$

где µ_г — коэффициент динамической вязкости *i*-го компонента при заданной температуре и атмосферном давлении.

Величина $\mu_{\mbox{\tiny herr}}$ определяется из графика, показанного на рисунке 10, или по формуле:

$$\mu_{iai} = 0,002669 \sqrt{M_i} T / \sigma_i^2 \Omega_{\mu_{iai}}$$
(1.31)

где *M_i* – молекулярная масса *i*-го компонента; Ω_{μ_{мат}} – интеграл столкновений; *T* – температура газа; σ_i – параметр потенциалов.

Рис. 10. Зависимость вязкости газов µ_{ат} от температуры при атмосферном давлении:

1 – гелий; 2 – воздух; 3 – азот; 4 – углекислый газ; 5 – сероводород; 6 – метан; 7 – этилен; 8 – этан; 9 – пропан; 10 – і-бутан; 11 – п-бутан; 12 – п-пентан; 13 – п-гексан; 14 – п-гептан; 15 – п-октан; 16 – п-нонан; 17 – п-декан

Значения констант σ , и $\Omega_{\mu_{\text{far}}}$ находят по таблице 1.23 по известному компонентному составу газа. Для нахождения $\Omega_{\mu_{\text{far}}}$ сначала вычисляют величину:

$$T_i^* = T / (\varepsilon / \mathbf{k})_i \tag{1.32}$$

Величина (ε/k) дана в таблице 1.1. Значения $\Omega_{\mu_{int}}$ в зависимости от T приведены в **таблице 1.23**.

Таблица 1.23

T [*]	$\Omega_{\mu_{iar}}$	T*	$\Omega_{\mu_{\mathrm{far}}}$	T*	$\Omega_{\mu_{iar}}$	T	$\Omega_{\mu_{iar}}$
0,30	2,785	1,35	1,375	2,80	1,058	4,90	0,930
0,35	2,628	1,40	1,353	2,90	1,048	5,00	0,927
0,40	2,492	1,45	1,333	3,00	1,039	6,00	0,896
0,45	2,368	1,50	1,314	3,10	1,030	7,00	0,877
030	2,257	135	1,296	3,20	1,022	8,00	0,854
0,55	2,156	1,60	1,279	3,30	1,014	9,00	0,833
0,60	2,065	1,65	1,264	3,40	1,007	10,0	0,824
0,65	1,982	1,70	1,248	3,50	0,999	20,0	0,743
0,70	1,908	1,75	1,234	3,60	0,993	30,0	0,700
0,75	1,841	1,80	1,221	3,70	0,987	40,0	0,672
0,80	1,780	1,85	1,209	3,80	0,981	50,0	0,650
0,85	1,725	1,90	1,197	3,90	0,975	60,0	0,633
0,90	1,675	1,95	1,136	4,00	0,970	70,0	0,619
0,95	1,629	2,00	1,175	4,10	0,965	80,0	0,608
1,00	1,587	2,10	1,156	4,20	0,960	90,0	0,597
1,05	1,349	2,20	1,138	4,30	0,955	100,0	0,588
1,10	1,314	2,30	1,122	4,40	0,951	200,0	0,532
1,15	1,352	2,40	1,107	4,50	0,946	300,0	0,502
1,20	1,382	2,50	1,093	4,60	0,943	400,0	0,481
1,25	1,424	2,60	1,081	4,70	0,938	—	
1,30	1,399	2,70	1,069	4,80	0,934	-	_

Значения интеграла столкновений $\Omega_{\mu_{hav}}$ при различных T^* для неполярных компонентов

Если в составе газа присутствуют неуглеводородные компоненты, то их влияние на величину μ_{ai} учитывается введением соответствующих поправок, зависящих от объемной концентрации неуглеводородных компонентов в смеси и от относительной плотности этой смеси при атмосферном давлении.

Значения поправок на присутствие в газе неуглеводородных компонентов могут быть вычислены аналитически по формулам:

$$\mu_{N_2} = [(0,07132x_{N_2}^{0.5} - 0,09011)\rho^{-0.25} + (0,02379 - 0,01996x_{N_2}^{0.5})] \cdot 10^{-6}, (1.33)$$

$$\mu_{CO_2} = [(0,06759x_{CO_2}^{0.5} - 0,07853)\rho^{-0.25} + (0,02906 - 0,03213x_{CO_2}^{0.5})] \cdot 10^{-6}, (1.34)$$

$$\mu_{H_2S} = [(0,09007x_{H_2S}^{0.5} - 0,12753)\rho^{-0.25} + (0,09674 - 0,06753x_{H_2S}^{0.5})] \cdot 10^{-6}. (1.35)$$

Задача 15 – Определение коэффициента вязкости в заданных условиях.

Коэффициент динамической вязкости в данной задаче определяется по формуле (1.29), пример решения задачи представлен в **таблице 1.25**. Заданы текущее давление P=62,5 МПа и текущая температура T= 316 [°]K.

Значения вязкости при заданной температуре и атмосферном давлении для каждого компонента смеси определяется по графику (рисунок 10), значение приведенной вязкости в заданных условиях определяется по графику (рисунок 9) в зависимости от приведенных давления и температуры.

Таблица 1.24

Компо- ненты	Р _{кр} ,МПа	Т _{кр} ,К	X_i	Молекуляр- ная масса	μ_i	$oldsymbol{M}_i^{ heta,5}$	$X_{i}^{*}M_{i}^{o,5}$	$\mu_i X_i * M_i^{o,5}$
CH_{i}	4,6950	190,55	0,6792	16,043	0,0115	<u>4,00537</u> 1	2,720448	0,0 <u>3</u> 12852
C_2H_6	4,9760	305,43	0,0545	30,068	0,0095	5,48343	0,298847	0,002839
C_3H_8	4,3330	369,82	0,0253	44,094	0,0087	6,640331	0,168	0,0014616
C_4H_{10}	3,8000	416,64	0,0105	58,12	0,0080	7,623647	0,080048	0,0006404
C_6H_{14}	3,0720	507,35	0,1336	86,178	0,0064	9,283211	1,240237	0,0079375
H ₂ S	9,1850	373,60	0,0336	34,082	0,0138	5,837979	0,196156	0,002707
CO ₂	7,5270	304,20	0,0574	44,011	0,0158	6,634079	0,380796	0,0060166
N ₂	3,4650	126,26	0,0059	28,016	0,0187	5,293014	0,031229	0,000584
Сумма			1,0000				5,115762	0,0534712

Исходные данные для определения динамической вязкости газа при заданной температуре и атмосферном давлении

$$\mu_{\rm ar} = \sum_{i=1}^{n} \mu_i x_i M_i^{0.5} / \sum_{i=1}^{n} x_i M_i^{0.5} = 0,05347 / 5,116 = 0,01036 \,\text{mHac},$$

$$\mu(P,T) = \mu_{\rm np}^* \cdot \mu_{\rm ar}(P_{\rm ar},T) = 7 \cdot 0,01036 = 0,0725 \,\text{mHac}.$$

Задача 16 – Определение коэффициента динамической вязкости компонента смеси при атмосферном давлении.

Коэффициент динамической вязкости при атмосферном давлении определяется по формуле (1.31).

Таблица 1.25

Исходные данные для определения динамической вязкости газа при заданных температуре и атмосферном давлении по формуле 1.31

Параметр	Значение	Размерность
P	0,1013	МПа
Т	340	К
M	16,042	
Q	3,808	
В	0	
b/k	140	

Определение динамической вязкости газа при заданных температуре и атмосферном давлении по формуле 1.31

Параметр	Значение	Размерность
Т	2,42857	
μ	1,103	
μ	0,01231	мПа*с

Задача **17** – Определение поправок на содержание неуглеводородных компонентов.

Значения поправок на присутствие в газе неуглеводородных компонентов могут быть вычислены аналитически по формулам (1.33, 1.34, 1.25).

Таблица 1.27

Компоненты	$oldsymbol{X}_i$
CH_{4}	0,7410
C_2H_6	0,0748
C_3H_8	0,0370
iC_4H_{10}	0,0076
nC_4H_{10}	0,0168
$\mathrm{iC}_{5}\mathrm{H}_{12}$	0,0032
$nC_{5}H_{12}$	0,0057
$\mathbf{C}_{6}\mathbf{H}_{14}$	0,0063
H ₂ S	0,0200
CO ₂	0,0300
N	0 0609

Исходные данные для решения данной задачи

Таблица 1.28

Пример решения задачи по определению поправок на содержание неуглеводородных компонентов

Параметр	Значение
$\mu_N =$	-0,0005718380
μ_{co2} =	-0,0004800331
$\mu_{II2S} =$	-0,0005266581

1.5. Влагосодержание газа

Влагосодержание — это количество паров воды, растворенных в единице объема природного газа при заданных условиях. Содержание водяных паров в газе характеризуется абсолютной и относительной влажностью. Под абсолютной влажностью газа *W* при заданных давление и температуре понима-

ется отношение массы водяных паров, содержащихся в газе, к объему, приведенному к стандартным условиям этого газа, из которого удалены пары воды. Абсолютная влажность измеряется в кг/1000 м³. Относительная влажность – это отношение фактического содержания паров воды в единице объема газа при заданных давлении и температуре к его влагоемкости, т.е. к количеству водяных паров в том же объеме и при тех же давлении и температуре, но при помощи насыщения газа парами воды. Относительная влажность измеряется в долях единицы или в процентах.

Влагосодержание газа зависит от состава газа, давления, температуры и физико-химических свойств конденсированной воды, с которой газ находится в термодинамическом равновесии, оно определяется по формуле

$$W = W_{0.6} C_c C_p,$$
 (1.36)

где $W_{0.6}$ – влагосодержание газа с относительной плотностью $\overline{\rho} = 0,6$ с пресной водой; C_c – поправка на соленость воды; C_p – поправка на отклонение плотности данного газа от величины $\overline{\rho} = 0,6$.

Величина $W_{0.6}$ может быть рассчитана по формуле:

$$W_{0.6} = A/P + B,$$
 (1.37)

где A – влагосодержание идеального газа; B – коэффициент, зависящий от состава газа; P – давление.

Значения коэффициентов *A* и *B* приведены в **таблице 1.27**. Эти же коэффициенты могут быть определены аналитическим путем.

Величину А можно определить по формуле:

$$A = \frac{P_{\rm BH} M_{H_2 O} P_{\rm ar}}{R T_{\rm cr} Z_{\rm ar}},$$
(1.38)

где *P*_{ви} – давление насыщенного пара воды над конденсированной фазой, которое может быть определено по данным, приведенным в **таблицах 1.28** для различных температур, или рассчитано приближенно при 203≤*T*≤373 К по формуле:

$$P_{\mu\nu} = exp[-0.60212(0.01T)^{4} + 1.475(0.01T)^{3} - 2.97304(0.01T)^{2} + +7.19863(0.01T)^{4} + 6.41465]$$
(1.39)

и при 373*≤Т≤*623 К по формуле:

$$P_{\text{Bir}} = exp[-0.0366(0.01T)^{4} + 0.4375(0.01T)^{3} - 2.2148(0.01T)^{2} + 6.8574(0.01T) + 6.4856].$$
(1.40)

140лица 1.29	7	Габлица	1.29
--------------	---	---------	------

						•	,	
Т, К	А	В	Т, К	Α	В	Т, К	Α	В
233	0,1451	0,00347	281	8,20	0,0630	329	120,0	0,487
235	0,1780	0,00402	283	9,39	0,0696	331	138,0	0,521
237	0,2189	0,00465	285	10,72	0,0767	333	152,0	0,562
239	0,2670	0,00538	287	12,39	0,0855	335	166,5	0,599
241	0,3235	0,00623	289	13,94	0,0930	337	183,3	0,645
243	0,3930	0,00710	291	15,75	0,1020	339	200,5	0,691
245	0,4715	0,00806	293	17,87	0,1120	341	219,0	0,741
247	0,5660	0,00921	295	20,15	0,1227	343	238,5	0,793
249	0,6775	0,01043	297	22,80	0,1343	345	260,0	0,841
251	0,8090	0,01168	299	25,50	0,1453	347	283,0	0,902
253	0,9600	0,01340	301	28,70	0,1595	349	306,0	0,965
255	1,1440	0,01510	303	32,30	0,1740	351	335,0	1,023
257	1,3500	0,01705	305	36,10	0,1895	353	363,0	1,083
259	1,5900	0,01927	307	40,50	0,2070	355	394,0	1,148
261	1,8680	0,02115	309	45,20	0,2240	357	427,0	1,205
263	2,1880	0,02290	311	50,80	0,2420	359	462,0	1,250
265	2,5500	0,02710	313	56,25	0,2630	361	501,0	1,290
267	2,9900	0,03035	315	62,70	0,2850	363	537,5	1,327
269	3,4800	0,03380	317	69,25	0,3100	365	582,5	1,367
271	4,0300	0,03770	319	76,70	0,3350	367	624,0	1,405
273	4,6700	0,04180	321	85,29	0,3630	369	672,0	1,445
275	5,4000	0,04640	323	94,99	0,3910	371	725,0	1,487
277	6,2250	0,05150	325	103,00	0,4220	373	776,0	1,530
279	7,1500	0,05710	327	114,00	0,4540	383	1093,0	2,620

Значения коэффициентов А и В в формуле (2.37)

Значение коэффициента В в формуле (1.37) приближенно может быть определено по формуле:

$$B=10^{-3}exp[0,0685(0,01T)^{4}-0,3798(0,01T)^{3}+1,06606(0,01T)^{2}-$$

$$-2,00075(0,01T)+4,2216], \qquad (1.41)$$

где T – температура, ^{$^{0}}С.$ </sup>

Таблица 1.30

Т, К	Р _{ви} , МПа	Т, К	Р _{ви} , МПа	Т, К	Р _{ви} , МПа							
233	0,000013	283	0,00126	333	0,02057							
238	0,000023	288	0,00176	338	0,02582							
243	0,000038	293	0,00241	343	0,03219							
248	0,000065	298	0,00327	348	0,03982							
253	0,000106	303	0,00441	353	0,04892							
258	0,000170	308	0,00580	358	0,05971							
263	0,000268	313	0,00762	363	0,07242							
268	0,000496	318	0,00989	368	0,08731							
273	0,000628	323	0,01274	373	0,10466							
278	0,000902	328	0,01625	378	0,14799							

Значения **Р**_{ви} от температуры

Значение $W_{0.6}$ может быть вычислено по формуле, полученной путем обработки данных по *A* и *B*, приведенных в **таблице 1.29**:

 $W_{06} = 0.4736 exp(0.0735T - 0.00027T^{2}) + 0.0418 exp(0.054T - 0.0002T^{2}) \quad (1.42)$

Поправки на соленость воды и на плотность с учетом влияния температуры определяются по формулам:

$$C_e = 1 - 0.225 \cdot 10^{-5} \cdot K, \qquad (1.43)$$

$$C = 10^{-7} T^2 - 1,1 \cdot 10^{-3} T \overline{\rho} - 0,079 \overline{\rho}^2 + 0,73 \cdot 10^{-3} T + 0,156 \overline{\rho} + 0,927, \qquad (1.44)$$

где K – соленость воды, кг/м³; T – температура, ^oC; $\overline{\rho}$ – относительная плотность газа.

Приведенные выше методы определения влагосодержания газа не учитывают наличие кислых компонентов. Наличие в газе CO₂ и H₂S повышает, а N₂ снижает влагосодержание газов.

Если содержание сероводорода в природном газе превышает 20 об.%, то влагосодержание определяют по правилам аддитивности, учитывающей наличие в газе сероводорода:

$$W_{0,6} = xW + x_{CO_2} W_{CO_2} + x_{H_2S} W_{H_2S}, \qquad (1.45)$$

где *x*, x_{CO_2} , x_{H_2S} – мольные доли углеводородных компонентов, двуокиси углерода и сероводорода в газе; *W*, W_{CO_2} , W_{H_2S} – содержание влаги в углеводородной части газа, двуокиси углерода и сероводорода.

Значения $W_{\text{CO}_{a}}$, $W_{\text{H}_{a}\text{S}}$ определяются графически из рисунков 11 и 12.

Рис. 12. Зависимость влагосодержания сероводорода $W_{_{\rm H2S}}$ от давления и температуры
Определение влагосодержания сероводородсодержащих газов

Для более точного определения влагосодержания сероводородсодержащего природного газа при содержании сероводорода до 50% мольных долей и давлении до P=70 МПа и температуре $10 \le T \le 175$ °С необходимо использовать следующий метод. Сначала определить влагосодержание несернистого газа (углеводородные компоненты газа). Затем определить мольное содержание в процентах эквивалентной концентрации сероводорода H_2S в сернистом газе из равенства $H_2S_{sss}=H_2S+0,7\cdot CO_2$, в %; Далее для заданной величины температуры T и рассчитанному значению эквивалентной концентрации сероводорода в газе H_2S_{sss} , используя кривые, показанные на **рисунке 13** (см. последовательность нахождения относительного влагосодержания сероводородородородорода к влагосодержанию несернистого газа) находят $W_{H,S}/W_{vra}$.

Рис. 13. Номограмма для определения относительного влагосодержания сернистого газа

Для этого необходимо для известной величины температуры горизонтальной линией пересечь кривую H_2S_{axa} , а затем из точки пересечения провести вертикальную линию до пересечения с кривой давления, при котором требуется определить влагосодержание сернистого газа. Из точки пересечения вертикальной линии с кривой давления провести горизонтальную линию до оси ординат с относительным влагосодержанием сернистого газа. Ключ к получению ответа о влагосодержании сернистого газа показан на **рисунке 13**. Из приведенных результатов видно, что с увеличением сероводорода в газе влагосодержание увеличивается.

Задача 18 – Определение влагосодержания смеси.

Коэффициент влагосодержания смеси определяется по формулам (1.36–1.41).

Таблица 1.31

Параметр	Значение	Размерность
Р	9,8	МПа
Т	333	К
р	0,7	
К	31120	КГ/М ³
T_{e_1}	293	К
$\mathbf{M}_{_{1120}}$	18	г/моль
\mathbf{P}_{ar}	0,1	МПа

Исходные данные для определения коэффициента влагосодержания

Таблица 1.32

Параметр	Значение	Размерность	Формула
\mathbf{C}_{c}	0,92998		1.43
\mathbf{C}_{p}	0,981		1.44
В	0,562		1.41
P _m	0,02057	МПа	1.39
А	152		1.38
$W_{0.6}$	2,11302	Γ/M^3	1.37
W	1,92773	Γ/M^3	1.36

Исходные данные для определения коэффициента влагосодержания

1.6. Теплоемкость газа

Теплоемкость газа – это отношение количества теплоты, подведенной к газу в заданном термодинамическом процессе, к соответствующему изменению его температуры. В зависимости от вида процесса различают изобарную теплоемкость C_p , когда процесс происходит при постоянном давлении *P=const*, и изохорную C_v , когда процесс происходит при постоянном объеме *V=const*. Единица измерения теплоемкости Дж/кг-град или Дж/моль-град. Обычно в расчетах используют удельные – массовые или молярные – теплоемкости, т.е. теплоемкости, отнесенные к единице массы или к одному молю газа. Теплоемкость природных газов зависит от давления, температу-

ры и состава газа, а также от процесса передачи тепла. Теплоемкость газа при заданных давлении и температуре определяется как сумма теплоемкостей, состоящих из теплоемкости при заданной температуре и атмосферном давлении C_p^0 и приращения теплоемкости за счет влияния давления C_p , т.е.

$$C_{p}(P,T) = C_{p}^{0}(P_{ai},T) + \Delta C_{p}(P,T).$$
(1.46)

Так как $C_p^0 - C_V^0 = R$, получим:

$$C_{\rm p} - C_{\rm v} = C_{\rm p} - C_{\rm v} + R.$$
 (1.47)

Теплоемкость газов C_p^0 при атмосферном давлении определяется аналитическим путем. При определении теплоемкости газовой смеси известного состава используют формулу:

$$C_{p.cm}^{0} = \sum_{i=1}^{n} g_i C_{p.i}^{0}, \qquad (1.48)$$

где $C_{p,i}^0$ – коэффициент теплоемкости *i*-го компонента при *P*=0,098 МПа, и заданной температуре; g_i – массовая доля *i*-го компонента в смеси.

Таблица 1.33

Коэффициенты уравнения (1.49) для определения С_р⁰, Дж/кг·град

	Молекулярная	E/C^0 ,	$F \cdot 10^2 / C^0$,	$-G \cdot 10^3 / C_{\odot}^0$,	$H \cdot 10^{5} / C^{0}$.	$N \cdot 10/C^0$,
Компоненты	масса, кг/кмоль	Дж/кг град	Дж/кг град	Дж/кг град	Дж/кг град	Дж/кг град
1	2	3	4	5	6	7
Метан	16,04	0	58522,25	15215,04	-2947,67	18575,95
Этан	30,07	0	62557,49	25663,79	36001,45	3343,11
Пропан	44,09	0	66328,12	32767,24	62295,40	-782,07
Бутан	58,12	0	65812,73	33182,44	33182,44	3,8610
Изобутан	(m.	0	68152,31	36790,16	75903,33	-1685,56
Пентан	72,15	0	65762,49	33814,98	66951,12	-112,122
Изопентан		0	66,838,91	34687,09	69556,98	-1530,40
Гексан	86,18	0	66060,17	34773,68	70914,34	-456,22
Гептан	100,20	0	66040,07	35091,50	31839,23	-503,65
Октан	Ī14,22	0	66094,50	35466,84	73861,01	-561,57
Нонан	128,26	0	65986,06	35489,58	74039,37	-522,39
Декан	142,29	0	65991,50	-35677,77	74788,39	-549,49
Кислород	32,0	0	21621,09	16458,14	49445,62	12051,12
Водород	2,02	0	330368,33	294527,51	14165,32	200717,79
Вода	18,02	0	40147,27	27801,52	79225,56	26409,75
Гелий	4,0	5191,632	0	Ō	0	0
Аргон	39,95	520,712	0	0	0	0
Криптон	83,80	248,696	0	0	0	0
Хлор. водород	36,46	741,248	14447,19	187,48	51,33	313,63
Сероводород	64,86	0	19097,88	154,95	43953,78	5109,53
Двуокись серы	34,08	0	24379,36	16676,57	45818,66	11682,30
Азот	28,01	0	21745,15	16129,31	45183,53	15429,99
Двуокись углерода	44,01	0	25745,76	19428,01	53589,36	6924,42
Окись углерода	28,01	0	22065,65	16193,91	44592,35	15197,54

Значения C_p приведены в **таблице 1.33** при нормальных условиях и показаны на **рисунке 14** в интервале изменения температуры $223 \le T \le 423$ К. Аналитически величина $C_{n,i}^0$ может быть определена по формуле:

$$C_{p,i}^{0} = E_{i} + nF_{i} + n^{2}G_{i} + n^{3}H_{i} + N_{i}/n, \qquad (1.49)$$

где E_{ρ} F_{ρ} G_{ρ} H_{ρ} N_{ρ} – коэффициенты, определяемые из таблицы 1.32, n=T/100; T – температура газа, К.

Рис. 14. Зависимость изобарной молярной теплоемкости C_p газов при атмосферном давлении от температуры

Теплоемкость газов, не содержащих кислых компонентов и азота при атмосферном давлении, можно определить по известной плотности, используя формулу:

$$C_{p}^{01} = B_{1} + B_{2}\overline{\rho} + B_{3}\overline{\rho}^{2} + T_{\mu\rho}(B_{4} + B_{5}\overline{\rho} + B_{6}\overline{\rho}^{2}), \qquad (1.50)$$

где $B_1 \div B_6$ – постоянные коэффициенты и соответственно равны: B_1 =5,5967; B_2 =-2,2335; B_3 =0,8073; B_4 =-1,0039; B_5 =3,1416; B_6 =5,7587.

При известном составе газа и наличии H_2S , CO_2 и N_2 теплоемкость при заданной температуре и атмосферном давлении может быть определена по формуле:

$$C_p^0 = C_p^{01} / (F_{CO_2} + F_{H_2S} + F_{N_2}), \qquad (1.51)$$

где C_p^{01} – теплоемкость газа без двуокиси углерода, сероводорода и азота, определяемая по формуле (2.46); F_{CO_2} , F_{H_2S} , F_{N_2} – поправки на присутствие этих компонентов, значения которых определяются по формулам:

$$F_{CO_2} = 1 + X_{CO_2} (B_7 + 1,8TB_8)$$
(1.52)

$$F_{H_0S} = 1 + X_{H_0S} (B_9 + 1.8TB_{10})$$
(1.53)

$$F_{N_2} = 1 + B_{11}X_{N_2} + B_{12}X_{N_2}^2 + 1,8T(B_{13}X_{N_2} + B_{14}X_{N_2}^2), \qquad (1.54)$$

где X_7 – мольные доли CO₂, H₂S и N₂ в газе; T – заданная температура, K; $B_7 \div B_{14}$ – постоянные коэффициенты, значения которых соответственно равны: B_7 =0,4259; B_8 =1,2432·10⁻³; B_9 =-0,0406; B_{10} =1,0089·10⁻³; B_{11} =0,3624; B_{12} =-0,4661; B_{13} =0,0976; B_{14} =0,2708.

Формула (1.46) может быть использована для расчета C_p в диапазоне изменения температуры 273 $\leq T \leq 423$ К и при концентрациях в газе сероводорода до 40%, двуокиси углерода до 20% и азота до 25% (мольных).

Приращение изобарной теплоемкости ΔC_p может быть определено графическим и аналитическим способами. Наиболее простым способом определения величины ΔC_p является графический способ по известным приведенным параметрам $P_{\rm ap}$, $T_{\rm ip}$ из **рисунка 15**.

Рис. 15. Зависимость приращения изобарной теплоемкости ΔC_p от приведенных давления и температуры

Для заданного состава газа по известным критическим параметрам каждого компонента $P_{\text{кр,i}}$ и $T_{\text{кр,i}}$ определяют псевдокритические параметры газа, а затем приведенные $P_{\text{пр}} = P/P_{\text{п,кр}}$ и $T_{\text{пр}} = T/T_{\text{п,кр}}$. По известным $P_{\text{пр}}$ и $T_{\text{пр}}$ из рисунка 15 определяют ΔC_{p} .

Использование этого способа целесообразно при составе газа, где содержание метана 98%. Если мольная концентрация высококипящих углеводородных и неуглеводородных газов превышает 10%, а также при наличии в газе полярных веществ при определении $\Delta C_{\rm p}$ следует учесть влияние третьего параметра – фактора ацентричности молекул ω . Значение фактора ацентричности вычисляется по известному составу газа. При известных значениях $P_{\rm np}$, $T_{\rm op}$ и ω приращение изобарной теплоемкости $\Delta C_{\rm p}$ определяется по формуле:

давления и температуры

Значения $\Delta C_p^{(0)}$ и $\Delta C_p^{(1)}$ определяются графически из **рисунков 17** и **18**. Размерность величины ΔC_p зависит от размерности газовой постоянной *R*. В большинстве случаев используют значение *R*=1,986 ккал/моль-град.

В этом случае для получения теплоемкости в Дж/моль-град вычисленный результат умножают на 4186,8. Для получения теплоемкости в Дж/кг-град необходимо величину $\Delta C_{\rm p}$ разделить на молекулярную массу газа *M*.

В интервалах изменения приведенных давления $0 \le P_{np} \le 6$ и температуры $1 \le T_{np} \le 4$ величины $\Delta C_p^{(0)} / R$ и $\Delta C_p^{(1)} / R$ могут быть определены графически из **рисунка 19**. Для более высоких давлений значение ΔC_p может быть определено аналитическим путем.

Для определения изохорной теплоемкости $C_{\rm v}$ можно использовать формулу:

$$C_{v} = C_{p}^{0} + C_{v} - R, \qquad (1.56)$$

где *С*_v – приращение изохорной теплоемкости, определяемое по формуле:

$$C_{v}/R = \Delta C_{v}^{(0)}/R + \omega \Delta C_{v}^{(1)}/R.$$
 (1.57)

Рис. 19. Зависимости $\Delta C_p^{(0)}/R$ (а) и $\Delta C_p^{(1)}/R$ (б) от приведенных давления и температуры

Задача 19 – Определение теплоемкости газа заданного состава. Определить теплоемкость газа заданного состава в пластовых условиях. Заданны текущее давление *P*=14,71 МПа и текущая температура *T*= 410 [°]K.

Таблица 1.34

ненты 8а	лярная я x_i	$C^0_{p,i}$	ditom	<i>x</i> ,	массо- я	$C_{r,i}^{0}g_{i}$	$P_{_{kp.i}}$,	$\mathbf{P}_{_{\mathrm{KP},\mathrm{I}}} \cdot \mathbf{x}_{i},$		$T_{_{BPL}}x_{i}$		
Компол	Молеку. доль	кДж∕ кг∙град	$M_{ ho}$ KU	M_i	8, доля ва	<i>p.</i> 101	МПа	МПа	$T_{kp,i},K$	к	ω _i	$\mathbf{\omega}_{\mathbf{j}} \cdot \mathbf{x}_{\mathbf{i}}$
CH	0,937	2,4857	16,042	15,03	0,862	2,1427	4,699	4,40	190,55	178,55	0,0104	0,0097
C_H	0,0304	2,0934	30,068	0,91	0,0524	0,1097	4,976	0,15	305,43	9,29	0,0986	0,0030
C_3H_8	0,0105	2,2834	44,094	0,46	0,0265	0,0605	4,333	0,05	369,82	3,88	0,1524	0,0016
$C_{i}H_{i0}$	0,0071	2,1654	58,12	0,41	0,0236	0,0511	3,671	0,03	425,6	3,02	0,201	0,0014
C_5H1_2	0,0017	2,2094	72,151	0,12	0,007	0,0155	3,448	0,01	469,65	0,80	0,2539	0,0004
CO_2	0,0072	0,9093	44,011	0,32	0,0188	0,0171	7,521	0,05	304,2	2,19	0,231	0,0017
H_2S	0,0061	1,0467	28,016	0,17	0,0097	0,0102	9,135	0,06	373,6	2,28	0,1	0,0006
Σ	1	_	_	17,43	1	2,4067		4,74	_	200,00	—	0,0185

Исходные данные для определения теплоемкости газа

Таблица 1.37

Пример решения задачи по определению теплоемкости газа

Параметр	Значение	Размерность	Формула
\mathbf{F}_{CO2}	1,0096723		1.52
$\mathbf{F}_{_{\mathrm{H2S}}}$	1,0042942		1.53
\mathbf{P}_{nn}	3,1023739		
T	2,0499703		
$\mathbf{C}_{\mathrm{p}}^{-\mathfrak{d}_{1}}$	10,042444	кДж∕кг*град	1.50
$\mathbf{C}_{\mathbf{p}}^{0}$	2,4062003	кДж∕кг*град	рис. 15
	0,3682672	кДж∕кг*град	1.55
$\mathbf{C}_{_{\mathrm{D}}}$	2,7744675	кДж∕кг*град	1.46
$C_{v}(0)$	0,12	кДж∕кг*град	рис. 17а
$C_{v}(1)$	0,4	кДж∕кг*град	рис. 17б
	0,1273897	кДж∕кг*град	1.57
C,	1,21859	кДж∕кг*град	1.58

1.7. Теплопроводность газа

Теплопроводность газа — это количество тепла, проходящего через его массы без перемещения, конвекции и теплообмена. Количество передаваемого тепла в газовой среде пропорционально градиенту температуры Δt , площади передачи F, продолжительности процесса теплопередачи τ , толщины слоя газа L и выражается формулой:

$$Q = \lambda \cdot F \cdot \tau \cdot \Delta t / \Delta L, \qquad (1.58)$$

где $\Delta t = t_2 - t_1 -$ разность температуры по обе стороны газовой среды толщиной ΔL ; $\lambda -$ коэффициент пропорциональности между количеством тепла и параметрами газовой среды.

Количество тепла, проходящего через единицы площади и толщины за единицы времени при разности температур, равной 1 град, принято называть коэффициентом теплопроводности. Коэффициент теплопроводности измеряется в Дж/м·с·град или Вт/м·град.

Теплопроводность газов зависит от давления, температуры и состава газа и определяется графическим или аналитическим методами. Все аналитические выражения для определения коэффициента теплопроводности получены аппроксимацией экспериментальных кривых. Наиболее простым способом определение λ является использование графических зависимостей λ/λ_{sr} и λ/λ_{sp} от приведенных давления и температуры, показанных на **рисунках 20** и **21**, или зависимости ($\lambda - \lambda_{ar}$) от приведенной плотности ρ_{sp} , показанной на **рисунке 22**. Для определения λ с использованием **рисунка 21** необходимо вычислить величину λ_{sp} , т.е. теплопроводность газа при критических P_{sp} и T_{sp} .

Рис. 20. Зависимость приведенной теплопроводности λ/λ_{ar} газов от приведенных давления и температуры – 0,6 \leq P₁₀ \leq 6 (а) и 0,1 \leq P₁₀ \leq 1 (б)

Для газовых смесей $\lambda_{_{RP}}$ должна быть определена как псевдокритическая теплопроводность по формуле:

$$\lambda_{\rm mg} = 12,24 \cdot 10^{-5} M_{\rm cm}^{-0.5} P_{\rm m, sp}^{-2/3} / T_{\rm m, sp}^{-1/6}, \tag{1.59}$$

где $M_{_{\rm CM}}$ – молекулярная масса смеси, определяемая по формуле:

$$M_{\rm cm} = \sum_{i=1}^{n} x_i M_i,$$
(1.60)

где $P_{_{\text{ILKP}_{\text{r}}}}$ и $T_{_{\text{n,KP}}}$ – псевдокритическое давление и температура.

Рис. 21. Зависимость приведенной теплопроводности $\lambda/\lambda_{\rm gp}$ газов

Рис. 22. Зависимость $\Delta \lambda = \lambda - \lambda_{sr}$ от приведенной плотности газов

При использовании рисунков 20 и 22 для определения λ необходимо вычислить величину λ_{ar} , т.е. коэффициент теплопроводности при заданной температуре и атмосферном давлении P_{ar} =0,098 МПа. Величину $\lambda_{ar.est}$ можно определить несколькими расчетными методами.

С погрешностью до 5% значение $\lambda_{am.cw}$ может быть определено по формуле:

$$\lambda_{\text{ar.cm}} = \sum X_i \cdot \lambda_{\text{ar.}i} \cdot M_i^{1/3} / \sum X_i \cdot M_i^{1/3}.$$
(1.61)

Величина λ_{аст} в формуле (1.61) определяется в зависимости от заданных температурных условий и состава газа расчетным путем. В частности:

– для метана, нафтеновых и ароматических углеводородов при $T_{
m uv}$ <1

$$\lambda_{\rm ar,i} = 2,047 \cdot 10^{-3} C_{p,i}^0 / \xi_i; \qquad (1.62)$$

– для остальных углеводородов при любых температурах

$$\lambda_{\rm ar.i} = 0.46 \cdot 10^{-3} C_{p,i}^0 (14.52T_{\rm inp} - 5.14)^{2/3} / \xi_i;$$
(1.63)

– для неуглеводородных компонентов при $T_{\rm m}$ <1

$$\lambda_{\rm ar,i} = 0.46 \cdot 10^{-3} C_{p,i}^{0^{3/4}} (20 Z_{\rm kp,i} + 1.08) T_{\rm np}^{1.81 - 2.604 Z_{\rm kp,i}};$$
(1.64)

– для неуглеводородных компонентов при 1 $\leq T_{m} \leq 3$

$$\lambda_{\text{arr},i} = 0,46 \cdot 10^{-3} C_{p,i}^{0^{3/4}} \left[(195Z_{\text{kp},i} - 31,94) T_{\text{np},i} + 16,83 - 82,5Z_{\text{kp},i} \right]^{1,524 - 2,8Z_{\text{sp},i}}; (1.65)$$

– для неуглеводородных компонентов при $3 \le T_{mp} \le 15$

$$\lambda_{\text{ar},i} = 0,46 \cdot 10^{-3} C_{p,i}^{0^{3/4}} \left[\left(7,18 - 18,25 Z_{\text{kp},i} \right) T_{\text{np},i} + 10,21 Z_{\text{kp},i} - 4,91 \right]^{1.079 - 1.97 Z_{\text{kp},i}}, (1.66)$$

где $\tilde{N}_{p,i}^0$ – теплоемкость *i*-го компонента при $P_{ar}; Z_{sp,i}$ – значение коэффициента сверхсжимаемости Z при критических параметрах *i*-го компонента $P_{sp,i}$ и $T_{sp,i}; T_{up,i}$ – приведенная температура *i*-го компонента.

$$\xi_{i} = M_{i}^{1/2} T_{\text{sp},i}^{1/6} / P_{\text{sp},i}^{2/3}; \ \xi_{\text{cM}} = \sum_{i=1}^{n} x_{i} \cdot \xi_{i}.$$
(1.67)

В формулах (1.66)ч(1.70) $C_{p,i}^0$ измеряется в Дж/моль-град, P – в МПа, T – в K и λ – в Вт/м-град.

Задача 20 – Определение теплопроводности газа заданного состава.

Теплопроводность газовой смеси известного состава определяется по формуле (1.59). Заданы текущее давление P=14,71 МПа и текущая температура T=410 [°]K. Состав и свойства смеси аналогичны заданным в предыдущей задаче.

Таблица 1.36

Параметр	Значение	Размерность	Формула
$\mathbf{P}_{\mathbf{n}\mathbf{b}}$	3,1023739		
T	2,0499703		
λ	59,642388	Вт/м*град	1.59
λ/λ_{m}	0,9		рис. 19
λ	53,678149	Вт/м*град	

Пример решения задачи по определению теплопроводности газа

Задача 21 – Определение теплопроводности газа при заданной температуре.

Теплопроводность газовой смеси известного состава при определенной температуре и атмосферном давлении определяется по формулам (1.61–1.67), пример решения задачи представлен в таблице 1.38. Заданны текущее давление P=11,1 МПа и текущая температура T=293 [°]K. Состав и свойства смеси представлены в таблице 1.37.

Таблица 1.37

Исходные данные и пример решения задачи по определению теплопроводности

Компоненты газа	Молекулярная доля x_i	$C^0_{p.i}$ Дж/ кг-гра д	М,, КГ-МОЛЬ	МПа Р _{тр.} ,	МПа $P_{xp_i} x_p$	$T_{\rm spi}, K$	$T_{xp_{i}}\mathbf{x}_{\vartheta} \mathbf{K}$	ξ _i	$x_i \xi_i$	$\lambda_{\rm art}$	$X_i^*M_i^{1/3}$	$\lambda_{_{\mathrm{arr}}}^* X_i^* M_i^{_{1/3}}$
CH4	0,98	2485,7	16,042	4,699	4,61	190,55	186,74	1875,825	1838,31	28,11719	2,4716	69,494561
C_2H_6	0,015	2093,4	30,068	4,976	0,07	305,43	4,58	7563,14	113,447	15,87962	0,0466	0,7406838
C_3H_8	0,005	2283,4	44,094	4,333	0,02	369,82	1,85	21445,76	107,229	11,2234	0,0177	0,1982536
Σ	1				4,70	_	193,17		2058,98		2,5359	70,433499

Таблица 1.38

Определение теплопроводности

Параметр	Значение	Размерность	Формула
ξ _{<i>c</i>M}	2058,9847		1.67
\mathbf{T}_{np}	1,5168022		
P	2,3610365		
$\lambda_{_{\rm ave cas}}$	27,774424	Вт/м*град	1.61
λ	44,439079	Вт/м*град	

1.8. Дросселирование газа. Коэффициент Джоуля-Томсона

Дросселирование – расширение газа при постоянной энтальпии в процессе его прохождения через сужающие устройства (т.е. через местное сопротивление, каковым являются: диафрагмы, сопла, штуцера, вентиль, кран, сужение трубы и т.д.), сопровождающееся изменением температуры, вызванным затратой энергии на преодоление внутренних молекулярных сил взаимного притяжения. Процесс, происходящий при этих условиях, т.е. при постоянстве энтальпии, называется адиабатическим. Изменение температуры газа при изоэнтальпийном его расширении называется дроссель-эффектом и установлено Джоулем и Томсоном. Отношение изменения температуры к изменению давления называется коэффициентом Джоуля–Томсона.

Коэффициент Джоуля–Томсона зависит от состава газа, давления и температуры, изменяется в широких пределах и может иметь положительный и отрицательный знак. Отрицательный знак коэффициента Джоуля–Томсона показывает, что дросселирование сопровождается нагреванием газа. Для природных газов при температурах и давлениях, встречаемых на практике, дросселирование практически всегда сопровождается охлаждением газа. С увеличением давления за его критическим значением коэффициент Джоуля–Томсона уменьшается и проходит через нуль, т.е. через инверсионную точку, и становится отрицательным. В этом случае газ при дросселировании нагревается. Чем выше давление, тем значительнее нагревание газа.

Для проведения термогазогидродинамических расчетов используют аналитический способ определения коэффициента Джоуля–Томсона *D*, по формуле:

$$D_i = T_{\rm kp} \cdot f(D_i) / P_{\rm kp} C_p. \tag{1.68}$$

В формуле (1.72) $T_{\rm kp}$, $P_{\rm kp}$ – критические температура и давление газа, метод определения которых в зависимости от состава газа изложен ранее; $f(D_i)$ – функция, определяемая по графику из **рисунка 23** в зависимости от приведенных давления и температуры газа. Функция $f(D_i)$ имеет размерность теплоемкости газа.

Графические зависимости $f(D_i)$, показанные на рисунке 23 в диапазоне изменений $1,6 \le T_{up} \le 2,1$ и $0,8 \le P_{up} \le 3,5$, могут быть выражены формулой:

$$f(D_i) = 2,343T_{\rm up}^{-2.04} - 0,071(P_{\rm up} - 0,8).$$
(1.69)

Для определения изменения температуры в результате дросселирования газа можно пользоваться номограммой, построенной для метана и показанной на **рисунке 24**. Для определения величины температуры газа после дросселирования на графике находят точку с координатами, соответствующими давлению P_1 и температуре T_1 до дросселирования. От этой точки проводят параллельно ближайшей изоэнтальпийной кривой линию до заданного после дросселирования давления P_2 и определяют T_2 .

Рис. 23. Зависимость обобщенной функции *f*(*D_i*) от приведенных давления и температуры

Рис. 24. Номограмма для определения интегрального дроссель-эффекта метана

Средний коэффициент Джоуля–Томсона при использовании изоэнтальпийных диафрагм определяется по формуле:

$$D_i = \Delta T / \Delta P \tag{1.70}$$

или из выражения для определения конечной температуры газа после дросселирования:

$$\frac{1}{T_2} = \frac{1}{T_1} - \frac{3.57\overline{P}_{\rm np}^{0.25}}{\overline{C}_p T_{\rm np1}} \left[5 \cdot 10^{-6} \ln \frac{P_1}{P_2} + 0.029 \cdot 10^{-6} \left(P_1^2 - P_2^2\right) - 20.9 \cdot 10^{-6} \left(P_1 - P_2\right) \right], (1.71)$$

где

$$\overline{P}_{np} = (P_1 + P_2)/2P_{n,sp}; T_{np1} = T_1/T_{n,sp}; \overline{C}_p = \overline{C}_p (P_{np}, T_{np1});$$
(1.72)

 \overline{C}_p – средний коэффициент теплоемкости, рассчитанный для условий средних до и после дросселя давлений и температуры.

Задача 22 – Определение коэффициента Джоуля–Томпсона при снижении давления.

Коэффициент Джоуля-Томпсона определяется по формуле (1.68). Заданы значения давления до и после дросселя $P_1=25,5$ МПа, $P_2=14,71$ МПа и текущая температура T=410 [°]К. Состав и свойства смеси представлены в **таблице 1.39**.

Таблица 1.39

Компонен- ты газа	Молеку- лярная до- ля х.	С ⁰ кДж∕ кг∙ град	M_ρ KF-MOJI	$M_i X_i$	<i>g_i,</i> доля массовая	$egin{array}{l} C^0_{p,i} g_i \ \kappa \mathcal{J} arkappa / \ \kappa \Gamma^{ullet} \ \Gamma p$ ад	Р _{кр.і} , МПа	$P_{kph} x_{j}$ МПа	Т _{кр.} , К	Т _{крл} : <i>х</i> ,,	ω _i	$\omega_i x_i$
CH	0,937	2,4857	16,042	15,03	0,862	2,1427	4,699	4,40	190,55	178,55	0,0104	0,0097
C.H	0,0304	2,0934	30,068	0,91	0,0524	0,1097	4,976	0,15	305,43	9,29	0,0986	0,0030
C_3H_8	0,0105	2,2834	44,094	0,46	0,0265	0,0605	4,333	0,05	369,82	3,88	0,1524	0,0016
C,H ₁₀	0,0071	2,1654	58,12	0,41	0,0236	0,0511	3,671	0,03	425,6	3,02	0,201	0,0014
C_5H_{12}	0,0017	2,2094	72,151	0,12	0,007	0,0155	3,448	0,01	469,65	0,80	0,2539	0,0004
$\overline{CO_2}$	0,0072	0,9093	44,011	0,32	0,0188	0,0171	7,521	0,05	304,2	2,19	0,231	$0,001\overline{7}$
H _o S	0,0061	1,0467	28,016	0,17	0,0097	0,0102	9,135	0,06	373,6	2,28	0,1	0,0006
Σ	1	-		17,43	1	2,4067		4,74	-	200,00	-	0,0185

Состав и свойства смеси

Таблица 1.40

Параметр	Значение	Размерность	Формула
\mathbf{P}_{nn}	4,2401922		1.72
T	2,0499703		1.72
\mathbf{P}_{en}	20,105		
\mathbf{C}_{p}	53,42	Дж/(моль*К)	1.72
$f(D_i)$	1,47	кДж∕(кг*моль*К)	1.69
D_i	1,16073		1.68

1.9. Гидратообразование газов

Природные газы, представляющие собой смесь различных компонентов, при определенных давлениях и температурах в присутствии воды образуют белые кристаллические вещества, названные гидратами.

Из компонентов природных газов самостоятельно образуют гидраты: метан, этан, пропан, изобутан, азот, диоксид углерода, сероводород, а также меркаптаны.

Известны две структуры гидрата: структура I состоит из 46 молекул воды, а структура II — из 136. Число молекул воды в гидрате, приходящемся на одну молекулу газа при полном заполнении всех полостей, равно: для структуры I -n=5,75, для структуры II -n=5,667.

Объем элементарной ячейки гидрата определяется по формуле:

$$V = N_0 a_0^3,$$
 (1.73)

где V – объем элементарной ячейки гидрата, м³; $N_0 = 0,6024 \cdot 10^{21}$ – число Авогадро; a_0 – параметр кристаллической решетки гидрата, м.

По известным величинам a_0 , приведенным в таблице 1.41 для гидратов структуры I ($a_0=12\cdot10^{-10}$ м) и структуры II ($a_0=17,4\cdot10^{-10}$ м), используя формулу (1.77), можно определить объем элементарной ячейки гидрата для I и II структур: $V_i=1040\cdot10^{-6}$ м³ и $V_{ii}=3173\cdot10^{-6}$ м³.

Мольный объем воды в элементарной ячейке гидрата находим по формуле:

$$\Omega = N_0 a_0^3 / N, \tag{1.74}$$

где N— число молей воды, составляющих элементарную ячейку гидрата. *Таблица 1.41*

	Струк	тура І	Структура II		
Параметр	Малая	Большая	Малая	Большая	
	полость	полость	полость	полость	
Идеальный состав	$i_1 \cdot 3i_2$	23 H ₂ O	$i_1 \cdot 2i_2$	17 H ₂ O	
Длина ребра элементарной ячейки а,, м	12.1	10^{-10}	$17,4{\cdot}10^{-10}$		
Количество молекул воды в ячейке N	4	6	136		
Среднее число молекул воды, прихо-	5.	75	5.67		
дящиеся на одну полость <i>т</i>	Э,	73	3,07		
Количество полостей в ячейке n	2	6	16	8	

Параметры элементарных ячеек газовых гидратов

Взяв из таблицы 1.41 для гидратов структуры I – N_1 =46 моль и для структуры II – N_1 =136 моль и подставив их в формулу (1.78), получаем Ω_1 =22,6·10⁻⁶ м³/моль и Ω_1 =23,33·10⁻⁶ м³/моль. Следовательно, при образовании газовых гидратов структуры I мольный объем воды увеличивается на (22,6–18)·10⁻⁶=4,6·10⁻⁶ м³/моль, а гидратов структуры II – на (23,3–18)·10⁻⁶ = 5,33·10⁻⁶ м³/моль.

Плотность воды в гидратной решетке ρ_{ur} определяется по формуле:

$$\rho_{\rm BF} = M_{H_20} / N_0 a_{0^{\circ}}^3 \tag{1.75}$$

где $M_{H_{2}0}$ – масса элементарной ячейки гидратной решетки.

Для гидратов структуры I – M_{H_20} =46·18=828,0 г, для гидратов структуры II – M_{H_20} =136·18=2448 г. С учетом этих данных из формулы (1.75) получаем $\rho_{\rm erf}$ =0,7962·10³ кг/м³ и $\rho_{\rm erf}$ =0,7715·10³ кг/м³.

Массу молекул газа в элементарной ячейке можно определить по формуле:

$$\rho_{i} = \frac{M_{i} \left(n_{1} \sum \theta_{1i} + n_{2} \sum \theta_{2i} \right)}{N_{0} a_{0}^{3}}, \qquad (1.76)$$

где *n*₁ и *n*₂ — соответственно число малых и больших полостей в элементарной ячейке; θ₁ и θ₂ — степени их заполнения молекулами *i*-го компонента газа; *M*_i — молекулярная масса *i*-го компонента газа.

Для структуры I – n_1 =2, n_2 =6, а для структуры II – n_1 =16, n_2 =8.

Степени заполнения полостей молекулами газа определяют по формуле:

$$\theta = \frac{C_i P_i}{1 + \sum C_i P_i},\tag{1.77}$$

где C_i – постоянная Лэнгмюра для газа *i*-го компонента, МПа; P_i – парциальное давление *i*-го компонента, МПа.

Для определения С можно использовать формулу:

$$C_i = 10 \exp(A_i - B_i T).$$
 (1.78)

Значения A_i и B_i для гидратообразующих компонентов газов приведены в **таблице 1.42**. Парциальное давление *i*-го компонента газа определяется по формуле

$$P_i = P x_i, \tag{1.79}$$

где *P* – давление гидратообразования, МПа; *X_i* – мольная доля *i*-го компонента в смеси.

Плотность гидратов определяется по формуле:

$$\rho_{\text{max}} = \frac{M_{H_2O} + M_i \left(n_1 \sum \theta_{1i} + n_2 \sum \theta_{2i} \right)}{N_0 a_0^3}.$$
 (1.80)

Состав гидрата также является одним из часто используемых свойств гидратов при инженерных расчетах. Для приведенного выше примера состав гидрата природного газа соответствует формуле $14,4568CH_{\star} \cdot 0,5176 \times C_2 H_6 \cdot 4,8392C_3 H_8 \cdot 2,4367 \cdot i - C_4 H_{10} \cdot 0,0272CO_2 \cdot 136H_2 O$. В более общей форме состав этого гидрата можно выразить формулой $22,2784i \cdot 136H_2 O$ или же $i-6,11H_2O$.

Полную теплоту гидратообразования газов можно определить по известным экспериментальным значениям равновесных параметров образования гидратов по формуле

$$\Delta H = R \frac{T_1 T_2 \ln P_2 / P_1}{T_1 - T_2}, \qquad (1.81)$$

где P_1 и T_1 – равновесные давления и температура гидратообразования в точке 1, а P_2 и T_2 – то же самое в точке 2; R – газовая постоянная, равная 8,31 Дж/моль-К.

Voorana	Малые	полости	Большие	полости
компонент	A_i	$ $ B_i	A_i	B_i
		Структура I		
CH_4	6,9153	0,0316	6,0966	0,0279
C_2H_6	9,4892	0,0406	11,9410	0,0418
C_2H_4	18,1735	0,0729	20,2959	0,0729
H_2S	6,0658	0,0117	4,4568	0,0117
CO ₂	14,9976	0,0588	15,2076	0,0588
N ₂	3,2485	0,0262	3,0116	0,0248
		Структура II		
CH_{i}	6,0499	0,0284	6,2957	0,0285
$C_2 H_6$	9,4892	0,0406	11,9410	0,0418
C_2H_4	18,1735	0,0729	20,2959	0,0729
C_3H_8	—	_	18,2760	0,0462
C_3H_6		_	9,6250	0,0182
C_4H_{10}			13,6942	0,0277
H ₂ S	4,8258	0,0093	2,4030	0,0063
CO,	23,0350	0,0904	25,2710	0,0978
N ₂	3,2485	0,0262	3,0116	0,0248

Значения коэффициентов А, и В,

Методы определения равновесных давления и температуры гидратообразования

Одним из простых и сравнительно приближенных методов является графический метод определения равновесных температуры и давления гидратообразования по кривым, построенным как для отдельных гидратообразующих компонентов, так и в целом для природных газов в зависимости от их относительной плотности. Методика определения условий гидратообразования по равновесным кривым заключается в следующем.

В соответствии с плотностью газа и расчетным распределением давления от пласта до системы осушки газа из графика, показанного на **рисунке 25**, определяется температура гидратообразования. Область существования гидратов на этом графике находится выше и левее кривых. Чем больше давление и плотность газа, тем выше температура гидратообразования.

Таблица 1.42

При наличии в составе газа азота, углекислого газа и сероводорода равновесные условия гидратообразования изменяются. В частности, при наличии в составе газа CO_2 и H_2S гидраты образуются более активно по сравнению с газом такой же плотности, но не содержащим этих компонентов. На **рисунке 26** показаны кривые гидратообразования основных компонентов природного газа.

Температуру гидратообразования природного газа, содержащего до 50 об.% H₂S и до 10% C₃H₈ в диапазоне изменений давления 0,3≤P≤30 МПа, можно определить графически из **рисунке 27а**. Точность этого определения составляет 1,7°C. Последовательность определения температуры гидратообразования при наличии в газе H₂S приведена в Приложении.

Влияние наличия пропана в газе от 0 до 10 об.% на температуру гидратообразования учитывается с помощью вспомогательного графика, показанного на **рисунке 27б**. Поправка на влияние C_3H_8 определяется следующим образом: на вспомогательном графике отыскиваются линии изоконцентрат, соответствующие содержанию H_2S , равному 5%, и C_3H_8 , равному 0,5%. От точки пересечения этих линий проводят перпендикулярную линии $H_2S=5\%$ прямую по направлению вниз до пересечения уровня, соответствующего линии P=4 МПа, а от точки их пересечения проводят горизонтальную линию влево до пересечения с осью ординат. Значение на оси ординат температуры T=-2°C соответствует поправке, вызванной наличием пропана в газе, 0,25%. Эту поправку следует вычесть из значения температуры гидратообразования, т.е. T= T_p - ΔT =18–2=16 °C.

Рис. 27. Номограмма для определения температуры гидратообразования сероводородсодержащих газов (а) и поправка на наличие пропана в газе (б)

Если поправка на наличие пропана будет определяться по правой части вспомогательного графика, то она прибавляется к T_p . Приведенная диаграмма может быть использована для определения T_p при наличии в газе кислых компонентов, т.е. H_2S и CO_2 , до 70% при соотношениях $H_2S/CO_2=0,33-10$.

Аналитическую зависимость равновесной температуры гидратообразования от давления можно выразить формулой:

$$T_{p} = a(1 + lgP) \pm b, \qquad (1.82)$$

где *а* и *b* – коэффициенты, определяемые по результатам экспериментов для каждого месторождения.

Для давлений до 10 МПа температуру гидратообразования приближенно можно оценить:

в области положительных температур формулой:

$$T_{\rm p} = 18,47(1+lgP) - B;$$
 (1.83)

в области отрицательных температур формулой:

$$T_{\rm p} = -58,5(1+lgP) + B_{\rm p} \tag{1.84}$$

где *В* и *В*₁ – коэффициенты, определяемые из **рисунка 28** в зависимости от отношения:

$$\varepsilon = \sum_{i=1}^{n} x_i \rho_i / \sum_{i=1}^{n} x_i, \qquad (1.85)$$

где $\sum_{i=1}^{n} x_i \rho_i$ – сумма парциальных плотностей изучаемого газа; $\sum_{i=1}^{n} x_i$ – сумма

в объемных долях единицы концентрации газов, обладающих гидратообразующими способностями; ε – характеризует плотность гидратообразующих компонентов рассматриваемого газа.

Рис. 28. Зависимости коэффициентов В и В,, от є

Рис. 29. Зависимости коэффициентов а и b от C

При наличии в газе сероводорода и углекислого газа температуру гидратообразования можно определить по формуле:

$$T_{p} = T_{\text{\tiny H}} + \frac{T_{\text{\tiny H}}(\lg P - 0, 415)}{13,71 - \lg P} + \frac{Z}{a + bZ},$$
(1.86)

где *T*_н – нормальная температура, равная 273,15 К; *а* и *b* – коэффициенты, определяемые графически из **рисунка 29** в зависимости от величины *C*:

$$C = x_{II_2S} / Z \tag{1.87}$$

 $Z = x_{H_2S} + x_{CO_2}$ суммарное содержание H_2S и CO_2 в объемных процентах в составе газа.

По формуле (1.90) температура гидратообразования определяется с приемлемой точностью при содержании неуглеводородных компонентов в составе газа до 30 об.%. *Задача 23* – Определение объема элементарной ячейки гидрата природного газа.

Объем элементарной ячейки гидрата природного газа определяется по формуле (1.73). Исходные данные представлены в **таблице 1.43**.

Таблица 1.43

Исходные данные для определения объема элементарной ячейки гидрата природного газа

Параметр	Значение	Размерность
$N_{_0}$	6,024E+23	
$a_{_{0i}}$	1,2E-09	М
A_{α}	1,74E-09	М

Таблица 1.44

Пример определения объема элементарной ячейки гидрата природного газа

Параметр	Значение	Размерность
VI	0,00104	M ³
VII	0,00317	M ³

Задача 24 – Определение мольного объема воды в элементарной ячейке гидрата природного газа.

Мольный объем воды, содержащейся в элементарной ячейке гидрата природного газа, определяется по формуле (1.74), пример решения задачи представлен в **таблице 1.46**.

Таблица 1.45

Исходные данные для определения мольного объема воды в элементарной ячейке гидрата природного газа

Параметр	Значение	Размерность
$N_{ m o}$	6,024E+23	
$N_{ m r}$	46	МОЛЬ
N_{11}	136	моль
$a_{_{01}}$	1,2E-09	М
a_{011}	1,74E-09	М

Таблица 1.46

Определение объема элементарной ячейки гидрата природного газа

Параметр	Значение	Размерность
Ω ,	2,3E-05	м ³ /моль
$\mathbf{\Omega}_{\mathrm{u}}$	2,3E-05	м ³ /моль

Задача 25 – Определение плотности гидрата природного газа. Исходные данные и состав смеси представлены в **таблице 1.47–1.48**. Плотность гидрата природного газа определяется по формуле (1.80).

Таблица 1.47

Исходные данные для определения плотности гидрата природного газа

Параметр	Значение	Размерность
Pp	7	МПа
Тр	287,26	К
N _o	6,024E+23	

Таблица 1.48

Пример определения плотности гидрата природного газа

Компоненты газа	Молекулярная доля х,	Парциальное дав- ление гидратообр- го комп-та, <i>P</i> ,	C,	C _u	$P_i^*C_i$	$P_i^*C_n$	Θι	Θ"
CH	0,9497	6,648	1,214461894	1,50889122	8,0737427	10,0311089	0,865846116	0,070945
$C_{5}H_{6}$	0,0296	0,207	1,137723223	9,35692858	0,2355087	1,93688422	0,025256477	0,013699
C_3H_8	0,0081	0,057	—	1490,95643	_	84,9845166	_	0,601054
nC ₁ H ₁₀	0,0036	-	-	-	Ι	-	—	-
iC ₃ H ₁₀	0,002	0,014	_	3101,63011	—	43,4228215	—	0,307108
$C_{5}H_{12}$	0,0028		—	_	_	_	—	_
	0,0042	0,029	0,532209055	0,59425729	0,0154341	0,01723346	0,001655183	0,000122
Σ	1				8,3246854	140,392565	0,892757777	0,992927

Таблица 1.49

Определение плотности гидрата природного газа

Параметр	Значение	Размерность
ρ _{тидр}	893,97599	$\kappa\Gamma/m^3$

Задача 26 – Определение теплоты гидратообразования природного газа. Теплота гидратообразования определяется по формуле (1.81), пример решения задачи представлен в **таблице 1.51**.

Таблица 1.50

Исходные данные для определения теплоты гидратообразования природного газа

Параметр	Значение	Размерность
R	8,31	Дж/моль*К
P1p	7	МПа
T1p	287,26	К
P2p	5,6	МПа
T2p	285,16	К

Таблица 1.51

<u>^</u>		-	
Οπορποποιμία τοπποτω	THIDSTOOD	ND33UD3HH a	природного газа
Onpedeneniae remaining	тидратооч	paoobanna	πρηρομησιοιασα
1 7 7	, 1	1	

Параметр	Значение	Размерность
H	72331,9	$\kappa\Gamma/M^3$

Задача **27** – Определение равновесного давления гидратообразования природного газа.

Равновесное давление гидратообразования определяется по формулам (1.82–1.85), пример решения задачи представлен в **таблице 1.53**. Задано значение равновесной температуры гидратообразования $T_p = 10$ °C. Состав и свойства смеси представлены в **таблице 1.52**.

Таблица 1.52

Компоненты газа	Молекулярная доля <i>х</i>	Молекулярная масса	Плотность $\rho_i, \frac{\kappa 2}{M^3}$
CH_4	0,9	16	0,71428571
$C_2 H_6$	0,02	30	1,33928571
$C_{3}H_{8}$	0,01	44	1,96428571
nC_4H_{10}	0,005	58	2,58928571
iC_4H_{10}	0,005	58	2,58928571
$\mathrm{iC}_{5}\mathrm{H}_{12}$	0,005	72	3,21428571
$\mathrm{iC}_{5}\mathrm{H}_{12}$	0,005	44	1,96428571
$C_{6}H_{14}$	0,004	34	3,21428571
N ₂	0,2046	44	1,96428571
	1		

Состав и свойства смеси для определения равновесного давления гидратообразования

Таблица 1.53

Определение равновесного давления гидратообразования природного газа

Параметр	Значение	Размерность	Формулы
x_i	0,94		сумма в объемных долях единицы концен- трации газов, обладающих гидратообра-
			зующими способностями
$x_i^* \mathbf{\rho}_i$	0,545		
З	0,57979		1.85
В	19		рис. 26
lgPp	0,57011		
Pp	3,71633	МΠа	1.82

Задача 28 – Определение равновесной температуры гидратообразования при наличии в газе сероводорода и углекислого газа. Равновесная температура гидратообразования при наличии в составе газовой смеси сероводорода и углекислого газа определяется по формуле (1.86), пример решения задачи представлен в **таблице 1.55**. Заданная величина давления *P*=7 МПа. Состав пластовой смеси представлен в **таблице 1.54**.

Таблица 1.54

Компоненты газа	Молекулярная доля x_i	Молекулярная масса
CH_{*}	0,4748	16
C_2H_6	0,0192	30
C_3H_8	0,0093	44
$nC_{i}H_{i0}$	0,0038	58
$iC_{A}H_{10}$	0,0018	58
iC_5H_{12}	0,0506	72
H,S	0,225	34
CO ₂	0,2155	44
	1	

Состав пластовой смеси

Таблица 1.55

Определение теплоты равновесной температуры гидратообразования природного газа при наличии в газе сероводорода и углекислого газа

Параметр	Значение	Размерность	Примечание
7	44.05		суммарное содержание H_2S и CO $_2$ в объем-
	44,05		ных процентах в составе газа
C	0,510783		1.87
a	0,89		рис. 27
<i>b</i>	0,0325		рис. 27
T_{a}	309,5035	К	1.86

Глава 2

ОПРЕДЕЛЕНИЕ ДАВЛЕНИЯ, ТЕМПЕРАТУРЫ И ДЕБИТА ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН

2.1. Определение давления на забое вертикальных остановленных скважин

Методика расчета забойного давления зависит от наличия в газе жидких и твердых примесей, структуры течения газожидкостного потока, конструкции скважин и забойного оборудования.

Под пластовым давлением понимается давление на забое остановленной скважины после полного его восстановления.

Для определения пластового давления расчетным путем исходят из условия равновесия столба газа в стволе скважины и избыточного давления на устье с пластовым давлением. Давление на забое остановленной скважины глубиной Н определяется по формуле:

$$P_{3} = P_{3.11}^{2} e^{2S_{b_{rac}}}$$
(2.1)

где

$$S_{\rm\scriptscriptstyle B}^{\prime\prime} = 0,03415 \frac{\overline{\rho} \cdot \rho \cdot (H_{\rm\scriptscriptstyle B} + R_{\rm\scriptscriptstyle KDM})}{Z_{\rm\scriptscriptstyle CD,B}^{\prime} \cdot T_{\rm\scriptscriptstyle CD,B}^{\prime}}; \qquad (2.2)$$

 $P_{\rm cr}$ – статическое давление на устье скважины, МПа; $\overline{\rho}$ – относительная плотность газа; $T_{\rm cp}$ – средняя температура газа в интервале между нейтральным слоем земли в данном регионе и глубиной *H* в градусах Кельвина, *K*.

Средняя температура определяется формулой:

$$T_{\rm cp} = \frac{T_{\rm Hc} + T_{\rm H}}{2}$$
 или $T_{\rm cp} = \frac{T_{\rm H} - T_{\rm Hc}}{\ln T_{\rm H} / T_{\rm Hc}}$, (2.3)

где $T_{\rm H}$ и $T_{\rm Hc}$ – температуры газа на глубинах H и нейтрального слоя.

В качестве расчетной глубины следует использовать глубину середины интервала перфорации или середины газонасыщенного интервала. Для наклонных скважин глубина, на которой считается давление, должна быть определена с учетом наклона ствола по следующей формуле:

$$H = L \cdot \cos \alpha, \tag{2.4}$$

где H – вертикальная глубина скважины; α – угол наклона ствола скважины; L – длина скважины.

Коэффициент сверхсжимаемости Z, так же как и температура газа, заменяется на Z_{cp} . Средний коэффициент сверхсжимаемости Z_{ep} зависит от

средних давления и температуры газа в стволе скважины. Для определения среднего давления необходимо знать давление на устье скважины и на глубине H, а чтобы определить давление на этой глубине, нужно знать коэффициент Z. Поэтому для определения пластового давления применяют метод последовательных приближений. Среднее значение коэффициента Z_{cp} зави-

сит от $P_{\rm cp}$ и $T_{\rm cp}$.

Значение *P*_{со} определяется по формуле:

$$P_{\rm cp} = (P_{\rm v} + P_{\rm H})/2, \qquad (2.5)$$

где P_y – устьевое статическое давление в затрубном пространстве $P_{_{\rm зап}}$ или буферное давление $P_{_{\rm буф}}$.

Для определения $P_{\rm cp}$ необходимо знать давление на глубине H, т.е. значение $P_{\rm u}$.

Из-за отсутствия возможности определения среднего давления $P_{\rm cp}$, от которого зависит коэффициент $Z_{\rm cp}$, необходимо сначала определить ориентировочное значение пластового давления $P_{\rm nu.op}$ по ориентировочному значению коэффициента $Z_{\rm op}$. Ориентировочное значение коэффициента $Z_{\rm op}$ определяется путем принятия вместо $P_{\rm cp}$, давления на устье скважины $P_{\rm y}$, т.е. допускается, что $P_{\rm cp} \approx P_{\rm y}$. По известному измеренному устьевому давлению определяется приведенное давление: $P_{\rm up,y} = P_{\rm y} / P_{\rm sp}$ и $T_{\rm up} = T_{\rm cp} / T_{\rm sp}$, необходимо определить $Z_{\rm op}$, а затем рассчитать значение $S_{\rm op}$ по формуле:

$$S_{\rm op} = 0.03415 \cdot \overline{\rho} \cdot H / Z_{\rm op} T_{\rm op}. \tag{2.6}$$

Далее, используя формулу (2.7), вычислить ориентировочное значение пластового давления:

$$P_{\text{nutop}} = P_{\text{cr}} \cdot e^{S_{\text{op}}}.$$
(2.7)

Затем по известному $P_{_{\rm ULOD}}$ рассчитать $P_{_{\rm CD}}$ по формуле:

$$P_{\rm cp} = (P_{\rm cr} + P_{\rm natop}) / 2.$$
 (2.8)

Зная P_{cp} , вычислить приведенное давление:

$$P_{\rm up} = P_{\rm cp} / P_{\rm uk}. \tag{2.9}$$

Зная $P_{\rm up}$ и $T_{\rm up}$, найти значение $Z_{\rm cp}$. Расчеты давления в газовых и газоконденсатных скважинах показывают, что для получения значения пластового давления с точностью до сотой доли МПа достаточно второго приближения. Если в составе добываемого газа значительное количество высококипящих углеводородов и неуглеводородных газов, то величину коэффициента Z обязательно следует рассчитать более точно или определить хотя бы по трем параметрам. Для основной массы газовых и газоконденсатных месторождений точность определения пластового давления на втором приближении меньше и равна точности приборов, с классом точности 0,4% используемых для измерения давления.

По результатам испытания скважин на стационарных режимах фильтрации, используя формулу:

$$P_{_{\rm III}}^2 - P_{_{3i}}^2 = aQ_i + bQ_i^2, \qquad (2.10)$$

систему уравнений при неизвестном пластовом давлении можно представить в виде:

$$(P_{31}^{2} - P_{3i}^{2})/(Q_{i} - Q_{1}) = a + b(Q_{i} + Q_{1}),$$

$$(P_{32}^{2} - P_{3i}^{2})/(Q_{i} - Q_{2}) = a + b(Q_{i} + Q_{2}),$$

$$(P_{33}^{2} - P_{3i}^{2})/(Q_{i} - Q_{3}) = a + b(Q_{i} + Q_{3})$$
(2.11)

и т.д.

Из графической зависимости $(P_{3i}^2 - P_3^2)/(Q_i - Q)$ от $(Q_i + Q)$ можно определить коэффициенты фильтрационного сопротивления *a* и *b*. Аналогичные сочетания составляются для второго, третьего и других режимов. Получаемого при этом числа сочетаний на 5-ти режимах вполне достаточно, чтобы построить качественную индикаторную кривую для определения этих коэффициентов. В общем виде число сочетаний определяется по формуле:

$$N = \sum_{i=1}^{n} (n-i), \qquad (2.12)$$

где *n* – число; *i* – порядковый номер режимов.

Определив таким образом коэффициенты фильтрационного сопротивления *a* и *b* и используя один из режимов с известными забойным давлением и дебитом, можно вычислить пластовое давление по формуле (2.10).

По результатам испытания скважины при нестационарных режимах фильтрации пластовое давление может быть определено путем обработки кривых восстановления давления при следующих условиях:

- если время работы скважины перед остановкой *T* меньше чем 20*t*, где t время, необходимое для полного восстановления давления, то КВД обработанная в координатах $P_3^2(t)$ от lg(T+t)/t, отсекает на оси $P_3^2(t)$ отрезок, равный P_{104}^2 ;
- если время работы скважины до остановки *T*≥20*t* времени для восстановления *t*, то при этом используется экстраполяция прямолинейного участка кривой восстановления давления, обработанная в координатах *P*²₃(*t*) от *lg t* до координаты *lg t=lg T*. Это позволяет определить пластовое давление по формуле:

$$P_{_{\rm IU1}}^2 = P_{_3}^2(t) + 0.3\beta, \qquad (2.13)$$

где β – тангенс угла наклона прямолинейного участка КВД, построенного в координатах $P_{s}^{2}(t)$ от *lg t*.

При определении пластового давления по результатам обработки КВД особое внимание следует обратить на правильность выбранной методики определения $P_{\text{вы}}$.

Задача 29 – Определение давления на забое остановленной скважины.

Давление на забое остановленной скважины определяется по бараметрической формуле (2.1). Заданы статическое давление P=35,8 МПа и глубина скважины L=3286 м. Состав и свойства смеси представлены в **таблице 2.1**.

Таблица 2.1

	Доли, <i>X</i> _i	M_i	$X_i M_i$	\mathbf{P}_{uni}	T
CH_4	0,965	16	15,44	4,695	190,55
C_2H_6	0,01	30	0,3	4,976	305,43
C_3H_8	0,004	44	0,176	4,333	369,82
$C_{5}H_{12}$	0,011	60	0,66	3,448	460,39
CO	0,01	44	0,44	7,527	304,2

Состав и свойства газовой смеси

Таблица 2.2

Промежуточные расчеты свойств рассматриваемой смеси

Параметр	Значение	Размерность
P	4,710965	МПа
T	196,52062	К
M _{cu}	17,016	г/моль
ρ _{cm}	0,75964286	кг/мЗ
$\rho_{\rm rom}$	0,63040901	
P	4,71	МПа
T	196	К
Ten	385,4	К
T	1,966	

Таблица 2.3

Параметр	Значение	Размерность	Примечание
Zen	0,95779891		1.23
Pen	35,8	МПа	2.8
S	0,192		2.6
\mathbf{P}_{nn}	0,760		2.9
P	43,3623534	МПа	2.7

Расчет забойного давления

В данном примере среднее давление принято равным $P_{\rm cr}$ в случаях, когда потери давления по стволу значительны, задачу необходимо решать с помощью приближений либо итерацией. Тогда в первом приближении забойное давление находится, как в данном примере, во втором приближении $P_{\rm cp}$ находится по формуле (2.8). Приближения реализуются до тех пор, пока с заданной точностью значение $P_{\rm an}$ (приближения п) сойдется со значением $P_{\rm anel}$ (предыдущего приближения).

Задача 30 – Определение пластового давления по результатам исследования скважин на стационарных режимах фильтрации.

Пластовое давление по результатам исследований скважин на стационарных режимах фильтрации определяется по уравнению притока (2.10).

Таблица 2.4

Результаты газогидродинамиче	еских исследований скважин
на стационарных реж	симах фильтрации

Параметр	Значение	Размерность
a	0,0577	МПа ² /тыс.м ³ /сут
Ь	0,0004	(МПа/тыс.м ³ /сут) ²
Q	441	тыс.м³/сут
P_{α}	23,48	МПа

$P_{_{\rm ILI}}^2 = P_{_{\rm 31}}^2 + aQ_1 + bQ_1^2 = 23,48^2 + 0,0577 \cdot 441 + 0,0004 \cdot 441^2 = 25,35 \, M\Pi a$

Задача 31 – Определение пластового давления по результатам исследования скважин на нестационарных режимах фильтрации.

Пластовое давление по результатам исследований скважин на нестационарных режимах фильтрации определяется путем обработки кривых восстановления давления по формуле (2.13).

Таблица 2.5

Результаты газогидродинамических исследований скважин на стационарных режимах фильтрации

Параметр	Значение	Размерность
β	56	
\mathbf{P}_{3}	23,48	ΜΠа

 $P_{101}^2 = P_3^2(t) + 0.3\beta = 23.48 + 0.3 \cdot 56 = 23.835 M\Pi a.$

2.2. Определение забойного давления работающих вертикальных скважин

Источником информации для определения забойного давления являются давления на устье скважины. Количество источников информации зависит от конструкции скважин. Наиболее часто встречаемые конструкции газовых и газоконденсатных скважин показаны на **рисунке 29**. Незначительное число скважин имеют конструкцию, показанную на рисунке 29а. В этом случае для определения забойного давления используют барометрическую формулу вида:

$$P_{3} = P_{\text{par}} \cdot e^{S}, \qquad (2.14)$$

где $S_{\rm op} = 0,03415 \cdot \overline{\rho} \cdot H / Z_{\rm cp} T_{\rm cp},$

$$T_{\rm cp} = \frac{T_{\rm y} + T_{\rm ii}}{2}$$
 или $T_{\rm cp} = \frac{T_{\rm ii} - T_{\rm y}}{\ln T_{\rm ii} / T_{\rm y}},$ (2.15)

где T_y – температура газа на устье скважины.

Рис. 29. Схема конструкций вертикальных скважин

а÷в – однорядный лифт: а – без пакера, б – с запакерованным затрубным пространством, в – двухступенчатый

Значение T_y должно быть измерено термометром. Порядок расчета забойного давления и входящих в формулу (2.14) параметров аналогичен порядку, изложенному для определения пластового давления. В первом приближении определяется ориентировочное значение коэффициента сверхсжимаемости Z_{op} по известным P_{aar} и T_{cp} . Зная Z_{op} , вычислить S_{op} и, следовательно, $P_{a.op}$. Далее рассчитать среднее давление в стволе скважины по формуле:

$$P_{\rm cp} = (P_{\rm y} + P_{\rm 3at.op}) / 2, \qquad (2.16)$$

а затем по известному P_{cn} определить приведенное давление и температуру P_{np} и T_{np} . Далее из графика $Z=f(P_{np},T_{np})$ надо найти Z_{cp} . Далее по известным Z_{cn} , T_{co} , L, ρ и P_{aar} вычислить величину P_{s} .

Таким образом, для определения забойного давления в газовой скважине достаточно, чтобы на одном из пространств (затрубном, трубном) газ был неподвижным. Если скважина остановлена для снятия кривой восстановления давления, то для определения забойного давления во времени $P_{g}(t)$ могут быть использованы устьевые давления трубного $P_{y}(t)$ и затрубного $P_{gas}(t)$ пространств.

Для определения забойного давления по подвижному столбу газа предложены различные методы, учитывающие конструкцию фонтанных труб, наличие жидкости в потоке, существенное изменение температуры газа по стволу и др.

Для вертикальной скважины при $T=T_{cp}$ =*const*; λ =*const*; $Z=Z_{cp}$ в интервале от 0 до *H* забойное давление в работающей по фонтанным трубам газовой скважине следует определить по формуле:

$$P_{_{3}} = \left[P_{_{y}}^{2} \cdot e^{2S} + \Theta Q^{2} \right]^{0,5}, \qquad (2.17)$$

где $2S=0,0683 \cdot \overline{\rho} H/Z_{cp}T_{cp}; \theta=0,01413 \cdot 10^{-10}Z_{cp}^{-2}T_{cp}^{-2}(e^{2S}-1)\lambda/D^5; D$ – внутренний диаметр фонтанных труб, м; Q – дебит скважины, тыс.м³/сут; P_y – давление у устья фонтанных труб, МПа; H – глубина спуска фонтанных труб.

Формула (2.17) получена для чистого газа, движущегося по вертикальным трубам постоянного диаметра и шероховатости.

Порядок определения Z_{cp} и T_{cp} в формуле (2.17) аналогичен расчету этих параметров, использованных для расчета пластового давления по формуле (2.14). Входящий в формулу (2.17) коэффициент гидравлического сопротивления λ , зависит от режима течения газа, состава потока, качества изготовления труб, термобарических условий по длине ствола и от свойств газа. Значения λ при расчете P_{a} можно определить из графика, показанного на рисунке 30 или вычислить по соответствующим формулам, приведенным в следующем пункте, исходя из режима течения, диаметра или пространства, где движется газ.

Изменение режима течения, состава потока, свойств газа, шероховатости труб и т.д. по стволу скважины, а также ее конструкции в процессе эксплуатации приводит к изменению λ. С приемлемой точностью формула для определения λ в газовых скважинах может быть представлена в виде:

$$\lambda = \frac{1}{m^2 \left\{ lg \left[\left(\frac{6,81}{Re} \right)^{1,8/m} + \left(\frac{\epsilon}{7,41} \right)^{2/m} \right]^2 \right\}},$$
 (2.18)

где *m* — параметр неравномерности шероховатости, который зависит от степени неравномерности шероховатости и пограничной характеристики течения. Исследования показывают, что значение m для труб, применяемых в нефтегазовой промышленности, может быть принято равным двум, т.е. m=2.

Для ламинарного режима течения λ практически не зависит от шероховатости труб и определяется по формуле:

$$\lambda = 64/Re.$$
 (2.19)

В газовых скважинах в основном имеет место турбулентный режим течения, и при этом λ определяется по формуле:

Рис. 30. Зависимость коэффициента гидравлического сопротивления трубλ с различными относительными шероховатостями ε от числа Рейнольдса Re: I÷IV – области: I – ламинарного течения, II – критическая, III – переходная турбулентная, IV – турбулентной автомодельности (λ, не зависит от Re). 1 – ламинарный режим; 2 – турбулентное течение в трубах; 3 – граница зоны, гдеλ не зависит от Re

Число Рейнольдса *Re* в формулах (2.18)ч(2.20) определяется по формуле:

$$\operatorname{Re} = KQ\overline{\rho} / D\mu \tag{2.21}$$

где K – размерный коэффициент, кг·c²/м⁴; Q – расход газа, тыс.м³/сут; D – внутренний диаметр труб, 10^2 м; μ – динамическая вязкость, мПа·с.

При *T*=293 К и *P*=0,1013 МПа величина коэффициента *К* равна *K*=1777, а при *T*=273 К, Р=0,1013 МПа – *K*=1910.

При больших расходах газа наступает так называемая турбулентная автомодельность, и λ может быть определена по формуле:

$$\lambda = \frac{1}{\left[2\lg\left(\frac{7,41}{\varepsilon}\right)\right]^2}.$$
(2.22)

Входящая в формулу (2.18) абсолютная шероховатость l_{κ} колеблется от 0,0015·10³ до 1,0·10³ м. Наиболее часто в промысловых условиях встречаются значения $l_{\kappa} = (0,07 \div 0,20) \cdot 10^3$ м. Значения абсолютной шероховатости труб, используемых в газовой промышленности, приведены в таблице 2.6.

Таблица 2.6

Материалы и условия эксплуатации труб	<i>l</i> _к , 10 ⁻³ м
Новые стальные трубы	0,04÷0,10
Стальные, после нескольких лет эксплуатации в качестве газопровода с незначительными коррозией или отложениями	0,06+0,20
Стальные, после нескольких лет эксплуатации, корродированные или с небольшими отложениями	0,05÷0,50
Стальные, после длительной эксплуатации, сильно корродированные и загрязненные	0,50÷1,00
Лифтовые трубы диаметром 0,0635 м после нескольких лет эксплуатации в газовых скважинах	0,04+0,20
Стальные обсадные трубы диаметром 0,127 м после длительной эксплуатации в газовой скважине без лифтовых труб	0,06÷0,22

Шероховатости различных труб, используемых в газовой промышленности

В таблице 2.7 приведены значения λ для труб различных диаметров в пределах изменений l_{*} , приведенных в таблице 2.6.

Таблица 2.7

Внутренний диаметр труб D, 10 ⁻³ м	Относительная шерохо- ватость є	Q _{min} , тыс.м ³ /сут	λ
0,0254	0,0080	3,7	0,028
0,0403	0,0075	6,5	0,027
0,0508	0,0060	15,0	0,026
0,0635	0,0048	28,0	0,025
0,0762	0,0040	37,5	0,024
0,1016	0,0030	70,0	0,023
0,1270	0,0024	100,0	0,022
0,1524	0,0020	150,0	0,021
0,2032	0,0014	260,0	0,020

Значения коэффициента λ при Q≥Q_{min}

Для практически возможных значений шероховатости $l_s = (0,07 \div 0,20) \cdot 10^3$ м величину λ с приемлемой точностью для диаметров труб $D = (50,8 \div 254) \cdot 10^3$ м можно определить по формуле:

$$\lambda = 0.111 \cdot l_{\kappa}^{0.25} / D^{0.25} = 0.0933 \cdot \varepsilon^{0.25}, \qquad (2.23)$$

а для диаметров *D*=(254,0÷762)·10⁻³ м по формуле:

$$\lambda = 0.0822 \cdot l_{\kappa}^{0.21} / D^{0.21} = 0.0761 \cdot \varepsilon^{0.21}.$$
(2.24)

Если дебит скважины меньше Q_{\min} , то величину λ приближенно можно определить по формуле:

$$\lambda = 0.029 \left[D / \overline{\rho} \cdot Q \right]^{0.13}, \qquad (2.25)$$

где $\overline{\rho}$ – относительная плотность газа; Q – дебит скважины, тыс.м³/сут при стандартных условиях.

При движении газа по затрубному пространству с учетом потерь давления на местные сопротивления в соединительных муфтах величину λ следует определить по формуле:

$$\lambda = \lambda_0 \frac{D_{_{\Im K}} + d_{_{\Pi}}}{\left[D_{_{\Im K}} - d_{_{\Pi}}\right]^{0.5}} + \left[\frac{D_{_{\Im}}^2 - d_{_{\Pi}}^2}{D_{_{\Im K}}^2 - D_{_{\Pi}}^2} + 0,05\right] \frac{\left[D_{_{\Im K}} - d_{_{\Pi}}\right]^{0.5}}{l},$$
 (2.26)

где λ_0 – коэффициент сопротивления труб с эквивалентным диаметром $D_{_{3\kappa}}$. Величину λ_0 находят из **таблицы 2.8**, при известном $D_{_{3\kappa}}$.

Таблица 2.8

NºNº	D _{эк} ,	d_{u} ,	Q.,,	λ	D,,	d_{μ} ,	Q.,	λ
п.п.	М	М	тыс.м³/сут.	10 0	М	М	тыс.м ³ /сут.	· · 0
1.	0,0635	0,0254	16	0,029	0,1016	0,0508	40	0,027
2.	0,0762	-"-	30	0,027	0,1270	-"-	$\overline{84}$	0,025
3.	0,1016	_″_	60	0,025	0,1524	_''_	147	0,024
4.	0,1217	-"-	110	0,024	0,1016	0,0635	26	0,029
5.	0,1524	-"-	135	0,024	0,1270	-"-	70	0,026
6.	0,0762	0,0381	19	0,029	0,1524	_''_	112	0,024
7.	0,1016	_''_	45	0,027	0,1270	0,0762	43	0,028
8.	0,1270	-"-	87	0,025	0,1524	-''-	96	0,026
9.	0,1524	_"_	140	0,024	0,1524	0,1016	53	0,028

Значения λ_0 при $Q > Q_{\text{мин}}$

При движении газа только по затрубному пространству эквивалентный диаметр $D_{_{3\kappa}}$ определяют по формуле:

$$D_{_{\rm SK}} = \left[D_{_{\rm ofc}}^2 - d_{_{\rm H}}^2 \right]^{0.5}.$$
 (2.27)
Если дебит скважины Q превышает Q_{\min} , то величину λ_0 следует определять из **таблицы 2.8**, а если $Q \leq Q_{\min}$, то величину λ_0 следует определить по формуле:

$$\lambda_{0} = 0,029 \left(\frac{D_{\mathrm{pop}}}{\overline{\rho} \cdot Q}\right)^{0,13} \cdot \left[\sqrt{\frac{D_{\mathrm{pr}} + d_{\mathrm{H}}}{D_{\mathrm{pr}} - d_{\mathrm{H}}}}\right]^{0,13}.$$
(2.28)

Для труб-коллекторов больших диаметров, обвязывающих группу скважин с установками комплексной подготовки, а также для газопроводов коэффициент гидравлического сопротивления можно определить по формуле:

$$\lambda = 0.067 \left(\frac{158}{\text{Re}} + \frac{2l_{\kappa}}{D} \right)^{0.2}, \qquad (2.29)$$

где *Re* – число Рейнольдса, определяемое по формуле:

$$\operatorname{Re} = 4Q \cdot \rho_{\scriptscriptstyle B} \cdot \overline{\rho} / \pi D \mu = 17,75 \cdot 10^6 \overline{\rho} / D \mu, \qquad (2.30)$$

Q – объемный расход газа, млн.м³/сут; $\rho_{\text{в}}$ – плотность воздуха при стандартных условиях, которая равна $\rho_{\text{в}}=1,205$ кг/м³; $\overline{\rho}$ – относительная плотность газа; μ –вязкость газа; D – внутренний диаметр трубы, м.

При ламинарном режиме течения в трубах большего диаметра слагаемое 158/Re намного больше $2l_{*}/D$. Поэтому в этих случаях величину λ можно определить без учета $2l_{*}/D$ по формуле:

$$\lambda = 0.1844 / \text{Re}^{0.2}. \tag{2.31}$$

При квадратичном законе сопротивления, когда $158/Re <<2l_{*}/D$, формулу (2.29) можно использовать в виде:

$$\lambda = 0,067 \left(\frac{2l_{\kappa}}{D}\right)^{0,2} \tag{2.32}$$

Для новых труб величину l_* можно принять равной $l_*=0,03$, тогда коэффициент λ будет определяться по формуле:

$$\lambda = 0.067 \left(\frac{0.06 \cdot 10^{-3}}{D}\right)^{0.2}.$$
(2.33)

На базе многочисленных лабораторных и промысловых данных при наличии в продукции жидкости коэффициент гидравлического сопротивления смеси λ_{см} в диапазоне изменений дебита жидкости 0÷800 м³/сут; газового фактора 5÷900 м³/м³; вязкости жидкости 1÷2000 мПа·с; диаметра труб 0,035÷0,076 м и давления 0,7÷16,5 МПа может быть определен для газонефтяных скважин по формуле:

$$\lambda_{\rm em} = \frac{2[0,13Ku+1]\cdot\Delta p\cdot\beta}{[1,13Ku+1]\rho_{\rm em}\cdot Fr_{\rm em}} + 0,11\left[\frac{68}{{\rm Re}_{\rm em}} + \frac{2l_{\kappa}}{D}\right]^{0,25},\qquad(2.34)$$

где ρ – разность плотностей жидкости и газа; β – расходное газосодержание. Ku, Fr_{см}, Re_{см} – критерии Кутателадзе, Фруда и Рейнольдса.

При большом газовом факторе, т.е. в газовых и газоконденсатных скважинах, в продукции которых содержится значительное количество жидкости, λ_{a} определяется по формуле:

$$\lambda_{cM} = \lambda_{0} \cdot \varphi = 0,067 \cdot \left[\frac{0,0831 \cdot \mu_{r} \cdot D}{Q_{r} \overline{\rho} \cdot 10^{-2}} + \frac{10^{-4}}{D} \right]^{0.2} \times \left[1 + \frac{0,358Z_{cp} T_{cp} Q_{r} (1-\beta)^{0.5} (\rho_{r} - \rho_{w})^{\frac{1}{3}} 10^{-5} e^{\frac{15(\beta - \rho_{r}}{\rho_{w}} - 1)}}{P_{cp} D} \right]$$
(2.35)

где ρ_{x} , ρ_{c} – плотности жидкости и газа в рабочих условиях, кг/м³; $\overline{\rho}$ – относительная по воздуху плотность газа; D – диаметр фонтанных труб, м; P_{cp} – среднее давление по стволу скважины, МПа; T_{cp} – средняя температура смеси в стволе, К; μ_{c} – коэффициент вязкости газа при P_{cp} и T_{cp} ; Z_{cp} – коэффициент сверхсжимаемости газа при P_{cp} и T_{cp} .

Плотность газа $\rho_{\rm p}$ в рабочих условиях, т.е. при $P_{\rm cp}$ и $T_{\rm cp}$, определяется по формуле:

$$\rho_{\rm rp} = \rho_{\rm c1} \cdot P_{\rm cp} T_{\rm c1} / P_{\rm a1} T_{\rm cp} Z_{\rm cp}, \qquad (2.36)$$

где ρ_{cr} – плотность газа при стандартных условиях, т.е. при P_{ar} =0,1013 МПа, T_{cr} =293 К; Q_{cp} – дебит скважины, тыс.м³/сут; β – расходное газосодержание, определяемое по формуле:

$$\beta = Q_{\rm rp} / (Q_{\rm rp} + Q_{\rm sc}), \qquad (2.37)$$

 Q_{m} – дебит газа в рабочих условиях, тыс.м³/сут, определяемый по формуле:

$$Q_{\rm rp} = Q_{\rm r} \cdot P_{\rm ar} Z_{\rm cp} T_{\rm cp} / P_{\rm cp} T_{\rm cr} \,. \tag{2.38}$$

Среднее давление и температура в расчетах берутся как $P_{cp} = (P_y + P_s)/2$ и $T_{cp} = (T_y + T_s)/2$. При расчетах забойного давления с использованием значения λ_{cy} необходимо выполнять хотя бы два приближения.

Задача 32 – Определение забойного давления по результатам замеров устьевого давления.

Забойное давление вертикальной скважины при известном устьевом давлении определяется по формуле (2.17). Расчет параметров производится с помощью итерации.

Исходные данные для определения забойного давления по известному устьевому

Параметр	Значение	Размерность
$P_{_{\mathcal{M}}}$	30,8	ΜПа
L	3286	М
Q	137	тыс.м ³ /сут
λ	0,002	
d	0,168	М
$P_{_{ m KD,CM}}$	4,710965	МПа
$T_{_{\rm MD,CM}}$	196,52062	К
$\rho_{r,orm}$	0,63040901	
T_{cn}	385,4	К

Таблица 2.10

Расчет забойного давления в первом приближении

	0,992740038	
$P_{_{ m CD}}$	30,8	МПа
S	0,185	
$P_{_{ m mn}}$	6,539	
O_*	1,38311E-06	
P_{3}	37,0557176	МПа

Таблица 2.11

Расчет забойного давления во втором приближении

Z_{m}	1,023883	
$P_{\rm co}$	33,92786	МПа
S	0,179	
$P_{\mu\nu}$	7,203	
O_{π}	1,42E-06	
P_3	36,84792	МПа

Таблица 2.12

Расчет забойного давления в третьем приближении

Z_m	1,0228	
P_{cn}	33,824	МΠа
S	0,179	
$P_{\mu\nu}$	7,181	
O_{μ}	1E-06	
P_{γ}	36,855	ΜПа

Задача 33 – Определение коэффициента гидравлического сопротивления при различных режимах течения.

Коэффициент гидравлического сопротивления по известному параметру шероховатости труб определяется по формуле (2.18), при ламинарном ре-

жиме течения смеси коэффициент гидравлического сопротивления определяется по формуле (2.19), при турбулентном режиме течения по формуле (2.20), при турбулентной автомодельности по формуле (2.22).

Определение коэффициента гидравлического сопротивления по параметру шероховатости

Таблица 2.13

Исходные данные для расчета коэффициента гидравлического сопротивления

Параметр	Значение	Размерность
Re	7800000	
l_{κ}	0,0001	М
D	0,168	М
m	2	

Таблица 2.14

Расчет коэффициента гидравлического сопротивления по параметру шероховатости труб

Параметр	Значение	Размерность
3	0,001	
λ	0,01745	

Определение коэффициента гидравлического сопротивления при ламинарном режиме течения

Таблица 2.15

Исходные данные для расчета

Параметр	Значение
Re	1500

 $\lambda = 0.1844 / \text{Re}^{0.2} = 0.1844 / 1500^{0.2} = 0.0426.$

Определение коэффициента гидравлического сопротивления при турбулентном режиме течения

Таблица 2.16

Параметр	Значение	Размерность
l_{κ}	0,0008	М
D	0,168	М
Q	130000	тыс.м ³ /сут
К	1800	$\mathbf{K}\mathbf{\Gamma}^{*}\mathbf{C}^{2}/\mathbf{M}^{4}$
μ	0,000041	Па*с
Port	0,65	

Параметр	Значение	Размерность
3	0,001	
Re	255577332,6	
λ	0,0165	

Расчет коэффициента гидравлического сопротивления

Определение коэффициента гидравлического сопротивления при турбулентной автомодельности

Таблица 2.18

Исходные данные для примера

Параметр	Значение	Размерность
l_{κ}	0,0008	М
D	0,168	М

Таблица 2.19

Расчет коэффициента гидравлического сопротивления при турбулентной автомодельности

Параметр	Значение	Размерность
3	0,001	
λ	0,0165	

Задача 34 – Определение коэффициента гидравлического сопротивления при диаметре труб от 0,0508 до 0,254 м и от 0,254 до 0,762 м.

Коэффициент гидравлического сопротивления при диапазоне диаметра труб от 0,0508 до 0,254 м определяется по формуле (2.23), при диапазоне диаметра труб от 0,254 до 0,762 м определяется по формуле (2.24).

Определение коэффициента гидравлического сопротивления при диаметре труб от 0,0508 до 0,254

Таблица 2.20

И	[сходные	данные	для	расчета
---	----------	--------	-----	---------

Параметр	Значение	Размерность
l_{κ}	0,0001	М
D	0,168	М

$$\lambda = 0.111 \cdot l_{e}^{0.25} / D^{0.25} = 0.0933 \cdot \epsilon^{0.25} = 0.111 \ 0.0001^{0.25} / 0.168^{0.25} = 0.01734$$

Определение коэффициента гидравлического сопротивления при диаметре труб 0,254 до 0,762 м

Таблица 2.21

Параметр	Значение	Размерность
l_{κ}	0,0001	М
\tilde{D}	0,2745	М

Исходные данные для расчета

 $\lambda = 0,0822 \cdot l_{\kappa}^{0.21} / D^{0.21} = 0,0761 \cdot \epsilon^{0.21} = 0,0822 \ 0,0001^{0.21} / 0,2745^{0.21} = 0,0156$

Задача 35 – Определение коэффициента гидравлического сопротивления при низком дебите скважины.

Коэффициент гидравлического сопротивления при дебите скважины меньше минимального определяется по формуле (2.25).

Таблица 2.22

Параметр	Значение	Размерность
Q_{c_1}	29	тыс.м ³ /сут
D	0,168	М
ρ	0,65	

Исходные данные для расчета

$\lambda = 0,029 \left[D / \overline{\rho} \cdot Q \right]^{0,13} = 0$),029[0.168/0.65.29] ^{0.13} =0.0157
---	--

Задача 36 – Определение коэффициента гидравлического сопротивления при движении газа по затрубному пространству.

Коэффициент гидравлического сопротивления при движении газа по затрубному пространству определяется по формуле (2.26).

Таблица 2.23

Параметр	Значение	Размерность
D_{obc}	0,0157	M
D_{u}	0,168	М
dH	0,65	М
K	1800	М
ρ_{oru}	0,65	
l	0,0001	М

Исходные данные для расчета

Таблица 2.24

Пример решения задачи

Параметр	Значение
$D_{_{215}}$	0,13417
λ_0	0,025
λ	0,03268

2.3. Определение забойного давления газовых скважин различных конструкций

Конструкция газовых скважин выбирается с учетом географических и метеорологических особенностей района, размещения скважин, геологических характеристик залежей, состава пластовых флюидов, емкостных, фильтрационных и механических свойств пористой среды, продуктивности пласта и технологического режима эксплуатации скважин.

Однорядный лифт с постоянным диаметром

Забойное давление скважин, оборудованных однорядным лифтом с постоянным диаметром, может быть определено двумя способами:

- по давлению в затрубном пространстве, если это пространство незапакеровано, по барометрической формуле (2.7).
- по давлению на буфере независимо от наличия или отсутствия пакера в затрубном пространстве, с учетом потерь давления в зонах установки забойного оборудования. По устьевому давлению на буфере забойное давление определяется по формуле (2.10).

Однорядный лифт с переменным диаметром

Забойное давление скважин, оборудованных однорядным лифтом с переменным диаметром, может быть определено двумя способами:

- по давлению в затрубном пространстве, если это пространство незапакеровано, по барометрической формуле;
- по давлению на буфере независимо от наличия или отсутствия пакера в затрубном пространстве.

Для выноса жидких и твердых примесей необходимо обеспечить на любом сечении ствола скважины скорость движения потока газа более υ≥4 м/с, т.е.

$$\upsilon \ge 0.052 \cdot 10^{-5} Q Z_a T_a / d^2 P_a \ge 4,$$
 (2.39)

где Q – дебит скважины, тыс. м³/сут; Z_* – коэффициент сверхсжимаемости газа в забойных условиях; T_* – температура газа на забое, К; d – диаметр сечения ствола на забое, 10^2 м; P_* – забойное давление, МПа.

Забойное давление для однорядного лифта двухступенчатой конструкции, показанного на рисунке 31, определяется в два этапа: сначала по устьевым давлениям определяется давление на глубине L_1 при движении газа по трубам с большим диаметром d_1 ; затем это давление принимается как устьевое и по этому давлению определяют забойное давление на участке, где газ движется по трубам меньшего диаметра d_2 и длиной L_3 .

Для определения забойного давления при двухступенчатой конструкции газовых скважин следует пользоваться формулами:

– для первой ступени труб:

$$P_1^2 = P_y^2 \cdot e^{2S_1} + \theta_1(e^{2S_1} - 1), \qquad (2.40)$$

– для второй ступени труб:

Рис. 31. Схема конструкций вертикальных скважин:

а+в – однорядный лифт: а – без пакера, б – с запакерованным затрубным пространством, в – двухступенчатый

В целом для определения *P*_{*} формула будет иметь вид:

$$P_{3}^{2} = P_{y}^{2} \cdot e^{2(S_{1}+S_{2})} + (\theta_{1}e^{2(S_{1}+S_{2})} - (\theta_{1}-\theta_{2})e^{2S_{2}} - \theta_{2})Q^{2}, \qquad (2.42)$$

где

$$S_{1} = 0.03415 \cdot \overline{\rho} \cdot L_{1} / Z_{cp1} T_{cp1}; S_{2} = 0.03415 \cdot \overline{\rho} \cdot L_{2} / Z_{cp2} T_{cp2};$$
(2.43)

$$\theta_{1} = 0.01413 \cdot 10^{10} {}_{1}Z_{cp1}^{2} T_{cp1}^{-2} / d_{1}^{5}; \qquad (2.44)$$

$$\theta_2 = 0.01413 \cdot 10^{-10} {}_2Z_{cp2} {}^2T_{cp2} {}^2/d_2^{-5}.$$
 (2.45)

При определенных по всей длине НКТ T_{cp} и Z_{cp} вместо формул (2.41)÷(2.45) будут иметь место формулы:

$$S_{1} = 0.03415 \cdot \overline{\rho} \cdot L_{1} / Z_{cp} T_{cp}, S_{2} = 0.03415 \cdot \overline{\rho} \cdot L_{2} / Z_{cp} T_{cp}, \qquad (2.46)$$

$$S_1 + S_2 = 0.03415 \cdot \overline{\rho} \cdot L / Z_{cp} T_{cp},$$
 (2.47)

$$\theta_1 = 0.01413 \cdot 10^{-10} {}_{12}Z_{cp}^{-2}T_{cp}^{-2}/d_1^{-5}, \qquad (2.48)$$

$$\theta_2 = 0.01413 \cdot 10^{-10} {}_{2}Z_{cp}^{-2}T_{cp}^{-2}/d_2^{-5}.$$
(2.49)

При необходимости учета интервала ниже башмака фонтанных труб и известном дебите на этом участке забойное давление определяется по формуле:

$$P_{3}^{2} = P_{y}^{2} \cdot e^{2(S_{1}+S_{2}+S_{3})} + \theta_{1}e^{2(S_{1}+S_{2}+S_{3})} - [(\theta_{1}-\theta_{2})e^{2(S_{2}+S_{3})} - (\theta_{2}-\theta_{3})e^{2S_{3}} - \theta_{3}]Q^{2}, \quad (2.50)$$

где

$$S_{3} = 0,03415 \cdot \overline{\rho} \cdot L_{3} / Z_{cp3} T_{cp3}; \qquad (2.51)$$

$$\theta_3 = 0.01413 \cdot 10^{-10} {}_{3}Z_{cp3} {}^{2}T_{cp3} {}^{2}/D_3^{-5},$$
 (2.52)

 $D_{_3}$ – диаметр обсадной колонны; $T_{_{\rm CD3}}$ – средняя температура в интервале ниже башмака фонтанных труб до середины интервала перфорации; $Z_{_{\rm CD3}}$ – коэффициент сверхсжимаемости на этом же участке; $L_{_3}$ – расстояние от башмака фонтанных труб до середины интервала перфорации.

Приближенное определение забойного давления с учетом наличия жидкости в потоке газа

Методика расчета забойного давления в газовых скважинах, в продукции которых содержится жидкость, зависит от структуры газожидкостного потока. В ряде случаев в одной скважине от забоя до устья одновременно имеют место несколько структур потока и соответствующее количество переходных зон.

Наиболее простая расчетная формула для определения забойного давления вертикальных скважин при наличии в потоке газа жидкости без фазовых переходов и учета влияния структуры потока имеет вид:

$$P_{s}^{2} = P_{y}^{2} \cdot e^{2S_{0}} + 0.01413 \cdot 10^{-10} \lambda_{r} Z_{cp}^{2} T_{cp}^{2} Q_{cm}^{2} (e^{2S_{0}} - 1) / \rho \cdot D^{5}, \qquad (2.53)$$

где $S_0 = 0,03415 \cdot \rho \cdot \overline{\rho} \cdot L / Z_{cp} T_{cp}$; ρ – параметр, связанный с истинным, постоянным по стволу газовой скважины газосодержанием потока φ в рассматриваемом сечении трубы. Величина ρ определяется по формуле:

$$\rho = \varphi + (1 - \varphi) \rho_{\text{\tiny TM}} / \rho_{\text{\tiny TD}}. \tag{2.54}$$

Учитывая, что по стволу скважин происходит изменение давления и температуры, газосодержание становится переменной величиной. Для практических расчетов истинное газосодержание можно заменить расходным β , так как истинное газосодержание потока, как правило, неизвестно. Приближенно величина φ заменяется расходным газосодержанием β , которое определяется по формуле (2.37), где Q_{rp} – расход газа при *P* и *T*. Это условие в газовых и газоконденсатных скважинах понимается, как средние параметры между устьем скважины и той глубиной, на которой определяется забойное давление.

Значение плотности газа в рабочих условиях *р*_{гр} определяется по формуле (2.36).

Величина расхода газожидкостной смеси $Q_{\rm em}$ должна быть определена с учетом фазового состояния газожидкостной смеси в условиях ствола скважины.

При условии минимального выделения конденсата в пласте и в стволе скважины $Q_{\rm cm}$, определенная как сумма расходов газа, конденсата в газооб-

разном состоянии и газа дегазации конденсата, будет максимально близкой к истинной величине Q_{cm} :

$$Q_{\rm cm} = Q_{\rm r} + Q_{\rm cq} + Q_{\rm kr}, \tag{2.55}$$

где $Q_{\rm r}$, $Q_{\rm et}$, $Q_{\rm et}$ – соответственно объемное количество газов сепарации, дегазации и конденсата в газообразном состоянии, определяемого по формуле:

$$Q_{\rm KP} = Q_{\rm s} \cdot 24,05T_{\rm CM}/M_{\rm g}T_{\rm m}, \qquad (2.56)$$

где Q_{κ} – масса конденсата, кг/сут; T_{ci} , T_{μ} – стандартная и нормальная температуры; M_{κ} – молекулярная масса конденсата. Приближенно величина Q_{cm} может быть определена по формуле:

$$\mathbf{Q}_{\mathrm{em}} = [G_{\mathrm{p}} + G_{\mathrm{m}}] / \rho_{\mathrm{em}}, \qquad (2.57)$$

где $G_{\scriptscriptstyle r}, G_{\scriptscriptstyle x}$ – массовые расходы газа и жидкости, определяемые по формулам:

$$G_{r} = Q_{r} \rho_{r} \, \mathrm{M} \, G_{\pi} = Q_{\pi} \rho_{\pi} \tag{2.58}$$

 $\rho_{e^{,o}}$, ρ_{x} – соответственно плотности газа и жидкости при *T*=293 К и *P*=0,1 МПа; $\rho_{e^{,o}}$ – плотность смеси, определяемая по известному составу по формуле:

$$\rho_{\rm cm} = \sum_{i=1}^{n} x_i \rho_i \quad \text{или} \quad \rho_{\rm cm} = \frac{Q_{\rm r} \rho_{\rm r} + Q_{\rm m} \rho_{\rm m}}{Q_{\rm r} + Q_{\rm m}}$$
(2.59)

где ρ_i – плотность *i*-го компонента; x_i – объемная доля *i*-го компонента.

Одним из основных параметров, влияющих на точность определения $P_{,,}$ является коэффициент гидравлического сопротивления труб λ_{cm} для газожидкостной смеси, методы определения которого были изложены выше.

Задача 37 – Определение скорости потока газа на забое скважины.

Скорость потока газа на забое скважины определяется по формуле (2.39), пример решения задачи представлен ниже.

Таблица 2.25

Параметр	Значение	Размерность
T_3	301	K
P_3	11	ΜПа
Z_{α}	0,8	
d	0,2	М
0	150	THC.M ³ /CVT

Исходные данные для расчета

 $\upsilon \ge 0,052 \cdot 10^{-5} Q Z_{\scriptscriptstyle 3} T_{\scriptscriptstyle 3} \ / \ d^2 P_{\scriptscriptstyle 3} \ \ge 4 = 0,052 \cdot 10^{-5} \cdot 150 \cdot 0,8 \cdot 301 \ / \ 0,2^2 \ / \ 11 = 4,26873 \ge 4.$

Задача 38 – Определение забойного давления для однорядного лифта двухступенчатой конструкции.

Забойное давление для однорядного лифта двухступенчатой конструкции определяется по формулам (2.40–2.41), пример решения задачи представлен в **таблице 2.27**.

Таблица 2.26

Параметр	Значение	Размерность
P_{v}	30,8	МПа
L	3286	М
Q	137	тыс.м³/сут
d_1	0,168	М
d_{γ}	0,15	М
λ_1	0,002	
λ	0,0025	

Исходные данные для расчета

Таблица 2.27

Пример определения забойного давления для однорядного лифта

Параметр	Значение	Размерность
$P_{_{\rm KD,CM}}$	4,710965	МПа
$T_{_{\rm MD,CM}}$	196,52062	К
M	17,016	г/моль
L_1	3100	М
L_{γ}	186	М
ρ _{см}	0,759642857	$\kappa\Gamma/M^3$
ρ_{rorm}	0,63040901	
L	3286	М
$P_{_{ m aat}}$	35,8	МПа
P_{sn}	4,71	МПа
T_{sc}	196	К
T_{en}	385,4	К
$T_{\rm m}$	1,966	
P_{2}	37,6364	МПа

Задача 39 – Определение забойного давления для однорядного лифта двухступенчатой конструкции с учетом интервала ниже башмака фонтанных труб.

Забойное давление для однорядного лифта двухступенчатой конструкции с учетом интервала ниже башмака фонтанных труб определяется по формуле (2.50).

Таблица 2.28

Параметр	Значение	Размерность
$P_{_{v}}$	30,8	МПа
L	3288	М
Q	137	тыс.м ³ /сут
d_1	0,002	М
d_{γ}	0,168	М
d_{α}	0,25	М

Параметр	Значение	Размерность
λ_{\perp}	0,002	
$\lambda_{_2}$	0,0025	
λ_3	0,0018	

Продолжение табл. 2.28

Таблица 2.29

Параметр	Значение	Размерность
$P_{_{\rm MD,CM}}$	4,710965	MПа
$T_{_{ m NTLOM}}$	196,52062	К
M_{cu}	17,016	г/моль
L_1	3100	М
L_2	186	М
L_{3}	2	М
ρ _{cm}	0,759642857	КГ/М.,
ρ_{roru}	0,63040901	
L	3286	М
$P_{_{ m par}}$	35,8	МПа
$P_{_{ m MD}}$	4,71	МПа
T _{KU}	196	К
$T_{ m en}$	385,4	К
$T_{_{ m IID}}$	1,966	
P_{3}	37,6364	МПа

Пример расчета

Задача 40 – Определение забойного давления для двухрядного лифта двухступенчатой конструкции с учетом наличия жидкости без учета влияния структуры потока.

Забойное давление для двухрядного лифта двухступенчатой конструкции без разделения потока определяется по формуле (2.50).

Таблица 2.30

Параметр	Значение	Размерность
P_{v}	30,8	МПа
L	3288	М
Q	137	тыс.м ³ /сут
d_{γ}	0,168	М
d_1	0,15	М
λ_{3}	0,002	
λ	0,0025	
λ,	0,0018	

Параметр	Значение	Размерность
Putter	4,710965	МПа
T	196,52062	К
$M_{_{em}}$	17,016	г/моль
L_{3}	3100	М
$L_{_{4}}$	100	М
L_2	88	М
ρ	0,759642857	К Г/ М ³
ρ	0,63041	
L	3288	М
P	35,8	МПа
T_{cn}	385,4	К
$T_{\rm m}$	1,966	
$Z_{c_{\rm D}}$	1,0228076	
P_{α}	33,825903	МПа
$S_1 + S_2 + S_3$	0,180	
$S_2 + S_3$	0,010	
S_{3}	0,0048061	
P	7,182	
Θ_{u1}	0,0615855	
Θ_{u^2}	0,1356683	
Θ_{n3}	0,0554269	
P_{\circ}	36.858897	МПа

Определение забойного давления с учетом наличия жидкости в потоке

Задача 41 – Определение забойного давления для двухрядного лифта двухступенчатой конструкции с учетом наличия жидкости с учетом влияния структуры потока.

Забойное давление для двухрядного лифта двухступенчатой конструкции с разделением потока определяется по формуле (2.50), пример решения задачи представлен в **таблице 2.33**.

Таблица 2.32

Параметр	Значение	Размерность
$P_{_{\mathrm{V}}}$	30,8	МПа
L	3288	М
Q	137	тыс.м³/сут
Q_{i}	50	тыс.м ³ /сут
$d_{_2}$	0,168	М
d_1	0,15	М
λ_{3}	0,002	
λ_i	0,0025	
λ,	0,0018	

Параметр	Значение	Размерность
$P_{_{ m FD,CM}}$	4,710965	МПа
$T_{_{ m KD,MM}}$	196,52062	К
M _{en}	17,016	г/моль
L_3	3100	М
L_{λ}	100	М
L_{2}	88	М
ρ	0,759642857	кг/м,
ριστη	0,63041	
L	3288	М
P_{xxx}	35,8	МПа
	385,4	К
$T_{ m m}$	1,966	
Z_{co}	1,022806	
	33,8257593	МПа
$S_1 + S_2 + S_3$	0,180	
$S_2 + S_3$	0,010	
S_{π}	0,0048061	
P_{m}	7,182	
Θ_{ut}	0,0082031	
$\Theta_{_{\rm B2}}$	0,1356679	
Θ	0,0554267	
P_3	36,858609	МПа

Пример расчета забойного давления для двухрядного лифта двухступенчатой конструкции с разделением потока

Задача 42 — Определение забойного давления для двухрядного лифта двухступенчатой конструкции по известному устьевому давлению межтрубного пространства.

Таблица 2.34

Параметр	Значение	Размерность
$P_{_{\mathrm{v}}}$	30,1	МПа
L	3288	М
Q	137	тыс.м ³ /сут
Q_{i}	50	тыс.м ³ /сут
d_{γ}	0,168	М
$d_{_1}$	0,15	М
λ_3	0,002	
λ_i	0,0025	
λ	0,0018	
$\lambda_{_{MT}}$	0,00213	
D_{s}	0,15	М

Забойное давление для двухрядного лифта двухступенчатой конструкции по известному устьевому давлению межтрубного пространства определяется по формуле (2.50).

Таблица 2.35

Параметр	Значение	Размерность
$P_{_{\rm NTCM}}$	4,710965	МПа
$T_{_{ m energy}}$	196,52062	К
M _{ent}	17,016	г/моль
L_3	3100	М
L_{4}	100	M
L_2	88	М
ρ _{em}	0,759642857	КГ/М ³
ρ_{rora}	0,63041	
L	3288	М
P_{uur}	35,8	МПа
	385,4	К
$T_{\mu\nu}$	1,966	
Z	1,0192638	
P _m	33,487196	МПа
$S_1 + S_2 + S_3$	0,180	
$S_2 + S_3$	0,010	
S_3	0,0048228	
$P_{\mu\nu}$	7,110	
Θ_{ur}	0,1147898	
Θ _{μ2}	0,0970055	
Θ_{u3}	0,055546	
P_3	36,88221	МПа

Пример расчета

Задача 43 – Приближенное определение забойного давления с учетом наличия в потоке жидкости.

Забойное давление с учетом наличия в потоке жидкости приближенным методом определяется по формуле (2.53).

Таблица 2.36

Параметр	Значение	Размерность
$P_{_{u}}$	16,9	МΠа
L	3150	М
$Q_{\rm c}$	185	тыс.м ³ /сут
Q_{*}	0,05	тыс.м ³ /сут
λ	0,025	
d	0,076	М
$\rho_{\rm orn}$	0,715	
ρ _ж	720	К Г/ М ³

Параметр	Значение	Размерность
T_{cp}	350	К
P_{co}	20,7	МПа
P_{sm}	4,7	МПа
$T_{ m en}$	200	К
$P_{\mu\nu}$	4,4	
T_{uu}	1,75	
Zm	0,87	

Продолжение табл. 2.36

Таблица 2.37

Параметр	Значение	Размерность
Q_{cu}	0,94087	тыс.м ³ /сут
p_{rer}	0,861158	$\kappa\Gamma/M^3$
β	0,94954	
\mathbf{p}_{rp}	169,408	К Г/ М ³
ρ	1,05588	К Г/М ³
G_{r}	159,391	т/сут
G_{*}	36	
Q_{m}	226,784	тыс.м ³ /сут
$S_{_0}$	0,26671	
P_3	23,1023	

Пример расчета

2.4. Определение давления в горизонтальных газовых скважинах

Конструктивные особенности горизонтальных скважин и их учет при определении пластового и забойного давлений

При определении термобарических параметров горизонтальных скважин необходимо учесть их конструктивные особенности, в частности радиус кривизны и профиль горизонтального участка. По величине радиуса кривизны условно выделяют три типа горизонтальных скважин: с большим, со средним и с малым радиусами кривизны (см. **рисунок 31 а, б, в)**.

Ниже приведены методы расчета забойного давления горизонтальных скважин с различными радиусами кривизны и профилями.

Определение пластового давления в горизонтальных скважинах с учетом профиля горизонтального участка ствола

На практике встречаются три варианта профиля горизонтального участка ствола: горизонтальный, восходящий и нисходящий (см. **рисунок 33**).

Рис. 32. Схема профилей горизонтальных скважин

Рис. 33. Схема профилей горизонтальных скважин:

а, б, в – горизонтальный, восходящий и нисходящий

Пластовое давление в горизонтальных скважинах с горизонтальным профилем ствола не зависит от длины ствола и определяется у начала горизонтального участка как пластовое давление в вертикальных скважинах по формуле (2.1).

Пластовое давление в горизонтальных скважинах с восходящим или нисходящим профилями зависит от длины ствола и зенитного угла наклона. При значительных длинах горизонтального участка ствола с нисходящим или восходящим профилями пластовое давление становится переменной величиной, что существенно влияет на обработку результатов исследования скважин на стационарных режимах фильтрации. Поэтому пластовое давление горизонтальных скважин с восходящим или нисходящим профилями по длине ствола должно быть определено по формуле:

$$P_{u.u.L} = P_{y.ex}(e^{S_{ux} \pm S_{hy}}), \qquad (2.60)$$

где S_{re} – безразмерный параметр, соответствующий глубине начала горизонтального участка. Величина S_{re} определяется аналогично S в формуле (3.3); S_{h_c} – параметр, зависящий от глубины восходящего или нисходящего ствола, где ствол на высоту h_i выше или ниже от горизонтали, имеющей глубину H. Если скважина с восходящим профилем, то $e^{S_{h_i}}$ в формуле (2.60) записывается с отрицательным знаком, а если профиль нисходящий, то $e^{S_{h_i}}$ суммируется с $e^{S_{rm}}$. При расчетах пластового давления по формуле (2.60) в слагаемом $e^{S_{h_i}}$ необходимо определить:

$$S_{h_i} = 0.03415 \frac{\overline{\rho}h_i}{Z_{\text{cp},i}T_{\text{cp},i}},$$
 (2.61)

где T_{epj} – средняя температура газа на участке от $h_i=0$ до h_i , т.е. от начала участка с восходящим или нисходящим стволом до расстояния, где ствол скважины отклоняется от горизонтальной линии на величину h_i . Изменчивость пластового давления при значительных длинах горизонтальных стволов с восходящим или нисходящим профилями должна быть учтена при обработке результатов исследования скважин на стационарных и нестационарных режимах фильтрации.

Определение забойного давления в горизонтальных газовых скважинах с большим и со средним радиусами кривизны, при отсутствии на горизонтальном участке ствола фонтанных труб

1. Горизонтальный профиль ствола

Забойное давление у торца горизонтальных газовых скважин P_{st} с большим и со средним радиусами кривизны, при отсутствии фонтанных труб на горизонтальном участке, определяется формулой:

$$P_{3,\mathrm{T}}^{2} = P_{\mathrm{y}}^{2} \cdot e^{2(S_{\mathrm{s}} + S_{\mathrm{uck}})} + \left(\theta_{\mathrm{u}} + \theta_{\mathrm{uck}} + \theta_{\mathrm{r}}\right) \cdot Q^{2}.$$
(2.62)

Эта формула должна использоваться, когда горизонтальный участок ствола не имеет восходящего или нисходящего профиля.

Горизонтальные скважины, имеющие восходящий или нисходящий профили показаны на **рисунке 32 б, в**. Для таких профилей забойное давление определяется по формуле:

$$P_{3,\mathrm{T}}^{2} = P_{\mathrm{y}}^{2} \cdot e^{2(\mathcal{S}_{\mathrm{u}} + \mathcal{S}_{\mathrm{uck}} \pm \mathcal{S}_{\mathrm{r}/\mathrm{h}})} + \left(\theta_{\mathrm{u}} + \theta_{\mathrm{uck}} + \theta_{\mathrm{r}}\right) \cdot Q^{2}, \qquad (2.63)$$

где P_y – устьевое давление; P_{aa} – забойное давление у поворота ствола от искривленного участка к горизонтальному; S_{μ} , S_{h} и S_{acc} – безразмерные параметры, не зависящие от радиуса кривизны; θ_{μ} , θ_{ucc} и θ_{r} – размерные параметры, определяемые для вертикального искривленного и горизонтального участков скважины по формулам:

$$\theta_{\rm B} = 1,377\lambda_{\rm B}Z_{\rm cp,B}^{2}T_{\rm cp,B}^{2}(e^{2S_{\rm e}}-1)/d_{\rm B}^{5} \\ \theta_{\rm uck} = 1,377\lambda_{\rm uck}Z_{\rm cp,\rm uck}^{2}T_{\rm cp,\rm uck}^{2}(e^{2S_{\rm wek}^{\prime}}-1)/d_{\rm uck}^{5} \\ \theta_{\rm r} = 0,094\lambda_{\rm r}Z_{\rm cp,\rm r}T_{\rm cp,\rm r}\overline{\rho}L_{\rm r}/d_{\rm r}^{5}$$

$$(2.64)$$

Входящие в формулу (2.64) значения безразмерных коэффициентов S_{μ} и $S_{\mu c \kappa}$ определяются формулами:

$$S_{\scriptscriptstyle B} = 0.03415\overline{\rho}H_{\scriptscriptstyle B.06} / Z_{\scriptscriptstyle \rm cp.B}T_{\scriptscriptstyle \rm cp.B}$$

$$S_{\scriptscriptstyle \rm HCK} = 0.03415\overline{\rho}H_{\scriptscriptstyle \rm HCK} / Z_{\scriptscriptstyle \rm cp.HCK}T_{\scriptscriptstyle \rm cp.HCK}$$

$$S_{h_i} = 0.03415\overline{\rho}h_i / Z_{\scriptscriptstyle \rm cp.h_i}T_{\scriptscriptstyle \rm cp.h_i}$$

$$\left. \right\}, \qquad (2.65)$$

где $H_{\text{воб}}$ – общая вертикальная глубина, вертикального $H_{\text{в}}$ и искривленного $H_{\text{вск}}$ участков горизонтальной скважины определяемая по формуле:

$$H_{\text{B.06}} = H_{\text{B}} + H_{\text{MCK}}, \qquad (2.66)$$

 $H_{_{u}}$ – глубина вертикального участка скважины; $\overline{\rho}$ – относительная плотность газа, $Z_{_{CP}}$ – коэффициент сверхсжимаемости при $P_{_{CP}}$ и $T_{_{CP}}$; $H_{_{HCK}}$ – вертикальная составляющая искривленного участка и согласно схеме, показанной на рисунке 31а, определяется из равенства:

$$H_{\mu c \kappa} = R_{\kappa p} \sin \alpha$$
 при $\alpha = 90^{\circ}$, $sin = 1$ и $H_{\mu c \kappa} = R_{\mu c \kappa}$

Если угол искривленного участка меньше α<90[°], отсутствует горизонтальный участок скважины, то вертикальная высота искривленного и наклонного участков ствола будут определяться по формулам:

$$H_{\text{иск}} = R_{\text{кр}} \sin \alpha \, \mu \, H_{\text{пак}} = L_{\text{пак}} \sin \alpha. \tag{2.67}$$

В формулу для определения $S_{\scriptscriptstyle\rm BCR}$ входит длина искривленного участка $L_{\scriptscriptstyle\rm BCR}$, которая рассчитывается из равенства:

$$L_{\mu c \kappa} = 2\pi R_{\kappa 0} \alpha / 360, \qquad (2.68)$$

где α – угол зоны кривизны, $R_{\rm sp}$ – радиус кривизны. В общую формулу для определения забойного давления входит составляющая в виде $P_{\rm 3.0}^2 e^{2S_{hl}}$, где h_i – высота торца горизонтального ствола от сечения, где ствол начинает менять профиль (см. рисунок 31в).

При «нисходящем» профиле горизонтального ствола составляющая $P_{a,n}^2 e^{2S_{hare}}$ имеет положительный знак и добавляется к забойному давлению, полученному на сечении, где горизонтальный ствол начинает свой профиль как нисходящий. Величину S_{hare} и S_{hare} следует определять по формулам:

$$S_{h_{\rm unc}} = 0,03415 \frac{\overline{\rho}h_{\rm mec}}{Z_{\rm cp.n} T_{\rm cp.n}}; \ S_{h_{\rm enc}} = 0,03415 \frac{\overline{\rho}h_{\rm eoc}}{Z_{\rm cp.n} T_{\rm cp.n}}.$$
(2.69)

В случае, когда профиль горизонтального ствола восходящий, то составляющая $P_{\text{sub}}^2 e^{2S_{sub}}$ имеет отрицательный знак.

Для определения давления с приемлемой точностью у концов вертикального, искривленного и горизонтального участков достаточно всего два приближения. Технология расчета величин этих давлений следующая: в нижнем сечении вертикального участка давление Р_{ив} определяется по формуле (2.17).

На нижней границе искривленного участка будет определяться формулой:

$$P_{\text{K,HCK}}^2 = P_y^2 e^{2S_{ab_{\text{BCK}}}} + (\theta_{\text{B}} + \theta_{\text{HCK}})Q^2, \qquad (2.70)$$

где $S_{Bh_{ack}}$ – безразмерный коэффициент, включающий в себя суммарную глубину вертикального участка и вертикального составляющего искривленного участка, т.е. $H_{o6} = H_{\mu} + H_{\mu cc}$. Забойное давление у торца горизонтального ствола в зависимости профиля горизонтального участка должна быть определена по формуле (2.63).

Определение забойного давления горизонтальной скважины с малым радиусом кривизны

В случае если горизонтальная скважина имеет малый радиус кривизны, то формула (2.63) будет иметь вид:

$$P_{_{3,1}}^2 = P_{_{y}}^2 \cdot e^{2(S_{_{x}} \pm S_{_{1}})} + [\Theta_{_{B}}^{/} + \Theta_{_{\Gamma}}] \cdot Q^2, \qquad (2.71)$$

где $\theta_{_{\rm B}}^{/}$ определяется по формуле:

$$\theta_{\rm B}^{\prime} = 0.01413 \cdot 10^{-10} \lambda_{\rm B} Z_{\rm cp.B}^2 T_{\rm cp.B}^2 (e^{2S_{\rm B}^{\prime}} - 1) / d_{\rm B}^5, \qquad (2.72)$$

$$S_{\rm B}^{\prime} = 0.03415\overline{\rho}(H_{\rm B} + \Delta H) / Z_{\rm cp,B} T_{\rm cp,B},$$
 (2.73)

где λ_{s} – коэффициент гидравлического сопротивления труб в вертикальном участке ствола с добавленной H; d – внутренний диаметр труб на этом участке; $T_{cp,s}$ – средняя температура газа на вертикальном участке; $Z_{cp,s}$ – коэффициент сверхсжимаемости при $P_{cp,s}$ и $T_{cp,s}$, значения которых приведены в предыдущем пункте.

Величина θ'_{μ} от своего аналога для вертикального ствола θ_{μ} отличается тем, что на вертикальную глубину H_{μ} добавляется длина искривленного участка, которая для скважин с малым радиусом кривизны составляет $4 \le R_{\mu c \mu} \le 12$ м. Длина искривленного участка при малом радиусе кривизны определяется из выражения:

$$L_{\mu c \kappa} = 2\pi R_{\mu c \kappa} / 4 \tag{2.74}$$

и при среднем значении радиуса кривизны $R_{\rm \tiny иск}$ =7 м длина искривленного участка составит $L_{\rm \tiny иск}$ =6,3·7/4=11,0 м.

Таким образом, для определения забойного давления у начала восходящего или нисходящего ствола на общую глубину скважины по вертикали следует добавить дополнительную длину H 6,5÷11,0 м, т.е. H'_{μ} = H_{μ} + H.

Методы определения забойного давления у башмака фонтанных труб горизонтальных скважин с восходящим или нисходящим профилем, с большим и со средним радиусами кривизны

В горизонтальных скважинах, частично оборудованных в горизонтальном участке фонтанными трубами, необходимы методы, позволяющие определить забойное давление у башмака фонтанных труб, у торца ствола и в затрубном пространстве.

Забойное давление у башмака фонтанных труб в горизонтальной скважине (см. рисунок 33) необходимо определить по формуле:

$$P_{3,r,\delta\varphi}^{2} = P_{y}^{2} \cdot e^{2(S_{g} + S_{nck} \pm S_{\delta\varphi})} + [\theta_{g} + \theta_{\mu c\kappa} + \theta_{r,\delta\varphi}] \cdot Q^{2}, \qquad (2.75)$$

$$S_{\rm B} = 0.03415 \frac{\overline{\rho}H_{\rm B}}{Z_{\rm cp,B}T_{\rm cp,B}}; S_{\rm HCK} = 0.03415 \frac{\overline{\rho}H_{\rm HCK}}{Z_{\rm cp,HCK}}; S_{\delta\phi i} = 0.03415 \frac{\overline{\rho}h_{\phi i}}{Z_{\rm cp,h\phi i}T_{cp,h\phi i}}, (2.76)$$

где h_{ϕ_i} – отклонение башмака фонтанных труб от горизонтали вверх или вниз (см. рисунок 33). Если профиль горизонтального участка ствола не восходящий или не нисходящий, то h_{ϕ_i} будет равным $h_{\phi_e} = 0$, и, следовательно, параметр S_{6dr} также будет равен нулю, т.е. $S_{6dr} = 0$.

Рис. 34. Схема горизонтальной скважины, частично оборудованной фонтанными трубами на горизонтальном участке ствола

Входящие в формулу (2.76) параметры θ_{μ} , $\theta_{\mu c \kappa}$ и $\theta_{r.6\varphi}$ должны определяться по формулам:

$$\theta_{_{\rm B}} = 1,377\lambda_{_{\rm B}}Z_{_{\rm CP,B}}^2 T_{_{\rm CP,B}}^2 (e^{2S_{_{\rm B}}} - 1) / d_{_{\rm B}}^5, \qquad (2.77)$$

$$\theta_{\rm HCK} = 1,377 \lambda_{\rm HCK} Z_{\rm cp.HCK}^2 T_{\rm cp.HCK}^2 (e^{2S_{\rm HCK}'} - 1) / d_{\rm HCK}^5, \qquad (2.78)$$

$$\theta_{\rm r,\delta\varphi} = 0,094\lambda_{\rm r\varphi}Z_{\rm cp,r\varphi}T_{\rm cp,r\varphi}\overline{\rho}L_{\rm r\varphi}/d_{\rm r\varphi}^5, \qquad (2.79)$$

$$S'_{\text{uck}} = 0.03415 \frac{\overline{\rho}L_{\text{uck}}}{Z_{\text{cp.uck}} T_{\text{cp.uck}}},$$
(2.80)

где

$$d_{rep}$$
 – диаметр фонтанных труб в горизонтальном участке ствола, $Z_{cp,rep}$ – ко-
эффициент сверхсжимаемости газа при средних значениях давления и тем-
пературы в пределах длины фонтанных труб в горизонтальном участке,
 $T_{cp,rep}$ – температура газа в пределах длины фонтанных труб в горизонтальном
участке. Значения $Z_{cp,rep}$ и $T_{cp,rep}$ определяются по равенствам:

$$T_{\rm cp,r\varphi} = \left(T_{\kappa,\rm ucc} + T_{\delta\varphi}\right) / 2; Z_{\rm cp,r\varphi} = f\left[\left(P_{\kappa,\rm ucc} + P_{\delta\varphi}\right) / 2P_{\rm sp}; \left(T_{\kappa,\rm ucc} + T_{\delta\varphi}\right) / 2T_{\rm sp}\right], (2.81)$$

где $T_{_{\rm K}\,_{\rm RCK}}$ и $P_{_{\rm K}\,_{\rm RCK}}$ – температура и давление на конечном сечении искривленного участка; $T_{_{6\varphi}}$ и $P_{_{6\varphi}}$ – температура и давление у башмака фонтанных труб; $\lambda_{_{\rm R\varphi}}$ – коэффициент гидравлического сопротивления фонтанных труб в горизонтальном участке ствола, $L_{_{\rm Rb}}$ – длина фонтанных труб в горизонтальном участке.

Определение забойного давления в горизонтальных скважинах с малым радиусом кривизны и частично оборудованных фонтанными трубами при отсутствии в их продукции жидкости

При малом радиусе кривизны ствола существует возможность упростить формулу (2.76), сохраняя при этом приемлемую точность определения забойного давления. Такое упрощение возможно путем исключения из формулы (2.76) слагаемых, связанных с радиусом кривизны, в частности, параметров $S_{\text{ися}}$ и $\theta_{\text{ися}}$. Тогда для горизонтальной скважины с малым радиусом кривизны формула (2.76) примет вид:

$$P_{\mathfrak{s},6\varphi}^{2} = P_{\mathfrak{y}}^{2} \cdot e^{2(S_{\mathfrak{s}}^{*}\pm S_{5\varphi\mathfrak{s}})} + [S_{\mathfrak{b}}^{*} + \theta_{\mathfrak{r},6\varphi}] \cdot Q^{2}, \qquad (2.82)$$

где $S'_{\rm B} = 0,03415\overline{\rho} (H_{\rm B} + R_{\rm иск.м}) / Z_{\rm срв} T_{\rm срв}$; $R_{\rm аск.м}$ – радиус кривизны искривленного участка, используемого для перехода ствола от вертикального направления к горизонтальному с малым радиусом. Величина $S_{6\phi}$ связана с профилем горизонтального участка, который может быть восходящий, горизонтальный и нисходящий и определяется по формуле (3.85). Если профиль горизонтального участка восходящий, то знак параметра $S_{6\phi}$ будет отрицательный, а если нисходящий, то положительный. Параметры $\theta'_{\rm B}$ и $\theta_{\rm edb}$ должны быть определены по формулам:

$$\theta'_{\rm B} = 1,377\lambda_{\rm B} Z'_{\rm cp,B} T'_{\rm cp,B} (e^{2S'_{\rm b}} - 1) / d^{5}_{\rm \varphi}, \qquad (2.83)$$

где

$$T'_{\rm cp,B} = \left(T_{\rm y} + T_{\rm s}\left(H_{\rm B} + R_{\rm BCK,M}\right)\right)/2;$$

$$Z'_{\rm cp,B} = f\left[\left(P_{\rm y} + P_{\rm s}\left(H_{\rm B} + R_{\rm BCK,M}\right)\right)/2P_{\rm kp}; T'_{\rm cp,B}/2T_{\rm kp}\right],$$

$$\theta_{\rm r,\varphi} = 0,094\lambda_{\rm r\varphi}Z_{\rm cp,r\varphi}T_{\rm cp,r\varphi}\overline{\rho}L_{\rm r\varphi}/d_{\varphi}^{5},$$
(2.84)

 $T_{\rm cpc}$ – средняя температура газа в пределах горизонтального участка фонтанных труб и должна определяться по формуле:

$$T_{\rm cp\,nh} = [T_{\rm s.ucs} + T_{\rm dh}]/2 \tag{2.85}$$

 $T_{\rm garge}, T_{\rm de}$ – соответственно температура газа у конца искривленного участка и башмака фонтанных труб; $L_{\rm re}$ – длина фонтанных труб в горизонтальном участке; $\lambda_{\rm rep}$ – коэффициент гидравлического сопротивления фонтанных труб в горизонтальном участке ствола; $Z_{\rm cp\,rep}$ – коэффициент сверхсжимаемости газа при условиях $P_{\rm ср.rep}$ и $T_{\rm cp.rep}$. Значение $P_{\rm ср.rep}$ определяется из равенства $P_{\rm cp.rep} = [P_{\rm g.seck} + P_{\rm Gep}]/2$, где $P_{\rm garge}$ и $P_{\rm Gep}$ – соответственно давления у конца искривленного и у башмака фонтанных труб. Тогда величина $Z_{\rm cp\,rep}$ будет определяться из графической зависимости $Z_{\rm cp\,rep} = f(P_{\rm cp.rep}/P_{\rm sep}; T_{\rm cp\,rep}/T_{\rm sep})$ или же численным методом согласно [1].

Определение забойного давления у башмака фонтанных труб горизонтальных скважин с восходящим или нисходящим профилем и малым радиусом кривизны

При определении забойного давления горизонтальных скважин без наличия фонтанных труб на горизонтальном участке было отмечено, что при малом радиусе кривизны переход ствола от вертикального направления к горизонтальному осуществляется в диапазоне радиуса кривизны $R_{\text{вссв}}$, равного $4 \le R_{\text{вссв}} \le 12$ м. Для практических расчетов забойного давления при среднем радиусе кривизны $R_{\text{всскер}} \approx 7$ м этот участок с вертикальной высотой $h_{\text{кр}} = R_{\text{всскр}} \cdot \sin\alpha$, где $\alpha = 90^{\circ}$ может быть прибавлен к глубине вертикального участка в виде $H_{\text{обла}} = H_{\text{в}} + h_{\text{кр}}$. Тогда для определения забойного давления в горизонтальной скважине с восходящим профилем следует использовать формулу:

$$P_{\scriptscriptstyle 3.6\phi}^2 = P_{\scriptscriptstyle y}^2 \cdot e^{2(S_{\scriptscriptstyle B}^{\scriptscriptstyle m} \pm S_{\scriptscriptstyle 6\phi}^{\scriptscriptstyle m})} + [\theta_{\scriptscriptstyle B}^{\scriptscriptstyle m} + \theta_{\scriptscriptstyle 1.6\phi}^{\prime}] \cdot Q_{\scriptscriptstyle CM}^2, \qquad (2.86)$$

где S_в – безразмерный коэффициент, определяемый по формуле:

$$S_{\rm s}'' = 0.03415 \frac{\overline{\rho} \cdot \rho \cdot (H_{\rm s} + R_{\rm KP,M})}{Z_{\rm cp,s}' \cdot T_{\rm cp,s}'}, \qquad (2.87)$$

 $T_{cp,o6,B}$ – средняя температура газа между устьем скважины и общей вертикальной глубиной $H_{o6,B} = H_{B} + h_{RP}$, т.е. $T_{cp,o6,B} = (T_{y} + T_{h,o6,B})/2$; $Z_{cp,o6,B}$ и $P_{cp,o6,B}$. Среднее давление на глубине $H_{o6,B}$ определяется из равенства $P_{cp,o6,B} = (P_{y} + P_{h,o6,B})/2$. Значение $S_{h\phi}$ определяется по формуле (3.87). Размерные параметры θ'_{B} и $\theta_{r\phi}$ определяются по формулам:

$$\theta'_{\rm B} = 1,377 \cdot \lambda_{\rm B.CM} \cdot Z'^{2}_{\rm cp.B.} \cdot T'^{2}_{\rm cp.B.} \cdot (e^{2S''_{\rm B}} - 1) / \rho \cdot d^{5}_{\phi}, \qquad (2.88)$$

$$\theta_{r,6\phi} = 0,094 \cdot \lambda_{r\phi\,cm} \cdot Z_{cp,r\phi} \cdot T_{cp,r\phi} \cdot \overline{\rho} \cdot L_{r\phi} / \rho \cdot d_{\phi}^{5}, \qquad (2.89)$$

где $T_{_{cp,r,\varphi}}$ – средняя температура газа в фонтанных трубах на горизонтальном участке; $Z_{_{cp,r,\varphi}}$ – коэффициент сверхсжимаемости газа в фонтанных трубах на горизонтальном участке; $\lambda_{_{a}}$ и $\lambda_{_{r,\varphi}}$ – коэффициенты гидравлического сопротивления на участке $H_{_{of,a}}$ и в фонтанных трубах, спущенных на горизонтальный участок.

Определение забойного давления в затрубном пространстве горизонтального участка, оборудованного фонтанными трубами

При определении забойного давления в затрубном пространстве известной величиной является забойное давление у башмака фонтанных труб.

Для определения забойного давления в затрубном пространстве горизонтальной скважины с большим и со средним радиусами кривизны были использованы методы расчета, предложенные для различных радиусов кривизны и вычисления забойного давления у башмака фонтанных труб. Вместо суммарного дебита, используемого при расчете забойного давления у башмака фонтанных труб, следует использовать дебит газа только из затрубного пространства. Эти дебиты могут быть определены двумя способами.

1. Путем предположения, что забойное давление постоянное по всей длине горизонтального ствола независимо от наличия или отсутствия фонтанных труб. Тогда суммарный дебит должен быть разделен на всю длину фильтра, чтобы найти коэффициент продуктивности, а затем определить дебит из затрубного пространства q_{sar} :

$$q_{6e3,\Phi} = \frac{Q_{cym}}{L_r} \left[L_r - L_{\Phi} \right] \bowtie q_{3ar} = \frac{L_{\Phi} Q_{cym}}{L_r}.$$
(2.90)

2. Путем совместного решения системы дифференциальных уравнений притока газа к затрубному пространству горизонтального ствола и движение его в этом пространстве и аналогичные уравнения в зоне отсутствия фонтанных труб. При известном дебите из затрубного пространства забойное давление на самом отдаленном от башмака участке затрубного пространства скважины с восходящим или нисходящим профилем следует определить по формуле:

$$P_{_{3ar}}^2 = P_{6.\phi}^2 \cdot e^{2S_{h_{\phi}}} + \theta_{_{3ar}} \cdot Q_{_{3ar}}^2, \qquad (2.91)$$

где
$$S_{h\phi} = 0.03415 \frac{\overline{\rho}h_{\phi}}{Z_{cp,sar}T_{cp,sar}}$$
 и $\theta_{sar} = 0.094\lambda_{sar}Z_{cp,sar}T_{cp,sar}\overline{\rho}L_{\phi}/D_{skb}^{5}$ (2.92)

где $\lambda_{\text{зат}}$ – коэффициент гидравлического сопротивления затрубного пространства, величина которого значительно больше коэффициента λ при движении газа по фонтанным трубам; $P_{\delta,\phi}$ – известное забойное давление у башмака фонтанных труб, определенное по известным устьевому давлению $P_{y,\phi}$ и конструкции скважины.

^{2*} Для определения забойного давления в затрубном пространстве кольцевое пространство заменяется круговым через эквивалентный диаметр, используя равенство:

$$D_{_{\rm ЭКВ}} = \left[D_{_{\rm B.obc}}^2 - d_{_{\rm H}\phi}^2 \right]^{0.5}.$$
 (2.93)

Коэффициент гидравлического сопротивления затрубного пространства λ_{ыт} приближенно можно определить по формуле:

$$\lambda_{_{3aT}} = \lambda_0 \frac{D_{_{B.06c}} - d_{_{H}\Phi}}{D_{_{B.06c}}^2 - d_{_{H}\Phi}^2} + \left[\frac{D_{_{M}}^2 - d_{_{H}\Phi}^2}{D_{_{B.06c}} - D_{_{M}}^2} + 0.05\right] \frac{(D_{_{B.06c}}^2 - d_{_{H}\Phi}^2)^{0.5}}{l}, \qquad (2.94)$$

где $D_{\text{вобс}}$, $d_{\text{в.ф}}$ и $D_{\text{м}}$ – соответственно внутренний диаметр обсадных колонн, наружные диаметры фонтанных труб и соединительных муфт; l – длина одной фонтанной трубы; λ_{0} – коэффициент сопротивления эквивалентных

труб с внутренним диаметром $D_{_{\tiny OKB}}$, значения которого можно рассчитать формулой или выбрать из табличных данных.

 $T_{\rm срават}$ – средняя температура газа в затрубном пространстве и определяется из равенства $T_{\rm срават} = (T_{a.6} + T_{\rm кансе})/2$, где $T_{a.6}$ и $T_{\rm кансе}$ температуры у башмака фонтанных труб и у конца искривленного участка ствола, L_{ϕ} – длина фонтанных труб, т.е. участка затрубного пространства, где происходит приток газа и его движение к башмаку фонтанных труб. Из формулы видно, что для определения затрубного давления на расстояние L_{ϕ} от башмака фонтанных труб известным принято забойное давление у башмака $P_{6.\phi}$. Если профиль горизонтального участка будет горизонтальный, то слагаемое $P_{6.\phi}^2 \cdot e^{28_{\lambda\phi}}$ будет равно нулю и формула примет вид:

$$P_{3a1}^{2} = P_{6,\phi}^{2} + \theta_{3a1} \cdot Q_{3a1}^{2}.$$
 (2.95)

Обозначения, входящие в формулу (2.91) аналогичны обозначениям в формуле (2.91).

Для определения забойного давления в затрубном пространстве горизонтальных скважин с малым радиусом кривизны при наличии фонтанных труб приведенные приближенные методы определения забойного давления в затрубном пространстве получены для горизонтальной скважины с большим и со средним радиусами кривизны. В качестве известного давления, используя которое определяется давление в затрубном пространстве при малом радиусе кривизны, могут быть использованы формулы (2.91) и (2.95). Влияние радиуса кривизны в данном случае учитывается при определении забойного давления у башмака фонтанных труб.

Приближенный учет наличия жидкости в газе при определении забойного давления в горизонтальных газовых скважинах с большим и со средним радиусами кривизны, не оборудованных фонтанными трубами

Приближенно забойное давление в горизонтальной газовой скважине с большим и со средним радиусами кривизны без фонтанных труб в горизонтальном участке ствола при наличии жидкости в газе следует определить по формуле:

$$P_{3,r,\delta\varphi}^{2} = P_{y}^{2} e^{\left(S_{a}^{\prime}+S_{nck}^{\prime}\pm S_{\delta\varphi\delta}^{\prime}\right)} + \left(\theta_{a}^{\prime}+\theta_{uc\kappa}^{\prime}+\theta_{r,\delta\varphi}\right) Q_{cm}^{2}, \qquad (2.96)$$

где P_{sn} – забойное давление у торца; P_{y} – давление на устье горизонтальной скважины; S_{s} – безразмерный параметр, определяемый при наличии жидкости в газе, движущегося по вертикальному участку ствола по формуле:

$$S_{\scriptscriptstyle \rm B} = 0.03415 \frac{\overline{\rho} \cdot \rho \cdot H_{\scriptscriptstyle \rm B}}{Z_{\scriptscriptstyle \rm CP,B}}, \qquad (2.97)$$

где $\overline{\rho}$ – относительная плотность газа, ρ – параметр, связанный с истинным и меняющимся по стволу скважины газосодержанием определяется по формуле (2.53). При практических расчетах из-за отсутствия данных об истинном газосодержании можно использовать расходное β из равенства:

$$\beta = Q_{\rm rp} / (Q_{\star} + Q_{\rm rp}),$$
 (2.98)

где Q_{rp} – объемный расход жидкой фазы; Q_{rp} – расход газа в рабочих условиях в м³/сут, определяемый по формуле (2.37).

Входящие в формулу (2.92) параметры $\theta_{\mu}, \theta_{\mu}, \theta_{\mu}$ и θ_{μ} определяются по формулам:

$$\theta_{\rm B} = 0.01413 \cdot 10^{-10} \cdot \lambda_{\rm B.CM} \cdot Z_{\rm cp.B.}^2 \cdot T_{\rm cp.B.}^2 \cdot (e^{2S_{\rm B}} - 1) / (\rho \cdot d_{\rm B}^5), \tag{2.99}$$

$$\theta_{_{\rm HCK}} = 0.01413 \cdot 10^{-10} \cdot \lambda_{_{_{\rm HCK,CM}}} \cdot Z_{_{\rm CP,HCK}}^2 \cdot T_{_{\rm CP,HCK}}^2 \cdot (e^{2S_{_{\rm CK}}} - 1) / (\rho \cdot d_{_{_{\rm HCK}}}^5), \quad (2.100)$$

$$\theta_{\rm r} = 0,0965 \cdot 10^{-10} \cdot \lambda_{\rm r.c.s.} \cdot Z_{\rm cm.c.p.r.} \cdot \overline{\rho} \cdot L_{\rm r} / (\rho \cdot d_{\rm r}^5).$$
(2.101)

В этих формулах коэффициенты гидравлического сопротивления $\lambda_{\text{всск}}$, $\lambda_{\text{всск}}$ и $\lambda_{\text{ссм}}$ – приближенно определяются для условия $Q_t/Q_x \leq 900 \text{ м}^3/\text{M}^3$ по формуле (2.28).

Если соотношение $Q_{e}/Q_{*}>900 \text{ м}^{3}/\text{м}^{3}$, то величину λ_{cM} следует определять по формуле (2.29).

Для расчета давлений в вертикальном и искривленном участках горизонтальной скважины значение λ_{cm} определяется для движения смеси по фонтанным трубам и параметры P_{cp} , T_{cp} , Z_{cp} и ρ_{cp} относятся к участку от устья до конца искривленной зоны.

Величина *S*_{иск}, входящая в формулу, определяется по формуле:

$$S_{\rm B} = 0.03415 \frac{\overline{\rho} \cdot \rho \cdot L_{\rm HCK}}{Z_{\rm cp}}, \qquad (2.102)$$

где $L_{\text{иск}}$ – длина искривленной части ствола. $Q_{\text{см}}$ входящий в формулу (2.92) объемный расход смеси определяется формулой (2.57).

Приведенные выше формулы применимы для горизонтальных стволов. Если горизонтальный участок имеет восходящий или нисходящий профили, то формула (3.98) будет иметь вид:

$$P_{_{3,\mathrm{T}}}^2 = P_{_{y}}^2 \cdot e^{2(S_{_{\mathrm{B}}} + S_{_{\mathrm{BCS}}} \pm S_{_{H}})} + [\theta_{_{\mathrm{B}}} + \theta_{_{\mathrm{HCK}}} + \theta_{_{\mathrm{T}}}] \cdot Q_{_{\mathrm{CM}}}^2, \qquad (2.103)$$

где $P_{\text{влесс}}$ – давление у конца искривленного участка; h_t – вертикальная высота торца горизонтального ствола от горизонтали, т.е. от конца искривленного участка. Величина S_{h_t} определяется по формуле:

$$S_{\rm B}' = 0,03415 \frac{\overline{\rho} \cdot \rho \cdot H_{\rm B}}{Z_{\rm cp.h} \cdot T_{\rm cp.h}} S_{\rm HCK}' = 0,03415 \frac{\overline{\rho} \cdot \rho \cdot H_{\rm HCK}}{Z_{\rm cp.HCK} \cdot T_{\rm cp.HCK}} S_{\rm 6\varphi_i}' = 0,03415 \frac{\overline{\rho} \cdot \rho \cdot h_{\rm ej}}{Z_{\rm cp.h_{gk}} \cdot T_{\rm cp.h_{gk}}}.$$
 (2.104)

Определение забойного давления горизонтальной скважины с малым радиусом кривизны при наличии жидкости в потоке газа

Из-за незначительной длины участка с малым радиусом кривизны, который равен $4 \le R_{\text{иск}} \le 12$, м может быть приплюсован к вертикальному. Это означает, что к вертикальному участку глубиной H_{*} следует добавить $R_{\text{иск}} \approx 8$ м. Общая вертикальная глубина будет определяться из равенства: $H_{**0} = H_{*} + R_{**}$. Тогда из расчетной формулы (2.92) будет исключено составляющее $\theta_{**}Q_{**}^2$ и эта формула примет вид:

$$P_{31}^{2} = P_{y}^{2} e^{(S_{y} \pm S_{dh})} + (\theta_{B}' + \theta_{r}') Q_{cM}^{2}, \qquad (2.105)$$

 $Z_{cp.o6}$ – коэффициент сверхсжимаемости газа в интервале H_{no6} ; $T_{cp.o6}$ – средняя температура газа в интервале глубиной H_{no6} . Все остальные параметры, входящие в формулу (2.105) должны определяться по аналогии с предыдущими формулами.

$$S'_{\scriptscriptstyle\rm B} = 0.03415 \frac{\overline{\rho} \cdot \rho \cdot H_{\scriptscriptstyle\rm B}}{Z_{\rm cp,B}} S'_{\scriptscriptstyle\rm rh_i} = 0.03415 \frac{\overline{\rho} \cdot \rho \cdot h_i}{Z_{\rm cp,h_i} \cdot T_{\rm cp,h_i}}.$$
 (2.106)

Параметр $\theta_{_{\rm B}}^{/}$ в данном случае следует определить по формуле:

$$\theta'_{\rm B} = 1,377 \cdot \lambda_{\rm B,CM} \cdot Z'^{2}_{\rm cp,B_{\rm c}} \cdot T'^{2}_{\rm cp,B_{\rm c}} \cdot (e^{2S^{*}_{\rm b}} - 1) / \rho \cdot d^{5}_{\rm b}, \qquad (2.107)$$

$$\theta_{r.6\varphi} = 0.094 \cdot \lambda_{r\varphi cM} \cdot Z_{cp.r\varphi} \cdot \overline{\rho} \cdot L_{r\varphi} / \rho \cdot d_{\varphi}^{5}.$$
(2.108)

При определении $Z_{cp.o6}$, $T_{cp.o6}$ следует исходить из величины давления и температуры в интервале с глубиной $H_{n.o6}$. В случае определения коэффициента гидравлического сопротивления λ_{cm} при $Q_r/Q_{m}>900 \text{ м}^3/\text{M}^3$ величину P_{cp} следует рассчитать для глубины $H_{n.o6}$.

Определение забойного давления горизонтальной скважины с большим и со средним радиусами кривизны, частично оборудованной фонтанными трубами при наличии жидкости в газе

Наличие фонтанных труб на горизонтальном участке скважины обуславливает необходимость определить забойное давление для трех сечений: в частности, у башмака фонтанных труб, у торца горизонтального ствола и у самого отдаленного от башмака фонтанных труб с затрубного пространства.

1. *Для определения забойного давления у башмака фонтанных труб* при известном устьевом давлении следует использовать формулу:

$$P_{3,\mathrm{r},\mathrm{6}\mathrm{\varphi}}^{2} = P_{\mathrm{y}}^{2} e^{\left(S_{\mathrm{s}}^{\prime} + S_{\mathrm{5}\mathrm{d}\mathrm{s}}^{\prime} \pm S_{\mathrm{5}\mathrm{d}\mathrm{s}}^{\prime}\right)} + \left(\theta_{\mathrm{s}}^{\prime} + \theta_{\mathrm{uc}\mathrm{\kappa}}^{\prime} + \theta_{\mathrm{r},\mathrm{6}\mathrm{\varphi}}\right) Q_{\mathrm{c}\mathrm{s}}^{2}, \qquad (2.109)$$

$$S'_{\rm B} = 0.03415 \frac{\overline{\rho} \cdot \rho \cdot H_{\rm B}}{Z_{\rm cp,B}}; S'_{\rm ACK} = 0.03415 \frac{\overline{\rho} \cdot \rho \cdot H_{\rm HCK}}{Z_{\rm cp,HCK}}; S'_{\rm 6\varphi} = 0.03415 \frac{\overline{\rho} \cdot \rho \cdot h_{\rm dy}}{Z_{\rm cp,h_{fK}}}, (2.110)$$

где $Q_{\rm cm}$ – дебит смеси, поступающей в горизонтальный ствол из участка $L_{\rm rop}$ – $L_{\rm dp}$, где отсутствуют фонтанные трубы; $\lambda_{\rm robc.}$ – коэффициент гидравлического сопротивления на этом участке горизонтального ствола; $Z_{\rm ep.6ex.dp.}$ – коэффициент сверхсжимаемости на участке $L_{\rm rop}$ – $L_{\rm dp}$ при средних на этом участке величинах давления и температуры, т.е. при $P_{\rm ep.6ex.dp.}$. Значение $P_{\rm ax}$, определяемое по формуле (2.110) находится методом последовательных приближений.

$$\theta'_{\rm B} = 1,377\lambda_{\rm B,CM}Z_{\rm CD,B}^2 T_{\rm CD,B}^2 (e^{2S'_{\rm B}} - 1)/d_{\rm B}^5\rho,$$

$$\theta'_{\rm HCK} = 1,377\lambda_{\rm HCK,CM}Z_{\rm CD,HCK}^2 T_{\rm CD,HCK}^2 (e^{2S'_{\rm BCK}} - 1)/d_{\rm HCK}^5\rho,$$
(2.111)

$$\theta'_{\rm HCK} = 0,094\lambda_{\rm L,CM,\Phi}Z_{\rm CD,H\Phi}T_{\rm CD,H\Phi}\overline{\rho}L_{\rm H\Phi}/d_{\rm HD}^5\rho.$$

2. Для определения забойного давления в затрубном пространстве, отдаленного от башмака фонтанных труб на величину $L_{\text{зат.ф}}$, необходимо использовать формулу:

$$P_{\text{r.sar}}^2 = P_{3.6\phi}^2 + \Theta_{\text{r.sar}} \cdot Q_{3a1.\phi}^2.$$
(2.112)

Значение параметра θ_{aar} в формуле (3.112) следует рассчитать, используя равенство:

$$\theta_{\text{r.sar}} = 0.094\lambda_{\text{sar.cm}} Z_{\text{cp.sar}} T_{\text{cp.sar}} \overline{\rho} L_{\text{r}\phi} / \rho \left(D_{\text{B.skc}} - d_{\text{H}\phi} \right)^3 \left(D_{\text{B.skc}} + d_{\text{H}\phi} \right)^2. \quad (2.113)$$

где $Q_{\text{сман}}$ – дебит скважины из затрубного пространства; $\lambda_{\text{зат.см.}}$ – коэффициент гидравлического сопротивления труб в затрубном пространстве. Движение газожидкостной смеси по кольцевому пространству увеличивает коэффициент гидравлического сопротивления труб. Величина $\lambda_{\text{зат}}$ может быть оценена по формуле (2.26).

Для определения коэффициента гидравлического сопротивления смеси в затрубном пространстве в зависимости от содержания жидкости в газе предложены два приближенных метода. Формулы для определения λ_{cm} не для затрубного пространства, а для кругового сечения обозначены номерами (2.28) при $Q_r/Q_{\pi} \leq 900 \text{ м}^3/\text{m}^3$ и (2.29) при $Q_r/Q_{\pi} \geq 900 \text{ m}^3/\text{m}^3$. Если кольцевое затрубное пространство заменить круговым сечением с эквивалентным диаметром, то можно использовать формулу (2.93). Тогда для затрубного пространства при движении смеси формулы будут иметь вид (2.28) и (2.29).

По приведенным формулам можно оценить забойное давление в затрубном пространстве при наличии жидкости в потоке газа.

Определение забойного давления в затрубном пространстве горизонтальной скважины с малым радиусом кривизны при наличии жидкости в потоке газа

При малом радиусе кривизны, оцениваемой в несколько метров, длина искривленного участка прибавляется к глубине вертикального участка, и забойное давление горизонтальной скважины определяется по формуле:

$$P_{_{3\mathrm{a}\mathrm{T}}}^2 = P_{_{3.6\varphi}}^2 \div \theta_{_{3\mathrm{a}\mathrm{T}}}' \cdot Q_{_{\mathrm{CM}}}^2, \qquad (2.114)$$

где $P_{\rm 6d}$ – забойное давление у башмака фонтанных труб.

$$\theta_{\text{sar}}' = \frac{0,0965 \cdot 10^{-10} \cdot \lambda_{\text{sar.cm.}} \cdot Z_{\text{cp.sar}} \cdot T_{\text{cp.sar}} \cdot \overline{\rho} \cdot L_{\phi}}{(\rho \cdot d_{\text{skb}}^5)}, \qquad (2.115)$$
$$P_{a.6\phi}^2 = P_y^2 \cdot e^{2(S_a^{\mu} \pm S_{\text{ops}}^{\nu})} + [\theta_a^{\prime\prime} + \theta_{r.6\phi}^{\prime}] \cdot Q_{\text{cm}}^2.$$

Методика определения остальных параметров, входящих в формулу (2.115) изложена в предыдущих пунктах.

Задача 44 — Определение пластового давления для однородного пологого пласта, вскрытого горизонтальным профилем, при симметричном по толщине пласта размещении ствола, для горизонтальной скважины, вскрывающей пласт единым зенитным углом с восходящим профилем и для горизонтальной скважины, расположенной по напластованию.

Пластовое давление в горизонтальных скважинах с учетом профиля горизонтального участка ствола определяется по формуле (2.60), с учетом (2.61).

Таблица 2.38

Исходные данные для расчета

ρ	Н _{гс1} , м	Р _у , МПа	Т _у , К	Т", К
0,6	2030	5,76	286	302

Таблица 2.39

Расчет пластового давления при симметричном по толщине пласта размещении ствола

Т _{кр} , К	Р _{кр} , МПа	Т , К	<i>h</i> , м	$T_{_{ m up}}$	$P_{_{ m up}}$	$\boldsymbol{z}_{\mathrm{cp}}$	\$	Р _{пл} , К
196,354	4,724419	294	41	1,497296	1,219	0,884	0,160	6,760

Таблица 2.40

Расчет пластового давления для скважины, вскрывающей пласт единым зенитным углом с восходящим или нисходящим профилем

восходящий

Т _{кр} , К	Р _{кр} , МПа	T _{ep} , K	<i>h</i> , м	T _{up}	\mathbf{P}_{up}	$\pmb{z}_{ ext{cp}}$	s	Р _{шл} , К
196,354	4,724419	294	41	1,497296	1,219	0,884	0,157	6,738
нисходящий								
TE IC	р мп	T IC	1	T	D	05355	0.0407	DIC

Т _{кр} , К	Р _{кр} , МПа	Т _{ер} , К	<i>h</i> , м	T _{up}	\mathbf{P}_{up}	$\pmb{z}_{ ext{cp}}$	S	Р _{ил} , К
196,354	4,724419	294	41	1,497296	1,219	0,884	0,163	6,782

Расчет пластового давления для скважины, расположенной по напластованию	Расчет пластового	давления для	скважины,	расположенной по напластован	ИЮ
---	-------------------	--------------	-----------	------------------------------	----

Т _{кр} , К	Р _{кр} , МПа	Т _{ер} , К	<i>h</i> , м	T _{up}	$\mathbf{P}_{_{\mathrm{up}}}$	$\boldsymbol{z}_{\mathrm{cp}}$	\$	Р _{ил} , К	Т _{кр} , К
196,354	4,724419	294	41	1,497296	1,219	1950	0,884	0,154	6,717

Задача 45 – Определение забойного давления в горизонтальных скважинах с большим и средним радиусом кривизны при отсутствии в горизонтальном стволе фонтанных труб.

Забойное давление в горизонтальных скважинах с большим и средним радиусом кривизны при отсутствии в горизонтальном стволе фонтанных труб определяется по формуле (2.62).

Таблица 2.42

Q, тыс.м ³ /сут	110
D _{шег} , мм	89
Р,, МПа	5,76
ρ_	0,6
$\mathbf{P}_{_{\mathrm{KD}}}, \mathbf{M} \mathbf{\Pi} \mathbf{a}$	4,65412
Т _{кр} , К	197,197
Н", м	1600
Н _{иее} , м	100

Исходные данные для расчета

L _{онка} , м	656,6
L _{г.ф} , м	456,6
h_{aa} , M	20
Г, К/м	0,008356
Т, К	302
λ	0,025
$\lambda_{_{\rm HCK}}$	0,021
λ_{rb}	0,027
<i>D</i> , мм	132

Таблица 2.43

Расчет забойного давления при симметричном расположении горизонтального ствола

	=			
№ итерации	1	2	3	4
Р., МПа	6,567431	6,572409	6,57244	6,57244
S _n	0,123429	0,12418	0,124185	0,124185
S _{uck}	0,007738	0,007741	0,007741	0,007741
S'une	0,012149	0,012154	0,012154	$0,0121\overline{5}4$
S _r	0,010222	$0,01022\overline{7}$	0,010227	0,010227
θ _n	1,22E-07	1,21E-07	1,21E-07	1,21E-07
$\theta_{_{\rm HCK}}$	7,89E-10	7,89E-10	7,89E-10	7,89E-10
θ	4,59E-09	3,29E-08	3,29E-08	3,29E-08
$T_{e^{n}}$	299,8693	299,8693	299,8693	299,8693
Р _. , МПа	5,76	6,516804	6,521698	6,52173
P _{иск} , МПа	6,52173	6,572392	6,572412	6,572412
Р,, МПа	6,572412	6,639944	6,640004	6,640004
P _{cu} · _u , MΠa	5,76	6,138402	6,140849	6,140865
$P_{ch'ncr}$, M Πa	6,52173	6,547061	6,547071	6,547071
Р _{сэ`г} , МПа	6,572412	6,606178	6,606208	6,606208
Z_{en}	0,885751	0,880396	0,880362	0,880361
Z _{cD} ·nck	0,876792	0,876462	0,876462	0,876462
Ζ	0,876133	0,875697	0,875697	0,875697

№ итерации	1	2	3	4
Р _{ат} , МПа	6,557268	6,562211	6,562242	6,562242
S _n	0,123429	0,12418	0,124185	0,124185
S _{BCK}	0,007738	0,007741	0,007741	0,007741
S' _{were}	0,012149	0,012154	0,012154	0,012154
S_{hi}	0,001549	0,001549	0,001549	0,001549
θ	1,22E-07	1,21E-07	1,21E-07	1,21E-07
θ	7,89E-10	7,89E-10	7,89E-10	7,89E-10
θ	4,59E-09	4,59E-09	4,59E-09	4,59E-09
T _{cd.B}	299,8693	299,8693	299,8693	299,8693
Т	302	302	302	302
T_{cnhdi}	302	302	302	302
P_{n} , M Π a	5,76	6,516804	6,521698	6,52173
Р _{иск} , МПа	6,52173	6,572392	6,572412	6,572412
P_{hdi} , МПа	6,572412	6,582603	6,582604	6,582604
Р _{съ.} , МПа	5,76	6,138402	6,140849	6,140865
Р присте МПа	6,52173	6,547061	6,547071	6,547071
Р _{ср. hdd} , МПа	6,572412	6,577507	6,577508	6,577508
Z	0,885751	0,880396	0,880362	0,880361
Z _{co west}	0,876792	0,876462	0,876462	0,876462
Z _{cp h} thi	0,876133	0,876067	0,876067	0,876067

Расчет забойного давления при восходящем профиле горизонтального ствола

Таблица 2.45

Расчет забойного давления при нисходящем профиле горизонтального ствола

№ итерации	1	2	3	4
Р", МПа	6,5776102	6,58257	6,582602	6,582602
S.	0,1234293	0,12418	0,124185	0,124185
Succ	0,0077382	0,007741	0,007741	0,007741
S'acr	0,0121489	0,012154	0,012154	0,012154
S_{hi}	0,0015488	0,001549	0,001549	0,001549
θ	1,218E-07	1,21E-07	1,21E-07	1,21E-07
θ	7,891E-10	7,89E-10	7,89E-10	7,89E-10
θ	4,591E-09	4,59E-09	4,59E-09	4,59E-09
$T_{\rm CD, B}$	299,86927	299,8693	299,8693	299,8693
T _{200 max}	302	302	302	302
$\mathbf{T}_{_{\mathrm{cp.hdbi}}}$	302	302	302	302
P_{μ} , $M\Pi a$	5,76	6,516804	6,521698	6,52173
Р _{иск} , МПа	6,5217296	6,572392	6,572412	6,572412
P_{hdi} , M Π a	6,5724115	6,582603	6,582604	6,582604
Р _{ср} ., МПа	5,76	6,138402	6,140849	6,140865
Р мини, МПа	6,5217296	6,547061	6,547071	6,547071
P _{cp} thdd, MΠa	6,5724115	6,577507	6,577508	6,577508

			1	
№ итерации	1	2	3	4
Z_{en} ,	0,8857514	0,880396	0,880362	0,880361
Zentuce	0,876792	0,876462	0,876462	0,876462
Z_{cn}	0,8761334	0,876067	0,876067	0,876067

Продолжение табл. 2.45

Задача 46 – Определение забойного давления в горизонтальных скважинах с малым радиусом кривизны при отсутствии в горизонтальном стволе фонтанных труб.

Забойное давление в горизонтальных скважинах с малым радиусом кривизны при отсутствии в горизонтальном стволе фонтанных труб определяется по формуле (2.71). Исходные данные аналогичны предыдущей задаче.

Таблица 2.46

Расчет забойного давления при симметричном расположении горизонтального ствола

№ итерации	1	2	3	4
Р., МПа	6,516807431	6,521702	6,521733	6,521733
S"	0,123429266	0,12418	0,124185	0,124185
S,	0,010213641	0,010214	0,010214	0,010214
θ	1,21777E-07	1,21E-07	1,21E-07	1,21E-07
$\boldsymbol{\Theta}_{\mathrm{r}}$.	3,57355E-09	3,57E-09	3,57E-09	3,57E-09
T_{ar}	299,8692722	299,8693	299,8693	299,8693
Р., МПа	5,76	6,516804	6,521698	6,52173
Р,, МПа	6,521729616	6,588685	6,58869	6,58869
P _{cube} , MΠa	5,76	6,138402	6,140849	6,140865
Р _{ср} ., МПа	6,140864808	6,363543	6,364769	6,364777
Z_{cp^*p}	0,885751363	0,880396	0,880362	0,880361
$Z_{ep'r}$	0,876856186	0,876792	0,876792	0,876792

Таблица 2.47

Расчет забойного давления при нисходящем профиле горизонтального ствола

№ итерации	1	2	3	4
Р _{эт} , МПа	6,526842298	6,531774	6,531806	6,531806
S	0,123429266	0,12418	0,124185	0,124185
S_{hi}	0,001538715	0,001543	0,001543	0,001543
θ.	1,21777E-07	1,21E-07	1,21E-07	1,21E-07
θ	3,57302E-09	3,57E-09	3,57E-09	3,57E-09
$T_{c_{\rm D,B}}$	299,8692722	299,8693	299,8693	299,8693
Р _в , МПа	5,76	6,516804	6,521698	6,52173
$\mathrm{P}_{\mathrm{h}\mathrm{d}\mathrm{i}}$, M Π a	6,521729616	6,531776	6,531806	6,531806
P _{cp} · _n , MΠa	5,76	6,138402	6,140849	6,140865
Ресьер, МПа	6,140864808	6,33632	6,336335	6,336335
Zenn	0,885751363	0,880396	0,880362	0,880361
$Z_{cp hbi}$	0,881874787	0,879237	0,879237	0,879237
Z	0,876725379	0,876661	0,876661	0,876661

№ итерации	1	2	3	4
Р., МПа	6,506787993	6,511645	6,511676	6,511676
S _n	0,123429266	0,12418	0,124185	0,124185
Shi	0,001538715	0,001543	0,001543	0,001543
θ	1,21777E-07	1,21E-07	1,21E-07	1,21E-07
θ	3,57408E-09	3,57E-09	3,57E-09	3,57E-09
$\mathbf{T}_{_{CD,R}}$	299,8692722	299,8693	299,8693	299,8693
Р _. , МПа	5,76	6,516804	6,521698	6,52173
P_{hdi} , МПа	6,521729616	6,531776	6,531806	6,531806
Р _{съ.в} , МПа	5,76	6,138402	6,140849	6,140865
Р _{еп hehi} , МПа	6,140864808	6,33632	6,336335	6,336335
Zmn	0,885751363	0,880396	0,880362	0,880361
Z_{enhbi}	0,881874787	0,879237	0,879237	0,879237
Z_{corr}	0,876986955	0,876924	0,876923	0,876923

Расчет забойного давления при восходящем профиле горизонтального ствола

Задача 47 – Определение дебита в затрубном пространстве горизонтальных скважин оборудованными фонтанными трубами.

Дебит в затрубном пространстве горизонтальных скважин оборудованными фонтанными трубами определяется по формуле (2.86).

Таблица 2.49

Параметр	Значение	Размерность
L_{c}	800	М
L_{ϕ}	500	М
Q_{com}	500	тыс.м³/сут

Исходные данные для расчета

Таблица 2.50

Пример расчета дебита в затрубном пространстве горизонтальных скважин

Параметр	Значение	Размерность
$q_{\scriptscriptstyle { m frem}}$	187,5	тыс.м ³ /сут
$q_{_{\rm MI}}$	312,5	тыс.м³/сут

Задача 48 – Определение забойного давления в затрубном пространстве горизонтальных скважин с восходящим или нисходящим профилями с большим и средним радиусами кривизны, частично оборудованными фонтанными трубами. Исходные данные аналогичны предыдущей задаче.

	-			
№ итерации	1	2	3	4
P _{ar} , M∏a	6,567461703	6,572413	6,572445	6,572445
S	0,123429266	0,12418	0,124185	0,124185
Suck	0,007738173	0,007741	0,007741	0,007741
S'	0,012148932	0,012154	0,012154	0,012154
S_r	0,006892151	0,006894	0,006894	0,006894
$\mathbf{\Theta}_{n}$	1,21777E-07	1,21E-07	1,21E-07	1,21E-07
θ	5,66296E-09	5,66E-09	5,66E-09	5,66E-09
$\mathbf{\Theta}_{r}$	3,29462E-08	3,29E-08	3,29E-08	3,29E-08
T _{m'n}	299,8692722	299,8693	299,8693	299,8693
Р, МПа	5,76	6,516804	6,521698	6,52173
$P_{\mu c \mu}, M \Pi a$	6 <u>,</u> 521729616	6,572397	6,572416	6,572416
P_{hdd} , M Π a	6,572416001	6,617901	6,617916	6,617916
Р.,, МПа	5,76	6,138402	6,140849	6,140865
Р _{птиск} , МПа	6,521729616	6,547063	6,547073	6,547073
Р _{со[•]hdi} , МПа	6,572416001	6,595158	6,595166	6,595166
Z	0,885751363	0,880396	0,880362	0,880361
Ζ	0.876792004	0.876462	0,876462	0,876462
7	0.87613336	0.875839	0.875839	0.875839

Расчет забойного давления при симметричном расположении горизонтального ствола

Таблица 2.52

Расчет забойного давления при нисходящем профиле горизонтального ствола

№ итерации	1	2	3	4
Р₌, МПа	6,577641	6,582601	6,582632	6,582632
S _B	0,123429	0,12418	0,124185	0,124185
S _{wee}	0,007738	0,007741	0,007741	0,007741
S'	0,012149	0,012154	0,012154	0,012154
$\mathbf{S}_{\mathrm{fd},\mathrm{f}}$	0,001549	0,001549	0,001549	0,001549
θ	1,22E-07	1,21E-07	1,21E-07	1,21E-07
$\theta_{\mu c \kappa}$	5,66E-09	5,66E-09	5,66E-09	5,66E-09
θ_{150}	3,29E-08	3,29E-08	3,29E-08	3,29E-08
$T_{m''}$	299,8693	299,8693	299,8693	299,8693
Р _" , МПа	5,76	6,516804	6,521698	6,52173
P_{nce} , M Πa	6,52173	6,572397	6,572416	6,572416
$\mathbf{P}_{\mathrm{hdi}}$, МПа	6,572416	6,582634	6,582634	6,582634
Р _{съ*е} , МПа	5,76	6,138402	6,140849	6,140865
Р _{ср} • _{вст} , МПа	6,52173	6,547063	6,547073	6,547073
Р _{сићфі} , МПа	6,572416	6,577525	6,577525	6,577525
$Z_{cp \cdot \mu}$	0,885751	0,880396	0,880362	0,880361
Zentury	0,876792	0,876462	0,876462	0,876462
Ζ	0.876133	0.876067	0,876067	0,876067

Таблица 2.51

№ итерации	1	2	3	4
Р _{ат} , МПа	6,557298	6,562241	6,562273	6,562273
S_n	0,123429	0,12418	0,124185	0,124185
S _{иск}	0,007738	0,007741	0,007741	0,007741
S' _{ner}	0,012149	0,012154	0,012154	0,012154
S _{6di}	0,001549	0,001549	0,001549	0,001549
Θ_{u}	1,22E-07	1,21E-07	1,21E-07	1,21E-07
$\theta_{_{\rm HCK}}$	5,66E-09	5,66E-09	5,66E-09	5,66E-09
$\theta_{\rm eff}$	3,29E-08	3,29E-08	3,29E-08	3,29E-08
T _{cn'a}	299,8693	299,8693	299,8693	299,8693
Р,, МПа	5,76	6,516804	6,521698	6,52173
P_{ncx} , M Πa	6,52173	6,572397	6,572416	6,572416
P_{hbi} , M Π a	6,572416	6,582634	6,582634	6,582634
P _{cu'ν} , MΠa	5,76	6,138402	6,140849	6,140865
$P_{cn^{+}ncs}$, M Π a	6,52173	6,547063	6,547073	6,547073
$P_{cp^*hdpi}, M\Pi a$	6,572416	6,577525	6,577525	6,577525
Z _{cp'y}	0,885751	0,880396	0,880362	0,880361
Zentuer	0,876792	0,876462	0,876462	0,876462
Z _{cp} ·hdbi	0,876133	0,876067	0,876067	0,876067

Расчет забойного давления при восходящем профиле горизонтального ствола

Забойное давление в затрубном пространстве горизонтальных скважин с восходящим или нисходящим профилями с большим и средним радиусами кривизны полностью оборудованными фонтанными трубами определяется по формуле (2.91).

Таблица 2.54

Расчет необходимых параметров

D _{эки} ,мм	97,48333
D _{ана} ,мм	43

Таблица 2.55

Расчет давления в затрубном пространстве горизонтальных скважин с большим и средним радиусами кривизны при отсутствии жидкости в их продукции

№ итерации	1	2	3	4
Р _{эг} , МПа	6,567510007	6,572461	6,572493	6,572493
$\boldsymbol{\Theta}_{r, \text{var}}$	4,79751E-08	4,77E-08	4,77E-08	4,77E-08
T	302	302	302	302
Р _{сы} , МПа	5,76	6,163755	6,166231	6,166246
$Z_{cn,r}$	0,887196473	0,881563	0,881529	0,881529

Задача 50 — Определение забойного давления горизонтальных скважин с большим и средним радиусами кривизны не оборудованными фонтанными трубами при наличии жидкости в потоке.
Забойное давление горизонтальных скважин с большим и средним радиусами кривизны не оборудованными фонтанными трубами при наличии жидкости в потоке определяется по формуле (2.96).

Таблица 2.56

$Q_{_{\rm CM}}$, тыс.м $^3/{ m cyt}$	1000
D , мм	132
Р _. , МПа	5,76
ρ-	0,694
Р _{кр} , МПа	4,616069
T _{unt} K	213,2522
Н _и , м	1600
Н _{иси} , м	100
L _{one} , M	656,6
L _{с.в.} , м	456,6

Исходные данные для расчета

h _{,i} , м	20
Г, К/м	0,008356
Т., К	302
$\lambda_{_{ m B}}$	0,025
λ_{mn}	0,021
λ_{rob}	0,027
D, мм	203
Q_{a} , тыс.м 3 /сут	0,1152
Q, тыс.м ³ /сут	730
ρ	0,694
ρ"	805

Таблица 2.57

Расчет забойного давления при симметричном расположении горизонтального ствола

№ итерации	1	2	3	4
Р., МПа	6,903099	6,914777	6,914899	6,914901
S _B	0,170038	0,171725	0,171743	0,171743
S'	0,010739	0,010745	0,010745	0,010745
S,	0,00184	0,00184	0,00184	0,00184
θ	2,36E-08	2,34E-08	2,34E-08	2,34E-08
θμακ	1,21E-10	1,21E-10	1,21E-10	1,21E-10
θ	6,01E-10	6,01E-10	6,01E-10	6,01E-10
$T_{cn'u}$	299,8693	299,8693	299,8693	299,8693
Р., МПа	5,76	6,829349	$6,84085\overline{7}$	6,840979
P _{ww} , МПа	$6,8\overline{4}0979$	6,914848	$6,9\bar{1}4893$	6,914893
Р₁, МПа	6,914893	6,927673	6,927674	6,927674
Р _{ст.в} , МПа	5,76	6,294674	6,300429	6,300489
P_{cource} , M Πa	6,840979	6,877913	6,877936	6,877936
Р _{сп.f} , МПа	6,914893	6,921283	6,921284	6,921284
Zena	0,869032	0,860486	0,860397	0,860396
Zennew	0,853943	0,853416	0,853416	0,853416
Z	0,852892	0,852801	0,852801	0,852801
ρ	1,168543	1,168528	1,168528	1,168528
φ	0,987739	0,987727	0,987727	0,987727
Q ₁₀ , тыс.м ³ /сут	9,280482	9,270931	9,27093	9,27093
ρ	54,58984	54,64608	54,64608	54,64608

№ итерации	1	2	3	4
P _{ser} , МПа	6,915808	6,927508	6,927631	6,927633
\mathbf{S}_{n}	0,170038	0,171725	0,171743	0,171743
S'new	0,010739	0,010745	0,010745	0,010745
\mathbf{S}_{hi}	0,00184	0,00184	0,00184	0,00184
θ	2,36E-08	2,34E-08	2,34E-08	2,34E-08
θ _{иск}	1,21E-10	1,21E-10	1,21E-10	1,21E-10
θ	6,01E-10	6,01E-10	6,01E-10	6,01E-10
T _{cp.n}	299,8693	299,8693	299,8693	299,8693
Р _и , МПа	5,76	6,829349	6,840857	6,840979
Р _{иси} , МПа	6,840979	6,914848	6,914893	6,914893
P_{hdd} , M Πa	6,914893	6,927673	6,927674	6,927674
P_{cnu} , M Πa	5,76	6,294674	6,300429	6,300489
P _{сп.иск} , МПа	6,840979	6,877913	6,877936	6,877936
P _{en hés} , МПа	6,914893	6,921283	6,921284	6,921284
Z _{CDB}	0,869032	0,860486	0,860397	0,860396
Zenner	0,853943	0,853416	0,853416	0,853416
$\mathbf{Z}_{\mathrm{en } \mathrm{hdi}}$	0,852892	0,852801	0,852801	0,852801
ρ	1,168543	1,168528	1,168528	1,168528
φ	0,987739	0,987727	0,987727	0,987727
Q ₁₁ , тыс.м ³ /сут	9,280482	9,270931	9,27093	9,27093
ρ	$5\overline{4},5898\overline{4}$	54,64608	54,64608	54,64608

Расчет забойного давления при нисходящем профиле горизонтального ствола

Таблица 2.59

Расчет забойного давления при восходящем профиле горизонтального ствола

№ итерации	1	2	3	4
Р_, МПа	6,890414	6,902069	6,902191	6,902192
S _n	0,170038	0,171725	0,171743	0,171743
S' _{nck}	0,010739	0,010745	0,010745	0,010745
S_{hi}	0,00184	0,00184	0,00184	0,00184
θ_{μ}	2,36E-08	2,34E-08	2,34E-08	2,34E-08
θ _{иск}	1,21E-10	1,21E-10	1,21E-10	1,21E-10
θ_{r} .	6,01E-10	6,01E-10	6,01E-10	6,01E-10
T _{cp'B}	299,8693	299,8693	299,8693	299,8693
Р _" , МПа	5,76	6,829349	6,840857	6,840979
Р _{иск} , МПа	6,840979	6,914848	6,914893	6,914893
P_{hdi} , МПа	6,914893	6,927673	6,927674	6,927674
Р _{ср`и} , МПа	5,76	6,294674	6,300429	6,300489
Penium, MIIa	6,840979	6,877913	6,877936	6,877936
P_{cu^*hdir} MПa	6,914893	6,921283	6,921284	6,921284
$Z_{cp'}$	0,869032	0,860486	0,860397	0,860396
Ζ	0,853943	0,853416	0,853416	0,853416

№ итерации	1	2	3	4
Z_{cn}	0,852892	0,852801	0,852801	0,852801
ρ	1,168543	1,168528	1,168528	1,168528
φ	0,987739	0,987727	0,987727	0,987727
${ m Q}_{_{\rm ID}}$, тыс.м $^3/{ m cyt}$	9,280482	9,270931	9,27093	9,27093
ρ _{ip}	54,58984	54,64608	54,64608	54,64608

Продолжение табл. 2.59

Задача 51 – Определение забойного давления горизонтальных скважин с малым радиусом кривизны не оборудованными фонтанными трубами при наличии жидкости в потоке.

Исходные данные аналогичны предыдущей задаче. Забойное давление горизонтальных скважин с малым радиусом кривизны не оборудованными фонтанными трубами при наличии жидкости в потоке определяется по формуле (2.101).

Таблица 2.60

Расчет забойного давления при симметричном расположении горизонтального ствола

№ итерации	1	2	3	4
Р _{абф} , МПа	6,516747	6,521639	6,521671	6,521671
S _B	0,123429	0,12418	0,124185	0,124185
S_{6bi}	0,001539	0,001456	0,001456	0,001456
$\boldsymbol{\Theta}_{\mathrm{p}}$	5,85E-08	5,62E-08	5,62E-08	5,62E-08
$\theta_{r^{\star}\phi}$	1,72E-09	1,66E-09	1,66E-09	1,66E-09
$T_{cp'n}$	299,8693	299,8693	299,8693	299,8693
Р ", МПа	5,76	6,516745	6,521638	6,521669
$\mathbf{P}_{_{\mathrm{hd}i}}$, МПа	6,521669	0,004556	0,004478	0,004478
Р., МПа	5,76	6,138373	6,140819	6,140834
P _{cn[•]hdi} , MΠa	6,140834	3,072695	3,072656	3,072656
$\dot{Z}_{cp\cdot B}$	0,885751	0,880396	0,880362	0,880362
$Z_{en hdi}$	0,881875	0,931914	0,931915	0,931915
Zentr	0,876857	0,876793	0,876793	0,876793
ρ	2,083212	2,15637	2,156371	2,156371
φ	0,932092	0,964825	0,964826	0,964826
Q ₁₀ , тыс.м ³ /сут	1,581222	3,159871	3,159909	3,159909
ρ	47,48908	23,76389	23,76359	23,76359

Таблица 2.61

Расчет забойного	лавления по	ри нисхоляшем п	рофил	е го	ризонтального	ствола
	A		p o quant		phoonin	010000

№ итерации	1	2	3	4
Р _{абф} , МПа	6,5267819	6,5311423	6,531173	6,531174
S	0,1234293	0,1241801	0,124185	0,124185
S_{6di}	0,0015387	0,0014561	0,001456	0,001456

№ итерации	1	2	3	4
θ _υ	5,846E-08		5,62E-08	5,62E-08
θ _{r*d}	1,715E-09	1,657E-09	1,66E-09	1,66E-09
T	299,86927	299,86927	299,8693	299,8693
Р,, МПа	5,76	6,5167453	6,521638	6,521669
Р _{ьфі} , МПа	6,521669	0,0045556	0,004478	0,004478
P _{ent} , MΠa	5,76	6,1383727	6,140819	6,140834
Р _{со*ьы} , МПа	6,1408345	3,072695	3,072656	3,072656
Z_{cp}	0,8857514	0,8803959	0,880362	0,880362
Z_{cu^*bdbi}	0,8818752	0,9319142	0,931915	0,931915
Z_{cn}	0,8767262	0,8766694	0,876669	0,876669
ρ	2,0831913	2,156359	2,15636	2,15636
φ	0,9320829	0,9648204	0,964821	0,964821
$Q_{\rm d}$, тыс.м 3 /сут	1,5809866	3,1594245	3,159463	3,159463
ρ	47,496165	23,76724	23,76695	23,76695

Продолжение табл. 2.61

Таблица 2.62

Расчет забойного давления при восходящем профиле горизонтального ствола

№ итерации	1	2	3	4
Р _{абе} ь, МПа	6,506727	6,51215	6,512181	6,512182
S	0,123429	0,12418	0,124185	0,124185
$S_{\kappa \star i}$	0,001539	0,001456	0,001456	0,001456
θ	5,85E-08	5,62E-08	5,62E-08	5,62E-08
$\theta_{1, \phi}$	1,72E-09	1,66E-09	1,66E-09	1,66E-09
T_{en}	299,8693	299,8693	299,8693	299,8693
Р., МПа	5,76	6,516745	6,521638	6,521669
$\mathbf{P}_{ ext{hdi}},\mathbf{M}\Pi$ а	6,521669	0,004556	0,004478	0,004478
Р _{ос'в} , МПа	5,76	6,138373	6,140819	6,140834
$P_{en^{+hdi}}$ M Πa	$6,1\overline{40}834$	3,072695	3,072656	3,072656
Z _{cp'a}	0,885751	$\overline{0},\!880396$	0,880362	0,880362
$Z_{cp} \cdot_{hbi}$	0,881875	0,931914	0,931915	0,931915
Z_{m}	0,876988	0,876917	0,876917	0,876917
ρ	2,083233	2,15638	2,156381	2,156381
φ	0,932102	0,96483	0,96483	0,96483
${ m Q}_{\scriptscriptstyle (D}$, тыс.м $^3/{ m cyt}$	1,581458	3,160316	3,160355	3,160355
$\rho_{i\nu}$	47,482	$2\overline{3},760\overline{5}3$	$2\overline{3,7602}4$	23,76024

Задача 52 — Определение забойного давления горизонтальных скважин с большим и средним радиусом кривизны частично оборудованными фонтанными трубами при наличии жидкости в потоке.

№ итерации	1	2	3	4
P _{ar} , M∏a	7,560205	6,633243	6,627466	6,627429
S _B	0,255854	0,125062	0,124191	0,124185
S'uce	0,01604	0,016052	0,016052	0,016052
\mathbf{S}_{r}	0,00155	0,00155	0,00155	0,00155
θ	2,91E-07	1,2E-07	1,21E-07	1,21E-07
θ_{nck}	1,18E-08	1,18E-08	1,18E-08	1,18E-08
θ.	3,29E-08	3,29E-08	3,29E-08	3,29E-08
T _{cp'B}	299,8693	299,8693	299,8693	299,8693
Р,, МПа	5,76	7,439852	6,527549	6,521863
Р _{иск} , МПа	6,521863	6,62734	6,627417	6,627417
Р, МПа	6,627417	6,637753	6,637754	6,637754
Р _{`₽, МПа}	5,76	6,599926	6,143774	6,140932
Р, МПа	6,521863	6,574602	6,57464	6,57464
Р _{ср} ., МПа	6,627417	6,632585	6,632585	6,632585
Z	0,885751	0,874186	0,880321	0,880361
Zentuer	0,87679	0,876105	0,876105	0,876105
Z_{co^*r}	0,875423	0,875357	0,875357	0,875357
ρ	2,072883	2,072755	2,072755	2,072755
φ	0,927471	0,927413	0,927413	0,927413
Q ₁₀ , тыс.м ³ /сут	1,473128	1,471868	1,471868	1,471868
ρ	50,97372	51,01734	51,01734	51,01734

Расчет забойного давления при симметричном расположении горизонтального ствола

Исходные данные аналогичны предыдущей задаче. Забойное давление горизонтальных скважин с большим и средним радиусом кривизны частично оборудованными фонтанными трубами при наличии жидкости в потоке определяется по формуле (2.108) учетом (2.106).

Таблица 2.64

№ итерации	1	2	3	4
Р _т , МПа	7,571931382	6,643533	6,637747	6,63771
S _B	0,255854475	0,125062	0,124191	0,124185
S' _{ucv}	0,016040362	0,016052	0,016052	0,016052
\mathbf{S}_{hi}	0,001550054	0,00155	0,00155	0,00155
θ _n	2,90589E-07	1,2E-07	1,21E-07	1,21E-07
θ_{mm}	1,18369E-08	1,18E-08	1,18E-08	1,18E-08
θ_{r} .	3,29195E-08	3,29E-08	3,29E-08	3,29E-08
T_{cv^*s}	299,8692722	299,8693	299,8693	299,8693
Р _" , МПа	5,76	7,439852	6,527549	6,521863
P _{иск} , МПа	6,521863406	6,62734	6,627417	6,627417
Р _{ьфі} , МПа	6,627416652	6,637753	6,637754	6,637754

Расчет забойного давления при нисходящем профиле горизонтального ствола

№ итерации	1	2	3	4
Р _{сп*и} , МПа	5,76	6,599926	6,143774	6,140932
P _{en} . MПа	6,521863406	6,574602	6,57464	6,57464
P_{co^*bda} , M Πa	6,627416652	6,632585	6,632585	6,632585
Z_{c}	0,885751363	0,874186	0,880321	0,880361
Zentuer	0,87679026	0,876105	0,876105	0,876105
Z_{cs^*bdbi}	0,875423345	0,875357	0,875357	0,875357
ρ	2,072883388	2,072755	2,072755	2,072755
φ	0,927470892	0,927413	0,927413	0,927413
, тыс.м ³ /сут	1,473127825	1,471868	1,471868	1,471868
ρ	50,97371644	51,01734	51,01734	51,01734

Продолжение табл. 2.64

Таблица 2.65

Расчет забойного давления при восходящем профиле горизонтального ствола

№ итерации	1	2	3	4
Р_, МПа	7,548497	6,622969	6,617201	6,617164
S _B	0,255854	0,125062	0,124191	0,124185
S' _{uck}	0,01604	0,016052	0,016052	0,016052
\mathbf{S}_{hi}	0,00155	0,00155	0,00155	0,00155
θ,	2,91E-07	1,2E-07	1,21E-07	1,21E-07
Θ_{new}	1,18E-08	1,18E-08	1,18E-08	1,18E-08
θ,.	3,29E-08	3,29E-08	3,29E-08	3,29E-08
T_{a}	299,8693	299,8693	299,8693	299,8693
Р., МПа	5,76	7,439852	6,527549	6,521863
Р _{иск} , МПа	6,521863	6,62734	6,627417	6,627417
$\mathbf{P}_{\mathrm{hdi}}$, МПа	6,627417	6,637753	6,637754	6,637754
P _{err} , MΠa	5,76	6,599926	6,143774	6,140932
Р МПа	6,521863	6,574602	6,57464	6,57464
$P_{en^{+}hdi}$, M Πa	$6,62741\overline{7}$	6,632585	6,632585	6,632585
$Z_{c_{D},a}$	0,885751	$0,\!874186$	0,880321	0,880361
Z_{cn}	$\bar{0},87679$	0,876105	0,876105	0,876105
$Z_{cn^{+}hdi}$	0,875423	0,875357	0,875357	0,875357
ρ	2,072883	2,072755	2,072755	2,072755
φ	0,927471	0,927413	0,927413	0,927413
Q ₁₀ , тыс.м ³ /сут	1,473128	1,471868	1,471868	1,471868
ρ	50,97372	51,01734	51,01734	51,01734

№ итерации	1	2	3	4
P _{ar} , MПа	7,560247	6,63329	6,627513	6,627477
θ.	4,8E-08	4,73E-08	4,76E-08	4,76E-08
T_{cp}	302	302	302	302
P _{cu} ·r, M∏a	5,76	6,660124	6,196645	6,193757
$Z_{cp'r}$	0,887196	0,875003	0,881116	0,881155
Р,,,МПа	7,560205	6,633243	6,627466	6,627429

Расчет давления в затрубном пространстве горизонтальных скважин с большим и средним радиусами кривизны, частично оборудованных фонтанными трубами при наличии жидкости в ее продукции

2.5. Температура газовых месторождений

Определение распределения температуры в остановленной скважине

В остановленных газовых скважинах распределение температуры может быть определено только после ее полной стабилизации.

Для практических расчетов изменение температуры с глубиной можно определить по формуле:

$$T_{x} = T_{ux} - \Gamma(L - x), \qquad (2.116)$$

где T_{nn} – пластовая температура, К; Γ – средний геотермический градиент, град/м; T_{*} – температура на глубине L–x; L – общая глубина скважины от устья до середины пласта. При совпадении начала координат с серединой пласта формула (2.116) примет вид $T_{*}=T_{nn}-\Gamma x$.

Значение геотермического градиента Земли, где расположена исследуемая скважина, определяется формулой:

$$\Gamma = \frac{T_{\rm HC} - T_{\rm HC}}{L - h_{\rm HC}},$$
(2.117)

где $T_{\rm Hc}$ – температура нейтрального слоя, К; $h_{\rm Hc}$ – глубина нейтрального слоя, м.

При наличии зоны многолетней мерзлоты геотермический градиент для интервала от нижней границы мерзлоты до разрабатываемого пласта определяется формулой:

$$\Gamma = \frac{T_{\rm HI} - T_{\rm MO}}{L - h_{\rm MO}}, \qquad (2.118)$$

где $T_{_{MO}}$ – температура на нижней от устья границе мерзлоты, К; $h_{_{MO}}$ – глубина нижней границы мерзлоты от устья скважины, м. В зоне многолетней мерзлоты геотермический градиент оценивается по формуле:

$$\Gamma_{\rm M} = \frac{T_{\rm MO} - T_{\rm HC}}{h_{\rm MO} - h_{\rm HC}}.$$
 (2.117)

Определение значений $h_{\rm nc}$, $h_{\rm Mo}$, $T_{\rm uc}$ и $T_{\rm sso}$ возможно либо непосредственным измерением температуры по стволу скважины данного месторождения, либо путем использования табличных данных по данному региону.

Определение распределения температуры в пласте

Создание депрессии на пласт в процессе исследования и эксплуатации скважин вызывает изменения температуры в пласте. Распределение температуры газа в пласте при работе скважин с приемлемой точностью может быть определено по формуле:

$$T(R) = T_{nn} - D_i (P_{nn} - P_R) \frac{\ln \left[1 + GC_p \tau / \pi h C_n R^2\right]}{\ln R_k / R}, \qquad (2.120)$$

где $P_{\rm R}$ и T(R) – давление и температура газа в пласте на расстоянии R от забоя скважины; G – массовый расход газа кг/час; C_p – теплоемкость газа при $P_{\rm cp}$ и $T_{\rm cp}$ между забоем и контуром зоны дренирования; τ – продолжительность работы скважины после ее последней остановки в час; $C_{\rm n}$ – объемная теплоемкость пласта; h – толщина пласта; $R_{\rm s}$ – радиус контура зоны дренирования; $D_{\rm r}$ – коэффициент Джоуля–Томсона в пластовых условиях, т.е. при $P_{\rm m}$ и $T_{\rm ha}$.

При известном объемном расходе газа по отраслевому стандарту в тыс.м³/сут, массовый расход *G* определяется по формуле:

$$G=54\,\overline{\rho}\,\mathrm{Q},\tag{2.121}$$

где $\overline{\rho}$ – относительная плотность газа; Q – объемный расход газа, тыс.м³/сут.

Общий перепад температуры в пласте от контура зоны дренирования до скважины при ее работе определяется формулой (2.120) но при $R=R_c$ и $P_p=P_{met}$

Определение распределения температуры газа в стволе работающей вертикальной газовой скважины

При отсутствии зоны многолетней мерзлоты

Температура газа в стволе работающей вертикальной газовой скважины на глубине *x* определяется формулой:

$$T_{x} = T_{\text{III}} - \Gamma x - \Delta T e^{-\alpha x} + \frac{1 - e^{-\alpha x}}{\alpha} \left[\Gamma - D_{i} \frac{P_{3} - P_{x}}{x} - \frac{A}{C_{p}} \right], \qquad (2.122)$$

где *х* – координата, увеличивающаяся снизу вверх.

Начало координат, т.е. x=0, принято в середине продуктивного пласта. Следует подчеркнуть, что обычно напротив газоотдающего интервала температура несколько ниже, чем на кровле этого пласта. Поэтому при интерпретации геофизических исследований за x=0 принимают кровлю газоотдающего пласта; T – перепад температуры, определяемый по формуле (3.122) при $R=R_c$ и $P=P_s$; Γ – средний по разрезу скважины геотермический градиент, град/м; D_i – коэффициент Джоуля–Томсона в интервале x, где давление меняется от P_s до P_y , а температура от T_s до T_y .

Для небольших участков или небольших изменений P и T в интервале x величина D_i может быть определена для средних значений давления $P_{cp}=(P_s+P_x)/2$ и $T_{cp}=(T_s+T_x)/2$. Неизвестный T_{cp} в первом приближении может быть определен как $T_{cp}=T_s$. Полученный при этом D_i следует использовать для вычисления T_s , а затем вторым приближением уточнить сначала D_i , а потом T_s . Коэффициент α , имеющий размерность длины 1/м, определяется по формуле:

$$\alpha = 2\pi\lambda/GC_{f}(\tau), \qquad (2.123)$$

где λ_" – теплопроводность горных пород, Дж/кг·с·К и изменяется существенно в зависимости от минералогического состава и структуры пород, от их насыщения жидкостью и газом и т.д.

Как правило, такие достоверные данные по всему разрезу отсутствуют. Поэтому при расчетах обычно используют либо одну осредненную величину λ_n , либо графическую зависимость λ_n от глубины залегания пород.

Средневзвешенный коэффициент теплопроводности при известных поинтервальных значениях λ_m определяется по формуле:

$$\lambda_{\rm ncp} = \sum_{i=1}^{n} \lambda_{ni} h_i / \sum_{i=1}^{n} h_i.$$
 (2.124)

Значения λ_{m} для разных пород, различающихся составом, приведены в таблице 2.67 и 2.68; $f(\tau)$ – безразмерная функция времени, определяемая для необсаженных скважин по формуле:

$$f(\tau) = \ln\left(1 + \sqrt{\pi\lambda_{\rm n}\tau/C_{\rm n}R_c^2}\right)$$
или $f(\tau) = \ln\left(1 + \sqrt{\pi\alpha_{\rm n}\tau/R_c^2}\right) + \lambda_{\rm n}/\alpha_{\rm n}R_c.$ (2.125)

Если скважина обсажена колонной радиусом $R_{\text{кол}}$ и флюид движется по внутри-колонному пространству, то значение $f(\tau)$ вычисляется по формуле:

$$f(\tau) = \lambda_{\mu} \left[\frac{1}{\lambda_{c1}} \ln \frac{R_c}{R_{\text{KOR}}} + \frac{1}{\lambda_{\mu}} \ln \left(1 + \sqrt{\pi \alpha_n \tau / R_c^2} \right) \right] + \lambda_n / \alpha_{\text{KOR}} R_c, \qquad (2.126)$$

где α_n – коэффициент температуропроводности пород, м²/с; α_c – коэффициент теплоотдачи на стенке скважины, Вт/м²·К; α_{non} – коэффициент теплоотдачи на внутренней стенке колонны, Вт/м²·К; λ_c – теплопроводность заполнителя пространства, Вт/м·К. Метод определения температуры газа с учетом наличия фонтанных труб в стволе приведен в [18].

Среда Норода Генлопро лость ло,Вт/м К Пають ло,Вт/м К Массовая 10° С., Ля/к К Массовая 10° С., Ля/к К Фотьсть ло, Цяк/к К ропровод- ность л, Дяк/к К Глина 0.383-3.02 1.2-2.4 0.75-3.55 1.8-8.3 2.54-11.56 Песчаник 0.38-5.17 2.0-2.9 0.67-3.34 1.7-8.6 2.54-20.43 Песчаник 0.38-5.17 2.0-2.9 0.67-3.34 1.7-8.6 2.54-20.43 Алевролит 0.41-3.58 1.8-2.8 0.75-1.65 1.8-4.0 5.36-15.42 Доломит 3.24 2.7 1.0 2.94 9.86 Доломит 3.24 2.7 1.0 2.94 10.28 Доломит 3.24 2.7 1.0 2.94 11.27 Мавестняк 0.92-4.4 1.8-2.9 0.75-1.71 2.0-4.5 3.91-16.9 Маретель 1.92 2.3 1.63 3.74 7.13 3.14-3.8 Маретель 1.92 2.3 1.63 3.74 7.13 3.14-1.5 маретель			Таннонро	Плот	Теплое	мкость	Температу-
Глина λ_{0} , Вт/м К 10° кг/м ³ 10° С., Дж/м К К Но° С., Дж/м К К Но° С., Дж/м К К Но° С., Дж/м К К Но° С., Дж/м К Но° С., Дж/м К Но° С., Мж/с Но° С., Дж/м К Но° С., Мж/с Но° С., Дж/м К Но° С., Дж/м K Но° С., Дж/м K Но° C., Дж/м K Но° C., Цж/c Но° C., Цж/c Hor C., Lasses I. Casses 1.2 2.0 1.2 2.0 1.2 2.0 1.0 2.0 2.0 <t< th=""><th>Среда</th><th>Порода</th><th>геплопро- водность,</th><th>плот- ность р,</th><th>массовая</th><th>объемная</th><th>ропровод-</th></t<>	Среда	Порода	геплопро- водность,	плот- ность р,	массовая	объемная	ропровод-
Портини Портини Дж/кг К <	1	1 , , ,	λ.Вт/мК	$10^{-3} \text{ KG}/\text{m}^{3}$	10° C ₀ ,	$10^{\circ} C_{n}$	ность <i>а</i> , 10
Глина 0.38-3.02 1,49 1.2-2.4 2.35 0.75-3.55 1.24 1.8-8.3 2.54-11.56 6.60 Песчаник 0.38-5.17 1.66 2.35 1.24 2.91 6.60 Песчаник 0.38-5.17 1.66 2.05.29 0.67-3.34 1.7-8.6 2.54-20.43 ороды 0.41-3.58 1.8-2.8 0.75-1.65 1.8-4.0 5.36-15.42 Алевролит 1.439 2.4 0.88 2.11 10.28 Доломит 1.63-3.58 1.9-3.6 0.65-1.47 1.8-4.0 5.36-15.42 Мавестняк 0.92-4.4 1.8-2.9 0.75-1.71 2.0-4.5 3.91-16.9 Мавестняк 0.92-4.4 1.8-2.9 0.75-1.71 2.0-4.5 3.91-16.9 Мавестняк 0.92-4.4 1.8-2.9 0.75-1.71 2.0-4.5 3.91-16.9 Марегель 0.92-3.0 1.52-888 0.84-3.09 1.9-7.1 3.14-138 Марамор 1.59-4.0 2.3-3.0 0.74-0.99 1.9-2.5 5.94-15.3 Марамор 1.59-4.0 2.3-6 0.87 2			11, 1	,	Дж/кг К	Дж/м К	м-́/с
Горны породы осадоч- ные Глини (Садоч- ные 1,49 (Садоч- ные 1,49 (Садоч- ные 2,35 (Садоч- ные 1,24 (Садоч- ные 2,35 (Садоч- ные 1,7-8,6 (Cadoч- (Cadoч- ные 2,54-20,43 (Cadoч- (Cadoч- ные Маевролит ные 0,38-5,17 (Cadoч- ные 0,41-3,58 (Cadoч- ные 1.8-2.9 (Cadoч- (Cadoч- ные 0,55-1.67 (Cadoч- (Cadoч- ные 5,36-15,42 (Cadoч- (Cadoч- ные 5,36-15,42 (Cadoч- (Cadoч- нае 1.63-3,58 (Cadoч- (Cadoч- цаб) 0,55-1.47 (Cadoч- (Cadoч- цаб) 1.8-4.0 (Cadoч- (Cadoч- цаб) 5,36-15,42 (Cadoч- цаб) Мавестняк 0.92-4.4 (Cadoч- цаб) 1.8-2.9 (Cadoч- (Cadoч- цаб) 0.55-1.47 (Cadoч- цаб) 1.8-4.0 (Cadoч- цаб) 5,36-15,42 (Cadoч- цаб) Мергель 0.92-4.4 (Cadoч- цаб) 1.8-2.9 (Cadoч- цаб) 0.75-1.71 (Cadoч- цаб) 2.0-4.5 (Cadoч- цаб) 3.91-16.9 (Cadoч- цаб) Мергель 0.92-4.4 (Cado 1.8-2.9 (Cadoч- цаб) 0.75-0.88 (Cadoч- цаб) 1.9-7.1 (Cadoч- цаб) 3.14-13.8 (Cadoч- цаб) 3.14-13.8 (Cadoч- цаб) Мергель 0.55-3.04 (Cadoч- цаб) 1.59-5.4 (Cadoч- цаб) 2.3-2.4 (Cadoч- цаб) 7.8-12.0 (Cadoч- цаб) 3.32-15.0 (Cadoч- цаб) Магматич 0.37-0.56 1.04-1.18 (Cadoч- таб) 3.9-4.8 (Cadoч- taf) 4.1-5.7 (Cadoч- taf)		Глина	<u>0.38–3.02</u>	1.2 - 2.4	<u>0.75–3.55</u>	<u>1.8–8.3</u>	<u>2.54–11.56</u>
Песчаник 0.38–5.17 1.66 2.0–2.9 2.55 0.67–3.34 0.97 1.7–8.6 2.49 2.54–20.43 9.86 Порлин поролы осадоч- ные Алевролит Пооталоч- ные 0.41–3.58 1.49 1.8–2.8 2.4 0.75–1.65 1.8–4.0 5.36–15.42 Доломит ные 1.63–3.58 1.9–3.6 0.65–1.47 10.28 5.36–15.42 Доломит 3.24 2.7 1.0 2.94 12.44 Известняк 0.92–44 1.8–2.9 0.65–1.47 1.8–4.0 5.36–15.42 Мавестняк 0.92–44 1.8–2.9 0.75–1.71 2.0–4.5 3.91–16.9 Мергель 0.5–3.9 1.5–2.888 0.84–3.09 1.9–7.1 3.14–13.8 Мергель 0.25–3.04 2.3–3.0 0.74–0.99 1.9–2.5 5.94–15.3 морфи- ческие Мрамор 1.59–4.0 2.7 0.87 2.18 9.46 магмати- ческие Гранит 2.4 2.6 0.95 2.47 3.31–15.0 магмати- ческие Базальт 1.59–4.0 2.7 0.76–2.14 1.59–5.4 4.33–6.7 </td <td></td> <td>1 /////14</td> <td>1,49</td> <td>2,35</td> <td>1,24</td> <td>2,91</td> <td>6,60</td>		1 /////14	1,49	2,35	1,24	2,91	6,60
Горные породы осадоч- ные Лесчиник 1,66 2,55 0,97 2,49 9,86 Оорные осадоч- ные Алевролит 0.41-3.58 1.8-2.8 0.75-1.65 1.8-4.0 5.36-15.42 Доломит 1.63-3.58 1.9-3.6 0.65-1.47 1.8-4.0 5.36-15.42 Доломит 1.63-3.58 1.9-3.6 0.65-1.47 1.8-4.0 5.36-15.42 Известняк 0.92-4.4 1.8-2.9 0.75-1.71 2.0-4.5 3.91-16.9 Известняк 0.92-4.4 2.65 0.89 2.36 1.127 Мергель 1.92 2.3 1.63 3.74 7.13 Мергель 1.22 2.5 0.87 2.18 9.46 морфи- ческие Мрамор 1.59-4.0 2.7 0.74-0.99 1.9-2.5 5.94-15.3 Магмати- ческие Пранит 1.34-3.69 2.7 0.86 2.32 11.0 Магмати- ческие Базальт 1.45 2.54 1.23 3.12 5.34 Пласто- вые Вода		Посионик	<u>0.38–5.17</u>	<u>2.0–2.9</u>	0.67 - 3.34	1.7 - 8.6	2.54 - 20.43
Горные породы осадоч- ные Алевролит 0.41-3.58 1,49 1.8-2.8 2,4 0.75-1.65 0,88 1.8-4.0 2,11 5.36-15.42 10,28 Осадоч- ные Доломит 1.63-3.58 3.24 1.9-3.6 2,7 0.65-1.47 1,0 1.8-4.0 2,94 5.36-15.42 10,28 Известняк 0.92-4.4 2,4 1.8-2.9 2,3 0.75-1.71 0,89 2.0-4.5 2,36 3.91-16.9 11,27 Мергель 0.5-3.9 1,92 1.5-2.88 2,3 0.84-3.09 1,63 1.9-2.5 5.94-15.3 Мергель 0.25-3.04 1,22 2,5 0.87 2,18 9.46 Мармор 1.29-4.0 2,56 2,7 0.86 2,32 11,0 магмати ческие Пранит 1.34-3.69 2,56 2,7 0.87 2,18 9.46 Мрамор 2,56 2,7 0,86 2,32 11,0 1.9-2,0 1.9-2,4 1,0 3.33-15.0 Магмати ческие Пранит 1.34-3.69 2,4 2,5 0,76-2.14 1.9-4.0 3.33-15.0 Магмати ческие Пранит 0,61-0.9 1,45 2,54 1,23 3,12 5,34 <		пссчаник	1,66	2,55	0,97	2,49	9,86
породы осадоч- ные Алевролит 1,49 2,4 0,88 2,11 10,28 Осадоч- ные Доломит 1.63-3.58 1.9-3.6 0.65-1.47 1.8-4.0 5.36-15.42 Известняк 0.92-4.4 1.8-2.9 0.75-1.71 2.0-4.5 3.91-16.9 Мавестняк 0.92-4.4 1.8-2.9 0.75-1.71 2.0-4.5 3.91-16.9 Мергель 0.5-3.9 1.5-2.888 0.84-3.09 1.9-7.1 3.14-13.8 мета- морфи- ческие Глинистый 0.25-3.04 2.3-3.0 0.74-0.99 1.9-2.5 5.94-15.3 мета- морфи- ческие Планац 1.22 2.5 0.87 2.18 9.46 Мрамор 1.59-4.0 =- 0.74-0.99 1.9-2.5 5.94-15.3 магмати- ческие Прамор 1.59-4.0 2.7 0.86 2.32 11.0 магмати- ческие 1.59-4.0 2.7 0.86 2.32 11.0 Мавоор 1.59-4.0 2.4 2.6 0.95 2.47 9.27	Горные		<u>0.41-3.58</u>	1.8 - 2.8	0.75 - 1.65	1.8 - 4.0	<u>5.36–15.42</u>
Осадочные Доломит 1.63-3.58 3.24 1.9-3.6 2.7 0.65-1.47 1.0 1.8-4.0 2.94 5.36-15.42 12.44 Известняк 0.92-4.4 2.4 1.8-2.9 2.65 0.75-1.71 0.89 2.0-4.5 2.36 3.91-16.9 11.27 Мергель 0.5-3.9 1.92 1.5-2.888 0.84-3.09 0.89 1.9-7.1 3.14-13.8 3.74 Мергель 0.25-3.04 2.3-3.0 0.74-0.99 1.9-2.5 5.94-15.3 Марамор 1.59-4.0 2.56 2.7 0.87 2.18 9.46 Мрамор 1.59-4.0 2.56 2.7 0.87 2.12 11.0 Магмати ческие 1.9 2.4 2.6 0.87 2.32 11.0 Мрамор 1.59-4.0 0.75-0.88 2.0-2.4 7.8-12.0 Мрамор 1.59-4.0 0.74-1.54 1.9-4.0 3.33-15.0 Магмати ческие Пранит 1.59-4.0 0.76-2.14 1.9-4.0 3.32-15.0 Магмати ческие Бода 0.37-0.56 1.04-1.18 3.9-4.8 4.1-5.7 0.54	породы	Алевролит	1,49	2,4	0,88	2,11	10,28
ные Доломит 3,24 2,7 1,0 2,94 12,44 Известняк 0.92-4.4 2,4 1.8-2.9 2,65 0,75-1.71 0,89 2.0-4.5 2,36 3.91-16.9 11,27 Мергель 0.5-3.9 1,92 1.5-2.888 2,3 0.84-3.09 1,63 1.9-7.1 3.14-13.8 3,74 Мергель 0.25-3.04 1,22 2.3-3.0 2,3 0.74-0.99 0,87 1.9-2.5 5.94-15.3 Морфич ческие Глинистый сланец 0.25-3.04 1,22 2.3-3.0 2,56 0.74-0.99 0,86 1.9-2.5 5.94-15.3 Марамор 1.59-4.0 2,56 2.7 0.867 2.18 9.46 Магмати ческие Гранит 1.34-3.69 2,4 2.7 0.75-0.88 0,86 2.0-2.4 7.8-12.0 11.0 Магмати ческие Гранит 1.34-3.69 2,4 2.6 0.75-0.88 0,95 2.0-2.4 7.8-12.0 11.0 Магмати ческие Базальт 0.51-2.03 1,45 2.6 0.76-2.14 1,23 1.9-4.0 3.33-15.0 2,477 9.27 Вые Нефть 0,10-0,14 0,85-0.87 1,9-2,4 1.6-2,1 0.66-0,86 Миюи </td <td>осадоч-</td> <td>Лодорит</td> <td><u>1.63–3.58</u></td> <td><u>1.9–3.6</u></td> <td>0.65 - 1.47</td> <td>1.8 - 4.0</td> <td><u>5.36–15.42</u></td>	осадоч-	Лодорит	<u>1.63–3.58</u>	<u>1.9–3.6</u>	0.65 - 1.47	1.8 - 4.0	<u>5.36–15.42</u>
Известняк 0.92-4.4 2,4 1.8-2.9 2,65 0.75-1.71 0,89 2.0-4.5 2,36 3.91-16.9 11,27 Мергель 0.5-3.9 1,92 1.5-2.888 2,3 0.84-3.09 1,63 1.9-7.1 3,74 3.14-13.8 7.13 Мергель 0.25-3.04 1,92 2,3 1.63 3,74 7.13 Мета морфи ческие 0.7140.09 1,92 1.9-2.5 2,8 5.94-15.3 0,87 5.94-15.3 2,18 9.46 Мрамор 1.59-4.0 2,56 2,7 0,87 2,18 9.46 Мататата ческие Мрамор 1.59-4.0 2,56 2,7 0,75-0.88 0,86 2,0-2.4 2,32 7.8-12.0 11,0 Мататата ческие Пранит 1.34-3.69 2,47 2,6 0,74-1.54 0,95 1.9-4.0 2,47 3.33-15.0 9,27 Матататата ческие 0.51-2.03 1,45 2,54 1.23 3.12 3.33-6.7 3.12 3.34-6.7 Матататата ческие 0.51-2.03 1,45 2,54 1.92.4 1.59-5.4 4.33-6.7 Пласто выс Вода 0,37-0.56 1.04-1.18 3.9-4,8 4.1-5.7 0.86-1.36 Чалобоб чало чало чало чало чало чало чало чало	ные	доломит	3,24	2,7	1,0	2,94	12, 44
Известняк 2,4 2,65 0,89 2,36 11,27 Мергель 0,5-3.9 1,5-2,888 0,84-3.09 1,9-7.1 3,14-13.8 Мергель 1,92 2,3 1,63 3,74 7,13 Мета- морфи- ческие Сланец 1,22 2,5 0,87 2,18 9,46 Мрамор 1,59-4.0 0,75-0.88 2,0-2.4 7,8-12.0 Матмати- ческие 1,34-3.69 0,74-1.54 1,9-4.0 3,33-15.0 Ларанит 2,56 2,7 0,86 2,32 11,0 магмати- ческие Гранит 1,34-3.69 0,74-1.54 1,9-4.0 3,33-15.0 Лассо- Базальт 1,34-3.69 0,76-2.14 1.9-4.0 3,33-6.7 Вые Краза 0,51-2.03 0.76-2.14 1.59-5.4 4,33-6.7 Вые Нефть 0,10-0,14 0,85-0.87 1,9-2,4 1,6-2,1 0,56-0.86 флюиды Газ 0,02-0,05		14	0.92 - 4.4	1.8 - 2.9	0.75 - 1.71	2.0 - 4.5	3.91 - 16.9
Мергель 0.5-3.9 1,92 1.5-2.888 2,3 0.84-3.09 1,63 1.9-7.1 3,74 3.14-13.8 7,13 мета- морфи ческие Глинистый 0.25-3.04 1,22 2,3 0.74-0.99 0.87 1.9-2.5 5.94-15.3 мета- морфи ческие Памор 1.22 2,5 0.87 2,18 9,46 Мрамор 2,56 2,7 0.86 2,32 11,0 магмати- ческие Гранит 1.34-3.69 2,4 0.75-0.88 2.0-2.4 7.8-12.0 Магмати- ческие Гранит 1.34-3.69 2,4 0.75-0.88 2.02 3.33-15.0 Магмати- ческие Гранит 1.34-3.69 2,4 0.76-2.14 1.9-4.0 3.33-15.0 Магмати- ческие Базальт 0.51-2.03 0.76-2.14 1.59-5.4 4.33-6.7 Высе Нефть 0,10-0,14 0,85-0,87 1,9-2,4 1,6-2,1 0,66-0,86 млои- нители Газ 0,02-0,05 - 2,4-3,2 - - утяжеленный 0,6-0,9 1,1-1,5		известняк	2,4	2,65	0,89	2,36	11,27
Мергель 1,92 2,3 1,63 3,74 7,13 мета- морфи- ческие Глинистый сланец 0,25-3.04 1,22 2,3-3.0 2,56 0,74-0.99 0,87 1,9-2.5 5.94-15.3 магмати- ческие Мрамор 1.59-4.0 2,56 2,7 0,87 2,18 9,46 магмати- ческие Пранит 1.59-4.0 2,56 2,7 0,74-0.98 2.0-2.4 7.8-12.0 магмати- ческие Гранит 1.34-3.69 2,4 0,74-1.54 1.9-4.0 3.33-15.0 Магмати- ческие Гранит 1.34-3.69 2,4 0,74-0.154 1.9-4.0 3.33-15.0 Магмати- ческие Пранит 1.59-5.0 2,4 1.59 3.12 5.34 Магмати- ческие 0.51-2.03 1,45 0.76-2.14 1.59-5.4 4.33-6.7 Вазальт 0.51-2.03 1,45 2.54 1.23 3.12 5.34 Пласто- вые Нефть 0,10-0,14 0,85-0,87 1,9-2,4 1,6-2,1 0,86-0,98 и запол- ни запол- чазапол- чазапол- чазапол- чазапол- чазапол- чазапол- чазапол- чазапол		b .f	0.5-3.9	1.5 - 2.888	0.84-3.09	1.9-7.1	3.14-13.8
мета- морфи ческие Глинистый сланец 0.25-3.04 1,22 2.3-3.0 2,56 0.74-0.99 0,87 1.9-2.5 2,18 5.94-15.3 9,46 мрамор ческие 1.59-4.0 2,56 2,7 0,86 2,0-2.4 2,32 7.8-12.0 11,0 магмати- ческие Гранит 1.34-3.69 2,4 2.6 0,75-0.88 2,07 2,32 11,0 магмати- ческие Гранит 1.34-3.69 2,4 2.6 0,95 2,47 9,27 Базальт 0.51-2.03 1,45 2.54 1.23 3,12 5,34 Пласто- вые Вода 0,37-0.56 1,04-1,18 3,9-4,8 4,1-5,7 0,867-1,15 магмати- ческие Газ 0,02-0,05 - 2,4-3,2 - - Вые Нефть 0,10-0,14 0,85-0,87 1,9-2,4 1,6-2,1 0,56-0,86 флюиды Газ 0,02-0,05 - 2,4-3,2 - - изапол- нители Газ 0,6-0,9 1,1-1,5 2,8-3,6 3,4-3,9 1,5-2,3 цемент с бен- тонитовой 0,33 1,4-1.6		мергель	1,92	2,3	1,63	3,74	7,13
Мета- морфи- ческие сланец 1,22 2,5 0,87 2,18 9,46 Мрамор 1.59-4.0 2,56 2,7 0,75-0.88 2.0-2.4 7.8-12.0 магмати- ческие Гранит 1.34-3.69 2,4 0,86 2,32 11,0 магмати- ческие Гранит 1.34-3.69 2,4 0,74-1.54 1.9-4.0 3.33-15.0 магмати- ческие Гранит 1.34-3.69 2,4 0,76-2.14 1.9-4.0 3.33-15.0 магмати- ческие Базальт 0.51-2.03 1,45 0.76-2.14 1.59-5.4 4.33-6.7 Ласто- Вые Вода 0,37-0.56 1,04-1,18 3,9-4,8 4,1-5,7 0,87-1,15 вые Нефть 0,10-0,14 0,85-0,87 1,9-2,4 1,6-2,1 0,56-0,86 флюиды Газ 0,02-0,05 - 2,4-3,2 - - и запол- нители Буровой рас- твор обычный 0,6-0,9 1,1-1,5 2,8-3,6 3,4-3,9 1,5-2,3 Цемент с бен- топнитовой 0,32-0.34		Глинистый	0.25 - 3.04	<u>2.3–3.0</u>	0.74 - 0.99	1,9-2,5	5.94 - 15.3
Морфи- ческие Мрамор 1.59-4.0 2,56 2,7 0.75-0.88 0,86 2.0-2.4 2,32 7.8-12.0 11,0 магмати- ческие Гранит 1.34-3.69 2,4 2,4 0.74-1.54 2,6 1.9-4.0 0,95 3.33-15.0 2,47 3.33-15.0 магмати- ческие Базальт 0.51-2.03 1,45 2,54 0.76-2.14 1,23 1.59-5.4 4.33-6.7 Пласто- вые Вода 0,37-0,56 1,04-1,18 3,9-4,8 4,1-5,7 0,87-1,15 вые Нефть 0,10-0,14 0,85-0,87 1,9-2,4 1,6-2,1 0,56-0,86 флюиды Газ 0,02-0,05 - 2,4-3,2 - - и запол- и запол- и запол- твор обычный 0,6-0,9 1,1-1,5 2,8-3,6 3,4-3,9 1,5-2,3 Ствола Утяжеленный 0,6-0,9 1,7-2,2 1,5-2,0 3,2-3,4 1,9-2,6 Цемент- ный ка- ный ка- начинкой 0,32-0,34 1,4-1.6 1,4-1.6 1,4-1.6 2,1-3,1 0,86-1.36	мета-	сланец	1,22	2,5	0,87	2,18	9,46
ческиеМрамор2,562,70,862,3211,0магматичческиеГранит1.34–3.69==0.74–1.541.9–4.03.33–15.0магматичческиеБазальт0.51–2.03==0.76–2.141.59–5.44.33–6.7Базальт0.51–2.031.452.541.233.125.34Пласто-Вода0.37–0.561,04–1.183,9–4,84,1–5,70,87–1,15выеНефть0,10–0,140,85–0,871,9–2,41,6–2,10,56–0,86флюидыГаз0,02–0,05-2,4–3,2и заполнитеБуровой рас- твор обычный0,6–0,91,1–1,52,8–3,63,4–3,91,5–2,3и заполниПортланд- цемент с бен- тонитовой0,32–0,341.4–1.61.4–1.62,1–3.10.86–1.36Цемент- ный ка- начинкой0,331,51,72,61,11	морфи-	Maaroon	1.59 - 4.0		0.75 - 0.88	2.0 - 2.4	7.8-12.0
Магмати ческие Гранит 1.34–3.69 2,4 == 2,6 0.74–1.54 0,95 1.9–4.0 2,47 3.33–15.0 9,27 њазальт 0.51–2.03 1,45 == 2,54 0.76–2.14 1,23 1.59–5.4 3,12 4.33–6.7 5,34 Пласто- вые Вода 0,37–0.56 1,04–1,18 3,9–4,8 4,1–5,7 0,87–1,15 Вые Нефть 0,10–0,14 0,85–0,87 1,9–2,4 1,6–2,1 0,56–0,86 флюиды Газ 0,02–0,05 - 2,4–3,2 - - изапол- нители Буровой рас- товор бычный 0,6–0,9 1,1–1,5 2,8–3,66 3,4–3,9 1,5–2,3 утяжеленный 0,6–0,9 1,7–2,2 1,5–2,0 3,2–3,4 1,9–2,6 Цемент Портланд- тонитовой 0,33 1,4–1,6 1,4–1,6 2,1–3,1 0,86–1,36 начинкой - - - 1,1 1,1 1,1	ческие	мрамор	2,56	2,7	0,86	2,32	11,0
магмати- ческие Пранит 2,4 2,6 0,95 2,47 9,27 ческие Базальт 0.51-2.03 1,45 2,54 0.76-2.14 1,23 1.59-5.4 3,12 4.33-6.7 Пласто- вые Вода 0,37-0,56 1,04-1,18 3,9-4,8 4,1-5,7 0,87-1,15 вые Нефть 0,10-0,14 0,85-0,87 1,9-2,4 1,6-2,1 0,56-0,86 флюиды Газ 0,02-0,05 2,4-3,2 - и запол- нители Буровой рас- твор обычный 0,6-0,9 1,1-1,5 2,8-3,6 3,4-3,9 1,5-2,3 цемент сбен- нители 0,6-0,9 1,7-2,2 1,5-2,0 3,2-3,4 1,9-2,6 Цемент- ный ка- иа Портланд- тонитовой 0,33 1,4-1.6 1,5 1,4-1.6 1,7 2,6 1,11		Гранит	<u>1,34–3,69</u>		0.74 - 1.54	<u>1.9–4.0</u>	<u>3.33–15.0</u>
ческие Базальт 0.51-2.03 1,45 2,54 0.76-2.14 1,23 1.59-5.4 3,12 4.33-6.7 5,34 Пласто- вые Вода 0,37-0,56 1,04-1,18 3,9-4,8 4,1-5,7 0,87-1,15 вые Нефть 0,10-0,14 0,85-0,87 1,9-2,4 1,6-2,1 0,56-0,86 флюиды Газ 0,02-0,05 - 2,4-3,2 - - и запол- и запол- вор обычный 0,6-0,9 1,1-1,5 2,8-3,6 3,4-3,9 1,5-2,3 и тели и запол- твор обычный 0,6-0,9 1,7-2,2 1,5-2,0 3,2-3,4 1,9-2,6 Цемент- ный ка- иачинкой 0,32-0,34 1,4-1.6 1,4-1.6 2,1-3.1 0,86-1.36 1,11 0,33 1,5 1,7 2,6 1,11	магмати-	гранит	2,4	2,6	0,95	2,47	9,27
Вазальт 1,45 2,54 1,23 3,12 5,34 Пласто- вые Вода 0,37-0,56 1,04-1,18 3,9-4,8 4,1-5,7 0,87-1,15 вые Нефть 0,10-0,14 0,85-0,87 1,9-2,4 1,6-2,1 0,56-0,86 флюиды Газ 0,02-0,05 - 2,4-3,2 - - и запол- нители Буровой рас- твор обычный 0,6-0,9 1,1-1,5 2,8-3,6 3,4-3,9 1,5-2,3 Ствола утяжеленный 0,6-0,9 1,7-2,2 1,5-2,0 3,2-3,4 1,9-2,6 Цемент- ный ка- изичи Портланд- тонитовой 0,32-0.34 1.4-1.6 1.4-1.6 2.1-3.1 0.86-1.36 Иемент- ный ка- изичинкой 0,33 1,5 1,7 2,6 1,11	ческие	F	0.51-2.03		0.76-2.14	1.59 - 5.4	4.33-6.7
Пласто- выеВода0,37–0,561,04–1,183,9–4,84,1–5,70,87–1,15выеНефть0,10–0,140,85–0,871,9–2,41,6–2,10,56–0,86флюидыГаз0,02–0,05–2,4–3,2––и запол- нителиБуровой рас- твор обычный0,6–0,91,1–1,52,8–3,63,4–3,91,5–2,3стволаутяжеленный0,6–0,91,7–2,21,5–2,03,2–3,41,9–2,6Цемент- ный ка- начинкой0,331,4–1.61.4–1.62.1–3.10.86–1.36		разальт	1,45	2,54	1,23	3,12	5,34
вые Нефть 0,10-0,14 0,85-0,87 1,9-2,4 1,6-2,1 0,56-0,86 флюиды Газ 0,02-0,05 – 2,4-3,2 – – и запол- нители Буровой рас- твор обычный 0,6-0,9 1,1-1,5 2,8-3,6 3,4-3,9 1,5-2,3 ствола утяжеленный 0,6-0,9 1,7-2,2 1,5-2,0 3,2-3,4 1,9-2,6 цемент сбен- ный ка- иачинкой 0,32-0,34 1,4-1.6 1,4-1.6 2,1-3.1 0,86-1.36 исминкой 0,33 1,5 1,7 2,6 1,11	Пласто-	Вода	0,37 - 0,56	1,04-1,18	3,9-4,8	4,1-5,7	0,87-1,15
флюиды Газ 0,02-0,05 - 2,4-3,2 - - и запол- нители Буровой рас- твор обычный 0,6-0,9 1,1-1,5 2,8-3,6 3,4-3,9 1,5-2,3 ствола утяжеленный 0,6-0,9 1,7-2,2 1,5-2,0 3,2-3,4 1,9-2,6 Цемент- ный ка- мени Щемент с бен- иачинкой 0,32-0.34 1.4-1.6 1.4-1.6 2.1-3.1 0.86-1.36	вые	Нефть	0,10-0,14	0,85-0,87	1,9-2,4	1,6-2,1	0,56-0,86
и заполнители Буровой рас- твор обычный 0,6-0,9 1,1-1,5 2,8-3,6 3,4-3,9 1,5-2,3 и тели твор обычный 0,6-0,9 1,7-2,2 1,5-2,0 3,2-3,4 1,9-2,6 утяжеленный 0,6-0,9 1,7-2,2 1,5-2,0 3,2-3,4 1,9-2,6 Портланд- цемент с бен- ный ка- начинкой 0,32-0.34 1.4-1.6 1.4-1.6 2.1-3.1 0.86-1.36	флюиды	Газ	0,02 - 0,05	_	2,4-3,2	_	_
нители твор обычный 0,6-0,9 1,1-1,5 2,8-3,6 3,4-3,9 1,5-2,3 твор обычный 0,6-0,9 1,7-2,2 1,5-2,0 3,2-3,4 1,9-2,6 Портланд- цемент с бен- 0.32-0.34 1.4-1.6 1.4-1.6 2.1-3.1 0.86-1.36 понитовой 0,33 1,5 1,7 2,6 1,11	и запол-	Буровой рас-	0.0.00		0.0.00	0 / 0 0	
ствола утяжеленный 0,6-0,9 1,7-2,2 1,5-2,0 3,2-3,4 1,9-2,6 Портланд- цемент с бен- ный ка- начинкой 0.32-0.34 1.4-1.6 1.4-1.6 2.1-3.1 0.86-1.36	нители	твор обычный	0,6-0,9	1,1-1,5	2,8-3,6	3,4-3,9	1,5–2,3
Цемент- ный ка- мещи Портланд- цемент с бен- тонитовой 0.32-0.34 0,33 1.4-1.6 1,5 1.4-1.6 1,7 2.1-3.1 2,6 0.86-1.36 1,11	ствола		0.6 - 0.9	1.7 - 2.2	1.5 - 2.0	3.2 - 3.4	1.9 - 2.6
Цемент- ный ка- мени и с бен- тонитовой 0,33 1.4–1.6 1.4–1.6 2.1–3.1 0.86–1.36 1,5 1,7 2,6 1,11		Лортланл-					
Цемент- ный ка- мещи мачинкой 0,33 1,5 1,7 2,6 1,11		цемент с бен-	0.32 - 0.34	1.4 - 1.6	1.4 - 1.6	2.1 - 3.1	0.86-1.36
ный ка- начинкой 1,5 1,7 2,5 1,11	Цемент-	тонитовой	0.33	1.5	1.7	2.6	1.11
MOUL	ный ка-	начинкой	0,00	1,0	1,1	_,	-,
мств скварниевым 0.37-0.50 1.0-1.3 1.8-2.1 2.1-2.4 1.58-2.32	мень	скваршиевым	0.37 - 0.50	1.0-1.3	1.8-2.1	2.1-2.4	1.58-2.32
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		песком	0.44	1.15	1.95	$\frac{2,1}{2.6}$	1.95

Тепловые свойства горных пород, пластовых флюидов и заполнителей

Примечание. Для горных пород и цементного камня, помимо возможного изменения тепловых свойств (числитель дроби), указаны их наиболее вероятные значения (знаменатель дроби). Для параметров λ, *a*, ρ, и С они приведены по данным работ [31], [32], для C₀ вычислены, исходя из значений С и среднего значения плотности. Для цементного камня в качестве наиболее вероятных выбраны средние значения свойств.

Минерал, порода	Состав минера- лов %	Средняя плотность р, кг/м ³	Средняя порис- тость <i>m</i> , %	Теплопро- водность, λ Вт/м К	Теплоем- кость С, 10 ⁻³ Дж/кг К	Температу- ропровод- ность <i>a</i> , 10 ⁻⁷ м ² /с	
Кальцит	100	2,70	—	4,5-5,4	0,84	19,8-23,8	
Доломит	100	2,85	-	5,0	0,92	19,1	
Каолинит (глина)	100	2,65	—	3,0	0,76	16,4	
Кварц	100	2,65	—	7,0-12,5	0,75	35,2-62,9	
Галит	100	2,20	—	5,3-7,2	0,88	27,4-37,2	
Посионики	Кварц до 95%	1,90-2,60	2,2-22,0	1,6-3,2	0.94	8,0-13,0	
песчаники	Глина до 15%	$2,35^{*}$	$10,5^{*}$	2,3	0,94	$10,8^{*}$	
	Кварц до 85%	2,00-2,40	2,0-16,0	1,9–2,6	0.05	9,0-11,0	
Алевролиты	Глина до 30%	$2,25^{\circ}$	9,5 [*]	2,2*	0,95	$10,2^{*}$	
Изростияки	Кальцит до 100%	2,30-2,70	5,0-18,0	1,8-3,7	0.83	9,8–15,7	
известняки	Доломит до 25%	2,45	9,6*	2,4	0,83	12,0	
Лоломити	Доломит до 100%	2.60*	3,0-10,0	2,2-3,5	0.02	10,5-132	
доломиты	Кальцит до 40%	2,00	$6,0^{*}$	$2,8^{*}$	0,92	$11,5^{*}$	
Мергели	Кальцит до 75% Глина до 50%	2,25*	_	1,8	0,83	9,5	
Глины	До 100%	2,10	—	0,92	0,86	5,0	
Аргиллиты	До 100%	2,20		1,30	0,82	7,4	
Ангидриты	До 100%	2,80		5,05	0,72	25,1	
Галиты	До 100%	2,15		5,20	0,93	26,0	
Средние знач							

Теплофизические свойства горных пород

При наличии зоны многолетней мерзлоты

Распределение температуры газа по стволу вертикальной скважины при наличии в его разрезе зоны многолетней мерзлоты определяется в интервале от забоя до нижней границы зоны мерзлоты формулой (2.122). В интервале от нижней границы мерзлоты до верхней границы этой зоны (как правило, верхняя граница соответствует глубине нейтрального слоя) распределение температуры определяется по формуле:

$$T_{x} = T_{_{\rm OM}} - \Gamma_{_{\rm M}} x + \frac{1 - e^{-\alpha_{_{\rm M}} x}}{\alpha_{_{\rm M}}} \left[\Gamma_{_{\rm M}} - D_{i}^{//} \frac{P_{_{\rm OM}} - P_{_{x}}}{x} - \frac{A}{C_{_{p}}} \right] \beta, \qquad (2.127)$$

где $T_{\text{ом}}$ – температура газа при входе в зону многолетней мерзлоты, рассчитываемая по формуле (2.122); $\Gamma_{_{M}}$ – геотермический градиент мерзлых пород, определяемый по формуле (2.118); $P_{_{\text{ом}}}$ – давление при входе в мерзлую зону; β – безразмерный коэффициент, учитывающий изменяющуюся скорость теплообмена при наличии отрицательных температур. Величину β вычисляют по формуле:

$$\beta = \frac{(T_{\rm M} - T_{\rm cr})^2}{T_{\rm cr}^2}, \qquad (2.128)$$

где $T_{_{M}}$ – температура мерзлой породы, К; $T_{_{Cr}}$ – среднегодовая температура поверхности почвы, К; $\alpha_{_{N}}$ – коэффициент, определяемый для мерзлых пород по формуле:

$$\alpha_{\rm M} = 2\pi \lambda_{\rm M} / GC_{\rm p} f(\tau), \qquad (2.129)$$

 λ_{M} – коэффициент теплопроводности мерзлых пород, Вт/м-град. Значение λ_{M} может быть определено из [26] в зависимости от плотности пород. Единица $f(\tau)$ для мерзлых пород определяется по формуле:

$$f(\tau) = \ln\left(1 + \sqrt{\pi \lambda_{_{\mathrm{M}}} \tau / C_{_{\mathrm{M}}} R_c^2}\right), \qquad (2.130)$$

где $C_{_{\rm M}}$ – теплоемкость мерзлых пород, значение которой определяется по табличным данным или из графика, показанного на **рисунке 36**, в зависимости от плотности мерзлых грунтов.

Рис. 35. Зависимость теплопроводности мерзлых пород λ_м от их плотности ρ (1) – глина; (2) – песчаник

Рис. 36. Зависимость темплоемкости мерзлых пород $C_{_{M}}$ от их плотности $\rho_{_{II}}$ (1) – глина; (2) – песчаник

Разница в температурах газа при его движении по фонтанным трубам и затрубному пространству в основном связана с теплоизолирующим свойством газа в затрубном пространстве. Метод определения распределения температуры по стволу при движении газа по трубному и затрубному пространству приведен в работе [18].

Определение температуры вокруг ствола скважины при движении газа

При движении газа по стволу вертикальной скважины происходит теплообмен с породами вокруг ствола, в результате которого нарушается естественное тепловое поле. Размеры зоны, в которой происходит влияние температуры движущейся жидкости или газа, оцениваются формулой:

$$R_{\rm B} = R_{\rm c} + \sqrt{\pi \cdot \alpha_{\rm H} \tau}, \qquad (2.131)$$

где $R_{_{\rm B}}$ – радиус влияния теплового поля, м; $R_{_{\rm C}}$ – радиус скважины; $\alpha_{_{\rm D}}$ – коэффициент температуропроводности, м²/с; τ – продолжительность работы скважины, с.

Температуру вокруг работающей скважины в необсаженной части ствола на расстоянии *R* можно определить по формуле:

$$T(R) = T_{c} + (T_{r} + T_{c}) \frac{\ln R / R_{c}}{\ln R_{b} / R_{c}},$$
(2.132)

где T_c – температура в стволе скважины на заданной глубине в момент времени t; T_r – первоначальная до начала работы скважины температура на этой же глубине.

В обсаженной скважине в интервале, где фонтанные трубы отсутствуют или газ движется по затрубному пространству, температуру за обсадной колонной можно оценить по формулам:

$$T_{c_{1}} = T_{c} + (T_{c_{1}} - T_{c}) \frac{\ln R / R_{\text{кол}}}{\ln R_{c} / R_{\text{кол}}}; R_{\text{кол}} \leq R \leq R_{c},$$
(2.133)

в пределах цементного кольца:

$$T_{_{\rm II}} = T_{_{\rm CI}} + \left(T_{_{\rm C}} - T_{_{\rm CI}}\right) \frac{\ln R / R_c}{\ln R_{_{\rm B}} / R_c}, ; R_c < R < R_{_{\rm B}},$$
(2.134)

где $R_{_{
m KOR}}$ — радиус обсадной колонны; $T_{_{
m CT}}$ — температура на стенке скважины:

$$T_{\rm er} = \frac{\lambda_{\rm co} T_c \ln R_{\rm B} / R_c + \lambda_{\rm B} T_{\rm BA} \ln R_c / R_{\rm KOA}}{\lambda_{\rm co} \ln R_{\rm B} / R_c + \lambda_{\rm B} \ln R_c / R_{\rm KOA}}.$$
(2.135)

При движении газа по фонтанным трубам его влияние на окружающие породы менее значительно из-за теплоизолирующего влияния прослойки газа в затрубном пространстве. Задача 54 – Определение температуры в остановленной скважине.

Температура в стволе остановленной скважины определяется по формуле (2.116).

Таблица 2.69

Параметр	Значение	Размерность
Γ	0,02	град/м
T	333	К
X	10	М
L	1000	М

Исходные данные для примера

 $T_{x} = T_{u} - \Gamma(L-x) = 333 - 0.02(1000 - 10) = 313.2$ K.

Задача 55 – Определение геотермического градиента. Геотермический градиент определяется по формулам (2.117–2.119).

Таблица 2.70

Исходные данные для определения геотермического коэффициента

Параметр	Значение	Размерность
T	333	К
T_{w}	270	К
L	1000	М
h_{uc}	27	М
$T_{_{MO}}$	292	К
$h_{_{MO}}$	55	М

При отсутствии зоны мерзлых отложений геотермический коэффициент определяется по формуле:

$$\Gamma = \frac{T_{\rm IUI} - T_{\rm HC}}{L - h_{\rm HC}} = \frac{333 - 270}{1000 - 27} = 0,065^{0} / m.$$

При наличии зоны мерзлых отложений определяют геотермический коэффициент в этой зоне отдельно:

$$\Gamma_{\rm M} = \frac{T_{\rm MO} - T_{\rm HC}}{h_{\rm MO} - h_{\rm HC}} = \frac{292 - 270}{55 - 27} = 0.7857^{\circ}/M.$$

Далее определяют геотермический коэффициент в зоне от нижней границы зоны мерзлых отложений до продуктивного пласта:

$$\Gamma = \frac{T_{\rm ma} - T_{\rm mo}}{L - h_{\rm mo}} = \frac{333 - 292}{1000 - 55} = 0.0434^{\circ} / M.$$

Задача 56 – Определение распределения температуры в пласте на расстоянии от забоя скважины.

Распределение температуры в пласте на расстоянии от забоя скважины определяется по формуле (2.120).

Таблица 2.71

Параметр	Значение	Размерность
$P_{\mu\nu}$	26,2	МПа
$P_{\rm R}$	26	МПа
T_{uv}	410	К
P	25	МПа
h	10	М
т	31320000	с
C _p	3152,8	Дж/кгК
$R_{\rm r}$	500	М
R	10	М
R	0,1	М
D_i	0,972	град/Мпа
Q	1200	тыс.м ³ /сут
ρ _{στμ}	0,6	
C _n	2	Дж/кгК

Исходные данные для примера

Таблица 2.72

Пример расчета

Параметр	Значение	Размерность
G	10,8	т/сут
T _R	409,0583	К

Задача 57 – Определение перепада температуры в пласте на расстоянии от забоя скважины.

Перепад температуры в пласте на расстоянии от забоя скважины определяется по формуле (2.120). Исходные данные аналогичны значениям в предыдущей задаче.

$$\Delta T = T_{104} - T_3 = D_j (P_{n3} - P_3) \frac{\ln\left[1 + GC_p \tau / \pi hC_n R_c^2\right]}{\ln R_k / R} = 0,972(26, 2 - 25) \frac{\ln\left[1 + 10.8 \cdot 3152.8 \cdot 31320000 / 3.14 / 10 / 2 / 0.1^2\right]}{\ln 500 / 10} = 3,8565 K$$

Задача 58 – Определение распределения температуры газа в стволе работающей необсаженной газовой скважины при отсутствии зоны ММП.

Распределение температуры газа в стволе работающей необсаженной газовой скважины при отсутствии зоны ММП определяется по формуле (2.122), с учетом формулы (2.125).

Параметр	Значение	Размерность
λ_{μ}	0,4	Вт/мК
α_{μ}	0,0000025	M^2/C
m	0,2	
$\lambda_{r} = \lambda$	0,4	Вт/мК
R_r	0,12	М
λ_{μ}	0,37	Вт/мК
C _u	3100	Дж/кгК
τ	2590000	с
T_{nu}	333	К
Г	0,02	град/м
G	0,2	кг/с
T	330	К
X	1000	М

Исходные данные

Таблица 2.74

Пример расчета

Параметр	Значение	Размерность
f(t)	5,60193264	
α	0,00072325	
T,	325,78096	К

Задача 59 – Определение распределения температуры газа в стволе работающей газовой скважины, оборудованной фонтанными трубами при отсутствии зоны ММП.

Распределение температуры газа в стволе работающей газовой скважины, оборудованной фонтанными трубами, при отсутствии зоны ММП определяется по формуле (2.122), с учетом формулы:

$$f(\tau) = \lambda_{\rm n} \left[\frac{1}{\lambda_c} \ln \frac{R_{\rm KOR}}{R_{\rm T}} + \frac{1}{\lambda_{c1}} \ln \frac{R_c}{R_{\rm KOR}} + \frac{1}{\lambda_{\rm n}} \ln \left(1 + \sqrt{\pi \alpha_{\rm n} \tau / R_{\rm n}^2} \right) \right] + \lambda_{\rm n} / \alpha_{\rm T} R_c.$$

Заданы радиус колонны $R_{\text{кол}}=0,084$ м, радиус фонтанной трубы $R_{\text{s}}=0,037$ м, прочие исходные данные аналогичны прошлой задаче.

Таблица 2.75

Параметр	Значение	Размерность
f(t)	11,0785065	
α	0,00036572	
T,	327,669602	К

Пример расчета

Задача 60 – Определение распределения температуры газа в стволе работающей газовой скважины при наличии зоны ММП.

Таблица 2.76

№№ п/п	Параметр		ед. измерения
1	Пластовое давление, Р _{ил}	5	МПа
2	Длина скважины, Н _{сси}	2610	М
3	Толщина пласта, Н	30	М
4	Пластовая температура, Т	343	К
5	Радиус скважины, R	0,14	Μ
6	Радиус контура питания, R	500	М
7	Диаметр фонтанных труб, м	0,14	М
8	Теплопроводность породы, С пор	2200	кДж/м ³ К
9	Сопротивление пласта, λ_{aa}	0,0017	кДж/мК
10	Относительная плотность газа, ρ_{ora}	0,65	
11	Дебит скважины, <i>Q</i>	150	тыс.м³/сут
12	Геотермический градиент	0,024904	гр/м
13	Депрессия на пласт, Р	0,5	МПа
14	Тау	324000	сек
15	Коэффициент макрошероховатости, <i>l</i>	0,0002	М
16	Устьевая температура, Т,	293	К
17	Устьевое давление, Р,	3,5	МПа

Исходные данные

Таблица 2.77

Пример расчета

Параметр	Значение	Пара- метр	Значение	Параметр	Значение
P	4,62888	Tcp c1	328,6774	Tcp c	312,279
T	205,737	Pcp c1	4,285894	Pcp c	4,079398
f(t)	1,99241	Zcp c1	0,916637	Zcp c	0,911858
l	0,021451	sc1	0,09615	s c	0,203458
T _{cp}	318	Q c1	1,01E-05	Qc	2,14E-05
\mathbf{P}_{co}	4,25	Py c1	4,064403	Py c	3,62758
Z_{cp}	0,911839	Cp c1	2,117399	Cp c	2,109285
P ₃	4,5	$f(P;T)_{r/2}$	0,198375	$f(P;T)_{\mu \in m \in \mathbb{Z}}$	0,221129
C_{put}	2,116242	D_i	4,164102	D_i	4,659581
f(P;T)	0,212461	а	0,003694	а	0,003708
D_j	4,462223	Ty c1	315,8396	Ty c	283,0429
delta T	1,484791	Тз	341,5152		

Распределение температуры газа в стволе работающей газовой скважины при наличии зоны ММП определяется по формуле (2.122), с учетом формул (2.127–2.130).

Н, м	Т,, *К	Т _х , ^в С
0	283,04	10,04
1305	315,84	42,84
2610	341,52	68,52

Изменение температуры по стволу скважины

Задача 6.1 – Определение распределения температуры газа в стволе работающей газовой скважины, оборудованной фонтанными трубами при наличии зоны ММП.

Распределение температуры газа в стволе работающей газовой скважины, оборудованной фонтанными трубами при наличии зоны ММП определяется по формуле (2.122).

Таблица 2.79

Параметр	Значение	Размерность
λ	7	Вт/мК
α"	0,000002	м ² /с
m	0,2	
$\lambda_e = \lambda$	0,4	B_{T}/MK
R	0,12	М
R _{KO,1}	0,084	М
λ	0,5	Вт/мК
	3100	Дж/кгК
тау	2590000	с
T	333	К
Γ	0,02	град/м
G	0,2	кг/с
T,	330	ĸ
X	1000	M
R.	0,037	М

Исходные данные

Таблица 2.80

Пример решения

Параметр	Значение	Размерность
f(t)	31,9202627	
α	0,00222126	
T _x	320,701806	К

Задача 62 — Определение радиуса теплового влияния ствола необсаженной скважины при наличии жидкости в потоке газа.

Радиус теплового влияния ствола необсаженной скважины при наличии жидкости в потоке газа определяется по формуле (2.131), с учетом формулы (2.132).

Параметр	Значение	Размерность
$\alpha_{_{\rm H}}$	0,000001	M^2/C
R _c	0,1	М
τ	3600	с
τ.,	86400	с
τ	2592000	с

Исходные данные

Пример определения радиуса теплового влияния ствола необсаженной скважины

Параметр	Значение	Размерность
R	0,20632027	М
R ₁₁₂	0,62086083	М
R,,3	2,95287224	М

2.6. Распределение температуры по стволу горизонтальной скважины

Распределение температуры газа по горизонтальному участку ствола скважины с большим и со средним радиусами кривизны при отсутствии ММП

В пределах ствола скважины для распределения температуры газа выделяются три характерных участка (см. **рисунок 36 а, б, в**).

1. Определение температуры газа у поворота $T_{s,n}$ в пределах толщины пласта с допустимой для практики погрешностью можно оценить, используя формулу (2.122), полученную для вертикальной скважины при R=R и P=P.

С учетом того, что вместо R_{κ} – радиуса контура питания, в данном случае принимается половина толщины пласта $R_{\kappa}=h/2$, м.

2. Температура газа на переходе от горизонтального участка ствола к искривленному, Т_{ал} приближенно может быть определена по формуле:

$$T_{3.\pi} = T_{\pi\pi} - \Delta T_{cp} \cdot e^{-\alpha x} - \frac{D_{icp,r} \left(P_{3.M}^2 - P_{3.\pi}^2\right) \left(1 - e^{-\alpha x}\right)}{2P_{cp} \alpha x}, \qquad (2.136)$$

где T_{cp} – среднее значение разностей температуры у торца горизонтального ствола, связанное с созданием депрессии на пласт и изменением этой депрессии по длине в результате потерь давления на трение при движении газа.

Значение Т вычисляется по формуле:

$$T_{\rm cp} = \left(T_{\rm T} + T_{\rm n}\right) / 2. \tag{2.137}$$

Таблица 2.82

Рис. 37. Конструкция горизонтальной скважины с большим радиусом кривизны: *a* – при отсутствии зоны мерзлоты; *б* – при наличии мерзлоты только на вертикальном и *в* – при наличии на вертикальном и частично искривленном участках ствола

Как правило, температура газа у торца ствола T_{aa} не значительно ниже температуры окружающей ствол скважины среды, т.е. пластовой температуры T_{aa} . Из-за близости температур по длине горизонтального ствола и прак-

тически постоянной температуры окружающей ствол среды $T_{\text{Lrop}} = T_{\text{nx}}$, вследствие небольшого теплообмена формулу (2.136) можно заменить на:

$$T_{x} = T_{n,n}, -(T_{3,T} - T_{n})e^{-\alpha x}, \qquad (2.138)$$

а – размерный коэффициент, определяемый по формуле:

$$\alpha = 225 Dk / \overline{\rho} QC_{p}, \qquad (2.139)$$

где D – диаметр горизонтального ствола, м; Q – дебит скважины, тыс.м³/сут; $\overline{\rho}$ – относительная плотность газа; $C_{\rm p}$ – средневзвешенная теплоемкость газа при $P_{\rm cp} = (P_{\rm gal} + P_{\rm n})/2$ и $T_{\rm cp} = (T_{\rm gal} + T_{\rm n})/2$; k – коэффициент теплопередачи между газом в горизонтальном стволе и пластом.

При расчете температуры газа на произвольном расстоянии от торца горизонтального ствола T_{x^*} средние значения давления и температуры определяются из равенств $P_{cp} = (P_{x,r} + P_x)/2$ и $T_{cp} = (T_{x,r} + T_x)/2$. Коэффициент теплопередачи *k* может быть определен по формуле:

$$k = \frac{\lambda_{\text{IUI}}}{D} \left[0,8 + \left(\frac{D}{h_0}\right)^2 \right], \qquad (2.140)$$

где λ_{n_3} – коэффициент теплопроводности пласта, Дж/кг·с·К; h_0 – глубина залегания горизонтального ствола в пределах толщины пласта.

Незначительные потери давления в горизонтальном стволе обуславливают небольшие, в пределах точности измерительных приборов, изменения температуры, которыми можно пренебречь при практических расчетах. Это означает, что при практических расчетах температуру газа на переходе ствола от горизонтального участка к искривленному можно принять как *T*_{влов}.

Распределение температуры газа при его движении по искривленному участку ствола скважины

Распределение температуры газа на искривленном участке ствола приближенно можно определить как распределение в вертикальном стволе с той лишь разницей, что геотермический градиент температуры зоны искривления устанавливается исходя из длины этого участка $L_{\rm иск}$. Для определения распределения температуры в искривленном участке следует использовать следующую приближенную формулу:

$$T_{X,HCK} = T_{3,H} - \Gamma_{HCX} \cdot x_{HCK} + \frac{1 - e^{-\alpha x_{HCK}}}{\alpha} \left[\Gamma - D_{iHCK} \frac{P_{3H} - P_x}{x_{HCK}} - \frac{A}{C_p} \right], \quad (2.141)$$

где $x_{\text{нек}}$ – произвольное расстояние в пределах искривленного участка от сечения перехода горизонтального к искривленному участку ствола скважины, м. Геотермический градиент $\Gamma_{\text{неск}}$ в пределах искривленного участка определяется исходя из длины этого участка по формуле:

$$\Gamma_{_{\rm HCK}} = \frac{T_{_{\rm HC,HCK}} - T_{_{\rm BT,HCK}}}{L_{_{\rm HCK}}},$$
(2.142)

где *T*_{пелен} и *T*_{пелен} – температуры на нижней и верхней границах искривленного участка; α – размерный коэффициент, определяемый по формуле:

$$\alpha = \frac{2\pi\lambda_{_{\rm HCK}}}{GC_{_{\rm p.MCK}}f_{_{\rm HCK}}(\tau)}.$$
(2.143)

В реальных скважинах длина искривленного участка $L_{_{\rm иск}}$ привязана к глубине и известна. При расчете распределения температуры газа по стволу скважины на произвольной длине искривленного участка $x_{_{\rm иск}}$ можно определить по формуле:

$$x_{\mu c\kappa} = \frac{2\pi R_{\mu c\kappa} \varphi}{360}, \qquad (2.144)$$

где $R_{_{\text{иск}}}$ — радиус кривизны ствола на искривленном участке, м; ϕ — угол охвата заданного отклонения ствола от вертикали.

Распределение температуры газа при его движении по вертикальному участку ствола скважины

На вертикальном участке ствола горизонтальной скважины распределение температуры определяется по формуле:

$$T_{x} = T_{\text{\tiny HB}} - \Gamma_{\text{\tiny B}} x_{\text{\tiny B}} + \frac{1 - e^{-\alpha x_{\text{\tiny B}}}}{\alpha} \left[\Gamma_{\text{\tiny B}} - D_{i_{\text{\tiny B}}} \frac{P_{\text{\tiny HB}} - P_{x}}{x_{\text{\tiny B}}} - \frac{A}{C_{p}} \right],$$
(2.145)

где $P_{_{\rm HB}}$ – давление на нижней границе вертикального участка, значение которого определяется по известному устьевому давлению; $P_{_{\rm x}}$ – давление на расстоянии $x_{_{\rm B}}$ в пределах вертикального участка, определяемое по известному устьевому давлению; $T_{_{\rm HB}}$ – температура газа на нижней границе вертикального участка ствола, величину которой следует определять по формуле (2.145) для величины $x=L_{_{\rm HCK}}$, т.е. на верхней границе искривленного участка и соответствующих этой длине $D_{_{\rm LB}}$ и $C_{_{\rm p,B}}$; $x_{_{\rm B}}$ – произвольное расстояние в пределах вертикального участка, начиная от сечения перехода искривленного к вертикальному участку, м. Расчет распределения температуры газа по стволу осуществляется от контура пласта к устью скважины. Это означает, что для определения температуры на вертикальном участке известной является температура газа на верхней границе искривленного участка. $\Gamma_{_{\rm B}}$ – геотермический градиент на вертикальном участке, который определяется по формуле:

$$\Gamma_{\rm B} = \frac{T_{\rm HT,B} - T_{\rm HC}}{H_{\rm HT,B} - h_{\rm HC}},\tag{2.146}$$

где T_{wr} – температура земной коры на нижней границе вертикального участка, К, равная $T_{wr} = T_{u,vr}$; T_{uc} – температура земли на глубине нейтрального слоя, К; H_{uc} – глубина нижней границы вертикального участка ствола или начала искривленного участка, м; h_{uc} – глубина залегания нейтрального слоя, которая при отсутствии зоны ММП составляет несколько метров.

 α – размерный коэффициент в формуле (2.144), определяемый по формуле:

$$\alpha = \frac{2\pi\lambda_{\rm B}}{GC_{\rm p,B}f_{\rm B}(\tau)},\tag{2.147}$$

где λ_{μ} – теплопроводность горных пород, окружающих ствол скважины на вертикальном участке, Дж/кгс'К; $C_{\mu\mu}$ – теплопроводность газа по средневзвешенным давлению и температуре на вертикальном участке в зоне $0 \le x \le L_{\mu}$; $f_{\mu}(\tau)$ – безразмерная функция времени, определяемая по формуле:

$$f_{\rm B}(\tau) = \ln\left[1 + \sqrt{\frac{\pi\lambda_{\rm B}\tau}{C_{\rm R}R_c^2}}\right],\tag{2.148}$$

где τ – время работы скважины после последней остановки, с; C_{n} – объемная теплоемкость пород среды, окружающей ствол скважины на вертикальном участке в зоне от верхней границы искривленного участка до x_{n} .

Распределение температуры газа по стволу горизонтальной скважины с малым радиусом кривизны при отсутствии зоны многолетней мерзлоты

При определении распределения температуры газа по стволу горизонтальной скважины с малым радиусом кривизны конструкцию ствола можно разделить на два характерных участка: вертикальный и горизонтальный. При таком допущении следует увеличить реальную длину вертикального участка на величину, равную длине искривленного участка, что в реальных условиях составляет около $H \leq 12$ метров.

Для такой конструкции горизонтальной скважины, в случае отсутствия в разрезе зоны многолетней мерзлоты, распределение температуры газа следует определить как изменение температуры газа в пласте в зоне от R_{κ} до R_{e} , связанное с созданием депрессии на пласт по длине горизонтального и вертикального участков ствола.

1. Распределение температуры газа в пласте, связанное с созданием депрессии на пласт в пределах толщины, определяется по формуле (2.122), полученной для плоско-радиальной фильтрации газа к вертикальной скважине в зоне от R_{κ} до R_{c} . Из-за изменения забойного давления по длине горизонтального участка забойная температура у начала горизонтального участ-ка будет меньше температуры у торца ствола, т.е. $T_{su} < T_{su}$.

2. Распределение температуры газа на горизонтальном участке ствола

На горизонтальном участке ствола скважины с малым радиусом кривизны, изменение температуры газа определяется формулой (2.135). Это изменение связано с изменением давления от условного контура питания до стенки горизонтального участка ствола и с изменением давления вдоль горизонтального участка из-за потерь давления, вызванных движением газа на горизонтальном участке. Изменение температуры газа по длине горизонтального участка следует определить по формуле (2.138).

3. Распределение температуры газа на вертикальном участке следует определять по формуле (2.145), при этом к длине вертикального участка необходимо добавлять длину искривленного участка. При этом средние значения давления и температуры, используемые для расчета коэффициентов Джоуля–Томпсона и теплоемкости газа, должны определяться исходя из величины давления и температуры на сечении перехода горизонтального участка к искривленному и расчетного сечения с длиной *x*.

Определение распределения температуры газа по стволу горизонтальных скважин с большим и со средним радиусами кривизны при наличии зоны многолетней мерзлоты только на вертикальном участке ствола.

При наличии зоны многолетней мерзлоты только на вертикальном участке ствола распределение температуры газа по стволу горизонтальной скважины определяется в следующей последовательности:

- в пласте при движении газа от контура зоны дренирования $R_{_{\rm S}}$ до стенки горизонтального участка, используя формулу (2.119) для значений $R=R_{_{\rm C}}$ и $P=P_{_{\rm C}}(R_{_{\rm C}})$;
- на горизонтальном участке, используя формулу (2.135) для значения *x_r=L_{гор}* при условии того, что отсчет температуры производится от торца горизонтального участка ствола скважины;
- на искривленном участке используют формулу (2.141) до верхней границы этого участка;
- на вертикальном участке используют формулу (2.145), но при этом верхней границей вертикального участка (снизу вверх), которая является нижней границей зоны мерзлоты, т.е. в этом случае величина x_a, подставляемая в формулу, максимально равна x_a=H_u-H_{va};
- значение температуры при x_B=H_B-H_{ME} будет соответствовать температуре газа на входе в зону мерзлоты, т.е. T_M. Характер изменения температуры в зоне многолетней мерзлоты определяется по формуле (2.126).

Распределение температуры в горизонтальных скважинах со средним и большим радиусами кривизны при наличии зоны многолетней мерзлоты на искривленном и вертикальном участках ствола.

Если мерзлой зоной охвачены вертикальный и частично искривленный участки ствола, то распределение температуры по стволу горизонтальной скважины определяется в следующей последовательности:

сначала определяют распределение температуры в пласте при движении газа от контура зоны дренирования R_в до стенки горизонтального участка, используя формулу (2.119) для значений R=R_e и P=P_a(R_e);

- затем определяют температуру газа по длине горизонтального ствола *T*_{агор} по формуле (2.135) для x_r=L_{гор}, при условии, что отсчет температу-ры производится от торца горизонтальной скважины, где x_r=0;
- по известной температуре газа на нижней границе искривленного участка, т.е. на переходе горизонтального ствола в искривленный, определяют температуру газа на нижней границе мерзлой зоны, частично охватывающей искривленный участок, по формуле (2.141);
- затем для определения температуры газа на искривленном участке ствола, охваченном мерзлой зоной, следует использовать формулу:

$$T_{\text{xmbck}} = T_{\text{immer}} - \Gamma_{\text{mbck}} \cdot x_{\text{mbck}} + \frac{1 - e^{-\alpha_{\text{max}} \cdot x_{\text{max}}}}{\alpha_{\text{mbck}}} \times \left[\Gamma_{\text{mbck}} - D_{\text{cpambck}} \frac{P_{u_{\text{max}}} - P_{x_{\text{max}}}}{x_{\text{m}}} - \frac{A}{C_{\text{perpannek}}} \right], \qquad (2.149)$$

где $T_{_{\text{хмиск}}}$ – температура газа на расстоянии $x_{_{\text{миск}}}$ от нижней границы мерзлой зоны в пределах искривленного участка, $T_{_{\text{миск}}}$ – температура газа на нижней границе мерзлой зоны на искривленном участке ствола; $T_{_{\text{миск}}}$ – геотермический градиент мерзлой зоны на искривленном участке; $x_{_{\text{миск}}}$ – произвольное расстояние от нижней границы мерзлой зоны на искривленном участке; $x_{_{\text{миск}}}$ – произвольное расстояние от нижней границы мерзлой зоны на искривленном участке; $\alpha_{_{\text{миск}}}$ – размерный параметр, определяемый по формуле (2.128); $D_{_{\text{ср.миск}}}$ – средний коэффициент Джоуля–Томпсона в интервале от нижней границы мерзлой зоны до сечения на расстоянии $x_{_{\text{миск}}}$ при средних термобарических параметрах:

$$P_{\rm cp} = \left[P_{\rm h.m.hck} + P_{\rm m.xm.hck} \right] / 2 \text{ M } T_{\rm cp} = \left[T_{\rm h.m.hck} + T_{\rm m.xm.hck} \right] / 2, \qquad (2.150)$$

где $Cp_{\text{ср.м.нск}}$ – теплоемкость газа при приведенных выше параметрах $P_{\text{ср}}$ и $T_{\text{ср}}$; A – термический эквивалент работы; при $x_{\text{м.нск}} = L_{\text{м.нск}}$ по формуле (2.149) определяется температура газа на верхней границе искривленного участка, охваченного мерзлотой;

– далее значение *T*_{Імяск} принимается как известная температура, при помощи которой определяется распределение температуры на вертикальном участке ствола, полностью охваченном (до нейтрального слоя) мерзлотой. В пределах вертикального участка, охваченного мерзлотой, температура газа на произвольном расстоянии от верхней границы искривленного участка *х*_{м.в} должна быть определена по формуле (2.126).

2.7. Определение расхода газа при критическом течении. Приближенное определение расхода газоконденсатной смеси

I. При исследовании скважин с выпуском газа в атмосферу давление после диафрагмы немного превышает атмосферное, и поэтому, как правило, возникает критическое течение газа.

Течение называется критическим, если скорость потока газа в сечении диафрагмы достигает скорости звука в данной среде. Скорость звука в среде зависит от состава газа.

Условие возникновения критической скорости определяется формулой:

$$P_2/P_1 = [2/(k+1)]^{k/(k-1)}, \qquad (2.151)$$

где P_1 , P_2 – давление до и после диафрагмы соответственно; k – показатель адиабаты. Значения показателя адиабаты, скорости звука и соотношения P_2/P_1 для некоторых компонентов газа приведены в таблице 2.83. В общем виде скорость потока достигает скорости звука в газовой среде при $P_1 > 2P_2$.

Таблица 2.83

Компоненты	Показатель адиабаты,	Критическое отноше-	Скорость
газа	k	ние давлений Р ₂ /Р	звука V, м/с
Метан	1,308	0,545	405,0
Этан	1,193	0,565	290,1
Пропан	1,133	0,577	237,9
і-Бутан	1,097	0,585	204,3
n-Бутан	1,094	0,585	204,0
Гелий	1,660	0,486	852,0
Воздух	1,410	0,528	309,3
Газ с относительной плотностью:			
0,6	1,299	0,546	392,7
0,7	1,279	0,550	310,5

Значения коэффициентов критического расширения газов при Р=0,1013 МПа и T=288,5 К

При исследовании скважин часто используется метод измерения дебита в условиях критического течения газа. Устройство для измерения дебита при критическом течении называется ДИКТом (диафрагменный измеритель критического течения). В газовой промышленности используют ДИКТ с внутренними диаметрами корпуса 0,0508 и 0,1016 м. Дебит газа при критическом течении определяется по формуле:

$$Q = C \cdot P_D \cdot \delta / 0.1013 \sqrt{\overline{\rho} \cdot Z \cdot T_D}, \qquad (2.152)$$

где $P_{\rm d}$ – давление перед диафрагмой; Q – дебит газа, тыс.м³/сут; $\overline{\rho}$ – относительная плотность газа; $T_{\rm d}$ – температура газа перед диафрагмой, K; Z – ко-

эффициент сверхсжимаемости газа при P_D и T_D ; δ – поправочный коэффициент на адиабатическое расширение газа при прохождении через диафрагму. Значение δ определяется приближенно аналитическим и графическим методами.

1. Если испытание проводится в газопровод и давление после диафрагмы достаточно высокое, то необходима поправка на сверхсжимаемость после диафрагмы; С – коэффициент, зависящий от диаметров диафрагм и измерительной линии и определяемый расчетным путем.

Значения коэффициентов расхода для различных диаметров диафрагм и ДИКТов с внутренними диаметрами 50,8·10³ и 101,6·10³ м, определенные экспериментально, приведены в **таблице 2.84**.

Таблица 2.84

Диаметр	С для измерителей_		Диаметр	С для из	мерителей
диафрагмы	D-50 8 10-3 -	$D = 101 \ e \ 10^3 $	диафрагмы	$D=50,8\cdot10^{-3}$	$D=101, 6\cdot 10^{-3}$
d, 10 ⁻³ м	D-30,0·10 м	D-101,0.10 M	d, 10 ⁻³ м	М	М
1,587	0,448	I	22,225	99,93	89,44
2,381	0,986	Į	25,400	119,60	116,50
3,175	1,852	l	28,574	153,10	146,80
4,762	4,254	-	31,749	193,30	181,10
5,556	5,871	-	34,294	237,40	218,20
6,350	7,602	7,326	38,099	294,60	260,00
7,937	11,690	1	44,449		355,20
9,525	16,630	16,470	50,799	_	469,20
11,112	23,840	-	57,149		601,50
12,700	29,930	29,460	63,499	_	754,40
15,875	45,280	45,890	69,849	_	934,00
19,050	66,120	65,770	76,199		1148,00

Значение коэффициента расхода С для измерителей 50,8-10-3 и 101,6-10-3

Измерение расхода газа при испытании скважин происходит в весьма большом диапазоне изменения давления и температуры. Поэтому в формулу (2.152) внесена поправка б, зависящая от давления и темпера туры. Величина б увеличивается с увеличением давления и с уменьшением темпера туры. Значение поправки б оценивается формулой:

$$\delta = 1.5 [\mathbf{k} (2/(\mathbf{k}+1))^{(k+1)/(k-1)}]^{0.5}.$$
(2.153)

Если значение показателя адиабаты k неизвестно, то величина δ может быть определена графически из рисунка 37 при различных приведенных давлениях и температурах.

неотсепарированного газа диафрагменными измерителями

II. При практических расчетах параметров пласта и термобарических параметров ствола газоконденсатной скважины необходимо использовать количество газа и конденсата при данных условиях *P* и *T* исходя из фазовой диафрагмы. Количество фаз газоконденсатной смеси зависит от давления, температуры и состава газа. При движении газоконденсатной смеси в пласте, стволе скважины и по шлейфам происходит снижение давления и температуры газа. Если в пласте не происходит выделение жидкой фазы, то при обработке следует использовать расход газожидкостной смеси в газообразном состоянии:

$$Q_{\rm cm} = Q_{\rm r} + Q_{\rm r\pi} + Q_{\rm kr} \tag{2.154}$$

где $Q_{\rm ex}$ – дебит смеси в газообразном состоянии, $Q_{\rm r}$ – дебит газа после сепарации сорбции жидких углеводородов, $Q_{\rm ex}$ – дебит газа дегазации стабильно конденсата, $Q_{\rm ex}$ – дебит стабильного конденсата в газообразном состоянии.

$$Q_{\rm KF} = Q_{\rm K} T_{\rm cr} \cdot 24.05 / M_{\rm K} T_{\rm H}$$
(2.154)

Если через расходомер проходит газожидкостная смесь, не очищенная от жидкости, то величина расхода сухого газа определяется по формуле (2.152) и в [26], полученным для сухого газа, с поправочным коэффициентом на наличие конденсата в газе α_{e} . Значение поправочного коэффициента α_{e} определяется в зависимости от содержания конденсата в газе по графику, показанному на **рисунке 39**.

Задача 64 – Определение температуры газа на переходе от горизонтального участка ствола к искривленному.

NºNº	Поромотр		
п/п	параметр		ед. измерения
1	Пластовое давление, Р _{ит}	24,2	МПа
2	Глубина залежи	2500	М
3	Толщина пласта, Н.,	4	М
4	Пластовая температура, Т	304	К
5	Глубина нейтрального слоя, Н _{ис}	3	М
6	Температура нейтрального слоя, Т _{ис}	275	К
7	Радиус скважины, R,	0,1	М
8	Радиус контура питания, R	1000	М
9	Радиус искривленного участка, R _{иск}	100	М
10	Длина искривленного участка, Г _{все}	157	М
11	Диаметр фонтанных труб, м	0,078	М
12	Теплоемкость породы, С	940	<u>кДж/м³К</u>
13	Теплопроводность пласта, "	0,0017	кДж/мК
14	Относительная плотность газа,	0,597	
15	Дебит скважины, Q	450	тыс.м ³ /сут
16	Геотермический градиент	0,02	гр/м
17	Депрессия на пласт, Р	2	МПа
18	Тау	10000	сек
19	Коэффициент макрошероховатости, <i>l</i>	0,003	М
20	Устьевая температура, Ту	290	К
21	Устьевое давление, Ру	17,439	МПа

Исходные данные

Определение температуры газа на переходе от горизонтального участка ствола к искривленному определяется по формуле (2.137).

Таблица 2.86

P	4,650905	$T_{en.con}$	300,91086		
T	200,5	P _{cp.rop}	22,198429		
$f(\tau)$	1,391028	P ₃₀	22,196857		
λ	0,021835	C _{n mp}	3,6807804		
Z_{cn}	0,838197	f(P;T)	0,179601		
\mathbf{P}_{3}	22,20	\mathbf{D}_{i}	2,103516		
C _{put}	3,766247	$f(\tau)$	1,2103936		
f(P;T)	0,167098	α	0,0006223		
Di	1,912662	T	300,76663		
Т	2,944915	Тз	301,05508		

Пример расчета

Таблица 2.87

Изменение температуры по стволу скважины

Н, м	Т,, "К	T _x , ^o C
Тз.п	300,77	27,77
ЗАБОЙ	301,06	28,06

Таблица 2.85

Задача 65 – Определение распределения температуры газа при его движении по искривленному участку ствола горизонтальной скважины.

Распределение температуры газа при его движении по искривленному участку ствола горизонтальной скважины определяется по формуле (2.141). Исходные данные аналогичны предыдущей задаче.

Таблица 2.88

\mathbf{P}_{kp}	4,650905	$T_{cp rop}$	300,91086	$T_{cp,nek}$	300,58561	$\mathbf{T}_{_{\mathrm{cp},\mathrm{v}}}$	291,7799
T	200,5	$\mathbf{P}_{e_{\mathrm{D},\mathrm{ren}}}$	22,198429	$\mathbf{P}_{\text{cn } \text{uck}}$	22,105778	$\mathbf{P}_{c_{\mathrm{D}}\mathrm{v}}$	11,91198
$f(\tau)$	1,391028	$\mathbf{P}_{_{3,\mathrm{H}}}$	22,196857	$\mathbf{P}_{_{\mathbf{K}\mathbf{H}\mathbf{C}\mathbf{K}}}$	22,011556	\mathbf{P}_{v}	17,43865
λ	0,021835	$-C_{prop}$	3,6807804	$\mathrm{C}_{\mathrm{puck}}$	3,6810511	C _{DV}	2,964474
Z_{ep}	0,838197	f(P;T)	0,179601	f(P;T)	0,1804906	f(P;T)	0,233674
\mathbf{P}_{a}	22,20	\mathbf{D}_{i}	2,103516	\mathbf{D}_{i}	2,1137797	D_i	3,398126
	3,766247	<i>f</i> (τ)	1,2103936	<i>f(</i> τ)	1,2103936	β	0,000328
f(P;T)	0,167098	α	0,0006223	α	0,0006222	$f(\tau)$	1,540641
Di	1,912662	$\mathbf{T}_{a.n}$	300,76663	$\Gamma_{_{ m MCK}}$	0,0041433	α	0,00117
Т	2,944915			Т	300,11614	$\Gamma_{_{MMII}}$	0,029791
Тз	301,0551					T_v	282,5047

Пример расчета

Таблица 2.89

Изменение температуры по стволу скважины

Н, м	T _x , ⁰ K	T _x , ⁰ C
T.y	282,50	9,50
Т.к.иск	300,12	27,12
Тз.п	300,77	27,77
ЗАБОЙ	301,06	28,06

Задача 66 – Определение распределения температуры газа по стволу горизонтальной скважины с учетом зоны ММП.

Распределение температуры газа по стволу горизонтальной скважины с учетом зоны ММП определяется по формуле (2.149). Исходные данные аналогичны **задаче 69**.

Таблица 2.90

				p	rep pare ter				
P	4,650905	T _{cp rop}	300,91086	Териск	300,58561	$T_{c_{\rm D}MMI}$	295,430486	$T_{c_{D,V}}$	291,77991
T	200,5	Peo Dap	22,198429	$P_{\rm cdack}$	22,105778	$P_{\rm OD,MMII}$	12,4011136	P_{cnv}	11,911982
$f(\tau)$	1,391028	$\mathbf{P}_{_{3,\Pi}}$	22,196857	$\mathbf{P}_{_{\mathrm{K}\mathrm{HCK}}}$	22,011556	S_{MMII}	0,16863596	\mathbf{P}_{v}	17,438646
λ	0,021835	C	3,6807804	$C_{p \mu e \kappa}$	3,6810511	$\theta_{\rm MMH}$	0,02441342	$C_{_{DV}}$	2,9644739
Z _{ep}	0,838197	f(P;T)	0,179601	f(P;T)	0,1804906	P_{MMII}	18,3836892	f(P;T)	0,2336739
\mathbf{P}_{a}	22,20	\mathbf{D}_{i}	2,103516	\mathbf{D}_{i}	2,1137797	$C_{_{\rm D}\rm MMII}$	2,95928894	\mathbf{D}_{i}	3,3981259
C	3,766247	<i>f(</i> τ)	1,2103936	$f(\tau)$	1,2103936	f(P;T)	0,22525696	β	0,0003282
							Продол	іжение	табл. 2.90

Пример расчета

f(P;T)	0,167098	α	0,0006223	α	0,0006222	\mathbf{D}_{i}	3,28146508	f(may)	1,5406406
Di	1,912662	Т.,	300,76663	$\Gamma_{_{ m HCK}}$	0,0041433	$f(\tau)$	1,21039363	α	0,0011701
ΔΤ	2,944915			$T_{_{\kappauc\kappa}}$	300,11614	α	0,00077396	$\Gamma_{\rm MMII}$	0,0297905
Тз	301,0551					T _{MMII}	289,805888	T _v	282,50474

Изменение температуры по стволу скважины

Н, м	Т _х , "К	Т _x , °С
УСТЬЕ	282,50	9,50
T _{MMII}	289,81	16,81
Т.к.иск	300,12	27,12
Тз.п	300,77	27,77
ЗАБОЙ	301,06	28,06

Задача 67 – Определение дебита газа при критическом истечении. Дебит газа при критическом истечении определяется по формуле (2.152).

Таблица 2.92

Параметр	Значение	Размерность
С	99,93	
P _D	1	МПа
δ	1,2	
ρ_{orn}	0,65	
Z	1	
T _D	293	

Исходные данные

 $Q = C \cdot P_D \cdot \delta / 0,1013 \sqrt{\overline{\rho} \cdot Z \cdot T_D} = 99,93 \cdot 1,2 / 0,1013 \sqrt{0,65 \cdot 1 \cdot 293} = 85,778 \text{ mole.m}^3 / \text{cym.}$

Задача 68 – Определение расхода газоконденсатной смеси.

Расход газоконденсатной смеси определяется по формуле (2.154), с учетом формулы (2.155).

Таблица 2.93

	Исходные данные				
Параметр	Значение	Размерность			
Q_r	158,9	тыс.м ³ /сут			
$\mathbf{Q}_{_{\mathrm{DI}}}$	22	тыс.м ³ /сут			
Q_{κ}	180	кг/сут			
\mathbf{M}_{κ}	163				

Таблица 2.94

Пример расчета

Параметр	Значение	Размерность
Q	28,50394	тыс.м³/сут
Q	209,4039	тыс.м³/сут

Глава З

ГАЗОГИДРОДИНАМИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН НА СТАЦИОНАРНЫХ РЕЖИМАХ ФИЛЬТРАЦИИ

3.1. Приток газа к скважине

Стабилизация забойного давления и дебита наступает при радиусе зоны, равном R_* . Однако при практических расчетах и не полностью разбуренных месторождениях величина R_* может быть заменена на $R=0,577 \cdot R_*$. Продолжительность процесса стабилизации при этом можно оценить по формуле:

$$t_{cc} = CR^2_{\kappa} m\mu/kP_{m}$$
 или $t_{cc} = C \cdot R^2_{\kappa}$ ж (3.1)

где C – численный коэффициент, равный 0,122 C 0,350; R_{κ} – для вертикальных скважин радиус контура питания; t_{c1} – время, необходимое для стабилизации забойного давления и дебита; m – пористость; μ – коэффициент вязкости газа; $\boldsymbol{\varepsilon}$ – коэффициент пьезопроводности; \mathbf{k} – коэффициент проницаемости пласта; P_{m} – пластовое давление.

Приток при нелинейной фильтрации газа к скважине, при классическом подходе, приток описывается формулой:

$$P_{a}^{2} - P_{a}^{2} = aQ + bQ^{2}, \qquad (3.2)$$

где *а* и *b* – коэффициенты фильтрационного сопротивления, зависящие от несовершенства скважины, геометрии зоны дренирования, параметров пласта и свойств газа и при вскрытии однородного пласта вертикальной несовершенной скважиной определяются по формулам:

$$a = \frac{\mu(P,T) \cdot Z(P,T) P_{\text{ar}} T_{\text{m}}}{\pi k(P) h T_{\text{cr}}} \left[\ln \frac{R_k}{R_c} + C_1 + C_2 \right], \qquad (3.3)$$

$$b = \frac{\rho_{\rm ar} \cdot Z(P,T) P_{\rm ar} T_{\rm m}}{2\pi^2 l h^2 T_{\rm cr}} \left[\frac{1}{R_c} - \frac{1}{R_k} + C_3 + C_4 \right], \tag{3.4}$$

где $\mu(P;T)$; Z(P;T) – коэффициенты вязкости и сверхсжимаемости газа, зависящие от давления и температуры газа. В области фильтрации газа от контура питания до забоя скважины давление меняется от $P_{\mu \pi}$ до P_{a} , а температура от $T_{\mu \pi}$ до T_{a} . При небольших депрессиях на пласт изменениями μ и Z от давления и температуры можно пренебречь. Если забойное давление отличается от пластового существенно, т.е. в несколько МПа, то влияние давления на μ и Z будет значительным. Параметры пласта проницаемость k и макрошероховатость l меньше подвержены изменениям от давления, чем свойства газа. C_1 , C_3 и C_2 и C_4 – соответственно коэффициенты несовершенства по степени и характеру вскрытия пласта; h – толщина пласта; R_{κ} , R_c – радиусы контура питания и скважины. Если скважина совершенна по степени и характеру вскрытия, то коэффициенты C_4 , C_2 , C_3 и C_4 равны нулю. Если пренебречь изменениями μ , Z, k и l от давления, что оправдано при небольших депрессиях на пласт (в пределах $P \leq 2,0$ МПа) и скважина совершенная, то коэффициенты a и b определяются по формулам:

$$a = \frac{\mu \cdot ZP_{ar} T_{\mu \pi}}{\pi k h T_{cr}} \ln \frac{R_k}{R_c}; \ b = \frac{\rho_{cr} \cdot ZP_{ar} T_{\mu \pi}}{T_{cr} 2\pi^2 l h^2} \left[\frac{1}{R_c} - \frac{1}{R_k} \right].$$
(3.5)

Следует отметить, что коэффициенты несовершенства по характеру вскрытия пласта C_2 и C_4 могут быть приняты равными нулю, если число отверстий, созданных пулевыми перфораторами, превышает 10, а кумулятивными больше или равно 5. Коэффициенты несовершенства по степени вскрытия определяются графически или по формулам:

$$C_1 = \frac{1}{\overline{h}} \ln \overline{h} + \frac{1 - \overline{h}}{\overline{h}} \ln \frac{\delta}{\overline{R}_c}, \quad \mathbf{M} \quad C_3 = \frac{1}{\overline{h}}, \quad (3.6)$$

где \overline{h} – относительное вскрытие пласта, равное $\overline{h} = \frac{h_{\rm sc}}{h}$; $h_{\rm sc}$ – вскрытая тол-

щина пласта; $\delta = 1,6(1-\overline{h}); \overline{R}_c = R_c/h$ – относительный радиус скважины.

Формула (3.6) для определения C_1 и C_3 получена для скважины, вскрывшей однопластовую изотропную залежь.

Анизотропия пласта приводит к росту коэффициентов несовершенства. Следовательно, в сильно анизотропных пластах степень вскрытия пласта должна быть максимальной, т.е. \overline{h} должна быть ближе к единице.

Для анизотропных пластов, горизонтальная и вертикальная проницаемости которых отличаются друг от друга, коэффициенты фильтрационного сопротивления несовершенной по степени вскрытия скважины определяются по формулам:

$$a_{\mu} = \frac{a^*}{\varpi} \ln \frac{\overline{R}^* - x}{\overline{h}}, \ b_{\mu} = b^* \frac{\ln \frac{\overline{R}^* - x}{\overline{h}}}{\overline{h} \varpi \ln \overline{R}},$$
(3.7)

где

$$a^* = \frac{\mu \cdot Z \cdot P_{\text{ar}} T_{\text{uv}}}{\pi k h T_{\text{cr}}}, \ b^* = \frac{\rho_{\text{cr}} \cdot Z \cdot P_{\text{ar}} T_{\text{uv}}}{2\pi^2 l \cdot h^2 T_{\text{cr}}},$$
(3.8)

 $\mathbf{x} = (k_{*}/k_{*})^{0.5}$ – параметр анизотропии; k_{*}, k_{*} – соответственно вертикальная и горизонтальная проницаемости; $x=1-\overline{h}$; $\overline{R} = R_{*}/R_{c}$ – безразмерный радиус. Коэффициенты несовершенства по степени вскрытия C_{*} и C_{3} вертикальных скважин, вскрывших анизотропные пласты, определяются по формулам:

$$C_1 = \frac{1}{\alpha} \ln \frac{\overline{R}^{\alpha} - x}{\overline{h}} - \ln \overline{R} , \ C_3 = \frac{C_1 + \ln \overline{R}}{\overline{h} \ln \overline{R}}.$$
(3.9)

Задача 69 – Пример определения продолжительности процесса стабилизации.

Исходные данные, необходимые для определения продолжительности процесса стабилизации забойного давления и дебита, приведены в **таблице 3.1**. Время стабилизации забойного давления и дебита определяется по формуле (3.1) с учетом формулы (2.56).

Таблица 3.1

Исходные данные задачи по определению времени процесса стабилизации

Параметр	Значение	Размерность
C	0,3	
R_{μ}	500	М
m	0,2	
μ	0,041	мПа*с
k	100	мД
\mathbf{P}_{nn}	40	МПа

$$t_{\rm cr} = \frac{CR_{\rm g}^2 m\mu}{kP_{\rm max}} = 158927,3 \,{\rm c.}$$

Задача 70 – Определение притока при нелинейной фильтрации газа к скважине.

Приток при нелинейной фильтрации газа к скважине определяется по формуле (3.2), с учетом формул (3.3–3.4), пример решения задачи представлен в **таблице 3.3**.

Таблица 3.2

Параметр	Значение	Размерность
P	0,1	МПа
l	0,0004	М
T	300	К
R	500	М
m	0,2	
μ	0,041	мПа*с
k	500	MKM ²
P	40	МПа
Z	0,8	
h	40	М
R_c	0,1	М
C_1	0	

Исходные данные

Параметр	Значение	Размерность
C_{γ}	0	
ραι	0,8	$K\Gamma/M^3$
C_3	0	
C_4	0	
Q	800	тыс.м ³ /сут

Продолжение табл. 3.2

Таблица 3.3

Пример расчета притока при нелинейной фильтрации газа к скважине

Параметр	Значение	Размерность
a	0,000455	МПа ^² *сут/тыс.м ^³
b	5,768*10-7	[МПа*сут/тыс.м ³] ²
$P_{n1}^{2} - P_{3}^{2}$	0,733	$\mathbf{M}\mathbf{\Pi}\mathbf{a}^2$

Задача 71 – Определение коэффициентов несовершенства по степени вскрытия.

Исходные данные, необходимые для определения коэффициентов несовершенства, представлены в **таблице 3.4**. Коэффициенты несовершенства по степени вскрытия определяются по формулам (3.6).

Таблица 3.4

Исходные данные для решения задачи по определению коэффициентов несовершенства по степени вскрытия

Параметр	Значение	Размерность
b _{ern}	0,3	
\mathbf{R}_{c}	0,1	М
h	40	М

Результаты: C_1 =10,23, C_3 =3,33, δ = 1,12.

Задача 72 – Определение коэффициентов фильтрационного сопротивления несовершенной по степени вскрытия скважины для анизотропного пласта.

Исходные данные, необходимые для определения коэффициентов фильтрационного сопротивления *a* и *b* несовершенной по степени вскрытия скважины для анизотропного пласта, приведены в **таблице 3.5**.

Коэффициенты фильтрационного сопротивления несовершенной по степени вскрытия скважины для анизотропного пласта определяются по формулам (3.7–3.8).

1	аблица	3.	5

Параметр	Значение	Размерность
P	0,1	МПа
l	0,0004	М
T _{na}	300	К
R_{*}	500	М
m	0,2	
μ	0,041	мПа*с
k	500	MKM ²
P	40	МПа
Z	0,8	
h	20	М
R_c	0,1	М
h _{onn}	0,5	
æ	0,05	
ρ	0,8	$\kappa\Gamma/M^3$
\mathbf{C}_3	0	
C,	0	
0	800	тыс.м ³ /сут

Исходные данные

Результаты: $a^*=0,0001, b^*=2^*10^{-7}, a_n=0,002 \text{ МПа}^2/(тыс.м^3/сут), b_n=1^*10^{-6} \text{ МПа}^2/(тыс.м^3/сут)^2.$

Задача 73 – Определение коэффициентов несовершенства по степени вскрытия вертикальных скважин в анизотропных пластах.

Исходные данные, необходимые для определения коэффициентов несовершенства по степени вскрытия вертикальных скважин в анизотропных пластах, приведены в **таблице 3.6**. Коэффициенты несовершенства по степени вскрытия вертикальных скважин в анизотропных пластах определяются по формулам (3.9).

Таблица 3.6

Параметр	Значение	Размерность
\mathbf{P}_{a_1}	0,1	МПа
l	0,0004	М
T _{uu}	300	К
$R_{_{ m sc}}$	500	М
m	0,2	
μ	0,041	мПа*с
k	500	MKM ²
P	40	МПа
Z	0,8	
h	20	М

Исходные данные
Параметр	Значение	Размерность
R_{c}	0,1	М
$h_{ m orm}$	0,5	
æ	0,05	
Pat	0,8	$\kappa\Gamma/m^3$
C_{2}	0	
C_4	0	
Q	800	тыс.м ³ /сут

Продолжение табл. 3.6

Результаты: \overline{R} =0,005, X = 0,5, C_1 = 5,9545, C_3 = 3,3982.

3.2. Определение коэффициентов фильтрационного сопротивления *а* и *b*

Определение коэффициентов *a* и *b* является одной из основных задач исследования скважин на стационарных режимах фильтрации.

Коэффициенты фильтрационного сопротивления *a* и *b* определяются графическим и аналитическим методами.

Графический метод определения коэффициентов *a* и *b* показан на **ри**сунке 40. Для этого по данным испытания определяются P_{ini} , P_3 и Q. Рассчитываются значения P_{ini}^2 ; P_3^2 и $\Delta P^2 = P_{ini}^2 - P_{iai}^2$ на различных режимах. Затем строится зависимость между ΔP_i^2 и Q_i , названная индикаторной кривой, которая должна проходить через начало координат. Обработка данных в координатах $\Delta P_i^2/Q_i$ от Q_i позволяет определить из графика коэффициент *a* как отрезок, отсекаемый на оси $\Delta P^2/Q$, и коэффициент *b* как тангенс угла наклона прямой.

При значительном числе точек (режимов исследования скважин) коэффициенты фильтрационных сопротивлений могут быть определены и аналитическим методом. Считается целесообразным использовать метод наименьших квадратов при числе режимов, превышающем 10. Формулы для определения коэффициентов фильтрационного сопротивления по этому методу имеют вид:

$$a = \frac{\sum \Delta P^2 / Q \sum Q^2 - \sum Q \sum \Delta P^2}{N \sum Q^2 - (\sum Q)^2},$$
(3.10)

$$b = \frac{N \sum \Delta P^2 - \sum Q \sum \Delta P^2 / Q}{N \sum Q^2 - \left(\sum Q\right)^2},$$
(3.11)

где *N* – общее число режимов.

Рис. 40. Зависимости ΔP^2 (1) и $\Delta P^2/Q$ (2) от Q

В тех случаях, когда пластовое давление неизвестно, результаты испытания могут быть обработаны в координатах $(P_{\#}^2 - P_{_{an}}^2)/(Q_a - Q_i)$ от $Q_a + Q_i$, коэффициенты *a* и *b* и определены как графически, так и численно. Для определения коэффициентов *a* и *b* численным методом при неизвестном пластовом давлении следует пользоваться формулами:

$$a = \frac{\sum (P_{si}^{2} - P_{su}^{2})/(Q_{n} - Q_{i})\sum (Q_{n} + Q_{i})^{2} - \sum (Q_{n} + Q_{i})\sum (P_{si}^{2} - P_{su}^{2})(Q_{n} + Q_{i})/(Q_{n} - Q_{i})}{N\sum (Q_{n} + Q_{i})^{2} - \left[\sum (Q_{n} - Q_{i})\right]^{2}}, (3.12)$$

$$b = \frac{N\sum (P_{si}^{2} - P_{su}^{2})/(Q_{n} + Q_{i})/(Q_{n} - Q_{i}) - \sum (Q_{n} + Q_{i})\sum (P_{si}^{2} - P_{su}^{2})/(Q_{n} - Q_{i})}{N\sum (Q_{n} + Q_{i})^{2} - \left[\sum (Q_{n} - Q_{i})\right]^{2}}, (3.13)$$

где N-число сочетаний, определяемое по формуле

$$N = \sum_{i=1}^{n} (m-1), \qquad (3.14)$$

где *m* – общее число режимов; *n* – порядковый номер режимов.

Влияние неточности определения пластового и забойного давлений на форму индикаторных кривых

Формула (3.2), описывающая приток газа к скважине, идентична формуле параболы, проходящей через начало координат. Если кривая не проходит через начало координат, то это означает, что на уравнение притока влияют один или несколько параметров, связывающих *P*² с дебитом скважины *Q*.

1. Если измеренное пластовое давление $P_{,,,,}$ отличается от истинного $P_{,,,,,}$ на величину $\delta_{,,,}$ то истинное пластовое давление будет определено по формуле:

$$P_{nn} = P_{nn}^* + \delta_1. \tag{3.15}$$

Для величины измеренного пластового давления уравнение притока будет иметь вид

$$P_{aa}^{2} - P_{a}^{2} = aQ + bQ^{2} - C_{aa}, \qquad (3.16)$$

гле

$$C_{\text{max}} = 2P_{\text{max}}^* \cdot \delta_1 + \delta_2^*. \tag{3.17}$$

Если неизвестно истинное значение пластового давления, то следует сначала результаты испытания скважины обработать в координатах $P_{_{nn}}^{*} - P_{_{n}}^{*}$ от Q. При этом индикаторная кривая отсечет на оси *P**² отрезок, равный $C_{\rm IVI}$.

Далее, зная C_{nn} , можно рассчитать δ_i , а коэффициенты фильтрационных сопротивлений определить графически из зависимости, построенной в координатах ($P^{*^2}+C_{\mu\nu}$)/Q от Q. Формула для обработки результатов в этом случае имеет вид:

Рис. 41. Зависимости P^2 от Q

Из этого рисунка (41) видно, что при неправильном определении пластового давления индикаторная кривая, обработанная в координатах $\left[P_{\mu\pi}^{2*}-P_{\pi}^{2}\right]/Q$ от Q, не позволяет определить коэффициенты a и b. Форма зависимости P^{*2} от Q и $\Delta P^{*2} / Q$ от Q свидетельствует о том, что либо пластовое давление занижено, либо забойное давление на всех режимах завышено. Коэффициенты a и b определяются только в том случае, если индикаторная кривая обрабатывается с учетом C_{uu} .

2. Если измеренные давления Р * на различных режимах отличаются от истинных на величину **б**" то истинные забойные давления будут определяться формулой:

$$P_{3,i} = P_{3,i}^* - \delta_{2i}, \qquad (3.19)$$

где δ_{π} – ошибка, допущенная при измерении (определении) забойного давления на *i*-м режиме. Формула (3.19) предполагает, что измеренное забойное давление выше истинного. Если измеренное забойное давление ниже истинного P_{π} , то формула (3.19) примет вид:

$$P_{\scriptscriptstyle 3,i} = P_{\scriptscriptstyle 3,i}^* + \delta_{\scriptscriptstyle 2i}. \tag{3.20}$$

При использовании величин не точно измеренных забойных давлений уравнение притока будет иметь вид:

$$P_{\text{ILT}}^{2^{\circ}} - P_{3,i}^{2} = aQ + bQ^{2} - C_{3}, \qquad (3.21)$$

где

$$C_3 = 2P_{3,i}^* \cdot \delta_2 + \delta_2^2. \tag{3.22}$$

Учитывая, что при Q=0 и $P_a = P_{n\pi}$, величину C_{a0} можно определить по формуле:

$$C_{30} = 2P_{\text{IUI}}^* \cdot \delta_2 + \delta_2 \tag{3.23}$$

Зная истинную величину $P_{_{101}}$ и $C_{_{30}}$, из графика $P_{_{101}}^{2*} - P_{_{3,i}}^2$ от Q можно определить величину δ_2 . По известным $P_{_{30}}$ и δ_2 нетрудно вычислить $C_{_{30}}$ для каждого режима.

Определение коэффициентов фильтрационного сопротивления по устьевым замерам

В ряде случаев, как, например, когда неизвестны коэффициент гидравлического сопротивления по стволу, целесообразнее обработку результатов испытания производить по замеренным на устье скважин значениям давления, используя при этом формулу:

$$P_{cr}^{2}e^{2S_{1}} - P_{yi}^{2}e^{2S_{2}} = aQ + bQ^{2} + \theta Q^{2}$$
или $P_{cr}^{2}e^{2S_{1}} - P_{y,i}^{2}e^{2S_{2}} = aQ + (b+\theta)Q^{2}$, (3.24)

где

$$S_1 = 0.03415\overline{\rho}L / Z_{cp1}T_{cp1},$$
 (3.25)

$$S_2 = 0.03415\overline{\rho}L / Z_{cp2}T_{cp2}, \qquad (3.26)$$

$$\theta = 0.01413 \cdot 10^{-10} Z_{\rm cp2}^2 T_{\rm cp2}^2 \left(e^{2S_2} - 1 \right) / d_{\rm p}^5, \qquad (3.27)$$

 $P_{\rm cr}$ – статическое давление газа на устье остановленной скважины, МПа; $P_{\rm yi}$ – давление на буфере скважины при *i*-м режиме испытания, МПа; $Z_{\rm cp1}$, $Z_{\rm cp2}$ – коэффициенты сверхсжимаемости, определяемые по средним давлениям и температурам в стволе скважины после остановки и при работе на разных режимах; $T_{\rm cp1}, T_{\rm cp2}$ – средние температуры газа в стволе остановленной и работающей скважины; $d_{\rm B}$ – внутренний диаметр фонтанных труб; λ – коэффициент гидравлического сопротивления труб; $\overline{\rho}$ – относительная плотность газа; L – глубина спуска фонтанных труб. В данном случае предполагается, что они спущены до середины интервала перфорации пласта. Формулу (3.24) можно переписать в более удобном виде:

$$P_{\rm cr}^2 - P_{yi}^2 e^{2S_2} / e^{2S_1} = \left[aQ + (b+\theta)Q^2 \right] / e^{2S_1}.$$
(3.28)

Учитывая, что при определении пластового давления ошибки практически не допускаются, формулу (3.28) можно представить в виде:

$$P_{cr}^2 - P_{yi}^2 e^{2S_2} = aQ + (b+\theta)Q^2$$
 или $\frac{P_{cr}^2 - P_{yi}^2 e^{2S_2}}{Q} = a + (b+\theta)Q.$ (3.29)

В результате обработки определены коэффициенты a и ($b+\theta$). Для известной конструкции скважины оценивается значение θ и с некоторым приближением определяется коэффициент b.

Определение коэффициентов фильтрационного сопротивления a и b с учетом изменения свойств газа от давления

В процессе исследования газовых и газоконденсатных скважин на стационарных режимах фильтрации изменение давления между контуром питания и забоем может происходить на достаточно большом диапазоне. При существенных изменениях от режима к режиму давлений на забое скважины незначительно изменяется и температура газа. Изменения давления и температуры на режимах приводят к изменению коэффициентов вязкости µ и сверхсжимаемости Z газа, а они к изменению коэффициентов *a* и *b*.

Как правило, на различных режимах работы температура газа на забое изменяется незначительно и не приводит к существенным изменениям коэффициентов μ и Z от температуры. Поэтому влияние изменения давления и температуры от режима к режиму на μ и Z можно заменить на их изменения только от давления. Зависимость коэффициентов вязкости и сверхсжимаемости от давления $\mu(P)$ и Z(P) приведена в главе 1.

Приближенно изменение µ и Z от давления может быть учтено путем обработки индикаторных кривых в координатах:

$$\frac{P_{nn}^2 - P_3^2}{QZ_{cp}(P)\mu_{cp}(P)} = a^* + b^*Q,$$
(3.30)

где

$$a^{*} = \frac{P_{\rm ar}T_{\rm ur}\ln R_{\rm g}/R_{\rm c}}{\pi khT_{\rm cr}}, \ b^{*} = \frac{\rho_{\rm ar}P_{\rm ar}T_{\rm ur}\left(1/R_{\rm c}-1/R_{\rm g}\right)}{2\pi^{2}lh^{2}T_{\rm cr}\mu_{\rm cp}(P)},$$
(3.31)

*Z*_{ср}(*P*), μ_{ср}(*P*) – соответственно средние значения коэффициента сверхсжимаемости и вязкости при данном режиме, определяемые по формулам:

$$Z_{\rm cp}(P) = \frac{Z(P_{\rm nu}) + Z(P_{\rm s})}{2}, \ \mu_{\rm cp}(P) = \frac{\mu(P_{\rm nu}) + \mu(P_{\rm s})}{2}$$
(3.32)

где $Z(P_{n,n})$, $\mu(P_{n,n})$ – эти же коэффициенты при пластовом давлении.

Рис. 42. Зависимости ΔP^2 (1), $\Delta P^2/Q$ (2) и ($\Delta P^2 + C_2$)/ $Q\overline{Z}\overline{\mu}$ (3) от Q при значительном изменении μ и Z от давления ($\Delta P^2 + C_2$)/ $Q\overline{Z}\overline{\mu}$

При стандартной обработке результатов исследования в координатах P^{2}/Q от Q (линия 2) коэффициенты *a* и *b* не определяются.

Построенная в координатах $P^2/[QZ_{cp}(P)\mu_{cp}(P)]$ от Q позволяет определить a^* и b^* . По известным Z(P) и $\mu(P)$ можно вычислить значения a и b на любом режиме.

Определение свободного и абсолютно свободного дебита газовых скважин

Свободный дебит – это дебит, который давала бы совершенная скважина при давлении на устье, равном $P_y = 0,1$ МПа.

Абсолютно свободный дебит – дебит газовой скважины при депрессии на пласт, равной по величине $P_{\mu\mu}^2$ – 1.

Абсолютно свободный дебит характеризует потенциальные добычные возможности скважины, которые она может теоретически реализовать при забойном давлении, равном 0,1 МПа.

Формулы для определения свободного и абсолютно свободного дебитов в газовых скважинах имеют вид:

$$Q_{abc} = \left[-a + (a^2 + 4b\Delta P_1^2)^{0.5} \right] / 2b, \qquad (3.33)$$

$$Q_{\rm cb} = \left[-a + (a^2 + 4(b + \theta)\Delta P_2^2)^{0.5} \right] / (2b + \theta), \qquad (3.34)$$

где a, b – коэффициенты фильтрационного сопротивления, определяемые по результатам исследования скважин; $\Delta P_1^2 = P_{1 \mu \pi}^2 - P_3^2$ – разность квадратов пластового и забойного давлений. $\Delta P_2^2 = P_{1 \mu \pi}^2 - P_y^2$ – разность квадратов пластового и устьевого давлений при определении свободного дебита $Q_{c \nu}$, θ – размерный коэффициент, характеризующий движение газа по трубам от забоя до устья скважин. Структуры коэффициентов a, b и θ приведены в предыдущих пунктах.

Методика исследования скважин без выпуска газа в атмосферу

Предельное значение дебита, обусловленное характеристикой пористой среды и конструкцией скважины, при испытании с выпуском газа в атмосферу определяется по формуле

$$Q = \frac{-a + \sqrt{a^2 + 4(b + \theta)(P_{\mu\nu}^2 + P_{a\tau}^2 e^{2S})}}{2(b + \theta)}.$$
 (3.35)

При поддержании заданного после диафрагмы давления *P*₂ в системе сбора и транспорта газа для определения предельной производительности скважины необходимо в формуле (3.35) *P*₂₂ заменить на *P*₂.

Особенности исследования скважин, вскрывших пласты с подошвенной водой

Для оценки допустимой депрессии на пласт в исследуемой скважине следует пользоваться приближенными формулами:

$$\Delta P_{\text{aon}} \leq \frac{(\rho_{\text{B}} - \rho_{\text{r}})gh^2}{3} \left[\frac{1}{\sqrt{h_{\text{BC}}^2 - R_{\text{c}}^2}} - \frac{\sqrt{3}}{h} \right] \sqrt{k_{\text{r}}/k_{\text{B}}} - 0.42gh(\rho_{\text{B}} - \rho_{\text{r}}), \quad (3.36)$$

или

$$\Delta P_{\text{gon}} \leq \left\{ 0, 1(h - h_{\text{BC}})(\rho_{\text{B}} - \rho_{\text{F}})g[2P_{\text{BJ}} - 0, 1(h - h_{\text{BC}})(\rho_{\text{B}} - \rho_{\text{F}})g] \right\}^{1/2}, \quad (3.37)$$

где $\rho_{\rm B}$, $\rho_{\rm r}$ – соответственно плотности воды и газа в пластовых условиях; h, $h_{\rm ne}$ – газоносная и вскрытая толщины пласта; ${\bf k}_{\rm r}$, ${\bf k}_{\rm s}$ – горизонтальная и вертикальная проницаемости; $P_{\rm nu}$ – пластовое давление.

По найденным значениям $P_{\text{доп}}$, зная пластовое давление $P_{\text{пл}}$, вычисляют забойное давление P_{3} . Определенную по одной из формул допустимую депрессию следует равномерно делить на предполагаемое число режимов, на которых будет исследована скважина. Депрессия на каждом режиме вычисляется из равенства: $\Delta P_{i}=i\Delta P_{\text{доп}}/n$, где i = 1, 2, 3, ..., n – номер режима; N – общее заданное число режимов. Так, например, на первом режиме $\Delta P_{i}=1\Delta P_{\text{доп}}/n$, а на последнем $\Delta P_{i=N}=\Delta P_{\text{доп}}$.

Для незначительной допустимой депрессии контроль режимов становится технически невыполнимым. В таких случаях разделение на режимы осуществляется по дебиту $Q_{\text{аоп}}$, полученному при работе скважины с допустимой депрессией $P_{\text{аоп}}$, используя формулу $Q_i = i \cdot Q_{\text{аоп}}/n$.

Так, например, если дебит скважины при ее работе с допустимой депрессией $P_{\text{доп}}$ был $Q_{\text{зтоп}}$ =900 тыс.м³/сут и исследование предполагают проводить на 6 режимах, то на первом режиме Q_{I} =1·900/6=150 тыс.м³/сут, на втором Q_{J} =2·900/6=300 тыс.м³/сут и т.д.

Особенности исследования скважин подземных хранилищ газа

Результаты испытания газовых скважин ПХГ в процессе закачки должны обрабатываться по формуле:

$$P_{3}^{2} - P_{nn}^{2} = aQ + bQ^{2}, \qquad (3.38)$$

где P_{s^2} , $P_{n,n}$ – соответственно забойное и пластовое давления, МПа; Q – объем закачиваемого при заданных P_s и $P_{n,n}$ газа, тыс.м³/сут.

Коэффициенты фильтрационного сопротивления *a* и *b*, определенные по данным закачки, могут заметно отличаться от аналогичных коэффициентов *a* и *b*, получаемых при отборе газа из ПХГ, при больших разницах P_a и *P*_{ma} при вскрытии неустойчивых к разрушению коллекторов.

Задача 74 – Определение коэффициентов фильтрационных сопротивлений *a* и *b* численно методом наименьших квадратов.

Дебит, тыс.м³/сут Депрессия, МПа N режима Р заб, МПа Р пл, МПа 19.96 20.23 105 0.27 1 2 20,23 0,38 19,85 214 3 20.23 19.75 264 0.48 4 19,64 20,23 280 0,59 5 20,23 19,54 403 0,69 <u>19,</u>17 20,23 430 1.06 6 7 19,57 20,23 340 0,66 8 19,61 20,23 295 0,62 9 20,23 0.86 19.37 354 10 20,23 1,10 19,13 413 11 18,89 20,23 472 1,34

Исходные данные

Исходные данные, необходимые для определения коэффициентов *a* и *b* численно методом наименьших квадратов, приведены в **таблице 3.7**. Коэффициенты фильтрационных сопротивлений *a* и *b* методом наименьших квадратов определяются по формулам (3.9). Пример определения коэффициентов фильтрационных сопротивлений *a* и *b* численно методом наименьших квадратов приведен в **таблице 3.8**.

Таблица 3.8

Таблица 3.7

	пример решения								
N режима	Р заб, МПа	Р пл, МПа	Рпл ² -Рз ² , МПа ²	Дебит, тыс.м ³ /сут	$\Delta \mathbf{P}^2 / \mathbf{Q}$	Q ²			
1	19,96	20,23	10,85	105	0,103345714	11025,00			
2	19,85	20,23	15,23	214	0,071170093	45796,00			
3	19,75	20,23	19,19	264	0,072690909	69696,00			
4	19,64	20,23	23,52	280	0,084011786	78400,00			
5	19,54	20,23	27,44	403	0,068092556	162409,00			
6	19,17	20,23	41,76	430	0,097125581	184900,00			
7	19,57	20,23	26,27	340	0,077258824	115600,00			
8	19,61	20,23	24,70	295	0,083731525	87025,00			
9	19,37	20,23	34,06	354	0,09620339	125316,00			
10	19,13	20,23	43,30	413	0,10483293	170569,00			
11	18,89	20,23	52,42	472	0,111061017	222784,00			
сумма			318,74	3570,00	0,969524325	1273520,00			

Пример решения

Таблица 3.9

Параметр	Значение	Размерность
N	55	
а	0,001689368	МПа²/тыс.м³/сут
b	0,000245549	МПа²/(тыс.м³/сут)²

Пример вычисления

Задача 75 – Определение уравнения притока газа при неточном измеренном пластовом давлении, отличающемся от истинного на величину δ.

Таблица 3.10

Параметр	Значение	Размерность		
a	0,001689368	МПа ² /тыс.м ³ /сут		
b	0,000245549	$M\Pi a^2/(тыс.m^3/сут)^2$		
Q	300	тыс.м ³ /сут		
δ_1	0,1	МПа		
P _{11,1} *	10	МПа		

Исходные данные

Исходные данные, необходимые для определения уравнения притока газа при $P_{\rm ILR}$, отличающемся от истинного, приведены в таблице 3.10. Поправка в уравнение притока при измеренном пластовом давлении, отличающемся от истинного, определяется по формуле (3.16), с учетом формулы (3.17). Пример определения уравнения притока газа при $P_{\rm ILR}$, отличающемся от истинного, приведены в таблице 3.11.

Таблица 3.11

Параметр	Значение	Размерность
C _n	2	$M\Pi a^2$
$P_{111}^{2} - P_{3}^{2}$	20,60	MΠa ²

Пример вычисления

Задача 76 – Определение коэффициентов фильтрационного сопротивления *a* и *b* пласта при неизвестном коэффициенте гидравлического сопротивления труб.

Для определения коэффициентов фильтрационного сопротивления *a* и *b* пласта при неизвестном коэффициенте гидравлического сопротивления труб задана величина пластового давления $P_{\rm na}$ =24,51 МПа. Коэффициенты фильтрационного сопротивления пласта при неизвестном коэффициенте гидравлического сопротивления труб определяется по формуле (3.24). Пример определения коэффициентов фильтрационного сопротивления *a* и *b* пласта при неизвестном коэффициенте гидравлического сопротивления труб определяется по формуле (3.24). Пример определения коэффициентов фильтрационного сопротивления *a* и *b* пласта при неизвестном коэффициенте гидравлического сопротивления труб приведен в **таблице 3.12**.

Таблица 3.12

Номер	р МПа	Рз. измер	P3 ² ,	Q,	(Рпл ² –Рз ²)/	Py ² e ^{2s}	Рпл ² -Ру ² е ^{2s}	(Рпл ² -Ру ² е ^{2s})/
режима	r _y , wira	М∏а	$M\Pi a^2$	тыс.м ³ /сут	Q	M∏a ²	MΠa ²	Q
1	20,97	24,35	592,9225	100	0,078176	587,6	13,46	0,1346
2	20,38	23,96	574,0816	200	0,1332925	554,9	46,16	0,2308
3	19,39	23,37	546,1569	300	0,181944	502,97	98,09	0,3270
4	17,97	22,55	508,5025	400	0,230594	431,8	169,26	0,4232
5	15,99	21,48	461,3904	500	0,2786994	341,4	259,66	0,5193

Пример вычисления

Таблица 3.13

Пример определения коэффициентов фильтрационного сопротивления

Параметр	Значение	Размерность
а	0,0384	МПа²/тыс.м³/сут
b+⊖	0,001	МПа ² /(тыс.м3/сут) ²

Рис. 43. Пример построения индикаторной диаграммы в координатах Р² от Q

Рис. 44. Пример построения индикаторной диаграммы в координатах P^2/Q от Q

Задача 77 – Определение коэффициентов фильтрационного сопротивления *a* и *b* с учетом изменения свойств газа от давления.

Исходные данные, необходимые для определения коэффициентов фильтрационного сопротивления *a* и *b* с учетом изменения свойств газа от давления, приведены в **таблице 3.14**. Для проведения расчетов заданы текущие P_{m} =62,53 МПа, T_{m} =316 К. Коэффициенты фильтрационного сопротивления пласта с учетом изменения свойств газа от давления определяются по формуле (3.30), с учетом формул (3.31).

Таблица 3.14

Компоненты	Критические параметры		Пластовый газ		μ_{arri}	$M_{i}^{0.5}$	$X_i^*M_i^{0.5}$	μ_{ati}^* $\mathbf{V}^* \mathbf{M}^{0.5}$
	Р, МПа	T,K	X_i	M_i	5000333377	21		$\mathbf{A}_i \mathbf{M}_i$
CH_i	4,7	190,55	$0,\overline{67}92$	16,043	0,0115	4,00537	2,7245	0,03128
C_2H_6	4,98	305,43	0,0545	30,068	0,0095	5,48343	0,29885	0,00284
C_3H_8	4,33	369,82	0,0253	44,094	0,0087	6,64033	0,168	0,00146
C_4H_{10}	3,8	416,64	0,0105	58,12	0,0080	7,62365	0,08005	0,00064
$C_{5}H_{12}$	3,44	465,00	0	72,151	0,0070	8,49417	0	0
C_6H_{14}	3,07	507,35	0,1336	86,178	0,0064	9,28321	1,24024	0,00793
H ₂ S	9,19	373,60	0,0336	34,082	0,0138	5,83798	0,19616	0,00271
CO ₂	7,53	304,20	0,0574	44,011	0,0158	6,63408	0,3808	0,00601
N ₂	3,47	126,26	0,0059	28,016	0,0187	5,29301	0,03123	0,00058
							5,11576	0,05347

Компонентный состав и свойства смеси

Таблица 3.15

μ_{arcm}	0,010452	мПа*с
μ^*	7	
μ,,	0,073166	мПа*с

1.338046

 Z_{nn}

Определение динамической вязкости смеси при заданных условиях

 $\begin{array}{rrr} C=& 36000\\ a^* & 45,45\\ b^* & 0,3663 \end{array}$

Таблица 3.16

Определение коэффициентов фильтрационного сопротивления пласта

№ режима	P,	P _{np}	μ*3	μз	Ζз	μ _{cp}	Zcp	$P_{n\pi}^{2} - P_{3}^{2}$	$\Delta P^2 / \mu_{cp} Z_{cp}$	Q _{факт}	γ-C/Q	a	b
1	35,41	2,7074	5	0,052	0,755	0,063	1,046	2656,6	40479,09	48,00	93,31	2,9828	0,0240
2	32,73	2,5023	4,8	0,050	0,762	0,062	1,050	2839,4	43854,73	83,11	94,51	2,9427	0,0237
3	26,81	2,0494	4,4	0,046	0,782	0,060	1,060	3192,1	50533,34	142,25	102,17	2,8710	0,0231
4	21,54	1,6471	3,5	0,037	0,808	0,055	1,073	3446,5	58533,97	204,77	110,05	2,6761	0,0216

Задача 78 – Обработка результатов исследования скважин на ПХГ в процессе закачки газа.

Исходные данные, необходимые для обработки результатов исследования скважин на ПХГ в процессе закачки газа, приведены в **таблице 3.17**. Обработка результатов испытаний газовых скважин на ПХГ в процессе закачки проводится по формуле (3.38).

Таблица 3.17

№№ шага	Q _{скв} ср. сут. за шаг, тыс.м ³	Р _{ил} , скв, МПа	Р _{заб} , скв, МПа	\mathbf{Q}^2
1	117,74	3,86	4,23	117,74001
2	130,29	4,45	4,87	130,289984
3	152,49	5,01	5,46	152,49
4	170,16	5,55	6,01	170,160013
5	184,54	6,08	6,55	184,539996
6	195,79	6,6	7,07	195,78999
7	204,32	7,1	7,56	204,319994
8	210,42	7,6	8,05	210,420009
9	214,67	8,09	8,52	$214,\!670003$
10	217,67	8,57	8,99	217,670003
11	219,88	9,05	9,45	219,87999
12	222,31	9,35	9,74	222,310009

Данные замеров на скважине ПХГ в процессе закачки газа

Ī	аблица	3.	1	8	
-	00000000000000		•	~~	

№№ ша- га	Q _{скв} ср. сут. за шаг, тыс.м ³	Р _{ил} , скв, МПа	Р _{заб} , скв, МПа	Q	\mathbf{P}^2	(P ² -C)/Q
1	117,74	0,386	0,4598869	117,74001	0,25	0,00552
2	130,29	0,445	0,5540081	130,289984	0,33	0,0056
3	152,49	0,501	0,7433239	152,49	0,549117	0,00622
4	170,16	0,555	0,925	170,160013	0,74	0,0067
5	184,54	0,608	1,0861234	184,539996	0,9	0,00704
6	195,79	0,66	1,2402016	195,78999	1,05	0,00741
7	204,32	0,71	1,3515177	204,319994	1,15	0,00759
8	210,42	0,76	1,4800338	210,420009	1,27	0,00794
9	214,67	0,809	1,5999824	214,670003	1,380385	0,00829
10	217,67	0,857	1,7647147	220,4	1,54265	0,00881
11	219,88	0,905	1,8906679	228,4	1,66	0,00902
12	222,31	0,935	2,0487052	234	1,822901	0,0095

Обработка результатов исследования

Рис. 45. Пример построения индикаторной диаграммы в координатах **P**² от **Q**.

Рис. 46. Пример построения индикаторной диаграммы в координатах Р²/Q от Q по данным закачки газа

Таблица 3.19

Результаты определения коэффициентов фильтрационного сопротивления по данным закачки газа в ПХГ

Параметр	Значение	Размерность
a	0,0012	$\mathbf{M}\mathbf{\Pi}\mathbf{a}^2$ /тыс.м 3 /сут
b	0,00003	МПа ² /(тыс.м ³ /сут) ²

Задача 79 – Определение свободного Q_c и абсолютно свободного Q_{ac} дебита газовой скважины.

Исходные данные, необходимые для определения Q_c и Q_{wc} дебита газовой скважины, приведены в **таблице 3.20**. Определение свободного и абсолютно свободного дебита газовой скважины проводится по формулам (3.33, 3.34). Пример определения Q_c и Q_{ac} дебита газовой скважины приведен в таблице 3.21.

Таблица 3.20

Исходные параметры для определения свободного и абсолютно свободного дебита

Параметр	Значение	Размерность
а	0,000168937	МПа²/тыс.м³/сут
b	2,45549E-06	$M\Pi a^2/(тыс. M^3/сут)^2$
Θ	0,0000002	
\mathbf{P}_{1}^{2}	6	$M\Pi a^2$
\mathbf{P}_{2}^{2}	15	$M\Pi a^2$

Таблица 3.21

Результаты вычислений

Параметр	Значение	Размерность
Quine	1529	тыс.м³/сут
Q _{cB06}	2437,431395	тыс.м ^³ /сут

Задача 80 – Определение допустимой депрессии на пласт в исследуемой скважине при наличии подошвенной воды.

Исходные данные, необходимые для определения допустимой депрессии на пласт в исследуемой скважине при наличии подошвенной воды, приведены в **таблице 3.23**. Определение допустимой депрессии на пласт в исследуемой скважине проводится по формулам (3.36, 3.37).

Таблица 3.22

Параметр	Значение	Размерность
h	80	Μ
kг	1000	мкм2
kв	100	мкм2
hвс	35	Μ
ρв	1200	кг/мЗ
ρΓ	125	кг/мЗ
Rc	0,1	Μ

Исходные данные для вычислений по формуле (3.36)

Параметр	Значение	Размерность	
Рдоп	0,1379	МПа	

Таблица 3.23

Исходные данные для вычислений по формуле (3.37)

Параметр	Значение	Размерность
h	40	M
Рпл	12	МПа
нвс	30	М
ρв	1100	кг/мЗ
рг	125	кг/мЗ
Rc	0,1	М

Параметр	Значение	Размерность
\mathbf{P}_{nou}	0,47878	МПа

Задача 81 – Определение предельного значения дебита при испытании с выпуском газа в атмосферу.

Исходные данные, необходимые для определения предельного значения дебита при испытании с выпуском газа в атмосферу, приведены в **таблице 3.24**. Определение предельного значения дебита при испытании с выпуском газа в атмосферу проводится по формуле (3.35).

Таблица 3.24

Параметр	Значение	Размерность
а	0,001689368	МПа²/тыс.м³/сут
Ь	2,45549E-05	МПа²/(тыс.м³/сут)²
Θ	1E-12	тыс.м³/сут
Рпл	12	M⊓a
Рат	0,1	M⊓a
S	0,16	

Исходные данные для вычислений по формуле (3.35)

Параметр	Значение	Размерность
Q	2388	тыс.м ³ /сут_

3.3. Ускоренные методы исследования скважин с длительной стабилизацией давления и дебита на квазистационарных режимах фильтрации

Изохронный метод исследования скважин

К настоящему времени для исследования скважин с длительной стабилизацией забойного давления и дебита рекомендованы два ускоренных метода: изохронный и экспресс-методы. Эти методы отличаются технологией их проведения. В частности, при изохронном методе исследования скважины продолжительность работы скважины составляет 40–60 мин и между режимами работы давление должно восстановиться полностью.

Для нелинейного закона фильтрации газа к скважине результаты испытания изохронным методом следует обрабатывать по формуле:

$$P_{\rm III}^2 - P_{\rm s}^2(t_p) = a_{\rm B}(t_p)Q(t_p) + b_{\rm B}(t_p)Q^2(t_p), \qquad (3.39)$$

где $P_s(t_p)$ – забойное давление, соответствующее времени, t_p ; t_p – время работы скважины, принимаемое $40 \le t_p \le 60$ мин и одинаковое на всех режимах; $Q(t_p)$ – дебит скважины, соответствующий в конце времени t_p ; $a(t_p)$, $b(t_p)$ – коэффициенты фильтрационного сопротивления, зависящие от свойств пористой среды и насыщающих ее жидкостей и газов, а также от радиуса зоны дренирования. При величине t_{c_1} , времени необходимого для полной стабилизации давления и дебита, радиус зоны дренирования доходит до контура питания, т.е. до R_c .

Структура коэффициента $a(t_p)$ при изохронном методе исследования вертикальной совершенной скважины имеет вид:

$$a_{\scriptscriptstyle B}(t_{\scriptscriptstyle p}) = \left[\mu Z P_{\scriptscriptstyle ar} T_{\scriptscriptstyle BR} \ln \frac{R(t_{\scriptscriptstyle p})}{R_{\scriptscriptstyle c}}\right] / \pi k h T_{\scriptscriptstyle CI}$$
или $a_{\scriptscriptstyle B}(t_{\scriptscriptstyle p}) = a^* \frac{1}{\pi h} \ln \frac{R(t_{\scriptscriptstyle p})}{R_{\scriptscriptstyle c}},$ (3.40)

где $a^* = \mu Z P_{\rm ar} T_{\mu\mu} / k T_{\rm cr}$; μ , Z – соответственно коэффициенты вязкости и сверхсжимаемости газа. $T_{\rm na}$, $T_{\rm cr}$ – пластовая и стандартная температуры; h – толщина пласта; k – коэффициент проницаемости пласта; R_c – радиус скважины; $R(t_p)$ – радиус зоны дренирования, охваченный скважиной за время работы t_p .

При постоянстве всех параметров, входящих в формулу (3.40), величина $a_{\nu}(t_{\nu})$ зависит только от $R(t_{\nu})$.

Величина b_e также зависит от продолжительности стабилизации давления и дебита скважины. Структура коэффициента b_e для совершенной вертикальной скважины имеет вид:

$$b_{s}(t_{p}) = \rho_{ar} P_{ar} ZT_{ua} \left(\frac{1}{R_{c}} - \frac{1}{R(t_{p})} \right) / 2\pi^{2} lh^{2} T_{cr}$$
или
$$b_{s}(t_{p}) = b^{*} \left(\frac{1}{R_{c}} - \frac{1}{R(t_{p})} \right) / 2\pi^{2} h^{2}, \qquad (3.41)$$

где $b^* = \rho_{cr} P_{ar} ZT_{nr} / 2\pi^2 lh^2 T_{cr}$; l – коэффициент макрошероховатости, зависящий от пористости, проницаемости, формы и извилистости фильтрационных каналов. Из (3.41) видно, что коэффициент $b(t_p)$ практически не зависит от величины $R(t_p)$.

Причина быстрой стабилизации коэффициента b_s связана с радиусом зоны дренирования $R(t_p)$ и радиусом скважины R_c . Радиус скважины R_c для газовых скважин колеблется в пределах 0,075÷0,203 м. При $R_c=0,1$ м и радиусе зоны дренирования $R(t_p)=50$ м, коэффициент b_s будет $b_s=b^*(1/0,1-1/50)\approx10b^*$.

Это означает, что коэффициент b_{π} практически не зависит от продолжительности работы скважины на режимах.

Оправданное пренебрежение влияния времени работы скважины на коэффициент b_n позволяет определить его значение по нестабилизированным значениям забойных давлений $P_{ad}(t_p)$ и дебитов $Q(t_p)$ на различных режимах. Обработка результатов испытания в координатах $[P_{an}^2 - P_a^2(t_p)]/Q(t_p)$ от $Q(t_p)$ позволяет определить коэффициент $a(t_p)$ как отрезок, отсекаемый на оси координат, и коэффициент b_e как тангенс угла наклона прямой. Знание практически точного значения коэффициента b_e по нестабилизированным величинам забойных давлений и дебитов позволяет определить и истинное значение a_{nc} . Для определения истинного значения коэффициента a_{nc} можно использовать два метода. 1. При известном коэффициенте b_e для определения истинного значения коэффициента $a_{\mu e}$, соответствующего стабилизированным величинам забойных давлений и дебитов, необходимо на одном из режимов дожидаться полной стабилизации забойного давления и дебита, используя уравнение:

$$a_{\rm \tiny HC} = \left[P_{\rm \tiny HA}^2 - P_{\rm \tiny 3}^2(t_{\rm \tiny CT}) \right] / Q(t_{\rm \tiny CT}) - b Q^2(t_{\rm \tiny CT}), \tag{3.42}$$

где b – коэффициент, определяемый по результатам исследования скважины изохронным методом $b(t_p) b(t_c)$; $P_4(t_c)$ – забойное давление на режиме, с которым эксплуатируется скважина после полной стабилизации; $Q(t_c)$ – дебит скважины после полной стабилизации работы на данном режиме; t_{c1} – время, необходимое для стабилизации давления и дебита на одном из режимов работы скважины.

2. Зная величину $a(t_p)$ по результатам испытания скважины изохронным методом, истинное значение коэффициента $a_{\mu c}$ можно определить по формуле:

$$a_{\mu c} = a(t_p) + \beta \ln \frac{t_{cr}}{t_p}, \qquad (3.43)$$

где значения t_{cr} и t_{ρ} определяются по формуле (3.1); β – тангенс угла наклона кривой восстановления давления, обработанной в координатах $P_{-1}^2(t)$ от *lgt*. Для определения истинного значения коэффициента $a_{\mu c}$ необходимо одну из КВД обработать в координатах $P_{-1}^2(t)$ от *lgt*. Далее, определив β , а также t_{cr} и t_{ρ} , находят истинный коэффициент $a_{\mu c}$ по формуле (3.43).

Если на кривую восстановления давления влияет зона с ухудшенной проницаемостью пласта, т.е. кривая восстановления давления состоит из двух участков, то истинное значение *а*_{ис} определяется по формуле

$$a_{\rm nc} = a(t_p) + \beta_1 \ln \frac{t_1}{t_p} + \beta_2 \ln \frac{t_{\rm cr}}{t_1}, \qquad (3.44)$$

где t_1 – время, соответствующее точке пересечения двух прямолинейных участков кривой восстановления давления, построенной в координатах $P_a^2(t)$ от *lgt*; β_1 , β_2 – угловые коэффициенты первого и второго прямолинейных

Экспресс-метод исследования скважин

При экспресс-методе исследования скважин продолжительность работы скважины на режиме должна быть $t_p = 30-40$ мин. Продолжительность остановки скважины между режимами принимается одинаковой с продолжительностью работы скважины на режиме, т.е. $t_{ei} = t_p = 30-40$ мин.

Уравнение притока газа к скважине при соблюдении условия экспрессметода имеет вид:

$$P_{_{1121}}^2 - P_{_{3,i}}^2(t_p) = a(t_p)Q_i(t_p) + bQ_i^2(t_p) + \beta C_i(t_p).$$
(3.45)

В формуле (3.45) коэффициент $C_i(t_p)$ зависит от числа и порядкового номера режима и определяется формулами:

$$C_{1}=0; C_{2}=0,1766 \cdot Q_{4}; C_{3}=0,0970 \cdot Q_{4}+0,176 \cdot Q_{2};$$

$$C_{4}=0,067 \cdot Q_{4}+0,097 \cdot Q_{2}+0,176 \cdot Q_{3};$$

$$C_{5}=0,051 \cdot Q_{4}+0,067 \cdot Q_{2}+0,097 \cdot Q_{3}+0,176 \cdot Q_{3};$$

$$C_{6}=0,041 \cdot Q_{4}+...; C_{7}=0,034 \cdot Q_{4}+...; C_{8}=0,030 \cdot Q_{4}+...;$$

$$C_{9}=0,026 \cdot Q_{4}+...; C_{10}=0,024 \cdot Q_{4}+...; C_{11}=0,021 \cdot Q_{4}+...;$$
(3.46)

Если скважина перед исследованием экспресс-методом значительное время продувалась, а затем закрывалась на непродолжительное время, в течение которого пластовое давление не полностью восстановилось, то при этом полученная зависимость $P_{\text{пл}}^2 - P_{s,i}^2(t_p) = \Delta P^2$ от Q_{ρ} будет отсекать на оси ординат отрезок, равный:

$$C_0 = \beta Q_{\rm np} \ln \left[t_{\rm np} + t_{\rm ocr} \right] / t_{\rm ocr}, \qquad (3.47)$$

где $Q_{\rm np}$ – дебит скважины при продувке перед закрытием на исследование; $t_{\rm np}$ – продолжительность продувки; $t_{\rm ocr}$ – продолжительность остановки после продувки.

В этом случае результаты испытания экспресс-методом обрабатываются по формуле:

$$P_{nn}^{2} - P_{3,i}^{2}(t_{p}) = a(t_{p})Q_{i}(t_{p}) + bQ_{i}^{2}(t_{p}) + \beta \Big[C_{i}(t_{p}) + C_{0}\Big].$$
(3.48)

Обработка результатов испытания в координатах $\frac{P_{nn}^2 - P_{si}^2(t_p) - \beta C_i(t_p)}{Q_i(t_p)}$

или $\frac{P_{uu}^2 - P_{si}^2(t_p) - \beta[C_i(t_p) + C_0]}{Q_i(t_p)}$ от $Q_i(t_p)$ позволяет определить коэффициен-

ты фильтрационных сопротивлений $a(t_p)$ и b. Как видно из формулы (3.45), результаты испытания экспресс-методом обрабатываются только при известном коэффициенте β как тангенс угла наклона КВД, обработанной в координатах $P_a^2(t)$ от lg t.

Истинное значение коэффициента $a_{\mu\epsilon}$ при испытании скважины экспресс-методом определяется так же, как и при изохронном и ускоренноизохронном методах, с помощью формул (3.42)÷(3.44).

Слагаемое в формуле (4.46) $C_i(t_p)$ может оказаться больше, чем слагаемое $P^2_{\mu\mu} - P^2_{\mu\mu}(t_p)$. Тогда результаты испытания экспресс-методом не поддаются обработке.

3.4. Использование кривых стабилизации забойного давления и дебита газовых скважин для определения коэффициентов фильтрационного сопротивления и параметров пласта

Формула притока газа к скважине после ее пуска имеет вид:

$$P_{na}^{2} - P_{a}^{2}(t) = \frac{Q(T)\mu Z P_{ar} T_{na}}{2\pi k h T_{cr}} \ln \frac{2,05 \alpha}{R_{c}^{2}} + bQ^{2}(t) + \frac{Q(T)\mu Z P_{ar} T_{na}}{2\pi k h T_{cr}} \ln \frac{Q_{ao6}}{Q(t)}, \quad (3.49)$$

где

$$b = \rho_{\rm ar} P_{\rm ar} Z T_{\rm int} (1 - R_c / R_0) / 2\pi^2 l h^2 T_{\rm cr} R_c$$

Для обработки кривых стабилизации забойного давления и дебита формулу (3.49) представим в виде:

$$\left\{\left[P_{_{\mathrm{TLT}}}^2 - P_{_3}^2(t)\right] - bQ^2(t)\right\} / Q(t) = \alpha + \beta \varphi(t), \qquad (3.50)$$

где $\beta = \mu Z P_{ar} T_{ur} / 2\pi k h T_{cr}; \alpha = \beta \ln 2,05 \varepsilon / R_c^2; \phi(t) = \ln \frac{Q_{aob}}{Q(t)}.$

При измерении во времени изменения забойного давления и дебита формула (3.50) позволяет определить параметры пласта.

Если обозначить через:
$$\psi(t) = \frac{P_{\text{пл}}^2 - P_{\text{з}}^2(t)}{Q(t)}, \ \psi(t_{\text{k}}) = \frac{P_{\text{пл}}^2 - P_{\text{s}}^2(t_{\text{k}})}{Q(t_{\text{k}})},$$
(3.51)

$$\varphi(t) = \ln Q_{ao6} / Q(t), \ \varphi(t_k) = \ln Q_{ao6} / Q(t_k), \tag{3.52}$$

то формула притока примет вид: $\psi(t) - bQ(t) = \alpha + \beta \phi(t)$ (3.53)

$$\psi(t_k) - bQ(t_k) = \alpha + \beta \varphi(t_k). \tag{3.54}$$

В результате вычитания из (3.54) формулы (3.53) получится

$$[\psi(t_k) - \psi(t)] / [\varphi(t_k) - \varphi(t)] = \beta - b[Q(t) - Q(t_k)] / [\varphi(t_k) - \varphi(t)].$$
(3.55)

Обработка результатов изменения давления и дебита в процессе стабилизации в координатах $[\psi(t_k) - \psi(t)]/[\varphi(t_k) - \varphi(t)]$ от $[Q(t) - Q(t_k)]/[\varphi(t_k) - \varphi(t)]$ позволяет определить b – как тангенс угла наклона прямой и β – как отрезок, отсекаемый на оси ординат. Связь между коэффициентом β и коэффициентом фильтрационного сопротивления a имеет вид:

$$a = 2\beta \ln R_{\rm g} / R_{\rm c}, \tag{3.56}$$

где $\beta = \mu Z P_{ar} T_{na} / 2\pi k h T_{cr}$.

Задача 82 – Обработка результатов испытания газовых скважин изо-

хронным методом.

Исходные данные, необходимые для обработки результатов испытания газовых скважин изохронным методом приведены в **таблице 3.25**. Обработка результатов испытания газовых скважин изохронным методом проводится по формуле (3.39).

Таблица 3.25

Параметр	Значение	Размерность
ρ _{г.отн}	0,61	кг/мЗ
Тпл	304	К
Ту	290,5	К
Py	11,51	МПа
β	0,003	
Hc	1250	М
Рпл	12,809	МПа
m	0,3	
К,	0,15	мкм2
μ	0,016	мПа*с
Rĸ	1000	М
Rc	0,13	М
t	3600	С

Параметры, необходимые для обработки исследований изохронным методом

Таблица 3.26

Результаты испытания скважины изохронным методом

Q, тыс.м³/сут	Рз, атм	∆Р, МПа.	ΔP ² ,MΠa ²	(∆P2-C)/Q
359	12,777	0,020	0,512	0,011
478	12,640	0,157	3,989	0,015
650	12,438	0,358	9,039	0,019
776	12,281	0,515	12,924	0,021
887	11,992	0,804	19,939	0,026
772	12,245	0,552	13,814	0,022
1112	11,367	1,429	34,534	0,034

Рис. 47. Пример построения индикаторной диаграммы в координатах Р² от Q

Рис. 48. Пример построения индикаторной диаграммы в координатах Р²/Q от Q *Таблица 3.27*

Результаты определения коэффициентов фильтрационного сопротивления по испытаниям скважины изохронным методом

Параметр	Значение	Размерность
P3(tcT)	12,5	M⊓a²
Q(tcT)	495	тыс.м3/сут
Zcp	0,819	
Рср	1 <u>2</u> ,16	МПа
Ткр	198,905	K K
Ркр	4,645	М⊓а
Tcp.c	297,25	К
F(Рпл)	0	
Рпл.усл.	12,797	МПа
tcT	590157,082	С
tp	29644,17852	
С	-3,4	M⊓a²
a (tp)	0,0002	МПа ² /(тыс.м3/сут)
b	0,00003	МПа ² /(тыс.м3/сут) ²
аис	0,000307158	МПа²/(тыс.м3/сут)

Задача 84 – Обработка результатов исследования газовых скважин экспресс методом.

Исходные данные, необходимые для обработки результатов исследования газовых скважин экспресс-методом, приведены в **таблицах 3.28–3.29**. Обработка результатов испытания газовых скважин экспресс-методом проводится по формуле (3.45).

Таблица 3.28

Параметр	Значение	Размерность
$Q(t_{cr})$	35	тыс.м ³ /сут
P3(t _{c1})	9,59	К
β	0,003	

Исходные параметры для обработки исследований экспресс методом

\mathbf{P}_{uu}	14,670	ΜПа	

Таблица 3.29

Результаты испытания скважины экспресс-методом

Q, тыс.м³/сут	Рз, атм	(∆ P²-βC)/Q,MΠa²	С
11	14,34	0,870	0
21,5	13,88	1,049	1,9426
43	12,65	1,283	4,851
54	11,45	1,557	10,3905
63,5	10,42	1,679	15,6765

Рис. 49. Пример построения индикаторной диаграммы в координатах $\Delta P_{\rm tr}^2/\mathbf{Q}_{\rm p}$ от $\mathbf{Q}_{\rm p}$

Таблица 3.30

Результаты определения коэффициента а

Параметр	Значение	Размерность
Passes	14,670	МПа
a	0,6985	МПа ² /(тыс.м ² /сут)
b	0,0153	$M\Pi a^2/(тыс.м^3/сут)^2$
a	3,486165714	МПа ² /(тыс.м ³ /сут)

Задача 85 – Обработка результатов исследования газовых скважин методом построения кривых стабилизации давления и дебита.

Исходные данные, необходимые для обработки результатов исследования газовых скважин экспресс методом приведены в **таблице 3.31**. Обработка результатов испытания газовых скважин проводится по формуле (3.45).

Таблица 3.31

Ψκ	0,0026
ϕ_{κ}	4,01648
β	0,0004
b	7,5E-11

Параметры исследования

a 0,00681

Таблица 3.32

Обработка	данных	исследования
-----------	--------	--------------

Т, сек	Р, ата	Q м ³ /с	Q см ³ /с	\mathbf{P}^2	Ψ	Q(t)	φ
0	220,5	0	0	0	0	0	0
600	182,1	7,801	7801000	15459,84	0,001982	425000	2,7781513
1200	176,1	7,708	7708000	17609,04	0,002285	332000	3,2570156
2400	174,15	7,616	7616000	18292,03	0,002402	240000	3,4813094
3600	173,57	7,535	7535000	18493,71	0,002454	159000	3,629576
4800	173,12	7,477	7477000	18649,72	0,002494	101000	3,7399432
6000	172,75	7 ,434	7434000	18777,69	0,002526	58000	3,8277874
7200	172,87	7,407	7407000	18736,21	0,00253	31000	3,9004213
8400	171,6	7,39	7390000	19173,69	0,002595	14000	3,9623354
9600	171,5	7,376	7376000	19208	0,002604	0	4,016477

Q_{100}, CM^3	Δφ	$\Delta \tilde{\varphi} \Delta Q(t)$	$Q(t)/\Delta \phi$	lg t	Δψ	$\Delta \psi / \Delta Q(t)$	$\Delta \psi / \Delta \phi$
	0	0	0		0	0	0
4680600000	1,2383258	0,0000029	343205,3	2,778151	0,0006223	0,000000015	0,000503
13930200000	0,7594614	0,0000023	437151,9	3,079181	0,0003196	0,000000010	0,000421
23069400000	0,5351677	0,0000022	448457,6	3,380211	0,0002023	30000000000	0,000378
32111400000	0,386901	0,0000024	410957,8	3,556303	0,0001497	0,000000009	0,000387
41083800000	0,2765338	0,0000027	365235,6	3,681241	0,0001098	0,000000011	0,000397
50004600000	0,1886896	0,0000033	307383,1	3,778151	0,00008	0,000000013	0,000414
58893000000	0,1160557	0,0000037	267113,1	3,857332	0,00007	0,000000024	0,000643
67761000000	0,0541417	0,0000039	258580,9	3,924279	0,00001	0,000000007	0,000177
76612200000	0	0	0	3,982271	0	0	0

 $[\]Delta \varphi / \Delta Q(t)$

Рис. 50. Индикаторная кривая стабилизации в координатах $\Delta \psi / Q(t)$ от $\Delta \phi / Q(t)$

Рис. 51. Индикаторная кривая стабилизации в координатах $\Delta \psi / \Delta \phi(t)$ от $Q(t) / \Delta \phi$

Глава 4

ГАЗОГИДРОДИНАМИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ СКВАЖИН НА НЕСТАЦИОНАРНЫХ РЕЖИМАХ ФИЛЬТРАЦИИ

4.1. Определение параметров пласта по данным исследования вертикальных скважин на нестационарном режиме фильтрации газа

Нестационарные методы исследования газовых скважин базируются на процессах перераспределения давления в пласте при их пуске в работу и после остановки. Характер и темп распределения давления в пласте зависят от свойств газа и пористой среды. Связь темпа и характера распределения давления в пласте при пуске и остановке скважин указывает на возможность использования изменения давления во времени для определения фильтрационных и емкостных свойств пласта.

Для получения аналитической зависимости между распределением давления и параметрами пласта считается, что скважина расположена в центре круговой залежи конечного или «бесконечного» размера с постоянными толщиной, пористостью, проницаемостью. Допускается, что если пласт конечных размеров, то до достижения контура питания условия на контуре пласта не влияют на работу скважины. Когда распределение давления достигает контура, начинается общее истощение залежи.

Для мгновенной остановки вертикальной скважины, работавшей до закрытия с дебитом Q_0 и забойным давлением $P_{a,0}$, при t=0, формулу нелинейного нестационарного притока газа можно записать в виде:

$$P_{3}^{2}(t) = P_{30}^{2} + \beta' \ln \frac{2,25 \mathbf{e} \cdot t}{R_{cup}^{2}} + bQ_{0}^{2}, \qquad (4.1)$$

где

$$β' = βQ_0 \quad \text{if } β = \mu \cdot Z \cdot P_{\text{ar}} T_{\text{iff}} / 2\pi khT_{\text{cr}}, \qquad (4.2)$$

где $P_{a,0}$, $P_{a}(t)$ — забойное давление перед закрытием скважины и в момент времени t после ее закрытия; \boldsymbol{x} — пьезопроводность; t — время, отсчитываемое с момента мгновенного закрытия скважины; $R_{c,np}$ — приведенный радиус; b — коэффициент фильтрационного сопротивления при квадратичном слагаемом в уравнении притока газа; μ , Z — коэффициенты вязкости и сверхсжимаемости газа; h — толщина пласта; k — проницаемость.

Расчетная формула при линейном законе фильтрации для процесса восстановления давления в вертикальной газовой скважине при мгновенном ее закрытии в «бесконечном» пласте в виде:

$$P_{3}^{2}(t) - P_{30}^{2} = \frac{Q_{0}\mu \cdot Z \cdot P_{ar}T_{ru}}{2\pi khT_{c1}} \ln \frac{2,25 \cdot t}{R_{c}^{2}}, \qquad (4.3)$$

а в **пласте конечных размеров** в виде:

$$P_{3}^{2}(t) - P_{30}^{2} = \frac{1,28Q_{0}\mu \cdot Z \cdot P_{ar}T_{101}}{2\pi khT_{cr}} \exp\left[\frac{-5,78\boldsymbol{x}\cdot t}{R_{\kappa}^{2}}\right].$$
(4.4)

Формулы (4.3) и (4.4) для определения параметров пласта не пригодны только вблизи реальной скважины, где фильтрация подчиняется двучленному закону сопротивления. Влияние несовершенства также сказывается вблизи ствола скважины. За пределами этой зоны скорость достаточно низкая, что вызвано увеличением площади фильтрации и поэтому закон фильтрации – линейный.

Принятые условия применимости формул (4.1) и (4.3) для несовершенных газовых скважин с нарушением линейного закона вблизи скважины, вскрывшей «бесконечный» пласт, допускают, что на стенке фиктивной укрупненной скважины радиусом R_0 восстановление давления описывается формулой, аналогичной формуле (4.3), но с заменой R_c на R_0 :

$$P_{R0}^{2}(t) = P_{R0}^{2} + \frac{Q_{0}\mu \cdot Z \cdot P_{ar}T_{III}}{2\pi k h T_{cr}} \ln \frac{2,25 \varkappa \cdot t}{R_{0}^{2}}.$$
(4.5)

Связь между давлением на стенке фиктивной скважины радиусом R_0 и реальной радиусом R_c для момента времени t приближенно можно представить в виде:

$$P_{R0}^{2}(t) - P_{3}^{2}(t) = aQ(t) + bQ^{2}(t), \qquad (4.6)$$

где Q(t) – приток газа в укрупненную скважину. При t=0 в формуле (4.6) вместо Q(t) будет постоянный дебит перед закрытием Q_0 , где

$$a = \frac{\mu \cdot Z \cdot P_{aT} T_{nT}}{\pi k h T_{cT}} \left[\ln \frac{R_0}{R_c} + C_1 \right], \ b = \frac{\rho_{aT} P_{aT} Z \cdot T_{nT}}{2\pi^2 l \cdot h^2 T_{cT}} \left[\frac{1}{R_c} - \frac{1}{R_{\kappa}} + C_2 \right]$$
(4.7)

l-коэффициент макрошероховатости; $C_{\scriptscriptstyle 1},\ C_{\scriptscriptstyle 2}$ – коэффициенты несовершенства.

Одним из основных факторов, влияющих на процесс восстановления давления, является приток газа к скважине после ее закрытия Q(t).

Установлено, что влияние притока газа к скважине за пределами призабойной зоны, где имеет место линейный закон фильтрации, сказывается до достижения неравенства: $R_0^2 / 4 \mathbf{x} \cdot t \le 0,01$ или $\mathbf{x} \cdot t / R_0^2 \ge 25$.

Если обозначить через:

$$\alpha = P_{30}^{2} + \frac{1.15Q_{0}\mu \cdot Z \cdot P_{a\tau}T_{\pi\pi}}{\pi khT_{c\tau}} \left[\ln \frac{2.25\pi}{R_{c}^{2}} + 0.87 \left(C_{1} + \frac{Q_{0}\pi khb}{\mu P_{a\tau}} \right) \right],$$
(4.8)

$$\beta = \frac{1.15Q_0 \mu \cdot Z \cdot P_{ar} T_{rr}}{\pi k h T_{cr}}, \qquad (4.9)$$

то процесс восстановления $P_3(t)$ с учетом притока газа после закрытия можно представить в виде:

$$P_{s}^{2}(t) = \alpha + \beta \lg t. \tag{4.10}$$

Построенная в координатах $P_{3}^{2}(t)$ от *lg t* КВД позволяет определить коэффициенты α и β , а по ним коэффициенты проницаемости, проводимости, пьезопроводности и др.

Процесс восстановления давления на стенке укрупненной скважины, вскрывшей пласт конечных размеров, описывается формулой (4.4). Связь между давлением на стенках укрупненной и реальной скважин определяется формулой (4.6).

Для пласта конечных размеров процесс восстановления давления в скважине с учетом притока газа при известном Q(*t*), значение которой определяется формулой:

$$Q(t) = \varphi Q_0 \exp\left[-5,78 \varkappa t / R_\kappa^2\right], \qquad (4.11)$$

где

$$\varphi = 3.7 R_0^2 \left[1 + R_c^2 L / R_0^2 m \alpha_r h \right] / R_\kappa^2, \qquad (4.12)$$

может быть представлен уравнением:

$$\ln\left[P_{_{\rm ILT}}^2 - P_{_{3}}^2(t)\right] = \ln\left[\frac{1,28Q_{_{0}}\mu ZP_{_{\rm aT}}T_{_{\rm ILT}}}{2\pi khT_{_{\rm cT}}} - a\varphi Q_{_{0}} - b\varphi^2 Q_{_{0}}^2 \exp\left[\frac{-5,78\omega t}{R_{_{\rm K}}^2}\right]\right] - \frac{5,78\omega t}{R_{_{\rm K}}^2}.$$
 (4.13)

При больших значениях t величина $b\varphi^2 Q_0^2 \exp\left[-5,78 \varkappa \cdot t / R_{\kappa}^2\right]$ стремится к нулю и формула (5.13) приобретает вид:

$$\ln\left[P_{_{\rm IVI}}^2 - P_{_3}^2(t)\right] = \ln\left[\frac{1.28Q_0\mu ZP_{_{\rm BT}}T_{_{\rm IVI}}}{2\pi khT_{_{\rm CT}}} - a\varphi Q_0\right] - \frac{5.78\omega t}{R_{_{\rm K}}^2}.$$
 (4.14)

Если обозначить через:

$$\alpha_{1} = \ln\left[\frac{1.28Q_{0}\boldsymbol{\mu}\cdot\boldsymbol{Z}\cdot\boldsymbol{P}_{aT}\boldsymbol{T}_{nT}}{2\pi\boldsymbol{k}\boldsymbol{h}\boldsymbol{T}_{cT}} - a\boldsymbol{\varphi}\boldsymbol{Q}_{0}\right]; \ \boldsymbol{\beta}_{1} = 2,51\boldsymbol{\varpi}/R_{\kappa}^{2}, \tag{4.15}$$

то формула для обработки кривой восстановления давления в скважине, вскрывшей пласт конечных размеров, будет иметь вид:

$$\ln \left[P_{_{113}}^2 - P_{_3}^2(t) \right] = \alpha_1 - \beta_1 t.$$
(4.16)

Обработанная в координатах $\ln \left[P_{_{ILA}}^2 - P_{_{3}}^2(t) \right]$ от *t* кривая восстановления давления позволяет определить коэффициенты уравнения $\alpha_{_{1}}$ и $\beta_{_{1:}}$ а по ним и

параметры пласта. Формулу (4.16) можно использовать при $\mathbf{z} \cdot t / R_k^2 \ge 0,06$. Если фильтрация газа в скважине не подчиняется линейному закону, то начальный участок кривой начинает отклоняться от стандартной формы КВД.

Параметры пластов, определяемые по кривым восстановления, относятся к зоне за пределами укрупненной скважины. Прибавление к этой зоне призабойной зоны реальной скважины в конечном итоге практически не влияет на процесс восстановления давления в укрупненной скважине. Влияние призабойной зоны отражается в основном на начальном участке кривых восстановления давления.

Задача 86 – Определение восстановления давления на забое при мгновенной остановке скважины.

Расчет забойного давления производится по формуле (4.1) с учетом формулы (4.2).

Таблица 4.1

Параметр	Значение	Размерность
\mathbf{P}_{a0}	10	МПа
Q_{o}	400	тыс.м ³ /сут
$R_{c\mathrm{nn}}$	0,1	М
b	0,000021	$M\Pi a^2/(тыс.m^3/сут)^2$
t	6000	сек
μ	0,041	мПа*с
T	302	К
k	400	MKM ²
h	40	М
æ	0,05	м ² /с
Z	0,8	

Исходные данные для расчета

Таблица 4.2

Пример определения восстановления давления при мгновенной остановке

Параметр	Значение	Размерность
β	3,3646E-05	МПа
β⁄	0,013458403	МПа
$P_{u}(t)$	10,17396952	МПа

Задача 87 – Определение восстановления забойного давления при мгновенной остановке вертикальной скважины в бесконечном пласте при линейном законе фильтрации.

Данный расчет производится по формуле (4.3).

Таблица 4.3

Параметр	Значение	Размерность
\mathbf{P}_{30}	10	ΜПа
Q_0	1000	тыс.м³/сут
$R_{e\mathrm{nn}}$	0,1	М
t	60000	сек
μ	0,041	мПа*с
T	302	К
k	100	MKM ²
h	40	М
æ	0,07	M ² /C
Z	0,8	

Исходные данные для расчета

$$P_{3}^{2}(t) = P_{30}^{2} + \frac{Q_{0}\mu \cdot Z \cdot P_{ar}T_{R}}{2\pi khT_{cr}} \ln \frac{2.25 \cdot e \cdot T}{R_{c}^{2}} = 10^{2} + \frac{1000 \cdot 0.041 \cdot 0.8 \cdot 0.1013 \cdot 302}{2 \cdot 3.14 \cdot 100 \cdot 40 \cdot 293} \ln \frac{2.25 \cdot 0.07 \cdot 60000}{0.1^{2}} = 10.092 \, M\Pi a$$

0.05

77 D 77

Задача 88 — Определение восстановления забойного давления при мгновенной остановке вертикальной скважины в конечном пласте при линейном законе фильтрации.

Восстановление забойного давления в конечном пласте при линейном законе фильтрации определяется по формуле (4.4). Исходные данные для расчета аналогичны предыдущей задаче. Радиус контура питания скважины R_{*} =750 м.

$$P_{3}^{2}(t) - P_{30}^{2} = \frac{1,28Q_{0}\mu \cdot Z \cdot P_{aT}T_{\mu \pi}}{2\pi khT_{c1}} \exp\left[\frac{-5,78\omega \cdot t}{R_{\kappa}^{2}}\right] =$$
$$= \frac{1,28 \cdot 1000 \cdot 0,041 \cdot 0,8 \cdot 0,1013 \cdot 302}{2 \cdot 3,14 \cdot 100 \cdot 40 \cdot 293} \exp\left[\frac{-5.78 \cdot 0.07 \cdot 60000}{750^{2}}\right] = 10.002 M\Pi a.$$

Задача 89 – Определение восстановления забойного давления на стенке укрупненной скважины.

Определение восстановления забойного давления на стенке укрупненной скважины производится по формуле (4.5).

Таблица 4.4

Параметр	Значение	Размерность
$\mathbf{P}_{_{\mathrm{R}0}}$	10	МΠа
Q_0	1000	тыс.м³/сут
$R_{_0}$	5	М
t	60000	сек
μ	0,041	мПа*с
T	302	К
k	350	MKM ²
h	40	М
æ	0,1	m ² /c
Z	0.8	

Исходные данные для расчета

$$P_{R0}^{2}(t) = P_{R0}^{2} + \frac{Q_{0}\mu \cdot Z \cdot P_{ar}T_{IU1}}{2\pi khT_{cr}} \ln \frac{2.25 \cdot t}{R_{0}^{2}} = 10^{2} + \frac{1000 \cdot 0.041 \cdot 0.8 \cdot 0.1013 \cdot 302}{2 \cdot 3.14 \cdot 350 \cdot 40 \cdot 293} \ln \frac{2.25 \cdot 0.1 \cdot 60000}{5^{2}} = 10.012.$$

Задача 90 — Определение связи между давлением на стенке фиктивной скважины радиусом R_0 и реальной радиусом R_c для момента времени *t*.

Данный расчет ведется по уравнению притока (формула 4.6) с учетом формул (4.6).

Таблица 4.5

Параметр	Значение	Размерность
\mathbf{P}_{ar}	0,1	МПа
Q_0	1000	тыс.м ³ /сут
R_0	500	М
t	60000	сек
μ	0,041	мПа*с
T	302	К
k	350	MKM ²
h	40	М
æ	0,1	M ² /C
Z	0,8	
R_{e}	0,1	М
l	0,00002	М
	0	
C_{2}	0	
ρ _{at}	0,7	$\mathrm{KT/M}^{3}$
Q	100	тыс.м³/сут

Исходные данные для расчета

Таблица 4.6

Определение связи между давлением на стенке фиктивной скважины радиусом R_{\circ} и реальной радиусом R_{\circ} для момента времени t

Параметр	Значение	Размерность
a	0,655016109	МПа ^² /тыс.м ^³ /сут
<i>b</i>	4,23397E-05	МПа²/(тыс.м³/сут)²
$P_{R0}^{2} - P_{2}^{2}$	65,92500759	$M\Pi a^2$

Задача 91 – Определение значения забойного давления с учетом притока газа после закрытия.

Забойное давление с учетом притока газа после закрытия скважины определяется по формуле (4.10) с учетом (4.8 и 4.9).

Таблица 4.7

Параметр	Значение	Размерность
Par	0,1	МПа
\mathbf{Q}_{o}	500	тыс.м ³ /сут
$R_{ m o}$	500	М
t	60000	сек
μ	0,041	мПа*с
T	302	К
k	350	MKM ²
h	40	М
æ	0,1	M ² /C
Z	0,8	
R_{c}	0,1	М
b	0,0002	МПа²/(тыс.м³/сут) ²
	0	
	0	
ρ _{aτ}	0,7	KT/M ³
P ₃₀	10	МПа

Исходные данные для расчета

Таблица 4.8

Пример расчета

Параметр	Значение	Размерность
α	101,0764408	$M\Pi a^2$
β	0,044220467	$M\Pi a^2$
$P_{3}^{2}(t)$	101,2877328	$M\Pi a^2$

Задача 92 – Обработка КВД для скважины, вскрывшей пласт конечных размеров.

Обработка КВД для скважины, вскрывшей пласт конечных размеров, ведется по уравнению притока (формула 4.16) с учетом формул (4.15).

Таблица 4.9

Параметр	Значение	Размерность
Pan	0,1	МПа
Q_0	500	тыс.м ³ /сут
R_{0}	1000	М
t	60000	сек
μ	0,041	мПа*с
T	302	К
k	350	MKM ²
h	40	М
æ	0,1	M^2/C
Z	0,8	
R _c	0,1	М
<u>b</u>	0,0002	МПа ² /(тыс.м ³ /сут) ²
	0	
C ₂	0	
a	0,7	МПа ² /тыс.м ³ /сут
P ₃₀	10	МПа
	2000	М
	0,2	
	300	М

Исходные данные для расчета

Таблица 4.10

Пример обработки

Параметр	Значение	Размерность
φ	41,25793651	
α_1	23,92640395	$\mathbf{M}\mathbf{\Pi}\mathbf{a}^2$
β	6,42222E-06	$\mathbf{M}\mathbf{\Pi}\mathbf{a}^2$
$\ln(P_{uu}^{2}-P(t))$	23,92643463	

4.2. Методы обработки КВД

Как отмечалось ранее, расчетные формулы для определения по КВД параметров пласта получены для пласта конечного и «бесконечного» размеров, в которых находится исследуемая скважина. Формулы, полученные для «бесконечного» пласта, применяются в тех случаях, когда в процессе исследования скважины границы области дренирования не сказываются на поведении этой скважины.

Обработка КВД, снятой в скважине для условия «бесконечного» пласта, зависит от продолжительности ее работы до остановки.

Если время работы скважины T до снятия КВД значительно больше времени, необходимого для восстановления давления, t ($T \ge 20 \cdot t$), то КВД обрабатываются по формуле:

$$\alpha = P_{30}^2 + \beta \lg \frac{2,25\mathfrak{a}}{R_{c.mp}^2} + bQ_0^2, \frac{n!}{r!(n-r)!}$$
(4.17)

$$\beta = \frac{1.15Q_0\mu_{mn}Z_{mn}T_{mn}P_{ar}}{\pi \alpha h T_{ar}}; \ \alpha = kP_{mn}/m\mu.$$
(4.18)

Обозначения, принятые в формулах (4.17) и (4.18), аналогичны обозначениям в формуле (4.1).

Для определения параметров пласта необходимы результаты измерения обработать в координатах $P_{3}^{2}(t)$ от *lg t*. Такая обработка данных исследования по формуле (4.10) позволяет определить α как отрезок, отсекаемый на оси $P_{3}^{2}(t)$, и β как тангенс угла наклона прямой. При размерностях Q_{0} – тыс.м³/с, μ в Па·с, $\boldsymbol{x} - m^{2}$, h - m, P_{se} – Па, T - K величина β будет определяться формулой:

$$\beta = 4,23 Q_0 \mu_{ux} Z_{ux} T_{ux} / kh T_{cx}. \qquad (4.19)$$

По найденным значениям α и β определяют проводимость пласта kh/μ , а при известном коэффициенте b величину \mathfrak{E}/R_{cup}^2 по формуле:

$$\mathfrak{E}/R_{\rm c.up}^2 = 0.445 \exp\left[2.3 \frac{\alpha - P_{30}^2 - hQ_0^2}{\beta}\right].$$
 (4.20)

Если скважина совершенна, то $R_{c,np} = R_{c}$, и тогда

$$\mathbf{a} = 0,445 \times R_{\text{c.np}}^2 \exp\left[2,3\frac{\alpha - P_{30}^2 - bQ_0^2}{\beta}\right].$$
(4.21)

При известных коэффициентах æ, α, β и *b* можно вычислить приведенный радиус скважины:

$$R_{\rm e.np} = \left[\frac{\alpha}{0,445} \exp\left[-2,3\frac{\alpha - P_{30}^2 - bQ_0^2}{\beta}\right]\right]^{0.5}.$$
 (4.22)

В случае, когда продолжительность работы скважины перед закрытием T соизмерима с продолжительностью процесса восстановления давления t, т.е. $T < 20 \cdot t$, то обработку следует вести по формуле:

$$P_{3}^{2}(t) = P_{113}^{2} - \beta \lg \frac{T+t}{t}.$$
(4.23)

Формулу (5.16), полученную для ограниченного пласта, нужно использовать в тех случаях, когда в процессе исследования скважины на ее поведении сказывается условие на границе пласта, например при влиянии работы соседних скважин, расположенных в кусте. В таких случаях результаты измерения обрабатываются в координатах $lg \Big[P_{1,\mu_1}^2 - P_3^2(t) \Big]$ от *t*, в результате определяются α_1 как отрезок, отсекаемый на оси $lg \Big[P_{1,\mu_1}^2 - P_3^2(t) \Big]$, и тангенс угла β_1 . Согласно формуле (4.16), α_1 и β_1 определяются по формулам:

$$\alpha_1 = lg(1, 11 \cdot \beta)$$
 и $\beta_1 = 2,51 \varkappa / R_{\kappa}^2$, (4.24)

где R_{s} — радиус контура питания, на котором давление в процессе снятия КВД остается постоянным. Определив из графика коэффициент α_{1} с помощью формулы (4.24), вычисляют β и далее kh/μ , а также, используя значения β и β_{1} , другие параметры пласта. В частности, параметр $\boldsymbol{z}/R_{s}^{2}=\beta_{1}/2,51$ и газонасыщенный объем залежи, дренируемой исследуемой скважиной:

$$V = mhR_{\rm s}^2 = 77,79khP_{\rm m}/\mu_{\rm t}.$$
(4.25)

При известном *R*_{*} величину *mh* определяют по формуле:

$$\alpha_0 = \beta \lg \frac{2,25\kappa}{R_{c.np}^2} + bQ_0^2.$$
(4.26)

Задача 93 – Обработка КВД для бесконечного пласта, при длительной работе скважины до проведения исследования.

Данный вид эксперимента обрабатывается по формулам (4.17 и 4.18).

Таблица 4.11

Параметр	Значение	Размерность
$\mathbf{P}_{_{3.0}}$	10	МПа
Q_0	400	тыс.м³/сут
\mathbf{R}_{e} and	0,1	М
b	0,000021	$M\Pi a^2/(тыс.m^3/сут)^2$
t	6000	сек
μ	0,041	мПа*с
\mathbf{T}_{mn}	302	К
k	400	MKM ²
h	40	M
æ	0,05	M^2/C
Ζ	0,8	

Исходные данные для расчета

Таблица 4.12

Пример обработки данных исследования

Параметр	Значение	Размерность
β	0,030954327	$M\Pi a^2$
α	103,3925377	$M\Pi a^2$

Задача 94 – Определение проводимости пласта.

По найденным значениям α и β определяют проводимость пласта по формуле (4.21).

Таблица 4.13

Параметр	Значение	Размерность
$\mathbf{P}_{_{3,0}}$	10	МПа
Q_{i}	193	тыс.м ³ /сут
R_{cup}	0,1	Μ
β	0,030954327	$M\Pi a^2$
α	103,3925377	$M\Pi a^2$
b	0,00009	МПа ² /(тыс.м ³ /сут) ²

Исходные данные для расчета

$$\begin{split} &\mathbf{a} = 0,445 \cdot R_{c,\text{sup}}^2 \exp\left[2,3\frac{\alpha - P_{a0}^2 - bQ_0^2}{\beta}\right] = \\ &= 0,445 \cdot 0,1^2 \exp\left[2.3\frac{103.39 - 10^2 - 0.00009 \cdot 193^2}{0.03095}\right] = 0.08775 \ \textit{m}^2 \ \textit{/c}. \end{split}$$

Задача 95 — Определение восстановления забойного давления в случае, когда продолжительность работы скважины перед закрытием соизмерима с продолжительностью процесса восстановления давления.

В случае, если скважина после простоя была запущена в работу на режиме непосредственно перед остановкой для проведения исследования, восстановление забойного давления изучается с помощью формулы (4.23).

Таблица 4.14

Параметр	Значение	Размерность
P _{un}	10	МПа
β	0,309543271	$M\Pi a^2$
t	60000	сек
Т	691200	сек

Исходные данные для расчета

 $P_{_{3}}(t) = \sqrt{P_{_{\rm HT}}^2 - \beta \lg \frac{T+t}{t}} = \sqrt{10^2 - 0.30954 \cdot \lg \frac{691200 + 60000}{60000}} = 9.983 \, M\Pi a.$

Задача 101 – Определение α и β при условии влияния соседних скважин.

Согласно формуле (4.16), α, и β, определяются по формулам (4.24).
Таблица 4.15

Параметр	Значение	Размерность
β	3,095432708	$\mathbf{M}\mathbf{\Pi}\mathbf{a}^2$
æ	0,08	м ² /с
R_{\star}	500	М

Исходные данные для расчета

Таблица 4.16

Результаты определения параметров

Параметр	Значение	Размерность
α_{i}	0,536044346	$M\Pi a^2$
β	8,032E-07	$M\Pi a^2$

Задача 96 – Определение газонасыщенного объема залежи, дренируемой исследуемой скважиной.

Газонасыщенный объем залежи, дренируемой исследуемой скважиной, определяется из зависимости (формула 4.25).

Таблица 4.17

Исходные данные для расчета

Параметр	Значение	Размерность
β	0,00008032	$\mathbf{M}\mathbf{\Pi}\mathbf{a}^2$
μ	0,041	мПа*с
k	350	MKM ²
h	40	М
\mathbf{P}_{aa}	10	МПа

 $V = mhR^2 = 77,79 \text{k}hP_{\text{m}}/\mu_1 = 3,307 \text{ Km}^3$.

4.3. Влияние различных факторов на форму КВД, снятых в газовых скважинах

По результатам исследования и обработки КВД наряду с другими параметрами определяют приведенный радиус скважины и так называемый «скин-эффект» – S_R, определяемый по формуле:

$$S_{R} = 2\left(\frac{k_{III}}{k_{IIP}} - 1\right) \ln \frac{R_{IIP}}{R_{c}} + C \frac{k_{III}}{k_{IIP}},$$
(4.27)

где $\mathbf{k}_{_{uv}}$, $\mathbf{k}_{_{up}}$ – проницаемости пласта и призабойной зоны; $R_{_{up}}$, $R_{_c}$ – радиусы загрязнения призабойной зоны и скважины; C – коэффициент несовершенства по степени вскрытия пласта.

На практике формы КВД в газовых скважинах искажаются под влиянием различных факторов. К ним относятся:

- приток газа после закрытия скважины;
- допущения, принятые для решения исходного дифференциального уравнения;
- неоднородность пористой среды по толщине и площади, неизотермичность процесса восстановления давления;
- технологические процессы до остановки скважины;

– изменение параметров газа и пористой среды от давления и температуры.

Естественно, что в основном на форму КВД одновременно оказывают влияние почти все факторы. Однако имеется ряд факторов, влияния которых можно избежать, если заранее составить обоснованную программу исследовательских работ.

Если пласт состоит из двух частей с разными коллекторскими свойствами и имеет гидродинамическую связь, то на КВД выделяются два прямолинейных участка. При этом если проницаемость второй части k_2 больше проницаемости первой части k_1 , то уклон второго участка меньше уклона первого, а если $k_2 < k_1$, то уклон второго участка больше уклона первого. Отклонения уклонов имеют следующую зависимость:

$$\beta_2 / \beta_1 = 1 + \frac{k_1 / k_2 - 1}{k_1 / k_2 + 1}.$$
(4.28)

В предельном случае, когда $k_2 = 0$, из формулы следует, что $\beta_2/\beta_1 = 2$.

Задача 97 – Определение скин-эффекта по данным исследований. Для решения данной задачи используется формула (4.27).

Таблица 4.18

Параметр	Значение	Размерность
\mathbf{k}_{m}	200	MKM ²
k _u ,	400	MKM ²
	-3	М
R_{c}	0,1	М
C	0.8	

Исходные данные для расчета

$$S_{R} = 2\left(\frac{\mathbf{k}_{m}}{\mathbf{k}_{m}} - 1\right)\ln\frac{R_{m}}{R_{c}} + C\frac{\mathbf{k}_{m}}{\mathbf{k}_{m}} = 2\left(\frac{400}{200} - 1\right)\ln\frac{3}{0,1} + 0.8\frac{400}{200} = 8,402.$$

Задача 98 — Определение отклонения уклонов КВД при условии наличия двух частей пласта с различными коллекторскими свойствами.

Используя формулу (4.28), можно определить отклонения уклонов КВД.

Таблица 4.19

Исходные	данные	для	расчета
----------	--------	-----	---------

Параметр	Значение	Размерность
k,	300	MKM ²
k,	100	\mathbf{MKM}^2

 $\beta_2 / \beta_1 = 1 + \frac{k_1 / k_2 - 1}{k_1 / k_2 + 1} = 1 + \frac{300/100 - 1}{300/100 + 1} = 1, 5,$

4.4. Учет влияния различных факторов на форму кривых восстановления давления

4.4.1. Приток газа к скважине после ее закрытия

Обработка кривых восстановления давления требует знания дебита и забойного давления перед закрытием в момент времени t=0. Закрытие скважины на устье происходит либо мгновенно современными задвижками, либо медленным сужением проходного сечения для газа в скважинах, оборудованных задвижками старой конструкции. В обоих случаях, когда скважина на устье уже закрыта, на забое продолжается поступление газа в ее ствол. Учет влияния притока газа после закрытия скважины различными методами, среди которых сравнительно простым является дифференциальный метод.

I. **Учет количества газа, поступающего в скважину**, **в которой нет фонтанных труб** (или затрубного пространства, т.е. когда это пространство запакеровано), после ее закрытия.

В процессе восстановления давление и температура газа по стволу скважины меняются. При определении объема поступившего газа допускается, что в стволе скважины к каждому моменту времени коэффициент сверхсжимаемости Z может быть заменен его средним значением Z_{m} , соответствующим $P_{co}(t)$ и $T_{co}(t)$.

Если КВД снята на забое, а не на устье, то необходимость фиксирования изменения температуры газа в процессе восстановления давления отпадает.

Объем газа, поступившего в ствол скважины после ее закрытия, определяется приближенно по формуле:

$$v(t) = \frac{\Omega_0 T_{\rm cr}}{P_{\rm ar}} \left[\frac{\overline{P}(t)}{Z_{\rm cp}(t) T_{\rm cp}(t)} - \frac{\overline{P}(t=0)}{Z_{\rm cp}(t=0) T_{\rm cp}(t=0)} \right],$$
(4.29)

если Ω_0 – объем ствола скважины. С точностью до 1,5% среднее текущее давление в стволе может быть определено по формуле:

$$\overline{P}(t) = \frac{P_{3}(t) + P_{y}(t)}{2}, \qquad (4.30)$$

где $P_{s}(t)$, $P_{y}(t)$ – соответственно забойное и устьевое давления в момент времени *t*. Средняя температура во времени определяется по формуле:

$$T_{\rm cp}(t) = \frac{T_{\rm s}(t) + T_{\rm y}(t)}{2}, \qquad (4.31)$$

где $T_{s}(t)$, $T_{y}(t)$ – соответственно температуры на забое и на глубине нейтрального слоя в момент времени *t*.

Если принять $Z_{ep}(t)T_{ep}(t)Z_{ep}(t=0)T_{ep}(t=0)$, то объем газа, поступающего в ствол скважины, будет:

$$v(t) = \frac{\Omega_c T_{\rm cr}}{P_{\rm ar} Z_{\rm cp} T_{\rm cp}} \Big[\overline{P}(t) - \overline{P}(t) = 0 \Big], \qquad (4.32)$$

где $Z_{cp}(t=0)$, $T_{cp}(t=0)$ – соответственно Z_{cp} и T_{cp} перед закрытием скважины.

Дебит скважины Q(t) после ее закрытия в первый момент времени t приближенно может быть определен по формуле:

$$Q(t) = \frac{\Omega_c T_{cT}}{P_{aT} Z_{cp} T_{cp}} \left[\frac{\overline{P}(t_2) - \overline{P}(t_1)}{t_2 - t_1} \right],$$
(4.33)

где $\overline{P}(t_1)$, $\overline{P}(t_2)$ – средние по стволу скважины давления, определяемые по формуле (5.30), в момент времени t_1 и t_2 . При расчетах Q(t) чем меньше будут интервалы времени $t_{r_1}-t_r$, тем точнее будет определяться дебит скважины во времени после закрытия.

II. Учет количества газа, поступающего в скважину при наличии в ней фонтанных труб. Расчет количества газа, поступающего в скважину с фонтанными трубами, идентичен методике определения его без фонтанных труб. Разница между этими вариантами состоит в необходимости учета объема фонтанных труб, спущенных в скважину.

Если в скважину спущены фонтанные трубы и движение газа происходит по ним, то вследствие разности давлений в трубном и затрубном пространствах объем газа v(t) будет определяться формулой:

$$v(t) = \frac{\Omega_{3}T_{cr}}{P_{ar}} \left[\frac{\overline{P}(t)}{Z_{cp}(t)T_{cp}(t)} - \frac{\overline{P}(t=0)}{Z_{cp}(t=0)T_{cp}(t=0)} \right]_{3} + \frac{\Omega_{r}T_{cr}}{P_{ar}} \left[\frac{\overline{P}(t)}{Z_{cp}(t)T_{cp}(t)} - \frac{\overline{P}(t=0)}{Z_{cp}(t=0)T_{cp}(t=0)} \right]_{r},$$
(4.34)

где Ω_s , Ω_r – объемы затрубного и трубного пространств. Дебит скважины в рассматриваемом случае:

$$Q(t) = \frac{\Omega_{3}T_{cT}}{P_{aT}\left[Z_{cp}T_{cp}\right]_{3}} \left[\frac{\overline{P}(t_{2}) - \overline{P}(t_{1})}{t_{2} - t_{1}}\right] + \frac{\Omega_{T}T_{cT}}{P_{aT}\left[Z_{cp}T_{cp}\right]_{T}} \left[\frac{\overline{P}(t_{2}) - \overline{P}(t_{1})}{t_{2} - t_{1}}\right].$$
(4.35)

Значения v(t) и Q(t), полученные выше при наличии и отсутствии в скважине фонтанных труб, используются при обработке КВД с учетом притока газа к скважине после ее закрытия.

Согласно дифференциальному методу учета притока газа после закрытия скважины, КВД обрабатывается по формуле:

$$\frac{P_{3}^{2}(t) - P_{30}^{2}}{1 - Q(t)/Q_{0}} = \alpha_{0} + \beta \cdot \lg \varphi(t), \qquad (4.36)$$

где

$$\alpha_{0} = \beta \lg \frac{2,25k}{R_{c.up}^{2}} + bQ_{0}^{2}; \ \varphi(t) = \frac{t - V(t)/Q_{0}}{1 - Q(t)/Q_{0}}.$$
(4.37)

Значения *V*(*t*) и Q(*t*) определяются по формулам (4.32) и (4.33) или (4.34) и (4.46).

Задача 99 – Определение объема газа, поступающего в скважину без фонтанных труб после ее закрытия.

Объем газа, поступившего в ствол скважины после ее закрытия, определяется приближенно по формуле (4.29), с учетом формул (4.30, 4.31).

Таблица 4.20

Параметр	Значение	Размерность
Ω	38	M ³
T _a	303	К
T	291	К
Z _{ep}	0,8	
P.	10,5	МПа
	9,9	МΠа
P(t)=0	9,7	МПа

Исходные данные для расчета

Таблица 4.21

Пример определения объема газа, поступившего в ствол скважины после ее закрытия

Параметр	Значение	Размерность
T _{cn}	297	К
P _{cn}	10,2	МПа
V(t)	234,3013468	\mathbf{M}^3

Задача 100 – Определение дебита скважины без фонтанных труб после ее закрытия в момент времени *t*.

Дебит скважины Q(t) после ее закрытия в первый момент времени t приближенно может быть определен по формуле (4.33).

Таблица 4.22

Параметр	Значение	Размерность
Ω_{r}	38	\mathbf{M}^{3}
T	297	К
Z _{cp}	0,8	
P _{t1}	10	МПа
P ₁₂	10,2	МПа
t_2	0,3	сут
t_{i}	0,03	СУТ

Исходные данные для расчета

 $Q(t) = \frac{\Omega_{c}T_{cr}}{P_{ar}Z_{cp}T_{cp}} \left[\frac{\overline{P}(t_{2}) - \overline{P}(t_{1})}{t_{2} - t_{1}}\right] = 347,11 \text{ m}^{3}/\text{сут}.$

Задача 101 – Определение объема газа, поступающего в скважину, оборудованную фонтанными трубами, после ее закрытия.

Если в скважину спущены фонтанные трубы и движение газа происходит по ним, то объем газа определяется по формуле (4.34).

Таблица 4.23

Параметр	Значение	Размерность
$\Omega_{_3}$	20	\mathbf{M}^3
Ω	20	\mathbf{M}^3
	303	К
T	291	К
	0,8	
P	10,5	МПа
P	9,9	МПа
P(t)=0	9,7	MПа

Исходные данные для расчета

Таблица 4.24

Пример определения заданных параметров

Параметр	Значение	Размерность
T _{ep}	297	К
\mathbf{P}_{cn}	10,2	МПа
V(t)	246,6329966	M ³

Задача 102 – Определение дебита скважины, оборудованной фонтанными трубами после ее закрытия в момент времени *t*.

Если в скважину спущены фонтанные трубы и движение газа происходит по ним, то дебит скважины определяется по формуле (4.35).

Параметр	Значение	Размерность
$\Omega_{_3}$	20	\mathbf{M}^{3}
Ω_1	21	
T _{cp}	297	К
	0,8	
\mathbf{P}_{rl}	10	МПа
P ₁₂	10,2	МПа
t_2	0,3	сут
t_{i}	0,03	сут

Исходные данные для расчета

$$Q(t) = \frac{\Omega_{3}T_{cr}}{P_{ar} \left[Z_{cp} T_{cp} \right]_{3}} \left[\frac{\overline{P}(t_{2}) - \overline{P}(t_{1})}{t_{2} - t_{1}} \right] + \frac{\Omega_{r} T_{cr}}{P_{ar} \left[Z_{cp} T_{cp} \right]_{r}} \left[\frac{\overline{P}(t_{2}) - \overline{P}(t_{1})}{t_{2} - t_{1}} \right] = 374,516 \text{ m}^{3}/\text{cyr}.$$

Задача 103 – Обработка КВД с помощью дифференциального метода с учетом притока газа после закрытия скважины.

Согласно дифференциальному методу учета притока газа после закрытия скважины, КВД обрабатывается по формуле (4.36), с учетом (4.37).

Таблица 4.26

Параметр	Значение	Размерность
Q_{0}	400	тыс.м ³ /сут
R_{c}	0,1	М
b	0,000021	МПа ² /(тыс.м ³ /сут) ²
t	600	сек
V(t)	246,6329966	M ³
Q(t)	374,5167727	тыс.м³/сут
k	400	MKM ²
h	40	М
k,	200	MKM ²
Z	0,8	
β	0,030954327	$M\Pi a^2$

Исходные данные для расчета

Таблица 4.27

Пример определения искомых параметров

Параметр	Значение	Размерность
α	3,504037062	$M\Pi a^2$
$\varphi(t)$	9408,281135	
$\frac{P_{_3}^2(t) - P_{_30}^2}{1 - Q(t)/Q_0}$	3,627034399	$\mathbf{M}\Pi\mathbf{a}^2$

Таблица 4.25

4.4.2. Учет неизотермичности процесса восстановления давления

Учет изменения температуры газа в процессе восстановления давления производится в том случае, если забойное давление не определяется замером на забое с помощью глубинных манометров, а рассчитывается по замеренным устьевым давлениям. Обычно при расчете забойного давления по устьевым в качестве $T_{\rm cp}$ в формулу подставляется среднелогарифмическое значение по фактическим $T_{\rm y}$ и $T_{\rm s}$ в каждый момент времени. Если температура газа в пласте высокая, то устьевая температура в процессе эксплуатации также будет высокой. При закрытии таких скважин в процессе восстановления давления температура газа в стволе постоянно снижается, приобретая в конечном итоге температуру земной коры. При этом интенсивности восстановления давления на устье скважины зависит от интенсивности повышения давления, в свою очередь зависящей от проницаемости пласта и от интенсивности остывания газа в стволе скважины после ее закрытия.

Если пласт высокопроницаемый и температура газа в пласте высокая (более 50° C), то по истечении нескольких часов происходит уменьшение давления на устье скважины. Поэтому конечный участок КВД искривляется вниз к оси *lg t*. Если пласт низкопроницаемый, то интенсивность снижения температуры и повышения давления выравнивается и поэтому конечный участок КВД принимает стандартный вид. Искажение конечного участка КВД под влиянием снижения температуры газа может быть учтено при наличии данных об изменении температуры газа во времени после остановки скважины. Изменение температуры во времени после остановки скважины может быть определено двумя способами: путем непосредственного измерения на уровне нейтрального слоя или аналитическим путем по формуле:

$$T_{\rm inc}(t) = T_{\rm inc} + [T_{\rm in}(t=0) - T_{\rm inc}] exp[-5,78at/R_{\rm inc}^2], \qquad (4.38)$$

где $T_{\rm Hc}$ – температура нейтрального слоя; $T_{\rm r}(t=0)$ – температура газа на глубине нейтрального слоя перед остановкой скважины; a – температуропроводность пласта на уровне нейтрального слоя, м²/с; $R_{\rm s}$ – радиус теплового влияния скважины, м. Значение а для различных пород может быть определено при известных $T_{\rm Hc}(t)$, если использовать глубинный термометр. При этом необходимо, чтобы $T_{\rm Hc}(t)$ было измерено для достаточно больших t, что обеспечит приемлемую точность определения $a/R_{\rm s}^2$. Ориентировочно величина t оценивается неравенством $t \ge 0, 2a/R_{\rm s}^2$. Большой практический интерес представляет знание продолжительности периода стабилизации температуры t_{c_1} , после которой температура газа в стволе скважины остается постоянной и не влияет на форму КВД. Величина t_{c_1} определяется по формуле:

$$t_{c_{1}} = -0.173 \left[\ln \frac{\Delta T}{T_{r}(t=0) - T_{m}} \right] \frac{R_{\kappa}^{2}}{a}.$$
(4.39)

Таким образом, при определении забойного давления во времени по устьевым замерам давления в скважинах с высокой температурой газа на устье и быстрым восстановлением давления необходимо учесть остывание газа в стволе после остановки скважины.

Задача 104 – Определение изменения температуры после остановки скважины.

Изменение температуры во времени после остановки скважины может быть определено по формуле (4.38).

Таблица 4.28

Параметр	Значение	Размерность
$T_{ m nc}$	290	К
T_r	_300	К
α	0,00001	м²/с
R_{ν}	3	М
t	60000	с

Исходные данные для расчета

 $T_{\rm HC}(t) = T_{\rm HC} + [T_{\rm F}(t=0) - T_{\rm HC}]exp[-5,78at/R_{\rm K}^2] = 296,8$ K.

Задача 105. Определение продолжительности стабилизации температуры. Величина *t*_{ст} определяется по формуле (4.39)

$$t_{\rm ct} = -0.173 \left[\ln \frac{\Delta T}{T_{\rm r}(t=0) - T_{\rm rrc}} \right] \frac{R_{\kappa}^2}{a} = 55534,288 \,{\rm cek}.$$

Таблица 4.29

Исходные данные для расчета

Параметр	Значение	Размерность
ΔT	7	К
T_{ve}	290	К
	300	К
α	0,00001	м ² /с
R	3	М

4.4.3. Влияние неоднородности пластов по площади на форму КВД

Одним из основных факторов, влияющих на форму КВД, является неоднородность по площади. Под площадной неоднородностью понимают зоны с ухудшенной проницаемостью, тектонические и литологические изменения, выпадение конденсата в пласте, близость нефтяной оторочки и газоводяного контакта и др.

В пластах с резко выраженной неоднородностью (экранами) в зависимости от конфигурации и числа экранов и их размеров может быть несколько прямолинейных участков. Если исследуемый пласт имеет один экран бесконечной протяженности, то на КВД отмечаются два прямолинейных участка. Такой же характер имеет КВД при асимметричном положении скважины относительно экранов, т.е. когда расстояние от скважины до ближайшего экрана на порядок меныпе, чем до других экранов. Для определения расстояния до экрана используется точка пересечения прямолинейных участков, т.е.

$$l = \sqrt{0,5625k_1t_1},\tag{4.40}$$

где t_1 – время, соответствующее точке пересечения прямолинейных участков, с; k_1 – пьезопроводность первого участка, м²/с.

Если на КВД нет четко выраженного второго участка, но заметна тенденция к искривлению первого участка, то расстояние до предполагаемого экрана определяется формулой

$$l \approx \sqrt{3,1415k_1t_1^{/}},$$
 (4.41)

(4.42)

где $t_1^{/}$ – время, соответствующее началу искривления первого участка, с.

Если учесть продолжительность работы скважины перед закрытием, то расстояние до экрана определяется по формуле:

Рис. 52. Зависимость $P_{\alpha}^{2}(t)$ от lg t, полученная в скважине, дренирующей клиновидный пласт

Если отношение угловых коэффициентов выделенных прямых на КВД p_i и P_3 больше двух, т.е. $P_2/P_i>2$. то полученный результат следует рассмотреть как КВД, снятой в пласте с двумя и более прямолинейными границами. Например, с двумя экранами, имеющими общую точку «0», как показано на рисунке 51. Угол раствора в точке пересечения экранов равен:

$$\alpha = 360 \cdot \beta_1 / \beta_2. \tag{4.43}$$

Если при аппроксимации конечного участка недовосстановленных КВД не удается выделить четкий прямолинейный участок, то, согласно [29], формула (4.37) позволит получить угол раствора.

Задача 106 – Определение расстояния до экрана бесконечной протяженности.

Для определения расстояния до экрана используется зависимость (4.40).

Таблица 4.30

$\frac{k_1}{t}$ 0,1 M^2/C	Параметр	Значение	Размерность
t 600000 c	k_1	0,1	м ² /с
	t_{i}	600000	с

Исходные данные для расчета

 $l = \sqrt{0.5625k_1t_1} = 183.71$ m.

Задача 107 – Определение расстояния до экрана в случае искривления первого участка.

Если на КВД нет четко выраженного второго участка, но заметна тенденция к искривлению первого участка, то расстояние до предполагаемого экрана определяется формулой (4.41).

Таблица 4.31

Исходные данные для расчета

Параметр	Значение	Размерность
k_1	0,1	м²/с
t_i	6000	с

 $l \approx \sqrt{3,1415k_1t_1^{/}}$ =43,415 м.

Задача 108 – Определение расстояния до экрана с учетом продолжительности работы скважины.

Если учесть продолжительность работы скважины перед закрытием, то расстояние до экрана определяется по формуле (4.42).

Таблица 4.32

Параметр	Значение	Размерность
k_{i}	0,1	M^2/C
t_{i}	600000	С
Т	500000	С

 $l = \sqrt{0,5625k_1t_1T/(T+t_1)} = 173,59$ м.

Задача 109 – Определение отношения угловых коэффициентов выделенных прямых на КВД.

Угол раствора в точке пересечения экранов определяется по формуле (4.43).

Таблица 4.33

Исходные данные для расчета

Параметр	Значение	Размерность
β	5	град
β_2	45	град

 $\alpha = 360 \cdot \beta_1 / \beta_2 = 40$ град.

4.5. Определение параметра анизотропии пласта по КВД

Неоднородность пласта в вертикальном и горизонтальном направлениях характеризуется параметром анизотропии, т.е. отношением вертикальной проницаемости к горизонтальной æ=[k,/k,]^{0.5}. Параметр анизотропии пласта имеет определяющее значение при прогнозировании технологического режима эксплуатации скважин, вскрывших пласты; с подошвенной водой или нефтяной оторочкой, при оценке возможности прорыва газа в скважину через перфорированный нефтенасыщенный интервал, при изучении взаимодействия пропластков многопластовых залежей и др. Оценить величину параметра анизотропии пласта позволяет КВД, снятая в скважинах, вскрывших анизотропный пласт. Для этого КВД необходимо обработать по формуле:

$$P_{a}^{2}(t) = a - \sigma / \sqrt{t} \tag{4.44}$$

где

$$\sigma = Q_0 m \cdot Z \cdot P_{ar} T_{nr} / \pi k_r T_{cr} \sqrt{3}, 3 \mathfrak{B}_{B}, \qquad (4.45)$$

 k_{e} и k_{u} – горизонтальная и вертикальная проницаемости пласта; \boldsymbol{x}_{u} – пьезопроводность в вертикальном направлении; $k_{u} = k_{u}P_{uu}/m\mu$; μ , Z – коэффициенты вязкости и сверхсжимаемости газа в пластовых условиях; Q_{0} – дебит скважины перед закрытием; T_{uu} , T_{cu} – пластовая и стандартная температуры; m – пористость пласта.

В формуле (4.39) коэффициент горизонтальной проницаемости определяется согласно методам, изложенным в пунктах 4.2÷4.4.

Для определения вертикальной проницаемости k_{*} КВД обрабатываются в координатах $P_a^2(t)$ от $1/\sqrt{t}$. На полученной графической зависимости выделяется прямолинейный участок, и по углу наклона этой прямой определяется параметр σ . По известному σ рассчитывается вертикальная пьезопроводность по формуле:

$$\boldsymbol{\mathfrak{w}}_{_{\boldsymbol{\theta}}} = 0.33 \left[Q_{_{0}} \boldsymbol{\mu} Z P_{_{\mathrm{aT}}} T_{_{\mathrm{BT}}} / \pi \mathbf{k}_{_{\mathrm{T}}} T_{_{\mathrm{CT}}} \boldsymbol{\sigma} \right]^{2}. \tag{4.46}$$

При известных P_{m} и пористости *m* вертикальная проницаемость определяется по формуле:

$$\mathbf{k}_{\rm B} = \mathbf{k}_{\rm r} \boldsymbol{\mu} \boldsymbol{m} / \boldsymbol{P}_{\rm HM}. \tag{4.47}$$

Зная k, и k, вычисляют параметр анизотропии:

$$\psi = \mathbf{k}_{\mu} / \mathbf{k}_{\nu}, \qquad (4.48)$$

$$\mathbf{k}_{\rm B} = \left[h\beta \sqrt{m\mu} / 2,09\sigma P^{0.5} \right]^2 = 0,229m\mu h^2 \beta^2 / P_{\rm BH} \sigma^2.$$
(4.49)

По известной работающей (вскрытой) толщине h_{m} , величинам σ и β , а также используя последнюю точку прямой, построенной в координатах $P_s^2(t)$ от $1/\sqrt{t}$, можно вычислить толщину пласта *h*:

$$h = h_{\rm BC} / \left[1 - \sqrt{1,5t\beta} / 2,09\sigma \right].$$
 (4.50)

По известному k_{h}/μ , найденному через β , зная h из формулы (5.50), если другими способами h не удается определить, рассчитывают k_{r} , а следовательно, и по известным k_{s} и k_{r} – параметр анизотропии. При правильно проведенной обработке величина h_{sc}/h не должна превышать 0,4. В противном случае результаты могут быть искажены.

Задача 110 – Обработка КВД для определения параметра анизотропии.

Для этого КВД необходимо обработать по формуле (4.44). Параметр анизотропии определяется по формуле (4.45).

Таблица 4.34

Параметр	Значение	Размерность
Q_0	400	тыс.м /сут
t	60000	сек
μ	0,041	мПа*с
T _{un}	302	К
k,	500	МКМ ²
æ	0,03	м ² /с
Z	0,8	
α	103,3925377	$M\Pi a^2$

Исходные данные для расчета

Таблица 4.35

Пример определения искомых параметров

Параметр	Значение	Размерность
σ	2,73751122	
P _a	10,16766256	МПа

Задача 111 – Определение вертикальной пьезопроводности пласта.

По известному σ рассчитывается вертикальная пьезопроводность по формуле (4.46).

Таблица 4.36

Параметр	Значение	Размерность
$\mathbf{P}_{_{\mathrm{arms}}}$	0,1	МПа
Q_{0}	400	тыс.м ³ /сут
σ	2,73751122	
μ	0,041	мПа*с
T _{un}	302	К
$k_{ m r}$	500	МКМ ²
Ζ	0,8	

Исходные данные для расчета

 $\mathbf{a}_{_{B}} = 0.33 \left[Q_{_{0}} \mu Z P_{_{aT}} T_{_{1DT}} / \pi k_{_{T}} T_{_{CT}} \sigma \right]^{2} = 0.03267 \text{ m}^{2}/\text{c}.$

Задача 112 – Определение вертикальной проницаемости по известной величине вертикальной пьезопроводности.

При известных P_{mn} и пористости *m* вертикальная проницаемость определяется по формуле (4.47).

Таблица 4.37

Параметр	Значение	Размерность
P	10	МПа
μ	0,012	мПа*с
$\mathbf{a}_{_{u}}$	0,03267	м²/с
m	0,2	

Исходные данные для расчета

 $k_{B} = k_{\Gamma} \mu m / P_{\Pi A} = 0,0078 \text{мкм}^{2}.$

Задача 113 – Определение параметра анизотропии по известным величинам вертикальной и горизонтальной проницаемостей.

Зная k, и k, вычисляют параметр анизотропии по формуле (4.48).

Таблица 4.38

Исходные данные для расчета

Параметр	Значение	Размерность
k,	0,0078408	MKM ²
k,	0,030954327	MKM ²

 $v = k_{\rm m}/k_{\rm m} = 0,2533.$

Задача 114 – Определение вертикальной проницаемости пи известной величинам β и σ.

Последовательность обработки КВД для определения параметра анизотропии следующая.

По известным $P_s(t)$ и *t* рассчитывают $P_s^2(t)$, *lg t* и $1/\sqrt{t}$. Далее строят зависимость $P_s^2(t)$ от *lg t*.

По углу наклона конечного участка этой зависимости определяют величину β . По известному β , используя формулу (4.45), определяют коэффициент горизонтальной проницаемости k_s . Затем строят зависимость $P_*^2(t)$ от $1/\sqrt{t}$. Выделяют на этой зависимости прямолинейный участок так, чтобы время, соответствующее его окончанию, было меньше, чем время, соответствующее началу прямолинейного участка в координатах $P_*^2(t)$ от lg t. По названному участку определяют уклон σ . По найденному σ , используя величину β , определяют k_s по формуле (4.49).

Таблица 4.39

Параметр	Значение	Размерность
β	13	$\mathbf{M}\mathbf{\Pi}\mathbf{a}^2$
Ζ	0,8	М
σ	440	
$h_{\scriptscriptstyle m BC}$	6	М
m	0,08	
t	3000	с
μ	0,012	мПа*с
$P_{\mu\nu}$	23	Мпа

Исходные данные для расчета

Таблица 4.40

Пример определения вертикальной проницаемости

Параметр	Значение	Размерность
h	35,36404134	М
k,	0,004591311	MKM ²

Задача 115 – Обработка КВД, когда время работы скважины T до снятия КВД значительно больше времени, необходимого для восстановления давления, t ($T \ge 20 t$).

Таблица 4.41

Параметр	Значение	Размерность
Q_0	754	тыс.м³/сут
P_{nn}	23,248	МПа
a	0,16	МПа ² /тыс.м ³ /сут
b	0,000308	МПа ² /(тыс.м ³ /сут) ²
T_{m}	303	К
Z_{uu}	0,82	

Исходные данные

I GOLDINGGU I.I.

<i>t</i> , c	lgt	$P_{i}(t), M\Pi a$	$P^2(t), M\Pi a^2$
0		16,771	281,266441
30	1,477121255	19,613	384,669769
60	1,77815125	20,81	433,0561
120	2,079181246	21,182	448,677124
180	2,255272505	21,476	461,218576
300	2,477121255	21,771	473,976441
600	2,77815125	21,869	478,253161
900	2,954242509	21,898	479,522404
7200	3,857332496	22,006	484,264036
25200	4,401400541	22,173	491,641929
36900	4,567026366	22,261	495,552121
75600	4,878521796	22,281	496,442961
162000	5,209515015	22,32	498,1824
348400	5,542078146	22,359	499,924881
601200	5,779018972	22,438	503,463844
1112400	6,04626098	22,447	503,867809
1285200	6,108970717	22,487	505,665169

Обработка данных эксперимента

Рис. 53. Пример построения кривой восстановления давления

Таблица 4.43

Результаты обработки данных исследования

Параметр	Параметр Значение	
α	461,36	${ m M}\Pi{ m a}^2$
β	7,1446	$\mathrm{M}\Pi\mathrm{a}^2$
<i>kh</i> /μ	38,98164733	мкм ² *м/мПа*с

Задача 116 — Обработка КВД, когда время работы скважины T до снятия КВД соизмеримо со временем необходимого для восстановления давления, t ($T \leq 20 t$).

Таблица 4.44

Параметр	Значение	Размерность
Q_0	103	тыс.м³/сут
$ ho_{ m orm}$	0,62	
L	1450	М
T_{aa}	281	К
Z_{nn}	0,7	
Т	64800	С

Исходные данные

Таблица 4.45

Обработка данных эксперимента

<i>t</i> , c	(T+t)/t	lg(T+t)/t	$P_{a}(t)$, MIIa	$P_{a}^{2}(t), M\Pi a^{2}$
0	—	—	7,384	54,523456
60	1081	3,033825694	7,845	61,544025
120	541	2,733197265	8,061	64,979721
180	361	2,557507202	8,228	67,699984
300	217	2,336459734	8,6	73,96
420	155,3	2,191171456	8,944	79,995136
600	109	2,037426498	9,395	88,266025
720	91	1,959041392	9,571	91,604041
900	73	1,86332286	9,954	99,082116
1020	64	1,806179974	10,111	102,232321
1200	55	1,740362689	10,336	106,832896
1500	44	1,643452676	10,817	117,007489
1800	37	1,568201724	11,209	125,641681
2100	32	1,505149978	11,474	131,652676
2400	28	1,447158031	11,699	136,866601
3000	23	1,361727836	12,062	145,491844
3600	19	1,278753601	12,572	158,055184
4500	15,4	1,187520721	12,68	160,7824
5400	13	1,113943352	12,896	166,306816
6300	11,3	1,053078443	13,023	169,598529
7200	10	1	13,053	170,380809
8400	8,71	0,940018155	13,239	175,271121
9000	7,75	0,889301703	13,376	178,917376
10800	7	0,84509804	13,445	180,768025
12600	6,14	0,788168371	13,562	183,927844
14400	5,5	0,740362689	13,621	185,531641
16200	5	0,698970004	13,71	187,9641
18000	4,6	0,662757832	13,817	190,909489
27000	3,4	0,531478917	13,916	193,655056

t, c	(T+t)/t	lg(T+t)/t	$P_{i}(t), M\Pi a$	$P^{2}(t), M\Pi a^{2}$
30600	3,12	0,494154594	14,014	196,392196
36000	2,8	0,447158031	14,043	197,205849
62400	2,04	0,309630167	14,121	199,402641
196200	1,33	0,123851641	14,2	201,64
369000	1,17	0,068185862	14,239	202,749121
646200	1,1	0,041392685	14,259	203,319081

Рис. 54. Пример построения кривой восстановления давления

Таблица 4.46

Результаты обработки данных исследования

Параметр	Значение Размерност	
P _{ua}	14,2744527	Мпа
β	14,729	$\mathbf{M}\mathbf{\Pi}\mathbf{a}^2$
k <i>h</i> /μ	2,044930738	мкм ² *м/мПа*с

Задача 117 – Обработка КВД скважины, вскрывшей пласт конечных размеров.

Таблица 4.47

Параметр	Значение	Размерность
Q_{α}	1030	тыс.м ³ /сут
P_{nn}	23,72	МПа
T_{u_1}	303	К
$Z_{\mu\nu}$	0,82	
R_{ν}	500	М

Исходные данные

1 0000000000000000000000000000000000000	1	аблица	4.48
---	---	--------	------

<i>t</i> , c	$P_{3}(t)$, МПа	$P_{3}^{2}(t)$, M Π a	$P_{_{\rm III}}^2 - P_{_3}^2(t)$, M Πa^2	$\lg \left[P_{\scriptscriptstyle \Pi \Pi}^2 - P_{\scriptscriptstyle 3}^2(t) ight]$
0	17,366	301,577956	261,060444	2,416741072
10	17,966	322,777156	239,861244	2,379960082
30	18,809	353,778481	208,859919	2,319855105
120	20,571	423,166041	139,472359	2,144488147
180	21,28	452,8384	109,8	2,04060234
600	21,888	479,084544	83,553856	1,921966497
7200	22,339	499,030921	63,607479	1,803508183
21600	22,457	504,316849	58,321551	1,765829065
79200	22,634	512,297956	50,340444	1,701917042
115200	22,692	514,926864	47,711536	1,678623398
208800	22,781	518,973961	43,664439	1,640127885
295200	22,82	520,7524	41,886	1,622068888
381600	22,849	522,076801	40,561599	1,608115067
468000	22,869	522,991161	39,647239	1,598212949
580000	22,898	524,318404	38,319996	1,583425455
680000	22,908	524,776464	37,861936	1,578202817
813600	22,978	527,988484	34,649916	1,539702186
986400	22,998	528,908004	33,730396	1,52802144

Обработка данных эксперимента

Рис. 55. Пример построения кривой восстановления давления

Таблица 4.49

Результаты обработки данных исследования

Параметр	Значение	Размерность
β	0,0000001	
α,	1,6723	
β	42,36205514	
<i>kh</i> /μ	8,981046913	мкм ² *м/мПа*с
mh	15,2560248	М
v	11975979,47	\mathbf{M}^{3}

Задача 118 – Обработка КВД в неоднородных по площади пластах и определение расстояния до экрана.

Таблица 4.50

Параметр	Значение	Размерность
Q_{0}	1040	тыс.м³/сут
\mathbf{P}_{uu}	21,41	МПа
h	10	М
m	0,07	
Z_{m}	1	
μ	0,0201	мПа*с
T_{uu}	303	К

Исходные данные

Таблица 4.51

Обработка данных эксперимента

<i>t</i> , c	lg t	$P_{a}(t), M\Pi a$	$P_{2}^{2}(t), M\Pi a^{2}$
0	—	11,768	138,485824
60	1,77815125	12,248	150,013504
120	2,079181246	12,768	163,021824
180	2,255272505	13,072	170,877184
300	2,477121255	13,386	179,184996
600	2,77815125	13,808	190,660864
900	2,954242509	14,092	198,584464
1200	3,079181246	14,219	202,179961
1500	3,176091259	14,337	205,549569
2100	3,322219295	14,514	210,656196
3000	3,477121255	14,7	216,09
3600	3,556302501	14,788	218,684944
4800	3,681241237	14,945	223,353025
6000	3,77815125	15,043	226,291849
7500	3,875061263	15,151	229,552801
259200	5,413634997	17,544	307,791936
432000	5,635483747	17,995	323,820025
604800	5,781611782	18,211	331,640521
864000	5,936513742	18,505	342,435025
1137600	6,055989583	18,809	353,778481
1483200	6,171199717	19,103	364,924609
1828800	6,262166213	19,182	367,949124
2606400	6,416041067	19,407	376,631649
3556800	6,551059445	19,692	387,774864
4766400	6,678190486	19,996	399,840016
6396000	6,805908455	20,241	409,698081
7516800	6,876032995	20,319	412,861761

Рис. 56. Пример КВД при наличии экрана в зоне дренирования скважины

Таблица 4.52

Параметр	Значение	Размерность
β,	37,533	
β.	72,751	
<i>kh</i> /μ	12,48167786	мкм²*м/мПа*с
k	0,025088172	MKM ²
Ŕ	0,381761033	м ² /с
ť	63100	с
l	116,4050285	М

Результаты обработки данных исследования

ОСНОВНЫЕ ЕДИНИЦЫ СИСТЕМЫ СИ

Используемые в нефтегазовой промышленности научная литература, нормативные документы, инструкции, правила, проекты, приборы и оборудование содержат различные единицы измерения. Унификация единиц физических величин в СССР на принципах Международной системы единиц началась в 1955 г.

В настоящее время практически завершены работы по переводу всех научных и технических разработок, средств обучения, измерения и контроля на новую международную систему СИ. Основные и некоторые дополнительные единицы измерения СИ, используемые при проектировании разработки, эксплуатации скважин, подсчетах запасов, промыслово-геофизических, газоконденсатных и газогидродинамических исследованиях скважин и обработке полученных результатов, приведены в таблицах 1÷24.

Однако часть научной и учебной литературы, оборудований и технических средств, находящихся в действии, а также иностранная литература, содержат физические величины, выраженные в системах: МКС, МКСК, МКСА, МКСКД, МКСМ, МКСЛМ, СГС, СГСЭ, СГСМ, СГСЕ, СГСМ, СГСБ, МТС, МКГСС и др. При использовании различных отечественных и иностранных источников в области физико-химических свойств отдельных компонентов газа, нефти, воды, конденсата, ингибиторов, пористой среды, технических средств и технологических параметров специалисту, работающему в системе нефтегазовой геологии, разработки и эксплуатации нефтегазовых месторождений, приходится переводить физические величины из одних единиц измерения в другие, в частности в единицы системы СИ. Поэтому в таблицах 1÷24 данного Приложения приведены переводные коэффициенты из различных единиц в единицы системы СИ, наиболее часто используемые при термогазогидродинамических расчетах параметров пористой среды и насыщающих ее жидкостей и газов. Более детальная информация о системе СИ и теплофизических параметрах пористой среды, нефти, газов, воды, отдельных элементов периодической системы Д.И. Менделеева и органических и неорганических соединений приведена в работах [10, 24, 26, 34, 39] и др.

Приставки для образования десятичных кратных и дольных единиц и их наименование

	Приставка		
Множитель	HOMMAHADOHHA	русское	международное
	наименование	обозначение	обозначение
1000000000000000000000000000000000000	Экса	Э	E
1000000000000000000000000000000000000	Пета	Π	Р
1000000000000000000000000000000000000	Тера	Т	Т
$1000000000=10^9$	Гига	Γ	G
$1000000 = 10^{6}$	Мега	Μ	М
$1000 = 10^3$	Кило	к	K
100=10 ²	Гекто	Г	h
	Дека	да	da
$0,1=10^{-1}$	Деци	Д	d
$0,01 = 10^{-2}$	Санти	С	С
0,001=10-3	Милли	М	m
$0,000001 = 10^{-6}$	Микро	МК	μ
0,00000001=10 ⁻⁹	Нано	Н	n
$0,00000000001 = 10^{-12}$	Пино	п	р
$0,00000000000001 = 10^{-15}$	Фемта	ф	f
$0,0000000000000001 = 10^{-18}$	Атто	a	а

Таблица 2

Основные единицы системы СИ

	Dagwon	Единица		
Параметр	Размер-	Наименова-	русское	международное
	HUCIB	ние	обозначение	обозначение
Длина	L	Метр	М	m
Macca	Μ	Килограмм	КГ	kg
Время	Т	Секунда	с	S
Сила электрического тока	I	Ампер	Ā	Ā
Термодинамическая тем-	0	I. a zr prov	T/	V
пература	о кельвин		К	N
Сила света	J	Кандела	КД	cd
Количество вещества	Ν	Моль	моль	mol
Частота	\mathbf{T}^{-1}	Герц	Γц	Hz
Сила	$LMT^{\overline{2}}$	Ньютон	Н	N
Давление	$L^{-1}MT^{-2}$	Паскаль	Па	Pa
Энергия, работа, количе-	$T^{2}NT^{2}$	Линотат	Лыха	т
ство теплоты		Джоуль	Дж	J
Мощность, поток энергии	$L^2 M T^{-3}$	Ватт	Вт	W
Динамическая вязкость	$L^{-1}MT^{-1}$	пас- каль секунда	Па•с	Pa·s

Продолжение табл. 2

газмер-	Uerrerere		
	паименова-	русское	международное
пость	ние	обозначение	обозначение
	Джоуль		
$L^2T^2\theta^{-1}$	на килограмм \cdot	Дж/(кг•К)	J/(kg·K)
	кельвин		
$L^2 T^{-2} \theta^{-1}$	То же	Дж/(кг•К)	J/(kg·K)
$^{-1}L^2MT^{-2}\theta^{-1}$	Джоуль на	Дж/(моль·К)	J/(mol·K)
-1	$L^{2}T^{-2}\theta^{-1}$ $L^{2}T^{-2}\theta^{-1}$ $L^{2}MT^{-2}\theta^{-1}$	ние Джоуль L ² T ² θ ⁻¹ На килограмм- кельвин L ² T ² θ ⁻¹ То же L2MT ² θ ⁻¹ Джоуль на моль-кельвин	ние обозначение Ц²Т²θ¹ Джоуль на килограмм. кельвин Дж/(кг·К) L²T²θ¹ То же Дж/(кг·К) L²T²θ¹ Джоуль на моль-кельвин Дж/(кг·К)

Таблица 3

Тепловые единицы и их переводы в СИ

Измеряемая величина	Обозначение	Переводной коэффициент
	кал (международная)	4,1868 Дж
Количество теплоты	ккал (международная)	4,1868·10 ³ Дж
	кал (термохимическая)	4,1840 Дж
Удельное количество тепло-	кал/г	4,1868·10 ³ Дж
ты	ккал/кг	4,1868·10 ³ Дж
V TO THE WORLD'S TO THE TOTAL	кал/см ³	4,1868·10 ^³ Дж∕м ^³
удельная объемная теплота	ккал/м ³	$4,1868 \cdot 10^6 \mathrm{Дж/м^3}$
Таплания алт	кал/°С	4,1868 Дж/К
Геплоемкость	ккал/°С	$4,1868 \cdot 10^{3} \mathrm{Jm/K}$
	кал/г°С	4,1868·10 ³ Дж/(кг·К)
удельная теплоемкость	ккал/кг°С	4,1868·10 ³ Дж/(кг·К)
Удельная объемная тепло-	кал/см ³ .°С	4,1868·10 ⁶ Дж/(м ^³ ·К)
емкость	ккал/м ³ .°С	4,1868·10 ³ Дж/(м ³ ·К)
Тоннорой нолом	кал/с	4,1868 Вт
Тепловои поток	ккал/час	1,163 Вт
Топлонроволиссти	кал∕см∙с∙°С	$4,1868 \cdot 10^2 \mathrm{Bt}/(\mathrm{M} \cdot \mathrm{K})$
теплопроводность	ккал/м·ч.⁰С	1,163 Bt/(м·К)
Горород ностоянноя	кал/г°С	4,1868·10 ³ Дж/(кг·К)
тазовая постоянная	ккал/кг°С	4,1868·10 ³ Дж/(кг·К)

Переводы различных параметров

1 1 1	
1 кгс = 9,80665 H (точно)	1 Н = 0,1019716кгс(неточно)
1кгс/м ² = 9,80665 Па (точно)	$1 \mathrm{krc}/\mathrm{cm}^2 = 98,0665 \Pi \mathrm{a}$ (точно)
1 нормальное атмосферное давление =	760 мм.рт.ст. = 101325 Па

Вязкость динамическая

1 Па·с или 1 миллиПаскаль-секунду, мПа·с При T = 293,15К $\mu_{\text{вода}} = 1,01$ мПа·с; $\mu_{\text{Hg}} = 1,59$ мПа·с

Таблица	4
---------	---

Единицы измерения величины (всесистемные единицы)

Domini	Honportug	Сокращенное	Эквивалент в о	системе	
Б еличина	пазвания	обозначение	МКС	MKC	
	микрон	МК	$1 \cdot 10^{-6}$	М	
Длина	ангстрем	Ae	$1 \cdot 10^{-10}$	М	
	икс-единица	-	$1,00239 \cdot 10^{-13}$	М	
	тонна	Т	1.10^{3}	КΓ	
Macca	центнер	ц	$1 \cdot 10^{2}$	КГ	
	карат	178	$2 \cdot 10^{-4}$	КГ	
Provid	час	ч	3600	C	
время	минута	мин	60	C	
Плоничти	ар	а	100	\mathbf{M}^2	
площадь	гектар	га	1.10^{4}	\mathbf{M}^2	
Объем	литр	Л	$1,000028 \cdot 10^{-3}$	M ³	
Сила	тонна-сила	т.с.	$9,80665 \cdot 10^3$	H	
Morningen		т.О.	735,499	Вт	
мощность	лошадиная сила	л.с.	75	кгс∙м/с	
Работа	ватт-час	Вт.ч	3,6·10 [°]	Дж	
	техническая атмосфера	ат или кгс/см ²	9,80665·10 ⁴	H/M^2	
	физическая атмосфера	атм	$1,01325 \cdot 10^{5}$	H/M^2	
Давление	бар	бар	$1 \cdot 10^{5}$	H/M^2	
	миллиметр ртутного столба	мм.рт.ст.	133,322	H/M^2	
	миллиметр водяного столба	ММ.ВОД.СТ.	9,80665	H/M^2	

Таблица 5

Коэффициенты пересчета между единицами длины

Единица	М	СМ	МКМ	ft	in	n mile
Метр Сантиметр Микрометр Фут Дюйм Морская миля	$\begin{array}{c} 1\\ 1\cdot 10^{-2}\\ 1\cdot 10^{-6}\\ 0,3048\\ 2,54\cdot 10^{-2}\\ 1,852\cdot 10^{3}\end{array}$	$\begin{array}{c} 1\cdot 10^2 \\ 1 \\ 1\cdot 10^{-4} \\ 30,48 \\ 2,54 \\ 1,852\cdot 10^5 \end{array}$	${\begin{array}{*{20}c} 1\cdot 10^6\\ 1\cdot 10^4\\ 1\\ 3,048\cdot 10^5\\ 2,54\cdot 10^4\\ 1,852\cdot 10^9\end{array}}$	$\begin{array}{r} 3,28\\ 3,28\cdot 10^{-2}\\ 3,28\cdot 10^{-6}\\ 1\\ 8,33\cdot 10^{-2}\\ 6,076\cdot 10^{-3}\end{array}$	$\begin{array}{r} 39,37\\ 0,3937\\ 3,937\cdot 10^{-5}\\ 12\\ 1\\ 7,2907\cdot 10^{4}\end{array}$	$5,4\cdot10^{-4} \\ 5,4\cdot10^{-6} \\ 5,4\cdot10^{-10} \\ 1,65\cdot10^{-4} \\ 1,37\cdot10^{-5} \\ 1$

Таблица 6

Коэффициенты пересчета между единицами объема

Единица	\mathbf{M}^{3}	CM^{3}	Л	$ft^{\overline{3}}$	in^3	pt	gal
Кубический метр	1	10^{6}	10^3	35,3	$6,10.10^{4}$	$1,7598 \cdot 10^{3}$	2,20·10 ²
Кубический сантиметр	10-6	1	10 ⁻³	$3,53 \cdot 10^{-5}$	$6,10.10^{-2}$	$1,7598 \cdot 10^{-3}$	2,20.10-4
Литр (кубиче- ский дециметр)	10 ⁻³	10^{3}	1	$3,53 \cdot 10^{-2}$	61,00	1,7598	0,220

Единица	\mathbf{M}^3	CM ³	Л	ft^3	in^3	pt	gal
Кубический фут	2,83.10-2	2,83·10 ⁴	28,3	1	$1,73 \cdot 10^{3}$	49,80	6,229
Кубический дюйм	1,639·10 ⁻⁵	16,39	1,639.10*2	5,79·10 ⁻⁴	1	2,88·10 ⁻²	3,6·10 ⁻³
Пинта (английская)	5,68·10 ⁻⁴	$5,68 \cdot 10^2$	0,568	$2,00.10^{-2}$	34,66	1	0,125
Галлон (английский)	4,546·10 ⁻³	$4,546 \cdot 10^3$	4,546	0,1605	$2,774 \cdot 10^{2}$	8	1

Продолжение табл. 6

Таблица 7

Перевод различных единиц в единицы СИ

Параметр	Наименование	Обозначение	Перевод в единицы СИ
	микрон	мк	1·10 ⁻⁶ м
Длина	ангстрем	Ae	$1 \cdot 10^{-10}$ M
	кабельтов	кб	185,2 м
Плонимат	ар	а	100 м ²
ПЛОЩАДЬ	гектар	га	$1 \cdot 10^4 \text{ m}^2$
	атомная единица массы	а.е.м.	
	по кислородной химической шкале	_	1,6602·10 ⁻²⁷ кг
Macca	по кислородной физической шкале	_	1,6597·10 ⁻²⁷ кг
	по углеродной шкале	-	1,6606·10 ⁻²⁷ кг
	гамма		1·10 ⁻⁹ кг
Линейная	Узел-морской	уз	0,514444 м/с
скорость	градус в секунду	°/c	0,0174533 град/с
	Техническая атмосфера	ат	98066,5 Па
	Килограмм-сила на квадрат- ный сантиметр	кгс/см ²	98066,5 Па
Давление	Физическая атмосфера	атм	101325 Па
	Миллиметр водяного столба	ММ.ВОД.СТ	9,80665 Па
	Миллиметр ртутного столба	мм.рт.ст	133,322 Па
	бар	Бар	$1 \cdot 10^5 \Pi$ a
	Литр-атмосфера	л.атм	101,328 Дж
Defore sucrey	Лошадиная сила-час	л.с.ч	2,6478·10 ⁶ Дж
Работа, энергия	Киловатт-час	кВт.ч	3,6·10 ⁶ Дж
	Ватт-час	Вт.ч	3600 Дж
Мощность	Лошадиная сила	л.с.	735,499 Вт
Количество	Калория международная	кал	4,1868 Дж
теплоты	Термия	-	4,1868·10 ⁶ Дж
Газовая постоянная	Метр-атмосфера на кило- грамм-градус	м.атм/кг°С	101,328 Дж/(кг·К)

Параметр	Наименование	Обозначение	Перевод в единицы СИ
Удельное	Калория на грамм	кал/г	4,1868·10 ^³ Дж∕кг
количество теплоты	килокалория на килограмм	ккал/кг	4,1868·10 [°] Дж∕кг
Tonnoomeoett	Калория на градус Цельсия	кал∕⁰С	4,1868 Дж/єC
геплоемкость системы	Килокалория на градус Цель- сия	ккал/°С	4,1868·10 ^³ Дж∕€С
Удельная	Калория на грамм-градус Цельсия	кал∕(г⁰С)	4,1868·10 ³ Дж/(кгеС)
теплоемкость	Килокалория на килограмм- градус Цельсия	ккал∕(кг⁰С)	4,1868·10 ^³ Дж/(кгеС)
Энтропия системы	Калория на Кельвин	кал/К	4,1868 Дж/К
Топлорой поток	Калория в секунду	кал/с	4,1868 Вт
тепловои поток	Килокалория в час	ккал/час	1,163 Вт
Теплопровод-	Калория в секунду на санти- метр-градус Цельсия	кал/(с∙см°С)	4,1868·10 ² Вт/(мєС)
ность	Килокалория в час на метр- градус Цельсия	ккал/(ч∙м⁰С)	1,163 Вт/(мєС)
Газовая посто- янная	Калория на грамм-градус Цельсия	кал/(г°С)	4,1868·10 ³ Дж/(кгеС)
	Килокалория на килограмм- градус Цельсия	ккал/(кг°С)	4,1868·10 ³ Дж/(кгеС)
Поверхностное натяжение	Дина на сантиметр	Дин/см	1.10 ⁻³ Н/м
Сила	Дина	Дин	1.10 ⁻⁵ H

Продолжение табл. 7

Таблица 8

Значение универсальной газовой постоянной R в различных единицах

	Значение R при расчете на 1 моль			
Елинии	по кислородной	по кислородной	по углеродной	
ъдипица	химической шкале	физической шкале	шкале атомных	
	атомных весов	атомных весов	весов	
эрг/моль•град	$8,31467 \cdot 10^7$	$8,31696 \cdot 10^7$	$8,31431 \cdot 10^{7}$	
абс.дж/моль•град	8,31467	8,31696	8,31696	
межд.дж/моль•град	8,31009	8,31538	8,31273	
л.атм/ моль•град	0,082057	0,08208	0,082054	
межд.кал/моль•град	1,98590	1,98645	1,98581	
кал _г ./моль•град	1,98725	1,98780	1,98716	
кал ₁₅ /моль•град	1,98654	1,98709	1,98645	
кгс•м/моль•град	0,84786	0,84809	0,84782	
кВт.ч/моль•град	$2,30963 \cdot 10^{-6}$	$2,31027 \cdot 10^{-6}$	$2,30953 \cdot 10^{-6}$	

единица	объем	R
дин/см²	см ³	8,315·10 ⁷ эрг/г·моль-град или 1,987 кал/град-г-моль
кг/см ²	CM ³	84,8 кг·см/г·град·моль
кг/м ²	\mathbf{M}^3	0,848 кг·м/г·град·моль
атм	CM ³	82,06 атм·см³/г·град·моль
атм	Л	0,08206 атм·л/г·град·моль
мм.рт.ст	CM ³	6,236·10 ⁴ мм.рт.ст·см ³ /г·град·моль
мм.рт.ст	грамм	62300 мм.рт.ст·г/г·град·моль

Значения газовой постоянной при различных единицах измерения

Таблица 10

Коэффициенты пересчета между единицами давления

Единица	Па	бар	мм.вод.ст	мм.рт.ст	$дин/см^2$	$\kappa \Gamma c / c m^2$	ftf/in ²
Паскаль	1	10-5	0,102	$7,5024 \cdot 10^{-3}$	10	$1,02.10^{5}$	$1,45 \cdot 10^{-1}$
Бар	10 ⁵	1	$1,02 \cdot 10^4$	$7,5024 \cdot 10^{2}$	10^{6}	1,02	14,5
Милли-							
метр водя-	9,8067	9,8067·10 ⁻⁵	1	7 ,35·10 ⁻²	98,1	10-4	1,4 22 ·10 ⁻³
ного столба							
Милли-							
метр ртут-	$1,33 \cdot 10^2$	1,33·10 ⁻³	13,6	1	$1,33.10^{-3}$	1,36·10 ⁻³	1,934.10-3
ного столба							
Дина на							
квадрат-	0.1	10-6	1.02.10-2	7 50 10-4	1	1.02.10-6	1.45.10-5
ный сан-	0,1	10	1,02.10	7,30.10	1	1,02.10	1,45.10
тиметр							
Кило-							
грамм– си-							
ла на квад-	$9,8067 \cdot 10^4$	0,98067	10^4	$7,35 \cdot 10^2$	$9,81 \cdot 10^5$	1	14,233
ратный							
сантиметр							
Фут-сила							
на квад-	$6.8048.10^{3}$	6 80 48 10-2	$7.0307.10^{2}$	52.2	6 80.10 ¹	7.0307.10-2	1
ратный	0,0340'10	0,0340.10	1,000710	52,2	0,03.10	7,000710	1
дюйм							

		• · · · · · · · · · · · · · · · · · · ·			
E	Эквивалент				
Единица	H/M^2	мм.рт.ст.	дин/см²	атм	
1 H/m ²	1	$0,730062 \cdot 10^{-2}$	10	$0,986923 \cdot 10^{-5}$	
1 кгс/см ²	9,80665	0,0735559	98,0665	$0,967841 \cdot 10^{-1}$	
1 техническая атмосфера	$9,80665 \cdot 10^{i}$	735,559	$9,80665 \cdot 10^5$	0,967841	
1 физическая или нор- мальная атмосфера	$1,01325 \cdot 10^5$	760	$1,01325 \cdot 10^{6}$	1	
1 мм. водяного столба	9,80665	0,0735559	98,0655	$0,967841 \cdot 10^{4}$	
1 бар	10^{5}	750,062	10^{6}	0,986923	
1 пьеза <u>– стен/м²</u>	10^{3}	7,50062	104	$0,986923 \cdot 10^{-2}$	
1 тор – мм. ртутного столба	133,3224	1	1333,224	$1,315789 \cdot 10^{-3}$	
1 фунт/кв. дюйм	$6,89476 \cdot 10^3$	51,7149	$6,89476 \cdot 10^4$	0,068046	
1 фунт/кв. фут	47,878	$3,5911.10^{3}$	478,78	$4,72519 \cdot 10^{-1}$	

Соотношения между единицами давления

Таблица 12

Соотношения между значениями температуры, выраженными в различных шкалах

Томпоратира	Эквивалент по шкале				
температура	Цельсия	Кельвина			
х °C – шкала Цельсия	x °C	x+273,15 K			
х К – шкала Кельвина	х-273,15 °С	x K			
х °R – шкала Реомюра	1,25·x °C	1,25x+273,15 K			
х °F – шкала Фаренгейта	5(x-32)/9°C	5x/9+255,38 K			
х °R _{ащ} – шкала Ренкина	5(x-491,69)/9°C	К			
1 град R = 1,25 град C; 1 град F = 1 град R _{ан} = 5/9 град ^о С					

Таблица 13

Коэффициенты пересчета между единицами силы

Единица	Н	дин	кгс	тс	стен	lbf
Ньютон	1	10^{5}	0,102	1,02.10	10-3	0,2248
Дина	10 ⁻⁵	1	$1,02.10^{-6}$	$1,02.10^{-9}$	10^{-8}	$2,248 \cdot 10^{-6}$
Килограмм-сила	9,8067	$9,8067 \cdot 10^5$	1	10-3	$9,8067 \cdot 10^{-3}$	2,2046
Тонна-сила	$9,8067 \cdot 10^{-3}$	$9,8067 \cdot 10^8$	10^{3}	1	9,8067	$2,2046 \cdot 10^{-3}$
Стен	10^{3}	10 ⁸	102		1	$2,248 \cdot 10^{2}$
Фунт-сила	4,448	$4,448 \cdot 10^{5}$	0,454	$4,54.10^{-1}$	$4,448 \cdot 10^{-3}$	1

Таблица 11

Единица	Вт	Эрг/с	кгс•м/с	кал/с	lbfft/s	л.с.
Ватт	1	107	0,102	0,239	0,7376	$1,36.10^{-3}$
Эрг в секунду	10-7	1	$1,02 \cdot 10^{-8}$	$2,39 \cdot 10^{-8}$	7,376.10	1,36.10
Килограмм-сила-метр в секунду	9,80665	9,0867·10 ⁻⁷	1	2,343	7,233	$1,33 \cdot 10^{-2}$
Калория в секунду	4,1868	$4,1868 \cdot 10^{7}$	0,427	1	3,088	$5,69 \cdot 10^{-3}$
Фунт-сила-фут в секунду	1,3558	1,3558.107	0,138	0,3246	1	$1,84 \cdot 10^{-3}$
Лошадиная сила	736	$7,36.10^{9}$	75	175,5	542,9	1

Коэффициенты пересчета между единицами мощности

Таблица 15

Коэффициенты пересчета между единицами кинематической вязкости

Единица	м ^⁰ /с	Ст	сСт	м ² /ч	ft^2/s	ft²/h
Квадратный метр	1	10^{4}	10^{6}	3600	10.76	$38.75.10^3$
на секунду	I	10	10	5000	10,70	50,75.10
Стокс	10-4	1	100	0,36	$1,076 \cdot 10^{-3}$	3,785
Сантистокс	10^{-6}	0,001	1	$3,6.10^{-3}$	1,076.10-5	3,785.10-2
Квадратный метр на час	$2,778 \cdot 10^{-4}$	2,778	277,8	1	$2,99 \cdot 10^{-3}$	10,76
Квадратный фут	$0.20.10^{-2}$	020	0.20.104	2245	1	2600
на секунду	5,25.10	929	5,25.10	554,5	T	5000
Квадратный фут на час	$2,58 \cdot 10^{-5}$	0,258	2,58	$9,29 \cdot 10^{-2}$	$2,778 \cdot 10^{-4}$	1

Таблица 16

Коэффициенты пересчета между единицами динамической вязкости

Единица	Па∙с	Π	КГС·С/М ²	$lbf \cdot s/ft^2$
Паскальсек	1	10	0,102	$2,09.10^{-2}$
Пуаз	0,1	1	$1,02 \cdot 10^{-2}$	$2,09.10^{-6}$
Килограмм-сила-секунда на квадратный метр	9,81	98,1	1	0,205
Фунт-сила-секунда на квадратный фут	$4\overline{7},88$	478,8	4,88	-1

Таблица 17

Тепловые единицы по ГОСТу 8550-57

Параметр	Система СИ	Единица измерения
1. Количество теплоты	Дж	кал, ккал
2. Теплоемкость	Дж/град	кал/град, ккал/град
3. Удельная теплоемкость	Дж∕(кг∙град)	кал/(г•град), ккал/(кг•град)
4. Тепловой поток	Вт	кал/с, ккал/ч
5. Плотность теплового потока	BT/M^2	кал/(см ^² ·с), ккал/(м ^² ·ч)
6. Теплопередача	Вт/(м²∙град)	кал/(см²·с·град), ккал/(м²·ч·град)
7. Теплопроводность	Вт/(м•град)	кал/(см·с·град), ккал/(м·ч·град)

Удельная теплоемкость C _p (в Дж/кг·К) отдельных компонентов при температуре
выше 273,15 К

Компонент	$a \cdot 10^2$	$b \cdot 10^5$	c·10 ⁻³	Состояние	Погрешность	Предел измерения	
				вещества		температуры	
CO	23,60	4,29	—	Газообразное	2,0	0-2200	
CO ₂	23,49	6,00	4,439	11	1,5	0-900	
H ₂ S	20,35	11,00	—		1,0	0 - 1000	
He	124,3		—		0	0-выше	
H ₂	330	34,2	—		1,5	0-3200	
Hg	3,29/2,47	l	_	Жидкость– газ	1,0	0-выше	
N ₂	23,80	3,58	—		2,0	0 - 2200	
O ₂	23,50	2,535	2,817	11	1	—	
Для условий T=273,15 К удельная теплоемкость отдельных компонентов вычисля-							

ется приближенно по формуле С =(a+bT-cT²)·4186,8, где Т – температура, К

Таблица 19

Коэффициенты пересчета между единицами теплоемкости

Единица	Дж/(кг•К)	эрг/(г.⁰С)	ккал/(кг.ºС)	кал/(г.⁰С)	Btu/(lb.⁰F)
Ватт на метр-Кельвин	1	10^{4}	$2,39 \cdot 10^{-4}$	$2,39 \cdot 10^{-4}$	$2,39 \cdot 10^{-4}$
Эрг в секунду на санти- метр-градус Цельсия	10-4	1	$2,39 \cdot 10^{-8}$	2,39·10 ⁻⁸	$2,39 \cdot 10^{-8}$
Килокалория в час на метр-градус Цельсия	$4,187.10^{3}$	$4,187.10^{7}$	1	1	1
Калория на грамм- градус Цельсия	$4,187 \cdot 10^{3}$	$4,187.10^{7}$	1	1	1
Британская единица тепла на фунт-градус Фаренгейта	$4,187 \cdot 10^3$	$4,187 \cdot 10^{7}$	1	1	1

Таблица 20

Коэффициенты пересчета между единицами количества тепла

Единица	Дж	Кал	Кал ₁₅	Кал	Btu
Джоуль	1	0,238846	0,238920	0,239006	$9,4781 \cdot 10^{-4}$
Калория международная	4,1868	1	1,00031	1,00067	$3,96829 \cdot 10^3$
Калория 15-градусная	4,1855	0,99969	1	1,00036	$3,97706 \cdot 10^{-3}$
Калория термохимическая	4,1840	0,99933	0,99964	1	$3,96564 \cdot 10^3$
Британская единица тепла	1055,06	251,997	252,075	252,075	1

Единица	Вт/(м ² ·К)	эрг∕ (с∙см².•С)	ккал∕ (ч∙м².•С)	кал/ (с∙см ^² .•С)	Btu/(h·ft ² ·°F)
Ватт на квадратный метр на Кельвин	1	10 ³	0,860	$2,39{\cdot}10^{-5}$	0,176
Эрг в секунду на квадрат- ный сантиметр-градус Цельсия	10 ⁻³	1	$8,60.10^4$	2,39·10 ⁻⁸	1,760.10-4
Килокалория в час на квадратный метр-градус Цельсия	1,163	1,163·10 ³	1	$2,78 \cdot 10^{-5}$	0,205
Калория в секунду на квадратный сантиметр- градус Цельсия	4,187	4,187·10 ³	$3,60.10^{4}$	1	7,370·10 ³
Британская единица теп- ла в час на квадратный фут-градус Фаренгейта	5,68	$5,68.10^{3}$	4,89	35,60·10 ⁻⁶	1

Коэффициенты пересчета между единицами теплопередачи

Таблица 22

Коэффициенты пересчета между единицами теплопроводности

Единица	Вт/(м·К)	эрг∕ (с∙см∙°С)	ккал∕ (ч∙м•°С)	кал/ (с∙см•°С)	Btu/(h·ft·°F)
Ватт на метр-Кельвин	1	10 ⁵	0,860	2,39·10 ⁻³	0,578
Эрг в секунду на санти- метр-градус Цельсия	10 ⁻⁵	1	$8,6.10^{-6}$	2,39.10-8	5,78 ·10 ⁻⁶
Килокалория в час на метр-градус Цельсия	1,163	$1,163.10^{5}$	1	2,78·10 ⁻³	0,672
Калория в секунду на сан- тиметр-градус Цельсия	4,187·10 ²	4,187·10 ⁷	$3,6.10^{7}$	1	242
Британская единица тепла в час на фут-градус Фа- ренгейта	1,73	1,73·10 ⁵	1,488	4,13·10 ⁻³	1

Коэффициенты пересчета между единицами эн	ергии
---	-------

Единица	Дж	эрг	КГС∙М	кал	ккал	кВт∙ч	lbf•ft
Джоуль	1	10^{7}	0,102	0,239	$2,39 \cdot 10^{-4}$	$2,78 \cdot 10^{-7}$	0,7376
Эрг	10-7	1	$1,02 \cdot 10^{-8}$	$2,39 \cdot 10^{-8}$	$2,78 \cdot 10^{-11}$	$2,78 \cdot 10^{-14}$	$7,375 \cdot 10^{-8}$
Кило- грамм- сила-метр	9,80665	$9,8067 \cdot 10^7$	1	2,343	2,343·10 ⁻³	$2,72 \cdot 10^{-6}$	7,233
Калория	4,1868	$4,1868 \cdot 10^7$	0,42686	1	10-3	$1,16.10^{-6}$	3,088
Килокало- рия	$4,1868 \cdot 10^{3}$	4,1868·10 ¹⁰	$0,42686 \cdot 10^2$	10 ³	1	1,16.10-3	$3,088 \cdot 10^3$
Киловатт- час	$3,6.10^{6}$	3,6·10 ¹³	$3,6.10^{5}$	$8,6.10^{5}$	$8,6.10^{2}$	1	$2,653 \cdot 10^{6}$
Фунт- сила-фут	1,356	1,356·10 ⁷	0,138	0,325	0,325	3,7 6·10 ⁷	1

Таблица 24

Применяемые в США и Англии единицы и их перевод в единицы СИ

Парамотр	Нанисиорание	0600000000000	Перевод
параметр	Паименование	Ооозначение	в единицы СИ
	Ярд	yd	0,9144 м
	Фут	ft	0,3048 м
Длина	Дюйм	in	0,0254 м
	Миля	mile	1609,344 м
	Морская миля	n mile(lnt)	1852 м
	Галлон (английский)	gal (uk)	4,54609 дм ³
	Пинта (английская)	pt (uk)	0,56261 дм ^³
	Бушель (английиский)	bu (uk)	$36,36870$ дм 3
	Жидкостная унция (английская)	fl.oz (uk)	28,41300 см
067.01	Галлон США	gal (us)	3,78543 дм ³
Объем	Жидкостная пинта США	elq pt (us)	0,473179 дм ³
	Нефтяной баррель США	bbl (us)	158,978 дм ³
	Бушель США	bu (us)	35,2393 дм ³
	Сухая пинта США	pt dry (us)	0,550614 дм ³
	Сухой баррель США	bbl dry (us)	115,62800 дм ³
Cropoot	Φ ут в секунду	ft/s	0,30480 м/с
Скорость	Миля в час	yd yd ft 0 in 0 mile 16 n mile(lnt) 9 gal (uk) 4,4 pt (uk) 0,4 bu (uk) 36, a) fl.oz (uk) 28 gal (us) 3,7 elq pt (us) 0,4 bbl (us) 15 bu (us) 35 pt dry (us) 0,5 bbl dry (us) 115 ft/s 0,2 mile/h 0,4 S/ug 14 oz 28,3 cwt 50 sh-cwt 45 ton 10 sh-ton 90	0,47704 м/с
	Фунт (торговый)	lb	0,4535924 кг
	Слаг	S/ug	14,59390 кг
	Унция	OZ	28,34950·10 ⁻³ кг
Macca	Центнер (длинный)	cwt	50,80234 кг
	Центнер (короткий)	sh-cwt	45,35920 кг
	Тонна (длинная)	ton	1016,05 кг
	Тонна (короткая)	sh-ton	907,185 кг

Продолжение табл. 24

Параметр	Наименование	Обозначение	Перевод
r r		1 .	в единицы СИ
	Тройская унция (английская)	oz tr (uk)	31,1035•10″ кг
	Тройская и аптекарская унции США	oz.tr, oz.ap(us)	31,1035·10 ⁻³ кг
Плотность	Фунт на кубический фут	lb/ft^3	16,01846 кг/м ³
CHITS BAC	Паундаль	Pdl	0,138255 H
Сила, всс	Фунт-сила	lbf	$4{,}44822\mathrm{H}$
Удельный вес	Фунт-сила на кубический фут	lbf/ft ³	157,087 ${ m H/m}^3$
	Паундаль на квадратный фут	$\mathrm{Pdl/ft}^2$	1 <u>,</u> 48816 Па
	Фунт-сила на квадратный фут	lbf/ft^2	47,88030 Па
Top zouro	Фунт-сила на квадратный дюйм	lbf/in ²	6894,760 Па
давление	Фут водяного столба	ft H,0	2989,070 Па
	Дюйм водяного столба	in H _. 0	249,089 Па
	Дюйм ртутного столба	in Hg	3386,390 Па
Динамическая	Паундаль-секунда на квадратный фут	$Pdl \cdot s/ft^2$	1,48816 Па∙с
вязкость	Фунт-сила-секунда на квадрат- ный фут	$lbf \cdot s/ft^2$	47,8803 Па∙с
Кинематиче- ская вязкость	Квадратный фут на секунду	ft^2/s	0,092903 м²/с
Defere	Паундаль-фут	Pdl∙ft	0,04214 Дж
Работа	Фунт-сила-фут	lbf·ft	1,35582 Дж
Энергия	Британская единица тепла	Btu	1055,06 Дж
	Паундаль-фут в секунду	Pdl·ft/s	0,042140 Вт
Marrison	Фунт-сила-фут в секунду	lbf·ft/s	1,35582 Вт
мощность	Британская лошадиная сила	hp	745,699 Вт
	Британская единица тепла в час	ODOJHAVEHHE $oz tr (uk)$ $oz tr (uk)$ $oz.tr, oz.ap(us)$ lb/ft^3 Pdl lbf lbf/ft^3 Pdl/ft^2 lbf/ft^2 $lbf.s/ft^2$ ft^2/s $Pdl.ft$ $lbf.ft$ Btu $Pdl.ft$ $lbf.ft/s$ $lbf.ft/s$ $lbf.ft/s$ $lbf.ft/s$ Btu/h $^{\circ}F$ $Btu/(s.ft^2.oF)$ ft^2/s $Btu/lb.oF$ $Btu/lb.oR$	0,293071 Вт
Термодинами-	Градус Ренкина	°R	5/9 K
ческая темпера- тура	Градус Фаренгейта	°F	5/9 К и 5/9 °С
Теплопровод-	Британская единица тепла в се-	$D_{tra}/(a \theta E)$	6230,64
ность	кунду на фут-градус Фаренгейта	Dtu/(S-F)	Вт/(м·К)
IC 1.1	Британская единица тепла в се-		00774 70
коэффициент теплопередачи	кунду на квадратный фут-градус Фаренгейта	$Btu/(s \cdot ft^2 \cdot oF)$	20441,70 Вт/(м ² ·К)
Температуро- проводность	Квадратный фут на секунду	ft^2/s	0,092903 м²/с
Удельная теп- лоемкость	Британская единица тепла в се- кунду фунт-градус Фаренгейта	Btu/lb∙⁰F	4186,8 Дж/(кг·К)
Удельная энтропия	ьная Британская единица тепла в се- пия кунду фунт-градус Ренкина		4186,8 Дж/(кг·К)

Список использованной литературы

1. Алиев З.С. Технология применения горизонтальных скважин, М.: Изд. «Нефть и Газ», 2006.

2. Алиев З.С., Бердин Т.Г., Ли Г.С. Опыт исследования скважин нижнемеловых залежей Уренгойского месторождения, М.: ИРЦ ОАО «Газпром», 2002.

3. Алиев З.С., Бондаренко В.В. Исследование горизонтальных скважин, М.: Изд. «Нефть и газ», 2004.

4. *Алиев З.С., Бондаренко В.В.* Технология применения горизонтальных скважин, М.: Изд. «Нефть и Газ», 2006.

5. Алиев З.С., Бондаренко В.В. Руководство по проектированию разработки газовых и газонефтяных месторождений, Печора: Изд. «Печорское Время», 2003.

6. Алиев З.С. и др. Технологический режим работы газовых скважин, М.: Недра, 1978.

7. Алиев З.С., Прусенко Б.Е. Техника безопасности при исследовании скважин, М.: ООП ГАНГ им. И.М. Губкина, 1997.

8. Алиев З.С., Сомов Б.Е., Рогачев С.А. Обоснование и выбор оптимальной конструкции горизонтальных газовых скважин, М.: Изд. «Техника», 2001.

9. Алиев З.С., Шеремет В.В. Определение производительности горизонтальных скважин, вскрывших газовые и газонефтяные пласты. М.: Недра, 1995.

10. Алиев З.С., Хабибуллин Р.А., Панкин Н.А. Анализ результатов исследований газовых скважин Ямбургского ГКМ и Заполярного ГНКМ, Казань: Изд. Казанского ГГУ, 1999.

11. Басниев К.С., Алиев З.С., Черных В.В. Методы расчетов дебитов горизонтальных наклонных и многоствольных газовых скважин, М.: ИРЦ ОАО «Газпром», 1999.

12. Баталин О.Ю., Брусиловский А.И., Захаров М.Ю. Фазовые равновесия в системах природных углеводородов, М.: Недра, 1992.

13. Бузинов С.Н., Григорьев А.В., Славицкий В.С. и др. Исследование горизонтальных скважин на нестационарных режимах, Жур. Газовая промышленность, Октябрь. 1997.

14. Бурдун Г.Д. Справочник по международной системе единиц СИ. М.: Стандарт, 1977.

15. Вендельштейн Б.Ю., Резванов Р.А. Геофизические методы определения параметров нефтегазовых коллекторов, М.: Недра, 1976.

16. Временная инструкция по исследованию скважин на газоконденсатность. М.: Ротапринт ВНИИГаза.

17. Геофизические методы исследования скважин. Справочник геофизика (под ред. В.М. Запорожца) М.: Недра, 1983.

18. Гриценко А.И., Алиев З.С., Ермилов О.М. и др. Руководство по исследованию скважин, М.: Наука, 1995.

19. *Гриценко А.И., Островская Т.Д., Юшкин В.В.* Закономерности основных свойств пластовых газоконденсатных систем, Научно-технический обзор. Сер. Ри-ЭГиГК месторождений. М.: ВНИИЭГазпром, 1978, 72 с.

20. Гуревич Г.Р., Брусиловский А.И. Справочное пособие по расчету фазового состояния и свойств газоконденсатных смесей, М.: Недра, 1984. 21. Ермилов О.М., Алиев З.С. и др. Эксплуатация газовых скважин, М.: Наука, 1995.

22. Ермилов О.М., Киреев В.А., Ковалева Л.А. и др. Временная инструкция по кислотной обработке газоносных пластов, М.: Ротапринт ВНИИГаза, 1970, 64 с.

23. Зотов Г.А. Методика газогидродинамических исследований горизонтальных газовых скважин, М.: Ротапринт ВНИИГаза, 2000, 114 с.

24. Зотов Г.А., Динков А.В., Черных В.А. Эксплуатация скважин в неустойчивых коллекторах, М.: Недра, 1987, 172 с.

25. Зотов Г.А., Тверковкин С.М. Газогидродинамические методы исследования газовых скважин, М.: Недра, 1970.

26. Инструкция по комплексному исследованию газовых и газоконденсатных пластов и скважин / Под. ред. Г.А. Зотова, З.С. Алиева, М.: Недра, 1980.

27. *Катц Д., Корнелл Д., Кобаяши Р. и др.* Руководство по добыче, транспорту и переработке природного газа, М.: Недра, 1965, 676 с.

28. Киреев В.А., Ковалева Л.А., Назаров В.М. и др. Временная инструкция по поинтервальной обработке пласта при освоении и эксплуатации скважин Оренбургского месторождения, М.: Ротапринт ВНИИГаза, 1976, 25 с.

29. Кульпин Л.Г., Мясников Ю.А. Гидродинамические методы исследования нефтегазовых пластов, М.: Недра, 1974.

30. *Мамаев В.А., Одишария Г.Э., Клапчук О.В. и др.* Движение газоконденсатных смесей в трубах, М.: Недра, 1975.

31. Миснар А. Теплопроводность твердых тел, газов и их композиций, М.: Мир, 1987.

32. *Николаев С.А., Николаева Н.Г., Соломатин А.Н.* Теплофизика горных пород, Казань: Изд. Казанского университета, 1987.

33. Панов В.А, Емков А.А. Ингибиторы отложения неорганических солей, Обзор инф. Сер. «Нефтепромысловое дело», М.: ВНИИОЭНГ, 1978.

34. Правила пожарной безопасности в газовой промышленности ППБВ-85, М.: Недра, 1986.

35. Правила разработки газовых и газоконденсатных месторождений / Под ред. В.П. Бибилурова и др., М.: Недра, 1970.

36. Регламент составления проектных документов по разработке газовых и газоконденсатных месторождений. М.: Ротапринт ВНИИГаза, 1999.

37. Справочник по гидравлическим расчетам. М.: Энергия, 1972.

38. Справочник химика Том I, М.: Наука, 1975.

39. *Черных В.А.* Газогидродинамика горизонтальных газовых скважин, М.: Ротапринт ВНИИГаза, 2000, 189 с.

40. *Aziz S., Odeh A., Buba D.* Transient flow behavior of horizontal wells: pressure, drawdown and buildup analysis . SPE Formation Evaluation v5, n1, 1990.

41. *Fikri Y. Kurchuk*. Well testing and interpretation for horizontal well. Journal of Petroleum Technology v 47 №1 1955.

42. *Goode P.A.*, *Thambynayagan R.R.* Pressure drawdown and buildup analysis of horizontal well in anisotropic media. SPE Formation Evaluation v2, n4, 1987.

43. *Gordon C.*, *Wichert*, *Edward Wichert*. New charts provide accurate estimations for water content of sour natural gas. Oil & Gas Journal. Oct.27.2003.
Учебное издание

АЛИЕВ Загид Самедович САМУЙЛОВА Лариса Викторовна МАРАКОВ Денис Александрович

ГАЗОГИДРОДИНАМИЧЕСКИЕ ИССЛЕДОВАНИЯ ГАЗОВЫХ ПЛАСТОВ И СКВАЖИН

Учебное пособие для вузов

Редактор издательства: Е.М. Бугачева

Подготовка оригинал-макета: Издательство «МАКС Пресс» Компьютерная верстка: М.А. Комарова Корректор: Н.А. Балашова

Подписано в печать 20.05.2011 г. Печать офсетная. Бумага офсетная. Формат 70х100 1/16. Усл.печ.л. 17,88. Заказ 11128. Тираж 750 экз. Изд. № 517.

> Издательство ООО "МАКС Пресс" Лицензия ИД N 00510 от 01.12.99 г.

119992, ГСП-2, Москва, Ленинские горы, МГУ им. М.В. Ломоносова, 2-й учебный корпус, 527 к. Тел. 939-3890, 939-3891. Тел./Факс 939-3891.

Отпечатано в ЗАО «Белгородская областная типография».

Данное издание является собственностью РГУ нефти и газа имени И.М. Губкина и его репродуцирование (воспроизведение) любыми способами без согласия университета запрещается.

Алиев Загид Самедович

Доктор технических наук, профессор, академик РАЕН, академик Международной академии наук природы и общества.

Крупнейший специалист в области подсчета запасов и проектирования разработки месторождений нефти и газа.

Является автором 327 публикаций, в том числе 20 монографий и 23 тематических брошюр.

Самуйлова Лариса Викторовна

Кандидат технических наук, доцент кафедры разработки и эксплуатации газовых и газоконденсатных месторождений.

Специалист в области разработки и эксплуатации нефтяных и газовых месторождений и подземного хранения газа.

Мараков Денис Александрович

Кандидат технических наук, доцент кафедры разработки и эксплуатации газовых и газоконденсатных месторождений.

Специалист в области разработки и эксплуатации нефтяных и газовых месторождений.

Является автором более 17 публикаций, в том числе 1 монографии и тематических брошюр в области теории разработки, исследования и эксплуатации вертикальных и горизонтальных скважин.