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Abstract

The paper presents some contemporary approaches to spatial environmental data analysis. The main topics are concentrated on
the decision-oriented problems of environmental spatial data mining and modeling: valorization and representativity of data with
the help of exploratory data analysis, spatial predictions, probabilistic and risk mapping, development and application of conditional
stochastic simulation models. The innovative part of the paper presents integrated/hybrid model—machine learning (ML) residuals
sequential simulations—MLRSS. The models are based on multilayer perceptron and support vector regression ML algorithms used
for modeling long-range spatial trends and sequential simulations of the residuals. ML algorithms deliver non-linear solution for
the spatial non-stationary problems, which are difficult for geostatistical approach. Geostatistical tools (variography) are used to
characterize performance of ML algorithms, by analyzing quality and quantity of the spatially structured information extracted from
data with ML algorithms. Sequential simulations provide efficient assessment of uncertainty and spatial variability. Case study from
the Chernobyl fallouts illustrates the performance of the proposed model. It is shown that probability mapping, provided by the
combination of ML data driven and geostatistical model based approaches, can be efficiently used in decision-making process.
 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Environmental data feature complex spatial pattern at
different scales due to combination of several spatial
phenomena or various influencing factors of different
origins. In some cases, the original observations are
taken with significant measurement errors and may con-
tain significant uncertainty as well as a number of out-
liers. Non-linear spatial trends corresponding to large-
scale processes complicate geostatistical modeling as
long as stationary models (e.g. ordinary kriging) are con-
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cerned. Trend removal is also necessary for comprehen-
sive spatial correlation analysis and modeling
(variography). Variogram modeling for such data and
using common geostatistical approaches will result in
incorrect results. In the presence of trends, the data can
be decomposed into two parts:

Z(x) � M(x) � e(x) (1)

where M(x) represents large-scale deterministic spatial
variations (trends), ande(x) represents small-scale spa-
tial stochastic variations. Contemporary geostatistics
offers several possible approaches to handle spatial
trends (spatial non-stationarity): universal kriging
(implying a polynomial trend model), residual kriging,
moving window regression residual kriging (seeCressie,
1991; Deutsch and Journel, 1998; Dowd, 1994; Neuman
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and Jacobson, 1984; Gambolati and Galeati, 1987; Hass,
1996). All these approaches imply a certain formula
based trend model, which is not necessarily in a good
agreement with the data. An alternative way for trend
modeling is to use a data-driven approach, which relies
only on data. One of such approaches was developed by
partitioning heterogeneous study area into some smaller
homogeneous subareas and analyzing the spatial struc-
ture within them separately (Pélissier and Goreaud,
2001).

In the present paper, we propose a newly developed
model—machine learning residuals sequential Gaussian
simulations (MLRSGS) as an extension of the ideas
presented by Kanevsky et al. (1996b) and Demyanov et
al. (2000). In these papers, a hybrid model—neural net-
work residuals kriging (NNRK)—was first introduced
and then extended for use in a combination with different
geostatistical models. The basic idea is to use feedfor-
ward neural network (FFNN), which is a well-known
global universal approximator to model large-scale non-
linear trends, and then to apply geostatistical
estimators/simulators for the residuals. Machine learning
algorithms unite a wide family of data-driven models.
Here, we will focus on two of them: multilayer per-
ceptron (MLP) and support vector regression (SVR).
Another type of hybrid models (expert systems) was
developed by using geographical information systems
and modeling integrated into a decision support system
for environmental and technological risk assessment and
management (see Fedra and Winkelbauer, 1999).

One of the principal advantages of machine learning
algorithms is their ability to discover patterns in data,
which exhibit significant unpredictable non-linearity.
Being a data-driven approach (“black-box” models), ML
depends only on the quality of data and the architecture
of model, particularly for MLP—number of hidden neu-
rons, activation functions types of connections. ML can
capture spatial peculiarities of the pattern at different
scales describing both linear and non-linear effects. Per-
formance of MLA is based on solid theoretical foun-
dations, which were considered by Bishop (1995), Hay-
kin (1999) and Vapnik (1998).

Stochastic simulation is an intensively developed and
used approach to provide uncertainty and risk assess-
ment for spatial and spatio-temporal problems. Stochas-
tic simulation models are preferable over estimators as
they are able to provide a joint probabilistic distributions
rather than a single value estimates. Sequential Gaussian
simulation (SGS) is one of the widely used methods that
is able to handle highly variable data but still is sensitive
to trend, thus formally requires to some extent spatial
stationarity assumed. SGSs are based on modeling of
spatial correlation structures—variography.

A mixture of ML data driven and geostatistical model
based approaches is also attractive for decision-making
process because of their interpretability.

The real case study on soil pollution from the Cherno-
byl fallout illustrates the application of the proposed
model. The accident at Chernobyl nuclear power plant
caused large-scale contamination of environment by
radiologically important radionuclides. Large-scale
consequences of the Chernobyl fallout were considered
in the past decade and one of the comprehensive map-
ping work was presented in De Cort and Tsaturov
(1996). Geostatistical analysis and prediction modeling
of radioactive soil contamination data was presented in
Kanevsky et al. (1996a).

2. Machine learning residual Gaussian simulations

2.1. Methodology of ML residual Gaussian
simulations

The basic idea is to use ML to develop a non-para-
metric, robust model to extract large-scale non-linear
structures from data (detrending) and then to use geosta-
tistical models to simulate the residuals at local scales.
In brief, the MLRSGS algorithm follows the steps given
below (extended after Kanevsky et al., 1996b):

1. Data preprocessing and exploratory analysis: in gen-
eral, split data into training, testing and validation
sets, checking for outliers, exploratory data analysis,
estimations and modeling of spatial correlation—
experimental and theoretical variography. Training
set is used for the ML algorithms training, validation
set is used to tune hyperparameters (e.g. number of
hidden neurons) while testing set is applied to assess
MLA generalization ability.

2. Training and testing of ML algorithm. In the present
paper, MLP and SVR are used. They are well-known
function approximators and are described briefly
below.

3. Accuracy test—comprehensive analysis of the
residuals provides the ML residuals at the training
points (measured–estimated) which are the base for
further analysis. Two further cases are possible:

� the residuals are not correlated with the measurements
correlated (both 1D and 2D), which means that MLA
has modeled all spatial structures presented in the
raw data;

� the residuals show some correlation with the samples,
then further analysis should be performed on the
residuals to model this correlation.

4. ML residuals are explored using variography. The
remaining spatial correlation presents short-range
correlation structures, once long-range correlation
(trend) in the whole area was modeled by MLA.

5. Normal score transformation (non-linear transform-
ation from raw data to Nscore values, distributed
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N(0,1) is performed to prepare data for further Gaus-
sian simulations. Nscore variogram model describing
spatial correlations of Nscore values is built. SGS is
then applied to the MLA residuals and stochastic real-
izations are generated using the training dataset.

The idea of stochastic simulation is to develop a spa-
tial Monte Carlo model that will be able to generate
many, in some sense equally probable, realizations of a
random function (in general, described by a joint prob-
ability density function). Any realization of the random
function is called an unconditional simulation. Realiza-
tions that honor the data are called conditional simula-
tions. Basically, the simulations try to reproduce the first
(univariate global distribution) and the second
(variogram) moments. The similarities and dissimi-
larities between the realizations describe spatial varia-
bility and uncertainty. The simulations bring valuable
information on the decision-oriented mapping of pol-
lution. Postprocessing of the simulated realizations pro-
vides probabilistic maps: maps of probabilities of the
function value to be above/below some predefined
decision levels. Gaussian random function models are
widely used in statistics and simulations due to their ana-
lytical simplicity, they are well understood and are limit
distributions of many theoretical results. SGS algorithm
used in this work was described in detail in Deutsch and
Journel (1998).

6. Simulated values of the residuals appear after back
normal score transformation. Final ML residual
simulations value is a sum of ML estimate and
SGS realization.

2.2. Description of multilayer perceptron model

MLP is a type of artificial neural network with a spe-
cific structure and training procedure described in
Bishop (1995) and Haykin (1999).

The key component of MLP is the formal neuron,
which sums the inputs, and performs a non-linear trans-
form via the activation function f (Fig. 1). The activation

Fig. 1. Formal neuron.

function (or non-linear transformer) can be any continu-
ous, bounded and non-decreasing function. Exponential
sigmoid or hypertangent are commonly used in practice.
The weights W(w0, …, wn) are adaptive parameters
which are optimized by minimizing the following quad-
ratic cost function:

MSE �
1
N�N

i � 1

(ti�oi)2 (2)

where MSE is the mean square error, N is the number
of samples, oi is the net output (prediction) and ti is the
real function desired value. Backpropagation error algor-
ithm is applied to calculate gradient of MSE on adaptive
weight, ∂E /∂W. Various optimization algorithms, which
employ backpropagation, can be used, such as the conju-
gate gradient descend method, second-order pseudo-
Newton Levenberg-Marquardt method, or the resilient
propagation method.

In a standard MLP, the neurons are arranged in input,
hidden and output layers. The values of the exploratory
variables (X and Y co-ordinates) are exposed to the input
layer, the output layer produces and compares the target
estimate of the function value (137Cs concentration), hid-
den layers (one or two) allow(s) to handle non-linearity
(Fig. 2). The number of neurons in the hidden layers can
vary and is the subject to the optimum configuration. As
long as the aim of MLP in the present work is to extract
a large-scale trend, as few hidden neurons as possible
were chosen to extract non-linear trends. Further
increase of the number of hidden neurons leads to
extracting more detailed local peculiarities and even
noise from the pattern: choosing too many hidden neu-
rons will lead to over-fitting (or over-learning) when
MLP loses its ability to generalize the information from
the samples. On the other hand, using too few hidden
neurons does not provide explicit extraction of the trend;
hence some large-scale correlations will remain in the
residuals restricting further procedure. Thus, geostatist-
ical variogram analysis becomes the key tool to control
the MLP performance for trend extraction.

Fig. 2. Multilayer perceptron.
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2.3. Description of support vector regression model

SVR is a recent development of the statistical learning
theory (SLT) (Vapnik, 1998). It is based on structural
risk minimization and seems to be promising approach
for spatial data analysis and processing (see Scholkopf
and Smola, 1998; Gilardi and Bengio, 2000; Kanevski
et al., 2001). There are several attractive properties of
the SVR: robustness of the solution, sparseness of the
regression, automatic control of the solutions com-
plexity, good generalization performance (Vapnik,
1998). In general, by tuning SVR hyper-parameters, it
is possible to cover a wide range of spatial regression
functions from over-fitting to over-smoothing (Kanevski
et al., 2001).

First, we state a general problem of regression esti-
mation as it is presented in the scope of SLT. Let
{(x1,y1),…(xN,yN)} be a set of observations generated
from an unknown probability distribution P(x, y) with
xi�Rn, yi�R, and F = {f�Rn→R} a class of functions.
The task is to find a function f from the given class of
functions that minimizes a risk functional:

R[f] � �Q(y�f(x),x)dP(x,y) (3)

where Q is a loss function indicating how the difference
between the measurement value and the model’s predic-
tion is penalized.

As P(x, y) is unknown, one can compute an empiri-
cal risk:

Remp �
1
N�N

i � 1

Q(yi�f(xi),xi) (4)

When it is only known that noise-generating distri-
bution is symmetric, the use of linear loss function is
preferable, and results in a model from robust regression
family. For simplicity, we also assume loss to be the
same for all spatial locations.

The Support vector regression model is based on a
new type of loss functions, the so-called e-insensitive
loss functions. Symmetric linear e-insensitive loss is
defined as:

Q(y�f(x),x) � �|y�f(x)|�e, if |y�f(x)| � e

0, otherwise
(5)

The asymmetrical loss function can be used in appli-
cations where underestimations and overestimations are
not equivalent.

Let us start from the estimation of regression function
in a class of linear functions F = {f(x)�f(x) = (w,x) +
b}. Support vector regression is based on the structural
risk minimization principle, which results in penalization
of the model complexity simultaneously with keeping
small empirical risk (training error). The complexity of

linear functions can be controlled by the term ||w||2, see
Eq. (6) (Vapnik, 1998). Also, we have to minimize the
empirical risk (training error). With selected symmetrical
linear e-insensitive loss, empirical risk minimization is
equivalent to adding the slack variables xi,x∗i into the
functional with the linear constraints (7). Introducing the
trade-off constant C, we arrive at the following optimiz-
ation problem:

minimize
1
2

��w��2 � C�N
i � 1

(xi � x∗i ) (6)

subject to �f(xi)�yi�e�xi

�f(xi) � yi�e�x∗i
xi,x∗i �0, for i � 1,…,N

(7)

The slack variables xi,x∗i measure the distance
between the observation and the ε tube. The distance
between the observation and the e and xi,x∗i is illustrated
by the following example: imagine you have a great con-
fidence in your measurement process, but the variance
of the measured phenomena is large. In this case, e has
to be chosen a priori very small while the slack variables
xi,x∗i are optimized and thus can be large. Remember
that inside the ε tube ([f(x)�e,f(x) + e]) loss function
is zero.

Note that by introducing the couple (xi,x∗i ), the prob-
lem now has 2n unknown variables. But these variables
are linked since one of the two values is a necessary
equal to zero. Either the slack is positive (x∗i = 0) or
negative (xi = 0). Thus, yi�[f(xi)�e�xi,f(xi) + e + x∗i ].

A classical way to reformulate the constraint based
minimization problem is to look for the saddle point of
Lagrangian L:

L(w,x,x∗a) �
1
2
��w��2 � C�N

i � 1

(xi � x∗i )��N
i � 1

ai(yi

�f(xi) � e � xi)��N
i � 1

a∗
i (f(xi)�yi � e � x∗i ) (8)

��N
i � 1

(hixi � h∗
i x∗i )

where ai,a∗
i ,hi,h∗

i are Lagrange multipliers associated
with the constraints; ai,a∗

i can be roughly interpreted as
a measure of the influence of the constraints on the sol-
ution. A solution with ai = a∗

i = 0 can be interpreted as
“ the corresponding data point has no influence on this
solution” . Other points with non-zero ai or a∗

i are the
“support vectors (SVs)” of the problem.

The dual formulation of the optimization problem is
solved in practice:
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maximise �
1
2�

N

i � 1

�N
j � 1

(a∗
i �ai)(a∗

j �aj)(xi·xj) (9)

�e�N
i � 1

(a∗
i � ai) � �N

i � 1

yi(a∗
i �ai)

subject to ��Ni � 1

(a∗
i �ai) � 0

0�a∗
i ,ai�C, for i � 1,…,N

This is a quadratic programming (QP) problem, hence
has an unique solution. It can be solved numerically by
a number of methods. After we get the values ai and
a∗

i , we can compute b from the constraints of the pri-
mary problem (7) and make predictions:

f(x) � �N
i � 1

(a∗
i �ai)(xi·x) � b (10)

Note that both the solution (10) and the optimization
problem (9) are written in the terms of dot products.
Hence, we can use a so-called “kernel trick” to achieve
non-linear regression model. We substitute the dot pro-
ducts (xi,xj) with a suitable function
{K�L2(Rn)�L2(Rn),K�(Rn�Rn)→R}. If the kernel func-
tion satisfies the Mercer’s conditions:

��K(x�,x�)g(x�)g(x�)dx�dx� � 0 (11)

for any g(x)�L2(Rn), then it can be expanded in a uni-
formly converging series

K(x�,x�) � �
j

lj	j(x�)	j(x�) (12)

where {li,	j(.)} is an eigensystem of K. We may regard
	j(x) as some j-th feature of vector x, then kernel K is
a dot product in some feature space. As (11) determines
positively defined kernels, the substitution of K instead
of dot products in (9) results in a still convex QP prob-
lem:

maximise �
1
2�

N

i � 1

�N
j � 1

(a∗
i �ai)(a∗

j �aj)K(xi,xj) (13)

�e�N
i � 1

(a∗
i � ai) � �N

i � 1

yi(a∗
i �ai)

subject to ��Ni � 1

(a∗
i �ai) � 0

0�a∗
i ,ai�C, for i � 1,…N

and the prediction is a non-linear regression function:

f(x) � �N
i � 1

(a∗
i �ai)K(xi,x) � b (14)

3. Case study

Radioactive soil contamination caused by the Cherno-
byl fallout features anisotropic highly variable and spotty
spatial pattern. Multiscale character of the pattern is due
to numerous influencing factors: the source term,
weather conditions (especially rainfall), dry and damp
precipitations, surface properties (orography, ground
cover, soil type, land use, etc.). The most significant
influence on the long-term contamination was provided
by the radionuclide cesium 137Cs. The half-life period of
this isotope is about 30 years.

The selected region is rectangular covering 7428 km2

with 845 populated sites. The basic statistical parameters
of the data (137Cs concentration at 684 points) presented
in Fig. 3 are the following: minimum value 5.9 kBq/m2,

Fig. 3. Raw data on 137Cs concentration in the Bryansk region.
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mean value 571.8 kBq/m2, maximum value 4334
kBq/m2, variance 315,372 kBq2/m4, skewness 2.7 and
kurtosis 16.9. As usually, environmental data are posi-
tively skewed and their distributions are far from normal.

The samples reflecting spatial contamination pattern
are the subject of exploratory spatial data analysis to
address spatial continuity. Spatial continuity is a feature
of spatial processes, which have some underlying origin
in the physics of the process. The presence of spatial
continuity means that closer samples are more likely
similar than farther ones (Issaks and Shrivastava, 1989).

Because the samples represent only one realization of
the spatial process, some kind of stationarity assumption
is required to use statistical methods. Strong stationarity
means that for any finite number n of sample points xi

(i = 1,…,n) and any lag h, the joint finite-dimensional
distribution functions of Z(x1),Z(x2),…,Z(xn) are the
same as of Z(x1 + h),Z(x2 + h),…,Z(xn + h). In practice,
this proposition is very hard to be detected, and as we
are usually interested only in two first moments, the
second-order stationarity assumption is enough. It is the
stationarity only of the two first moments: the mean is
constant (E[Z(x)] = m = const) and covariance
(Cov(x1,x2) = E[Z(x1),Z(x2)]�m2 = C(h)) exists and does
not depend on x, but only on h.

Rather often, the real data do not follow even second-
order stationarity model. Intrinsic hypothesis, which is
weaker than second-order stationarity, is enough to apply
geostatistical tools. The intrinsic hypothesis is a process
with second-order stationarity applied for the
increments. It means that the mean of increments (also
named the drift):

D(h) � E[Z(x)�Z(x � h)] (15)

is constant and D(h) = 0 and does not depend on x and
h, and the variance of increments (2g(h) = var[Z(x +
h)�Z(x)]) exists and does not depend on x, only on h.

The drift D(h) can be an indicator of data obedience
to the intrinsic hypothesis. Such a deduction can be
made, for example, when the value of the drift D(h)
fluctuates around zero (the drift is supposed to be zero
whatsoever the position of h in the domain). If D(h)
increases/decreases with the augmentation of the length
of the separation vector h (see Fig. 4), then the data do
not follow the intrinsic hypotheses. It can mean that the
data have systematic trend. In such cases, the variogram
modeling and the following common geostatistical pre-
diction will result in misleading results. To handle this
problem, the trend must be removed from the data in the
first place. Here, the machine learning algorithms have
been used to model the trend in the data.

Cell declustering was used for splitting data into train-
ing and testing sets to provide efficient ML learning. The
region was divided into rectangular cells by a regular
grid and one or several points were selected at random
from each cell. The testing dataset was obtained in this

Fig. 4. The drift of 137Cs data.

way, and the rest of the data formed the training set.
Thus, testing set represents regional data. Of course, the
training set in this case is somewhat clustered that is
not so good for the MLA training. However, using the
backward selection (i.e. picking out the points for train-
ing dataset by the declustering and to consider the rest
as testing one) is impossible to obtain a representative
testing set. The procedure of selection was carried out
several times with different cell sizes and with varying
numbers of the selected points from each cell. Since it
is difficult to control both testing and training datasets,
more attention was paid to the similarity of the training
data set to the initial data structures of all data. The simi-
larity was controlled by comparing summary statistics,
histograms and spatial correlation structures. Similarity
of spatial structures for the obtained datasets to the initial
data is even more important than statistical factors. Com-
parison of the spatial structure was carried out with the
help of variogram roses, which show anisotropy. Such
comparison provides grounds that split (see Fig. 5) with
484 training and 200 testing points is quite suitable for
the following ML modeling and it is the best of all
obtained.

In the present study, MLP models with the following
parameters were used: two input neurons, describing
spatial co-ordinates (X, Y), one hidden layer and output
neuron describing 137Cs contamination. Backpropagation
training with Levenberg-Marquardt followed by conju-
gate gradient algorithm was used in order to avoid local
minima (Masters, 1995).

The variogram analysis of the obtained residuals for
the trained neural networks with varying number of neu-
rons in the hidden layer showed that the optimal results
(in the sense of modeling non-linear trends) was
obtained by using MLP with five neurons in a single
hidden layer. Further increase of the number of hidden
neurons leads to extracting more detailed local peculiari-
ties of the pattern, reflected by multiple correlation range
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Fig. 5. Location of the training and testing points.

of the variogram of trend estimates. Then, MLP is used
for 137Cs spatial prediction mapping. Predictions were
performed on a rectangular regular grid with cell size
1 × 1 km. The result for the 137Cs MLP large-scale map-
ping is presented in Fig. 6.

Let us present the results of the large-scale modeling
using support vector regression approach. Several user-
defined (hyper) parameters influence on the SVR model:
kernel function, C, e. Gaussian radial basis functions
(RBF) were found to be well suited for spatial environ-
mental modeling:

K(x,x�) � exp��
|x�x�|2

2s2 � (16)

Kernel parameter—bandwidth s is related to some
characteristic correlation scales of trend model. Kernel
bandwidth of 20 km is used for the presented model.
Other parameters were defined as: C = 20, e = 200. This

Fig. 6. 137Cs, artificial neural network (one hidden layer with five
neurons) spatial predictions.

choice is based both on the analysis of training and test-
ing errors and the analysis of the variogram of the
resulting trend model. Detailed description of the influ-
ence of the parameters on the solution and tuning pro-
cedure can be found in Kanevski et al. (2001). The map-
ping results (trend model) are presented in Fig. 7.

Trained multilayer perceptron and support vector
regression were able to extract some information from
data described by large-scale spatial correlations. The
rest of the information—small scale spatially structured
residuals—was analyzed and modeled using geostatist-
ical conditional stochastic simulations. The obtained
residuals are correlated with the original data and are not
correlated with the MLA estimates (see Figs. 8 and 9).
Correlation coefficients between the residuals and 137Cs
sample values are equal to 0.77 (for MLP residuals) and
0.79 (for SVR residuals).

Exploratory variography of spatial correlation struc-
tures of the Nscore transformed residuals are presented
in Figs. 10 and 11. Variograms of the Nscore transfor-
med residuals can be easily modeled (fitting to theoreti-
cal model) and SGSs can be applied (variogram reaches
a sill and levels off). Final ML residual sequential Gaus-
sian simulation results are presented as equiprobable
realizations in Figs. 12 and 13. They keep the large-scale
trend structure (from Figs. 6 and 7) and also feature dis-
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Fig. 7. 137Cs, support vector regression trend modeling.

Fig. 8. Scatterplot of the MLP and SVR residuals vs. 137Cs sample
values.

tinctive spatial variability and small-scale effects ignored
by ML models.

The similarity and dissimilarity between the realiza-
tions describe spatial variability and uncertainty. The
next step deals with the probabilistic mapping: prob-
ability mapping of to be above/below some predefined
decision level. This topic relates to decision-oriented
mapping of contaminated territories. Usually, hundreds

Fig. 9. Scatterplot of the MLP and SVR residuals vs. MLP and SVR
estimates, respectively.

Fig. 10. Nscore omni-directional variogram and the variogram model
of the MLP residuals.

Fig. 11. Nscore omni-directional variogram and the variogram model
of the SVR residuals.
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Fig. 12. Mapping of 137Cs with neural network residual sequential
Gaussian simulations model (NNRSGS).

of simulated models (realizations) are generated. Post-
processing of realizations gives rich variety of outputs,
one of them is the probability/risk map. Probability maps
of exceeding level 800 kBq/m2 obtained with neural
network/support vector regression residual sequential
Gaussian simulation models are presented in Figs. 14
and 15, respectively. This is an important advanced
information for the real decision-making process.

4. Discussion

The final stage deals with the validation of the ML
residual sequential Gaussian simulation results. compari-
sons with geostatistical prediction models were carried
out. The proposed models give comparable or better
results on different data sets. A comparison between pro-
posed models (NNRSGS and SVRRSGS) was also car-
ried out at the testing points. As a result, the NNRSGS
model gives better results than the SVRRSGS model in
terms of testing error and summary statistics of testing
distribution. Comprehensive comparison with other ML
methods is a topic of further research.

Several important points should be mentioned:

(1) Analysis of the residuals is important also in case

Fig. 13. Mapping of 137Cs with support vector regression residual
sequential Gaussian simulations model (SVRRSGS).

when only ML mapping is applied. This helps to
understand the quality of the results. If there is no
spatial correlation in the residuals, it means that all
spatial information from data have been extracted
and ML can be used for prediction mapping as well.

(2) Robustness of the approach: how it is sensitive to
the selection of the ML architecture and learning
algorithm. Chernov et al. (1999) demonstrated the
robustness of MLP with varying number of neurons
on validation data. Also, it was shown that MLP is
more sensitive towards selection of the training set
than towards the number of neurons. The same
robust behavior in the case presented in this study
has been obtained both for MLP and SVR (varying
model parameters). So, we can choose the simplest
ML models capable to learn and catch non-linear
trends.

Usually, accuracy test (analysis of the residuals) has
been used for the analysis and description of what was
learned by ML. Accuracy test measures correlation
between the training data and the MLA predictions at
the same points.

(3) Data clustering is a well-known problem in spatial
data analysis (Deutsch and Journel, 1998). This
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Fig. 14. Probability of exceeding level of 800 kBq/m2 for
NNRSGS model.

problem is related to the spatial representativity of
data. The influence of clustering on the efficiency of
ML algorithms should be studied in detail.

5. Conclusions

New non-stationary NNRSGS and SVRRSGS models
for the analysis and mapping of spatially distributed data
were developed. Non-linear trends in environmental data
can be efficiently modeled by a three layer perceptron.
Combinations of ML and geostatistical models gave rise
to the decision-oriented risk and probabilistic mapping.
Promising results presented are based on the unique case
study: soil contamination by the most radiologically
important Chernobyl radionuclide. Other kinds of ANN
models (in particular local approximators) can be used
with possible modifications in the proposed framework.
ML based models are preferable to pure geostatistical
methods because the latter have limitations due to pres-
ence of non-linear trends in data, which are difficult to
model. Computational costs of the method are rather
cheap for a typical geostatistical problem. But the appli-
cation of the method needs deep expert knowledge in
geostatistical modeling. Further, extensions of the

Fig. 15. Probability of exceeding level of 800 kBq/m2 for
SVRRSGS model.

approach may deal with multivariate cases as long as
ML algorithms are capable of dealing with multivariate
information and can integrate different types of data.
Extension of the model to image processing requires
improving and adaptation of the algorithms, especially
from ML side. Recent developments in ML algorithms
implementations, see e.g. http://www.torch.ch, are prom-
ising from the computational point of view.

The analysis and presentation of the results as well as
MLP and Gaussian simulation modeling were performed
with the help of GEOSTAT OFFICE software (Kanevski
et al., 1999). Support vector regression modeling was
carried out with the help of GeoSVM
(http://www.ibrae.ac.ru/~mkanev).

Acknowledgements

The work was supported in part by the INTAS grants
99-00099, 97-31726, INTAS Aral Sea project #72,
CRDF grant RG2-2236, and Russian Academy of
Sciences grant for young scientists research N84, 1999.

http://www.torch.ch
http://www.ibrae.ac.ru/~mkanev


855M. Kanevski et al. / Environmental Modelling & Software 19 (2004) 845–855

References

Bishop, C.M., 1995. Neural Networks for Pattern Recognition. Claren-
don Press, Oxford.

Chernov, S., Demyanov, V., Grachev, N., Kanevski, M., Kravetski,
A., Savelieva, E., Timonin, V., Maignan, M., 1999. Multiscale Pol-
lution Mapping with Artificial Neural Networks and Geostastistics.
Proceedings of the 5th Annual Conference of the International
Association for Mathematical Geology (IAMG’ 99). Ed. Lippartd,
S.J., Nass, A., Sinding-Larsen, R., August 1999, 325-330.

Cressie, N., 1991. Statistics for Spatial Data. John Wiley & Sons,
New York.

De Cort, M., Tsaturov, Yu.S., 1996. Atlas on caesium contamination
of Europe after the Chernobyl nuclear plant accident. European
Commission, Report EUR 16542 EN.

Demyanov, V., Kanevski, M., Savelieva, E., Timonin, V., Chernov,
S., Polishuk, V., 2000. Neural Network Residual Stochastic Cosi-
mulation for Environmental Data Analysis. Proceedings of the
Second ICSC Symposium on Neural Computation (NC’2000), May
2000, Berlin, Germany, 647-653.

Deutsch, C.V., Journel, A.G., 1998. GSLIB Geostatistical Software
Library and User’s Guide. Oxford University Press, New York,
Oxford.

Dowd, P.A., 1994. In: Dimitrakopoulos, R. (Ed.), The Use of Neural
Networks for Spatial Simulation, Geostatistics for the Next Cen-
tury. Kluwer Academic Publishers, pp. 173–184.

Fedra, K., Winkelbauer, L., 1999. A hybrid expert system, GIS and
simulation modeling for environmental and technological risk man-
agement. Environmental Decision Support Systems and Artificial
Intelligence, Technical Report WS-99-07. AAAI Press, Menlo
Park, CA, pp. 1–7.

Gambolati, G., Galeati, G., 1987. Comment on “analysis of nonintrin-
sic spatial variability by residual kriging with application to
regional groundwater levels” by Neuman and Jacobson. Mathemat-
ical Geology 19, 249–257.

Gilardi, N., Bengio, S., 2000. Local machine learning models for spa-
tial data analysis. IDIAP-RR 00-34.

Haas, T.C., 1996. Multivariate spatial prediction in the presence of
nonlinear trend and covariance nonstationarity. Environmetrics 7.

Haykin, S., 1999. Neural Networks. A Comprehensive Foundation,
second ed. Prentice Hall International, Inc.

Isaaks, Ed.H., Shrivastava, R.M., 1989. An Introduction to Applied
Geostatistics. Oxford University Press, Oxford.

Kanevski, M., Demyanov, V., Chernov, S., Savelieva, E., Serov, A.,
Timonin, V., 1999. Geostat Office for Environmental and Pollution
Spatial Data Analysis. Mathematische Geologie. CPress Publishing
House, band 3, April, pp. 73–83.

Kanevski, M., Pozdnukhov, A., Canu, S., Maignan, M., Wong, P., Shi-
bli, S., 2001. Support vector machines for classification and map-
ping of reservoir data. In: Soft Computing for Reservoir Charac-
terization and Modeling. Springer-Verlag, pp. 531–558.

Kanevsky, M., Arutyunyan, R., Bolshov, L., Demyanov, V., Linge,
I., Savelieva, E., Shershakov, V., Haas, T., Maignan, M., 1996a.
Geostatistical Portrayal of the Chernobyl fallout. In: Baafi, E.Y.,
Schofield, N.A. (Eds.), Geostatistics ’96, Wollongong, vol. 2.
Kluwer Academic Publishers, pp. 1043–1054.

Kanevsky, M., Arutyunyan, R., Bolshov, L., Demyanov, V., Maignan,
M., 1996b. Artificial neural networks and spatial estimations of
Chernobyl fallout. Geoinformatics 7, 5–11.

Masters, Timothy, 1995. Advanced Algorithms for Neural Networks.
A C++ Sourcebook. John Wiley & Sons, Inc.

Neuman, S.P., Jacobson, E.A., 1984. Analysis of nonintrinsic spatial
variability by residual kriging with application to regional
groundwater levels. Mathematical Geology 16, 499–521.

Pélissier, R., Goreaud, F., 2001. A practical approach to the study of
spatial structure in simple cases of heterogeneous vegetation. Jour-
nal of Vegetation Science 12, 99–108.

Scholkopf, B., Smola, A., 1998. Learning with Kernels. MIT Press,
Cambridge, MA.

Vapnik, V., 1998. Statistical Learning Theory. John Wiley & Sons,
New York.


	Environmental data mining and modeling based on machine learning algorithms and geostatistics
	Introduction
	Machine learning residual Gaussian simulations
	Methodology of ML residual Gaussian simulations
	Description of multilayer perceptron model
	Description of support vector regression model

	Case study
	Discussion
	Conclusions
	Acknowledgements

	References

