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Many contemporary problems faced by Earth sciences and society
are complex, for example, climate change, disaster risk, energy and
water security, and preservation of oceans. Studies of these chal-
lenges require an interdisciplinary approach and common knowl-
edge. This book contributes to closing the gap between Earth
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ques on data assimilation and inversions developed within the
same/another discipline or across the disciplines.
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Preface

At the end of the last century, Stephen Hawking mentioned
that ‘the next century will be the century of complexity’.
Indeed, many contemporary problems faced by Earth
sciences and society are complex (e.g. climate change, dis-
aster risk, energy and water security, and preservation of
oceans). Studies of these challenges require an interdisci-
plinary approach and common knowledge. Ability to utilise
data within and across geophysical disciplines remains lim-
ited as the knowledge of themethodologies for data analyses
and data assimilation developed in one discipline is limited,
if not unknown, within the scientific communities of other
geoscience disciplines.

For years, conferences and symposia of the International
Union of Geodesy and Geophysics (IUGG), organised by
the Union Commission on Mathematical Geophysics, fea-
tured data assimilation and inverse problems related to
a specific geophysical field or to an interdisciplinary field.
The idea of a book on data assimilation and inversions in
Earth sciences maturated during a series of scientific meet-
ings since the 2015 IUGGGeneral Assembly in Prague. The
meetings brought together prominent experts in different
fields of geoscience to address recent developments, chal-
lenges, and perspectives in data assimilation and geophysi-
cal inversions.

The book Applications of Data Assimilation and Inverse
Problems in the Earth Sciences contributes to closing the gap
between Earth science disciplines and assists in utilisation of
the growing amount of data from observations and experi-
ments using modern techniques on data assimilation and
inversions developed within the same/another discipline or
across the disciplines. This book sets out basic principles of
inverse problems and data assimilation and presents appli-
cations of data assimilation and inverse problems in many
geoscience disciplines. The book’s goal is to highlight the
importance of research in data assimilation and geophysical
inversions for predictability and for understanding dynamic
processes of the Earth and its space environment. The book
summarises new advances in the field of data assimilation
and inverse problems related to different geoscience fields.
Data assimilation and geophysical inversions assist in

scientific understanding and forecasting natural hazard
events, such as atmospheric pollution, floods, earthquakes,
and volcanoes. This interdisciplinary book provides gui-
dance on future research directions to experts, early career
scientists, and graduate students.

This book covers a range of important research issues,
consists of twenty-two peer-reviewed chapters, and is orga-
nised into the following parts: basic knowledge about
inverse problems and data assimilation (Part I); and appli-
cations of the techniques of data assimilation and geophy-
sical inversions to problems related to cryosphere,
hydrology, atmospheric chemistry, volcanic cloud propaga-
tion, and near-Earth electron radiation (Part II); and to
problems related to geochronology, lava dynamics, ground
shaking due to earthquakes, seismic tomography, gravity
and geodetic inversions, geodynamics, geomagnetism, and
joint geophysical inversions (Part III). We hope that this
book will inspire more researchers to focus on data assim-
ilation and inverse problems in Earth sciences and provide
a useful theoretical reference and practical applications of
data assimilation and inverse problems.

The book is intended for academic researchers and
graduate students from a broad spectrum of Earth and
environmental science disciplines interested in data
assimilation and inverse problems. We believe that this
book will complement other publications on the topic in
terms of the coverage of geoscience topics, and hope that
the book will form an important reference for research-
ers dealing with data assimilation and geophysical
inversions.

We apologise that the book does not contain all methods
for data assimilation and inversions, but only those fre-
quently used in the geosciences. However, we believe that
the methods and the applications described here will be
helpful for understanding how Earth observations and
data can be utilised to quantitatively resolve some problems
in dynamics of the Earth and its space environment. We
hope that readers will enjoy reading this book to learn more
about inverse problems and assimilation of data in
geosciences.
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1
Inverse Problems and Data
Assimilation in Earth Sciences

Alik Ismail-Zadeh, Fabio Castelli, Dylan Jones, and Sabrina Sanchez

Abstract: We introduce direct and inverse problems,
which describe dynamical processes causing change in
the Earth system and its space environment. A well-
posedness of the problems is defined in the sense of
Hadamard and in the sense of Tikhonov, and it is linked
to the existence, uniqueness, and stability of the problem
solution. Some examples of ill- and well-posed problems
are considered. Basic knowledge and approaches in data
assimilation and solving inverse problems are discussed
along with errors and uncertainties in data and model
parameters as well as sensitivities of model results.
Finally, we briefly review the book’s chapters which
present state-of-the-art knowledge in data assimilation
and geophysical inversions and applications in many
disciplines of the Earth sciences: from the Earth’s core
to the near-Earth environment.

1.1 Introduction

Many problems in Earth sciences are related to dynamic
processes within the planet, on its surface, and in its space
environment. Geoscientists study the processes using obser-
vations and measurements of their manifestations. Each
process can be presented by a model described by physical
and/or chemical laws and a set of relevant parameters. The
model, in its turn, can be represented by a mathematical
model; that is, a set of partial differential equations or
ordinary differential equations with boundary and/or initial
conditions defined in a specific domain. The mathematical
model links its parameters and variables with a set of
data from observations and measurements and provides
a connection between the causal characteristics of the
dynamic process and its effects. The causal characteristics
include, for example, physical parameters (such as velocity,
temperature, pressure), parameters of the initial and bound-
ary conditions, and geometrical parameters of a model
domain.

The aim of the direct mathematical problem is to deter-
mine the effects of a dynamic model process based on the
knowledge of its causes, and hence to find a solution to the
mathematical problem for a given set of model parameters.
An inverse problem is the opposite of a direct problem. An

inverse problem is considered when there is a lack of infor-
mation on the causal characteristics but information on the
effects of the dynamic process exists (e.g. Kirsch, 1996;
Kabanikhin, 2011; Ismail-Zadeh et al., 2016). For example,
the seismic wave velocities inferred from seismograph’s
measurements on the Earth’s surface are related to a fault
rupture in the lithosphere; the rupture process and the wave
propagation are described mathematically by the wave
equation, which relates causal characteristics (the velocity,
density, and elastic properties) with their effects. The heat
flow measured at the Earth’s surface and inferred
temperature can be related to the heat equation linking
temperature, thermal conductivity, density, and specific
heat.

For centuries, physicists searched for and discovered the
causes of the effects of the geophysical processes they
observed, so that they solved simplified inverse problems.
Inverse problems, as formalised mathematical studies, have
been initiated in the twentieth century (e.g. Weyl, 1911).
These problems allow for determining model parameters
or specific model conditions that cannot be directly
observed. Inverse problems can be subdivided into time-
reverse or retrospective problems (e.g. to determine initial
conditions in the past and/or to restore the development of
a dynamic process), coefficient problems (e.g. to determine
the coefficients of the model and/or boundary conditions),
geometrical problems (e.g. to determine the location of heat
sources in a model domain or the geometry of the model
boundary), and some others.

1.2 Inverse Problems and Well-Posedness

The idea of well- (and ill-)posedness in the theory of partial
differential equations was introduced by Hadamard (1902).
A mathematical model of a geophysical problem is well-
posed if (i) a solution to this problem exists, and the solution
is (ii) unique and (iii) stable. Problems for which at least one
of these three properties does not hold are called ill-posed.
Existence of the problem’s solution is normally proven by
mathematicians, at least in the simplest cases. Meanwhile, if
the solution exists, itmay not be unique, allowing formultiple

https://doi.org/10.1017/9781009180412.002 Published online by Cambridge University Press
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theoretical solutions, as in the case of potential-field inter-
pretation. The non-uniqueness of potential-field studies is
associated with the general topic of scientific uncertainty in
the Earth sciences, because problems are generally addressed
with incomplete and imprecise data (Saltus and Blakely,
2011). The requirement of stability is the most important in
numerical modelling. If a problem lacks the property of
stability, then its solution is almost impossible to compute,
because computations are polluted by unavoidable errors. If
the solution of a problem does not depend continuously on
the initial data, then, in general, the computed solution may
have nothing to do with the true solution.

Inverse problems are often ill-posed. For example, the retro-
spective (inverse) problem of thermal convection is an ill-
posed problem, since the backward heat problem, describing
both heat advection and conduction backwards in time, pos-
sesses the property of instability (e.g.Kirsch, 1996). In particu-
lar, the solution to the problem does not depend continuously
on the initial data. This means that small changes in the
present-day temperature field may result in large changes of

predicted temperatures in the past. Following Ismail-Zadeh
et al. (2016), this statement is explained using a simple problem
related to the one-dimensional (1-D) diffusion equation
(Example 1).

Although inverse problems are quite often unstable
and hence ill-posed, there are some methods for solving
them. The idea of conditionally well-posed problems
and the regularisation method were introduced by
Tikhonov (1963). According to Tikhonov, a class of
admissible solutions to conditionally ill-posed problems
should be selected to satisfy the following conditions: (i)
a solution exists in this class, (ii) the solution is unique
in the same class, and (iii) the solution depends continu-
ously on the input data (i.e. the solution is stable). The
Tikhonov regularisation is essentially a trade-off
between fitting the observations and reducing a norm
of the solution to the mathematical model of
a geophysical problem. We show the differences between
the Hadamard’s and Tikhonov’s approaches to ill-posed
problems in Example 2.

Example 1

Consider the following problem for the 1-D backward diffusion
equation

∂uðt; xÞ= ∂t ¼ ∂ 2uðt; xÞ= ∂x2; 0 ≤x ≤ π; t < 0; ð1:1Þ

with the following boundary and initial conditions

uðt; 0Þ ¼ 0 ¼ uðt; πÞ; t ≤ 0; uð0; xÞ ¼ ϕnðxÞ; 0 ≤x ≤ π: ð1:2Þ

At the initial time, the function ϕnðxÞ is assumed to take the
following two forms:

ϕnðxÞ ¼
sinðð4nþ 1ÞxÞ

4nþ 1
and ϕ0ðxÞ≡ 0: ð1:3Þ

We note that

max
0 ≤ x ≤ π

jϕnðxÞ � ϕ0ðxÞj ≤
1

4nþ 1
→ 0 at n→∞: ð1:4Þ

The two solutions of the problem

unðt; xÞ ¼
sinðð4nþ 1ÞxÞ

4nþ 1
expð�ð4nþ 1Þ2tÞ at ϕnðxÞ ¼ ϕn and

ð1:5Þ
u0ðt; xÞ≡ 0 at ϕnðxÞ ¼ ϕ0 ð1:6Þ

correspond to the two chosen functions of ϕnðxÞ, respectively. At
t ¼ �1 and x ¼ π=2

un �1;
π
2

� �
� u0 �1;

π
2

� �
¼ 1

4nþ 1
expðð4nþ 1Þ2Þ→∞ at n→∞:

ð1:7Þ

At large n, two closely set initial functions ϕn and ϕ0 are
associated with the two strongly different solutions at t ¼ �1
and x ¼ π=2. Hence, a small error in the initial data (1.4) can
result in very large errors in the solution to the backward
problem (1.7), and therefore the solution is unstable, and the
problem is ill-posed in the sense of Hadamard.

Example 2

Consider the problem for the 1-D backward diffusion equation
(like the problem presented in Example 1)

∂uðt; xÞ= ∂t ¼ ∂ 2uðt; xÞ= ∂x2; 0 ≤x ≤ π; �T ≤ t < 0; ð1:11Þ

with the boundary and initial conditions (1.2). The solution of
the problem satisfies the inequality

‖ uðt; xÞ ‖ ≤ ‖ uðT; xÞ ‖ �t=T ‖ uð0; xÞ ‖ 1þt=T ; ð1:12Þ

where the norm is presented as ‖ uðt; xÞ ‖ 2 ≡
ðπ
0

u2ðt; xÞdx. We
note that the inequality

‖ uðt; xÞ ‖ ≤M�t=T ‖ u0 ‖
1þt=T ð1:13Þ

is valid in the class of functions ‖ uðt; xÞ ‖ ≤M ¼ const
(Samarskii and Vabischevich, 2007). Inequality (1.13) yields
a continuous dependence of the problem’s solution on the initial
conditions, and hence to well-posedness of the problem in the
sense of Tikhonov. Therefore, the Tikhonov approach allows
for developing methods for regularisation of the numerical
solution of unstable problems.
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1.3 Data Assimilation

With a growth of data related to Earth observations and
laboratory measurements, the enhancement of data quality
and instrumental accuracy, as well as the sophistication of
mathematical and numerical models, the assimilation of
available information into the models to determine specific
states of geophysical/geochemical dynamic processes as
accurately as possible becomes an essential tool in solving
inverse problems. Data assimilation can be defined as the
incorporation of observations and initial/boundary condi-
tions in an explicit dynamic model to provide time continu-
ity and coupling among the physical characteristics of the
dynamic model (e.g. Kalnay, 2003; Lahoz et al., 2010; Law
et al., 2015; Asch et al., 2016; Ismail-Zadeh et al., 2016;
Fletcher, 2017).

Data assimilation has been pioneered by meteorologists
and successfully applied to improve operational weather
forecasts (e.g. Ghil and Malanotte-Rizzoli, 1991; Kalnay,
2003). To produce forecasts, initial conditions are required
for the weather prediction models resembling the current
state of the atmosphere. Data assimilation starts with
‘unknown’ forecasts and applies corrections to the forecast
based on observations and estimated errors in the observa-
tions and in the forecasts. The difference between the fore-
cast and the observed data at a certain time is assessed using
different methods to make new forecast to better fit the
observations.

Data assimilation and geophysical inversions have also
been widely used in oceanography (e.g. Ghil andMalanotte-
Rizzoli, 1991; Bennett, 1992), hydrology (e.g. McLaughlin,
2002), seismology (e.g. Backus and Gilbert, 1968), geody-
namics (e.g. Bunge et al., 2003; Ismail-Zadeh et al., 2003;
2004; 2016), geomagnetism (Fournier et al., 2007; Liu et al.,
2007), and other Earth science disciplines (e.g. Park and Xu,
2009; Lahoz et al., 2010; Blayo et al., 2014). We note, that
depending on the geoscience discipline, data assimilation is
also referred to as state estimation, history matching, and
data-driven analysis.

1.4 Data Assimilation and Inversions: Basic
Approaches and Sensitivity Analysis

Part I of the book introduces basic knowledge and
approaches in data assimilation and inversions and presents
a high-order sensitivity analysis to obtain best estimate
results with reduced uncertainties.

There are two basic approaches to solve inverse problems:
classical and Bayesian. The classical approach considers
a mathematical model as a true model describing the phys-
ical process under study, and geoscientific data as the only
available data set with some measurement errors. The goal

of this approach is to recover the true model (e.g. initial or
boundary conditions). Another way to treat a mathematical
model is the Bayesian approach, where the model is con-
sidered as a random variable, and the solution is
a probability distribution for the model parameters (e.g.
Aster et al., 2005).

Chapter 2 discusses these approaches in more detail.
This chapter also provides an accessible general intro-
duction to the breadth of geophysical inversions and
presents similarities and connections between different
approaches (Valentine and Sambridge, this volume).
Chapter 3 introduces the Bayesian data assimilation
providing a history of geophysical data assimilation
and its current directions (Grudzien and Bocquet, this
volume).

All variables in data assimilation models (e.g. state vari-
ables describing physical properties, such as velocity, pres-
sure, or temperature; initial and/or boundary conditions;
and parameters such as viscosity or thermal diffusivity) can
be polluted by errors. The source of errors comes from
imperfect measurements and computations. Experimental
or calibration standard errors result in measurement
errors. Systematic errors in numerical modelling are asso-
ciated with a mathematical model, its discretisation, and
iteration errors. Model errors are associated with the ideal-
isation of Earth system dynamics by a set of conservation
equations governing the dynamics. Model errors can be
defined as the difference between the actual Earth system
dynamics and the exact solution of the mathematical
model. Discretisation errors are associated with the differ-
ence between the exact solution of the conservation equa-
tions and the exact solution of the algebraic system of
equations obtained by discretising these equations. And
iteration errors are defined as the difference between the
iterative and exact solutions of the algebraic system of
equations (Ismail-Zadeh and Tackley, 2010). Also, errors
can stem from imperfectly known physical processes or
geometry. Determining the changes in computed model
responses that are induced by variations in the model
parameters (e.g. due to errors) is the scope of sensitivity
analysis, which is linked to the stability of systems to small
errors.

Sensitivity analysis assists in understanding the stabil-
ity of the model solution to small perturbations in input
variables or parameters. For instance, consider the ther-
mal convection in the Earth’s mantle. If the temperature
in the geological past is determined from the solution of
the backward thermal convection problem using present
mantle temperature assimilated to the past, the following
question arises: what will be the temperature variation
due to small perturbations of the present temperature
data? The gradient of the objective functional (represent-
ing the misfit between the model and measured tempera-
ture) with respect to the present temperature in
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a variational data assimilation gives the first-order sensi-
tivity coefficients (e.g. Hier-Majumder et al., 2006).
A second-order adjoint sensitivity analysis presents
some challenges associated with cumbersome computa-
tions of the product of the Hessian matrix of the object-
ive functional with a vector (Le Dimet et al., 2002).

Chapter 4 discusses higher-order sensitivity and uncer-
tainty analysis to obtain best estimates with reduced uncer-
tainties. The analysis is applied to an inverse radiation
transmission problem, to an oscillatory dynamical model,
and to a large-scale computational model involving thou-
sands of uncertain parameters. The examples illustrate
impacts of the first-, second-, and third-order response
sensitivities to parameters on the expectation, variance,
and skewness of the respective model responses (Cacuci,
this volume).

1.5 Data Assimilation and Inverse Problems in ‘Fluid’
Earth Sciences

Part II of the book is dedicated to applications of data
assimilation and inversions to problems related to the cryo-
sphere, hydrosphere, atmosphere, and near-Earth environ-
ment (‘fluid’ Earth spheres).

Estimates of seasonal snow often bear significant uncer-
tainties (e.g. due to error-prone forcing data and parameter
estimates), and data assimilation becomes a useful tool to
minimise inherent limitations that result from the uncer-
tainty. Chapter 5 reviews current snowmodels, snow remote
sensing methods, and data assimilation techniques that can
reduce uncertainties in the characterisation of seasonal
snow (Girotto et al., this volume). Although some proper-
ties at the surface of glaciers and ice sheets can be measured
from remote sensing or in-situ observations, other charac-
teristics, such as englacial and basal properties, or past
climate conditions, remain difficult or impossible to
observe. Data assimilation in glaciology assists in inferring
unknown properties and boundary conditions to be
employed in numerical models (Morlighem and Goldberg,
this volume). Chapter 6 presents common applications of
data assimilation in glaciology, and some of the new direc-
tions that are currently being developed.

Data assimilation in many hydrological problems shares
distinct peculiarities: scarce or indirect observation of
important state variables (e.g. soil moisture, river discharge,
groundwater level), very incomplete or largely conceptual
modelling, extreme spatial heterogeneity, and uncertainty
on controlling physical parameters (Castelli, this volume).
Chapter 7 discusses the peculiarities of data assimilation for
state estimation andmodel inversion in hydrology related to
the following applications: soil moisture, runoff for flood
and inundation prediction, static geophysical inversion in

groundwater modelling, and dynamic geophysical inversion
in coupled surface water and energy balance.

Robust estimates of trace gas emissions that impact air
quality and climate provide important knowledge for
informed decision-making. Better monitoring and increas-
ing data availability due to expanding observing networks
provide information on the changing composition of the
atmosphere. Chapter 8 discusses the use of various inverse
modelling approaches to quantify emissions of environmen-
tally important trace gases, with a focus on the use of satel-
lite observations. It presents the inverse problem of
retrieving the atmospheric trace gas information from the
satellite measurements, and the subsequent use of these
satellite data for inverse modelling of sources and sinks of
the trace gases (Jones, this volume).

Models of volcanic cloud propagation due to volcanic
eruptions assist in operational forecasts and provide invalu-
able information for civil protection agencies and aviation
authorities during volcanic crises. Quantitative operational
forecasts are challenging due to the large uncertainties that
typically exist when characterising volcanic emissions in real
time, and data assimilation assists in reduction of quantita-
tive forecast errors (Folch and Mingari, this volume).
Chapter 9 reviews state-of-the-art in data assimilation of
volcanic clouds and its use in operational forecasts.

Energetic charged particles trapped by the Earth mag-
netic field present a significant hazard for Earth orbiting
satellites and humans in space, and data assimilation helps
to reconstruct the global state of the radiation particle
environment from observations (Shprits et al. this volume).
Chapter 10 describes recent studies related to data assimila-
tion in the near-Earth electron radiation environment.
Applications to the reanalysis of the radiation belts and
ring current, real-time predictions, and analysis of the miss-
ing physical processes are discussed in the chapter.

1.6 Data Assimilation and Inverse Problems in Solid
Earth Sciences

Part III presents methods and applications of data assimila-
tion and inversions in problems of the solid Earth sciences:
geochronology, volcanology, seismology, gravity, geodesy,
geodynamics, and geomagnetism.

Chapter 11 presents applications of inverse methods,
namely, trans-dimensional Markov chain Monte Carlo, to
geochronological and thermochronological data to identify
the number of potential source components for detrital mater-
ial in sedimentary basins and to extract temperature histories
of rocks over geological time (Gallagher, this volume).

Lava dome growth and lava flow are two main manifest-
ations of effusive volcanic eruptions. Chapter 12 discusses
inverse problems related to lava dynamics. One problem is
related to a determination of the thermal state of a lava flow
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from thermal measurements at its surface using
a variational data assimilation method. Another problem
aims to determine magma viscosity by comparison of
observed and simulated lava domes employing artificial
intelligence methods (Ismail-Zadeh et al., this volume).

Chapter 13 deals with data assimilation for real-time
shake-mapping and ground shaking forecasts to assist in
earthquake early warning systems. The current seismic
wavefield is rapidly estimated using data assimilation, and
then the future wavefield is predicted based on the physics of
wave propagation (Hoshiba, this volume).

Global seismic tomography using time domain waveform
inversion is overviewed in Chapter 14 in the context of
imaging the Earth’s whole mantle at the global scale. The
chapter discusses how the tomography problem is addressed,
data selection approaches, definitions of the misfit function,
and computation of kernels for the inverse step of the
imaging procedure, as well as the choice of optimisation
method (Romanowicz, this volume). The diversity of seismic
inverse problems – in terms of scientific scope, spatial scale,
nature of the data, and available resources – precludes the
existence of a silver bullet to solve the problems. Chapter 15
describes smart methods for solving the inverse problems,
which increase computational efficiency and usable data vol-
umes, sometimes by orders of magnitude (Gebraad et al., this
volume).

Chapter 16 deals with joint inversions as a hypothesis
testing tool to study the Earth’s subsurface. It presents an
application of joint inversions of gravity andmagnetic data
with seismic constraints in the western United States. As
a result of the joint inversions, high velocity structures in
the crust are found to be associated with relatively low-
density anomalies, potentially indicating the presence of
melt in a rock matrix (Moorkamp, this volume). An appli-
cation of gravity inversion of Bouguer anomalies is pre-
sented in Chapter 17 focusing on the Moho depth and
crustal density structure in the Tibetan Plateau. The inver-
sion results clearly recognise a thick Tibetan crust and
Moho depths of more than 60 km (Jin and Xuan, this
volume).

Chapter 18 describes geodetic inversions and applica-
tions in geodynamics. Rapid development of the Global
Navigation Satellite Systems (GNSS) allows enhanced
geodynamic studies providing information about global-
scale plate motions, plate boundary deformation, seismo-
tectonic deformation, volcanology, postglacial isostatic
rebound, ice flow, and water mass flow. A geophysical
interpretation of GNSS observations is based on rheo-
logical models used to predict surface motions related to
various tectonic processes and the corresponding inversion
technique permitting us to separate the processes and to
evaluate their parameters (Steblov and Vladimirova, this
volume).

In Chapter 19, basic methods for data assimilation used
in geodynamic modelling are described: backward

advection method, variational (adjoint) method, and
quasi-reversibility method. To demonstrate the applicabil-
ity of the methods, two models are considered: a model of
restoring prominent mantle plumes from their diffused
stage, and a model of reconstruction of the thermal state
of the mantle beneath the Japanese islands and their sur-
roundings during forty million years. Also, this chapter
discusses challenges, advantages, and disadvantages of
the data assimilation methods (Ismail-Zadeh, Tsepelev,
and Korotkii, this volume). Chapter 20 deals with global
mantle convection in the Earth. Variational data assimila-
tion allows for retrodicting past states of the Earth’s man-
tle as optimal flow histories relative to the current state.
Poorly known mantle flow parameters, such as rheology
and composition, can be then tested against observations
extracting information from the geologic records (Bunge
et al., this volume).

Chapter 21 presents geomagnetic data assimilation,
which aims to optimally combine geomagnetic observa-
tions and numerical geodynamo models to better esti-
mate the dynamic state of the Earth’s outer core and to
predict geomagnetic secular variation. It provides a com-
prehensive overview of recent advances in the field, as
well as some of the immediate challenges of geomagnetic
data assimilation, possible solutions, and pathways to
move forward (Kuang et al., this volume). Chapter 22
introduces main characteristics of geomagnetic data and
magnetic field models and explores the role of model
and observation covariances and localisation in typical
assimilation setups, focusing on the use of three-dimen-
sional dynamo simulations as the background model
(Sanchez, this volume).

Conclusion

Inverse problems and data assimilation in Earth sciences
provide many benefits to science and society. Mathematical
and numerical models and methods involved in solving
inverse problems and in assimilating data assist in utilisation
of Earth observations and add value to the observations, for
example, providing insight into physical/chemical processes
and their observed manifestations. At the same time,
observed and measured data help to constrain and sophisti-
catemodels and hence providemore reliablemodel estimates
and forecasts. Society benefits from the knowledge obtained
by using scientific products such as weather, air quality,
space weather, and other forecasts. Applications of inverse
problems and data assimilation in Earth sciences are broad,
and this book covers only a part of them, including applica-
tions in atmospheric, cryospheric, geochronological, geode-
tical, geomagnetic, hydrological, seismological, and
volcanological sciences. It presents the basics of modern
theory and how theoretical methods works to decipher the
puzzles of nature.
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2
Emerging Directions in Geophysical
Inversion

Andrew P. Valentine and Malcolm Sambridge

Abstract: In this chapter, we survey some recent develop-
ments in the field of geophysical inversion. We aim to pro-
vide an accessible general introduction to the breadth of
current research, rather than focusing in depth on particular
topics. We hope to give the reader an appreciation for the
similarities and connections between different approaches,
and their relative strengths and weaknesses.

2.1 Introduction

Geophysics is built upon indirect information. We cannot
travel deep into the Earth to directly measure rheological
properties, nor journey back through geological time to
record the planet’s tectonic evolution. Instead, we must
draw inferences from whatever observations we can make,
constrained as we are to the Earth’s surface and the
present day. Inevitably, such datasets are sparse, incom-
plete, and contaminated with signals from many unknown
events and processes. We therefore rely on a variety of
mathematical, statistical, and computational techniques
designed to help us learn from available data. Collectively,
these are the tools of ‘geophysical inversion’, and they lie at
the heart of all progress in geophysics.

To achieve this progress, geophysicists have long
pioneered – and indeed driven – developments in the math-
ematical and statistical theory that underpins inference.
The acclaimed French mathematician Pierre-Simon
Laplace played a central role in our understanding of
tidal forcing, developing the theory of spherical harmonics
along the way. He is also credited (along with Gauss and
Legendre) with the development of the least-squares algo-
rithm and the underpinnings of modern Bayesian statis-
tics – an approach which was subsequently extended and
popularised within the physical sciences by Sir Harold
Jeffreys (1931, 1939), who is, of course, also well known
for his contributions to seismology and solid-earth geo-
physics (see, e.g., Cook, 1990). Technological develop-
ments have also been significant, with (for example) the
challenges of handling and processing the huge volumes of
data obtained from continuously operating terrestrial and
satellite sensor systems stimulating innovation in compu-
tational science.

In this chapter, we discuss some current and emerging ideas
that we believe to have significance for the broad field of

geophysical inversion. In doing so, we aim to not just highlight
novelty, but also demonstrate how such ‘new’ ideas can be
connected into the canon of established techniques and
methods. We hope that this can help provide insight into the
potential strengths and weaknesses of different strategies, and
support the interpretation and integration of results obtained
using different approaches. Inevitably, constraints of time and
space mean that our discussion here remains far from com-
prehensive; much interesting and important work must be
omitted, and our account is undoubtedly biased by our own
perspectives and interests. Nevertheless, we hope that the
reader is able to gain some appreciation for the current state
of progress in geophysical inversion.

In order to frame our discussion, and to enable us to
clearly define notation and terminology, we begin with
a brief account of the basic concepts of geophysical inver-
sion. For a more in-depth account, readers are encouraged
to refer to one of the many textbooks and monographs
covering the subject, such as those by Menke (1989),
Parker (1994), Tarantola (2005), or Aster et al. (2013).

2.2 Fundamentals

The starting point for any geophysical inversion must be
a mathematical description of the earth system of interest.
In practical terms, this amounts to specifying some relation-
ship of the form

F½mðx; tÞ; uðx; tÞ� ¼ 0 ð2:1Þ

where mðx; tÞ represents some property (or collection of
properties) of the Earth with unknown value that may vary
across space, x, and/or time, t; and where uðx; tÞ represents
some quantity (or collection of quantities) that can – at
least in principle – be measured or observed. Most com-
monly in geophysics,F has the form of an integrodifferential
operator. Underpinning Eq. (2.1) will be some set of assump-
tions, A, although these may not always be clearly or com-
pletely enunciated.

2.2.1 The Forward Problem
The fundamental physical theory embodied by Eq. (2.1) may
then be used to develop predictions, often via a computational
simulation. This invariably involves introducing additional
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assumptions, B. In particular, it is common to place restric-
tions on the function m, so that it may be assumed to have
properties amenable to efficient computation. For example, it
is very common to assert that the function must lie within the
span of a finite set of basis functions, ψ1, . . ., ψM, allowing it to
be fully represented by a set ofM expansion coefficients,

mðx; tÞ ¼
XM
i¼1

miψiðx; tÞ: ð2:2Þ

It is important to recognise that such restrictions are primarily
motivated by computational considerations, but may impose
certain characteristics – such as a minimum length-scale, or
smoothness properties – upon the physical systems that can be
represented. Nevertheless, by doing so, we enable Eq. (2.1) to
be expressed, and implemented, as a ‘forward model’

uðx; tÞ ¼ Gðx; t;mÞ; ð2:3Þ

which computes simulated observables for any ‘input
model’ conforming to the requisite assumptions. Typically,
the function G exists only in the form of a numerical com-
puter code, and not as an analytical expression in any mean-
ingful sense. As a result, we often have little concrete
understanding of the function’s global behaviour or proper-
ties, and the computational cost associated with each func-
tion evaluation may be high.

2.2.2 Observational Data and the Inverse Problem
We use d to represent a data vector, with each element di
representing an observation made at a known location in
space and time, ðxi; tiÞ. This is assumed to correspond to
uðxi; tiÞ, corrupted by ‘noise’ (essentially all processes not cap-
tured within our modelling assumptions, A∪B), any limita-
tions of the measurement system itself, and any
preprocessing (e.g. filtering) that has been applied to the
dataset. We address the latter two factors by applying trans-
formations (e.g. equivalent preprocessing and filters
designed to mimic instrument responses) to the output of
our forward model; mathematically, this amounts to com-
posing G with some transfer function T . For notational
convenience, we define a new function, g, which synthesises
the entire dataset d: ½gðmÞ�i ¼ T ∘ Gðxi; ti;mÞ:We also intro-
duce the concept of a data covariance matrix, Cd, which
encapsulates our assumptions about the uncertainties and
covariances within the dataset. The fundamental goal of
inversion is then to find – or somehow characterise – m such
that g(m) matches or explains d.

Since d contains noise, we do not expect any model to be
able to reproduce the data perfectly. Moreover, the forward
problem may be fundamentally non-unique: it may generate
identical predictions for two distinct models. As such, there
will typically be a range ofmodels that could be taken to ‘agree
with’ observations. We must therefore make a fundamental
decision regarding the approach we wish to take. We may:

1. Seek a single model, chosen to yield predictions that are
‘as close as possible’ to the data, usually with additional
requirements that impose characteristics we deem desir-
able and ensure that a unique solution exists to be
found, e.g. that the model be ‘as smooth as possible’;

2. Seek a collection or ensemble of models, chosen to
represent the spectrum of possibilities that are compat-
ible with observations – again, perhaps tempered by
additional preferences;

3. Disavow the idea of recovering a complete model, and
instead focus on identifying specific characteristics or
properties that must be satisfied by any plausible model.

In the context of this chapter, we have deliberately framed
these three categories to be quite general in scope.
Nevertheless, readers may appreciate some specific examples:
the first category includes methods based upon numerical
optimisation of an objective function, including the familiar
least-squares algorithm (e.g. Nocedal and Wright, 1999),
while Markov chain Monte Carlo and other Bayesian
methods fall within the second (e.g. Sambridge and
Mosegaard, 2002); Backus–Gilbert theory (e.g. Backus and
Gilbert, 1968) lies within the third. Each of these groups is
quite distinct – at least in philosophy – from the others, and in
the remainder of this chapter we address each in turn.

2.3 Single Models

Before we can set out to find the model that ‘best’ explains
the data, we must introduce some measure of the agreement
between observations and predictions. This ‘misfit function’
or ‘objective function’ is of fundamental importance in
determining the properties of the recovered model and the
efficiency of the solution algorithms that may be available to
us. In general, misfit functions take the form

ϕðmÞ ¼ ϕdðd; gðmÞÞ þ ϕmðmÞ; ð2:4Þ

where ϕd is a metric defined in the ‘data space’, measuring
how far a model’s predictions are from observations, and ϕm
is a ‘regularisation’ or ‘penalty’ term (see Fig. 2.1). This
encapsulates any preferences we may have regarding the
solution, and aims to ensure that the function ϕ has
a unique minimum.

Once a misfit function has been defined, it is concep-
tually straightforward to search for the model that
minimises ϕðmÞ. However, it is often challenging to achieve
this in practice. The most complete characterisation of ϕ
comes from a grid-search strategy, with systematic evalu-
ation of the function throughout a discretised ‘model space’
(typically following Eq. 2.2). This is viable for small
problems, and is commonly encountered in the geophysical
literature (e.g. Sambridge and Kennett, 1986; Dinh and
Van der Baan, 2019; Hejrani and Tkalčić, 2020), but the
computational costs of evaluating the forward model,
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combined with the ‘curse of dimensionality’ (Curtis and
Lomax, 2001; Fernández-Martínez and Fernández-Muñiz,
2020), rapidly become prohibitive. However, in many cases,
it is possible to obtain Fréchet derivatives of the forward
problem (Eq. 2.3) with respect to the model, δG=δm, and this
information can be used to guide a search towards the
minimum of ϕðmÞ.

2.3.1 Euclidean Data Metrics
Overwhelmingly, the conventional choice for ϕd is the
squared L2, or Euclidean, norm of the residuals weighted
using the data covariance matrix, Cd,

ϕdðd; gðmÞÞ ¼ ‖C
�1

2
d d� gðmÞð Þ‖

2

2

¼ d� gðmÞð ÞTC�1d ðd� gðmÞÞ: ð2:5Þ

Relying on the Fréchet derivatives is essentially an assump-
tion that g(m) is (locally) linear. For the usual case, where
the model has been discretised as in Eq. (2.2) and can be
represented as a vector of coefficients, m, we have
gðmÞ ¼ gðm0Þ þGðm�m0Þ, where m0 is the linearisation
point and ½G�ij ¼ ∂½gðmÞ�i=∂mjjm¼m0

. We therefore find

∂ϕ
∂m
¼ 2GTC�1d ½Gðm�m0Þ � ðd� gðm0ÞÞ� þ

∂ϕm
∂m

: ð2:6Þ

This can be used to define an update to the model, following
a range of different strategies. Setting m ¼ m0, we obtain
the gradient of ϕwith respect to each coordinate direction at
the point of linearisation: this information may then be used
to take a step towards the optimum, using techniques such
as conjugate-gradient methods (as in Bozdağ et al., 2016) or
the L-BFGS algorithm of Liu and Nocedal (1989), as

employed by Lei et al. (2020). Alternatively, we can exploit
the fact that, at the optimum, the gradient should be zero:
for a suitable choice of ϕm, it is possible to solve Eq. (2.6)
directly for the m that should minimise the misfit within the
linearised regime. This is ‘the’ least-squares algorithm,
employed by many studies (e.g. Wiggins, 1972; Dziewonski
et al., 1981; Woodhouse and Dziewonski, 1984). Few inter-
esting problems are truly linear, and so it is usually neces-
sary to adopt an iterative approach, computing a new linear
approximation at each step.

2.3.1.1 Stochastic Algorithms
Since the fundamental task of optimising an objective
function is also central to modern machine learning
efforts, recent geophysical studies have also sought to
exploit advances from that sphere. In particular, methods
based on ‘stochastic gradient descent’ have attracted some
attention (e.g. van Herwaarden et al., 2020; Bernal-
Romero and Iturrarán-Viveros, 2021). These exploit the
intuitive idea that the gradient obtained using all available
data can be approximated by a gradient obtained using
only a subset of the dataset – and that by using different
randomly chosen subsets on successive iterations of gradi-
ent descent, one may reach a point close to the overall
optimum. In appropriate problems, this can yield
a substantial reduction in the overall computational effort
expended on gradient calculations. It should be noted that
the success of this approach relies on constructing
approximate gradients that are, on average, unbiased; as
discussed in Valentine and Trampert (2016), approxima-
tions that induce systematic errors into the gradient oper-
ator will lead to erroneous results.

1

1
(b) φd φd +φm

φm(c)

(d)

0
0.1

0r2

r1

r 1
r 1

ρ2

ρ1

ρ1

ρ1

(a)

21 3

0

Misfit

0.1 1 2 3

Figure 2.1 Misfit functions for a simple inverse problem (after Valentine and Sambridge, 2020a). (a) A planet is modelled as comprising
two spherical layers: a core of radius r1 and density ρ1, and an outer unit of density ρ2 extending to radius r2. Defining units such that r2 = 1
and ρ2 = 1, we find the overall mass of the planet to be M = 4.76 ± 0.25 units. What can be said about r1 and ρ1? (b) The data misfit,
ϕdðd; gðr1; ρ1ÞÞ, as in Eq. (2.5), highlighting non-linear behaviours. Two gradient-based optimisation trajectories are shown for different
starting points (circles), with convergence to distinct solutions (stars). The inverse problem is inherently non-unique. (c) Penalty term,
ϕmðr1; ρ1Þ, expressing a preference for a small core with density similar to that of the surface layer. (d) Combined (regularised) misfit,
ϕdðd; gðr1; ρ1ÞÞ þ ϕmðr1; ρ1Þ. Both optimisation trajectories now converge to the same point.
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2.3.2 Sparsity
As has been discussed, we commonly assume that a model
can be discretised in terms of some finite set of basis func-
tions. Usually, these are chosen for computational conveni-
ence, and inevitably there will be features in the real earth
system that cannot be represented within our chosen basis.
This leads to the problem of ‘spectral leakage’ (Trampert
and Snieder, 1996): features that are unrepresentable create
artefacts within the recovered model.

In digital signal processing, the conditions for complete
and accurate recovery of a signal are well known. According
to Nyquist’s theorem, the signal must be band limited and
sampled at a rate at least twice that of the highest frequency
component present (Nyquist, 1928). Failure to observe this
leads to spurious features in the reconstructed signal, known
as aliasing – essentially the same issue as spectral leakage.
This has far-reaching consequences, heavily influencing
instrument design, data collection, and subsequent process-
ing and analysis.

However, recent work has led to the concept of ‘com-
pressed sensing’ (Donoho, 2006; Candès and Wakin,
2008). Most real-world signals are, in some sense, sparse:
when expanded in terms of an appropriately chosen basis
(as per Eq. 2.2), only a few non-zero coefficients are
required. If data is collected by random sampling, and in
a manner designed to be incoherent with the signal basis,
exploiting this sparsity allows the signal to be recon-
structed from far fewer observations than Nyquist would
suggest. The essential intuition here is that incoherence
ensures that each observation is sensitive to many (ideally:
all) coefficients within the basis function expansion; the
principle of sparsity then allows us to assign the resulting
information across the smallest number of coefficients
possible.

In theory, imposing sparsity should require us to use a
penalty term that counts the number of non-zero model coef-
ficients: ϕmðmÞ ¼ α2‖m‖0. However, this does not lead to
a tractable computational problem. Instead, Donoho
(2006) has shown that it is sufficient to penalise the L1

norm of the model vector, ϕmðmÞ ¼ α2‖m‖1 ¼ α2
X
i

jmij.

This can be implemented using a variety of algorithms,
including quadratic programming techniques and the
Lasso (Tibshirani, 1996). Costs are markedly higher than
for L2 -based penalty functions, but remain tolerable.

Sparsity-promoting algorithms have significant poten-
tial: they open up new paradigms for data collection, offer-
ing the opportunity to substantially reduce the burden of
storing, transmitting, and handling datasets. The success
of compressed sensing also suggests that the data misfit
ϕdðd; gðmÞÞ may be accurately estimated using only a small
number of randomly chosen samples: for certain classes of
forward model, this may offer a route to substantially
reduced computational costs. Again, work is ongoing to

explore the variety of ways in which concepts of sparsity
can be applied and exploited within the context of geophys-
ical inversion (e.g. Herrmann et al., 2009; Wang et al., 2011;
Simons et al., 2011; Bianco and Gerstoft, 2018; Muir and
Zhang, 2021).

2.3.3 Non-Euclidean Data Metrics
A common challenge for gradient-based methods is conver-
gence to a local – rather than global – minimum. This
situation is difficult to identify or robustly avoid, since
doing so would require knowledge of the global behaviour
of the forward model. In this context, a particular downside
to the use of a Euclidean data norm is that it treats each
element of the data vector (i.e. each individual digitised data
point) independently. For geophysical datasets, this is often
undesirable: the spatial and temporal relationships connect-
ing distinct data points are physically meaningful, and
a model that misplaces a data feature (such as a seismic
arrival) in time or space is often preferable to one that fails
to predict it at all. This problem is particularly familiar in
waveform-fitting tasks, where the Euclidean norm is unduly
sensitive to any phase differences between data and synthe-
tics. From an optimisation perspective, this can manifest as
‘cycle-skipping’, where waveforms end upmisaligned by one
or more complete periods.

As a result, there is interest – and perhaps significant
value – in exploring alternative metrics for quantifying the
agreement between real and observed data sets. A particular
focus of current research is measures built upon the theory
of Optimal Transport (e.g. Ambrosio, 2003; Santambrogio,
2015). This focuses on quantifying the ‘work’ (appropriately
defined) required to transform one object into another, and
the most efficient path between the two states. In particular,
the p-Wasserstein distance between two densities, f (x) and
g(x) may be defined

Wpð f ;gÞ ¼ inf
T 2T

ð
cðx;TðxÞÞp f ðxÞ dx

� �1=p
; ð2:7Þ

where T is the set of all ‘transport plans’ TðxÞ that satisfy
f ðxÞ ¼ gðTðxÞÞjrTðxÞj; ð2:8Þ

and cðx; yÞ is a measure of the distance between points x and
y. The resulting metric provides a much more intuitive meas-
ure of the difference between two datasets, and perhaps offers
a principled route to combining information from multiple
distinct data types (sometimes known as ‘joint inversion’).

Pioneered in geophysics by Engquist and Froese (2014), this
has subsequently been employed for numerous studies,
including the work of Métivier et al. (2016a,b,c,d) and others
(e.g. He et al., 2019; Hedjazian et al., 2019; Huang et al.,
2019). However, numerous challenges remain to be fully over-
come. Since Optimal Transport is conceived around density
functions – which are inherently positive – signed datasets
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such as waveforms require special treatment. In addition,
since computing the Wasserstein distance between two func-
tions is itself an optimisation problem, there are practical
challenges associated with employing it in large-scale inver-
sion problems, and these are the focus of current work.

2.4 Ensemble-Based Methods

We now switch focus, and consider the second fundamen-
tal approach to geophysical inversion: instead of seeking
a single model that explains the data, we now aim to
characterise the collection, or ensemble, of models that
are compatible with observations. Clearly, this has poten-
tial to be more informative, providing insight into uncer-
tainties and trade-offs; however, it also brings new
challenges. Computational costs may be high, and inter-
pretation and decision-making may be complicated with-
out the (illusion of) certainty promised by single-model
strategies.

There are many different ways in which one might frame
an ensemble-based inversion strategy: at the simplest, one
might adapt the grid-search strategy of Section 2.3 so that
the ‘ensemble’ is the set of all grid nodes for which ϕðmÞ is
below some threshold. This approach, with models gener-
ated randomly rather than on a grid, underpinned some of
the earliest ensemble-based studies in geophysics (e.g. Press,
1970; Anderssen et al., 1972; Worthington et al., 1972).
However, it is not particularly convenient from
a computational perspective, since such an ensemble has
little structure that can be exploited for efficiency or ease
of analysis. Techniques exist that seek to address this (e.g.
Sambridge, 1998), but themost common strategy is to adopt
a probabilistic – and typically Bayesian – perspective. This
involves a subtle, but important, change of philosophy:
rather than seeking to determine the Earth structure dir-
ectly, Bayesian inversion aims to quantify our state of know-
ledge (or ‘degree of belief ’) about that structure (for more
discussion, see, e.g., Scales and Snieder, 1997).

The hallmark of Bayesian methods is that the posterior
distribution –PðmjdÞ, the probability of amodelm given the
observations d – is obtained by taking the prior distribution
(PðmÞ, our state of knowledge before making any observa-
tions), and weighting it by the likelihood, PðdjmÞ, which
encapsulates the extent to which the data support any given
model (see Fig. 2.2a–c). When normalised to give a valid
probability distribution, we obtain

Pðm j dÞ ¼ Pðd j mÞ PðmÞPðdÞ ; ð2:9Þ

which is well known as Bayes’ Theorem (Bayes, 1763). We
take this opportunity to remark that whereas a misfit func-
tion may be chosen in rather ad hoc fashion to exhibit
whatever sensitivity is desired, a likelihood has inherent

meaning as ‘the probability that the observations arose
from a given model’, and ought to be defined by reference
to the expected noise characteristics of the data. We also
highlight the work of Allmaras et al. (2013), which pro-
vides a comprehensive but accessible account of the prac-
tical application of Bayes’ Theorem to an experimental
inference problem. However, it is usually challenging to
employ Eq. (2.9) directly, since evaluating the ‘evidence’,
PðdÞ, requires an integral over the space of all allowable
models,M,

PðdÞ ¼
ð
M
PðdjmÞPðmÞ dm; ð2:10Þ

which is not computationally tractable for arbitrary large-
scale problems. Instead, most Bayesian studies either make
additional assumptions that enable analytic or semi-analytic
evaluation of the evidence, or they exploit the fact that the
ratio PðmA  j dÞ=PðmB  j dÞ can be evaluated without know-
ledge of the evidence to obtain information about the rela-
tive probability of different models.

2.4.1 Bayesian Least Squares
The choice of prior is central to the success of any Bayesian
approach – and also lies at the heart of many controversies
and interpretational challenges, largely due to the impossi-
bility of representing the state of no information (e.g.
Backus, 1988). It is therefore apparent that within
a Bayesian framework all inference is considered relative
to a known prior. In principle, the prior should be chosen
based on a careful consideration of what is known about the
problem of interest; in practice, this is often tempered by
computational pragmatism, and a distribution with useful
analytic properties is adopted.

2.4.1.1 Gaussian Process Priors
A convenient choice when dealing with an unknown model
function mðx; tÞ is a Gaussian Process prior,

mðx; tÞ∼GP
�
μðx; tÞ; kðx; t; x0; t0Þ

�
: ð2:11Þ

This is essentially the extension of the familiar normal dis-
tribution into function space, with our knowledge at any
given point, ðx; tÞ, quantified by a mean μðx; tÞ and standard
deviation kðx; t; x; tÞ1=2; however, the covariance function
k also quantifies our knowledge (or assumptions) about
the expected covariances if m were to be measured at mul-
tiple distinct points. A comprehensive introduction to the
theory of Gaussian Processes may be found in, for example,
Rasmussen and Williams (2006).

In some geophysical problems, the data–model relation-
ship is – or can usefully be approximated as – linear (see also
Section 2.3.1), and so can be expressed in the form
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di ¼
ðT
0

ð
X
qiðx; tÞmðx; tÞ dx dt; ð2:12Þ

where qiðx; tÞ is some ‘data kernel’, and where X represents
the domain upon which the model is defined. Moreover,
we assume that the noise process represented by Cd is
explicitly Gaussian. These assumptions permit analytic
evaluation of the evidence, and the posterior distribution
can be written in the form (Valentine and Sambridge,
2020a)

emðx; tÞ eGP�eμðx; tÞ;ekðx; t; x0; t0Þ�; ð2:13Þ

where we use a tilde to denote a posterior quantity, and
where

eμðx; tÞ ¼ μðx; tÞ þ
X
ij

wiðx; tÞ ðWþ CdÞ�1
h i

ij
ðdj � ωjÞ;

ð2:14Þ

ekðx; t; x0; t0Þ ¼ kðx; t; x0; t0Þ

�
X
ij

wiðx; tÞ ðWþ CdÞ�1
h i

ij
wjðx0; t0Þ ð2:15Þ

with

wiðx; tÞ ¼
ðT
0

ð
X
kðx; t; x0; t0Þqiðx0; t0Þdx0 dt0; ð2:16Þ

Wij ¼
ðT
0

ðT
0
∬ χ2qiðx; tÞ k ðx; t; x0; t0Þqjðx0; t0Þ dx dx0 dt dt0;

ð2:17Þ

ωi ¼
ðT
0


ð
X
μðx; tÞqiðx; tÞdx dt: ð2:18Þ
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Figure 2.2 Bayesian analysis for the simple inverse problem introduced in Fig. 2.1. (a) The likelihood, PðdjmÞ, quantifies the extent to
which any given choice of model can explain the data. (b) The prior distribution, PðmÞ, encapsulates our beliefs before observing any data,
and can be ‘sampled’ to generate a collection of candidate models (Dprior; dots; 50 shown). (c) The posterior distribution, PðmjdÞ combines
prior and likelihood (Eq. 2.9) to encapsulate our state of knowledge after taking account of the data. In realistic problems, visualising the
posterior is intractable, but we can generate samples from it (Dpost ; 50 shown). (d) We can evaluate the forward model g(m) for each
example within an ensemble of prior samples, and additionally simulate the effects of noise processes. This can be completed without
reference to any data. The information can be stored in many forms, including as a machine learning model. (e) Once data becomes
available, this information can be queried to identify regions of parameter space that may explain observations; see Section 2.4.2. This
provides an approximation to the posterior; we additionally show 1-D marginals for each model parameter. (f) A similarly sized set of
posterior samples provides a much better approximation to the true posterior, as it is targeted towards explaining one specific set of
observations: see Section 2.4.3. However, computational costs may be prohibitive for some applications.
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This approach has formed the basis for a variety of geophys-
ical studies (e.g. Tarantola and Nercessian, 1984; Montagner
and Tanimoto, 1990, 1991; Valentine and Davies, 2020) and
has the attractive property that the inference problem is posed
directly in a function space, avoiding some of the difficulties
associated with discretisation (such as spectral leakage).

2.4.1.2 Discretised Form
Nevertheless, if one chooses to introduce a finite set of basis
functions, as in Eq. (2.2), it is possible to express Eqs. (2.11–
2.18) in discretised form (for full discussion, see Valentine
and Sambridge, 2020b). The prior distribution on the
expansion coefficients becomes

m∼Nðmp;CmÞ ð2:19Þ

and the linear data–model relationship is expressed in the
form g(m) = Gm. The posterior distribution may be written
in a variety of forms, including

m∼Nðem; eCmÞ; ð2:20Þ

where

em ¼ mp þ ðGTC�1d Gþ C�1m Þ
�1GTC�1d ðd�GmpÞ ð2:21Þ

eCm ¼ ðGTC�1d Gþ C�1m Þ
�1: ð2:22Þ

This well-known result, found in Tarantola and Valette
(1982), has formed the basis of much work in geophysics.
The expression for em is also often applied in non-Bayesian
guise – compare with the discussion in Section 2.3.1 – with
the prior covariance matrix Cm regarded as a generic ‘regu-
larisation matrix’ without probabilistic interpretation.

2.4.2 Prior Sampling
The results of Section 2.4.1 are built upon assumptions that
our prior knowledge is Gaussian and the forward model is
linear. This is computationally convenient, but will rarely be
an accurate representation of the true state of affairs.
Unfortunately, more general assumptions tend not to sup-
port analytic expressions for the posterior, and hence it
becomes necessary to adopt ‘sampling-based methods’.
These rely on evaluating the forward problem for a large
number of models, in order to accumulate information
about the relationship between model and data. Various
strategies exist, which can be characterised by the manner in
which sampling is performed.

The first group of strategies are those where candidate
models are generated according to the prior distribution,
and predicted data (potentially including simulated
‘noise’) is computed for each. This provides a set of
samples

Dprior ¼ fðmi; gðmiÞÞ; i ¼ 1;…;Ng; ð2:23Þ

which may then be interpolated as necessary to address inver-
sion questions (see Fig. 2.2d–e). This family of approaches is
known as ‘prior sampling’ (Käufl et al., 2016a), with different
examples characterised by differing approaches to interpol-
ation.Many of the recent studies that exploitmachine learning
to perform inversion may be seen within the prior sampling
framework, although not all are explicitly Bayesian in design.

2.4.2.1 Mixture Density Networks
If we do take a Bayesian approach, then we may note that
the density of samples within Dprior approximates – by
construction – the joint probability density, Pðm; dÞ. If we
can fit an appropriate parametric density function to the
samples, it is then straightforward to interpolate to obtain
the conditional density PðmjdÞ corresponding to observa-
tions (which we recognise to be the posterior distribution).
One currently popular way to achieve this is to employ
Mixture Density Networks (MDNs; Bishop, 1995), which
involve an assumption that the conditional distribution can
be written as a Gaussian Mixture Model (GMM),

PðmjjdÞ ≈
XK
k¼1

wkðdÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2kðdÞ

q exp �

�
mj � μkðdÞ

�2
2σ2kðdÞ

0B@
1CA; ð2:24Þ

where the weights wk (which are subject to an additional
constraint, Σkwk ¼ 1), means μk, and standard deviations σk
that define the GMM are assumed to be functions of the
data. These relationships may in turn be represented by
a neural network. The set of prior samples, Dprior, is then
used to optimise the neural network parameters, such that
the expected value

EDpriorfPðmjjdÞg ¼
1

N

XN
i¼1
P
�
½mi�jjgðmiÞ

�
ð2:25Þ

is maximised. This approach has been applied to a variety of
geophysical problems, including structural studies at global
(e.g. Meier et al., 2007; de Wit et al., 2014) and local (e.g.
Earp et al., 2020; Mosher et al., 2021) scales, seismic source
characterisation (Käufl et al., 2014), and mineral physics
(e.g. Rijal et al., 2021).

2.4.2.2 Challenges and Opportunities
The principal downside to prior sampling – discussed in
detail by Käufl et al. (2016a) in the context of MDNs, but
applicable more broadly – is the fact that only a few of the
samples within Dprior will provide useful information about
any given set of observations. In realistic problems, the
range of models encompassed by the prior is large in com-
parison to the range encompassed by the posterior, and
much computational effort is expended on generating pre-
dictions that turn out to have little similarity to
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observations. This is exacerbated by issues associated with
the ‘curse of dimensionality’, motivating the common
choice (implicit in our notation for Eq. 2.24) to use prior
sampling to infer low or uni-dimensional marginal distribu-
tions rather than the full posterior. Overall, the consequence
is that prior sampling tends to yield rather broad posteriors,
representing ‘our state of knowledge in the light of the
simulations we have performed’, rather than ‘the most we
can hope to learn from the available data’. We also empha-
sise that results are wholly dependent on the choice of prior,
and will be meaningless if this does not encompass the real
earth system. This is perhaps obvious in an explicitly
Bayesian context, but may be lost when studies are framed
primarily from the perspective of machine learning.

The great benefit of prior sampling is that nearly all of the
computational costs are incurred before any knowledge of
observed data is required. As a result, it may be effective
in situations where it is desirable to obtain results as rapidly
or cheaply as possible following data collection – for
example, to enable expensive numerical wave propagation
simulations to be employed for earthquake early warning
(Käufl et al., 2016b). We note parallels here to the use of
scenario-matching approaches in the field of tsunami early
warning (e.g. Steinmetz et al., 2010). It is also well-suited to
applications where the same fundamental inverse problem
must be solved many times for distinct datasets, perhaps
representing observations repeated over time, or at many
localities throughout a region.

Prior sampling may also be effective in settings requiring
what we term ‘indirect’ inference, where the primary goal is to
understand somequantity derived from themodel, rather than
the model itself. For example, in an earthquake early warning
setting, one might seek to determine seismic source informa-
tion with a view to then using this to predict tsunami run-up,
or the peak ground acceleration at critical infrastructure sites
(Käufl, 2015). In a prior sampling setting, one may augment
Dprior to incorporate a diverse suite of predictions,
Dprior ¼ fðmi; g1ðmiÞ; g2ðmiÞ;…Þ; i ¼ 1;…;Ng, and then
employ some interpolation framework to use observations
of the process associated with (say) g1 to make inferences
about g2. From a Bayesian perspective, this can be seen as
a process of marginalisation over the model parameters
themselves.

2.4.3 Posterior Sampling
As an alternative to prior sampling, one may set out to
generate a suite of samples, Dpost, distributed according to
the posterior (see Fig. 2.2f). Again, there are a variety of
ways this can be achieved – for example, a simple (but
inefficient) approach might involve rejection sampling.
More commonly, Markov chain Monte Carlo (McMC)
methods are employed, with the posterior forming the equi-
librium distribution of a randomwalk. Encompassed within
the term McMC lie a broad swathe of algorithms, of which

the Metropolis–Hastings is probably most familiar, and the
field is continually the subject of much development. We do
not attempt to survey these advances, but instead direct the
reader to one of the many recent reviews or tutorials on the
topic (e.g. Brooks et al., 2011; Hogg and Foreman-Mackey,
2018; Luengo et al., 2020).

As set out in Käufl et al. (2016a), prior and posterior
sampling procedures generate identical results in the theoret-
ical limit. However, in practical settings they are suited to
different classes of problems. Posterior sampling approaches
are directed towards explaining a specific dataset: this allows
computational resources to be targeted towards learning the
specifics of the problem at hand, but prevents expensive
simulations from being ‘recycled’ in conjunction with other
datasets. It should also be noted that the ‘solution’ obtained
via posterior sampling takes the form of an ensemble of
discrete samples. This can be challenging to store, represent,
and interrogate in a meaningful way: many studies resort to
reducing the ensemble to a single maximum-likelihood or
mean model, and perhaps some statistics about the (co)vari-
ances associated with different parameters, and thereby neg-
lect much of the power of McMC methods. Effective
solutions to this issue may be somewhat problem dependent,
but remain the focus of much work.

2.4.3.1 Improving Acceptance Ratios
Generation of ensembles of posterior samples is inherently
wasteful: by definition, one does not know in advance where
samples should be placed, and hence for every ‘useful’ sam-
ple, a large numbers of candidate models must be tested (i.e.
we must evaluate the forward problem) and rejected. This is
exacerbated by requirements for ‘burn-in’ (so that the chain
is independent of the arbitrary starting point) and ‘chain
thinning’ (to reduce correlations between consecutive sam-
ples), which also cause substantial numbers of samples to be
discarded. Much effort is therefore expended on developing
a variety of strategies to improve ‘acceptance ratios’ (i.e. the
proportion of all tested models that end up retained within
the final ensemble).

One route forward involves improving the ‘proposal dis-
tribution’, that is, the manner in which samples are gener-
ated for testing. Ideally, we wish to make the proposal
distribution as close as possible to the posterior, so that
nearly all samples may be retained. Of course, the difficulty
in doing so is that the posterior is not known in advance. An
avenue currently attracting considerable interest is
HamiltonianMcMC (HMC) methods, which exploit analo-
gies with Hamiltonian dynamics to guide the random walk
process towards ‘acceptable’ samples (see, e.g., Neal, 2011;
Betancourt, 2017). In order to do so, HMC methods
require, and exploit, knowledge of the gradient of the likeli-
hood with respect to the model parameters at each sampling
point. This provides additional information about the
underlying physical problem, enabling extrapolation away
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from the sample point, and the identification of ‘useful’
directions for exploration. To apply this idea, we must be
able to compute the required gradients efficiently; early
applications in geophysics have included seismic explor-
ation and full-waveform inversion (e.g. Sen and Biswas,
2017; Fichtner et al., 2019; Aleardi and Salusti, 2020).

In many cases, the fundamental physical problem of Eq.
(2.1) is amenable to implementation (Eq. 2.3) in a variety of
ways, depending on the assumptions made (B). Usually,
simplified assumptions lead to implementations with lower
computational costs, at the expense of introducing system-
atic biases into predictions. Recently, Koshkholgh et al.
(2021) has exploited this to accelerate McMC sampling, by
using a low-cost physical approximation to help define
a proposal distribution. Likelihood evaluations continue
to rely on a more complex physical model, so that accuracy
is preserved within the solution to the inverse problem – but
the physically motivated proposal distribution improves the
acceptance rate and reduces overall computational costs.
This is an attractive strategy, and seems likely to underpin
future theoretical developments.

2.4.3.2 Transdimensional Inference
In practice, McMC studies typically assume a discretised
model, expressed relative to some set of basis functions in as
in Eq. (2.2), and the choice of basis functions is influential in
determining the characteristics of the solution. In particular,
the number of terms in the basis function expansion typic-
ally governs the flexibility of the solution, and the scale-
lengths that can be represented. However, it also governs
the dimension of the search space: as the number of free
parameters in the model grows, so does the complexity (and
hence computational cost) of the Monte Carlo procedure.
Transdimensional approaches arise as an attempt to strike
a balance between these two competing considerations: both
basis set and expansion coefficients are allowed to evolve
during the random walk process (Green, 1995; Sambridge
et al., 2006; Bodin and Sambridge, 2009; Sambridge et al.,
2012).

The transdimensional idea has been applied to a wide
variety of geoscience problems, including source (e.g.
Dettmer et al., 2014) and structural (Burdick and Lekić,
2017; Galetti et al., 2017; Guo et al., 2020) studies using
seismic data, in geomagnetism (Livermore et al., 2018), and
in hydrology (Enemark et al., 2019). It can be particularly
effective in settings where basis functions form a natural
hierarchy of scale lengths, such as with wavelets and spherical
harmonics, although keeping track of information creates
computational challenges (Hawkins and Sambridge, 2015).
We note that model complexity is not confined only to length-
scales: one can also employ a transdimensional approach to
the physical theory, perhaps to assess whether mechanisms
such as anisotropy are truly mandated by available data. The
approach can also be employed to identify change-points or

discontinuities within a function (e.g. Gallagher et al., 2011),
and used in combination with other techniques such as
Gaussian Processes (Ray and Myer, 2019; Ray, 2021).

2.4.4 Variational Methods
One of the drawbacks of posterior sampling is the fact that
the sampling procedure must achieve two purposes: it not
only ‘discovers’ the form of the posterior distribution, but
also acts as our mechanism for representing the solution
(which takes the form of a collection of appropriately dis-
tributed samples). Large numbers of samples are often
required to ensure stable statistics and ‘convincing’ figures,
even if the underlying problem itself is rather simple. To
address this, one may introduce a parametric representation
of the posterior distribution, and frame the inference
task as determination of the optimal values for the free
parameters – much as with the Mixture Density Network
(Section 2.4.2.1). This approach, often known as
Variational Inference (e.g. Blei et al., 2017), transforms
inference for ensembles into an optimisation problem, and
offers potentially large efficiency gains.

We sketch the basic concept here, noting that a galaxy of
subtly different strategies can be found in recent literature
(see, e.g. Zhang et al., 2019, for a review). As usual, our goal
is to determine the posterior distribution, Pðm j dÞ. To
approximate this, we introduce a distribution function
Qðm j θÞ, that has known form, parameterised by some set
of variables θ – for example, we might decide that Q should
be a Gaussian mixture model, in which case θ would encap-
sulate the weights, means, and variances for each mixture
component. Our basic goal is then to optimise the param-
eters θ such that Qðm j θÞ ≈Pðm j dÞ.

To make this meaningful, we must – much as in
Section 2.3 – first define some measure of the difference
between the two distributions. In Variational Inference,
the usual choice is the Kullback–Leibler divergence
(Kullback and Leibler, 1951),

DKLðQ‖PÞ ¼
ð
Qðm j θÞlogQðm j θÞPðm j dÞ dm

¼ EQðm  j  θÞ log
Qðm j θÞ
Pðm j dÞ

� �
; ð2:26Þ

where the notationEQðmÞff ðmÞg signifies ‘the expected value
of f ðmÞ whenmm is distributed according toQ’. Exploiting
the properties of logarithms, and applying Bayes’ Theorem,
we can rewrite this in the form

DKLðQ‖PÞ ¼ log PðdÞ þ EQðm  j  θÞflog QðmjθÞ � log PðdjmÞ
� logPðmÞg; ð2:27Þ

where PðdÞ has been moved outside the expectation since it
is independent of m. While this quantity is unknown, it is
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also constant – and so can be neglected from the per-
spective of determining the value of θ at which DKL is
minimised. The quantity PðdÞ �DKLðQ‖PÞ is known as
the ‘evidence lower bound’ (ELBO), and maximisation of
this is equivalent to minimising the Kullback–Leibler diver-
gence. Because the variational family Q ðm j θÞ has a known
form, the ELBO can be evaluated, as can the derivatives
∂DKL=∂θi. Thus, it is conceptually straightforward to apply
any gradient-based optimisation scheme to determine the
parameters such that Q best approximates the posterior
distribution.

2.4.4.1 A Gaussian Approximation
To illustrate this procedure, and to highlight connections
to other approaches, we consider an inverse problem
where: (i) the model is discretised, as in Eq. (2.2), so that
we seek an M-component model vector m; (ii) the prior
distribution on those model coefficients is Gaussian with
mean mp and covariance Cm; and (iii) the likelihood takes
the form Pðm jdÞ ¼ k expð� 1

2 ϕðmÞÞ for some appropriate
function ϕ. We choose to assert that the solution can be
approximated by a Gaussian of mean μ and covariance
matrix Σ, and seek the optimal values of these quantities.
Thus, we choose

Qðm j μ;ΣÞ ¼ 1

ð2πÞM=2ðdet ΣÞ1=2
expf�ðm� μÞTΣ�1ðm� μÞg:

ð2:28Þ

To proceed, we need to determine the expectation of various
functions of m under this distribution – and their gradients
with respect to µ and Σ.

A number of useful analytical results and expressions can
be found in Petersen and Pedersen (2012). It is straightfor-
ward to determine that

∂
∂μ

DKLðQ ‖PÞ ¼ C�1m ðμ�mpÞ þ
1

2

∂
∂μ

EQfϕðmÞg; ð2:29Þ

∂
∂Σ

DKLðQ ‖PÞ ¼ � 1

2
ðΣ�1 � C�1m Þ þ

1

2

∂
∂Σ

EQfϕðmÞg:

ð2:30Þ

These expressions can be used to drive an iterative optimisa-
tion procedure to determine the optimal variational param-
eters. In implementing this, the result

∂
∂θi

EQðm  j  θÞff ½m�g ¼ EQðm  j  θÞ f ðmÞ ∂
∂θi

logQðm j θÞ
� �

ð2:31Þ

may be useful.
In the case where g(m) is (or is assumed to be) linear, and

where the function ϕ is defined as the L2 norm of the

residuals, the expected value can be evaluated analytically.
The misfit is quadratic in form,

ϕðmÞ ¼ dTC�1d d� 2dTC�1d GmþmTGTC�1d Gm; ð2:32Þ

and the Gaussian Q, can be determined, along with its
derivatives, as in Section 2.4.1.1. Hence the expected value,
given m is distributed according to the Gaussian Q, can be
determined, along with its derivatives

EQfϕðmÞg ¼ �2dTC�1d Gμþ TrðGTC�1d GΣÞ þ μTGTC�1d Gμ

ð2:33Þ
∂
∂μ

EQfϕðmÞg ¼ �2GTC�1d dþ 2GTC�1d Gμ; ð2:34Þ

∂
∂Σ

EQfϕðmÞg ¼ GTC�1d G: ð2:35Þ

Substituting these expressions into Eqs. (2.29–2.30), and
solving for the μ and Σ such that the gradients of DKL are
zero (as is required at a minimum), we find that the optimal
distribution Q is identical to the posterior distribution
obtained in Eq. (2.20). This is unsurprising, since our under-
lying assumptions are also identical, but demonstrates the
self-consistency of, and connections between, the different
approaches. Again, we also highlight the similarity with the
expressions obtained in Section 2.3.1, although the under-
lying philosophy differs.

2.4.4.2 Geophysical Applications
Variational methods offer a promising route to flexible but
tractable inference. As the preceding example illustrates,
they provide opportunities to balance the (assumed) com-
plexity and expressivity of the solution against computa-
tional costs. A number of recent studies have therefore
explicitly sought to explore their potential in particular
applications, including for earthquake hypocentre deter-
mination (Smith et al., 2022), seismic tomography (Zhang
and Curtis, 2020; Siahkoohi and Herrman, 2021; Zhao
et al., 2022), and hydrogeology (Ramgraber et al., 2021).
However, given the fairly broad ambit of variational infer-
ence, many past studies could also be seen as falling under
this umbrella.

2.4.5 Generative Models
Many of the methods discussed so far rely on strong
assumptions about the form of prior and/or posterior distri-
butions: we suppose that these belong to some relatively
simple family, with properties that we can then exploit for
efficient calculations. However, such assertions are typically
justified by their convenience – perhaps aided by an appeal
to the principle known as Occam’s Razor – and not through
any fundamental physical reasoning (see, e.g., Constable
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et al., 1987). This is unsatisfactory, and may contribute
substantial unquantifiable errors into solutions and their
associated uncertainty estimates.

Recently, a number of techniques have emerged that
allow representation of, and computation with, relatively
general probability distributions. In broad terms, these are
built upon the idea that arbitrarily complex probability
distributions can be constructed via transformations of
simpler distributions. This is familiar territory: whenever
we need to generate normally distributed random num-
bers, a technique such as the Box–Muller transform (Box
and Muller, 1958) is applied to the uniformly distributed
output of a pseudorandom number generator. However,
the versatility of such approaches is vastly increased in
conjunction with the tools and techniques of modern
machine learning.

This is an area that is currently the focus of rapid devel-
opment; recent reviews include those of Bond-Taylor et al.
(2022) and Ruthotto and Haber (2021). Clearly, the concept
is closely connected to the idea of variational inference, as
discussed in Section 2.4.4. Several major techniques have
emerged, including ‘generative adversarial networks’
(GANs) (e.g. Goodfellow et al., 2014; Creswell et al.,
2018), ‘variational autoencoders’ (Kingma and Welling,
2014), and ‘normalising flows’ (Rezende and Mohamed,
2015; Kobyzev et al., 2021). A variety of recent studies
have explored diverse applications of these concepts within
the context of geophysical inversion: examples include
Mosser et al. (2020), Lopez-Alvis et al. (2021), Scheiter
et al. (2022), and Zhao et al. (2022). We have no doubt
that this area will lead to influential developments, although
the precise scope of these is not yet clear.

2.5 Model Properties

The third fundamental approach builds on the work of
Backus and Gilbert (1968) and Backus (1970a,b,c), and
we sketch it briefly for completeness. For certain classes
of problem, as in Eq. (2.12), each of the observables di can
be regarded as representing an average of the model func-
tion weighted by some data kernel qiðx; tÞ. It is then
straightforward to write down a weighted sum of the
observations,

Dα ¼
X
i

αidi ¼
ðT
0

ð
X
Qðα; x; tÞmðx; tÞdx dt; ð2:36Þ

where Qðα; x; tÞ ¼
P

iαiqiðx; tÞ; and α ¼ ðα1; α2…Þ rep-
resents some set of tunable weights. By adjusting these,
one may vary the form of the averaging kernel Q, and
frame a functional optimisation problem to determine the
α that bringsQ as close as possible to some desired form. In
this way, the value of the average that is sought can be
estimated as a linear combination of the observed data.

Backus–Gilbert theory has an inherent honesty: it is data
led, with a focus on understanding what the available data
can – or cannot – constrain within the system. On the other
hand, this can be seen as a downside: it is not usually
possible to use the results of a Backus–Gilbert style analysis
as the foundation for further simulations. Moreover, inter-
pretation can be challenging in large-scale applications, as
the ‘meaning’ of each result must be considered in the light
of the particular averaging kernel found. Perhaps for this
reason – and because it is designed for strictly linear prob-
lems (although we note the work of Snieder, 1991) – the
method is well known but has found comparatively little
use. Notable early examples include Green (1975), Chou
and Booker (1979), and Tanimoto (1985, 1986). More
recently, it has been adopted by the helioseismology com-
munity (Pijpers and Thompson, 1992), and applied to global
tomography (Zaroli, 2016) and to constrain mantle discon-
tinuities (Lau and Romanowicz, 2021). Concepts from
Backus–Gilbert theory are also sometimes used to support
interpretation of models produced using other approaches:
for example, Ritsema et al. (1999) presents Backus–Gilbert
kernels to illustrate the resolution of a model obtained by
least-squares inversion.

2.6 Miscellanea

The preceding sections have focused on the range of differ-
ent philosophies, and associated techniques, by which geo-
physical inversion can be framed. We now turn to consider
some additional concepts and developments that are not
themselves designed to solve inverse problems, but which
can potentially be employed in conjunction with one or
other of the approaches described in this chapter.

2.6.1 Approximate Forward Models
One of the major limiting factors in any geophysical inver-
sion is computational cost. High-fidelity numerical models
tend to be computationally expensive, and costs may reach
hundreds or even thousands of CPU-hours per simulation.
In such cases, resource availability may severely constrain
the number of simulations that may be performed, render-
ing certain approaches infeasible. There is therefore consid-
erable potential value in any technique that may lower the
burden of simulation.

2.6.1.1 Surrogate Modelling
One possible solution to this lies in ‘surrogate modelling’:
using techniques of machine learning to mimic the behav-
iour of an expensive forward model, but at much lower
computational cost. This is an idea that has its origins in
engineering design (see, e.g., Quiepo et al., 2005; Forrester
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and Keane, 2009), and typically involves tuning the free
parameters of a neural network or other approximator to
match a database of examples obtained via expensive com-
putations (or, indeed, physical experiments). The approxi-
mate function can then be interrogated to provide insights,
or to serve as a drop-in replacement for the numerical code.

Although the term ‘surrogate modelling’ only appears
relatively recently in the geophysics literature, the under-
lying idea has a long history. For example, seismologists
have long recognised that travel times of seismic arrivals
from known sources can be interpolated, and the resulting
travel-time curves used to assist in the location of new events
(e.g. Jeffreys and Bullen, 1940; Kennett and Engdahl, 1991;
Nicholson et al., 2004). One may also regard the
Neighbourhood Algorithm (Sambridge, 1999a,b) within
this framework: it uses computational geometry to assemble
a surrogate approximation to evaluation of (typically) the
likelihood for any given model. By employing and refining
this within a Markov chain, it is possible to substantially
reduce the computational costs of McMC-based inference.
In doing so, we exploit the fact that the mapping from
models to likelihood (a scalar quantity) is, typically, much
simpler than the mapping from models to data. Closely
related is the field of ‘Bayesian optimisation’, which relies
on a surrogate (often a Gaussian Process) to encapsulate
incomplete knowledge of an objective function, and takes
this uncertainty into account within the optimisation pro-
cedure (e.g. Shahriari et al., 2016; Wang et al., 2016).

Latterly, surrogate models (also known as emulators)
have been explicitly adopted for geophysical studies.
Similar to the Neighbourhood Algorithm, Chandra et al.
(2020) employed a neural network-based surrogate to
replace likelihood calculations within a landscape evolution
model; on the other hand, Das et al. (2018) and Spurio
Mancini et al. (2021) both developed a surrogate that dir-
ectly replaces a forward model and outputs synthetic seis-
mograms. Other geophysical examples include modelling of
climate and weather (e.g. Field et al., 2011; Castruccio et al.,
2014), and applications in hydrology (Hussain et al., 2015)
and planetary geophysics (Agarwal et al., 2020).

2.6.1.2 Physics-Informed Neural Networks
A number of recent studies have also explored the concept
and applications of ‘physics informed neural networks’
(PINNs; see, e.g., Raissi et al., 2019; Karniadakis et al.,
2021). As with surrogate models, these exploit machine
learning techniques to provide a version of the forward
model that has significantly lower computational cost than
‘conventional’ implementations. However, whereas
a surrogate is constructed using a suite of examples
obtained by running the conventional model (at substan-
tial expense), a PINN is directly trained to satisfy the
physical constraints. Typically, this amounts to defining
a neural network to represent the observable function,

u(x, t), and then employing a training procedure to min-
imise the deviation from Eq. (2.1). This is potentially
a more efficient approach, and provides the researcher
with greater oversight of the behaviour and limitations of
the learned model.

A number of recent examples may be found, particularly
in the seismological literature. Moseley et al. (2020), Song
et al. (2021), and Smith et al. (2020) all use PINNs to solve
problems related to the wave equation, with the latter
underpinning the variational inference approach of Smith
et al. (2022). A range of potential applications in climate
science and meteorology are discussed in Kashinath et al.
(2021), while He and Tartakovsky (2021) consider hydro-
logical problems. Again, it is clear that PINNs present
a promising opportunity that is likely to bring substantial
benefits for geophysics, but it is not yet clear how the field
will evolve.

2.6.1.3 Conventional Approximations
Surrogate models and PINNs both rely on machine learn-
ing, and their ‘approximate’ nature arises from this: they are
constructed to give good average performance for
a particular task, but there are few hard constraints on
their accuracy in any specific case. In many geophysical
problems, an alternate route exists, and has long been
exploited: rather than seeking an approximate solution to
a complex physical problem, we can use conventional
methods to obtain an accurate solution for a simplified
physical system (i.e. adopting a more restrictive set of
assumptions, A∪B). Thus, for example, seismic waves
might be modelled under the assumption that propagation
is only affected by structure in the great-circle plane between
source and receiver (Woodhouse and Dziewonski, 1984) at
far lower cost than (almost) physically complete simulation
(e.g. Komatitsch et al., 2002). Depending on circumstances,
it may be beneficial to exploit a known approximation of
this kind, where impacts can be understood and interpret-
ations adjusted accordingly.We also highlight that it may be
desirable to vary the level of approximation used for for-
ward simulations within an inversion framework, using
a fast approximate technique for initial characterisation,
and increasing accuracy as solutions are approached. In
the ideal case, one might envisage a forward model where
the level of approximation is itself a tuneable parameter (e.g.
via the coupling band-width in a normal-mode–based
solver, Woodhouse, 1980), enabling a smooth transition
from simplified to complete modelling as a solution is
approached.

2.6.2 Computational Advances
Modern geophysics is computationally intensive, and – as
we have seen – the feasibility of various inversion strategies
is directly linked to the available resources. As such,
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computational developments are often important in driv-
ing the development and adoption of novel inference
approaches. In particular, current progress leverages
a number of technological advances that have been stimu-
lated by the rapid growth of ‘machine learning’ applica-
tions across society. This includes general-purpose
computational libraries such as Tensorflow (Abadi et al.,
2016) and Pytorch (Paszke et al., 2019), along with more
specialist tools such as Edward (Tran et al., 2016). A key
feature of these libraries is native support for auto-
differentiation, making it easy to exploit gradient-based
optimisation strategies. This is an area that has previously
been highlighted as ripe for exploitation in geophysics
(Sambridge et al., 2007), although its use is not yet wide-
spread. Another interesting development is the rise of
packages such as FEniCS (Logg et al., 2012), which aim
to automatically generate forward models from
a statement of the relevant physical equations (e.g.
Reuber and Simons, 2020). This has the potential to
greatly expand the range of problems that it is feasible to
address.

2.6.3 Novel Data – Novel Strategies
An ongoing theme of geophysics is the growth in data
quantity. This is often driven by concerted efforts to collect
high-resolution datasets: examples include high-quality sat-
ellite gravity measurements (e.g. Kornfeld et al., 2019), and
systematic continental scale surveys such as USArray
(Meltzer et al., 1999) or AusAEM (Ley-Cooper et al.,
2020). Handling and processing such massive datasets has
necessitated new tools and standards designed to enable
easy exploitation of high-performance computing (e.g.
Krischer et al., 2016; Hassan et al., 2020). On the other
hand, we have also seen exciting recent developments in
planetary seismology, with the recent breakthrough analysis
of Martian seismic data from the InSight mission (Khan
et al., 2021; Knapmeyer-Endrun et al., 2021; Stähler et al.,
2021). In this context, the available dataset is very limited:
we must work with a single instrument, limited capacity for
data transmission, and with data characteristics quite differ-
ent from those of Earth. Undoubtedly techniques will need
to develop accordingly.

Another driver for innovation in geophysical inversion is
innovation in data collection. Recent advances in sensor
technology include the growth of distributed acoustic sensing
(e.g. Daley et al., 2013; Parker et al., 2014), which uses fibre-
optic cables to measure strain rates, and nodal seismic
acquisition systems (Dean et al., 2018), which enable dense
deployments of semi-autonomous instruments. Fully exploit-
ing these technologies within an inversion context will doubt-
less motivate a new generation of analysis techniques (e.g.
Lythgoe et al., 2021; Muir and Zhang, 2021), and ongoing
innovation in the field of geophysical inversion.

2.7 Concluding Remarks

Athanasius Kircher published his Mundus Subterraneus in
1665, with his now-famous images of fiery chambers criss-
crossing the Earth’s interior to feed its volcanoes. What was
his evidence for this structure? He acknowledges: ‘sive ea
jam hoc modo, sive alio’ – ‘either like this, or something else’.
As Waddell (2006) writes, this

makes very clear that Kircher was not interested in whether his
images had managed to capture exactly the subterranean structure
of the Earth. Such large and detailed copper engravings must have
been extremely expensive to commission and print, suggesting that
Kircher did believe them to be important. But their value lay in
their ability to encourage speculation and consideration.

Some 350 years later, geophysical images are produced with
more emphasis on rigour – but otherwise, perhaps little has
changed.

In this chapter, we have sought to survey and summarise the
state of the art of geophysical inversion, and to highlight some
of the theoretical and conceptual connections between differ-
ent approaches. As we hope is clear, the field continues to
develop at pace: driven by the need to better address geo-
science questions; drawn on towards exciting horizons across
mathematics, statistics, and computation. In particular, the
growth of machine learning has focused much attention on
techniques of regression, model building, and statistical infer-
ence, and the fruits of this have been evident throughout our
discussion. We have no doubt that geophysical inversion will
continue to produce images and models that can inspire and
stimulate geoscientists for many years to come.
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3
A Tutorial on Bayesian Data
Assimilation

Colin Grudzien and Marc Bocquet

Abstract: This chapter provides a broad introduction to
Bayesian data assimilation that will be useful to practi-
tioners in interpreting algorithms and results, and for the-
oretical studies developing novel schemes with an
understanding of the rich history of geophysical data
assimilation and its current directions. The simple case of
data assimilation in a ‘perfect’model is primarily discussed
for pedagogical purposes. Some mathematical results are
derived at a high level in order to illustrate key ideas about
different estimators. However, the focus of this chapter is
on the intuition behind these methods, where more formal
and detailed treatments of the data assimilation problem
can be found in the various references. In surveying
a variety of widely used data assimilation schemes, the
key message of this chapter is how the Bayesian analysis
provides a consistent framework for the estimation prob-
lem and how this allows one to formulate its solution in
a variety of ways to exploit the operational challenges in
the geosciences.

3.1 Introduction

In applications such as short- to medium-range weather
prediction, data assimilation (DA) provides a means to
sequentially and recursively update forecasts of a time-
varying physical process with newly incoming information
(Daley, 1991; Kalnay, 2003; Asch et al., 2016), typically
Earth observations. The Bayesian approach to DA is widely
adopted (Lorenc, 1986) because it provides a unified treat-
ment of tools from statistical estimation, non-linear
optimisation, and machine learning for handling such
a problem. This chapter illustrates how this approach can
be utilised to develop and interpret a variety of widely used
DA algorithms, both classical and those at the current state-
of-the-art.

Suppose that the time-dependent physical states to be
modelled can be written as a vector, xk 2ℝNx , where
k labels some time tk. Formally, the time-evolution of
these states is represented with the non-linear map M ,

xk ¼Mkðxk�1; λÞ þ ηk; ð3:1Þ

where: (i) xk�1 is the state variable vector at an earlier
time tk�1; (ii) λ is a vector of uncertain static physical
parameters but on which the time evolution depends;
and (iii) ηk is an additive (for simplicity but other
choices are possible), stochastic noise term, representing
errors in our model for the physical process. Define
Δt :¼ tk � tk�1 to be a fixed-length forecast horizon in this
chapter, though none of the following results require this to
be fixed in practice.

The basic goal of sequential DA is to estimate the random
state vector xk, given a prior distribution on ðxk�1; λÞ, and
given knowledge of Mk and knowledge of how ηk is statis-
tically distributed. At time tk�1, a forecast is made for the
distribution of xk utilising the prior knowledge, which
includes the physics-based model. For simplicity, most of
this chapter is restricted to the case where λ is a known
constant, and the forecast model is perfect, that is,

xk ¼Mkðxk�1Þ: ð3:2Þ

However, a strength of Bayesian analysis is how it easily
extends to include a general treatment of model errors and
the estimation of model parameters (see, e.g., Asch et al.
(2016) for a more general introduction).

While a forecast is made, one acquires a collection of
observations of the real-world process. This is written as the
observation vector yk 2ℝNy , which is related to the state
vector by

yk ¼ HkðxkÞ þ ϵk: ð3:3Þ

The (possibly non-linear) map Hk : ℝ
Nx!ℝNy relates the

physical states being modelled, xk, to the values that are
actually observed, yk. Typically, in geophysical applica-
tions, observations are not 1 : 1 with the state variables;
while the data dimension can be extremely large, Ny ≪Nx,
so this information is sparse relative to the model state
dimension. The term ϵk in Eq. (3.3) is an additive, stochastic
noise term representing errors in the measurements, or
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a mismatch between the state variable representation and
the observation (the representation error, Janjić et al., 2018).

Therefore, sometime after the real-life physical system has
reached time tk, one has a forecast distribution for the states
xk, generated by the prior on xk � 1 and the physics-based
model M , and the observations yk with some associated
uncertainty. The goal of Bayesian DA is to estimate the
posterior distribution for xk conditioned on yk, or some
statistics of this distribution.

3.2 Hidden Markov Models and Bayesian Analysis

3.2.1 The Observation-Analysis-Forecast Cycle
Recursive estimation of the distribution for xk conditional
on yk (i.e. assuming yk is known) can be described as an
observation-analysis-forecast cycle (Trevisan and Uboldi,
2004). Given the forecast-prior for the model state, and the
likelihood function for the observation, Bayes’ law updates
the prior for the modelled state to the posterior conditioned
on the observation. Bayes’ law is a simple re-arrangement of
conditional probability, defined by Kolmogorov (2018) as

PðAjBÞ :¼ PðA; BÞPðBÞ ; ð3:4Þ

for two events A and B where the probability of B is non-
zero. Intuitively, this says that the probability of an eventA,
given knowledge that an event B occurs, is equal to the
probability of A occurring relative to a sample space
restricted to the event B. Using the symmetry in the joint
event PðA;BÞ ¼ PðB;AÞ, Bayes’ law is written

PðAjBÞ ¼ PðBjAÞPðAÞPðBÞ : ð3:5Þ

In the observation-analysis-forecast cycle, A is identified
with the state vector (seen as a random vector) taking its
value in a neighbourhood of xk, and B is identified with the
observation vector (seen as a random vector) taking its value
in a neighbourhood of yk. The power of this statement is in
how it describes an ‘inverse’ probability – while the poster-
ior,PðAjBÞ, on the left-hand-sidemay not be directly access-
ible, often the likelihood PðBjAÞ and the prior PðAÞ are easy
to compute, and this is sufficient to develop a variety of
probabilistic DA techniques.

A conceptual diagram of this process is pictured in
Fig. 3.1. Given the initial first prior (represented as the first
‘posterior’ at time t0), a forecast prior for the model state at
t1, PðAÞ, is produced with the numerical model. At the
update time, there is an (possibly indirect and noisy) obser-
vation of the physical state with an associated likelihood
PðBjAÞ. The posterior for the model state conditioned on
this observation PðAjBÞ, commonly denoted the analysis in
geophysical DA, is used to initialise the subsequent

numerical forecast. Recursive estimates of the current mod-
elled state can be performed in this fashion, but a related
question regards the past states. The newly received obser-
vation gives information about the model states at past
times and this allows one to produce a retrospective poster-
ior estimate for the past states. Recursive estimation of the
present state using these incoming observations is com-
monly known as filtering. Conditional estimation of a past
state given a time series including future observations is
commonly known as smoothing.

It is important to recognise that the filtering
probability density function (pdf) for the current time
pðxkjyk; yk�1; yk�2;…Þ is actually just a marginal of the
joint posterior pdf over all states in the current data assimi-
lation window (DAW) (i.e. the window of lagged past and
current states being estimated). In Fig. 3.1, the DAW is the
time window ft1; t2; t3g. The conditional pdf for the model
state at time t3, given observations in the DAW, is written in
terms of the joint posterior as

pðx3j y3; y2; y1Þ ¼∭ pðx3; x2; x1; x0j y3; y2; y1Þ dx2dx1dx0;

ð3:6Þ

by averaging out the past history of the model state from the
joint posterior in the integrand. A smoothing estimate may
be produced in a variety of ways, exploiting different for-
mulations of the Bayesian problem. One may estimate only
a marginal pdf as on the left-hand-side of Eq. (3.6), or the
entire joint posterior pdf as in the integrand in Eq. 3.6
(Anderson and Moore, 1979; Cohn et al., 1994; Cosme
et al., 2012). The approach chosen may strongly depend on
whether the DAW is static or is advanced in time.
Particularly, if one produces a smoothing estimate for the
state at times t1 through t3, one may subsequently shift the
DAW so that, in the new cycle, the posterior for times t2

Forecast-
prior

Observation
likelihood

43210

Physical model / observed state

Δt

Posterior

Legend

Figure 3.1 Conceptual diagram of the observation-analysis-
forecast cycle. The y-axis represents a variable of the state and
observation vectors; the x-axis represents time. Ellipses represent
the spread of the observation/posterior/forecast errors. Original
figure, adapted from Carrassi et al. (2018).

28 Grudzien & Bocquet

https://doi.org/10.1017/9781009180412.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009180412.004


through t4 is estimated: this type of analysis is known as
fixed-lag smoothing. This chapter considers how one can
utilise a Bayesian maximum a posteriori (MAP) formalism
to efficiently solve the filtering and smoothing problems,
using the various tools of statistical estimation, non-linear
optimisation, and machine learning.

3.2.2 A Generic Hidden Markov Model
Recall the perfect physical process model and the noisy
observation model,

xk ¼Mk ðxk�1Þ; ð3:7aÞ

yk ¼ Hk ðxkÞ þ ϵk: ð3:7bÞ

Denote the sequence of the process model states and obser-
vation model states between time tk and time tl, for k < l, as

xl:k :¼ fxl; xl�1; . . . ; xkg; yl:k :¼ fyl; yl�1; . . . ; ykg: ð3:8Þ

For arbitrary l 2ℕ, assume that the sequence of observation
error

fϵl; ϵl�1; . . . ;ϵ�1g ð3:9Þ

is independent-in-time (i.e. a white process).
This formulation is a type of hiddenMarkov model, where

the dynamic state variables xk are known as the hidden
variables because they are not directly observed.
A Markov model is a type of ‘memoryless’ process,
described this way because of how the conditional probabil-
ity for the state is represented between different times (Ross,
2014, chapter 4). Particularly, if xk:1 is aMarkov process, the
Markov property is defined as

pðxkjxk�1:0Þ ¼ pðxkjxk�1Þ: ð3:10Þ

Equation (3.10) says that, given knowledge of the state xk�1,
the conditional probability for xk is independent of the past
history of the state before time tk�1, representing the prob-
abilistic analogue of an initial value problem.

Applying theMarkov property recursively with the defin-
ition of the conditional pdf yields

pðxL:0Þ ¼ pðx0Þ∏
L

k¼1
pðxkjxk�1Þ: ð3:11Þ

Therefore, the joint pdf for a forecast of the model state can
be written as the product of the first prior at time t0, repre-
senting the uncertainty of the data used to initialise the model
forecast, and the product of the Markov transition pdfs,
describing the evolution of the state between discrete times.

With the perfect state model, as in Eq. (3.7a), the transi-
tion probability for some subset dx⊂ℝNx is written

Pðxk 2 dxjxk�1Þ ¼ δMkðxk�1ÞðdxÞ; ð3:12Þ

with δυ referring to the Dirac measure at υ2ℝNx . The Dirac
measure satisfies

ð
f ðxÞδυðdxÞ ¼ f ðυÞ; ð3:13Þ

where this is a singular measure, to be understood by the
integral equation. Accordingly, the transition pdf is often
written proportional as

pðxkjxk�1Þ∝ δfxk �Mkðxk�1Þg; ð3:14Þ

where δ represents the Dirac distribution. Heuristically, this
is known as the ‘function’ defined by the property

δϵðxÞ ¼
1

ϵ
x2 ½�ϵ;þϵ�

0 else

; δðxÞ ¼ lim
ϵ!0þ

δϵðxÞ:

8<: ð3:15Þ

However, this is just a convenient abuse of notations, as the
Dirac measure does not have a pdf with respect to the
standard Lebesgue measure. Rather, the Dirac distribution
is understood through the generalised function theory of
distributions (Taylor, 1996, section 3.4) as a type of integral
kernel satisfyingð
f ðxkÞδfxk �Mkðxk�1Þgdxk ¼ f ðMkðxk�1ÞÞ: ð3:16Þ

Equation (3.16) represents the existence and uniqueness of
the solution to an initial value problem in deterministic
systems of ordinary and partial differential equations,
where the knowledge of the state xk�1 completely determines
the state xk via the perfect forecast modelMk. Particularly,
there is probability 1 of the state following the unique
solution to the time evolution, and probability 0 of all
other outcomes. Each Markov transition pdf represents
the evolution of an initial condition with respect to the
dynamical model, conditional ultimately on an uncertain
outcome of the initial data from the first prior. While
the perfect model assumption is used for simplicity, the
decomposition of the forecast pdf can be derived for
erroneous models under the additional assumption that
the model errors are independent-in-time. Like the
decomposition of the forecast pdf, for the observation
likelihood we can write

pðykjxk; yk�1:1Þ ¼ pðykjxkÞ; ð3:17Þ

due to the independence assumption on the observation
errors, and the relationship between xk and yk. This
says that the knowledge of the physical state xk com-
pletely determines the likelihood of the observation yk.
Indeed,

ϵk ¼ yk �HkðxkÞ; ð3:18Þ

which follows a known distribution and is independent
of the other observation error outcomes by assumption.

Consider thus how to estimate the filtering pdf pðxkjyk:1Þ.
Using the definition of the conditional pdf, one has
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pðxkjyk:1Þ ¼
pðyk:1; xkÞ
pðyk:1Þ

: ð3:19Þ

Rewriting these pdfs as conditional pdfs, and by using the
independence assumption,

pðxkj yk:1Þ ¼
p
	
yk; ðxk; yk�1:1Þ



pð yk:1Þ

ð3:20aÞ

¼ pð ykjxk; yk�1:1Þpðxk; yk�1:1Þ
pð yk:1Þ

¼ pð ykjxkÞpðxk; yk�1:1Þ
pðyk:1Þ

: ð3:20bÞ

Writing the joint pdfs again in terms of conditional pdfs

pðxkjyk:1Þ ¼
pð ykjxkÞpðxkj yk�1:1Þpð yk�1:1Þ

pð ykj yk�1:1Þpð yk�1:1Þ
ð3:21aÞ

¼ pð ykjxkÞpðxkj yk�1:1Þ
pð ykj yk�1:1Þ

: ð3:21bÞ

Now, suppose that the posterior pdf pðxk�1jyk�1:1Þ at the last
observation time tk�1 is already computed – then the model
forecast of this pdf is given by averaging over the state at
time tk�1 with respect to the Markov transition pdf,

pðxkj yk�1:1Þ ¼
ð
pðxkjxk�1Þpðxk�1j yk�1:1Þ dxk�1; ð3:22Þ

yielding the forecast-prior. The filtering pdf, on the left-
hand-side of Eq. (3.21) is written in terms of: (i) the
likelihood of the observed data given the model forecast,
pð ykjxkÞ; (ii) the forecast-prior given the last best esti-
mate of the state, pðxkjyk�1:1Þ; and (iii) the marginal of the
joint pdf pðyk; xkjyk�1:1Þ, integrating out the hidden
variables,

pð ykjyk�1:1Þ ¼
ð
pð ykjxkÞpðxkj yk�1:1Þ dxk: ð3:23Þ

This type of pdf, only depending on the observations, is
called an evidence (e.g. Carrassi et al., 2017).

Typically, the pdf in the denominator of Eq. (3.21) is
mathematically intractable. However, the denominator is
independent of the hidden variable xk by construction –

the free argument in the pdf on the left-hand-side is the
model state xk and the purpose of the denominator on
the right-hand-side is only to normalise the integral of
the posterior pdf to 1. Instead, as a proportionality
statement,

pðxkjyk:1Þ∝ pðykjxkÞpðxkjyk�1:1Þ; ð3:24Þ

one can devise the Bayesian MAP estimate as the choice
of xk that maximises the posterior pdf, but written in
terms of the two right-hand-side components in Eq.
(3.24). For the purpose of maximising the posterior

pdf, the denominator leads to insignificant constants
that can be discarded. Thus, in order to compute the
MAP sequentially and recursively in time, one can
develop a recursion in proportionality. However, note
that the evidence can be estimated and used for other
significant purposes still within a Bayesian framework
(Carrassi et al., 2017).

3.2.3 Linear-Gaussian Models
Generally, the filtering pdf pðxkjyk:1Þ has no analytical solu-
tion (i.e. no explicit expression). However, when the models
are linear, that is, both the state and observation models are
written as matrix actions

xk ¼Mkxk�1; ð3:25aÞ

yk ¼ Hkxk þ ϵk; ð3:25bÞ

and the error pdfs are Gaussian:

pðx0Þ ¼ nðx0jx0;B0Þ; pðykjxkÞ ¼ nðykjHkxk;RkÞ; ð3:26Þ

nðzjz;BÞ :¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞNzdetðBÞ

q exp � 1

2
ðz � zÞTB�1ðz � zÞ

� �
;

ð3:27Þ

then the forecast and posterior pdfs are Gaussian at all
times, and are parametrised in terms of their mean and
covariance. In particular, Gaussian distributions are
closed under affine transformations, that is, maps of
the form

f ðxÞ ¼ Axþ b; ð3:28Þ

corresponding to a linear transformation when b is a vector
of zeros, such that b ¼ 0 (Tong, 2012, see theorem 3.3.3). If x
is distributed with pdf pðxÞ ¼ nðxjx;BÞ, then the random
vector y :¼ Axþ b is distributed with pdf

pðyÞ ¼ nðyjAx þ b;ABATÞ: ð3:29Þ

Suppose that the last analysis pdf is given as

pðxk�1jyk�1:1Þ ¼ nðxk�1jxak�1;Ba
k�1Þ; ð3:30Þ

parametrised in terms of the analysis mean xak�1 and analysis
error covariance Ba

k�1. Then, the forecast-prior pdf is writ-
ten as

pðxkjyk�1:1Þ ¼ nðxkjxfk�1;Bf
kÞ; ð3:31Þ

where the forecast mean and forecast error covariance are
defined by

xfk :¼Mkx
a
k�1; ð3:32aÞ

Bf
k :¼MkB

a
k�1M

T
k ; ð3:32bÞ

respectively.
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Similarly, the conditional and marginal distributions
of a Gaussian random vector are also Gaussian and
their pdf has an analytical form. Suppose that z2ℝNz is
an arbitrary Gaussian random vector, partitioned as

z :¼ x
y

� �
pðzÞ :¼ n z

x
y

� �
;

Σxx Σxy

Σyx Σyy

� � �
;

�
ð3:33Þ

with the dimensions given as Nz ¼ Nx þNy and

x; x 2ℝNx ; y; y 2ℝNy ; Σxx 2ℝNx�Nx ; ð3:34aÞ

Σxy ¼ ΣT
yx 2ℝNx�Ny ; Σyy 2ℝNy�Ny : ð3:34bÞ

Then, the general form of the pdf for x conditioned on the
outcome of y is given by the Gaussian

pðxjyÞ ¼ n
�
xjx þ ΣxyΣ

�1
yy ðy� yÞ;Σxx � ΣxyΣ

�1
yy Σyx

�
; ð3:35Þ

where the covariance matrix Σxx � Σxy Σ�1yy Σyx is called the
Schur complement (see, e.g., theorem 3.3.4 of Tong, 2012).
Noting the form of the linear observation model in Eq.
(3.25), and the independence of the observation errors, it is
easy to see that the vector composed of x>k y>k

	 
> is jointly
Gaussian. Relying on the identifications

Σxy ¼ Bf
kH
>
k ; Σyy ¼ HkB

f
kH
>
k þ Rk; ð3:36Þ

the posterior pdf at time tk is derived as the Gaussian with
analysis mean and analysis error covariance given by

xak :¼ xfk þ Bf
kH
>
k ðHkB

f
kH
>
k þ RkÞ�1ðyk �Hkx

f
kÞ; ð3:37aÞ

Ba
k :¼ Bf

k � Bf
kH
>
k ðHkB

f
kH
>
k þ RkÞ�1HkB

f
k: ð3:37bÞ

Defining Kk :¼ Bf
kH
>
k ðHkB

f
kH
>
k þ RkÞ�1 as the Kalman

gain, Eqs. (3.37a,b) yield the classical Kalman filter
(KF) update, and this derivation inductively defines
the forecast and posterior distribution for xk at all
times. The KF is recognised thus as the parametric
representation of a linear-Gaussian hidden Markov
model, providing a recursion on the first two moments
for the forecast and posterior.

This analysis extends, as with the classical KF, easily
to incorporate additive model errors as in Eq. (3.1);
see, for example, Anderson and Moore (1979).
However, there are many ways to formulate the KF
and there are some drawbacks of this approach. Even
when the model forecast equations themselves are lin-
ear, if they functionally depend on an uncertain param-
eter vector, defined MkðλÞ, the joint estimation problem
of ðxk; λÞ can become highly non-linear and an iterative
approach to the joint estimation may be favourable.
Therefore, this chapter develops the subsequent exten-
sions to the KF with the MAP approach, which
coincides with the development in least-squares and
non-linear optimisation.

3.3 Least-Squares and Non-linear Optimisation

3.3.1 The 3-D Cost Function from Gaussian Statistics
As seen in the previous section, the linear-Gaussian analysis
admits an analytical solution for the forecast and posterior
pdf at all times. However, an alternative approach for deriv-
ing the KF is formed using the MAP estimation in propor-
tionality. Consider that the natural logarithm (log) is
monotonic, so that an increase in the input of the argument
corresponds identically to an increase in the output of the
function. Therefore, maximising the posterior pdf as in Eq.
(3.24) is equivalent to maximising

logðpðykjxkÞpðxkjyk�1:1ÞÞ ¼ logðpðykjxkÞÞ
þ logðpðxkjyk�1:1ÞÞ: ð3:38Þ

Given the form of the multivariate Gaussian pdf in Eq.
(3.27), maximising the log-posterior Eq. (3.38) is equivalent
to minimising the following least-squares cost function,
derived in proportionality to the minus-log-posterior:

J KFðxkÞ ¼
1

2
∥xfk � xk∥

2
Bf
k
þ 1

2
∥yk �Hkxk∥

2
Rk
: ð3:39Þ

For an arbitrary positive definite matrixA, theMahalanobis
distance (Mahalanobis, 1936) with respect to A is defined as

∥υ∥A :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υTA�1υ

p
: ð3:40Þ

These distances are weighted Euclidean norms with:
(i)∥ ∘ ∥Bf

k
weighting relative to the forecast spread; and (ii)

∥ ∘ ∥Rk weighting relative to the observation imprecision. The
MAP state thus interpolates the forecast mean and the
observation relative to the uncertainty in each piece of
data. Due to the unimodality of the Gaussian, and its sym-
metry about its mean, it is clear that the conditional mean xak
is also the MAP state.

While this cost function analysis provides the solution to
finding the first moment of the Gaussian posterior, this does
not yet address how to find the posterior error covariance.
In this linear-Gaussian setting, it is easily shown that the
analysis error covariance is actually given by

Ba
k :¼ ðBf

kÞ
�1 þH>k R

�1
k Hk

h i�1
¼ Ξ�1J KF

; ð3:41Þ

where ΞJ KF refers to the Hessian of the least-squares cost
function in Eq. (3.39), that is, the matrix of its mixed second
partial derivatives in the state vector variables. This is
a fundamental result that links the recursive analysis in
time to the MAP estimation performed with linear least-
squares; see, for example, section 6.2 of Reich and Cotter
(2015) for further details.

A more general result from maximum likelihood estima-
tion extends this analysis as an approximation to non-linear
state and observation models, and to non-Gaussian error
distributions. Define θ̂ to be themaximum likelihood estima-
tor (MLE) for some unknown parameter vector θ2ℝNθ ,
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where θ̂ depends on the realisation of some arbitrarily dis-
tributed random sample of observed data fzigNi¼1. Then,
under fairly general regularity conditions, the MLE satisfies

IðθÞ�
1
2ðθ̂ � θÞ!d Nð0; INθÞ; ð3:42Þ

where: (i) Eq. (3.42) refers to convergence in distribution of
the random vector IðθÞ�

1
2ðθ̂ � θÞ as the sample size N!∞;

(ii) INθ is the identity matrix in the dimension of θ; (iii)
Nð0; INθÞ is the multivariate Gaussian distribution with
mean zero and covariance equal to the identity matrix,
that is, with pdf nðxj0; INθÞ; and (iv) IðθÞ is the Fisher
information matrix. The Fisher information matrix is
defined as the expected value of the Hessian of the minus-
log-likelihood, taken over the realisations of the observed
data fzigNi¼1, and with respect to the true parameter vector θ.
It is common to approximate the distribution of theMLE as

θ̂∼Nðθ; Iðθ̂ÞÞ; ð3:43Þ

where Iðθ̂Þ is the observed Fisher information (i.e. the real-
isation of the Hessian of the minus-log-likelihood given the
observed sample data). This approximation improves in
large sample sizes like the central limit theorem; see, for
example, chapter 9 of Pawitan (2001) for the details of this
discussion. In non-linear optimisation, the approximate dis-
tribution of the MLE therefore relates the geometry in the
neighbourhood of a local minimiser to the variation in the
optimal estimate. Particularly, the curvature of the cost
function level contours around the local minimum is
described by the Hessian while the spread of the distribution
of the MLE is described by the analysis error covariance.

3.3.2 3D-VAR and the Extended Kalman Filter
One of the benefits of the aforementioned cost function
approach is that this immediately extends to handle a non-
linear observation operator Hk as a problem of non-linear
least-squares. When the observations are related non-
linearly to the state vector, the Bayesian posterior is no
longer generally Gaussian, but the interpretation of the
analysis state xak interpolating between a background pro-
posal xfk and the observed data yk relative to their respective
uncertainties remains valid. The use of the non-linear least-
squares cost function can be considered as making
a Gaussian approximation, similar to the large sample the-
ory in maximum likelihood estimation. However, the fore-
cast and analysis background error covariances, Bf=a

k , take
on different interpretations depending on the DA scheme.

In full-scale geophysical models, the computation and
storage of the background error covariance Bf=a

k is rarely
feasible due to its large size; in practice, this is usually
treated abstractly in its action as an operator by precondi-
tioning the optimisation (Tabeart et al., 2018). One trad-
itional approach to handle this reduced representation is to
use a static-in-time background for the cost function in Eq.

(3.39), rendering the three-dimensional, variational (3D-
VAR) cost function

J 3D�VARðxÞ :¼
1

2
∥xfk � x∥2B3D�VAR

þ 1

2
∥yk �HkðxÞ∥2Rk

:

ð3:44Þ

The 3D-VAR background error covariance is typically
defined as a posterior, ‘climatological’ covariance, taken
with respect to a long-time average over the modelled
state. One way that this is roughly estimated in meteorology
is by averaging over a reanalysis data set, which is equivalent
to averaging with respect to a joint-smoothing posterior
over a long history for the system (Kalnay, 2003, and refer-
ences therein). If one assumes that the DA cycle represents
a stationary, ergodic process in its posterior statistics, and
that this admits an invariant, ergodic measure, π*, one
would define the 3D-VAR background error covariance
matrix with the expected value with respect to this measure
as

x� :¼ Eπ� ½x�; ð3:45aÞ

B3D�VAR :¼ Eπ� ðx� x�Þðx� x�Þ>
h i

: ð3:45bÞ

The 3D-VAR cycle is defined where xak is the minimising
argument (argmin) of Eq. (3.44) and subsequently
xfkþ1 :¼Mkþ1ðxakÞ, meaning, the forecast mean is estimated
with the background control trajectory propagated through
the fully non-linear model. Therefore, at every iteration of
the algorithm, 3D-VAR can be understood to treat the
proposal xfk as a random draw from the invariant, climato-
logical-posterior measure of the system; the optimised solu-
tion xak is thus the state that interpolates the forecast mean
and the currently observed data as if the forecast mean was
drawn randomly from the climatological-posterior.

For illustration, consider a cost-effective, explicit formu-
lation of 3D-VAR where the background error covariance
matrix is represented as a Cholesky factorisation. Here, one
performs the optimisation by writing the modelled state as
a perturbation of the forecast mean,

xk :¼ xfk þ Σw; ð3:46Þ

where B3D�VAR :¼ ΣΣT. The weight vector w gives the linear
combination of the columns of the matrix factor that
describe xk as a perturbation. One can iteratively optimise
the 3D-VAR cost function as such with a locally quadratic
approximation. Let x ik be the i-th iterate for the proposal
value at time tk, defining x0k :¼ xfk. The i + 1-st iteration is
defined (up to a subtlety pointed out by Ménétrier and
Auligné (2015)) as

x iþ1k ¼ xik þ Σwiþ1; ð3:47Þ

where wiþ1 is the argmin of the following incremental cost
function
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J 3D�VARIðwÞ :¼
1

2
∥w∥2 þ 1

2
∥yk �HkðxikÞ �HkΣw∥

2
Rk
:

ð3:48Þ

This approximate cost function follows from truncating the
Taylor expansion

HkðxÞ ¼ HkðxikÞ þHkΣwþOð∥w∥2Þ ð3:49Þ

and the definition of the Mahalanobis distance. Notice that
wiþ1 is defined uniquely as Eq. (3.48) is quadratic with
respect to the weights, allowing one to use fast and adequate
methods such as the conjugate gradient (Nocedal and
Wright, 2006, chapter 5). The iterations are set to termin-
ate when ∥wi∥ is sufficiently small, representing
a negligible change from the last proposal. This
approach to non-linear optimisation is known as the
incremental approach, and corresponds mathematically
to the Gauss-Newton optimisation method, an efficient
simplification of Newton’s descent method for non-linear
least-squares (Nocedal and Wright, 2006, chapter 10).
As described, it consists of an iterative linearisation of
the non-linear optimisation problem, which is a concept
utilised throughout this chapter.

The 3D-VAR approach described here played an
important role in early DA methodology, and aspects
of this technique are still widely used in ensemble-based
DA when using the regularisation technique known as
covariance hybridisation (Hamill and Snyder, 2000;
Lorenc, 2003; Penny, 2017). However, optimising the
state with the climatological-posterior background neg-
lects important information in the time-dependent fea-
tures of the forecast spread, described sometimes as the
‘errors of the day’ (Corazza et al., 2003). The extended
Kalman filter (EKF) can be interpreted to generalise the
3D-VAR cost function by including a time-dependent
background, like the KF, by approximating its time-
evolution at first order with the tangent linear model
as follows.

Suppose that the equations of motion are generated
by a non-linear function, independent of time for
simplicity,

d

dt
x :¼ f ðxÞ; xk ¼Mkðxk�1Þ :¼

ðtk
tk�1

f ðxÞ dtþ xk�1: ð3:50Þ

One can extend the linear-Gaussian approximation for the
forecast pdf by modelling the state as a perturbation of the
analysis mean,

xk�1 :¼ xak�1 þ δk�1 ∼Nðxak�1;Ba
k�1Þ; ð3:51aÞ

⇔   δk�1 ∼Nð0;Ba
k�1Þ: ð3:51bÞ

The evolution of the perturbation δk�1 is written via
Taylor’s theorem as

d

dt
δk�1 :¼

d

dt
ðxk�1 � xak�1Þ ð3:52aÞ

¼ f ðxk�1Þ � f ðxak�1Þ ð3:52bÞ

¼ rx f ðxak�1Þδk�1 þOð∥δk�1∥2Þ; ð3:52cÞ

whererx f ðxak�1Þ is the Jacobian equation with dependence
on the underlying analysis mean state. The linear evolution
defined by the truncated Taylor expansion about the under-
lying reference solution x,

d

dt
δ :¼ rx f ðxÞ � δ; ð3:53Þ

is known as the tangent linear model.
Making the approximation of the tangent linear model

for the first order evolution of the modelled state, we obtain

d

dt
x ≈ f ðxÞ þ rx f ðxÞ � δ ð3:54aÞ

)
ðtk
tk�1

d

dt
x dt ≈

ðtk
tk�1

f ðxÞ dtþ
ðtk
tk�1

rx f ðxÞ � δ dt ð3:54bÞ

) xk ≈ Mkðxk�1Þ þMkδk�1; ð3:54cÞ

whereMk is the resolvent of the tangent linear model. Given
that Gaussians are closed under affine transformations, the
EKF approximation for the (perfect) evolution of the state
vector is defined as

pðxkjyk�1:1Þ ≈ n
�
xkjMkðxak�1Þ;MkB

a
k�1M

>
k

�
: ð3:55Þ

Respectively, define the EKF analysis cost function as

J EKFðxÞ :¼
1

2
∥xfk � x∥2Bf

k
þ 1

2
∥yk �HkðxÞ∥2Rk

; ð3:56Þ

where

xfk :¼Mkðxak�1Þ; ð3:57aÞ

Bf
k :¼MkB

a
k�1M

>
k : ð3:57bÞ

A similar, locally quadratic, weight–space optimisation, can
be performed versus the non-linear observation operator
using a matrix decomposition for the time-varying back-
ground forecast error covariance, defining the state as
a perturbation using this matrix factor similar to Eq.
(3.46). This gives the square root EKF, which was used
historically to improve the stability over the direct approach
(Tippett et al., 2003).

The accuracy and stability of this EKF depends strongly
on the length of the forecast horizon Δt (Miller et al., 1994).
For short-range forecasting, the perturbation dynamics of
the tangent linear model can be an adequate approximation,
and is an underlying approximation for most operational
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DA (Carrassi et al., 2018). However, the explicit linear
approximation can degrade quickly, and especially when
the mean state is not accurately known. The perturbation
dynamics in the linearisation about the approximate mean
can differ substantially from the non-linear dynamics of the
true system as the approximate mean state diverges from the
modelled system (Grewal and Andrews, 2014, see chapters 7
and 8). These stability issues, and the computational cost of
explicitly representing the evolution of the background
covariance in the tangent linear model, limit the use of the
EKF for geophysical DA. Nonetheless, this technique pro-
vides important intuition that is developed later in this
chapter.

3.3.3 The Gaussian 4-D Cost Function
Consider again the perfect, linear-Gaussian model repre-
sented by Eq. (3.25). Using the Markov assumption, Eq.
(3.10), and the independence of observation errors, Eq.
(3.17), recursively for the hidden Markov model, the joint
posterior decomposes as

pðxL:0jyL:1Þ∝ pðx0Þ|fflffl{zfflffl}
ðiÞ

∏
L

k¼1
pðxkjxk�1Þ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiiÞ

∏
L

k¼1
pðykjxkÞ

" #
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

ðiiiÞ

;

ð3:58Þ

where (i) is the prior for the initial state x0; (ii) is the free-
forecast with the perfect model Mk, depending on some
outcome drawn from the prior; and (iii) is the joint likeli-
hood of the observations in the DAW, given the back-
ground forecast.

Define the composition of the linear model forecast from
time tk�1 to tl as

Ml:k :¼Ml . . .Mk; Mk:k :¼ INx : ð3:59Þ

Using the perfect, linear model hypothesis, note that

xk :¼Mk:1x0 ð3:60Þ

for every k. Therefore, the transition pdfs in Eq. (3.58) are
reduced to a trivial condition by re-writing

pðxL:0jyL:1Þ∝ pðx0Þ ∏
L

k¼1
pðxkjMk�1:1x0Þ

" #
∏
L

k¼1
pðykjxkÞ

" #
ð3:61aÞ

∝ pðx0Þ ∏
L

k¼1
pðykjMk:1x0Þ

" #
; ð3:61bÞ

as this pdf evaluates to zero whenever xk ≠ Mk:1x0. Given
a Gaussian prior, and Gaussian observation error distribu-
tions, the minus-log-posterior four-dimensional (4-D) cost
function is derived as

J4Dðx0Þ :¼
1

2
∥x0 � x0∥

2
B0
þ 1

2

XL
k¼1

∥yk �HkMk:1x0∥
2
Rk
:

ð3:62Þ

Notice that the 4-D cost function in Eq. (3.62) is actually
quadratic with respect to the initial condition x0.
Therefore, the smoothing problem in the perfect, linear-
Gaussian model has a unique, optimal initial condition
that minimises the sum-of-square deviations from the
prior mean, with distance weighted with respect to the
prior covariance, and the observations, with distance
weighted with respect to the observation error covariances.
The optimal, smoothed initial condition using observation
information up to time tL is denoted xs0jL; this gives the
smoothed model states at subsequent times by the perfect
model evolution,

xskjL :¼Mk:1x
s
0jL: ð3:63Þ

This derivation is formulated for a smoothing problem
with a static-in-time DAW, in which an entire time series
of observations yL:1 is available, and for which the esti-
mation may be performed ‘offline’. However, a simple
extension of this analysis accommodates DAWs that are
sequentially shifted in time, allowing an ‘online’ smooth-
ing estimate to be formed analogously to sequential
filtering.

Fixed-lag smoothing sets the length of the DAW, L, to be
fixed for all time, while the underlying states are cycled
through this window as it shifts forward in time. Given the
lag of length L, suppose that a shift S is defined for which
1≤S≤L. It is convenient to consider an algorithmically
stationary DAW, referring to the time indices ft1; . . . ;tLg.
In a given cycle, the joint posterior pðxL:1jyL:1Þ is estimated.
After the estimate is produced, the DAW is subsequently
shifted in time by S � Δt and all states are re-indexed by
tk tkþS to begin the next cycle. For a lag of L and a shift of
S, the observation vectors at times ftL�Sþ1; . . . ;tLg corres-
pond to observations newly entering the DAW for the ana-
lysis performed up to time tL. When S ¼ L, the DAWs are
disconnected and adjacent in time, whereas for S < L there
is an overlap between the estimated states in sequential
DAWs. Figure 3.2 provides a schematic of how the DAW
is shifted for a lag of L ¼ 5 and shift S ¼ 2. Following the
common convention in DA that there is no observation at
time zero, in addition to theDAW, ft1; . . . ; tLg, states at time
t0 may be estimated or utilised in order to connect estimates
between adjacent/overlapping DAWs.

Consider the algorithmically stationary DAW, and sup-
pose that the current analysis time is tL, where the joint
posterior pdf pðxL�S:1�SjyL�S:1�SÞ is available from the last
fixed-lag smoothing cycle at analysis time tL�S. Using the
independence of observation errors and the Markov
assumption recursively,
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pðxL:1 jyL:1�SÞ ∝ð
dx0  pðx0jyL�S:1�SÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiÞ

∏
L

k¼1
pðxkjxk�1Þ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiiÞ

∏
L

k¼L�Sþ1
pðykjxkÞ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiiiÞ

;

ð3:64Þ

where: (i) now represents averaging out the initial condition
at time t0 with respect to the marginal smoothing pdf for
xs0jL�S over the last DAW; (ii) represents the free forecast of
the smoothed estimate for xs0jL�S; and term (iii) represents
the joint likelihood of the newly incoming observations to
the DAW given the forecasted model state. Noting that
pðxL:1jyL:1Þ ∝ pðxL:1jyL:1�SÞ, this provides a recursive form
of the 4-D cost function, shifted sequentially in time,

J 4D�seqðx0Þ :¼
1

2
∥xs0jL�S � x0∥

2
Bs
0jL�S

þ 1

2

XL
k¼L�Sþ1

∥yk �HkMk:1x0∥
2
Rk
; ð3:65Þ

where Bs
0jL�S refers to the smoothed error covariance from

the last DA cycle. As with the KF cost function, the poster-
ior error covariance, conditioning on observations up to
time tL, is identified with

Bs
0jL :¼ Ξ�1J 4D�seq

: ð3:66Þ

Given the perfect, linear-Gaussian model assumption, the
mean and covariance are propagated to time tS via

xsSjL :¼MS:1x
s
0jL; ð3:67aÞ

Bs
SjL :¼MS:1B

s
0jLM

T
S:1; ð3:67bÞ

and states are re-indexed as tkþS tk to initialise the next cycle.
This provides a 4-D derivation of the Kalman smoother (KS),
assuming a perfect model, though not all developments take
this approach, using a global analysis over all observations
in the current DAW at once. Other formulations use an alter-
nating (i) forward sequentialfiltering pass to update the current

forecast; and (ii) backward-in-time sequential filtering pass
over the DAW to condition lagged states on the new informa-
tion. Examples of smoothers that follow this alternating ana-
lysis include the ensemble Kalman smoother (EnKS) (Evensen
and Leeuwen, 2000) and the ensemble Rauch–Tung–Striebel
(RTS) smoother (Raanes, 2016), with the EnKS to be dis-
cussed in Section 3.4.3.

3.3.4 Incremental 4D-VAR
The method of incremental four-dimensional, variational
(4D-VAR) data assimilation (Le Dimet and Talagrand,
1986; Talagrand and Courtier, 1987; Courtier et al., 1994)
is a classical and widely used DA technique that extends the
linear-Gaussian 4-D analysis to non-linear settings, both for
fixed and sequential DAWs. Modern formulations of the
4D-VAR analysis furthermore handle model errors, as in
weak-constraint 4D-VAR (Trémolet, 2006; Desroziers
et al., 2014; Laloyaux et al., 2020), and may include time-
varying background error covariances by combining an
ensemble of 4D-VAR (Bonavita et al., 2012), which is
known as ensemble of data assimilation (EDA).

Assuming now that the state and observation models are
non-linear, as in Eq. (3.7), denote the composition of the
non-linear model forecast from time tk−1 to time tl as

M l:k :¼M l ∘ . . . ∘Mk ; Mk:k :¼ INx : ð3:68Þ

Then, the linear-Gaussian 4-D cost function is formally
extended as a Gaussian approximation in 4D-VAR with

J 4D�VARðx0Þ :¼
1

2
∥x0 � x0∥

2
B4D�VAR

þ 1

2

XL
k¼1

∥yk �Hk ∘ Mk:1ðx0Þ∥2Rk
; ð3:69Þ

whereB4D�VAR B3D�VAR. A similar indexing to equation to
Eq. (3.65) gives the sequential form over newly incoming
observations.

The incremental linearisation that was performed in 3D-
VAR in Eq. (3.48) forms the basis for the classical technique

tL−3 tL−2

yL−3 yL−2

tL−1 tL

yL−1 yL

tL+1 tL+2

yL+1 yL+2

tL−2

tL

tL+2

S�t

S�t

L�t

Figure 3.2 Three cycles of a shift S = 2, lag L = 5 fixed-lag smoother, cycle number is increasing top to bottom. Time indices on the left-
hand margin indicate the current time for the associated cycle of the algorithm. New observations entering the current DAW are shaded
black. Source: Grudzien and Bocquet (2021), adapted from Asch et al. (2016).
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of incremental 4D-VAR. Suppose again that an explicit
Cholesky factor for the background covariance is given
B4D�VAR :¼ ΣΣ>, where the state is written as
a perturbation of the i-th iterate as

x0 :¼ xi0 þ Σw: ð3:70Þ

Taking a Taylor expansion of the composition of the non-
linear observation model and the non-linear state model at
the i-th iterate,

Hk ∘ Mk:1ðx0Þ ¼ H ∘ Mk:1ðxi0Þ þHkMk:1ΣwþOð∥w∥2Þ;
ð3:71Þ

the incremental cost function is rendered

J 4D�VARIðwÞ ¼
1

2
∥w∥2 þ 1

2

XL
k¼1

∥yk �Hk ∘ Mk:1ðxi0Þ

�HkMk:1Σw∥
2
Rk
: ð3:72Þ

The argmin of Eq. (3.72) is defined as wi, where x iþ1 is
defined as in Eq. (3.47).

It is important to remember that in Eq. (3.72), the term
Mk:1 involves the calculation of the tangent linear model
with reference to the underlying non-linear solution
ML:1ðxi0Þ; simulated freely over the entire DAW. A key
aspect to the efficiency of the incremental 4D-VAR
approach is in the adjoint model computation of the gradi-
ent to this cost function, commonly known as backpropaga-
tion in statistical and machine learning (Rojas, 2013, see
chapter 7). The adjoint model with respect to the proposal
is defined as

d

dt
eδ ¼ �rx f ðxiÞ

�>eδ: ð3:73Þ

The solution to the linear adjoint model then defines the
adjoint resolvent matrix M>k (i.e. the transpose of the tan-
gent linear resolvent). Notice that for the composition of the
tangent linear model forecasts with k≤ l, the adjoint is given
as

M>l:k :¼ ðMlMl�1 . . .Mkþ1MkÞ> ¼M>k M
>
kþ1 . . .M

>
l�1M

>
l :

ð3:74Þ

This means that the adjoint model variables eδl are
propagated by the linear resolvents of the adjoint
model, but applied in reverse chronological order
from the tangent linear model from last time tl to the
initial time tk�1,eδk�1 :¼M>l:keδl ð3:75Þ

transmitting the sensitivity from a future time back to
a perturbation of (Kalnay, 2003, see section 6.3).

Define the innovation vector of the i-th iterate and the k-th
observation vector as

δ
i
k :¼ yk �Hk ∘ Mk:1ðxi0Þ: ð3:76Þ

Then the gradient of Eq. (3.72) with respect to the weight
vector is written

rwJ 4D�VARI ¼ w�
XL
k¼1

Σ>M>k:1H
>
k R
�1
k δ

i
k �HkMk:1Σw

h i
:

ð3:77Þ

Making the substitution

Δk :¼ R�1k δ
i
k �HkMk:1Σw

h i
; ð3:78Þ

notice that the gradient is written in Horner factorisation as

rwJ 4D�VARI ¼ w� Σ>M>1 ½H>1 Δ1 þM>2 ½H>2 Δ2 þ . . .

þ ½M>LH>LΔL���: ð3:79Þ

Defining the adjoint variable as eδL :¼ H>LΔL, with recursion
in tk,eδk :¼ H>k Δk þM>kþ1 eδkþ1; ð3:80Þ

the gradient of the cost function is written as

rwJ 4D�VARI :¼ w� Σ eδ0: ð3:81Þ

Using these definitions, the gradient of the incremental cost
function is computed from the following steps: (i) a forward
pass of the free evolution of xi0 under the non-linear forecast
model, computing the innovations as in Eq. (3.76); (ii) the
propagation of the perturbation Σw in the tangent linear
model and the linearised observation operator with respect
to the proposal, xik, in order to compute the terms in Eq.
(3.78); and (iii) the back propagation of the sensitivities in
the adjoint model, Eq. (3.73), to obtain the adjoint variables
recursively as in Eq. (3.80) and the gradient from Eq. (3.81).

The benefit of this approach is that it gives an extremely
efficient calculation of the gradient, provided that the tan-
gent linear and adjoint models are available, which, in turn,
is key to very efficient numerical optimisations of cost func-
tions. However, the trade-off is that the tangent linear and
adjoint models of a full-scale geophysical state model, and
of the observationmodel, require considerable development
time and expertise. Increasingly, these models can be com-
puted abstractly by differentiating a computer program
alone, in what is known as automatic differentiation of
code (Griewank, 1989; Griewank and Walther, 2003;
Hascöet, 2014; Baydin et al., 2018). When tangent linear
and adjoint models are not available, one alternative is to
use ensemble sampling techniques in the fully non-linear
model M alone. The ensemble-based analysis provides
a complementary approach to the explicit tangent linear
and adjoint model analysis – this approach can be developed
independently, or hybridised with the use of the tangent
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linear and adjoint models as in various flavours of hybrid
ensemble-variational (EnVAR) techniques (Asch et al., 2016;
Bannister, 2017). This chapter focuses on the independent
development of EnVAR estimators in the following section.

3.4 Bayesian Ensemble-Variational Estimators

3.4.1 The Ensemble Transform Kalman Filter
Consider once again the perfect, linear-Gaussian model in
Eq. (3.25). Rather than explicitly computing the evolution
of the background mean and error covariance in the linear
model as in Eq. (3.32) and the KF, one can alternatively
estimate the state mean and the error covariances using

a statistical sampling approach. Let xf=ak;i

n oNe

i¼1
be replicates

of the model state, independently and identically distributed
(iid) according to the distribution

xf=ak;i ∼Nðx
f=a
k ;Bf=a

k Þ: ð3:82Þ

Given the iid assumption, the ensemble-based mean and the
ensemble-based covariance

x̂f=ak :¼ 1

Ne

XNe

i¼1
xf=ak;i ; ð3:83aÞ

Pf=a
k :¼ 1

Ne � 1

XNe

i¼1
xf=ak;i � x̂f=ak

� �
xf=ak;i � x̂f=ak

� �T
; ð3:83bÞ

are (asymptotically) consistent estimators of the back-
ground, that is,

E x̂f=ak

h i
¼ xf=ak ; lim

Ne!∞
E Pf=a

k

h i
¼ Bf=a

k ; ð3:84Þ

where the expectation is over the possible realisations of the
random sample. Particularly, the multivariate central limit
theorem gives that

Pf=a
k

� ��1
2

xf=ak � x̂f=ak

� �
! dNð0; INxÞ; ð3:85Þ

referring to convergence in distribution as Ne!∞ (Härdle
et al., 2017, see section 6.2).

Using the relationships in Eq. (3.83), these estimators are
efficiently encoded as linear operations on the ensemble
matrix. Define the ensemble matrix and the perturbation
matrix as

Ef=a
k :¼ xf=ak;1 . . . xf=ak;Ne

� �
2ℝNx�Ne ; ð3:86Þ

Xf=a
k :¼ xf=ak;1 � x̂f=ak . . . xf=ak;Ne

� x̂f=ak

� �
2ℝNx�Ne ; ð3:87Þ

that is, as the arrays with the columns given as the ordered
replicates of the model state and their deviations from the
ensemble mean respectively. For 1, defined as the vector

composed entirely of ones, define the following linear oper-
ations conformally in their dimensions

x̂f=ak ¼ Ef=a
k 1=Ne; ð3:88aÞ

Xf=a
k ¼ Ef=a

k ðINe � 11T=NeÞ; ð3:88bÞ

Pf=a
k ¼

	
Xf=a

k


	
Xf=a

k


T
=
	
Ne � 1



: ð3:88cÞ

The operator INe � 11T=Ne is the orthogonal complemen-
tary projection operator to the span of the vector of ones,
known as the centring operator in statistics (Härdle et al.,
2017, see section 6.1); this has the effect of transforming the
ensemble to mean zero.

Notice, when Ne ≤Nx, the ensemble-based error covari-
ance has rank of at mostNe � 1, irrespective of the rank of
the background error covariance, corresponding to the
one degree of freedom lost in computing the ensemble
mean. Therefore, to utilise the ensemble error covari-
ance in the least-squares optimisation as with the KF in
Eq. (3.39), a new construction is necessary. For
a generic matrix A2ℝN�M with full column rank M,
define the (left Moore–Penrose) pseudo-inverse (Meyer,
2000, see page 423)

A† :¼ ðA>AÞ�1A>: ð3:89Þ

In particular, A†A ¼ IM (and the orthogonal projector into
the column span of A) is defined by AA†. When A has full
column rank as here, define theMahalanobis ‘distance’with
respect to G ¼ AA> as

∥υ∥G :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA†υÞ>ðA†υÞ

q
: ð3:90Þ

Note that in the case thatG does not have full column rank
(i.e. N > M), this is not a true norm on ℝN as it is degener-
ate in the null space of A†. This instead represents a lift of
a non-degenerate norm in the column span of A to RN . In
the case that υ is in the column span of A, one can equiva-
lently write

υ ¼ Aw; ð3:91aÞ

∥υ∥G ¼ ∥w∥; ð3:91bÞ

for a vector of weights w2RM .
The ensemble Kalman filter (EnKF) cost function for the

linear-Gaussian model is defined

J EnKFðxkÞ :¼
1

2
∥x̂fk � xk∥

2
Pf
k
þ 1

2
∥yk �Hkxk∥

2
Rk

ð3:92aÞ

⇔  J EnKFðwÞ :¼
1

2
ðNe�1Þ∥w∥2 þ 1

2
∥yk�Hk x̂

f
k �HkX

f
kw∥

2
Rk
;

ð3:92bÞ

where the model state is written as a perturbation of the
ensemble mean
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xk ¼ x̂fk þ Xf
kw: ð3:93Þ

Notice,w2ℝNe , giving the linear combination of the ensem-
ble perturbations used to represent the model state.

Define ŵ to be the argmin of the cost function in Eq.
(3.92b). Hunt et al. (2007) and Bocquet (2011) demonstrate
that, up to a gauge transformation, ŵ yields the argmin of
the state-space cost function, Eq. (3.92a), when the estimate
is restricted to the ensemble span. Equation (3.92b) is quad-
ratic in w and can be solved to render

ŵ :¼ 0� Ξ�1J EnKF
rwJ EnKFjw¼0; ð3:94aÞ

T :¼ Ξ
�1

2
J EnKF

; ð3:94bÞ

Pa
k ¼ ðXf

kTÞðXf
kTÞ

>=ðNe � 1Þ; ð3:94cÞ

corresponding to a single iteration of Newton’s descent
algorithm in Eq. (3.94a), initialised with the ensemble
mean, to find the optimal weights.

The linear ensemble transform Kalman filter (ETKF)
equations (Bishop et al., 2001; Hunt et al., 2007) are then
given by

Ef
k ¼MkE

a
k�1; ð3:95aÞ

Ea
k ¼ x̂fk1

> þ Xf
k ŵ1> þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne � 1

p
TU

� �
; ð3:95bÞ

where U2ℝNe�Ne can be any mean-preserving, orthogonal
transformation (i.e. U1 ¼ 1). The simple choice of U :¼ INe

is sufficient, but it has been demonstrated that choosing
a random, mean-preserving orthogonal transformation at
each analysis can improve the accuracy and robustness of
the ETKF, smoothing out higher-order artefacts in the
empirical covariance estimate (Sakov and Oke, 2008).

Notice that Eq. (3.95b) is written equivalently as a single
right ensemble transformation:

Ea
k ¼ Ef

kΨk; ð3:96aÞ

Ψk :¼ 11>=Ne þ ðINe � 11>=NeÞ ŵ1> þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne � 1

p
TU

� �
;

ð3:96bÞ

where the columns are approximately distributed as in Eq.
(3.82), with the (asymptotic) consistency as with the central
limit theorem, Eq. (3.85). However, in the small feasible
sample sizes for realistic geophysical models, this approxi-
mation can lead to a systematic underestimation of the
uncertainty of the analysis state, where the ensemble-based
error covariance can become overly confident in its own
estimate with artificially small variances. Covariance infla-
tion is a technique that is widely used to regularise the
ensemble-based error covariance by increasing the empirical
variances of the estimate. This can be used to handle the
inaccuracy of the estimator due to the finite sample size

approximation of the background mean and error covari-
ance as in Eq. (3.85), as well as inaccuracies due to a variety
of other sources of error (Carrassi et al., 2018; Raanes et al.,
2019a; Tandeo et al., 2020).

A Bayesian hierarchical approach can model the
inaccuracy in the approximation error due to the finite
sample size by including a prior additionally on the
background mean and error covariance pðxfk;Bf

kÞ, as in
the finite-size ensemble Kalman filter formalism of
Bocquet (2011), Bocquet and Sakov (2012), and
Bocquet et al. (2015). Mathematical results demonstrate
that covariance inflation can ameliorate the systematic
underestimation of the variances due to model error in
the presence of a low-rank ensemble (Grudzien et al.,
2018). In the presence of significant model error, the
finite-size analysis is extended by the variant developed
by Raanes et al. (2019a).

The linear transform of the ensemble matrix in Eq.
(3.96) is key to the efficiency of the (deterministic) EnKF
presented in this section (Sect. 3.4.1). The ensemble-
based cost function Hessian ΞJ EnKF 2ℝNe�Ne , where
Ne ≪ Nx for typical geophysical models. Particularly, the
cost of computing the optimal weights, as in Eq. (3.94a), and
computing the transform matrix T in Eq. (3.94b) are both
subordinate to the cost of the eigenvalue decomposition of
the Hessian at OðN3

e Þ floating point operations (flops), or to
a randomised singular value decomposition (Farchi and
Bocquet, 2019). However, the extremely low ensemble size
means that the correction to the forecast is restricted to the low-
dimensional ensemble span, which may fail to correct direc-
tions of rapidly growing errors due to the rank deficiency.
While chaotic, dissipative dynamics implies that the back-
ground covariance Bf=a

k has spectrum concentrated on
a reduced rank subspace (Carrassi et al., 2022, and referenced
therein), covariance hybridisation (Penny, 2017) or localisa-
tion (Sakov and Bertino, 2011) are used in practice to regular-
ise the estimator’s extreme rank deficiency, and the spurious
empirical correlations that occur as a result of the degenerate
sample size.

When extended to non-linear dynamics, as in Eq. (3.7a),
the EnKF can be seen to make an ensemble-based approxi-
mation to the EKF cost function, where the forecast ensem-
ble is defined by

xfk;i :¼Mk�1ðxak�1;iÞ; Ef
k :¼ ð xfk;1 . . . xfk;Ne

Þ: ð3:97Þ

The accuracy of the linear-Gaussian approximation to
the dynamics of the non-linear evolution of the ensem-
ble, like the approximation of the EKF, depends
strongly on the length of the forecast horizon Δt. When
the ensemble mean is a sufficiently accurate approxima-
tion of the mean state, and if the ensemble spread is of
the same order as the error in the mean estimate
(Whitaker and Loughe, 1998), a similar approximation
can be made for the ensemble evolution at first order, as
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with Eq. (3.53), but linearised about the ensemble mean
as discussed later in Eq. (3.112). Despite the similarity to
the EKF, in the moderately non-linear dynamics present
in medium- to longer-range forecast horizons, the EnKF
does not suffer from the same inaccuracy as the EKF in
truncating the time-evolution at first order (Evensen,
2003). The forecast ensemble members themselves evolve
fully non-linearly, tracking the higher-order dynamics,
but the analysis update based on the Gaussian approxi-
mation becomes increasingly biased and fails to discrim-
inate features like multimodality of the posterior, even
though this is occasionally an asset with higher-order
statistical artefacts (see the discussion in Lawson and
Hansen, 2004).

3.4.2 The Maximum Likelihood Ensemble Filter
The EnKF filter analysis automatically accommodates
weak non-linearity in the state model without using the
tangent linear model, as the filtering cost function has no
underlying dependence on the state model. However, the
EnKF analysis must be adjusted to account for non-
linearity in the observationmodel.When a non-linear obser-
vation operator is introduced, as in Eq. (3.7b), the EnKF
cost function can be re-written in the incremental analysis as

J EnKFIðwÞ :¼
1

2
ðNe � 1Þ∥w∥2 þ 1

2
∥yk �Hk x̂i;fk

� �
�HkX

f
kw∥

2
Rk
; ð3:98Þ

where x̂i;fk refers to the i-th iteration for the forecast mean.
Note that this does not refer to an estimate derived by an
iterated ensemble forecast through the non-linear state
model – rather, this is an iteration only with respect to the
estimate of the optimal weights for the forecast perturbations.
If ŵi is defined as the argmin of the cost function in Eq. (3.98),
then the iterations of the ensemble mean are given as

x̂iþ1;fk :¼ x̂i;fk þ Xf
kŵ

i: ð3:99Þ

When ∥ŵi∥ is sufficiently small, the optimisation terminates
and the transform and the ensemble update can be performed
as with the ETKF as in Eqs. (3.94b) and (3.96). However, the
direct, incremental approach here used the computation of
the Jacobian of the observation operator Hk.

The maximum likelihood ensemble filter (MLEF) of
Zupanski (2005) and Zupanski et al. (2008) is an estimator
designed to perform incremental analysis in the ETKF for-
malism, but without taking an explicit Taylor expansion for
the observation operator. The method is designed to
approximate the directional derivative of the non-linear
observation operator with respect to the ensemble
perturbations,

HkX
f
k :¼ rjx̂ i;f

k
½Hk�Xf

k; ð3:100Þ

equivalent to computing the ensemble sensitivities of the
map linearised about the ensemble-based mean. This is
often performed with an explicit finite differences approxi-
mation between the ensemble members and the ensemble
mean, mapped to the observation space. Particularly, one
may write

Hk xi;fk

� �
≈ ŷik :¼ Hk x̂i;fk 1> þ ϵXf

k

� �
1=Ne; ð3:101aÞ

HkX
f
k ≈ eYk :¼

1

ϵ
Hk x̂ i;fk 1> þ ϵXf

k

� �
ðINe � 11>=NeÞ;

ð3:101bÞ

where ϵ is a small constant that re-scales the ensemble per-
turbations to approximate infinitesimals about the mean, and
rescales the finite differences about the ensemble mean in the
observation space. This technique is used, for example, in
a modern form of theMLEF algorithm, based on the analysis
of the iterative ensemble Kalman filter and smoother (Asch
et al., 2016, see section 6.7.2.1). The approximation in Asch
et al. (2016) easily generalises to a 4-D analysis, taking the
directional derivative with respect to the state and observation
models simultaneously, as in Eq. (3.111). However, in the
smoothing problem, one can also extend the analysis in terms
of an alternating forward-filtering pass and backward-filtering
pass to estimate the joint posterior. This chapter returns to the
4-D analysis with the iterative ensemble Kalman filter and
smoother in Section 3.4.4, after an interlude on the retrospect-
ive analysis of the EnKS in the following section.

3.4.3 The Ensemble Transform Kalman Smoother
The EnKS extends the filter analysis in the ETKF over
the smoothing DAW by sequentially reanalysing past
states with future observations with an additional filter-
ing pass over the DAW backward-in-time. This analysis
is performed retrospectively in the sense that the filter
cycle of the ETKF is left unchanged, while an additional
inner-loop of the DA cycle performs an update on the
estimated lagged state ensembles within the DAW,
stored in memory. This can be formulated both for
a fixed DAW and for fixed-lag smoothing, where only
minor modifications are needed. Consider here the algo-
rithmically stationary DAW ft1; . . . ; tLg of fixed-lag
smoothing, with a shift S and lag L, and where it is assumed
that S ¼ 1≤L. The fixed-lag smoothing cycle of the EnKS
begins by estimating the joint posterior pdf pðxL:1jyL:1Þ
recursively, given the joint posterior estimate over the last
DAW pðxL�1:0jyL�1:0Þ.

Given pðxL�1:0; yL�1:0Þ, one can write the filtering pdf up
to proportionality:

pðxLjyL:0Þ ∝ pðyLjxL; yL � 1:0Þ pðxL; yL�1:0Þ ð3:102aÞ
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∝ pðyLjxLÞ|fflfflfflfflffl{zfflfflfflfflffl}
ðiÞ

ð
pðxLjxL�1ÞpðxL�1:0jyL�1:0ÞdxL�1:0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiiÞ

; ð3:102bÞ

as the product of (i) the likelihood of the observation yL
given xL ; and (ii) the forecast for xL using the transition pdf
on the last joint posterior estimate, marginalising out the
past history of the model state xL�1:0. Recalling that
pðxLjyL:1Þ ∝ pðxLjyL:0Þ, this provides a means to estimate
the filter marginal of the joint posterior. An alternating
filtering pass, backward-in-time, completes the smoothing
cycle by estimating the joint posterior pdf pðxL:1; yL:1Þ.

Consider that the marginal smoother pdf is proportional
to

pðxL�1jyL:0Þ ∝ pðyLjxL�1; yL�1:0ÞpðxL�1; yL�1:0Þ ð3:103aÞ

∝ pðyLjxL�1Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ðiÞ

pðxL�1jyL�1:0Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ðiiÞ

; ð3:103bÞ

where (i) is the likelihood of the observation yL given the
past state xL�1, and (ii) is the marginal pdf for xL�1 from the
last joint posterior. The corresponding linear-Gaussian
Bayesian MAP cost function is given for the retrospective
analysis of the KS as

J KSðxL�1Þ ¼
1

2
∥xL�1 � xsL�1jL�1∥

2
Bs
L�1jL�1

þ 1

2
∥yL

�HLMLxL�1∥
2
RL
; ð3:104Þ

where xsL�1jL�1 and Bs
L�1jL�1 are the mean and covariance of

the marginal smoother pdf pðxL�1jyL�1:0Þ. Define the matrix
decomposition with the factorisation (e.g. a Cholesky
decomposition):

Bs
L�1jL�1 ¼ Ss

L�1jL�1ðS
s
L�1jL�1Þ

>; ð3:105Þ

and write xL�1 ¼ xsL�1jL�1 þ S
s
L�1jL�1w, rendering the cost

function as

J KSðwÞ ¼
1

2
∥w∥2 þ 1

2
∥yL �HLMLðxsL�1jL�1 þ S

s
L�1jL�1wÞ∥2RL

ð3:106aÞ

¼ 1

2
∥w∥2 þ 1

2
∥yL �HLx

f
L �HLSf

Lw∥
2
RL
: ð3:106bÞ

Let w now denote the argmin of Eq. (3.106). It is important
to recognise that

xL :¼ML xsL�1jL�1 þ S
s
L�1jL�1w

� �
ð3:107aÞ

¼ xfL þ S
f
Lw; ð3:107bÞ

such that the argmin for the smoothing problemw is also the
argmin for the filtering MAP analysis.

The ensemble-based approximation,

xL�1 ¼ x̂sL�1jL�1 þ Xs
L�1jL�1w; ð3:108aÞ

J EnKSðwÞ ¼
1

2
ðNe � 1Þ∥w∥2 þ 1

2
∥yL �HLx̂

f
L �HLX

f
Lw∥

2;

ð3:108bÞ

to the exact smoother cost function in Eq. (3.106), yields the
retrospective analysis of the EnKS as

ŵ :¼ 0� Ξ�1J EnKS
rJ EnKSjw¼0; ð3:109aÞ

T :¼ Ξ
�1

2
J EnKS

; ð3:109bÞ

Es
L�1jL ¼ x̂sL�1jL�11

> þ Xs
L�1jL�1

�
ŵ1> þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne � 1
p

>U
�
;

¼ Es
L�1jL�1ΨL;

ð3:109cÞ

whereΨL is the ensemble transform as defined for the filter-
ing update as in Eq. (3.96).

These equations generalise for arbitrary indices kjL
over the DAW, providing the complete description of
the inner-loop between each filter cycle of the EnKS.
After each new observation is assimilated with the
ETKF analysis step, a smoother inner-loop makes
a backward pass over the DAW applying the transform
and the weights of the ETKF filter update to each past
ensemble state stored in memory. This analysis easily
generalises to the case where there is a shift of the
DAW with S > 1, though the EnKS alternating forward-
and backward-filtering passes must be performed in
sequence over the observations, ordered-in-time, rather
than making a global analysis over yL:L�Sþ1· Finally, this
easily extends to accommodate a non-linear observation
model by using the MLEF filtering step to obtain the opti-
mal ensemble transform, and by applying this recursively
backward-in-time to the lagged ensemble states.

A schematic of the EnKS cycle for a lag of L = 4 and
a shift of S = 1 is pictured in Fig. 3.3. Time moves
forward from left to right in the horizontal axis with
a step size of Δt. At each analysis time, the ensemble
forecast from the last filter pdf is combined with the
observation to produce the ensemble transform update.
This transform is then utilised to produce the posterior
estimate for all lagged ensemble states, conditioned on
the new observation. The information in the posterior
estimate thus flows in reverse time to the lagged states
stored in memory, but the information flow is unidirec-
tional in this scheme. This type of retrospective analysis
maintains the computational cost of the fixed-lag EnKS
described here at a comparable level to the EnKF, with
the only significant additional cost being the storage of
the ensemble at lagged times to be reanalysed.
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3.4.4 The Iterative Ensemble Kalman Filter and Smoother
While the EnKS is computationally efficient, its retrospect-
ive analysis has some drawbacks compared to the
4-D analysis in terms of forecast accuracy. The 4-D fixed-
lag smoothing analysis re-initialises each cycle with
a reanalysed estimate for the initial data, transmitting the
observations’ information forward-in-time through the
non-linear dynamics. The challenge with the 4-D analysis
in the absence of the tangent linear and adjoint models is in
devising how to efficiently and accurately compute the gra-
dient of the 4-D cost function. Building on Zupanski (2005)
and Liu et al. (2008), the analysis of the iterative ensemble
Kalman filter (IEnKF) and the iterative ensemble Kalman
smoother (IEnKS) extends the ensemble transform method
of the ETKF to iteratively optimise the 4-D cost function.

Recall the quadratic cost function at the basis of incre-
mental 4D-VAR, Eq. (3.72) – making an ensemble-based
approximation for the background mean and error covari-
ance, and writing the model state as an ensemble perturb-
ation of the i-th proposal for the ensemble mean, one has

J IEnKSðwÞ :¼
1

2
∥x̂i0 � x̂ i0 � X0w∥

2
P0

þ 1

2

XL
k¼1

∥yk �Hk ∘Mk:1 x̂i0
	 


�HkMk:1X0w∥
2
Rk

ð3:110aÞ
¼ 1

2
ðNe � 1Þ∥w∥2

þ 1

2

XL
k¼1

∥yk �Hk ∘Mk:1 x̂i0
	 


�HkMk:1X0w∥
2
Rk
:

ð3:110bÞ

Applying the finite differences approximation as given in
Eq. (3.101a,b), but with respect to the composition of the
non-linear observation operator with the non-linear state
model

Hk ∘Mk:1ðx̂ i0Þ ≈ ŷk :¼ Hk ∘Mk:1 x̂i0 þ X0ϵ
	 


1=Ne;

ð3:111aÞ

HkMk:1X0 ≈ eYk:¼
1

ϵ
Hk ∘Mk:1 x̂i0 þ X0ϵ

	 

INe � 11Τ=Ne
	 


;

ð3:111bÞ

this sketches the ‘bundle’ formulation of the IEnKS
(Bocquet and Sakov, 2013; Bocquet and Sakov, 2014).
This indexing refers to the case where the smoothing prob-
lem is performed offline, with a fixed DAW, though
a similar indexing to Eq. (3.65) gives the sequential form
over newly incoming observations.

The sequential form of the IEnKS can be treated as a non-
linear sequential filter, which is the purpose that the method
was originally devised for. Indeed, setting the number of
lagged states L = 1, this provides a direct extension of the
EnKF cost function, Eq. (3.92b), but where there is an
additional dependence on the initial conditions for the
ensemble forecast. This lag-1 iterative filtering scheme is
called the IEnKF (Bocquet and Sakov, 2012; Sakov et al.,
2012), which formed the original basis for the IEnKS.
Modern forms of the IEnKF/S analysis furthermore include
the treatment of model errors, like weak-constraint 4D-
VAR (Sakov and Bocquet, 2018; Sakov et al., 2018;
Fillion et al., 2020). Alternative formulations of this ana-
lysis, based on the original stochastic, perturbed observa-
tion EnKF (Evensen, 1994; Burgers et al., 1998), also have
a parallel development in the ensemble randomised max-
imum likelihood method (EnRML) of Gu and Oliver
(2007), Chen and Oliver (2012), and Raanes et al. (2019b).
A similar ensemble-variational estimator based on the
EnKF analysis is the ensemble Kalman inversion (EKI) of
Iglesias et al. (2013), Schillings and Stuart (2018), and
Kovachki and Stuart (2019).
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Figure 3.3 L ¼ 4 (lag), S ¼ 1
(shift) EnKS. Observations are
assimilated sequentially via the
filter cost function and
a retrospective reanalysis is
applied to all ensemble states
within the lag window stored in
memory. Source: Grudzien and
Bocquet (2021), adapted from
Asch et al. (2016).
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3.4.5 The Single-Iteration Ensemble Kalman Smoother
The sequential smoothing analysis so far has presented two
classical approaches: (i) a 4-D approach using the global
analysis of all new observations available within a DAW at
once, optimising an initial condition for the lagged model
state; and (ii) the 3-D approach based upon alternating for-
ward- and backward-filtering passes over the DAW. Each of
these approaches has strengths and weaknesses in a computa-
tional cost/forecast-accuracy trade-off. Particularly, the
4-D approach, as in the IEnKS, benefits from the improved
estimate of the initial condition when producing the subse-
quent forecast statistics in a shiftedDAW; however, each step
of the iterative optimisation comes at the cost of simulating
the ensemble forecast over the entire DAW in the fully non-
linear state model, which is typically the greatest numerical
expense in geophysical DA. On the other hand, the
3-D approach of the classical EnKS benefits from a low com-
putational cost, requiring only a single ensemble simulation of
the non-linear forecast model over the DAW, while the retro-
spective analysis of lagged states is performed with the filter-
ing transformwithout requiring additional model simulations
(though at a potentially large memory storage cost). It should
be noted that in the perfect, linear-Gaussian model Bayesian
analysis, both approaches produce equivalent estimates of the
joint posterior. However, when non-linearity is present in the
DA cycle, the approaches produce distinct estimates: for this
reason, the source of the non-linearity in the DA cycle is of an
important practical concern.

Consider the situation in which the forecast horizon Δt is
short, so that the ensemble time-evolution is weakly non-
linear, and where the ensemble mean is a good approxima-
tion for the mean of the filtered distribution. In this case, the
model forecast dynamics are well-approximated by the tan-
gent linear evolution of a perturbation about the ensemble
mean, that is,

xk ¼Mkðxk�1Þ ≈Mkðx̂k�1Þ þMkδk�1: ð3:112Þ

For such short-range forecasts, non-linearity in the obser-
vation-analysis-forecast cycle may instead be dominated by
the non-linearity in the observation operator Hk, or in the
optimisation of hyper-parameters of the filtering cost func-
tion, and not by the model forecast itself. In this situation,
an iterative simulation of the forecast dynamics as in the
4-D approach may not produce a cost-effective reduction
in the analysis error as compared to, for example,
the MLEF filter analysis optimising the filtering cost func-
tion alone. However, one may still obtain the benefits of re-
initialisation of the forecast with a reanalysed prior by using
a simple hybridisation of the 3-D and 4-D smoothing
analyses.

Specifically, in a given fixed-lag smoothing cycle, one may
iteratively optimise the sequential filtering cost functions for
a given DAW corresponding to the new observations at
times ftL�Sþ1; . . . ; tLg as with the MLEF. These filtering

ensemble transforms not only condition the ensemble at the
corresponding observation time instance, but also produce
a retrospective analysis of a lagged state as in Eq. (3.109c)
with the EnKS. However, when the DAW itself is shifted,
one does not need to produce a forecast from the latest
filtered ensemble – instead one can initialise the next ensem-
ble forecast with the lagged, retrospectively smoothed
ensemble at the beginning of the last DAW. This hybrid
approach utilising the retrospective analysis, as in the clas-
sical EnKS, and the ensemble simulation over the lagged
states while shifting the DAW, as in the 4-D analysis of the
IEnKS, was recently developed by Grudzien and Bocquet
(2022), and is called the single-iteration ensemble Kalman
smoother (SIEnKS). The SIEnKS is named as such because
it produces its forecast, filter, and reanalysed smoother
statistics with a single iteration of the ensemble simulation
over the DAW in a fully consistent Bayesian analysis. By
doing so, it seeks to minimise the leading order cost of
EnVAR smoothing (i.e. the ensemble simulation in the non-
linear forecast model). However, the estimator is free to
iteratively optimise the filter cost function for any single
observation vector without additional iterations of the
ensemble simulation. In observation-analysis-forecast
cycles in which the forecast error dynamics are weakly non-
linear, yet other aspects of the cycle are moderately to
strongly non-linear, this scheme is shown to produce
a forecast accuracy comparable to, and at times better
than, the 4-D approach but with an overall lower leading-
order computational burden (Grudzien and Bocquet, 2022).

A schematic of the SIEnKS cycle for a lag of L ¼ 4 and
a shift of S ¼ 2 is pictured in Fig. 3.4. This demonstrates
how the sequential analysis of the filter cost function and
sequential, retrospective reanalysis for each incoming obser-
vation differs from the global analysis of the 4-D approach
of the IEnKS. Other well-known DA schemes combining
a retrospective reanalysis and re-initialisation of the ensem-
ble forecast include the running in place (RIP) smoother of
Kalnay and Yang (2010) and Yang et al. (2013) and the one
step ahead (OSA) smoother of Desbouvries et al. (2011) and
Ait-El-Fquih and Hoteit (2022). It can be shown that, with
an ETKF-style filter analysis, a single iteration of the ensem-
ble over the DAW, a perfect model assumption, and a lag of
L ¼ S ¼ 1, the SIEnKS, RIP, and OSA smoothers all coin-
cide (Grudzien and Bocquet, 2022).

3.5 Machine Learning and Data Assimilation
in a Bayesian Perspective

This final section demonstrates how the Bayesian DA
framework can be extended to estimate more than the
state vector, including key parameters of the model and
the observation-analysis-forecast cycle. In particular, the
Bayesian framework can be used to formulate techniques
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for learning both the state vector and part of, if not the full,
dynamical model. If this objective was always in the scope of
classical DA, it was actually made possible, significantly
beyond linear regression, by the introduction of machine
learning (ML) techniques to supplement traditional DA
schemes.

Incorporating ML into DA algorithms was suggested
quite early byHsieh andTang (1998), who clearly advocated
the use of neural networks (NNs) in a variational DA frame-
work. More recently this was put forward and illustrated by
Abarbanel et al. (2018) and Bocquet et al. (2019) with
a derivation of the generalised cost function from Bayes’
law, showing that the classicalML cost function for learning
a surrogate model of the dynamical model is a limiting case
of the DA framework, as in Eq. (3.117). This formalism was
further generalised by Bocquet et al. (2020), using classical
DA notation, for learning the state vector, the dynamical
model, and the error statistics attached to this full retrieval.
This section follows this latest paper, showing how to derive
the cost function of the generalised estimation problem.
Note that going even beyond this approach, attempting to
learn the optimisation scheme of the cost function, or even
the full DA procedure, an approach called end-to-end in
ML, is a subject of active investigations (Fablet et al.,
2021; Peyron et al., 2021).

3.5.1 Prior Error Statistics
For the sake of simplicity, again assume Gaussian
statistics for the observation errors pðykjxkÞ ¼ nðykjxk;RkÞ,
where the observation error covariance matrices
RL:1 :¼ fRL; RL�1; . . . ; R1g are supposed to be known.
The dynamicalmodel ismeant to be learned or approximated
and thus stands as a surrogate model for the unknown true
physical dynamics. Assuming that the model does not expli-
citly depend on time, its resolvent is defined by

xk :¼ Fk
Aðxk�1Þ þ ηk; ð3:113Þ

depending on a (possibly very large) set of parameters A.
Prototypically, A represents the weights and biases of an
NN, which are learned from the observations alongside the
state vectors within the DAW. The distribution for model
error, such as ηk in Eq. (3.113), is also assumed Gaussian
such that

pðxkjxk�1; A; QkÞ :¼ n
�
xkjFk

Aðxk�1Þ; Qk

�
; ð3:114Þ

where QL:1 :¼ fQL; QL�1; . . . ; Q1g are not necessarily
known. Further assume that these Gaussian errors are
white-in-time and that the observation and model errors
are mutually independent.

Note the intriguing status of QL:1 since it depends,
a posteriori, on how well the surrogate model is estimated.
This calls for an adaptive estimation of the model error
statistics QL:1, as the surrogate model, parametrised by A,
is better approximated.

3.5.2 Joint Estimation of the Model, Its Error Statistics,
and the State Trajectory

Following the Bayesian formalism, one may form a MAP
estimate for the joint pdf in A and xL:0 conditioned on the
observations, together with the model error statistics. This
generalised conditional pdf is expressed in the hierarchy

pðA; QL:1; xL:0jyk:1; RK:0Þ ¼
pðyL:1jxL:0; RL:0ÞpðxL:0jA; QL:1ÞpðA; QL:1Þ

pðyL:1; RL:0Þ
;
ð3:115Þ

where the mutual independence of the observation and
model error is used. Once again, this remarkably stresses
how powerful and general the Bayesian framework can be.

The first term in the numerator of the right-hand side is
the usual likelihood of the observations. The second term
in the numerator is the prior on the trajectory, given
a known model and known model error statistics. The
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final term of the numerator is the joint prior of the model
and the model error statistics, described as a hyperprior. The
associated cost function is derived proportional to

J DA�MLðA; xL:0; QL:1Þ ¼ �log  pðA; QL:1; xL:0jyL:1; RL:1Þ

¼ 1

2

XL
k¼1

�
‖ yk �HkðxkÞ ‖ 2Rk

þ logðjRkjÞ
�

þ 1

2

XL
k¼1

�
‖ xk � Fk

Aðxk�1Þ ‖
2
Qk

þ logðjQkjÞ
�
� log  pðx0;A;QL:1Þ:

ð3:116Þ

Note the resemblance of (3.116) with the weak-constraint
4D-VAR cost function of classical DA (Trémolet, 2006).
Very importantly, this Bayesian formulation allows for
a rigorous treatment of partial and noisy observations.
The classical ML cost function that uses noiseless, complete
observations of the physical system is derived from Eq.
(3.116), assuming that Qk is known, Hk ≡ INx , and setting
Rk to go to 0. Associating the initial data as y0 x0,
J DA�MLðA; xL:0; QL:1Þ becomes, in its limit,

JMLðAÞ ¼
1

2

XL
k¼1

‖ yk � Fk
Aðyk�1Þ ‖

2
Qk
� log pðy0; A; QL:1Þ:

ð3:117Þ

Such connections between ML and DA were first high-
lighted by Hsieh and Tang (1998), Abarbanel et al. (2018),
and Bocquet et al. (2019).

Solving the combined DA/ML problem, that is, minimising
Eq. (3.116), leads to several key remarks. First, as mentioned
earlier, this formalism allows one to learn a surrogate model of
the true dynamics using partial, possibly sparse and noisy
observations, as opposed to off-the-shelf ML techniques.
This is obviously critical for geophysical systems. Second, in
this framework, one fundamentally looks for a stochastically
additive surrogatemodel of the form in Eq. (3.113) rather than
a deterministic surrogate model, since ηk is drawn from the
normal distribution of covariance matrices Qk. Third, there

are many ways to carry out this minimisation, as discussed by
Bocquet et al. (2019) and Bocquet et al. (2020). Because the
state vectors and themodel parametersA are of fundamentally
different nature, and yet are statistically interdependent, one
idea is to minimise Eq. (3.116) through a coordinate descent
(i.e. alternating minimisations onA and xL:0), as illustrated by
Fig. 3.5. This was first suggested and successfully implemented
by Brajard et al. (2020), by using an EnKF for the assimilation
step (i.e. minimising on xL:0), and a deep learning (DL) opti-
miser for the ML step (i.e. minimising on A). This work was
extended to 4-D variational analysis using a 4D-VAR assimi-
lation step with a DL optimiser for the ML step by Farchi
et al. (2021).

3.5.3 Joint Estimation of the Model and the Error Statistics
A slightly different objective is to obtain aMAP estimate for
the surrogate model, irrespective of any model state realisa-
tion, if, for example, one is interested in the MAP of the
marginal conditional pdf

pðA; QL:1jyL:1; RL:1Þ ¼
ð
pðA; QL:1; xL:0jyL:1; RL:1Þ dxL:0;

ð3:118Þ

which is theoretically obtained by minimising

J ðA; QL:1Þ ¼ �log  pðA; QL:1jyL:1; RL:1Þ: ð3:119Þ

As pointed out by Bocquet et al. (2019), the marginal pdf
Eg. (3.118) can be approximately related to the joint pdf
through a Laplace approximation of the integral. Here,
however, one is interested in the full solution to this prob-
lem. This can be solved numerically by using the expect-
ation-maximisation (EM) statistical algorithm (Dempster
et al., 1977) jointly with the variational numerical solution
of Eq. (3.116). This was suggested in Ghahramani and
Roweis (1999) and Nguyen et al. (2019) and implemented
and validated by Bocquet et al. (2020).

3.6 Conclusions

Unifying techniques from statistical estimation, non-linear
optimisation, and even machine learning, the Bayesian
approach to DA provides a consistent treatment of

DA step ML/DL stepInitialisation

A

choose A0 update A
(A* , x*L:0)

A0

estimate xa
L:0

x
a
L:0

yL:0

Figure 3.5 Estimation of
both model and state trajec-
tory using coordinate descent
by alternately optimising on
the state trajectory using DA
and on the NN model
parameters using ML/DL.
The iterative loop stops when
an accuracy criterion is met.
Source: Farchi et al. (2021).
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a variety of topics in the classical DA problem, discussed
throughout this chapter. Furthermore, the Bayesian
approach can be reasonably extended to treat additional
challenges not fully considered in this chapter, such as esti-
mating process model parameters, handling significant
modelling errors, and including the optimisation of various
hyper-parameters of the observation-analysis-forecast
cycle. Estimation may even include learning the dynamical
process model itself, as in the emerging topic of DA/ML
hybrid algorithms. In this context especially, a Bayesian
analysis provides a coherent treatment of the problem
where either DA or ML techniques themselves may be
insufficient. This is particularly relevant where surrogate
ML models are used to augment traditional physics-based
dynamical models for, e.g. simulating unresolved dynamics
at scales too fine to be dynamically represented. The hybrid
approach in the Bayesian analysis provides a means to
combine the dynamical and surrogate simulations with
real-world observations, and to produce an analysis of
the state and parameters for which subsequent simulations
depend. This chapter thus presents one framework for
interpreting the DA problem, both in its classical formula-
tion and in the directions of the current state-of-the-art. In
surveying a variety of widely used DA schemes, the key
message of this chapter is how the Bayesian analysis pro-
vides a consistent framework for the estimation problem
and how this allows one to formulate its solution in
a variety of ways to exploit the operational challenges in
the geosciences.
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4
Third-Order Sensitivity Analysis,
Uncertainty Quantification, Data
Assimilation, Forward and Inverse
Predictive Modelling for Large-
Scale Systems

Dan Gabriel Cacuci

Abstract: This chapter presents a third-order predictive
modelling methodology which aims at obtaining best-
estimate results with reduced uncertainties (acronym:
3rd-BERRU-PM) for applications to large-scale models
comprising many parameters. The building blocks of the
3rd-BERRU-PM methodology include quantification of
third-order moments of the response distribution in the
parameter space using third-order adjoint sensitivity
analysis (which overcomes the curse of dimensionality),
assimilation of experimental data, model calibration, and
posterior prediction of best-estimate model responses and
parameters with reduced best-estimate variances/
covariances for the predicted responses and parameters.
Applications of these concepts to an inverse radiation trans-
mission problem, to an oscillatory dynamical model, and to
a large-scale computational model involving 21,976 uncer-
tain parameters, respectively, are also presented, thus illus-
trating the actual computation and impacts of the first-,
second-, and third-order response sensitivities to parameters
on the expectation, variance, and skewness of the respective
model responses.

4.1 Introduction: Basic Building Blocks
of Third-Order BERRU Predictive Modelling

The results of measurements and computations are never
perfectly accurate. On the one hand, results of measure-
ments inevitably reflect the influence of experimental
errors, imperfect instruments, or imperfectly known cali-
bration standards. Around any reported experimental
value, therefore, there always exists a range of values that
may also be plausibly representative of the true but
unknown value of the measured quantity. On the other
hand, computations are afflicted by errors stemming from
numerical procedures, uncertain model parameters,
boundary and initial conditions, and/or imperfectly

known physical processes or problem geometry.
Therefore, knowing just the nominal values of the experi-
mentally measured or computed quantities is insufficient
for applications. The quantitative uncertainties accom-
panying measurements and computations are
also needed, along with the respective nominal values.
Determining the uncertainties in computed model
responses (i.e. quantities of interest) is the scope of uncer-
tainty quantification while determining changes in the
responses that are induced by variations in the model
parameters is the scope of sensitivity analysis. Extracting
best-estimate values for model parameters and predicted
results, together with best-estimate uncertainties for these
parameters and results requires the combination of experi-
mental and computational data and their uncertainties.
This combination process is customarily called data
assimilation. Such a combination process requires reason-
ing from incomplete, error-afflicted, and occasionally dis-
crepant information. The combination of data from
different sources involves a weighted propagation of par-
ameter uncertainties, using the local functional derivatives
of the system responses with respect to the input model
parameters. These response derivatives are customarily
called response sensitivities or simply sensitivities. At a
fundamental level, the need for computing such sensitiv-
ities stems from the impossibility of measuring or comput-
ing any physical quantity with absolute precision, as has
been discussed in the foregoing. Response sensitivities with
respect to the model’s parameters are also needed for the
following purposes:

1. determining the effects of parameter variations on the
system’s behaviour;

2. understanding the system by highlighting important
data;

3. eliminating unimportant data;
4. reducing over-design;
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5. performing code verification, which addresses the
question ‘Are you solving the mathematical model
correctly?’;

6. prioritising introduction of data uncertainties;
7. quantification of response uncertainties due to param-

eter uncertainties;
8. performing forward predictive modelling, including

data assimilation and model calibration, for the pur-
pose of obtaining best-estimate predicted results with
reduced predicted uncertainties; under ideal circum-
stances, predictive modelling aims at providing a prob-
abilistic description of possible future outcomes based
on all recognised errors and uncertainties.

9. performing inverse predictive modelling;
10. improving the system design, possibly reducing con-

servatism and redundancy;
11. prioritising possible improvements for the system

under consideration;
12. designing and optimising the system (e.g. maximise

availability/minimise maintenance);
13. performing code validation, which uses comparisons

between computations and experiments to addresses
the question ‘Does the model represent reality?’ Code
verification and validation can be performed only
by considering all of the sensitivities and uncertain-
ties that affect the respective computations and
experiments.

For a model comprising a total number TP of impre-
cisely known parameters denoted as α1,. . ., αTP, a model
response Rðα1;…; αTPÞ which is a suitably differentiable
function of these model parameters, will admit TP first-
order sensitivities ∂Rðα1;…; αTPÞ=∂αj1 , TP2 second-order
sensitivities ∂2Rðα1;…; αTPÞ=∂αj2∂αj1 , and TP3 third-order
sensitivities ∂3Rðα1;…; αTPÞ=∂αj3∂αj2∂αj1 , where
j1; j2; j3 ¼ 1;…;TP. However, because of the symmetry
properties of the second- and third-order sensitivities, only
TPðTPþ 1Þ=2 second-order sensitivities are distinct from
each other, and only TPðTPþ 1ÞðTPþ 2Þ=6 third-order
sensitivities are distinct from each other. The mathematical
formalisms for uncertainty quantification and for data
assimilation and inverse problems which will be presented
in this chapter include sensitivities of first-, second-, and
third-order. Therefore, these mathematical formalisms will
be designated as third-order formalisms.

The material to be presented in this chapter is set in a
general mathematical framework for describing generic
physical (biological, engineering) systems involving impre-
cisely known parameters and/or processes, as outlined in
Section 4.2. Generalising previous works, the generic phys-
ical systems considered in this chapter include not only
uncertain parameters, initial and/or boundary conditions,
but also include the physical systems’ external and/or
internal boundaries (interfaces) in the phase-space of the
independent variables which are themselves considered to

be uncertain. This generalisation of previous concepts is
important in engineering (where, e.g. it enables the consid-
eration of uncertainties introduced by manufacturing toler-
ances) and is particularly important in the Earth sciences,
where interfaces between various materials and the external
boundaries of domains (e.g. reservoirs) are not known
precisely.

Section 4.3 commences by presenting the mathematical
framework of the Forward and Inverse 3rd-BERRU-PM
methodology; the acronym BERRU-PM stands for Best-
Estimate Results with Reduced Uncertainties Predictive
Modelling. The a priori information considered by the 3rd-
BERRU-PMmethodology includes: (i) expected values and
covariances of measured responses; (ii) a priori expectations
and covariances of model parameters; (iii) a priori expect-
ations and covariances of computed responses; (iv) first-,
second-, and third-order response sensitivities with respect
to themodel’s imprecisely known parameters, internal inter-
faces and external boundaries in the phase-space of inde-
pendent variables. In addition to the information
considered by the conventional data assimilation method-
ologies, the 3rd-BERRU-PM methodology also includes
correlations between the model responses and parameters.
This a priori information is ‘assimilated’ by using the max-
imum entropy principle (Jaynes, 1957) to produce a poster-
ior distribution which enables: (i) model calibration, by
yielding best-estimate predicted expectation values with
reduced predicted uncertainties for the model responses, as
well as best-estimate predicted parameter-response correl-
ations; (ii) model extrapolation, by yielding best-estimate
predicted expectation values with reduced predicted uncer-
tainties for the model parameters; and (iii) estimation of the
validation domain, by providing a chi-square consistency
indicator which quantifies the mutual and joint consistency
of the information available for data assimilation andmodel
calibration. The 3rd-BERRU-PM methodology is best
suited for forward and inverse problems involving large-
scale models with many uncertain parameters. Section 4.3
also illustrates the superior prediction capabilities of the
3rd-BERRU-PM methodology for inverse problems by
applying this methodology to an inverse deep-penetration
problem of using uncertain measurements for predicting the
dimensions of a material which is optically sufficiently thick
to render useless the customary methods for inverse prob-
lems based on minimising user-defined generalised least-
squares objective functions.

The sensitivities (i.e. functional derivatives) of model
responses with respect to model parameters are notoriously
difficult to determine exactly for large-scale models involv-
ing many parameters because the computation of even the
first-order sensitivities by conventional methods requires at
least as many computations as there are model parameters.
Furthermore, the computation of higher-order sensitivities
by conventional methods is subject to the ‘curse of dimen-
sionality’ (Bellman, 1957), as the number of large-scale
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computations increases exponentially in the parameter
phase-space. It is nowadays known that the adjoint method
of sensitivity analysis is the most efficient method for exactly
computing first-order sensitivities. As described by Práger
and Kelemen (2014), the general adjoint sensitivity analysis
methodology for non-linear systems was formulated by
Cacuci (1981a,b), who has also introduced it to the environ-
mental and Earth sciences. This adjoint sensitivity analysis
methodology was extended byCacuci (2015, 2018, 2019b) to
enable efficiently the exact computation of second- and
third-order response sensitivities for physical systems with
imprecisely known boundaries.

In his original work, Cacuci (1981a,b) considered that the
physical system’s boundaries and interfaces in the phase-
space of independent variables were perfectly well know. In
subsequent works, Cacuci (2021a) generalised his original
work to include the exact and efficient computations of first-
order response sensitivities to imprecisely known boundar-
ies/interfaces and parameters, calling this general method-
ology the First-Order Comprehensive Adjoint Sensitivity
Analysis Methodology for Non-linear Systems (1st-
CASAM-N), where the qualifier ‘comprehensive’ indicates
that all model parameters, including the phase-space loca-
tions of internal and/or external boundaries, are considered
to be imprecisely known (subject to uncertainties). The gen-
eral mathematical framework of this comprehensive adjoint
sensitivity analysis methodology for the computation of
first-order sensitivities is summarised in Section 4.3, which
also presents an illustrative application to perform a first-
order sensitivity and uncertainty analysis of a typical oscil-
latory dynamical system which can undergo period-doub-
ling bifurcations to transition from a stable state to an
aperiodic, chaotic state. This illustrative model has been
deliberately chosen since it is representative of similar sys-
tems of interest in the Earth sciences but cannot be analysed
by conventional statistical methods.

The mathematical frameworks of the comprehensive
adjoint sensitivity analysis methodologies for computing
exactly and efficiently second- and third-order sensitivities
are summarised in Section 4.4. Fundamentally, the
second-order sensitivities will be derived by considering
them to be first-order sensitivities of the first-order sensi-
tivities, while the third-order sensitivities will be obtained
by considering them to be first-order sensitivities of the
second-order sensitivities. Thus, the 1st-CASAM-N is the
starting point for developing the Second-Order
Comprehensive Adjoint Sensitivity Analysis Methodology
for Non-linear Systems (2nd-CASAM-N) and the 2nd-
CASAM is the starting point for developing the Third-
Order Comprehensive Adjoint Sensitivity Analysis
Methodology for Non-linear Systems (3rd-CASAM-N).
The mathematical frameworks of the 2nd-CASAM-N
and 3rd-CASAM-N will be presented in Section 4.4.
Along with these mathematical frameworks, Section 4.4
also presents an application of this high-order

comprehensive sensitivity analysis methodology to per-
form second- and third-order sensitivity and uncertainty
analysis of a physical system (an OECD/NEA physics
benchmark) which is representative of a large-scale system
that involves many (21,976, in this illustrative example)
parameters. The results presented in Section 4.4 illustrate
the impact of the 21,976 first-order sensitivities,
482,944,576 second-order sensitivities (of which
241,483,276 are distinct from each other), and the largest
5,832,000 third-order sensitivities on the model response’s
expectation, variance, and skewness. This paradigm large-
scale system cannot be analysed comprehensively by stat-
istical methods. The concluding Section 4.5 summarises
the significance of the new methodologies and paradigm
results presented in this chapter and discusses further
ongoing generalisations of these methodologies.

4.2 Mathematical Modelling of a Generic Non-linear
Physical System Comprising Imprecisely Known
Parameters and Boundaries

In general terms, the modelling of a physical system and/or
the result of an indirect experimental measurement requires
consideration of the following modelling components:

1. A mathematical model comprising independent vari-
ables (e.g. space, time), dependent variables (aka state
functions; e.g. temperature, mass, momentum) and
various parameters (appearing in correlations, coordin-
ates of physical boundaries, etc.), which are all inter-
related by equations (linear and/or non-linear in the
state functions) that usually represent conservation
laws.

2. Model parameters, which usually stem from processes
that are external to the system under consideration
and are seldom, if ever, known precisely. The known
characteristics of the model parameters may include
their nominal (expected/mean) values and, possibly,
higher-order moments or cumulants (i.e. variance/
covariances, skewness, kurtosis), which are usually
determined from experimental data and/or processes
external to the physical system under consideration.
Occasionally, only inequality and/or equality con-
straints that delimit the ranges of the system’s param-
eters are known.

3. One or several computational results, customarily
called system responses (or objective functions, or indi-
ces of performance), which are computed using the
mathematical model.

4. Experimentally measured values of the responses under
consideration, which may be used to infer nominal
(expected) values and uncertainties (variances, covari-
ances, skewness, kurtosis, etc.) of the respective meas-
ured responses.
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Without loss of generality, the imprecisely known model
parameters can be considered to be real-valued scalar quan-
tities. These model parameters will be denoted as α1,. . ., αTP,
where TP denotes the total number of imprecisely known
parameters underlying the model under consideration. For
subsequent developments, it is convenient to consider that
these parameters are components of a vector of parameters
denoted as α ≜ ðα1;…; αTPÞ† 2 Eα 2 ℝTP, where Eα is also
a normed linear space and where ℝTP denotes the
TP-dimensional subset of the set of real scalars. The com-
ponents of the TP-dimensional column vector α 2 ℝTP are
considered to include imprecisely known geometrical
parameters that characterise the physical system’s boundar-
ies in the phase-space of the model’s independent variables.
Matrices will be denoted using bold capital letters while
vectors will be denoted using either capital or bold lower-
case letters. The symbol ≜ will be used to denote ‘is defined
as’ or ‘is by definition equal to’. Transposition will be indi-
cated by a dagger ð†Þ superscript.

The model is considered to comprise TI independent vari-
ables which will be denoted as xi; i ¼ 1;…;TI, and which
are considered to be components of aTI-dimensional column
vector denoted as x≜ ðx1;…; xTIÞ† 2 ℝTI , where the sub/
superscript TI denotes the total (number of) independent
variables. The vector x 2 ℝTI of independent variables is
considered to be defined on a phase-space domainwhich will
be denoted as ΩðαÞ and which is defined as follows:
ΩðαÞ≜ f�∞≤ λiðαÞ≤ xi ≤ωiðαÞ≤∞; i ¼ 1;…;TIg. The
lower boundary-point of an independent variable is denoted
as λiðαÞ (e.g. the inner radius of a sphere or cylinder, the
lower range of an energy-variable), while the corresponding
upper boundary-point is denoted as ωiðαÞ (e.g. the outer
radius of a sphere or cylinder, the upper range of an
energy-variable). A typical example of boundaries that
depend on imprecisely known parameters is provided by the
boundary conditions needed for models based on diffusion
theory, in which the respective flux and/or current conditions
for the boundaries facing vacuum are imposed on the
extrapolated boundary of the respective spatial domain.
The extrapolated boundary depends both on the imprecisely
knownphysical dimensions of the problem’s domain and also
on the medium’s properties, such as atomic number densities
and microscopic transport cross sections. The boundary of
ΩðαÞ, which will be denoted as ∂ΩðαÞ, comprises the set of all
of the endpoints λiðαÞ; ωiðαÞ; i ¼ 1;…;TI; of the respect-
ive intervals on which the components of x are defined, such
as ∂ΩðαÞ≜ fλiðαÞ∪ωiðαÞ; i ¼ 1;…;TIg.

A non-linear physical system can be generally represented/
modelled by means of coupled equations which can be
represented in operator form thus:

N½uðxÞ; α� ¼ Qðx; αÞ; x 2 ΩxðαÞ: ð4:1Þ

The quantities which appear in Eq. (4.1) are defined as
follows:

1. uðxÞ≜ ½u1ðxÞ;…; uTDðxÞ�† is a TD-dimensional column
vector of dependent variables; the abbreviation TD
denotes total (number of) dependent variables. The
functions uiðxÞ; i ¼ 1;…;TD, denote the system’s
dependent variables (also called state functions);
uðxÞ 2 Eu, where Eu is a normed linear space over the
scalar field F of real numbers.

2. N½uðxÞ;α�≜ ½N1ðu; αÞ;…;NTDðu; αÞ�† denotes a
TD-dimensional column vector The components
Niðu; αÞ; i ¼ 1;…;TD are operators (including differen-
tial, difference, integral, distributions, and/or infinite mat-
rices) acting (usually) non-linearly on the dependent
variables uðxÞ, the independent variables x and the
model parameters α.

3. Qðx; αÞ≜ ½q1ðx; αÞ;…:; qTDðx; αÞ�† is a TD-dimensional
column vector which represents inhomogeneous source
terms, which usually depend non-linearly on the uncer-
tain parameters α ; Q 2 EQ, where EQ is also a normed
linear space.

4. All of the equalities in this work are considered to hold
in the weak (distributional) sense, since the right sides
(sources) of Eq. (4.1) and of other various equations to
be derived in this work may contain distributions (gen-
eralised functions/functionals), particularly Dirac-
distributions and derivatives and/or integrals thereof.

In view of the definitions given above,Nðα; uÞ represents the
mapping N: D⊂E→EQ, where D ¼ Du ⊕ Dα, Du ⊂Eu,
Dα ⊂Eα, and E ¼ Eu ⊕Eα. Note that an arbitrary element
e 2 E is of the form e ¼ðα; uÞ. When differential operators
appear in Eq. (4.1), then a corresponding set of boundary
and/or initial conditions, which are essential to define the
domain ofNðu; αÞ, must also be given. These boundary and/
or initial conditions can be represented in operator form as
follows:

B½uðxÞ; x; α��Cðx; αÞ ¼ 0; x 2 ∂ΩxðαÞ: ð4:2Þ

The components Biðu; αÞ; i ¼ 1;…;TD of the vector-
valued operator Bðu; αÞ≜ ½B1ðu; αÞ;…;BTDðu; αÞ�† in Eq.
(4.2) are operators, defined on the boundary ∂ΩxðαÞ of the
model’s domain ΩxðαÞ in phase-space, which act non-
linearly on uðxÞ and on α. The components
Ciðu; αÞ; i ¼ 1;…;TD of the column vector
Cðx; αÞ≜ ½C1ðu; αÞ;…;CTDðu; αÞ�† comprise inhomogen-
eous boundary sources which, in general, are non-linear
functions of the model parameters α.

The nominal solution of Eqs. (4.1) and (4.2) is denoted as
u0ðxÞ, and is obtained by solving these equations at the nom-
inal parameter values α0 ≜ ½α01;…; α0i ; ::; α

0
TP�

†. In other
words, the vectors u0ðxÞ and α0 satisfy the following
equations:

N½u0ðxÞ; α0� ¼ Qðx; α0Þ; x 2 Ωxðα0Þ; B½u0ðxÞ; x; α0�
�Cðx; α0Þ ¼ 0; x 2 ∂Ωxðα0Þ: ð4:3Þ
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Responses of particularly important interest are model
representations/computations of physical measurements
of the model’s state functions uðxpÞ at a specific point, xp,
in phase-space. Other responses of particular interest are
averages over the phase-space domain (or segments
thereof). Both point-measurements and average responses
can be represented generically in the following integral
form:

R½uðxÞ; α; x�≜∏
TI

i¼1

ðωiðαÞ

λiðαÞ

S½uðxÞ; α�dxi; ∏
TI

i¼1

ðωiðαÞ

λiðαÞ

½ �dxi ≜
ðω1ðαÞ

λ1ðαÞ

…

ðωiðαÞ

λiðαÞ

…

ðωTI ðαÞ

λTI ðαÞ

½ �dx1 dx2…dxi…dxTI ; ð4:4Þ

where S½uðxÞ; α� is suitably differentiable non-linear func-
tion of uðxÞ and of α. It is important to note that the
components of α are considered to also include parameters
that may appear specifically just in the definition of the
response under consideration, but which might not appear
in Eqs. (4.1) and (4.2). For example, a measurement of a
physical quantity can be represented as a response
Rp½φðxpÞ;%ψðxpÞ; α� located at a point, xp, in phase-space,
which may itself be afflicted by uncertainties. Such a
response can be represented mathematically in the form

Rp½uðxpÞ; α�≜∏
TI

i¼1

ðωiðαÞ

λiðαÞ

Rp½uðxÞ; α�δðx� xpÞdxi, where

δðx� xpÞ denotes the multidimensional Dirac-delta
functional. The measurement point xp appears only in
the definition of the response but does not appear in
Eqs. (4.1) and (4.2). Thus, the (physical) system defined
in this work is considered to comprise both the sys-
tem’s computational model and the system’s response.

In practice, the values of the parameters αn are deter-
mined experimentally and are considered to be variates
that obey an unknown multivariate probability distribu-
tion function, denoted as pαðαÞ. Considering that the
multivariate distribution pαðαÞ is formally defined on a
domain Dα, the various moments (e.g. mean values,
covariance and variances) of pαðαÞ can be defined in a
standard manner by using the following notation:

〈uðαÞ〉α ≜
ð
Dα

uðαÞpαðαÞdα; ð4:5Þ

where uðαÞ is a continuous function of the parameter α.
Using the notation defined in Eq. (4.5), the expected (or
mean) value of a model parameter αi, denoted as α0i , is
defined as follows:

α0i ≜ 〈αi〉α ≜
ð
Dα

αipαðαÞdα; i ¼ 1;…;TP: ð4:6Þ

Throughout this work, the superscript 0 will be used to
denote nominal or expected values. The covariance,
covðαi; αjÞ, of two parameters, αi and αj, is defined as
follows:

μij2ðαÞ≜ covðαi; αjÞ≜ 〈ðαi � α0i Þðαj � α0j Þ〉α
≜ ρijσiσj; i; j ¼ 1;…;TP: ð4:7Þ

The variance, varðαiÞ, of a parameter αi, is defined as
follows: varðαiÞ≜ 〈ðαi � α0i Þ

2〉α; i ¼ 1;…;TP. The
standard deviation, σi, of αi, is defined as follows:
σi ≜

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðαiÞ

p
. The correlation, ρij, between two parameters

αi and αj, is defined as follows:
ρij ≜ covðαi; αjÞ=ðσiσjÞ; i; j ¼ 1;…;TP. The third-order

moment, μijk3 , of the multivariate parameter distribution
function pðαÞ, and the third-order parameter correlation,
tijk, respectively, are defined as follows:

μijk3 ðαÞ≜
ð
Dα

ðαi � α0i Þðαj � α0j Þðαk � α0kÞpðαÞdα

≜ tijkσiσjσk; i; j; k ¼ 1;…;TP: ð4:8Þ

The fourth-order moment, μijkl4 , of the multivariate par-
ameter distribution function pðαÞ, and the fourth-order par-
ameter correlation, qijkl, respectively, are defined as follows:

μijkl4 ðαÞ≜
ð
Dα

ðαi � α0i Þðαj � α0j Þðαk � α0kÞðαl � α0l ÞpðαÞdα

≜ qijklσiσjσkσl; i; j; k; l ¼ 1;…;TP:

ð4:9Þ

The uncertainties in themodel parameters induce uncertain-
ties in the distribution of the response in the phase-space of
parameters, which can be obtained by using the propagation of
errors formulas originally obtained by Tukey (1957) by for-
mally expanding the computed response, denoted as rci1ðαÞ, in a
Taylor-series around the nominal parameter values
α0 ≜ ðα01;…; α0TPÞ. Up to third-order sensitivities, the Taylor-
series of a computed response has the following form:

rci1ðαÞ ¼ rci1ðα
0Þ þ

XTP
i¼1

∂rci1ðαÞ
∂αi

� �
α0

ðαi � α0i Þ

þ 1

2

XTP
i; j¼1

∂2rci1ðαÞ
∂αi∂αj

( )
α0

ðαi � α0i Þðαj � α0j Þ

þ 1

6

XTP
i; j;k¼1

∂3rci1ðαÞ
∂αi∂αj∂αk

( )
α0

ðαi � α0i Þðαj � α0j Þðαk � α0kÞ

þ…; i1 ¼ 1;…;TR: ð4:10Þ
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where rci1ðα
0Þ denotes the nominal value of the response

computed at the nominal (mean) parameter values
α0 ≜ ðα01;…; α0TPÞ, where the superscript c denotes com-
puted, and where the subscript i1 ¼ 1;…;TR denotes one
of a total of TR responses that would be of interest. Using
Eq. (4.10) yields the following expressions for the first three
cumulants of the distribution of computed responses in the
parameter phase-space:

1. The expected (mean) value, denoted as E½rci1ðαÞ�, of a
response rci1ðαÞ:

E½rci1ðαÞ� ¼ rci1ðα
0Þ þ 1

2

XTP
i; j¼1

∂2rci1ðαÞ
∂αi∂αj

( )
α0

ρij σiσj

þ 1

6

XTP
i;j;k¼1

∂3rci1ðαÞ
∂αi∂αj∂αk

( )
α0

tijkσiσjσk; i1 ¼ 1;…;TR:

ð4:11Þ

2. The covariance, denoted as covðrci1 ; rci2Þ, of two
responses, rci1ðαÞ and rci2ðαÞ for i1; i2 ¼ 1;…;TR:

covðrci1 ; rci2Þ ¼
XTP
i;j¼1

∂rci1
∂αi

∂rci2
∂αj

� �
ρijσiσj

þ 1

2

XTP
i;j;μ¼1

∂2rci1
∂αi∂αj

∂rci2
∂αμ
þ
∂rci1
∂αi

∂2rci2
∂αj∂αμ

 !
tijμσiσjσμ

þ 1

4

XTP
i;j;μ;ν¼1

∂2rci1
∂αi∂αj

 !
∂2rci2

∂αμ∂αν

 !
ðqijμν � ρijρμνÞσiσjσμσν

þ 1

6

XTP
i;j;μ;ν¼1

∂rci1
∂αi

∂3rci2
∂αj∂αμ∂αν

þ
∂rci2
∂αi

∂3rci1
∂αj∂αμ∂αν

 !
qijμνσiσjσμσν:

ð4:12Þ

In particular, the variance of a response rci1ðαÞ is obtained
as by setting i1 ¼ i2 in Eq. (4.12).

3. The covariance of a response, rci1ðαÞ and a parameter αℓ,
i1 ¼ 1;…;TR and ℓ ¼ 1;…;TP, which is denoted as
covðrci1 ; αℓÞ and is given by the following expression:

covðrci1 ; αℓÞ ¼
XTP
i¼1

∂rci1ðαÞ
∂αi

� �
α0

covðαi; αℓÞ

þ 1

2

XTP
i;j¼1

∂2rci1ðαÞ
∂αi∂αj

( )
α0

tijℓσiσjσℓ

þ 1

6

XTP
i;j;k¼1

∂3rci1ðαÞ
∂αi∂αj∂αk

( )
α0

qijμνσiσjσkσℓ: ð4:13Þ

4. The third-order cumulant, μ3ðrci1 ; r
c
i2 ; r

c
i3Þ, for three

responses, rci1ðαÞ, rci2ðαÞ, and rci3ðαÞ, for
i1; i2; i3 ¼ 1;…;TR:

μ3ðrci1 ; r
c
i2 ; r

c
i3Þ ¼

XTP
i¼1

XTP
j¼1

XTP
μ¼1

∂rci1
∂αi

∂rci2
∂αj

∂rci3
∂αμ

tijμσiσjσμ

þ 1

2

XTP
i;j;μ;ν¼1

∂rci1k
∂αi

∂rci2
∂αj

∂2rci3
∂αμ∂αν

ðqijμν � ρijρμνÞ
(

þ
∂rci1
∂αi

∂2rci2
∂αj∂αμ

∂rci3
∂αν
ðqijμν � ρiνρjμÞ

þ
∂2rci1
∂αi∂αj

∂rci2
∂αμ

∂rci3
∂αν
ðqijμν � ρiμρjνÞgσiσjσμσν:

ð4:14Þ

It is important to note that the second-order sensitivities
also contribute the leading correction terms to the response’s
expected value, causing it to differ from the response’s com-
puted value. The second-order sensitivities also contribute to
the response variances and covariances. The skewness of a
single response is customarily denoted as γ1ð rci1Þ, and is

defined as follows: γ1ðrci1Þ≜ μ3ðrci1Þ=½varðr
c
i1Þ�

3=2 , where the
expression of μ3ðrci1Þ is obtained by setting rci1 ≡ rci2 ≡ rci3 in
Eq. (4.14). As is well-known, skewness indicates the direc-
tion and relative magnitude of a distribution’s deviation
from the normal distribution. In particular, if only first-
order sensitivities are considered, the third-order moment
of the response is always zero. Hence, a ‘first-order sensitiv-
ity and uncertainty quantification’ will always produce an
erroneous third moment (and hence skewness) of the pre-
dicted response distribution, unless the unknown response
distribution happens to be symmetrical. At least second-
order sensitivities must be used in order to estimate the
skewness of the response distribution. With pronounced
skewness, standard statistical inference procedures such as
constructing a confidence interval for the mean (expect-
ation) of a computed/predicted model response will be not
only incorrect, in the sense that the true coverage level will
differ from the nominal (e.g. 95%) level, but the error prob-
abilities will be unequal on each side of the predicted mean.

Although the formulas presented in Eqs. (4.11)–(4.14)
were known since the work of Tukey (1957), they have not
been used in practice beyond first-order in sensitivities
because even the second-order sensitivities were already
prohibitively expensive to compute for large-scale systems
involving many uncertain parameters. In recent years, how-
ever, Cacuci (2015, 2018) has conceived the general-purpose
second-order adjoint sensitivity analysis methodology,
which was extended to fourth- and fifth-order by Cacuci
(2022a,b). These methodologies enable the exact and
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efficient computation of high-order sensitivities of large-
scale system responses, thereby enabling sensitivity ana-
lyses, uncertainty quantification, and forward and inverse
data assimilation for large-scale physical systems, which
would not otherwise be amenable for such analyses by any
other methods, statistical or otherwise, as will be illustrated
by the paradigm examples presented in the remainder of this
chapter.

4.3 Forward and Inverse 3rd-BERRU-PM:
Mathematical Framework and Illustrative
Application

As will be shown in this section, the mathematical
framework of the 3rd-BERRU-PM methodology sub-
sumes the mathematical procedures for data assimila-
tion and model calibration. The 3rd-BERRU-PM can
be used both for forward problems, for predicting the
outcome (response) of a model when all of the model’s
parameters are known, as well as for inverse problems,
for predicting some unknown model parameters from
independent measurements (or computations) of the
model’s response. The mathematical framework of the
first-order BERRU-PM, which uses just first-order sen-
sitivities of model response with respect to model
parameters, has been presented in Cacuci (2019a),
along with various applications to modelling of indus-
trial processes (chemical processes, cooling towers,
inverse radiation transport, etc.). The 3rd-BERRU-PM
methodology presented in this section can incorporate
high-order sensitivities and its mathematical framework
will be presented in Section 4.3.1. An application to a
simple inverse one-dimensional radiation problem, to
determine the dimension of an ‘optically thick’ slab of
material from uncertain radiation detector counts out-
side the slab, will be presented in Section 4.3.2.
Conventional statistical methods will be shown to fail
to predict the slab’s thickness, because although appar-
ently simple, this problem is a deep-penetration prob-
lem which has particularly important implications for
similar inverse problems in the Earth sciences. The first-
order version the 3rd-BERRU-PM methodology is
available as a stand-alone software package (Cacuci,
Fang, and Badea, 2018) for performing predictive mod-
elling of coupled multi-physics systems (either time-
dependent or time-independent).

4.3.1 3rd-BERRU-PM Mathematical Framework
This subsection presents the mathematical form of the a
priori information used in the 3rd-BERRU-PM which
will be combined/assimilated to obtain optimal, best-
estimate predicted mean values for both the model

responses and model parameters, with reduced predicted
uncertainties, in the combined parameter-response phase
space. It is important to note that the information
included in the 3rd-BERRU-PM methodology comprises
not only first- and second-order sensitivities, but also
third-order response sensitivities with respect to the
model’s imprecisely known parameters, internal inter-
faces, and external boundaries in the phase-space of
independent variables. In contradistinction to the con-
ventional data assimilation methodologies, the 3rd-
BERRU-PM methodology also includes correlations
between the model responses and parameters.

4.3.1.1 A Priori Information Included in the 3rd-BERRU-
PM

Expected Values and Covariances of Measured Responses
Consider that TR model results (responses), which will be
denoted as rmi , i ¼ 1;…;TR, have been experimentally
measured. These measurements are used to determine the
expectations and covariances or the measured responses.
The responses rmi are considered to constitute the compo-
nents of the TR-dimensional column vector
rm ≜ ðrm1 ;…; rmTRÞ

†. The expected values, Eðrmi Þ, of the meas-
ured responses will be considered to constitute the compo-
nents of the column vectorEðrmÞ≜ ½Eðrm1 Þ;…;EðrmTRÞ�

†. The
covariances, covðrmi ; rmj Þ, of two the measured responses are
considered to be components of the TR� TR-dimensional
covariance matrix of measured responses
Cm ≜ 〈½rm � EðrmÞ�½rm � EðrmÞ�†〉r ¼ ½covðrmi ; rmj Þ�TR�TR.

A Priori Expectations and Covariances of Model Parameters
The a priori information included in the 3rd-BERRU-PM
methodology comprises the vector α0 ≜ ½α01;…; α0i ; ::; α

0
TP�

†,
comprising the parameter expectation values, and the
TP� TP-dimensional parameter covariance matrix
Cα ≜ 〈ðα� α0Þðα� α0Þ†〉α ≜ ½covðαi; αjÞ�TP�TP as defined in
Eqs. (4.6) and (4.7), respectively.

A Priori Expectations and Covariances of Computed
Responses:
The computed responses rckðαÞ; k ¼ 1;…;TR; are con-
sidered to be elements of an TR-dimensional vector
rcðαÞ≜ ½rc1ðαÞ;…; rcNr

ðαÞ�†. The set of expectation values
E½rckðαÞ�, k ¼ 1;…;TR, provided in Eq. (4.11), of the com-
puted responses rckðαÞ; k ¼ 1;…;TR; are considered to be
the components of the following vector of expected values
of the computed responses E½rcðαÞ�≜ ½Eðrc1Þ;…;EðrcNr

Þ�†.
The response covariances defined in Eq. (4.12) are con-
sidered to be the components of a ðTR� TRÞ-dimensional
covariance matrix Cr ≜ 〈½rc � EðrcÞ�½rc � EðrcÞ�†〉α: The
covariances between the computed responses and the
model parameters defined in Eq. (4.13) are considered to be
the components of an ðNr �NαÞ-dimensional matrix
Crα ≜ 〈½rc � EðrcÞ�ðα� α0Þ†〉α ¼ C†

αr.
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4.3.1.2 Posterior Results: Best-Estimate Responses
and Parameters with Reduced Uncertainties

The a priori information described in Section 4.3.1.1 is
considered to stem from an unknown joint multivariate
probability distribution of the form pðα; rÞ ¼ prðrÞpαðαÞ,
which is obeyed in the joint phase-space of parameter and
responses by the vector z≜ ½α; rcðαÞ; rm�†. The least inform-
ative (hence the most conservative) probability distribution
for the vector z≜ ½α; rcðαÞ; rm�† that can be constructed by
using the a priori information provided here can be con-
structed, as shown by Cacuci (2019b), by applying the max-
imum entropy principle (Jaynes, 1957) to obtain the
posterior distribution. The expressions for the moments of
this posterior distribution provide the predicted expect-
ation, covariances, etc., for the model parameters and
responses. They have been obtained – to a user-controlled
degree of accuracy – by using the saddle-point method (also
called Laplace approximation, or steepest descent method).
To first-order of accuracy provided by the saddle-point
approximation, Cacuci (2019a) has obtained the formal
posterior expressions for the predicted best-estimate expect-
ations and covariances for the parameters and responses,
which are provided here.

Model Calibration:
a. Best-estimate predicted expectation value, denoted as

rbe, for the vector of model responses:

rbe ¼ rm þ CmðCm þ CrÞ�1½EðrcÞ � EðrmÞ�: ð4:15Þ

b. Best-estimate predicted covariance matrix, denoted as
Cbe

r , for the best-estimate predicted responses:

Cbe
r ¼ Cm½I� ðCm þ CrÞ�1Cm�: ð4:16Þ

Model Extrapolation:
a. Best-estimate predicted expectation value, denoted as

αbe, for the vector of model parameters, which can
subsequently be used for model calibration:

αbe ¼ α0 � CαrðCm þ CrÞ�1½EðrcÞ � EðrmÞ�: ð4:17Þ

b. Best-estimate predicted covariance matrix, denoted as
Cbe

α , for the best-estimate predicted parameters:

Cbe
α ¼ Cα � CαrðCm þ CrÞ�1Crα: ð4:18Þ

c. Best-estimate predicted parameter-response covariance
matrix and its transpose, denoted as Cαr and Cbe

rα,
respectively, for the best-estimate parameters αbe and
best-estimate responses rbe:

Cbe
αr ¼ CαrðCm þ CrÞ�1Cm: ð4:19Þ

Cbe
rα ¼ CmðCm þ CrÞ�1Crα ¼ ðCbe

αrÞ
†: ð4:20Þ

Estimation of the Validation Domain:
A chi-square consistency indicator – denoted as Qmin – which
quantifies the mutual and joint consistency of the information

available for model calibration and is provided by the following
expression:

Qmin ¼ �
1

2
½EðrcÞ � EðrmÞ�†ðCm þ CrÞ�1½EðrcÞ � EðrmÞ�:

ð4:21Þ

The quantity Qmin represents the square of the length of
the vector d≜ ½EðrcÞ � EðrmÞ�, measuring (in the corres-
ponding metric) the deviations between the experimental
and nominally computed responses. The quantity Qmin

obeys a chi-square distribution with TR degrees of freedom
and can be evaluated directly from the given data (i.e. given
parameters and responses, together with their original
uncertainties) after having inverted the covariance matrix
ðCm þ CrÞ. It is also important to note that Qmin is inde-
pendent of calibrating (or adjusting) the original data. As
the dimension of ½EðrcÞ � EðrmÞ� indicates, the number of
degrees of freedom characteristic of the calibration under
consideration is equal to the number TR of experimental
responses. In the extreme case of absence of experimen-
tal responses, no actual calibration takes place. An
actual calibration (adjustment) occurs only when
including at least one experimental response. The quan-
tity Qmin can be used for estimating contours of con-
stant uncertainty in the combined parameter and
response (high-dimensional) phase-space, thereby quan-
tifying the validation domain underlying the model
under investigation.

It is important to note that the predicted best-estimate
values rbe and αbe, together with their respective covariance
matrices Cbe

r , C
be
α , and Cαr, which are presented in Eqs.

(4.15)–(4.20) contain second-order and third-order sensi-
tivities. Thus, the expressions presented in Eqs. (4.15)–
(4.20) generalise all of the previous formulas of this type
found in data assimilation procedures (Kalman filters,
Bayesian linear statistics, etc.) published to date, which
contain first-order and, occasionally, matrix-vector prod-
ucts that include some second-order sensitivities. As indi-
cated in Eq. (4.16), the a priori covariance matrix Cm is
multiplied by the matrix ½I� ðCm þ CrÞ�1Cm�, whichmeans
that the variances contained on the diagonal of the best-
estimate matrix Cbe

r will be smaller than the experimentally
measured variances contained in Cm. Hence, the addition of
new experimental information has reduced the predicted
best-estimate response variances in Cbe

r by comparison to
the measured variances contained a priori in Cm.

Both matrices Cα and CαrðCm þ CrÞ�1Crα are symmetric
and positive definite. Therefore, the subtraction indicated in
Eq. (4.18) implies that the components of the main diagonal
of Cbe

α must have smaller values than the corresponding
elements of the main diagonal of Cα. In this sense, the
introduction of new computational and experimental infor-
mation has reduced the best-estimate predicted parameter
variances on the diagonal of Cbe

α .
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It is important to note from the results shown in Eqs.
(4.15)–(4.20) that the computation of the best-estimate par-
ameter and response values, together with their correspond-
ing best-estimate covariance matrices, only requires the
computation of ðCm þ CrÞ�1, which entails the inversion of
a matrix of size TR� TR. This is computationally very
advantageous, since the number of responses is much less
than the number of model parameters (i.e. TR≪TP) in the
overwhelming majority of practical situations.

4.3.2 3rd-BERRU-PM Inverse Predictive Modelling:
Determining a Material’s Thickness from Detector
Responses in the Presence of Counting Uncertainties

Consider a one-dimensional slab of homogeneous material
extending from z ¼ 0 to z ¼ a ½cm�, placed in air and char-
acterised by a total interaction coefficient μ ½cm�1�. The slab
contains a uniformly distributed source of strength
Q ½photons=cm3sec� emitting isotropically monoenergetic
photons within the slab. It is assumed that there is no
scattering into the energy lines. Under these conditions,
the angular flux of photons within the slab is described by
the Boltzmann transport equation without scattering and
with ‘vacuum’ incoming boundary condition, that is,

ω
dψðz;ωÞ

dz
þ μψðz;ωÞ ¼ Q

2
; 0 < z≤ a; ω > 0; ψð0;ωÞ ¼ 0;

ð4:22Þ

where ψðz;ωÞ denotes the neutron angular flux at position z
and direction ω≜ cosθ, and θ denotes the angle between the
photon’s direction and the z-axis. The solution of Eq. (4.22)
is

ψðz;ωÞ ¼ Q
2μ
½1� expðμz=ωÞ�: ð4:23Þ

Consider further that the leakage flux of uncollided
photons is measured by an ‘infinite-plane detector placed
in air at some location z > a external to the slab. The detect-
or’s response function, denoted as Σd ½cm�1�, is considered
to be a perfectly well-known constant. If the detection pro-
cess were a perfectly deterministic process, rather than a
stochastic one, it would follow from Eq. (4.23) that the
exact detector response, denoted as rðμaÞ, would be given
by the following expression:

rðμaÞ≜Σd

ð1
0
ψðz;ωÞdω ¼QΣd

2μ
½1� E2ðμaÞ�;

EnðxÞ ¼
ð1
0
un�2e�x=udu; n ¼ 0; 1; 2;…

ð4:24Þ

In the absence of counting uncertainties, therefore, know-
ing the detector’s response rðμaÞ yields a unique slab thick-
ness, by solving Eq. (4.24) to determine its unique real root,
as shown by Cacuci (2017).

In the presence of detector counting uncertainties, the
current state-of-the-art methods (see, e.g., Lewis et al.,
2006) for solving inverse problems such as determining the
optical dimension of a uniform homogeneous medium from
K uncertain photon measurements, rðkÞexp; k ¼ 1;…;K,
external to the medium, rely on minimising a user-defined
chi-square-type functional of the following form:

χ2 ≜
XK
k¼1

δðkÞ
std:dev

�
rðkÞexp

�
24 352

; δðkÞ≜ rmodel

�
μaðkÞ

�
� rðkÞexp:

ð4:25Þ

The value ðμaÞmin which yields the minimum value, χ2min,
of χ2, is considered to be the slab’s optical thickness. For
optically thin slabs, Cacuci (2017) has shown that the preci-
sion of measurements does not affect the location of the
unique minimum of the quantity δ2ðkÞ, and the actual thick-
ness of the respective slab is determined sufficiently accur-
ately, for practical purposes, by the unique location of this
minimum.

On the other hand, the precision of the measurements
decisively affects the results for optically thick slabs. If the
measurements are inaccurate, then any minimisation of the
expression in Eq. (4.25) will lead to erroneous physical
results, in that the result delivered by any minimisation
procedure will not be physically correct. Furthermore, the
larger the optical thickness of the slab, the more unphysical
will the result of the minimisation procedure likely be, since
the very formulation of the χ2-functional makes this func-
tional extremely sensitive to the value of each measurement
as the slab’s optical thickness increases. This remains true of
the χ2-functional even when the measurements are precise.
A typical result for a thick slab of actual optical thickness
μa ¼ 10:0 is presented in Fig. 4.1 for very precise measure-
ments, assumed to be normally distributed with a mean
equal to (the exact response) rmodel and having a relative
standard deviation of 0.001%. Cacuci (2017) has shown
that if the measurements have a relative standard deviation
of 10%, the traditional chi-square minimisation procedure
can even fail to produce a real-valued minimum, hence
failing to produce any inverse prediction of the slab’s thick-
ness. Even for very precise measurements, having a relative
standard deviation of 0.001%, the customary chi-square
minimisation procedure may fail to yield a real-valued min-
imum, as depicted in Fig. 4.1, which indicates that only 5 of
the 10 measurements have yielded real-valued minima, with
values 7 < μamodel < 9, all of which underpredict the actual
slab thickness of μa ¼ 10:0. In contradistinction, the
BERRU-PM (Cacuci, 2019a) predicts the slab’s thickness
to be ðμaÞBERRU�PM ¼ 9:88, as indicated by the results pre-
sented in Table 4.1, which is very close to the exact result
μa ¼ 10:0. The response sensitivities needed by the
BERRU-PM procedure were obtained from Eq. (4.24).
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4.3 Illustrative Adjoint Sensitivity and Uncertainty
Analysis of Oscillatory Dynamical Systems

Oscillatory dynamical systems are of considerable interest
not only in the atmospheric and Earth sciences, where they
were first studied by Lorenz (1963), but in all branches of the
biological and physical sciences and engineering. The Lorenz
(1963) model is relatively simple – comprising just three
coupled first-order (in time) ordinary differential equations
having quadratic non-linearities and just three positive
parameters – and was therefore amenable to countless stud-
ies. Oscillatory dynamical systems that comprise many
parameters have at best been analysed approximately, rather
than exactly, because of the impractically large number of
computations that would be required if using conventional
methods for sensitivity and uncertainty analysis. Cacuci and
Di Rocco (2020) have presented a pioneering adjoint sensi-
tivity analysis of an oscillatory dynamical model which com-
prises sufficiently many parameters to render its analysis by

conventional statistical methods impractical. Since the math-
ematical tools used for this analysis are applicable to any
large-scale dynamic model in the Earth and/or atmospheric
sciences, they will be presented in Section 4.3.1.
Representative sensitivity and uncertainty analysis results,
which can serve as paradigm illustrations for the efficient
and exact computation of the first-order sensitivities of any
dynamicmodel’s state/dependent variables with respect to all
of themodel’s parameters in the stable and oscillatory regions
(including the chaotic region) are presented in Section 4.3.2.

4.3.1 Mathematical Framework Underlying the First-Order
Comprehensive Adjoint Sensitivity Analysis
Methodology for Non-linear Systems (1st-CASAM-N)

The parameters that characterise a mathematical/computa-
tional model and its internal and external boundaries in
phase-space are seldom known exactly: their true values

Table 4.1 Results predicted by the 3rd-BERRU-PM methodology for a slab of exact thickness μa ¼ 10 after assimilating
K ¼ 10 experiments with β ¼ 10�5, μa ¼ 10

Experimental response
mean value Predicted response

Predicted
response SD Predicted parameter

Predicted
parameter SD

4.999989x10–1 4.999981x10-1 2.7x10–6 9.88 7.63x10–1

Exact
Response

Exact
Response SD

Exact Parameter

4.999981x10–1 4.999981x10–6 10.0

100

100 101

μamodel

μa = 10.0

102

10–1

10–1

10–2

10–3

10–4

10–5

10–6

10–7

10–8

10–9

10–10

10–11

10–12

10–13

10–14

10–15

r (1)   = 0.499994exp

r (2 )   = 0.500001exp

r (10 )   = 0.500006exp

r (9 )   = 0.499996exp

r (8 )   = 0.49999exp

r (7 )   = 0.500003exp

r (6 )   = 0.499995exp

r (5 )   = 0.500002exp

r (4 )   = 0.499996exp

r (3 )   = 0.500002exp

δ2
 =

 (r
m
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el

 –
r(

k)
 )2

–e
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Figure 4.1 Variation of δ2 ≜
�
rmodel � rðkÞexp

�2
as a

function of themodel’s optical thickness ðμamodelÞ
for a slab of actual optical thickness μa ¼ 10:0,
for very precise measurements with a relative
standard deviation of 0.001%.
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(which are unknown) will differ from their nominal (or
mean) values (which are known) by quantities denoted
as δα≜ ðδα1;…; δαTPÞ, where δαi ≜ αi � α0i . Evidently, the
forward state functions uðxÞ are related to the model
and boundary parameters α through Eqs. (4.1) and (4.2).
Hence, variations δα in the model and boundary
parameter will cause corresponding variations
δuðxÞ≜ ½δu1ðxÞ;…; δuTIðxÞ�† around the nominal solution
u0ðxÞ in the forward state functions. In turn, the variations
δα and δuðxÞ will induce variations in the system’s response.
For the mathematical derivations to follow, it is convenient
to introduce the vector e≜ ðu; αÞ, which is defined on the
product of the vector fields of the model parameters and
state functions. The nominal value of e≜ ðu; αÞ is denoted as
e0 ≜ ðu0; α0Þ. The most general definition of the first-order
total sensitivity of the operator-valued model response
Rðu; αÞ to variations δuðxÞ and δα around the nominal
values u0 and α0, respectively, has been provided in the
pioneering works of Cacuci (1981a, b) in terms of the first-
order Gateaux-variation δRðu0; α0; δu; δαÞ ofRðu; αÞ, which
is defined as follows:

δRðe0; hÞ≜ d
dε
∏
TI

i¼1

ðωiðα0þεδαÞ

λiðα0þεδαÞ

Sðu0 þ εδu; α0 þ εδα; xÞdxi

8><>:
9>=>;

ε¼0

;

ð4:26Þ

for a scalar quantity ε and arbitrary vector
hðxÞ≜ ½δuðxÞ; δα�† in a neighbourhood ðe0 þ εhÞ around e0.
The G-differential δRðe0; hÞ is an operator defined on the
same domain as RðeÞ, has the same range as RðeÞ, and
provides the total first-order total sensitivity of RðeÞ with
respect to variations in the model’s parameters and state
functions. The G-differential δRðe0; hÞ satisfies the
relation: Rðe0 þ εhÞ � Rðe0Þ ¼ δRðe0; hÞ þ ΔðhÞ; with
lim
ε→ 0
½ΔðεhÞ�=ε ¼ 0. The existence of the G-variation δRðe0; hÞ

does not guarantee its numerical computability. Numerical
methods most often require that δRðe0; hÞ be linear in
h≜ ðδu; δαÞ in a neighbourhood ðe0 þ εhÞ around e0.
Formally, the necessary and sufficient conditions for the
G-variation δRðe0; hÞ of a non-linear operator RðeÞ to be
linear and continuous in h in a neighbourhood ðe0 þ εhÞ
around e0 ¼ ðα0; u0Þ, and thus admit a total first-order G-
derivative, are as follows:

(i) RðeÞ must satisfy a weak Lipschitz condition at e0,
that is,

‖Rðe0 þ εhÞ � Rðe0Þ ‖ ≤ k ‖ εe0 ‖ ; k < ∞: ð4:27Þ

(ii) RðeÞ must satisfy the following condition for two arbi-
trary vectorsh1; h2 defined in the same vector space as e0:

Rðe0 þ εh1 þ εh2Þ � Rðe0 þ εh1Þ � Rðe0 þ εh2Þ þ Rðe0Þ
¼ oðεÞ: ð4:28Þ

In practice, it is usually observed directly if the right-side of Eq.
(4.26) is linear (or not) in δuðxÞ. Numerical methods (e.g.
Newton’s method and variants thereof) for solving Eqs. (4.1)
and (4.2) also require the existence of the first-order G-deriva-
tives of originalmodel equations, inwhich case the components
of the operators which appear in these equations must also
satisfy the conditions described in Eqs. (4.27) and (4.28). If
these conditions are not satisfied, the system is unusually singu-
lar, and its solution cannot be obtained by usual numerical
methods.

To proceed, the conditions described in Eqs. (4.27) and
(4.28) will henceforth be considered to be satisfied by the
operators underlying the physical system, in which case the
partial G-derivatives of RðeÞ at e0 with respect to uðxÞ and α
exist. It follows that that the first-order G-variation δRðe0; hÞ
defined in Eq. (4.26) can be written in the following form:

δRðe0; hÞ ¼ fδRðe0; hÞgdir þ fδRðe0; hÞgind ; ð4:29Þ

where the direct-effect term fδRðe0; hÞgdir is defined as follows:

fδR½uðxÞ; α; δα�gdir ≜
XTI
j¼1
∏
i ¼ 1
i≠j

TI

ðωiðα0Þ

λiðα0Þ

dxi S u
�
x1; :;ωiðαÞ; :;xNx

�
; α

h i ∂ωiðαÞ
∂α

δα

� �
ðe0Þ

�
XTI
j¼1
∏
i ¼ 1
i≠j

TI ðωiðα0Þ

λiðα0Þ

dxi S u
�
x1; :; λiðαÞ; :; xNx

�
; α

h i ∂λiðαÞ
∂α

δα

� �
ðe0Þ

þ∏
TI

i¼1

ðωiðα0Þ

λiðα0Þ

dxi
∂Sðe; αÞ

∂α

� �
ðe0Þ

δα; ð4:30Þ

and where the indirect-effect term fδRðe0; hÞgind is defined
as follows:

fδRðe0; hÞgind ≜ ∏
TI

i¼1

ðωiðα0Þ

λiðα0Þ

dxi
∂Sðe; xÞ

∂u

� �
ðe0Þ

δuðxÞ: ð4:31Þ

The quantity fδRðe0; hÞgdir in Eq. (4.30) is called the
direct effect term because it can be computed once the
base-case values e0 are available. On the other hand,
the indirect effect term fδRðe0; hÞgind defined in Eq.
(4.31), can be quantified only after having determined
the variations δuðxÞ in terms of the variations δα. The
first-order relationship between the variations δuðxÞ and
δα is determined by taking the G-differentials of Eqs.
(4.1) and (4.2), which yields the following equations:

fVð1Þðu; αÞvð1ÞðxÞgα0 ¼ fq
ð1Þ
V ðu; α; δαÞgα0 ; x 2 Ωx; ð4:32Þ
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fbð1ÞV

�
u; α; vð1Þ ; δα

�
g
α0
¼ 0; x 2 ∂Ωxðα0Þ; ð4:33Þ

where the superscript (1) indicates first-level and where the
following definitions were used:

vð1ÞðxÞ≜ ½vð1Þ1 ðxÞ;…; vð1ÞTD�
† ≜ ½δu1ðxÞ;…; δuTDðxÞ�†;

qð1ÞV ðu; α; δαÞ≜
∂½QðαÞ � Nð u; αÞ�

∂α
δα≜

XTP
j1¼1

sð1ÞV ðj1; u; αÞδαj1 ;

Vð1Þðu; αÞ≜ ∂Nðu; αÞ
∂u

� �

≜

∂N1

∂u1
…

∂N1

∂uTD
..
.

⋱ ..
.

∂NTD

∂u1
. . .

∂NTD

∂uTD

0BBBB@
1CCCCA ;

∂Nðα; uÞ
∂α

≜

∂N1

∂α1
…

∂N1

∂αTP
..
.

⋱ ..
.

∂NTD

∂α1
. . .

∂NTD

∂αTP

0BBBB@
1CCCCA : ð4:34Þ

bð1ÞV

�
u; α; vð1Þ; δα

�
≜

∂Bðu; αÞ
∂u

vð1Þ þ ∂½CðαÞ � Bðα;uÞ�
∂α

δα

þ
XTI
i¼1

∂B½u ðxÞ; α �
∂ωi

∂ωiðαÞ
∂α

δα

� �
x¼ω

(

þ ∂B½u ðxÞ; α �
∂λi

∂λiðαÞ
∂α

δα

� �
x¼λ
g
ðe0Þ

:

ð4:35Þ

The matrices which appear in Eq. (4.35) are defined in the
same way as those appearing in Eq. (4.34). The system com-
prising Eqs. (4.32) and (4.33) is called the First-Level
Variational Sensitivity System (first-LVSS). In order to deter-
mine the solutions of the 1st-LVSS that would correspond to
every parameter variation δαj1 , j1 ¼ 1;…;TP, the 1st-LVSS
would need to be solvedTP times, with distinct right-sides for
each δαj1 , thus requiring TP large-scale computations.
Computing the (total) response sensitivity δRðe0; hÞ by

using the (δα-dependent) solution vð1ÞðxÞ of the first-LVSS
is called (Cacuci, 1981a,b) the Forward Sensitivity Analysis
Procedure (FSAP). From the standpoint of computational
costs and effort, the FSAP requires OðTPÞ large-scale for-
ward computations. Therefore, the FSAP is advantageous
to employ only if, in the problem under consideration, the
total number of responses of interest exceeds the number of
system parameters and/or parameter variations of interest.
In most practical situations, however, the number of model
parameters significantly exceeds the number of scalar-

valued model responses of interest (i.e. TP≫TR). In such
cases, the adjoint sensitivity analysis methodology conceived
and developed by Cacuci (1981a,b) is the most efficient
method for computing exactly the first-order sensitivities
since it requires only TR large-scale computations. The
fundamental idea introduced by Cacuci (1981a,b) is to elim-
inate the appearance of the variation δu in the indirect-effect
term defined in Eq. (4.31), by expressing the right-side of Eq.
(4.31) in terms of adjoint functions that are the solutions of
the First-Level Adjoint Sensitivity System (1st-LASS) which
depends on the model’s response but does not depend on
parameter variations. In his original work, Cacuci (1981a,b)
considered that the physical system’s boundaries and inter-
faces in the phase-space of independent variables were per-
fectly well know. In subsequent works, Cacuci (2021a) has
generalised his original work to include the exact and efficient
computations of first-order response sensitivities to impre-
cisely known boundaries/interfaces and parameters, calling
this general methodology the First-Order Comprehensive
Adjoint Sensitivity Analysis Methodology for Non-linear
Systems (1st-CASAM-N), where the qualifier ‘comprehen-
sive’ indicates that allmodel parameters, including the phase-
space locations of internal and/or external boundaries, are
considered to be imprecisely known (subject to uncertainties).

As the name implies, the ‘adjoint’ sensitivity analysis
methodology requires the introduction of adjoint operators,
which can be defined in Banach spaces but are most useful in
Hilbert spaces. The spaces Eu and EQ are henceforth con-
sidered to beHilbert spaces, denoted asHuðΩxÞ andHQðΩxÞ,
respectively. The elements of HuðΩxÞ and HQðΩxÞ are, as
before, vector-valued functions defined on the open set
Ωx⊂ℝJx , with smooth boundary ∂Ωx. In practice, HuðΩxÞ
and HQðΩxÞ are self-dual, so they can be represented by a
Hilbert space denoted as H1ðΩxÞ, which can be considered to
be real, without loss of generality, and which is endowed with
an inner product of two vectors uðaÞðxÞ 2 H1 and uðbÞðxÞ 2 H1

denoted as 〈uðaÞ; uðbÞ〉1 and defined as follows:

〈uðaÞ; uðbÞ〉1 ≜
ðω1ðαÞ

λ1ðαÞ

…

ðωTI ðαÞ

λTI ðαÞ

uðaÞðxÞ � uðbÞðxÞ
h i

dx1…dxTI

8><>:
9>=>;

α0

;

ð4:36Þ

where the dot indicates the scalar product

uðaÞðxÞ � uðbÞðxÞ≜
XTD
i¼1

uðaÞi ðxÞu
ðbÞ
i ðxÞ.

The construction of an alternative expression for the
indirect-effect term defined in Eq. (4.31) proceeds by apply-
ing the principle outlined by Cacuci (1981a,b), which
involve the following sequence of steps:

1. Using the inner product defined in Eq. (4.36), construct
the inner product of Eq. (4.32) with a vector
að1ÞðxÞ≜ ½að1Þ1 ðxÞ;…; að1ÞTD�

† to obtain the following
relation:
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〈að1Þ;  Vð1Þðu; αÞvð1Þ〉1
n o

α0

n o
α0
¼ 〈að1Þ;qð1ÞV ðu;α; δαÞ〉1
n o

α0
; x 2 Ωx:

ð4:37Þ

Using the definition of the adjoint operator in H1ðΩxÞ, the
left-side of Eq. (4.37) is transformed as follows:

〈að1Þ;  Vð1Þðu; αÞvð1Þ〉1
n o

α0
¼ 〈Að1Þðu; αÞ að1Þ;  vð1Þ〉1
n o

α0

þ ½Pð1Þ
�
u; α; að1Þ; vð1Þ

�
�∂Ωx

n o
α0
; ð4:38Þ

where Að1Þðu; αÞ is the operator adjoint to Vð1Þðu; αÞ,
i.e., Að1Þðu; αÞ≜ ½Vð1Þðu; αÞ��, and where
½Pð1Þðu; α; að1Þ; vð1ÞÞ�∂Ωx

denotes the associated bilinear con-
comitant evaluated on the space/time domain’s boundary
∂Ωxðα0Þ. The symbol ½ �� is used in this work to indicate
adjoint operator. In certain situations, it might be computa-
tionally advantageous to include certain boundary compo-

nents of ½Pð1Þ
�
u; α; að1Þ; vð1Þ

�
�∂Ωx

into the components of

Að1Þðu; αÞ.

2. The first term on the right-side of Eq. (4.38) is required
to represent the indirect-effect term defined in Eq. (4.31)
by imposing the following relationship:

Að1Þðu; αÞað1ÞðxÞ
n o

α0
¼ f∂Sðu; α Þ=∂ugα0 ≜ qð1ÞA ½uðxÞ; α�;

x 2 Ωx: ð4:39Þ

3. The domain of Að1Þðu; αÞ is determined by selecting
appropriate adjoint boundary and/or initial conditions,
which will be denoted in operator form as:

bð1ÞA ðu; að1Þ; αÞ
n o

α0
¼ 0; x 2 ∂Ωxðα0Þ: ð4:40Þ

These boundary conditions for Að1Þðu; αÞ are usually

inhomogeneous, that is, bð1ÞA ð0; 0; αÞ≠0, and are obtained
requiring that: (i) they must be independent of unknown
values of vð1ÞðxÞ and δα; (ii) the substitution of the boundary
and/or initial conditions represented by Eqs. (4.40) and

(4.33) into the expression of ½Pð1Þðu; α; að1Þ; vð1ÞÞ�∂Ωx

n o
α0

must cause all terms containing unknown values of vð1ÞðxÞ
to vanish. Constructing the adjoint initial and/or boundary
conditions for Að1Þðu;αÞ reduces the bilinear concomitant

½Pð1Þðu; α; að1Þ; vð1ÞÞ�∂Ωx

n o
α0

to a quantity denoted as

½P̂ð1Þðu;α; að1Þ; δαÞ�∂Ωx

n o
α0
, which will contain boundary

terms involving only known values of δα, α0, u0, and

ψð1Þ Since ½P̂ð1Þðu; α; að1Þ; δαÞ�∂Ωx

n o
α0

is linear in δα,

it can be expressed in the following form:

½P̂ð1Þðu; α; að1Þ; δαÞ�∂Ωx
¼
XTP
j1¼1
½∂P̂ð1Þðu; α; að1ÞÞ=∂αj1 �δαj1 :

4. The results obtained in Eqs. (4.39) and (4.38) are now
replaced in Eq. (4.31) to obtain the following expression
of the indirect-effect term as a function of að1ÞðxÞ:

δR½uðxÞ; α; vð1ÞðxÞ�
n o

ind
¼ 〈að1Þ;  qð1ÞV ðu; α; δαÞ〉1
n o

α0

� ½P̂ð1Þðu; α; að1Þ; δαÞ�∂Ωx

n o
α0
:

ð4:41Þ

5. Replacing in Eq. (4.29) the result obtained in Eq.
(4.41), together with the expression for the direct-
effect term provided in Eq. (4.30), yields the follow-
ing expression for the first G-differential of the
response R½uðxÞ; α�:

δR½uðxÞ; α; vð1ÞðxÞ; δα�
� �

α0 ¼ δR½uðxÞ; α; δα�f gdir

þ 〈að1Þ;  qð1ÞV ðu; α; δαÞ〉1
n o

α0
� P̂

ð1Þ�
u; α; að1Þ; δα

�h i
∂Ωx

� �
α0

≜
XTP
j1¼1

Rð1Þ½ j1; uðxÞ; að1ÞðxÞ; α�
n o

α0
δαj1 ; ð4:42Þ

where for each j1 ¼ 1;…;TP, the quantity
Rð1Þ½ j1; uðxÞ; að1ÞðxÞ; α� denotes the first-order sensitivities
of the response R½uðxÞ; α� with respect to the model param-
eters αj1 and has the following expression:

Rð1Þ½ j1; uðxÞ; að1ÞðxÞ; α�

¼
ðω1ðαÞ

λ1ðαÞ

…

ðωTI ðαÞ

λTI ðαÞ

að1ÞðxÞ � ∂½QðαÞ � Nð u; αÞ�
∂αj1

dx1…dxTI

�
∂P̂
ð1Þ�

u; α; að1Þ
�

∂αj1
þ

ðω1ðαÞ

λ1ðαÞ

…

ðωTI ðαÞ

λTI ðαÞ

∂Sðu; α; αÞ
∂αj1

dx1…dxTI

þ
XTI
j¼1

ðω1ðαÞ

λ1ðαÞ

…

ðωj�1ðαÞ

λj�1ðαÞ

ðωjþ1ðαÞ

λjþ1ðαÞ

…

ðωTI ðαÞ

λTI ðαÞ

S u
�
x1; :;ωjðαÞ; :; xNx

�
; α

h i8><>:
∂ωjðαÞ
∂αj1

dx1…dxTIgα0

�
XTI
j¼1

ðω1ðαÞ

λ1ðαÞ

…

ðωj�1ðαÞ

λj�1ðαÞ

ðωjþ1ðαÞ

λjþ1ðαÞ

…

ðωTI ðαÞ

λTI ðαÞ

S u
�
x1; :; λjðαÞ; :; xNx

�
; α

h i8><>:
∂λjðαÞ
∂αj1

dx1…dxTIgα0 : ð4:43Þ

As indicated by Eq. (4.43), each of the first-order sensitiv-
ities Rð1Þ½ j1; uðxÞ; að1ÞðxÞ; α� of the response R½uðxÞ; α� with
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respect to themodel parameters αj1 (including boundary and
initial conditions) can be computed inexpensively after hav-
ing obtained the function að1ÞðxÞ 2 H1, using quadrature
formulas to evaluate the various inner products involving
að1ÞðxÞ 2 H1. The function að1ÞðxÞ 2 H1 is called the first-
level adjoint function and is obtained by solving numerically
the 1st-LASS which comprises Eqs. (4.39) and (4.40). It is
very important to note that the 1st-LASS is independent of
parameter variation δαj1 , j1 ¼ 1;…;TP, and therefore needs
to be solved only once, regardless of the number of model
parameters under consideration. Thus, solving the 1st-
LASS is the only large-scale computation needed for obtain-
ing all of the first-order sensitivities. Since the 1st-LASS is
linear in að1ÞðxÞ, solving it requires less computational effort
than solving the original non-linear system for uðxÞ.

4.3.2 Illustrative Application of the 1st-CASAM-N
to an Oscillatory Dynamical Model

March-Leuba, Cacuci, and Perez (1984) have conceived a
reduced-order model for predicting the dynamics of boiling-
water reactors (BWR). Remarkably, this reduced-order
dynamic model predicted that a BWR could undergo
large-amplitude period-doubling oscillations towards cha-
otic dynamics in certain unstable power/flow regions. On
March 9, 1988, four years after the appearance of the BWR-
model conceived by March-Leuba, Cacuci, and Perez
(1984), the LaSalle County-2 BWR (in Seneca, Illinois,
USA) underwent such predicted dynamic behaviour, lead-
ing to an automatic reactor shut-down (USNRC, 1988).

The BWR-model of March-Leuba, Cacuci, and Perez
(1984) comprises five coupled, extremely stiff, first- and
second-order differential-algebraic equations involving fif-
teen uncertain parameters and unsuitable for sensitivity and
uncertainty analyses by conventional statistical methods
because the use of such conventional methods would not
only require an unrealistic amount of computational
resources but would also produce results of unverifiable reli-
ability. Cacuci and Di Rocco (2020) showed that the 1st-
CASAM is free of such shortcomings and enables the efficient
computation of the exact sensitivities of the BWR-model’s
state functions with respect to the model’s uncertain param-
eters in themodel’s oscillatory regions, as will be illustrated in
this section. The steps underlying the application of the 1st-
CASAM to the BWR-model are typical for applying the 1st-
CASAM-N to any model in the Earth sciences.

The differential equations underlying the reduced-order
BWR-model developed by March-Leuba, Cacuci, and Perez
(1984) for predicting the dynamic behaviour of a BWRwhen
the reactor is perturbed from its originally critical steady-
state condition describe the following time-dependent
phenomena:

(i) a point reactor representation of neutron kinetics,
including the neutron precursors:

dnðtÞ
dt
¼ nðtÞ ρðtÞ � β

Λ
þ λcðtÞ þ ρðtÞ

Λ
;

dcðtÞ
dt
¼ nðtÞ β

Λ
� λcðtÞ;

ð4:44Þ

(ii) a lumped-parameter representation of the heat transfer
process in the fuel:

dTðtÞ
dt
¼ Q½nðtÞ þHðtÞΔ� � a3TðtÞ; ð4:45Þ

(iii) a lumped-parameter (two-nodes) representation of the
channel thermal-hydraulics, accounting for the
reactivity feedback:

d2γðtÞ
dt2

þ a2
dγðtÞ
dt
þ a1γðtÞ ¼ mk0TðtÞ; ρðtÞ ¼ Γ1γðtÞ þ Γ2TðtÞ:

ð4:46Þ

The state variables in Eqs. (4.44)–(4.46) represent the fol-
lowing time-dependent quantities: (i) nðtÞ denotes the
excess neutron population; (ii) cðtÞ denotes the excess
population of delayed neutron precursors; (iii) TðtÞ
denotes the excess fuel temperature; (iv) HðtÞ denotes the
Heaviside functional; (v) γðtÞ denotes the relative excess
coolant density; and (vi) ρðtÞ denotes the excess reactivity.
At the initial time, t ¼ 0, the reactor is assumed to be
critical, operating in the steady-state condition. The quali-
fier ‘excess’ signifies that these quantities are defined as
departures from the critical reactor configuration; conse-
quently, all the state variables are therefore zero at t ¼ 0. In
addition, the excess neutron population, nðtÞ, and the
excess precursors population, cðtÞ, are normalised with
respect to the initial (critical) value and are therefore non-
dimensional quantities.

The vector of parameters for this BWR-model is as fol-
lows: α≜ ðα1;…; α16Þ† ≜ ðk;Δ;Q; β;Λ; λ;Γ1;Γ2; a1; a2; a3;
n0; c0;T0; γ10; γ0Þ

†, where the quantities n0, c0, T0, γ0, γ01
represent the initial conditions at t ¼ 0 for Eqs. (4.44)–
(4.46). The nominal values of the model parameters in
Eqs. (4.44)–(4.46) are as follows: Γ0

1 ¼ 0:15,
Γ0
2 ¼ �2:61 � 10�5K�1, β0 ¼ 0:0056, Λ0 ¼ 4:0 � 10�5s,

λ0 ¼ 0:08s�1, Q0 ¼ 25:044K=s, Δ0 ¼ �0:1, a01 ¼ 6:8166s�2,
a02 ¼ 2:2494s�1, a03 ¼ 0:2325s�1, k00 ¼ �0:01318K�1s�2. The
nominal values of all initial conditions are zero. The
reduced-order model defined by Eqs. (4.44)–(4.46) has two
equilibrium points in phase-space: (i) a stable equilibrium,
which corresponds to the critical reactor configuration at a
point (denoted using the subscript A) in phase-space having
the following coordinates: nA ¼ �Δ; cA ¼ �ðβΔÞ=ðλΛÞ;
TA ¼ γA ¼ ρA ¼ 0; and (ii) an unstable equilibrium at the
point (denoted using the subscript B) in phase-space having
the following coordinates: nB ¼ �1;cB ¼ �β=ðλΛÞ;
TB ¼ QðΔ� 1Þ=a3; γB ¼ kQðΔ� 1Þ; ρB ¼ ðΓ1k=a3 þ Γ2Þ
QðΔ� 1Þ=a3.
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Equations (4.44)–(4.46) are ‘stiff’ systems of non-linear
ordinary differential equations. After intercomparing
several solvers of stiff differential equations, as mentioned
by Cacuci and Di Rocco (2020), the Rosenbrock solver
(www.odeint.com, 2019) with a step-size varying between
0.001 and 0.01 seconds has been selected to solve Eqs.
(4.44)–(4.46) since it provided the best performance in terms
of computational time and accuracy.When the feedback gain
m in Eq. (4.46) is increased, thereby increasing the heat
transfer from the reactor core to the surrounding coolant,
the equilibrium point A becomes unstable after the stability
threshold is crossed. The phase-space trajectories of the
BWR-model oscillate between the two unstable equilibrium
points until a stable limit cycle sets in. Increasing the value of
the feedback gainm beyond the stability of the first limit cycle
will cause this cycle to bifurcate, through a period-doubling
bifurcation, into a period-two cycle. Continuing to increase
the feedback gain m leads to a cascade of period-doubling
bifurcations which lead to aperiodic behaviour, as first
observed by March-Leuba, Cacuci, and Perez (1984). For
example, the bifurcation map for the excess temperature
TðtÞ, as a function of the feedback gain m, is depicted in
Fig. 4.2, which highlights the following regions:

• Region 1: Stable Region, before the first-order bifurca-
tion, m � k0 < kbif 1 ¼ 1:70898 � k0;

• Region 2: Unstable Region between the first-order
bifurcation and the second-order bifurcations,
kbif 1 < m � k0 < kbif 2 ¼ 2:66657 � k0;

• Region 3: Unstable Region between the second-order
bifurcations and the third-order bifurcations,
kbif 2 < m � k0 < kbif 3 ¼ 2:86991 � k0;

• Region 4: Unstable Region between the third-order
bifurcations and the fourth-order bifurcations,
kbif 3 < m � k0 < kbif 4 ¼ 2:92027 � k0;

• Region 5: Chaotic (Aperiodic) Region, arising from the
cascade of period-doubling pitchfork bifurcations pro-
duced when the feedback gainm is increased past a critical
value (called accumulation point), mc < m � k0, where
mc ¼ 2:933995.

The value attained by the excess temperature at a
given instance in time, t ¼ td , where the respective tem-
perature could be measured by some detecting device,
can be represented by the following particular form of
Eq. (4.4):

TðtdÞ≜
ðtf
0
TðtÞδðt� tdÞdt; ð4:47Þ

where tf denotes the final time of interest; for this model,
tf ¼ 160s, as will be discussed. Applying the principles of the
1st-CASAM-N detailed in Section 4.3.1 to the BWR-model
described by Eqs. (4.44)–(4.46) yields (Cacuci and Di
Rocco, 2020) the following final expression [which is a
particular form of Eq. (4.43)] for the total first-order differ-
ential δTðtdÞ of TðtdÞ with respect to parameter variations:

δTðtdÞ ¼
X5
i¼1

ðtf
0
φiðtÞqiðtÞdtþ φ1ð0Þδn0 þ φ2ð0Þδc0

þ φ3ð0ÞδT0 þ φ4ð0Þδγ10 þ φ5ð0Þδγ0:
ð4:48Þ

The first-level adjoint sensitivity functions φiðtÞ which
appear in Eq. (4.48) are the solutions of the following 1st-
LASS:
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Figure 4.2 Bifurcation map of TðtÞ.
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� d
dt
� γðtÞΓ1

Λ
þ TðtÞΓ2

Λ
� β
Λ

� �� �
φ1ðtÞ �

β
Λ
φ2ðtÞ

�Qφ3ðtÞ ¼ w1δðt� tdÞ; ð4:49Þ

�λφ1ðtÞ þ � d
dt
þ λ

� �
φ2ðtÞ ¼ w2δðt� tdÞ ð4:50Þ

�nðtÞΓ2

Λ
� Γ2

Λ

� �
φ1ðtÞ þ � d

dt
þ a3

� �
φ3ðtÞ

�kφ4ðtÞ ¼ w3δðt� tdÞ ð4:51Þ

� d
dt
þ a2

� �
φ4ðtÞ � φ5ðtÞ ¼ w4δðt� tdÞ ð4:52Þ

�nðtÞΓ1

Λ
� Γ1

Λ

� �
φ1ðtÞ þ a1φ4ðtÞ �

dφ5ðtÞ
dt

¼ w5δðt� tdÞ

ð4:53Þ

φiðtf Þ ¼ 0; i ¼ 1;…; 5: ð4:54Þ

The graphs to be presented in this section extend in time
up to td ¼ 150s from the onset of the perturbation in Δ
effected in the initially steady-state critical reactor,
which causes the BWR-model to embark on a dynamic
evolution in a Region in phase-space that is governed by
the magnitude of the feedback gain. This time-window –

between 0 and 150 seconds – was optimised to enable
the reproduction of the entire initial transitory phase of
the curves followed by a representative segment of the
subsequent periodic regime, which is sufficiently large
for displaying several complete oscillation cycles but

not so large as to impair the readability of the entire
graph. No fundamentally different phenomena occur
after 150 seconds into the transient dynamics: in the
stable Region 1, the state functions and their sensitivities
practically reach their time-independent asymptotic val-
ues well before 150 seconds; in Regions 2 through 4, the
respective periodic dynamics of the state functions and
accompanying sensitivities also reach their respective
asymptotic states before the 150 seconds final-time,
while in the chaotic Region 5, the state functions and
their sensitivities are not periodic. The asymptotic state
of the sensitivities with respect to model parameters in
Regions 2 through 4 itself oscillates with a small periodic
amplitude even after 150 seconds, as discussed by Cacuci
and Di Rocco (2020). However, solving the 1st-LASS is
performed by commencing the numerical computations
at tf ¼ 160 and proceeding towards t ¼ 0:0. The reason
for choosing tf ¼ 160 – that is, 10 seconds prior to the
occurrence of the delta-impulse source at td ¼ 150s – as
the starting point for the numerical computation of the
first-level adjoint sensitivity functions φiðtÞ, i ¼ 1;…; 5, is
to stabilise the Rosenbrock solver prior to the occur-
rence of the delta-impulse source.

In the stable Region 1, the largest sensitivity of TðtÞ is
with respect to the initial condition γ0, which is depicted in
Fig. 4.3 along with the sensitivities of TðtÞ to the other
initial conditions n0, c0 and T0. All sensitivities presented in
Fig. 4.3 display an initial oscillatory phase characterised by
high-amplitude oscillations caused by the initial neutronic
perturbation Δ. However, the amplitudes of these oscilla-
tions decrease to zero exponentially in time, thus confirm-
ing the expectation that all state functions nðtÞ, cðtÞ, TðtÞ,
ρðtÞ, and γðtÞ must become asymptotically independent of
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Figure 4.3 Time-evolutions of the sensitivities of
TðtÞ with respect to the initial conditions n0, c0, T0,
γ0 in Region 1.
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the values of the initial conditions as t→∞ in the stable
Region 1.

The time-evolution of the nominal value of the state
function TðtÞ is depicted in dark grey in Fig. 4.4 along
with the time evolution of the functions labelled
TðtÞ � σ and depicted in light grey, where σ denotes the
total absolute standard deviation for TðtÞ computed by
using Eq. (4.12) in conjunction with the individual contri-
butions ðSiσiÞ2 from all 11 model parameters and 4 initial
conditions. The standard deviation for TðtÞ is very large
immediately after the onset of the transient (by perturbing
the initially critical reactor in steady state), reaching values
that more than 10 times larger than the state function TðtÞ
itself. In time, the standard deviation decays exponentially,
reaching values comparable to the state function TðtÞ after
about 140 seconds from the start of the transient. Very
importantly, Fig. 4.4 indicates that predictions of the
excess temperature TðtÞ during the first 120 seconds after
the BWR model is perturbed from its initial critical steady
state are unreliable. Furthermore, it is possible that that
the model would be ‘pushed’ in one of the oscillatory
Regions (which will be investigated in the sections to fol-
low here) by the large amplitudes reached by the standard
deviation of TðtÞ immediately after the onset of the per-
turbation that took the model out of its initial critical state.
Similar conclusions were reached for nðtÞ by Di Rocco and
Cacuci (2020).

In the period-2 limit cycle Region 2, the time-evolu-
tions of the excess fuel temperature TðtÞ and of its
sensitivities with respect to the initial conditions n0,
c0, T0, and γ0, display an initial transitory phase
which extends to about 70 seconds, after which all of
these sensitivities settle into periodic oscillations of
constant amplitudes, as depicted in Fig. 4.5. The fact
that these oscillations continue with constant

amplitudes indicates that perturbations in the initial
conditions do not induce changes in the oscillation
frequency of the system’s state functions. In Fig. 4.6,
the time-evolution of the nominal value of the state
function TðtÞ is depicted in dark grey in along with
the time evolution of the functions labelled TðtÞ � σ,
which are depicted in light grey, where σ denotes the total
absolute standard deviation for TðtÞ computed by using Eq.
(4.12) in conjunction with the individual contributions
ðSiσiÞ2 from all 11 model parameters and 4 initial condi-
tions. As indicated in Fig. 4.6, the standard deviation
increases rapidly after the onset of the transient (by perturb-
ing the initially critical reactor in steady state), oscillating
with rapidly increasing amplitudes, reaching – in 40 seconds
after the start of the transient – values that are 400 K larger
than the amplitude of the excess temperature, TðtÞ, which
oscillates around the initial valueT0 ¼ 0K. It is evident from
Fig. 4.5 that the standard deviation of TðtÞ renders the
prediction of the evolution of this state function highly
unreliable after less than 10 seconds from the initiation of
the transient.

In the chaotic Region 5, the sensitivities of TðtÞ oscil-
late aperiodically with amplitudes that increase expo-
nentially, reaching massive values. The standard
deviation of TðtÞ inherits the characteristics of the evo-
lutions of the sensitivities of TðtÞ with respect to the
model parameters and initial conditions. As shown by
Di Rocco and Cacuci (2020), considering a 5% standard
deviation for all parameters and initial conditions in
Region 5, the standard deviation of TðtÞ increases
from values of O(108) after the first 25 seconds into
the transient to values of O(1043) towards 150 seconds
into the transient, evidently defeating any attempt at
predicting the behaviour of TðtÞ in the chaotic
Region 5.
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Figure 4.4 Time-evolution of TðtÞ [dark grey graph]
with uncertainty bands TðtÞ � σ [light grey graphs],
considering uniform 5% relative standard deviations
for all parameters and 5% absolute standard devi-
ations for the initial conditions in Region 1.
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4.4 Illustrative Third-Order Uncertainty Analysis
of a System Comprising Many Parameters:
Application to the OECD/NEA Polyethylene-
Reflected Plutonium Reactor Physics Benchmark

This section presents the mathematical framework of
the Third-Order Comprehensive Adjoint Sensitivity
Analysis Methodology for Non-linear Systems (3rd-
CASAM-N) and an illustrative application of this
methodology to a paradigm large-scale physical model
to compute exactly its 21,976 first-order sensitivities of
a measurable response to the model’s parameters,

followed by the computation of the 482,944,576
second-order sensitivities (of which 241,483,276 are dis-
tinct from each other) and the largest 5,832,000 third-
order sensitivities. The impacts of these sensitivities on
the model response’s expectation, variance and skew-
ness are also quantified. This paradigm large-scale sys-
tem cannot be analysed by statistical methods as exactly
and as comprehensively as by using the 3rd-CASAM-N.
The concepts and methodologies presented in this sec-
tion can be applied equally well to any model in the
Earth sciences.
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4.4.1 Third-Order Comprehensive Adjoint Sensitivity
Analysis Methodology for Non-linear Systems (3rd-
CASAM-N): Mathematical Framework

Fundamentally, the second-order total G-differential of cor-
respondingly differentiable function is defined inductively as
‘the total first-order differential of the first-order total differ-
ential’ of a function. Hence, the second-order sensitivities of
the model response with respect to the model’s parameters are
defined as the first-order sensitivities of the first-order sensitiv-
ities. Thus, for each j1 ¼ 1;…;TP, the G-variation
fδRð1Þ½ j1; uðxÞ; að1ÞðxÞ; α; vð1ÞðxÞ; δað1ÞðxÞ; δα�gα0 of a first-
order sensitivity Rð1Þ½j1; uðxÞ; að1ÞðxÞ; α� has the following
expression:

fδRð1Þ½j1; uðxÞ; að1ÞðxÞ; α; vð1ÞðxÞ; δað1ÞðxÞ; δα�gα0

¼ fδRð1Þ½j1; uðxÞ; að1ÞðxÞ; α; δα�gdir
þfδRð1Þ½j1; uðxÞ; að1ÞðxÞ; α; vð1ÞðxÞ; δað1ÞðxÞ�gind : ð4:55Þ

In Eq. (4.55), the quantity fδRð1Þ½j1; uðxÞ; að1ÞðxÞ; α; δα�gdir
denotes the direct-effect term, which comprises all depend-
encies on the vector δα of parameter variations, and is
defined as follows:

fδRð1Þ½ j1; uðxÞ; að1ÞðxÞ; α; δα�gdir

≜
∂Rð1Þ½j1; uðxÞ; að1ÞðxÞ; α�

∂α
δα

� �
α0
: ð4:56Þ

Also in Eq. (4.55), the indirect-effect term
fδRð1Þ½j1; uðxÞ; að1ÞðxÞ; α; vð1ÞðxÞ; δað1ÞðxÞ�gind comprises all
dependencies on the vectors vð1ÞðxÞ and δað1ÞðxÞ of vari-
ations in the state functions uðxÞ and að1ÞðxÞ, respectively,
and is defined as follows:

fδRð1Þ½j1; uðxÞ; að1ÞðxÞ; α; vð1ÞðxÞ; δað1ÞðxÞ�gind
≜ f∂Rð1Þ½j1;…; α�=∂ugα0vð1ÞðxÞ

þ f∂Rð1Þ½j1;…; α�=∂að1Þgα0δað1ÞðxÞ: ð4:57Þ

The functions vð1ÞðxÞ and δað1ÞðxÞ could be obtained, in
principle, by solving the Second-Level Variational
Sensitivity System (2nd-LVSS), which is obtained by con-
catenating the 1st-LVSS with the system obtained by G-
differentiating the 1st-LASS, and has the following form:

fVMð2Þ½2� 2;Uð2Þð2; xÞ; α�Vð2Þð2; xÞgα0

¼ fQð2ÞV ½2;Uð2Þð2; xÞ; α; δα� gα0 ; x 2 Ωx; ð4:58Þ

fBð2ÞV ½2;Uð2Þð2; xÞ;Vð2Þð2; xÞ; α; δα�gα0

¼ 0½2�; 0½2�≜ ½0; 0�†; x 2 ∂Ωxðα0Þ; ð4:59Þ

The argument ‘2’ which appears in the list of arguments of
the vector Uð2Þð2; xÞ and the ‘variational vector’ Vð2Þð2; xÞ in
Eq. (4.58) indicates that each of these vectors is a 2-block

column vector (each block comprising a column-vector of
dimension TD), defined as follows:

Uð2Þð2; xÞ≜ uð1ÞðxÞ
að1ÞðxÞ

� �
; Vð2Þð2; xÞ ≜ δUð2Þð2; xÞ

≜
vð2Þð1; xÞ
vð2Þð2; xÞ

� �
≜

vð1ÞðxÞ
δað1ÞðxÞ

� �
: ð4:60Þ

To distinguish block-vectors from block matrices, two bold
capital letters have been used (and will henceforth be used)
to denote block matrices, as in the case of the second-level
variational matrix VMð2Þ½2� 2; uð2ÞðxÞ; α�. The second-level
is indicated by the superscript (2). The argument 2� 2,
which appears in the list of arguments of
VMð2Þ½2� 2; uð2ÞðxÞ; α�, indicates that this matrix is a
2� 2-dimensional block-matrix comprising four matrices,
each of dimensions TD� TD, having the following
structure:

VMð2Þ½2� 2;Uð2Þð2; xÞ; α�≜ Vð1Þ 0
Vð2Þ21 Vð2Þ22

� �
: ð4:61Þ

The other quantities which appear in Eqs. (4.58) and (4.59)
are two-block vectors having the same structure as
Vð2Þð2; xÞ , and are defined as follows:

Qð2ÞV ½2;Uð2Þð2; xÞ; α; δα� ≜
qð2ÞV

�
1;Uð2Þð2; xÞ; α; δα

�
qð2ÞV

�
2;Uð2Þð2; xÞ; α; δα

�0@ 1A
≜

qð1ÞV ðu; α; δαÞ
qð2Þ2

�
u; að1Þ; α; δα

� !
; ð4:62Þ

qð2Þ2

�
u; α; að1Þ; δα

�
≜

∂qð1ÞA ½uðxÞ; α�
∂α

δα� ∂½Að1Þðu; αÞað1ÞðxÞ�
∂α

δα

≜
XTP
j2¼1

sð2ÞV 2; j2;Uð2Þð2; xÞ; α
h i

δαj2 ;

sð2ÞV ½2; j2;Uð2Þð2; xÞ; α�≜
∂qð1ÞA ½uðxÞ; α�

∂αj2
� ∂½Að1Þðu; αÞað1ÞðxÞ�

∂αj2
;

ð4:63Þ

Bð2ÞV 2;Uð2Þð2; xÞ;Vð2Þð2; xÞ;α; δα
� �

≜
bð2ÞV ½1;Uð2Þð2; xÞ;Vð2Þð2; xÞ; α; δα�
bð2ÞV ½2;Uð2Þð2; xÞ;Vð2Þð2; xÞ; α; δα�

 !

≜
bð1ÞV

�
uð1Þ; α; δuð1Þ; δα

�
δbð1ÞA ½Uð2Þð2; xÞ;Vð2Þð2; xÞ; α; δα�

 !
; ð4:64Þ

Vð2Þ21

�
u; að1Þ; α

�
≜

∂½Að1Þðu; αÞað1Þ�
∂u

� qð1ÞA ½uðxÞ; α�
∂u

;

Vð2Þ22 ðu; αÞ≜Að1Þðu; αÞ; ð4:65Þ
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δbð1ÞA

�
u; að1Þ; α

�
≜

∂bð1ÞA

∂u
vð1ÞðxÞ þ ∂bð1ÞA

∂að1Þ
δað1ÞðxÞ þ ∂bð1ÞA

∂α
δα:

ð4:66Þ

The Second-Order Comprehensive Adjoint Sensitivity
Analysis Methodology for Non-linear Systems (2nd-
CASAM-N) aims at obtaining an alternative expression
for the indirect-effect term defined by Eq. (4.57) which
does not depend on the variational function Vð2Þð2; xÞ but
instead depends on a second-level adjoint function which is
the solution of a Second-Level Adjoint Sensitivity System
(2nd-LASS) constructed by using the 2nd-LVSS as the start-
ing point and by applying the same principles as were applied
in the foregoing to obtain the first-order sensitivities provided
inEq. (4.41). The 2nd-LASS is constructed in aHilbert space,
denoted as H2ðΩxÞ, which comprises as elements block-
vectors of the same form as Vð2Þð2; xÞ. The inner product of
two vectors Ψð2Þð2; xÞ≜ ½ ψð2Þð1; xÞ; ψð2Þð2; xÞ�† 2 H2ðΩxÞ
and Φð2Þð2; xÞ≜ ½φð2Þð1; xÞ;φð2Þð2; xÞ�† 2 H2ðΩxÞ in the
Hilbert space H2ðΩxÞ will be denoted as
〈Ψð2Þð2; xÞ;Φð2Þð2; xÞ〉2 and defined as follows:

〈Ψð2Þð2; xÞ;Φð2Þð2; xÞ〉2 ≜
X2
i¼1

〈ψð2Þði; xÞ;φð2Þði; xÞ〉1: ð4:67Þ

Using the inner product defined in Eq. (4.67) and following
the same steps as outlined for deriving the 1st-LASS yields
the following 2nd-LASS for the second-level adjoint func-
tion Að2Þð2; j1; xÞ≜ ½að2Þð1; j1; xÞ; að2Þð2; j1; xÞ�† 2 H2ðΩxÞ, for
each j1 ¼ 1;…;TP:

fAMð2Þ½2� 2;Uð2Þð2; xÞ; α�Að2Þð2; j1; xÞgα0

¼ fQð2ÞA ½2; j1;Uð2Þð2; xÞ; α�gα0 ; x 2 Ωx; ð4:68Þ

subject to boundary conditions represented as follows:

fBð2ÞA ½2;Uð2Þð2; xÞ;Að2Þð2; j1; xÞ; α�gα0 ¼ 0½2�; x 2 ∂Ωxðα0Þ;
ð4:69Þ

where

Qð2ÞA ½2; j1;Uð2Þð2; xÞ; α�≜
qð2ÞA

�
1; j1;Uð2Þ; α

�
qð2ÞA

�
2; j1;Uð2Þ; α

�0@ 1A
≜

∂Rð1Þ½j1; uðxÞ; að1ÞðxÞ; α; vð1ÞðxÞ�=∂u

∂Rð1Þ½j1; uðxÞ; að1ÞðxÞ; α; vð1ÞðxÞ�=∂að1Þ

 !
; ð4:70Þ

AMð2Þ½2� 2;Uð2Þð2; xÞ; α�≜ ½VMð2Þð2� 2;Uð2Þð2; xÞ; αÞ��

¼
½Vð1Þ��† ½Vð2Þ�21 �

†

0 ½Vð2Þ�22 �
†

0@ 1A: ð4:71Þ

The matrix AMð2Þ½2� 2; uð2ÞðxÞ; α� comprises ð2� 2Þ block-
matrices, each of dimensions TD2, and is obtained from the
following relation:

f〈Að2Þð2; xÞ;VMð2ÞVð2Þð2; xÞ〉2gα0

¼ f½Pð2ÞðUð2Þ;Að2Þ;Vð2Þ; αÞ�∂Ωx
g
α0

þf〈Vð2Þð2; xÞ;AMð2Þ½2� 2;Uð2Þð2; xÞ; α�Að2Þð2; xÞ〉2gα0 ;
ð4:72Þ

where the quantity f½Pð2ÞðUð2Þ;Að2Þ;Vð2Þ; αÞ�∂Ωx
g
α0

denotes
the corresponding bilinear concomitant on the domain’s
boundary, evaluated at the nominal values for the param-
eters and respective state functions. The second-level adjoint
boundary/initial conditions represented by Eq. (4.59) are
determined by requiring that: (i) they must be independent
of unknown values of Vð2Þð2; xÞ; and (ii) the substitution of
the boundary and/or initial conditions represented by Eqs.
(4.59) and (4.69) into the expression of
f½Pð2ÞðUð2Þ;Að2Þ;Vð2Þ; αÞ�∂Ωx

g
α0
must cause all terms contain-

ing unknown values of Vð2Þð2; xÞ to vanish.
The alternative expression of the total differential defined

by Eq. (4.55) in terms of the second-level adjoint function
Að2Þð2; j1; xÞ is as follows:

fδRð1Þ½j1;Uð2Þð2; xÞ;Að2Þð2; j1; xÞ; α; δα�gα0

¼
XTP
j2¼1
fRð2Þ½j2; j1;Uð2Þð2; xÞ;Að2Þð2; j1; xÞ; α�gα0δαj2 ;

j1 ¼ 1;…;TP ; ð4:73Þ

where the quantity Rð2Þ½j2; j1;Uð2Þð2; xÞ;Að2Þð2; j1; xÞ; α�
denotes the second-order sensitivity of the generic scalar-
valued response R½uðxÞ; α� with respect to the parameters αj1
and αj2 computed at the nominal values of the parameters and
respective state functions, and has the following expression:

For j1; j2 ¼ 1;…;TP : Rð2Þ½j2; j1;Uð2Þð2; xÞ;Að2Þð2; j1; xÞ; α�

≜
∂Rð1Þ½j1; uðxÞ; að1ÞðxÞ; α�

∂αj2

�
f∂P̂ð2Þ½Uð2Þð2; xÞ;Að2Þð2; j1; xÞ; α�g∂Ωx

∂αj2

þ
X2
i¼1

〈að2Þði; j1; xÞ; sð2ÞV ½i; j2;Uð2Þð2; xÞ;α�〉1 ≜
∂2R½uðxÞ; α�
∂αj2∂αj1

:

ð4:74Þ

In Eq. (4.74), the quantity f½P̂ð2ÞðUð2Þ;Að2Þ; α; δαÞ�∂Ωx
g
α0

denotes residual boundary terms which may not have van-
ished after having used the boundary and/or initial conditions
represented by Eqs. (4.59) and (4.69) in Eq. (4.72). If the 2nd-
LASS is solved TP-times, the second-ordermixed sensitivities
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Rð2Þ½j2; j1;Uð2Þð2; xÞ;Að2Þð2; j1; xÞ; α�≡∂2R=∂αj2∂αj1 will be
computed twice, in two different ways, in terms of two
distinct second-level adjoint functions. Consequently, the
symmetry property ∂2R½uðxÞ; α�=∂αj2∂αj1 ¼ ∂2R½uðxÞ;
α�=∂αj1∂αj2 enjoyed by the second-order sensitivities provides
an intrinsic (numerical) verification that the components of
the second-level adjoint function Að2Þð2; j1; xÞ and the first-
level adjoint function að1ÞðxÞ are computed accurately.

The third-order sensitivities are obtained by considering
them to be the first-order sensitivities of a second-order
sensitivity. Thus, each of the second-order sensitivities
Rð2Þ½j2; j1;Uð2Þð2; xÞ;Að2Þð2; j1; xÞ; α�≡∂2R=∂αj2∂αj1 will be
considered to be a model response which is assumed to
satisfy the conditions stated in Eqs. (4.27) and (4.28)
for each j1; j2 ¼ 1;…;TP, so that the first-order total
G-differential of Rð2Þ½j2; j1;Uð2Þð2; xÞ;Að2Þð2; j1; xÞ; α� will
exist and will be linear in the variations Vð2Þð2; xÞ and
δAð2Þð2; j1; xÞ in a neighbourhood around the nominal val-
ues of the parameters and the respective state functions.
By definition, the first-order total G-differential of
Rð2Þ½j2; j1;Uð2Þð2; xÞ;Að2Þð2; j1; xÞ; α�, which will be denoted
as fδRð2Þ½j2; j1;Uð2Þð2; xÞ;Að2Þð2; j1; xÞ; α;Vð2Þð2; xÞ; δAð2Þ
ð2; j1; xÞ; δα�gα0 , is given by the following expression:

fδRð2Þ½j2; j1;Uð2Þð2; xÞ;Að2Þð2; j1; xÞ; α;Vð2Þð2; xÞ; δAð2Þ

ð2; j1; xÞ; δα�gα0

≜
∂Rð2Þ½j2; j1;Uð2Þð2; xÞ;Að2Þð2; j1; xÞ; α�

∂α
δα

( )
α0

þfδRð2Þ½j2; j1;Uð2Þð2; xÞ;Að2Þð2; j1; xÞ; α;Vð2Þð2; xÞ; δAð2Þ

ð2; j1; xÞ�gind ; ð4:75Þ

where

fδRð2Þ½j2; j1;Uð2Þð2; xÞ;Að2Þð2; j1; xÞ; α;Vð2Þð2; xÞ;

δAð2Þð2; j1; xÞ�gind

≜
∂Rð2Þ½j2; j1;Uð2Þ;Að2Þ; α�

∂Uð2Þð2; xÞ

( )
α0

Vð2Þð2; xÞ

þ ∂Rð2Þ½j2; j1;Uð2Þ;Að2Þ;α�
∂Að2Þð2; j1; xÞ

( )
α0

δAð2Þð2; j1; xÞ : ð4:76Þ

The indirect-effect term fδRð2Þ ½j2; j1;Uð2Þð2; xÞ;Að2Þð2; j1; xÞ;
α; δα�gdir can be computed after having determined the vec-
tors Vð2Þð2; xÞ and δAð2Þð2; j1; xÞ, which are the solutions of
the following Third-Level Variational Sensitivity System
(3rd-LVSS):

fVMð3Þ½4� 4;Uð3Þð4; xÞ; α�Vð3Þð4; xÞgα0
¼ fQð3ÞV ½4;Uð3Þð4; xÞ; α; δα�gα0 ; x 2 Ωx; ð4:77Þ

fBð3ÞV ½4;Uð3Þð4; xÞ;Vð3Þð4; xÞ; α; δα�gα0 ¼ 0½4�; x 2 ∂Ωxðα0Þ
ð4:78Þ

where 0½4�≜ ½0; 0; 0; 0�† and where

VMð3Þ
�
4� 4;Uð3Þ; α

�
≜

VMð2Þð2� 2Þ 0½2� 2�
VMð3Þ21 ð2� 2Þ VMð3Þ22 ð2� 2Þ

 !
;

ð4:79Þ

Uð3Þð4; xÞ≜ Uð2Þð2; xÞ
Að2Þð2; j1; xÞ

� �
; Vð3Þð4; xÞ≜ δUð3Þð4; xÞ

¼ Vð2Þð2; xÞ
δAð2Þð2; j1; xÞ

� �
; ð4:80Þ

VMð3Þ21 ð2� 2; xÞ≜ ∂fAMð2Þ½2� 2;Uð2Þ; α�Að2Þð2; xÞg
∂Uð2Þð2; xÞ

� ∂Qð2ÞA ½2;uð2ÞðxÞ; α�
∂Uð2Þð2; xÞ

; ð4:81Þ

VMð3Þ22 ð2� 2; xÞ≜AMð2Þ½2� 2;Uð2Þ; α�; 0½2� 2�≜ 0 0
0 0

� �
;

ð4:82Þ

Qð3ÞV ½4;Uð3Þð4; xÞ; α; δα�≜
Qð2ÞV ½2;Uð2Þð2; xÞ; α; δα�
Qð3Þ2 ½2;Uð3Þð4; xÞ; α; δα�

 !

≜
qð3ÞV ½1;Uð3Þð4; xÞ; α; δα�

�
qð3ÞV ½4;Uð3Þð4; xÞ; α; δα�

0@ 1A; ð4:83Þ

qð3ÞV ½i;Uð3Þð4; xÞ; α; δα�≡
XTP
j3¼1

sð3ÞV ½i; j3;Uð3Þð4; xÞ; α�δαj3 ;

i ¼ 1;…4; ð4:84Þ

Qð3Þ2 ½2;Uð3Þð4; xÞ; α; δα�≜
∂Qð2ÞA

∂α
∂α

� ∂fAMð2Þ½2� 2;Uð2Þð2; xÞ; α�Að2Þð2; j1; xÞg
∂α

∂α; ð4:85Þ

Bð3ÞV ½4;Uð3Þð4; xÞ;Vð3Þð4; xÞ; α; δα�

≜
Bð2ÞV ½2;Uð2Þð2; xÞ;Vð2Þð2; xÞ; α; δα�

δBð2ÞA ½2;Uð3Þð4; xÞ;Vð3Þð4; xÞ; α; δα�

 !
: ð4:86Þ

The right side of the 3rd-LVSS actually depends on the
indices j1; j2; j3 ¼ 1;…;TP, so the 3rd-LVSS would need to
be solved TP3 times to obtain each of the variational func-
tions Vð3Þð4; j1; j2; j3; xÞ. Thus, solving the 3rd-LVSS would
require TP3 large-scale computations, which is unrealistic
for large-scale systems comprising many parameters. Since
the 3rd-LVSS is never actually solved but is only used to
construct the corresponding adjoint sensitivity system, the
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specific dependence of the 3rd-LVSS on the indices
j1; j2; j3 ¼ 1;…;TP has been suppressed.

The 3rd-CASAM-N circumvents the need for solving the
3rd-LVSS by deriving an alternative expression for the indir-
ect-effect term defined in Eq. (4.76), in which the function
Vð3Þð4; xÞ is replaced by a third-level adjoint function which is
independent of parameter variations. This third-level adjoint
function is the solution of a Third-Level Adjoint Sensitivity
System (3rd-LASS) which is constructed by applying the
same principles as those used for constructing the 1st-LASS
and the 2nd-LASS. The Hilbert space appropriate for con-
structing the 3rd-LASS, denoted as H3ðΩxÞ, comprises as
elements block-vectors of the same form as Vð3Þð4; xÞ. Thus,
a generic block-vector in H3ðΩxÞ, denoted as
Ψð3Þð4; xÞ≜ ½ ψð3Þð1; xÞ;ψð3Þð2; xÞ;ψð3Þð3; xÞ; ψð3Þð4; xÞ�†
2 H3ðΩxÞ, comprises four TD-dimensional vector-compo-
nents of the form ψð3Þði; xÞ≜ ½ψð3Þ1 ði; xÞ;…;ψð3ÞTDði; xÞ�

†

2 H1ðΩxÞ, i ¼ 1; 2; 3; 4, where each of these four compo-
nents is aTD-dimensional column vector. The inner product
of two vectors Ψð3Þð4; xÞ 2 H3ðΩxÞ and Φð3Þð4; xÞ 2 H3ðΩxÞ
in the Hilbert space H3ðΩxÞ will be denoted as
〈Ψð3Þð4; xÞ;Φð3Þð4; xÞ〉3 and defined as follows:

〈Ψð3Þð4; xÞ;Φð3Þð4; xÞ〉3 ≜
X4
i¼1

〈ψð3Þði; xÞ;φð3Þði; xÞ〉1:

ð4:87Þ
The steps for constructing the 3rd-LASS are conceptually
similar to those for constructing the 1st-LASS and 2nd-
LASS, so they will be omitted for the sake of brevity. The
final expressions for the third-order sensitivities are as
follows:

fδRð2Þ½j2; j1;Uð3Þð4; xÞ;Að3Þð4; j2; j1; xÞ; α; δα�gα0

¼ ∂Rð2Þ½j2; j1;Uð3Þ; α�
∂α

δα

� �
α0
� f½P̂ð3Þ

�
Uð3Þ;Að3Þ; δα

�
�∂Ωx
g
α0

þf〈Að3Þð4; j2; j1; xÞ;Qð3ÞV ½4;Uð3Þ; α; δα�〉3gα0 ; ð4:88Þ

where f½P̂ð3Þ
�
Uð3Þ;Að3Þ; δα

�
�∂Ωx
g
α0
denotes residual boundary

terms which may have not vanished automatically, and where
the third-level adjoint function Að3Þð4; xÞ≜ ½ að3Þ ð1; xÞ; að3Þ
ð2; xÞ; að3Þ ð3; xÞ; a ð3Þð4; xÞ�† 2 H3ðΩxÞ is the solution of
the following 3rd-LASS, for j1 ¼ 1;…;TP; j2 ¼ 1;…:; j1:

fAMð3Þ½4� 4;Uð3Þð4; xÞ; α�Að3Þð4; j2; j1; xÞgα0

¼ fQð3ÞA ½4; j2; j1;Uð3Þð4; xÞ; α�gα0 ; ð4:89Þ

subject to boundary/interface/initial conditions represented
in operator form as follows:

fBð3ÞA ½4;Uð3Þð4; xÞ;Að3Þð4; j2; j1; xÞ; α�gα0 ¼ 0½4�; x 2 ∂Ωxðα0Þ;
ð4:90Þ

where

AMð3Þ 4� 4;Uð3Þð4; xÞ; α
h i

≜ VMð3Þð4� 4;Uð3Þ; αÞ
h i�

;

ð4:91Þ

Qð3ÞA 4; j2; j1;Uð3Þð4; xÞ; α
h i

≜ qð3ÞA ð1; j2; j1;Uð3Þ; αÞ;…; qð3ÞA

�
4; j2; j1;Uð3Þ; α

�h i
; ð4:92Þ

qð3ÞA

�
1; j2; j1;Uð3Þ;α

�
≜ ∂Rð2Þ j2; j1; uð2Þ; að2Þ; α

h i
=∂uð1Þ;

ð4:93Þ

qð3ÞA

�
2; j2; j1;Uð3Þ;α

�
≜ ∂Rð2Þ j2; j1; uð2Þ; að2Þ; α

h i
=∂að1Þ;

ð4:94Þ

qð3ÞA

�
3; j2; j1;Uð3Þ;α

�
≜ ∂Rð2Þ j2; j1; uð2Þ; að2Þ; α

h i
=∂að2Þð1; j1; xÞ;

ð4:95Þ

qð3ÞA

�
3; j2; j1;Uð3Þ;α

�
≜ ∂Rð2Þ j2; j1; uð2Þ; að2Þ; α

h i
=∂að2Þð2; j1; xÞ :

ð4:96Þ

In component form, the total differential expressed by Eq.
(4.75) has the following expression:

fδRð2Þ½j2; j1;Uð3Þð4; xÞ;Að3Þð4; j2; j1; xÞ; α; δα�gα0

¼
XTP
j3¼1
fRð3Þ½j3; j2; j1;Uð3Þð4; xÞ;Að3Þð4; j2; j1; xÞ; α�gα0δαj3 ;

j1; j2 ¼ 1;…;TP ; ð4:97Þ

where the quantity Rð3Þ½j3; j2; j1;Uð3Þð4; xÞ;Að3Þð4; j2; j1; xÞ; α�
denotes the third-order sensitivity of the generic scalar-val-
ued response R½uðxÞ; α� with respect to any three model
parameters αj1 , αj2 , αj3 , and has the following expression,
for j1; j2; j3 ¼ 1;…;TP:

Rð3Þ½j3; j2; j1;Uð3Þð4; xÞ;Að3Þð4; j2; j1; xÞ; α�

≜
∂Rð2Þ½j2; j1;Uð3Þð4; j1; xÞ; α�

∂αj3
�
½∂P̂ð3Þ

�
Uð3Þ;Að3Þ; δα

�
�∂Ωx

∂αj3

þ
X4
i¼1

〈að3Þði; j2; j1; xÞ; sð3ÞV ½i; j3; j1;Uð3Þð4; xÞ; α�〉1

≜
∂3R½uðxÞ; α�
∂αj3∂αj2∂αj1

: ð4:98Þ

The third-order sensitivities can be computed selectively,
in the priority order pre-established by the user to solve the
3rd-LASS to obtain the requisite third-level adjoint sensitiv-
ity function Að3Þð4; j2; j1; xÞ, 1≤ j1; j2 ≤TP. If the 3rd-LASS
is solved TPðTPþ 1Þ=2 times, then each of the third-order
mixed sensitivities ∂3R½uðxÞ; α�=∂αj1∂αj3∂αj3 will be computed
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three times, each time using distinct adjoint functions. Thus,
the symmetry property enjoyed by the third-order sensitivities
provides an intrinsic verification of the numerical computation
of the various adjoint sensitivity functions.

4.4.2 Uncertainty Analysis of a System Comprising Many
Parameters: Application to the OECD/NEA
Polyethylene-Reflected Plutonium Reactor Physics
Benchmark

The Third-Order Comprehensive Adjoint Sensitivity Analysis
of Response-Coupled Linear Forward/Adjoint Systems (3rd-
CASAM-L) methodology developed by Cacuci (2019b) was
applied to perform (Cacuci, Fang, and Favorite, 2019, 2020,
and references therein) a comprehensive second-order sensi-
tivity and uncertainty analysis of the leakage response of the
OECD/NEA polyethylene-reflected plutonium (acronym:
PERP) reactor physics benchmark (Valentine, 2006). The
PERP benchmark is modelled by the linear Boltzmann neu-
tron transport equation comprising 21,976 uncertain model
parameters (180 group-averaged total microscopic cross
sections, 21,600 group-averaged scattering microscopic
cross sections, 120 parameters describing the fission process,
60 parameters describing the fission spectrum, 10 parameters
describing the system’s sources, and 6 isotopic number dens-
ities). Thus, the PERP benchmark comprises 21,976 first-
order sensitivities of the leakage response with respect to the
model parameters, and 482,944,576 second-order sensitivities
(of which 241,483,276 are distinct from each other). These
fundamental works (Cacuci, Fang, and Favorite, 2019, 2020,
and references therein) have demonstrated that, for this
benchmark, many second-order sensitivities were signifi-
cantly (by over an order of magnitude) larger than the first-
order sensitivities, and the cumulative effects of the second-
order sensitivities on the predicted uncertainties of the PERP
benchmark’s response far exceeded the effects of the first-
order sensitivities. In particular, the largest first-order relative
sensitivity is Sð1Þðσ30t;6Þ ¼ �9:366 and the largest first-order
relative sensitivity is Sð2Þðσ30t;6; σ30t;6Þ ¼ 429:6, both of which
involve the microscopic total cross section in the lowest-
energy group (i.e. the 30th-group) of hydrogen (isotope
1H). Overall, the total microscopic cross section of isotopes
1H and 239Pu are the two most important parameters affect-
ing the PERP benchmark’s leakage response, since they are
involved in all of the large first- and second-order sensitiv-
ities. Complete results for the 21,976 first-order sensitivities
of the leakage response with respect to the model param-
eters, and the 241,483,276 distinct second-order sensitivities
are provided by Cacuci, Fang, and Favorite (2020) and
references therein. In particular, it was found that only
7,477 first-order sensitivities are non-zero.

The importance of the contributions to the response uncer-
tainties stemming from the first-order and, respectively,
second-order sensitivities are illustratedby the results presented
in Table 4.2. The notations used in Table 4.1 are as follows:

(i) The superscript U denotes ‘uncorrelated’ while the
superscript N denotes ‘normally distributed’.

(ii) Lðα0Þ denotes the PERP benchmark’s leakage
response computed at the nominal parameter values;

(iii) ½EðLÞ�ð2;UÞt denotes the contribution stemming from
the second-order sensitivities to the total expectation,
denoted as ½EðLÞ�ðUÞt , of the leakage response;

(iv) ½varðLÞ�ð1;U ;NÞ
t and ½varðLÞ�ð2;U ;NÞ

t denote the contribu-
tions stemming from the first-order and, respectively,
second-order sensitivities to the total variance,
½varðLÞ�ðU ;NÞ

t , of the leakage response;

(v) ½μ3ðLÞ�
ðU;NÞ
t denotes the third central moment of the

leakage response for uncorrelated parameters;

(vi) ½γ1ðLÞ�
ðU ;NÞ
t denotes the skewness of the leakage

response for uncorrelated parameters;
(vii) The subscript t denotes ‘total cross sections’, which

are the model parameters considered for the results
shown in Table 4.2.

As the expressions in Eqs. (4.11)–(4.13) indicate, only
the unmixed second-order sensitivities contribute when the
parameters are uncorrelated. On the other hand, all of the
second-order sensitivities contribute when the parameters
are correlated. The results presented in Table 4.2 show that
the second-order sensitivities cause a larger deviation of the
leakage response’s expected value, ½EðLÞ�ðU ;NÞ

t , from its
computed value, Lðα0Þ. For example, the results shown
in the last column of Table 4.2 indicate that
½EðLÞ�ð2;U ;NÞ

t ≈ 260%� Lðα0Þ ≈ 72%� ½EðLÞ�ðU ;NÞ
t for a 10%

standard deviation in the model’s cross sections. This result
indicates that the term involving the second-order

Table 4.2 Response moments for various relative standard
deviations of total microscopic cross section

Relative
standard
deviation 10% 5% 1%

Lðα0Þ 1:7648� 106 1:7648� 106 1:7648� 106

½EðLÞ�ð2;FCÞt 2:9451� 107 7:3627� 106 2:9451� 105

½EðLÞ�ð2;UÞt 4:598� 104 1:149� 106 4:598� 106

½EðLÞ�ðFCÞt 3:1216� 107 9:1275� 106 2:0593� 106

½varðLÞ�ð1;U;NÞ
t 3:419� 1010 8:549� 1011 3:419� 1012

½varðLÞ�ð1;FC;NÞ
t 4:7601� 1013 1:1900� 1013 4:7601� 1011

½varðLÞ�ð2;FC;NÞ
t 1:7347� 1015 1:0842� 1014 1:7347� 1011

½varðLÞ�ðFC;NÞ
t 1:7823� 1015 1:2302� 1014 6:4948� 1011

½μ3ðLÞ�
ðFC;NÞ
t 8:4113� 1021 5:2571� 1020 8:4113� 1017

½varðLÞ�ð2;U;NÞ
t 2:879� 109 1:799� 1012 2:879� 1013

½γ1ðLÞ�
ðU;NÞ
t 0:554 0:109 0:030

½γ1ðLÞ�
ðFC;NÞ
t 0:1118 0:3983 1:6070
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sensitivities is about 2.6 times larger than the computed
leakage value Lðα0Þ, contributing 72% of the expected

value ½EðLÞ�ðU ;NÞ
t of the leakage response. As the results

presented in Table 4.2 also indicate, the mixed second-order
sensitivities play a very significant role in determining the
moments of the leakage response distribution for correl-
ated cross sections. The importance of the mixed second-
order sensitivities increases as the relative standard devi-
ations for the cross sections increase. For example, for fully
correlated cross sections, neglecting the second-order sen-
sitivities would cause an error as large as 2,000% in the
expected value of the leakage response, and up to 6,000% in
the variance of the leakage response. Furthermore, the
effects of the mixed second-order sensitivities underscore
the need for obtaining reliable data for the correlations
that might exist among the total cross sections; such data
is unavailable at this time.

Finally, the results shown in the last two rows of Table 4.2
highlight the impact of the second-order sensitivities on the
response’s skewness. If only first-order sensitivities are con-
sidered, the third-order moment of the response is always
zero. Hence, a ‘first-order sensitivity and uncertainty quan-
tification’ will always produce an erroneous third moment
(and hence skewness) of the predicted response distribution,
unless the unknown response distribution happens to be
symmetrical. At least second-order sensitivities must be
used in order to estimate the third-order moment (and
hence the skewness) of the response distribution. With
shifted expectation and pronounced skewness, standard
statistical inference procedures such as constructing a confi-
dence interval for the mean (expectation) of a computed/
predicted model response will be not only incorrect, in the
sense that the true coverage level will differ from the nom-
inal (e.g. 95%) level, but the error probabilities will be
unequal on each side of the predicted mean.

The results obtained by Cacuci, Fang, and Favorite (2020)
indicate that the largest of the PERP benchmark’s response
sensitivities are with respect to the benchmark’s 180 total
cross sections. This finding has motivated the investigation
of the third-order sensitivities of the PERP benchmark leak-
age response with respect to the 180 total cross sections,
whichwere computed byFang andCacuci (2020) by applying
the methodology summarised in Section 4.4.1. The results
obtained by Fang and Cacuci (2020) for the 5,832,000 third-
order sensitivities of the PERP response with respect to the
PERP’s 180 total cross sections are presented in Table 4.3,
where ½varðLÞ�ð3;U ;NÞ

t denotes the contributions stemming
from the third-order sensitivities to the total variance,
denoted as ½varðLÞ�ðU ;NÞ

t . The single largest third-order sensi-

tivity is Sð3Þ σg¼30t;1 ; σg
0¼30

t;6 ; σg
″¼30

t;6

� �
¼ �1:88� 105, involving

the microscopic total cross section for the 30th energy group
of isotopes 239Pu and 1H (i.e. σg¼30t;1 and σ30t;6). Overall, the
isotopes 1H and 239Pu are the two most important isotopes

affecting the PERP benchmark’s leakage response, since
their total microscopic cross sections are involved in all of
the largest first-, second-, and third-order sensitivities.

Comparing the results shown in Table 4.3 to those shown
in Table 4.2 indicates that the importance of the third-order
sensitivities increases (compared to the importance of the
first- and second-order sensitivities) as the parameters
uncertainties increase. The contributions of the third-order
sensitivities to the response’s variance surpass the contribu-
tions of the first- and second-order sensitivities to the
response’s variance already for relatively small (ca. 5%)
parameter standard deviations. These effects are rapidly
amplified when the parameters uncertainties increase. In
particular, for a uniform standard deviation of 10%, the

third-order sensitivities contribute, through ½varðLÞ�ð3;U ;NÞ
t ,

80% of the response’s total variance ½varðLÞ�ðUÞt , whereas the

contribution ½varðLÞ�ð1;U ;NÞ
t stemming from the first-order

sensitivities is only around 2%, while the contribution

½varðLÞ�ð2;U ;NÞ
t stemming from the second-order sensitivities

is around 18%. Thus, neglecting the third-order contribu-
tions would cause a very large non-conservative error by
under-reporting the response variance by a factor of 506%.
Also, for a uniform standard deviation of 10%, the skewness

½γ1ðLÞ�
ðU ;NÞ
t ¼ 0:030 when the contributions from third-

order sensitivities are considered, is much smaller than the

corresponding skewness ½γ1ðLÞ�
ðU ;NÞ
t ¼ 0:341 when the con-

tributions solely from the first- and second-order sensitiv-
ities are considered, which indicates that the effects of the
third-order sensitivities are to reduce the skewness, thus
reducing the asymmetry of the distribution of the leakage
response around its expected value.

The computations of the response sensitivities were per-
formed on a DELL desktop computer (AMD FX-8350)
with an 8-core processor. Solving either the forward or the
adjoint system using an angular expansion of order

Table 4.3 Contribution of third-order sensitivities to the
response variance for various relative standard deviations of
the total microscopic cross section (all numbers denote neu-
trons/second).

Relative
standard
deviation 1% 5% 10%

½varðLÞ�ð3;U;NÞ
t 1:308� 1010 8:173� 1012 1:308� 1014

½varðLÞ�ðU;NÞ
t

¼ ½varðLÞ�ð1;U;NÞ
t

þ½varðLÞ�ð2;U;NÞ
t

þ½varðLÞ�ð3;U;NÞ
t

5:015� 1010 1:083� 1013 1:630� 1014
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ISN=256 (S256) requires a CPU-time of 85 seconds.
Furthermore, the typical CPU-time needed to perform the
integration (quadrature) over the forward and/or adjoint
functions, to compute one sensitivity (using S256) is ca.
0.0012 seconds. Thus, the computation of the 21,976 first-
order sensitivities using the adjoint methodology (1st-
CASAM) required ca. 95 seconds CPU time. A two-point
finite-difference schemewould have required ca. 4,000 hours
CPU-time to compute approximately the first-order sensi-
tivities. Using the 1st-CASAM, it was found that only 7,477
first-order response sensitivities were non-zero.
Subsequently, the second-order sensitivities were computed
only for the respective 7,477 parameters. Hence, the third-
order sensitivities were computed only for the parameters
that produced the largest second-order sensitivities (which
turned out to be the total microscopic isotopic cross sec-
tions). Evidently, statistical methods would require orders-
of-magnitude more CPU-time than finite-differences to
obtain any resemblance of a ‘response-surface’ for the
21,976 correlated parameters and are therefore incapable
of providing reliable results (e.g. including confidence inter-
vals), for large-scale problems such as exemplified by the
OECD/NEA reactor physics benchmark discussed in the
foregoing.

4.5 Conclusions and Outlook

This chapter has presented the mathematical framework
and building blocks of the 3rd-BERRU-PM methodology,
which include, as prior information, measured expectations
and covariances of responses along with the third-order
computed moments of the response distribution in the par-
ameter space. Following assimilation of experimental data,
the 3rd-BERRU-PM methodology provides simultaneous
model calibration and posterior prediction of best-estimate
model responses and parameters, together with reduced
best-estimate variances/covariances for the predicted
responses and parameters. The 3rd-BERRU-PM method-
ology also provides a data consistency indicator which can
be used to quantify contours of constant uncertainty in the
combined phase-space of parameter and responses, thereby
quantifying the validation domain underlying the model
under investigation. The 3rd-BERRU-PM methodology
can be used both for forward predictions of best-estimate
results for calibrated model responses and parameters as
well as for accurate and uniquely determined inverse predic-
tions in the presence of uncertainties.

The model response sensitivities with respect to the model
parameters are computed exactly and efficiently by applying
the adjoint sensitivity methodology originally conceived by
Cacuci (1981a,b) and subsequently extended comprehen-
sively to higher-order by Cacuci (2015, 2018, 2019b, 2021a,
2021b, 2022a, 2022b, 2022c). The significant impacts of the
higher-order sensitivities on the expected values and

variances/covariances for the calculated and predicted
model responses have also been highlighted. In particular,
if only first-order sensitivities are considered, the third-order
moment of the computed response vanishes. Hence, a ‘first-
order sensitivity and uncertainty quantification’ will always
produce an erroneous third moment (and hence skewness)
of the predicted response distribution, unless the unknown
response distribution happens to be symmetrical. At least
second-order sensitivities must be used in order to estimate
the third-order moment (and hence the skewness) of the
response distribution. Skewness indicates the direction and
relative magnitude of a distribution’s deviation from the
normal distribution. Since the second-order sensitivities
impact decisively the expected values and the skewness of
the calculated/predicted responses, they will also impact the
computation of confidence intervals and tolerance limits for
the predicted expectation of these responses. With pro-
nounced skewness, standard statistical inference procedures
such as constructing a confidence interval for the expect-
ation of a computed/predicted model response will be not
only incorrect, in the sense that the true coverage level will
differ from the nominal (e.g. 95%) level, but the error prob-
abilities will be unequal on each side of the predicted mean.

The paradigm illustrative applications presented in this
chapter were deliberately chosen from other fields, for two
main reasons: (i) these pioneering applications have direct
correspondents in the Earth sciences, so they illustrate not
only the steps involved in applying the high-order (3rd-
CASAM-N) adjoint sensitivity analysis and the 3rd-
BERRU-PM methodologies to the Earth sciences, but also
indicate the breakthrough, fundamentally new, kind of
results which these methodologies can produce; and (ii)
the sensitivities obtained by the application of the
3rd-CASAM-N to the oscillatory dynamical system, on
the one hand, and the large-scale OECD/NEA benchmark
comprising 21,976 uncertainmodel parameters, on the other
hand, cannot be obtained by using statistical methods.

Evidently, the number of sensitivities and, hence, the
number of computations needed to determine them by
using conventional (e.g. finite-differences, statistical)
methods, increases exponentially with their order (the
‘curse of dimensionality’). For small models involving few
(less than a handful) parameters and responses that are
trivial to obtain computationally, statistical methods –

such as screening methods, sampling-based methods
(including Monte Carlo), and variance-based methods
(including Sobol’s) – could be applied to obtain approxi-
mate quick-and-dirty values for the first-order sensitivities.
These methods could also be used to do obtain similarly
approximate values for variances of responses. None of
these methods have been used to obtain higher-order sensi-
tivities. A comprehensive review of all of these statistical
methods has been provided by Saltelli, Chan, and Scott
(2000). Of course, the user cannot a priori control the accur-
acy of values obtained by these statistical methods. The only
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way to verify the accuracy obtained by statistical methods is
to compare them to the results produced by the adjoint
methods of various orders (e.g. using the 5th-CASAM-N)
(Cacuci, 2022b). Even finite-difference methods, involving
recomputations using altered parameter values, yield erro-
neous results for second- and higher-order sensitivities, as
has been discussed in this chapter. Furthermore, all of these
statistical methods are inapplicable to oscillatory dynamical
models, such as the one discussed in Section 4.3, and are also
inapplicable to large systems with many (21,976) correlated
parameters, as illustrated by the paradigm benchmark dis-
cussed in Section 4.4. Finally, statistical methods (screening,
sampling-based, and/or variance-based methods) cannot be
applied, by definition, to data assimilation and/or inverse
problems, since these methods lack ab initio the mathemat-
ical capability of adding/assimilating data/information from
sources (e.g. computational and experimental) outside the
model being analysed; statistical methods provide no intrin-
sic mechanism to adjust/calibrate the model’s parameters,
etc., such as prided (e.g. by the 3rd-BERRU-PM) method-
ology. Performing the tasks within the scope of data assimi-
lation and/or ‘inverse problems’ can only be achieved by
using tools/methodologies beyond the possibilities of the
aforementioned statistical methods.

The evident conclusion that can be drawn from this work
is that the consideration of only the first-order sensitivities is
insufficient for making credible predictions regarding the
expected values and uncertainties (variances, covariances,
skewness) of calculated and predicted/adjusted responses.
At the very least, the second-order sensitivities must also be
computed in order to enable the quantitative assessment of
their impact on the predicted quantities. The high-order
comprehensive adjoint sensitivity analysis methodology
developed by Cacuci (2022) provides the tools for the exact
and efficient computation of higher-order sensitivities while
overcoming the curse of dimensionality that has hindered
their computation thus far. Recently, Cacuci (2022a,b) has
generalised the 3rd-CASAM-N to fifth-order (5th-
CASAM-N), thereby enabling the efficient and exact com-
putation of sensitivities up to fifth-order, thus overcoming
the curse of dimensionality in the field of sensitivity analysis,
which has significant impacts on all of the fields that use
sensitivities (including optimisation, data assimilation,
uncertainty quantification, model calibration and valid-
ation, etc.).

The question of when to stop computing progressively
higher-order sensitivities has been addressed by Cacuci
(2022c) in conjunction with the question of convergence of
the Taylor-series expansion of the response in terms of the
uncertain model parameters, since this Taylor-series expan-
sion is the fundamental premise for the expressions provided
by the ‘propagation of errors’ methodology for the cumu-
lants of the model response distribution in the phase-space
of model parameters. The convergence of this Taylor-series,
which depends on both the response sensitivities to

parameters and the uncertainties associated with the param-
eter distribution, must be ensured. This can be done by
ensuring that the combination of parameter uncertainties
and response sensitivities are sufficiently small to fall inside
the radius of convergence of the Taylor-series expansion. If
the Taylor-series fails to converge, targeted experiments
must be performed in order to reduce the largest sensitivities
as well as the largest uncertainties (particularly standard
deviations) that affect the most important parameters, by
applying the principles of the 3rd-BERRU-PM to obtain
best-estimate parameter values with reduced uncertainties
(model calibration).
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5
Data Assimilation of Seasonal
Snow

Manuela Girotto, Keith N. Musselman, and Richard L. H. Essery

Abstract: There is a fundamental need to understand and
improve the errors and uncertainties associated with esti-
mates of seasonal snow analysis and prediction. Over the
past few decades, snow cover remote sensing techniques
have increased in accuracy, but the retrieval of spatially
and temporally continuous estimates of snow depth or
snow water equivalent remains challenging tasks. Model-
based snow estimates often bear significant uncertainties
due to model structure and error-prone forcing data and
parameter estimates. A potential method to overcome
model and observational shortcomings is data assimilation.
Data assimilation leverages the information content in both
observations and models while minimising inherent limita-
tions that result from uncertainty. This chapter reviews
current snow models, snow remote sensing methods, and
data assimilation techniques that can reduce uncertainties in
the characterisation of seasonal snow.

5.1 Introduction and Motivations

Seasonal snow plays a major role in the water and energy
budgets of many regions of the world. Seasonal snowmelt
supplies provide freshwater to about 15% of the global
population (Barrett, 2003; Viviroli et al., 2007).
Additionally, snow-cover strongly influences weather and
climate because of the highly reflective, emissive, and insu-
lative properties of snow compared to other land surfaces.
Seasonal snow also presents hazards such as flood and
avalanche risks, disruption to transportation, and impacts
on livestock, wildlife, and infrastructure (Nadim et al., 2006;
Tachiiri et al., 2008; Berghuijs et al., 2016; Descamps et al.,
2017; Croce et al., 2018; Musselman et al., 2018). Global
warming is projected to critically impact snow water
resources this century. Already, declines in snow-covered
area and shifts to earlier snowmelt have been observed
across the Northern Hemisphere in satellite and station
records (Foster et al., 1999; Hammond et al., 2018;
Musselman et al., 2021).

Accurate estimation of snow at fine spatial and temporal
scales has historically been challenged by the complexity of
land cover and terrain and the large global extent of snow-
covered regions. Estimates of seasonal snow can be derived

by both snow models and remote sensing observations (see
reviews by Girotto et al., 2020; Largeron et al., 2020).
Modelling of seasonal snow relies on accurate representa-
tion of snow physics and meteorological forcing data such
as precipitation, temperature, humidity, radiation, and
windspeed (Musselman et al., 2015; Raleigh et al., 2016).
As in many Earth science disciplines, snow science is in an
era of rapid advances as remote sensing products and
models continue to gain granularity and physical fidelity
(Lundquist et al., 2019). Satellite observations continue to
revolutionise the way we monitor snow as new generations
of sensors and platforms provide more extensive and global
coverage of mountainous regions where seasonal snow
accumulates (Schmugge et al., 2002; Frei et al., 2012).
Despite the rapid growth in satellite technologies,
a satellite mission dedicated to observing seasonal snow
does not exist. Recently, international efforts such as
NASA’s SnowEx (Kim et al., 2017) and the Nordic Snow
Radar Experiment (Lemmetyinen et al., 2018) have aimed
to identify optimum multi-sensor synergies to map critical
snowpack properties in future snow-focused satellite mis-
sions. Despite clear progress, the snow science community
continues to face challenges related to the estimation of
seasonal snow. Namely, advances in snowmodelling remain
limited by uncertainties in parameterisation schemes and
input forcings, while remote sensing techniques have inher-
ent limitations due to temporal, spatial, and technical con-
straints on the variables that can be observed.

A potential method to overcome such model and obser-
vational shortcomings is data assimilation (e.g. Houser
et al., 1998; Andreadis and Lettenmaier, 2006; Girotto
et al., 2014a; Girotto et al., 2014b) with the promise that,
by combining information from remote sensing technolo-
gies with model estimates, data assimilation methods can
produce optimal snow maps of snow properties including
mass, also known as snow water equivalent (SWE) with
sufficient global coverage and near real-time estimates.
Data assimilation offers a way to integrate measurements
from multiple sensors to improve snow model estimates
(Girotto et al., 2020). Data assimilation has been used to
improve modelled estimates of snow states, snow physics,
model parameters, and sources of uncertainty (Helmert

https://doi.org/10.1017/9781009180412.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009180412.006


et al., 2018). There exists a wide variety of data assimilation
techniques spanning degrees of complexity. Techniques
vary from the simple direct insertion of observations into
the model (e.g. Rodell and Houser, 2004; Li et al., 2019),
to more mathematical Bayesian methods such as ensemble
Kalman filter and particle filter (Evensen and Van Leeuwen,
2000) approaches. The latter are designed to account for the
uncertainties of the model and observations using error
statistics and an ensemble of possible model realisations
(Section 5.4). This chapter aims to provide a summary of
the techniques to assimilate seasonal snow in models, along
with the key modelling frameworks and observation types
that have been used to date. Detailed reviews can be found
in Girotto et al. (2020) and Largeron et al. (2020).

5.2 Seasonal Snow Models

Much of Earth’s seasonal snow is located in mountainous
and other cold regions where the complex relationship
among the effects of wind (e.g. Schmidt, 1982), topog-
raphy, and/or vegetation (e.g. Golding and Swanson,
1978) continues to challenge the snow modelling scientific
efforts (Jost et al., 2007). Despite these challenges, the need
for accurate predictions of snow water resources has
prompted the development of numerical snow models
that are suitable for a range of applications including
hydrological forecasting (e.g. Anderson and Burt, 1985),
weather prediction (e.g. Niu et al., 2011), avalanche fore-
casting (e.g. Lehning et al., 1999), climate modelling (e.g.
Bonan, 1998), and retrieval of snow characteristics by
remote sensing (e.g. Wiesmann and Mätzler, 1999). The
complexity of these models differs in their degree of process
representation, and it ranges from the simplest tempera-
ture index models to multilayer energy balance models.
Both model categories have been used for data assimilation
(Section 5.5) applications.

Temperature index models use empirical relationships
between local air temperature, precipitation, and snowmelt
to estimate the evolution of seasonal snow (Ohmura, 2001).
Because of their empirical nature, these models require care-
ful calibration for the specific regions to which they are
applied. Such heavily parameterised models have historic-
ally been favoured for the purposes of local to regional
watershed runoff estimation, but have limited transferabil-
ity to predict snow responses to climate change, or snowmelt
beyond the spatial, temporal, and physiographic range of
the conditions for which they are tuned (Kumar et al., 2013).

Energy balance snow models incorporate a detailed,
sometimes multilayered, representation of all energy and
mass fluxes into and out of a snowpack and are used to
predict snowmelt and accumulation because of the com-
puted net internal energy and mass balances. Besides snow-
melt and accumulation, these models include representation
of internal processes such as snow compaction, albedo

changes, temperature dynamics, and melt and refreeze pro-
cesses. Modelling these variables is necessary for those data
assimilation applications that leverage remotely sensed
microstructure of snow. In fact, detailed knowledge of the
internal snowpack structure is critical for radiative transfer
applications in remote sensing (Wiesmann and Mätzler,
1999) and has utility in hydrological and climate change
sensitivity applications (Bavay et al., 2009), presumably
due to the correlation between snow material structure and
surface–atmosphere interactions. Energy balance models
differ in their representation of snowpack stratigraphy and
vary from single layer (e.g. Schlosser et al., 1997; Essery
et al., 1999), to three-layer (e.g. Shufen and Yongkang,
2001), to detailed multilayer (e.g. up to ~100 layers
(Jordan, 1991; Brun et al., 1992; Lehning et al., 1999) snow-
pack representations.

Regardless of their degree of complexity, model esti-
mates remain primarily hindered by two sources of uncer-
tainty: (i) model inputs (e.g. meteorological conditions,
(Raleigh et al. 2016) and (ii) fidelity of the equations used
to represent the physical processes (structural uncertainty)
(Slater et al., 2013; Lafaysse et al., 2017; Günther et al.,
2019), and (iii) weaknesses in the user-specified parameter
values (parameter uncertainty). Additional snow model-
ling sources of uncertainty can be introduced by the com-
plex sub-grid landscape variability such as the slope,
aspect, and vegetation that result in variable snow condi-
tions, especially in mountainous terrain (e.g. Meromy
et al., 2013; Todt et al., 2018). In the case of high uncer-
tainty, simple snow models can be a viable alternative to
physically based energy balance models because model
complexity is not necessarily correlated with performance
(Krinner et al., 2018). Physically based models could, on
the other hand, offer more flexibility to benefit from the
increasing availability and performance of satellite remote
sensing techniques to validate prognostic model states that
simpler models may not track (e.g. surface temperature,
Hall et al., 2008).

5.3 Observations of Seasonal Snow

Direct ground measurements of snow provide the longest
observational records, which now date back nearly
a century or longer (see review by Kinar and Pomeroy,
2015). The most common observations are manual (i.e.
snow courses, Church, 1933) and automated (i.e. snow pil-
lows, Smith et al., 2017; Serreze et al., 1999) techniques.
Most of the uncertainties associated with ground snow
measurements are related to their spatial and temporal rep-
resentativeness. Ground measurements are sparse, and
some snow-covered areas are difficult to safely access. To
overcome these limitations, recent decades have relied on
remote sensing techniques as a more inclusive way, spatially
and temporally, to observe seasonal snow. Existing efforts
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to estimate seasonal snowpack variability via remote sens-
ing include microwave, visible and near infrared, radar,
lidar, stereography, and gravimetric measurements. Snow
can be distinguished from other land surfaces using airborne
or satellite remote sensing techniques because of the nature
of interactions among snow cover properties and electro-
magnetic radiation of different frequencies (Girotto et al.,
2020). The spectral properties of snow depend upon several
factors including grain size and shape, water content, impur-
ity concentrations, temperature, and depth (e.g. Domine
et al., 2006; Dietz et al., 2012; Skiles et al., 2018).

Snow remote sensing techniques have primarily
focused on estimating two key variables of seasonal
snow: (i) areal snow-cover extent and (ii) snow depth
and SWE. The snow-cover extent is the surface area that
is covered by snow, while depth and SWE provide esti-
mates of snow volume and mass, respectively. Snow-
cover extent is generally obtained reliably with high
spatial and temporal resolution from visible and near
infrared data (e.g. Hall et al., 2002; Painter et al., 2009;
Riggs et al., 2017), but sensors capable of retrieving snow
depth, such as the Advanced Topographic Laser Altimeter
System (ATLAS) on ICESat-2 (Hagopian et al., 2016) are
generally limited in spatial coverage. Comparatively, there
is far less confidence in the measurement of SWE (Clifford,
2010; Kim et al., 2017).

Snow remote sensing techniques also fall into two general
categories: active or passive sensing. Passive sensors are
those that measure energy that is naturally available, such
as the reflection of solar radiation or the emission of thermal
infrared radiation. Active sensors use an onboard radiation
(energy) source that is aimed at a target and the reflected
wavelengths are detected and measured. Examples of active
remote sensing technologies that have been used to estimate
seasonal snow include active microwave (radar) and light
detection and ranging (lidar) techniques. The most common
passive remote sensing techniques for snow are visible (or
optical), near infrared observations (e.g. Cline et al., 1998),
and passive microwave detection (e.g. Foster et al., 1984; Li
et al., 2012). Other snow remote sensing methods include
thermal, gamma radiation (Cho et al., 2020), stereoscopic
(Nolan et al., 2015; Deschamps-Berger et al., 2020), and
gravimetry observations (Forman et al., 2012). For each of
these techniques, the following sections summarise benefits
and uncertainties that are leveraged by the data assimilation
systems.

5.3.1 Passive Visible and Near Infrared Observations
Snow is highly reflective in the visible (optical) and less so in
the near infrared (Vis/NIR) parts of the electromagnetic
spectrum. Vis/NIR sensors are useful for providing obser-
vations of the surface area covered by snow and they have
been used to detect snow cover since the mid-1960s. Vis/
NIR observations can provide regional to global estimates

of fractional snow-covered extent or area (Rosenthal and
Dozier, 1996; Painter et al., 2009; Cortés et al., 2014) at
spatial resolutions ranging from tens to hundreds of meters
with varying temporal resolution (daily to every couple of
weeks). These resolutions are generally considered acceptable
for the mapping of snow patterns and changes, even in com-
plex mountainous regions (Hammond et al., 2018). There are
two main methods to derive snow cover from Vis/NIR. One
method is based on normalised difference snow index (NDSI,
Hall et al., 2002) that takes advantage of the striking differ-
ence of snow spectral reflectance in the Vis andNIR.Another
method is based on the spectral unmixing (Painter et al.,
2009) that uses linear optimisation methods to determine
the fraction of the observed pixel that is covered by snow.
Thesemethods have been applied on satellitemissions such as
the advanced very high-resolution radiometer (e.g. Hüsler
et al., 2014) the Landsat suites of satellite (e.g. Dozier,
1989), the moderate resolution imaging spectroradiometer
(MODIS, Hall et al., 2002), and, more recently, the visible
infrared imaging radiometer suite (VIIRS, Riggs et al., 2017)
and Sentinel-2 (Gascoin et al., 2019).

The main source of error in snow cover estimation from
Vis/NIR is the discrimination between clouds and snow
due to their similar behaviour in the visible part of the
spectrum (e.g. Miller et al., 2005). Uncertainties arise also
because of the presence of factors influencing the spectral
behaviour of snow and ice surfaces in the Vis/NIR spec-
trum. These are: snow grain size (Hall and Martinec, 1985;
Rango, 1996), snow impurities (Aoki et al., 2007; Painter
et al., 2012; Skiles and Painter, 2019), and snow tempera-
ture. Finally, snow-cover extent does not provide a direct
estimate of SWE. Indirect methods that combine satellite-
borne snow-cover information and physically based snow
modelling, such as retrospective (or reconstruction) tech-
niques (e.g. Molotch and Margulis, 2008; Rice et al., 2011;
Girotto et al., 2014b; Raleigh et al., 2016; Jepsen et al.,
2018), or empirical relationships, such as inversion of snow
cover depletion curve (Toure et al., 2018) must be used to
estimate SWE.

5.3.2 Passive Microwave Observations
An advantage of passive microwave sensors with respect
to Vis/NIR sensors is that the microwave wavelengths are
not influenced by cloud cover or sun angle, and, most
importantly, can detect snow depth in addition to snow-
cover extent (Pulliainen et al., 2020). Passive microwave
sensors measure the brightness temperature, which is a
signal of naturally emitted thermal radiance by the Earth
surface. Passive microwave snow depth retrievals use
a combination of microwave brightness temperature differ-
ences sensed at different frequencies, weighted by coeffi-
cients that are a function of the difference between vertical
and horizontal polarisations. Examples of satellite-based
passive microwave missions are the Scanning Multichannel
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Microwave Radiometer (SMMR, e.g. Chang et al., 1987),
the Special Sensor Microwave/Image (SSM/I, e.g. Tedesco
et al., 2004) and the Advanced Microwave Scanning
Radiometer (AMSR-E and AMSR2, e.g. Kelly, 2009).

The key limitation of passivemicrowave is its coarse spatial
resolution, which is on the order of tens of kilometres (i.e.
much coarser than Vis/NIR). This does not permit the repre-
sentation of fine-scale surface processes, thus limiting the
applicability of these observations for mountainous areas.
Other uncertainties arise from the presence of liquid water
in the snowpack (Kelly, 2009; Frei et al., 2012) and/or vege-
tation that alters the radiation emitted by the surface
(Derksen, 2008). Finally, passivemicrowaves tend to saturate
around 250 mm of SWE (Foster et al., 2005), and thus are of
limited use to estimate deep snowpack typical of Earth’s
mountain water towers (Derksen, 2008; Viviroli et al., 2007).

5.3.3 Other Passive Remote Sensing Techniques

5.3.3.1 Gamma Radiation
Airborne gamma radiationmeasurements detect the natural
terrestrial gamma radiation emitted from potassium, uran-
ium, and thorium radioisotopes in the upper layer of soil.
By measuring the difference in gamma radiation before
and after the snow falls, these measurements can be used
to estimate snowpack mass (Carroll, 1987; Carroll and
Carroll, 1989). Aircraft-based gamma remote sensing
efforts in the United States and Canada have produced
operational high resolution SWE estimates for over 40
years (Cho et al., 2020). Among other limitations, soil mois-
ture content and the mass of air between the sensor and the
surface, both of which change at daily to seasonal rates,
impact the accuracy of passive gamma-based SWE esti-
mates. Similar to passive microwave remote sensing, the
attenuation of the gamma signal increases with snow
depth and mass reducing accuracy of the technique in
regions where snow water resources are greatest.

5.3.3.2 Gravimetry Observations
Gravity data collected by the Gravity Recovery and Climate
Experiment (GRACE) and GRACE Follow-On (GRACE-
FO) satellites can be used to estimate changes in the mass of
terrestrial water storage caused by snow and other hydro-
logical factors such as soil moisture, groundwater, lakes, and
rivers (Tapley et al., 2004). The spatial resolutions of such
observations (~300 kmatmid-latitudes) allow for continental
and global studies but is a limitation to watershed-scale snow
applications.

5.3.3.3 Stereoscopic Observations
Stereoscopic satellites (e.g. Pleiades 1a/1b and SPOT5/6/7)
have provided a convenient method to estimate the spatial

distribution of snow depth in high mountain catchments
(Deschamps-Berger et al., 2020). A specific region is observed
under different view angles at very high resolution (e.g. 50 cm
to 2 m), which permits the creation of digital elevation
models (DEMs) of the region. By differencing the snow-on
and snow-off DEMs, snow depth maps are obtained. Vertical
uncertainties are on the order of 50–80 cm at 3 m spatial
resolution (Deschamps-Berger et al., 2020). Stereoscopic
observations are available on demand at specific locations
but provid estimates of snow depth and not SWE directly.

5.3.3.4 Thermal Observations
Recent work has demonstrated that MODIS can be used
to estimate both snow and forest temperature in mixed
pixels at 1 km resolution, with an accuracy of better than
1 K during the night (Lundquist et al., 2018). Thermal
infrared satellites are useful to monitor snow surface
temperature and are not restricted to daylight periods but
cannot be used directly to estimate snow depth or mass.

5.3.4 Active Microwave Observations
Active microwave observations are not affected by cloud
cover or sunlight conditions and have the advantage of
permitting snow depth or SWE estimates from space at
much higher resolution than passive methods. Active micro-
wave sensors (i.e. radar) send their own energy and measure
the total backscattered power from the snow-covered
terrain. The total power received by the sensor can be
expressed as the summation of backscatter from the air–
snow boundary, the snow volume, and the snow–ground
boundary, attenuated by a factor depending on the layered
snowpack properties and incidence angle (Tedesco, 2014).
Radar frequencies relevant for snow monitoring typically
vary from 1 to 40 Ghz (<1 to 30 cm wavelengths, L to Ka
bands (Largeron et al., 2020). While most active microwave
studies have focused on the detection of snowmelt (Nagler
et al., 2016), some early studies showed a very limited sensi-
tivity of active microwave sensors to snow mass (Kendra
et al., 1998; Strozzi and Matzler, 1998; Bernier et al., 1999;
Shi and Dozier, 2000). A few recent studies have demon-
strated the possibility of using active microwave data to
estimate SWE (Lemmetyinen et al., 2018). Sentinel-1 or
RADARSAT-2 are among the few Synthetic Aperture
Radar (SAR) missions providing high-resolution backscat-
ter measurements (at C-band; 5.4GHz) with a revisit time of
six days suitable for seasonal snow monitoring. Lievens
et al. (2019) demonstrated the value of including cross-
polarised backscatter measurements from C-band SAR to
retrieve snow depth in mountainous areas at regional scales.
Conde et al. (2019) used the SAR interferometry technique
and Sentinel-1 C-band data to retrieve SWE estimates with
sub-centimetre measurement accuracy and a 20 m spatial
resolution.
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The oblique viewing geometry of SAR systems enhances
geometric distortions which make it particularly challenging
to interpret in mountainous regions (Veyssière et al., 2019).
Furthermore, retrieving unique snow mass solutions from
active microwave is challenged by the dependencies on mul-
tiple snowpack characteristics (wetness, grain size, tempera-
ture, etc.) of backscattered signals. Despite these weaknesses,
the high spatial and temporal resolution of these sensors
makes their use potentially well-adapted for snow hydro-
logical applications (Largeron et al., 2020). It is currently one
of the most promising remote sensing techniques to monitor
global snow-cover and mass at sufficient resolutions for
a range of applications.

5.3.5 Active Optical Observations
Lidar technologies send a series of optical laser pulses and
record the signals that reflect off the targeted surface and
return to the platform. Lidar has provided high-resolution,
high-accuracy surface elevation maps. Snow depth observa-
tions can be obtained from differencing two co-registered
lidar images from snow surface (‘snow-on’) and bare-
ground elevations before any snow accumulation (‘snow-
free’ or ‘snow-off’). Aircraft-based lidar systems provide
high-resolution (~1 metre) accurate (~ few centimetre error
estimates) snow depth estimates (Deems et al., 2013; Painter
et al., 2016). Spatial coverage, typically at the watershed
scale, requires substantial aircraft time that must be planned
in advance. To estimate SWE from the resulting snow depth
maps, models and/or complementary in situ observations
must be used to estimate snow density (Smyth et al., 2019).

5.4 Data Assimilation

In general terms, data assimilation is a transdisciplinary
tool that has been used in fields spanning Earth sciences
and extending to medicine (Albers et al., 2017) and socio-
economics (Houser, 2013). Figure 5.1 illustrates the
concept. All estimates of a phenomenon or event (e.g.
seasonal SWE) obtained either through modelling
(Section 5.2) or observations (Section 5.3) have inherent
uncertainties and limitations (Frei et al., 2012). As previ-
ously described, uncertainties in models are mainly associ-
ated with their parameterisation schemes or error-prone
input forcings, while remote sensing techniques have inher-
ent limitations due to temporal, spatial, and technical con-
straints on critical snow variables. To date, applications of
snow data assimilation apply a wide range of techniques
chosen on a case-by-case basis depending on the specific
model, observation, level of complexity, etc. The simplest
approach is the direct insertion method. The most com-
mon in snow research applications are the ensemble
Kalman filter (EnKF, described in Section 5.4.2) and,
more recently, the particle filter (PF, described in
Section 5.4.3).

All assimilation methods require an ‘observer’ or ‘obser-
vation operator’ to translate variables from observation
space to model space, and vice versa. The simplest observa-
tion operator is the identity matrix where the observed
quantity is directly estimated by the model. That is the
case when SWE observations are directly assimilated within
a snow model where SWE is a prognostic variable.
Sometimes, assimilating radiances can be more effective
than SWE retrievals because difficulties arising from the
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Figure 5.1 Estimates of an
environmental variable (e.g.
seasonal snow) can be obtained
from model predictions or from
observations (remote sensing or
in situ). Neither are perfect and
they contain errors and
uncertainties. Data assimilation
can be seen as a method that
combines the strengths of modelled
and observed estimates to obtain
an optimised set of estimates for
the environmental variable (with
permission from Girotto et al.,
2020).
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non-unique and complex relationships linking the passive
microwave signal to several snow properties are overcome
(e.g. density, grain size/microstructure parameters, tempera-
ture, and wetness) (Helmert et al. 2018). In such cases, the
observation operator can be a radiative transfer model
(Picard et al., 2018) where the snowpack microstructure is
converted into radiances. More recently, artificial intelli-
gence methods (Forman and Reichle, 2014; Santi et al.,
2022) have also been developed as an alternative to radiative
transfer models.

5.4.1 Direct Insertion and Rule-Based Methods
Direct insertion or rule-based approaches are among the
simplest data assimilation methods. These techniques inher-
ently assume that observations are perfect and only models
contain error, thus they directly replace the model variable
values with observed ones. A rule-basedmethod is described
in Rodell and Houser (2004) and Toure et al. (2018). They
use a rule-based approach that specifies whether to update
the model with the measurements based on the difference
between modelled and observed (fromMODIS) snow cover
extent. The rule-based approach improved both the snow
cover extent and SWE estimates of their global land surface
model simulations. Direct insertion methods are still widely
used in snow applications. Some recent examples include the
work by Hedrick et al. (2018) where lidar observations are
directly inserted into a physically based model for estimat-
ing SWE in a domain in the Sierra Nevada, California. They
conclude that the direct insertion of the lidar observations
leads to improved SWE model estimates highlighting the
potential benefits for managing water in the region. Li et al.
(2019) directly insert a blended satellite- and model-based
SWE product for initialising snow-dominated streamflow
forecast models. They demonstrate that the direct insertion
of the blended SWE product improves the efficiency of
the streamflow model predictions compared to traditional
SWE initialisation approaches. Lv and Pomeroy (2020)
assimilate observations of vegetation snow interception
within a physically based snow model. They compared
direct insertion with more statistical assimilation methods
and concluded that even the simplest of the assimilation
methods (direct insertion) improved the simulation accur-
acy of snow interception amount and timing. Viallon-
Galinier et al. (2020) use direct insertion to enter manually
observed stratigraphy into a multilayer snow model. They
found that the reinitialisation with observed profiles
reduced modelling errors, especially during winter when
snow layer heterogeneity is most pronounced.

While these examples highlight important model
improvements obtained with a direct insertion approach,
this simple approach has degraded performance compared
to more statistical assimilation schemes such as ensemble
Kalman or particle filters (e.g. Arsenault et al., 2013; Lv and
Pomeroy, 2020). This degradation is often caused by the

implicit assumption that errors come solely from the
model and that observation errors are either acceptable or
acceptably mitigated with rule-based insertion decisions.
Filtering approaches such as the EnKF (Sect. 5.4.2) or PF
(Sect. 5.4.3) should be more suited for estimating both the
states and uncertainty of the observation-model systems
(Largeron et al., 2020).

Nonetheless, several operational systems still use very
simple assimilation methods (Helmert et al., 2018). For
example, the GlobSnow product (Luojus et al., 2021) pro-
vides global gridded information on snow extent and SWE
across the Northern Hemisphere by incorporating in situ
station snow depth observations, microwave emission mod-
elling, and spaceborne passive microwave observations
using an iterative least squares minimisation scheme.
Another widely used product is SNODAS, developed by
the National Oceanic and Atmospheric Administration
(NOAA) (Barrett, 2003). SNODAS incorporates in-situ
and airborne observations with model estimates to provide
daily SWE at 1 km resolution across the continental United
States (Carroll, 2001). Its assimilation procedure is a simple
nudging technique that calculates differences between esti-
mated and observed SWE values and then spatially inter-
polates these differences to the model grid. Furthermore,
the Canadian Meteorological Center Daily Snow Depth
Analysis product (Brown and Brasnett, 2010) uses a simple
statistical interpolation method to blend observations with
model estimates of snow (Brown et al., 2003).

5.4.2 Ensemble Kalman Filter and Smoother Methods
The data assimilation approaches most used by the snow
science community are the ensemble methods (e.g. the
ensemble Kalman filter, EnKF), in which error statistics
are determined from an ensemble of possible model realisa-
tions and model responses are assumed to be relatively
linear. This assumption can lead to physical inconsistencies
when EnKF methods are applied to complex non-linear
snow models (Winstral et al., 2019). Through EnKF tech-
niques (and variations), several works have assimilated
SWE observations from in situ (e.g. Slater and Clark,
2006; Liu et al., 2013; Stigter et al., 2017) or satellite remote
sensing (e.g. (De Lannoy et al., 2010; Dziubanski and Franz,
2016; Wang et al., 2021), or microwave radiance observa-
tions (e.g. Durand and Margulis, 2007; Dechant and
Moradkhani, 2011; Xue and Forman, 2017). This chapter
only reports key points for a few of these works. Some of the
early applications of snow EnKF include the work by Slater
and Clark (2006). They used an ensemble square root
Kalman filter (EnSRF) to assimilate in situ observations of
SWE into a snow model and showed improved SWE esti-
mates were most evident during the early accumulation
season and late melt period. However, due to the large
temporal correlation inherent in the SWE of a seasonal
snowpack, improvements were marginal. In the same year,
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Durand and Margulis (2006) developed a point-scale radio-
metric data assimilation experiment to assimilate synthetic
brightness temperature (i.e. passive microwave) observa-
tions. Because they assimilated brightness temperatures
rather than directly assimilating SWE, they coupled
a snow model with a radiative transfer model to assimilate
and perform a synthetic assimilation experiment. They dem-
onstrated that the EnKF was able to recover the ‘true’
snowpack states. By assimilating passive microwave radi-
ation emitted from the land surface, as opposed to direct
SWE retrievals, one can make inferences about snowpack
properties, including SWE, depth, grain size, density, and
liquid water content (Dechant and Moradkhani, 2011). In
fact, a similar approach was taken by Dechant and
Moradkhani (2011) in which EnKF assimilated remotely
sensed brightness temperatures to improve SWE prediction
and operational streamflow forecasts. Improved streamflow
forecasts are also reported in Huang et al. (2017) where an
EnKF was used to assimilate SWE retrieval in the Pacific
Northwest, the Rocky Mountains, and the Sierra Nevada.

Some studies have also used EnKF to assimilate snow
cover extent observations from a wide range of Vis/NIR
satellite missions such as Landsat and/or MODIS. The
assimilation of Vis/NIR snow cover extent (as opposed to
microwave observations) leads, in general, to higher spatial
resolutions of the resulting snow estimates. In the work by
Andreadis and Lettenmaier (2006), Clark et al. (2006), and
Su et al. (2008), an EnKF framework was used to assimilate
satellite observed snow cover extent. Both studies conclude
that the EnKF accurately simulated the seasonal variability
and ensemble spread of snow cover extent. However,
Andreadis and Lettenmaier (2006) indicated that the
EnKF performance is modest for estimating ephemeral
SWE and limited for deeper snowpack. This is because the
EnKF leverages the instantaneous correlation between
modelled snow cover extent and SWE. This correlation
tends to diminish for larger values of SWE, as in when
changes in SWE do not correspond to changes in snow
cover extent (i.e. snow cover extent saturates at 100%).
Thus, snow cover extent assimilation techniques are more
effective during the beginning of the accumulation season
and during the ablation season, when a change of snow
cover area extent corresponds to changes in the SWE. To
solve this issue, Durand et al. (2008) propose using
a smoother version of the EnKF, the ensemble Kalman
smoother (EnKS). In the EnKS, all snow cover extent obser-
vations within an assimilation window are assimilated, thus
multiple strengths of the observed snow cover extent signal
are leveraged, not only the instantaneous acquisition. The
approach is also used in (Durand et al., 2008; Girotto et al.,
2014a; Oaida et al., 2019) where a retrospective use of
Vis/NIR satellite observations can provide accurate esti-
mates of SWE. As an example, Fig. 5.2 illustrates how the
use of an ensemble data assimilationmethod improves upon
the model-only (i.e. without assimilation) when compared

to in situ SWE observations. The principle behind these
Vis/NIR retrospective assimilation techniques is the same
as deterministic reconstruction ones (e.g. Molotch and
Margulis, 2008; Rice et al., 2011; Jepsen et al., 2018) where
the maximum (or peak) SWE can be retrieved from
a retrospective accumulation of spring-summer potential
melt energy fluxes coupled with the disappearance date of
snow as ascertained from visible and near infrared images.

The EnKF approach has also been used in a few studies
focused of multi-spectral, multi-resolution, and multi-sensor
data assimilation approaches. Durand and Margulis (2006)
implemented the EnKF in a multiscale, multi-frequency
radiometric data assimilation experiment using synthetic pas-
sive microwave radiance along with Vis/NIR snow cover
extent observations. They state that the combined assimila-
tion of passivemicrowave and Vis/NIR observations resulted
in overall improved snow predictive skill because of the posi-
tive synergy due to the complementary nature of the two
observation types. Liu et al. (2013) assimilated MODIS
snow cover extent and AMSR-E snow depth products into
the Noah land surface model and conclude that the assimila-
tion of snowdata consistently improves snow and streamflow
predictions. De Lannoy et al. (2012) assimilated AMSR-E
SWE retrievals andMODIS snow cover extent observations.
Their joint SWE and snow cover extent EnKF assimilation
significantly improves root-mean-square error and correl-
ation values.

To conclude, the scientific community agrees that EnKF
assimilation of in situ or satellite-based SWE,microwave, or
Vis/NIR snow estimates leads to overall improved estimates
of seasonal snow and related variables (e.g. streamflow,
snow cover) with respect to observations or model estimates
taken alone. However, because the EnKF performs best
when applied to linear models and Gaussian distributed
error statistics, it exhibits limited accuracy in cases of highly
non-linear snow systems and has increased computation
cost when large ensembles of computationally expensive
models are needed (Largeron et al., 2020).

5.4.3 Particle Filter
Another ensemble-based method used in the snow assimila-
tion community, arguably more sophisticated, includes par-
ticle filter (PF) techniques (e.g. Arulampalam et al., 2002;
Van Leeuwen, 2009; Smyth et al., 2019). Several snow data
assimilation studies directly compare the performances of
the PF to the EnKF (Leisenring and Moradkhani, 2011;
Margulis et al., 2016) and suggest that the PF is superior
to the EnKF-based methods for predicting model states
and parameters. These studies used both point-scale,
in situ observations, and spatially distributed remote sens-
ing observations.

Point scale experiments are summarised by Magnusson
et al. (2014) and Smyth et al. (2019).Magnusson et al. (2014)
directly compared the PF performances against a direct
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insertion method for a multilayer energy-balance snow
model. They found that both schemes reduced errors in
SWE, snowpack runoff, and soil temperature. While the
direct insertion is likely to produce inconsistencies between
modelled variables, the particle filter avoids such limitations
without loss of performance. Smyth et al. (2019) tested
whether the assimilation of snow depth using a PF can
lead to improved estimates of snow density, and conse-
quently SWE. They conclude that the particle filter reduced
density and SWE root-mean-square error relative to open
loop simulations.

The use of a PF in a spatially distributed context was
presented by Leisenring and Moradkhani (2011) where
SWE was assimilated within a National Weather Service
model. Similarly, Liu et al. (2021) and Margulis et al.
(2015) derived an ensemble PF approach to estimate
SWE from the assimilation of snow cover extent. Using
the same approach, Margulis et al. (2019) assimilated
infrequent (i.e. a couple of observations per year) lidar

snow depth observations within a land surface model.
They found that data assimilation provides a useful frame-
work for leveraging infrequent remotely sensed snow
depth observations to derive continuous (spatially and
temporally) accurate estimates of unobserved variables
such as SWE and snowmelt, even at times when observa-
tions are unavailable. Another successful application is
reported in Han et al. (2021) where the PF assimilates
a high-spatial-resolution remotely sensed snow depth
data set within a snow model. One key benefit of improved
spatial distribution of snow cover and SWE estimates is
the resulting improvement in runoff and streamflow pre-
dictions (Thirel et al., 2013; Li et al., 2019).
To conclude, the current literature on snow data

assimilation suggests that PF applications resolve some
of the limitations reported in the EnKF studies for two
reasons: (i) the PF can use non-linear whereas the EnKF
perform best for linear systems; and (ii) the PF does not
involve assumptions regarding the distribution of the
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Figure 5.2 Observed SWE at the snow courses (left) and
observed peak-SWE at the snow pillows (right) versus
model-only (no assimilation) SWE (top) and reanalysis
(i.e. with assimilation) SWE (bottom). Grey error bars
represent the ensemble interquartile range of the reanalysis
SWE. Brown (triangle), dark green (circle), and light green
(square) colours (marker type) indicate low-, mid-, and
high-elevation observation locations (observation
elevation ranges over 2300–3500 m asl were organised in
three bands of 400 m each). Inset figures show the densities
for each scatter plot around the 1:1 line; high-to-low
density is represented by dark-to-light blue colours (with
permission from Girotto et al., 2014b).
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errors. However, the computational demand of the PF
remains a key limitation in its application for snow stud-
ies as the PF typically requires larger ensembles to char-
acterise the full probability distribution of state variables
and consequently their uncertainties by resampling sets
of state variables.

5.4.4 Spatial Correlations in Snow Data Assimilation
Systems

Spatial distribution updates are essential in operational
analyses of in situ snow depth measurements. Most snow
data assimilation research efforts have been one-
dimensional approaches, where one satellite observation
type (i.e. SWE, snow depth, or snow cover extent) is used
to update co-locatedmodelled snow estimates. That is, snow
updates can only be performed at the locations where an
observation is available. One-dimensional techniques disre-
gard spatial correlation across observations and model
errors. In a few exceptions, De Lannoy et al. (2010) and
Cantet et al. (2019) tested the effect of introducing spatial
error correlation into snow data assimilation updates. De
Lannoy et al. (2010) assimilated coarse-scale (25 km) SWE
observations into fine-scale (1 km) land model simulations
and tested the effect of different spatial aggregation and
correlation methods. Their results indicate that assimilating
disaggregated fine-scale observations independently is less
efficient than assimilating a collection of neighbouring cor-
related coarser scale observations. Cantet et al. (2019)
assimilated SWE data from a sparse network of in situ
snow observation stations using a PF. Their PF formulation
included error spatial correlations to allow for snow states
to be updated at locations where observations were not
directly available. These few studies indicate that underlying
spatial error correlations should be exploited to improve
spatial estimates of seasonal snow.

5.5 Summary and Conclusions

This chapter reviews current data assimilation techniques
used to estimate seasonal snow and elucidates key benefits
and remaining challenges associated with each system. To
date, modelling efforts have provided the most spatially and
temporally complete estimates of local, regional, and global
snow properties; however, the accuracy of snow model
estimates remains hindered by uncertain forcing and param-
eters, and error-prone model structures and process repre-
sentations. Satellite and airborne remote sensing allow for
extensive and global coverage of seasonal snow estimates
even in remote, complex mountainous regions. While snow
cover extent and related surface properties are generally
obtained reliably with high spatial and temporal resolutions
from visible and near infrared data, we critically lack similar
robust estimates of snow mass relevant to water resource

applications, especially in mountainous regions (Clifford,
2010). Compared to Vis/NIR data, microwave measure-
ments are more directly related to the mass of snow. While
active microwave data have recently been found suitable for
providing the temporal and spatial resolutions required to
monitor seasonal snow for a range of applications, passive
microwave techniques are not useful for estimating deep or
wet snow at an acceptable spatial resolution capable
of resolving global snow processes inclusive of mountain
water towers. Airborne lidar systems are, to date, the most
accurate methods to retrieve seasonal snow, but they only
observe snow depth (not SWE) and are limited to targeted
regions and for specific, infrequent times.

Data assimilation is a viable way to converge different
temporal and spatial resolutions of in situ and remotely
sensed observations and a useful technology to bridge gaps
in scale and accuracy between these observations and
models. In fact, the assimilation of satellite and airborne
observations lead, in general, to overall improved estimates
of seasonal snow and related variables. Some remaining
challenges in the snow data assimilation field include
research into the effects of underlying spatial error correl-
ations in data assimilation to improve the spatial estimates
of SWE, and possibly merging multiple observations to
improve snow model accuracy. Finally, even if the research
field in snow data assimilation has evolved significantly,
operational and weather forecasting systems use methods
(if any) that are much simpler than the state of the art.
The inclusion of a broader range of observations is an
active and emergent research field as multi-sensor, multi-
resolution snow observations become available. These
efforts promise to provide robust and diverse information
to improve our ability to map, model, and project past,
current, and future seasonal snow characteristics, and the
effects of snow on the Earth system.
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6
Data Assimilation in Glaciology

Mathieu Morlighem and Daniel Goldberg

Abstract: Data assimilation has always been a particularly
active area of research in glaciology. While many proper-
ties at the surface of glaciers and ice sheets can be directly
measured from remote sensing or in situ observations
(surface velocity, surface elevation, thinning rates, etc.),
many important characteristics, such as englacial and
basal properties, as well as past climate conditions, remain
difficult or impossible to observe. Data assimilation has
been used for decades in glaciology in order to infer
unknown properties and boundary conditions that have
important impact on numerical models and their projec-
tions. The basic idea is to use observed properties, in con-
junction with ice flow models, to infer these poorly known
ice properties or boundary conditions. There is, however,
a great deal of variability among approaches. Constraining
data can be of a snapshot in time, or can represent evolu-
tion over time. The complexity of the flow model can vary,
from simple descriptions of lubrication flow or mass con-
tinuity to complex, continent-wide Stokes flow models
encompassing multiple flow regimes. Methods can be
deterministic, where only a best fit is sought, or probabilis-
tic in nature. We present in this chapter some of the most
common applications of data assimilation in glaciology,
and some of the new directions that are currently being
developed.

6.1 Background and definitions

6.1.1 Observations of Ice Sheets and Glaciers
A glacier can be defined as a persistent body of ice that flows
and deforms under its own weight. There are approximately
160,000 glaciers on Earth ranging in size from ∼1 to thou-
sands of square kilometres. An ice sheet is a body of glacial
ice over 50,000 km2 in area. There are only two surviving ice
sheets today: Antarctica and Greenland.

For over half a century, scientists have recorded com-
prehensive quantitative measurements of the shape and
speed of glaciers and ice sheets – to the point where
currently satellite measurements are made of the eleva-
tion and surface velocity of glaciers and ice sheets with
high accuracy and resolution. These data complement
lower-quality satellite observations made in previous
decades. Geophysical and airborne observing platforms

are additionally able to capture the shape of internal
reflecting layers, which encapsulate ice-sheet history, as
well as the ice thickness.

Many of the methods discussed in this chapter rely on
data which are spatially (and in some cases temporally)
extensive, and current glaciological remote sensing methods
provide a wealth of such information.

6.1.2 Modelling of Ice Sheets and Glaciers
Assimilation of the vast glaciological data collected requires
physically based models. The flow of glaciers and ice sheets
is modelled by solving conservation laws: conservation of
momentum (stress balance), conservation of mass (continu-
ity equation), and conservation of energy. For simplicity, we
only describe here the first two conservation laws because
the thermal regime of the ice is rarely directly involved in
data assimilation methods.

Stress Balance
The stress balance of ice is generally modelled as an incom-
pressible Stokes flow:

r � σ0 � rPþ ρg ¼ 0

r � v ¼ 0;

8<: ð6:1Þ

where σ
0
is the deviatoric stress tensor, P is the ice pressure,

and g is the acceleration due to gravity. While ice may
behave elastically over short time scales (e.g. tidal cycle),
its long-term behaviour is described by a viscous constitu-
tive law:

σ
0 ¼ 2μ ε

:
; ð6:2Þ

where the ice viscosity, µ, follows a Norton–Hoff viscoplas-
tic law referred to as Glen’s flow law (Glen, 1955):

μ ¼ B

2 _εðn�1Þ=ne

; ð6:3Þ

and where B is the ice viscosity factor ðA ¼ B�n, the ice rate
factor, is sometimes used instead of B), n is Glen’s exponent,
generally taken as 3, and _εe is the effective strain rate.
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In terms of boundary conditions, it is generally assumed
that the ice–air interface is stress free: σ � n ¼ 0, and hydro-
static water pressure is applied at the ice–ocean interface:

σ � n ¼ ρw g z n; ð6:4Þ

where n is the outward pointing unit vector, ρw is the density
of seawater, and z is the vertical coordinate (zero at sea
level). Finally, at the ice–bed interface, we have a non-
penetration condition ðv � n ¼ 0; if there is no basal melt)
and basal friction is applied along the tangential plane. To
remain general, we write this friction condition as:

τb ¼ σ � n� ðn � σ � nÞn ¼ �C fτðjvbj;NÞ vb; ð6:5Þ

whereC≥ 0 is a friction coefficient and fτ is a function of the
basal velocity, vb, and basal effective pressure, N.

Since solving Stokes flow at large scale can be computation-
ally expensive, approximations are sometimes used. The sim-
plest is the Shallow-Ice Approximation, which assumes that ice
motion is determined solely by vertical shearing stress, and is
appropriate for slow-moving glaciers and ice-sheet interiors
(Greve and Blatter, 2009). The Shallow-Shelf Approximation
(SSA; sometimes Shelfy-Stream Approximation) considers
flow to be vertically uniform and controlled by membrane
stresses (MacAyeal, 1989), and applies to fast-flowing ice
streams and ice shelves. The First-Order Approximation
includes vertical shearing as well as membrane stresses but
neglects ‘bridging’ (non-hydrostatic) stresses (Blatter, 1995;
Pattyn, 2003). The majority of continental-scale ice-sheet
modelling studies implement one or a combination of these
approximations.

Mass Transport
Depth integrating the continuity equation (the second
equation of Eq. (6.1)) and applying the necessary
boundary conditions at the base and surface of the ice
sheet leads to the two-dimensional equation of mass
transport, which governs the change in geometry of
the ice sheet:

∂H
∂t
¼ �r � Hv þ _ms � _mb; ð6:6Þ

where H is the ice thickness, v is the depth-averaged vel-
ocity, _ms is the surface mass balance (positive when snow
accumulation), and ṁb is the melt rate at the base of the ice
(positive when melting).

6.1.3 Model-Data Assimilation
We begin by defining what is meant by ice-sheet data
assimilation. Ice-sheet data assimilation combines
models of ice-sheet and glacier physics with observa-
tions in order to infer unresolved or unobservable phys-
ical properties. The aim of ice-sheet data assimilation
varies by implementation: in some cases, the properties

themselves are of direct interest, whereas in other cases
the assimilation is a calibration procedure for model
projections. Ice-sheet data assimilation is an extremely
diverse topic, with the types of data assimilated ranging
from internal radar layers to satellite altimetry, and
with models ranging from simple mass-balance models
to sophisticated Stokes flow. In order to establish
a common language for discussing these different
types of assimilation, we make some formal definitions.
Broadly, ice-sheet data assimilation can be described by
the following optimisation problem: find α such that:

α ¼ arg min
x¼f ðαÞ

J ðαÞ; ð6:7Þ

J ðαÞ ¼ 1

2

ð
Ω

�
yobs �HðxÞ

�2
σ2y

dΩ; ð6:8Þ

whereΩ is the computational domain of the function f . The
functional J is referred to as a cost function (or sometimes
an objective function), and quantifies the misfit between the
model and available observations. The model state is x, the
solution of the forward model, f , for a given α. The mini-
misation is carried out over all possible values of α –which is
a parameter, or set of parameters, for the model. For
instance, α might be the surface mass balance over a finite
historical period, or it might be the set of all values describ-
ing the basal friction field under an ice sheet. These param-
eters are often referred to as the controls of the assimilation.
Here, yobs describes a spatial field of an ice-sheet observable
(e.g. surface elevation), and Ω is the model domain. Here σy
represents the uncertainty in yobs, and H is the observation
operator that maps the model state, x, to the space of
observables.

Eqs. (6.7) and (6.8) are meant as representative of the
general form of the assimilation, but can vary depending
on the approach. Here yobs is written as a scalar-valued
function, but the observable can be a vector-valued
function (e.g. ice velocity). The integral in Eq. (6.8) is
a spatial integral but integration can be over time as
well. The parameters α are in general spatially (and
temporally) varying but by convention are represented
by a discrete vector. While many assimilation problems
use the integral formulation in Eq. (6.8), J is sometimes
constructed as a discrete sum over spatiotemporal obser-
vation points i:

J ðαÞ ¼ 1

2

X
i

�
yobsi �H iðxÞ

�2
σ2i

: ð6:9Þ

As shown in Section 6.3.3, the distinction between Eqs.
(6.8) and (6.9) is critical to Bayesian interpretation of
uncertainties.

Strictly, Eq. (6.7) describes variational data assimilation
(VDA), in which optimal fit to observations is found subject
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to model physics. VDA is the approach most widely used in
glaciological modelling, although other types are discussed
in this chapter as well. The form of Eq. (6.7) is intentionally
simplistic and, in practice, cost functions can differ in vari-
ous ways, as discussed in this and later sections.

6.1.4 Regularisation
In many cases, the observables in an assimilation frame-
work are insensitive to small variations in the controls.
The inverse problem as defined by Eq. (6.7) is typically
ill posed: there may be many solutions α to the mini-
misation problem (Hadamard, 1902), or the problem
may be ill conditioned (i.e. sensitive to small uncertain-
ties in the observational data). A common strategy to
address this problem is to add a regularisation term to
the cost function, which penalises non-physical behav-
iours. For instance, a common approach in estimating
ice-sheet basal friction is to use Tikhonov regularisation
(Morlighem et al., 2010), which penalises the square
gradient of the control field:

J ðαÞ ¼ 1

2

ð
Ω

�
yobs �HðxÞ

�2
σ2y

dΩ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
misfit; J 0

þ 1

2

ð
Ω
γjrαj2dΩ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

regularisation

; ð6:10Þ

where γ is a parameter that sets the level of regularisation.
The first term, J 0, is often referred to as the misfit or data
norm, while the integral in the second term is sometimes
referred to as themodel norm (Waddington et al., 2007). The
minimisation of the cost function J is thus a trade-off
between minimising the two. Careful selection of the regu-
larisation parameter γ is important. An overly strong regu-
larisation can lead to poor model-data fit, while overly weak
regularisation can lead to non-physical features in the opti-
mal controls, or over-fitting. A commonly used approach to
identify optimal parameters is theL-curve analysis (Hansen,
2000; Gillet-Chaulet et al., 2012), which examines the rela-
tionship between misfit and model norm as the regularisa-
tion parameter is varied. In approaches with more than one
control field (or more than one regularisation parameter)
an L-’surface’ may be used (Furst et al., 2015). There
are alternative methods of finding the appropriate
regularisation, however, such as the discrepancy principle
(Habermann et al., 2013) or the Lagrange multiplier method
of Waddington et al. (2007).

The regularisation term is sometimes referred to as
a ‘prior’ (Barnes et al., 2021), which lends itself to a
Bayesian interpretation of assimilation (see Section 6.3.3).
In this sense, the regularisation is imposing a priori know-
ledge regarding the controls of the assimilation. Care should
be taken, however, not to impose knowledge that one does
not possess as this could influence quantifications of uncer-
tainty (Arthern, 2015).

6.1.5 Cost Function Minimisation
Equation (6.7) represents, in most glaciological assimila-
tions, a very large-scale non-linear optimisation (or rather,
minimisation) problem. Methods to solve this minimisation
problem have included ad-hoc approaches (Chandler et al.,
2006; Price et al., 2011) or explicit reduction of the control
dimension to create a more manageable problem (Payne
et al., 2004) among other methods. However, by far the
most common approach taken is an iterative one in which
search directions are updated based on cost function gradi-
ents (MacAyeal, 1993). Such approaches include simple
gradient-descent methods (e.g. Joughin et al., 2004) and
quasi-Newton methods (e.g. Gillet-Chaulet et al., 2012;
Barnes et al., 2021). Quasi-Newton methods, such as the
Limited-memory Broyden–Fletcher–Goldfarb–Shanno
algorithm (L-BFGS, Gilbert and Lemaréchal, 1989;
Nocedal and Wright, 2006), construct a low-rank approxi-
mation to the Hessian (or second derivative matrix) of the
cost function through consecutive gradient calculations,
and generally converge faster than simple gradient descent.
‘True’ Newton methods, which use the exact Hessian of
the cost function, are expected to converge faster than
quasi-Newton methods, but to date such methods have
not been used for large-scale glaciological data assimilation,
predominantly because of the computational cost in finding
the inverse of the Hessian (see Section 6.3). Recently
however, a study has made use of a more sophisticated
Hessian approximation (Shapero et al. (2021); see also
Section 6.3.6), which converges faster than L-BFGS in
experiments carried out.

Methods for calculating forward model gradients
vary greatly across various assimilation frameworks.
A common approach is the adjoint method, which solves
the mathematical adjoint of the linearised model (see
Section 6.2.2). Such methods are advantageous as they
require a single adjoint solution, as opposed to individually
perturbing potentially tens of thousands of parameters
(MacAyeal, 1992a). While most approaches to date derive
the continuous adjoint model, which is then discretised,
there are an increasing number of studies making use of an
algorithmic differentiation (AD; Heimbach and Bugnion,
2009). AD software tools generate a discretised form of
the adjoint model directly from the discretised forward
model through repeated application of the chain rule at
the level of the numerical code (Griewank and Walther,
2008). In the following sections, different applications of
these approaches are examined.

6.2 Inferring Ice Dynamical Properties and Boundary
Conditions

In this section, we describe some of the popular data assimi-
lation techniques that have been employed to constrain
poorly known boundary conditions and ice material
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properties from surface observations. We first describe ad
hoc methods that are easy to implement but require running
the model over long time scales and assume that the system
is in steady state. We then present the time-independent (or
snapshot) variational approaches that have been particu-
larly popular in glaciology, and then the time-dependent
approaches that are also based on variational methods.

6.2.1 Ad Hoc Methods

Inference from Surface Speed
Described in Price et al. (2011), this method is used to infer
basal drag from surface speed. The approach starts with
a very large value for the basal drag (i.e. no sliding), as
described in Eq. (6.5). The model is then run forward while
keeping the geometry fixed, until the ice temperature, vel-
ocity, and viscosity reach a steady state. Once a steady state
is reached, the basal stress |τb| is evaluated. The modelled
surface speed is then subtracted from the observed surface
speed to estimate the sliding speed, vb, that was previously
assumed to be 0. These sliding speeds, together with the
inferred basal stress, are used to determine the sliding coef-
ficient by solving:

C ¼ jτbj
fτðjvbj;NÞjvbj

: ð6:11Þ

Using this new distribution ofC, the model is run again to
steady state. The evaluation of C by determining the basal
drag, jτbj, and adding the misfit between modelled and
observed surface velocities to the sliding velocities, is
repeated until convergence is reached.

To our knowledge, this method has not been used outside
this study, but is easy to implement and relies on the simple
concept that decreasing the friction coefficient has a direct,
positive impact on the surface velocities.

Inference from Surface Height
Pollard and DeConto (2012) proposed a similar method but
using surface height, s, as a target instead of surface veloci-
ties. The idea is to run a model forward in time and adjust
the friction coefficient, C, so that the surface heights match
observed elevations, assuming that the ice sheet is in steady
state. In regions where the modelled surface height is too
low, friction is increased, which allows for the ice to thicken,
whereas in regions where the ice is too high, friction is
decreased to allow for more sliding and thinning.

In practice, the friction is updated every 5,000 years as
follows:

Cnew ¼ Cold � 10Δz; ð6:12Þ

where:

Δz ¼ maxð�1:5;min ð1:5; ðsobs � sÞ=s0ÞÞ; ð6:13Þ

where s0 ¼ 500m is a scaling parameter. This method allows
for the modelled height to reach an average of 50 m of misfit
between the model and observation within 200,000 to
400,000 years. While simple, it still requires running the
model for a long period of time and is difficult to apply to
more sophisticated ice sheet models that typically only run
for a few centuries.

6.2.2 Time-Independent/Snapshot Variational Approaches
One of the limitations of these ad hoc methods is that they
require the model to be in steady state, which is not ideal
when studying rapidly changing systems. A popular alter-
native approach that removes this assumption was intro-
duced byMacAyeal (1992b, 1993) in the 1990s, and has been
applied almost exclusively, until relatively recently, to the
two-dimensional SSA. Known as a ‘control method’, it is
a direct application of the optimal control theory to glaci-
ology (Bryson and Ho, 2018). A type of VDA, the method
consists of minimising the cost function through a gradient-
descent approach. We first describe VDA in a general con-
text, for both discrete and continuous model equations, and
then show how it is applied to the SSA.

Discrete Adjoint Method
In the discrete form, the model state is a vector x2ℝm, and
the control is α2ℝn. We write Jðx; αÞ 2ℝþ the cost function
that wewant tominimise, and defineJ ðαÞ ¼ JðxðαÞ;αÞ such
that xðαÞ satisfies the model equation gðx; αÞ ¼ 0, which is
an m-dimensional zero vector. For instance, if one uses the
finite-element method, we would have gðx; αÞ ¼ Kx� F,
where K is the stiffness matrix and F the load vector
(where K and F in general depend on the control α). We
would like to find the gradient of the cost function in order
to minimise it, as described in Section 6.1.5.

The most intuitive approach to compute this gradient
would be to apply a small perturbation to each of the
components of the control, α using a finite-difference
method to construct the gradient of the cost function. This
method, however, requires to solve n times the model equa-
tions, gðx; αÞ ¼ 0. While simple, this approach becomes very
inefficient and computationally prohibitive when n ≳ 10.
Variational data assimilation allows to compute this gradi-
ent by solving only two sets of equations. The gradient of the
cost function is:

rJ ¼ ∂J
∂α
þ ∂J

∂x
∂x
∂α

: ð6:14Þ

Since J has an explicit expression, the first two vectors are
easy to compute. The Jacobian matrix, ∂x=∂α2ℝn�m, how-
ever, is difficult to evaluate, especially if n andm are large. If
we take the derivative of the forward model with respect to
the control, α, we find:
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dg
dα
¼ ∂g

∂α
þ ∂g
∂x

∂x
∂α
¼ 0; ð6:15Þ

which is 0 since the forward model must be satisfied. Using
this equation, we can rewrite the problematic term as:

∂x
∂α
¼ � ∂g

∂x

� ��1 dg
dα

: ð6:16Þ

Substituting this expression in Eq. (6.14) gives:

rJ ¼ ∂J
∂α
� ∂J

∂x
∂g
∂x

� ��1 dg
dα

: ð6:17Þ

We define the adjoint state, λ2ℝm, as:

λT ¼ � ∂J
∂x

∂g
∂x

� ��1
; ð6:18Þ

or, written differently:

∂g
∂x

� �T
λ ¼ � ∂J

∂x

� �T
; ð6:19Þ

which is generally referred to as the adjoint model. The
calculation of the adjoint state requires solving a system of
equations which has the same size as the forward model.
Once the adjoint state is calculated, we can compute the
gradient of the cost function as:

rJ ¼ ∂J
∂α
þ λT

dg
dα

: ð6:20Þ

It can be shown that the adjoint state is equivalent to the
vector of Lagrange multipliers introduced to enforce that
the initial model equation, or forward model, is satisfied.

Continuous Adjoint Method
If we consider a set of continuous model equations, we can
follow the same steps as in the previous section, but this timewe
introduceaLagrangian to enforce the constraint that themodel
equations need to be satisfied. The model state, x, and the
control, α, are now fields in the appropriate Banach spaces
(note that, for simplicity and brevity, we will assume that all
variables are defined in the appropriate space). The objective
function is Jðx; αÞ 2ℝþ and, again, we define
J ðαÞ ¼ JðxðαÞ; αÞ such that xðαÞ satisfies the model equa-
tion gðx; αÞ ¼ 0.

We want to find α such that it minimises the cost function.
The idea of optimal control is to introduce a Lagrangian for
this optimisation problem:

Lðx; λ; αÞ ¼ Jðx; αÞ þ
ð
Ω
λ � gðx; αÞdΩ: ð6:21Þ

Similarly, the new variable, λ, is the Lagrange multiplier (or
adjoint state) for the constraint g (x, α) = 0. If x is solution of
the forward model, then

J ðαÞ ¼ Lðx; λ; αÞ ð6:22Þ

since, in this case, gðx; αÞ ¼ 0. If we take the directional deriva-
tive of this expression with respect to the control along the
direction β, and apply the chain rule, this yields:

〈rJ ; β〉 ¼ 〈 ∂L
∂x

; x
0 ðβÞ〉þ 〈 ∂L

∂λ
; λ
0 ðβÞ〉þ 〈 ∂L

∂α
; β〉:

ð6:23Þ

Because we want the forward model to be satisfied,
the second term on the right-hand side is zero:

8μ; 〈 ∂L
∂λ

; μ〉 ¼ 〈μ; gðx; αÞ〉 ¼ 0: ð6:24Þ

If we choose the adjoint state such that the Lagrangian is
also stationary along x, the first term is zero:

8w; 〈 ∂L
∂x

;w〉 ¼ 〈 ∂Jðx; αÞ
∂x

;w〉þ 〈λ; ∂g
∂x

wf g〉 ¼ 0;

ð6:25Þ

where the {·} indicates the action of the differential operator
in a given direction. Using the properties of inner products,
this can be rearranged:

〈 ∂g
∂x

� �T

λf g;w〉 ¼ �〈 ∂Jðx; αÞ
∂x

;w〉; ð6:26Þ

yielding the adjoint equations to be solved for λ. This then
provides a simple expression for the gradient of the cost
function with respect to the control:

〈rJ ; β〉 ¼ 〈 ∂L
∂α

; β〉 ¼ 〈 ∂J
∂α

; β〉þ 〈λ � ∂g
∂α
ðx; αÞ; β〉

ð6:27Þ

and we identify the gradient as:

rJ ¼ ∂J
∂α
þ λ � ∂g

∂α
ðx; αÞ: ð6:28Þ

Application to SSA
Here we apply this approach to the Shallow-Shelf
Approximation. The equations of SSA are derived from the
full-Stokes equations (Eq. (6.1)), and rely on two assump-
tions. The first one is that there is no bridging effect, which
means that the vertical normal stress is purely lithostatic, or
equal to the weight of ice vertically above. The second
assumption is that vertical shear is negligible, so that veloci-
ties are assumed depth-independent. These two assumptions
lead to the following depth-integrated model:

∂
∂x

4Hμ
∂vx
∂x
þ 2Hμ

∂vy
∂y

� �
þ ∂
∂y

Hμ
∂vx
∂y
þHμ

∂vy
∂x

� �
¼ ρgH

∂s
∂x
þ Cvx

∂
∂x

Hμ
∂vx
∂y
þHμ

∂vy
∂x

� �
þ ∂
∂y

4Hμ
∂vy
∂y
þ 2Hμ

∂vx
∂x

� �
¼ ρgH

∂s
∂y
þ Cvy

8>><>>:
9>>=>>;;

ð6:29Þ
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where we assume here, for simplicity, that the friction law is
τb = −C v.

MacAyeal (1992b) applied an adjoint-based inversion
to infer the basal friction under Ice Stream E,
Antarctica. Joughin et al. (2004) modified the method
to determine the friction under Ross Ice Stream assum-
ing a weak plastic bed. Rommelaere and MacAyeal
(1997) extended this approach to infer the ice rheological
parameter, B, of the Ross ice shelf, Antarctica, with the
same Shallow-Shelf model, from surface velocities.
Larour (2005) applied a similar method to infer B of
the Ronne ice shelf. This method was then extended to
higher-order and full-Stokes models by Morlighem et al.
(2010) and applied to the entire Antarctic ice sheet
(Morlighem et al., 2013b). It is now used by many
glaciologists and available in several ice sheet models
(Elmer, ISSM, STREAMICE, U´ a, BISICLES, MALI,
etc).

As an illustration, we describe here how to derive the
gradient of a classical cost function:

JðvÞ ¼ 1

2

ð
Ω
ðvx � vobsx Þ

2 þ ðvy � vobsy Þ
2dΩ: ð6:30Þ

In this case, the observation operator is the identity
function since we observe the model state itself,
x ¼ ðvx; vyÞT . Let’s assume that we are using the SSA
equations with homogeneous Dirichlet conditions along
the boundary and we are inferring the basal friction
coefficient, α ¼ C, from observed surface velocities. Let’s
further ignore the dependency of the ice viscosity, μ, on the
ice velocity in the computation of the adjoint state
(which is a common assumption in glaciology; see, for
example, MacAyeal, 1992a). Using the continuous
approach (Section 6.2.2), the adjoint equations (Eq. (6.26))
are: 8w

〈 ∂Jðv; αÞ
∂v

;w〉þ 〈λ; ∂g
∂v

wf g〉 ¼
ð
Ω
ðvx � vobsx Þwx

þðvy � vobsy ÞwydΩ ð6:31Þ

þ
ð
Ω
λx

∂
∂x

4Hμ
∂wx

∂x
þ 2Hμ

∂wy

∂y

� �
þ λx

∂
∂y

Hμ
∂wx

∂y
þHμ

∂wy

∂x

� �
� CwxλxdΩ

þ
ð
Ω
λy

∂
∂x

Hμ
∂wx

∂y
þHμ

∂wy

∂x

� �
þ λy

∂
∂y

4Hμ
∂wy

∂y
þ 2Hμ

∂wx

∂x

� �
� Cwyλy dΩ ¼ 0:

If we integrate the two last lines by parts twice, and assume
homogeneous boundary conditions, this equation
becomes:

ð
Ω
ðvx � vobsx Þ wx þ ðvy � vobsy ÞwydΩ

þ
ð
Ω
wx

∂
∂x

4Hμ
∂λx
∂x
þ 2Hμ

∂λy
∂y

� �
þwx

∂
∂y

Hμ
∂λx
∂y
þHμ

∂λy
∂x

� �
� CwxλxdΩ

þ
ð
Ω
wy

∂
∂y

4Hμ
∂λy
∂y
þ 2Hμ

∂λx
∂x

� �
þwy

∂
∂x

Hμ
∂λx
∂y
þHμ

∂λy
∂x

� �
� Cwyλy dΩ ¼ 0; ð6:32Þ

and since this is true for all w, the adjoint equations are:

∂
∂x

4Hμ
∂λx
∂x
þ 2Hμ

∂λy
∂y

� �
þ ∂
∂y

Hμ
∂λx
∂y
þHμ

∂λy
∂x

� �
� Cλx ¼ �ðvx � vobsx Þ

∂
∂y

4Hμ
∂λy
∂y
þ 2Hμ

∂λx
∂x

� �
þ ∂
∂x

Hμ
∂λx
∂y
þHμ

∂λy
∂x

� �
� Cλy ¼ �ðvy � vobsy Þ:

8>><>>:
ð6:33Þ

The adjoint state can therefore be solved using very similar
equations as the forward model but with a different right-
hand side. Once the adjoint state is calculated, the gradient
of the cost function is simply:

rJ ¼ �λ � v: ð6:34Þ

A similar approach can be applied to the discretised equa-
tions, leading to a similar gradient expression. We must
however pay attention to the fact that the discretised gradi-
ent provides the sensitivity of the cost function with respect
to the value of the control at each node or cell, which is not
the same as the continuous gradient. In other words, the
discretised gradient for node i is related to the continuous
gradient as follows:

rJ i ¼ 〈rJ ; φi〉 ¼
ð
Ω
�λ � v φi dΩ; ð6:35Þ

where φi is the shape function associated withCi, the friction
coefficient at node i. The discrete and continuous gradients
can therefore be converted from one form to the other by
using the mass matrix (e.g. Li et al., 2017).

Simultaneous Inference of Multiple Parameter Fields
For reasons of simplicity, the preceding example considers
only a single control field, C. However, in many cases, other
key spatially varying properties must be inferred, such as the
ice viscosity factor, B, which depends on ice temperature
(Cuffey and Paterson, 2010) but also on the degree of damage
(Borstad et al., 2013). The approach for the Shallow-Shelf
model can be easily generalised to account for two parameter
fields, as has been done in numerous studies (e.g. Lee et al.,
2015; Barnes et al., 2021). Concerns arise in such cases
regarding potential compensating effects of the parameters,
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which can lead to multiple solutions (Ranganathan et al.,
2020), but to date there is not a consensus on whether such
‘dual inversions’ lead to non-uniqueness.

Alternative Approaches
Arthern and Gudmundsson (2010) proposed another
method, which is based on reformulating the optimisa-
tion as an inverse Robin problem. The forward model
(called here the Neumann problem as a Neumann
boundary condition is applied at the surface) is modified
to solve a Dirichlet problem, where the surface velocity
is now imposed as being equal to observed surface
speeds. If the model is perfectly calibrated, these two
problems should have the same final state. By introdu-
cing a specific cost function proposed initially by Kohn
and Vogelius (1984):

J ðαÞ ¼
ð
Γs

ðvN � vDÞ � ðσN � σDÞ � n dΓ; ð6:36Þ

where Γs is the ice surface where surface speeds are imposed
in the Dirichlet problem, and the superscript N and D
denote the velocity and stress tensors from the Neumann
and Dirichlet problem solutions. Using this approach, if
basal friction is assumed to be τb ¼ �C vb, the gradient of
this cost function with respect C is simply

rJ ¼ jvDj2 � jvN j2: ð6:37Þ

This method can also be employed to find the rheology
factor, B. This approach is simple in the sense that it is
easy to implement, but is not flexible in terms of choice of
cost function.

6.2.3 Time-Dependent Approaches
Using a time-dependent model (i.e. the stress balance
coupled with mass transport) provides stronger constraints
for assimilating time-dependent data, and expands the
types of data that can be used for constraints in the cost
function, such as time-evolving altimetry. It also removes
the assumption that all observational data are contempor-
aneous, which must be made for time-independent assimi-
lation and could lead to inaccuracies for highly dynamic
systems.

As in time-independent approaches, minimisation of the
cost function involves calculating its derivatives with respect
to the assimilation controls – but with a time-dependent
model the complexity is increased. A continuous adjoint
method (Section 6.2.2) can be applied, as is done in Michel
et al. (2014), which assimilates transient surface elevation
data using a Shallow-Ice model to estimate ice thickness.
With non-local stress balances such as Stokes and Shallow-
Shelf, however, model complexity makes such approaches
challenging. As such, studies which focus on time-

dependent adjoint-based assimilation have started to
adopt algorithmic differentiation (AD).

Algorithmic Differentiation
Algorithmic differentiation calculates gradient information
for a given cost function and forward model without the
need for explicit derivation of the adjoint equations. To
illustrate, we define xk as the discretised state vector for
a given model at time step k. xk includes velocity, ice thick-
ness, and possibly additional prognostic variables (such as
ice temperature). A model time step can be expressed as

xkþ1 ¼ Fðxk; αkÞ; ð6:38Þ

where Fð�; �Þ represents the calculation of velocities and
update of thickness (and other prognostic variables) over
a single time step. The parameters, α, can, in general, vary
per time step (as indicated by the superscript) but can also
vary on much longer intervals, or not at all (Goldberg et al.,
2015). In the special case where the cost function J depends
only on the final state and the parameters are time-constant
(i.e. αk ≡ α), the gradient of the cost function is

rJ ¼ ∂J
∂xk

dxk

dα

¼ ∂J
∂xk

∂F
∂α
þ ∂F
∂xk�1

dxk�1

dα

� �
¼ ∂J

∂xk
∂F
∂α
þ ∂F
∂xk�1

∂F
∂α
þ ∂F
∂xk�2

dxk�2

dα

� �� �
¼ …

ð6:39Þ

The expression can be continually expanded using the
chain rule for calculus. Reverse mode AD implements Eq.
(6.39) through repeated left-multiplication of the linear
operators. The chain rule is applied not only at the level
of a time step but to individual numerical operations
within functions and subroutines. It can be shown
(Heimbach and Bugnion, 2009) that this computation is
mathematically equivalent to solving the adjoint model
backward in time. Note that the gradients of F are evalu-
ated at the state xi, where i ¼ k; k � 1; : : so solving the
adjoint requires either storage or recomputation of the
state at each backward time step.

To date, AD has been applied to a number of ice-sheet
models for the purpose of time-dependent assimilation.
Larour et al. (2014) applied ADOL-C, an AD tool for C++,
to a Shallow-Shelf version of the finite-element Ice Sheet
System Model (ISSM). The resulting adjoint was used to
assimilate surface elevation data derived from ICESat altim-
etry for the Northeast Greenland Ice Stream over the 2003–
9 period. Two assimilations were attempted, one using surface
mass balance as a control, and one using basal friction. In each
assimilation, the data consisted of annual elevation change in
each year.
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Both OpenAD, an open-source AD tool for Fortan (Utke
et al., 2008), and the commercial tool TAF (Giering et al.,
2005) have been used to differentiate STREAMICE, the ice-
sheet component of the MITgcm (Goldberg and Heimbach,
2013;Goldberg et al., 2016), a hybrid Shallow-Shelf, Shallow-
Ice model. Using the adjoint model, Goldberg et al. (2015)
assimilated a dataset consisting of 10 years of annual surface
elevation (with velocities available for 4 of these years) for
Smith Glacier, a small but fast-thinning marine glacier in
West Antarctica. Surface elevation was not available for ice
shelves, and the control set consisted of basal friction param-
eters and the stress tensor along the 1996 grounding line (the
latter representing buttressing from the shelves). In contrast
with Larour et al. (2014), the controls were either constant in
time, or varied linearly in time over the assimilation period. It
was found that time-constant controls were sufficient to
reproduce the majority of grounding-line variability over the
period, and that allowing the controls to vary linearly in time
led to marginal reduction of the cost function. The results
suggested that observed 2001–11 retreat was due to the state
of the glacier in 2001 rather than ice-shelf melting.

Larour et al. (2014) used controls that varied on the model
time step. In other words, the number of degrees of freedom
to describe the control wasNΩ �Nt, whereNΩ is the number
of degrees of freedom of a finite-element function on the
model grid andNt is number of (monthly) time steps – giving
a control dimension far larger than that of the observations.
While this demonstrates the power of the adjoint in efficient
derivative calculation, the findings of Goldberg et al. (2015)
suggest that a low number of temporal degrees of freedom
should be investigated first to avoid over-fitting.

Assimilation of Internal Layers
Time-dependent assimilation has also been implemented in
the context of inferring past climate and ice-sheet behaviour
from internal ice layers.While distinct from the applications
of Larour et al. (2014) and Goldberg et al. (2015) in terms of
investigative questions and types of data utilised, the com-
putational approach is similar.

Internal reflecting horizons (IRHs) in ice sheets are caused
by buried impurities deposited on the surface in past epochs,
and can often be traced via airborne ice-penetrating radar over
large expanses (Karlsson et al., 2014). As material surfaces,
they reflect past deformation, as well as surface and basal mass
balance (Bell et al., 2011), and, coupledwith borehole data, can
provide age constraints, and potentially knowledge of past
flow, climate, and basal conditions (Bodart et al., 2021). Age-
depth information has been used to infer Holocene surface
accumulation rates (e.g. Bodart et al., 2021) as well as records
of historic changes in flow direction and speed (e.g. Conway
et al., 2002; Siegert et al., 2013). These and similar studies,
however, used methods that are either qualitative in nature or
did not take heterogeneity in ice-sheet flow into account
(Dansgaard et al., 1969).

Waddington et al. (2007), by contrast, minimised the
model–data misfit to infer accumulation rate patterns,
layer ages, and basal conditions. The forward model of
Waddington et al. (2007) is a steady-state thermomechani-
cal Shallow-Ice model in a flow-band ðx� zÞ domain, which
provides surface elevation and surface velocity as observa-
bles. In addition, the model implements a Lagrangian par-
ticle-tracking method for particle position ðx; zÞ at time t :

xðtÞ

zðtÞ

24 35 ¼ x0

sðx0Þ

24 35þ ðt
0
vðx; z; t0 Þdt0 ; ð6:40Þ

where v ¼ ðvx; vzÞT is the ice velocity, and s is the steady
surface elevation profile. Equation (6.40) is used to find
profiles of layers of a given age. The authors used this
model to minimise the misfit to observed surface elevation
and velocity as well as layer geometry, using surface mass
balance and layer age as controls – providing a time-
constant estimate of accumulation. The method was further
developed to allow for a time-evolving model (Koutnik and
Waddington, 2012), allowing for assimilation of ice-core
and radar layer data in the West Antarctic Ice Sheet divide
(Koutnik et al., 2016).

Very often, ages are not available for radar layers, making
it challenging to infer past ice-sheet conditions. The model
of Hindmarsh et al. (2009) uses three-dimensional velocities
from a steady Shallow-Ice approximationmodel to solve the
age-depth equation:

DA
Dt
¼ ∂A

∂t
þ v � rA ¼ 1; ð6:41Þ

whereA is age ðand A is set to zero at the surface z ¼ sÞ and
DA=Dt is its material derivative. A sophisticated least-
square fitting algorithm is then used to identify isolines of
modelled A, which best fit observed layers. Karlsson et al.
(2014) used this model to evaluate the fit of potential
Holocene mass balance scenarios using three-dimensional
layer data from Pine Island Glacier.

To date, a formal assimilation of englacial radar data with
a continental-scale, three-dimensional dynamic ice flowmodel
has not been carried out. Such assimilation requires cost func-
tion gradient information in order to be tractable. In
Waddington et al. (2007), the simplicity and limited spatial
scale of the model allowed the gradients to be calculated
simply by perturbing individual controls to assess
cost function partial derivatives, but this finite-difference
approach would become intractable for a large-scale study.
However, Heimbach and Bugnion (2009) and Logan et al.
(2020) successfully applied OpenAD to the ice-sheet model
SICOPOLIS (Greve et al., 2011), a thermomechanical ice-
sheet model used for studies over paleo-time scales, which
implements layer-tracing algorithms. Combined with an
increasingly comprehensive set of dated IRH’s in the
Antarctic and Greenland Ice Sheets (Ashmore et al., 2020;
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MacGregor et al., 2015), there is potential for assimilation of
ice-sheet histories to now take place.

6.3 Ensemble and Probabilistic Approaches

The methods discussed in Section 6.2 were developed with
the aim of minimising a cost function (i.e. of finding an
optimal set of parameters to obtain model–data fit). In
general, they do not provide formal uncertainties for these
parameters – uncertainties which are important to know,
especially if the parameters, or the optimised models, are
used for analysis or projection. Obtaining uncertainties for
inverted parameter sets of large dimension is a challenging
problem, and methodologies are only beginning to be devel-
oped for glaciological assimilation. In this section, the lead-
ing methods are briefly discussed.

6.3.1 Bayes’ Theorem
Most probabilistic approaches can be understood as an
implementation of Bayes’ theorem, which describes how
new information changes the likelihood of hidden param-
eters. Bayes’ theorem states that, for a parameter α, and data
yobs,

pðαjyobsÞ ¼ pðyobsjαÞpðαÞ
pðyobsÞ : ð6:42Þ

With this formula, the posterior probability distribution
pðαjyobsÞ – that is, the likelihood of the parameters condi-
tioned on what is observed – can be quantified. Different
probabilistic approaches to assimilation make use of Eq.
(6.42) in different ways. In the case of VDA, this leads to
a continuous function to be optimised for maximum likeli-
hoods (see Section 6.3.3); while inMonte Carlo analysis (see
Sections 6.3.4 and 6.4.3), it is used to directly sample the
posterior, and in ensemble methods it is used to assign
‘likelihoods’ to members of large ensembles. These methods
are explored in the following.

6.3.2 Bayesian Calibration via Ensemble-Based Emulation
and Dimensional Reduction

As mentioned, Bayesian calibration can be applied to large
ensembles of model output, generated by varying key
parameters. In such approaches, an ensemble fα1; . . . ; αNg
is generated, where αi represents a specific realisation of
model parameters and its associated model output.
Likelihoods are assigned based on a probability distribution
of observables. For instance, if a model output or set of
outputs yields unlikely results, the likelihoods of the corres-
ponding parameter realisations are scaled by this small
probability. It is generally assumed that the parameter real-
isations are uniformly distributed (i.e. that the prior

distribution pðαÞ is uniform). Ritz et al. (2015) generated
a 1,000-member ensemble of Antarctic-wide simulations
from 2000–2200 with GRISLI, a three-dimensional thermo-
mechanical Shallow-Ice model (Quiquet et al., 2018) with
a set of 13 parameters governing parameterised marine ice
retreat. Likelihoods were assessed based on observed mass
loss values from a number of Antarctic catchments and their
uncertainties, in order to generate a posterior distribution
for Antarctic ice loss over the next two centuries.

The ensemble approach can be computationally expen-
sive when using regional or continental scale models, par-
ticularly if the models implement higher-order stress
balances or use a high spatial resolution to capture phenom-
ena such as marine ice retreat. Moreover, an ensemble
generated a priori may not have sufficient resolution in
parameter space in the neighbourhood of the point of max-
imum likelihood (sometimes referred to as the maximum
a posteriori, or MAP point). For this reason, statistical
emulators are sometimes used (Edwards et al., 2021). An
emulator takes eY, an m-by-nmatrix in which the ith column
contains model outputs (of dimension m) from ensemble
member i (i.e. for the given set of parameters αiÞ, and carries
out a singular value decomposition:eY ¼ UΣVT ; ð6:43Þ

where U and V are unitary matrices, and Σ is a diagonal
matrix containing the principal values of the ensemble. All
but the largest values of Σ are set to zero, resulting in
a mapping between parameter values αi and a low-
dimensional representation of model output. (In Wernecke
et al., 2020), five principal values are retained.) This discrete
mapping is then statistically interpolated (e.g. with
a Gaussian process model) to provide a continuous map-
ping, which can be queried in a Bayesian calibration based
on observations. Rather than using aggregated data as in
Ritz et al. (2015), Wernecke et al. (2020) project observa-
tional data into principal spatial components for compari-
son with emulator output.

6.3.3 Bayesian Inference with Laplacian Approximation
Ensemble methods are somewhat limited by the small number
of parameters, ðOðe10ÞÞ, that can be considered. As discussed
in Section 6.2, the parameters that determine ice-sheet dynam-
ics are spatial fields, requiring, in general, a very large (i.e.
104 � 106) number of degrees of freedom to describe them.
While these parameter fields likely exhibit spatial correl-
ations, effectively reducing their dimensionality, their cor-
relation scales are unknown, preventing a priori dimension
reduction. However, there is a connection between the vari-
ational data assimilation described in Section 6.2 and
Bayesian methods, which can be exploited. Assume
a model, which calculates ice-sheet surface velocities, v,
based on parameters C, and there are observations, vobs,
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for which error is normally distributed. In the following,
observations are treated as measurements at discrete loca-
tions and described by a vector (although of different
dimension than the control parameters CÞ.

The likelihood operator (cf. Eq. (6.42)) can be expressed as

pðvobsjCÞ ∝ e
�1

2jvobs�HðvðCÞÞj
2
Γ�1
obs ; ð6:44Þ

where H is the observation operator (introduced in
Section 6.1.3). Here the constant of proportionality is sim-
ply a normalisation constant which does not bear on the
analysis, and which we subsequently ignore. We can equiva-
lently consider the negative log-likelihood:

�log
�
pðvobsjCÞ

�
¼ 1

2
jvobs �HðvðCÞÞj2Γ�1obs

: ð6:45Þ

Here, Γobs is the observational covariance matrix, and the

norm jxjΓ�1obs
is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xTΓ�1obsx

q
. If the prior distribution

pðCÞ is also characterised as a multivariate Gaussian with
covariance Γprior and mean C0, the negative log of the pos-
terior distribution can be written

�log
�
pðCjvobsÞ

�
¼ 1

2
jvobs �HðvðCÞÞj2Γ�1obs

þ 1

2
jC � C0j2Γ�1prior

:

ð6:46Þ

Note that both Γprior and Γobs are symmetric positive-definite
matrices.

It can be shown (e.g. Isaac et al., 2015) that finding the
point in parameter space withmaximumposterior likelihood,
CMAP, is equivalent to variational data assimilation with the
appropriate data and model norms. If Γobs is diagonal, then
the first term on the right-hand side of Eq. (6.46) is equivalent
to the misfit norm (Eq. (6.8)).

Additionally, the second term on the right-hand side of Eq.
(6.46) corresponds to the discretised form of a wide range of
commonly used regularisation cost terms, ormodel norms. For
instance, if a finite-element model is used and C0 is spatially
invariant, the regularisation cost term in Eq. (6.10) can be
written

γ
ð
Ω
jrCj2dx ¼ ðC � C0ÞTAðC � C0Þ; ð6:47Þ

where C is a vector representing the coefficient vector of the
finite-element function C and aij, the entries of A, areð
Ω
γrφi � rφj dΩ, with φi; j the finite-element basis functions.

Note that A as defined here is not (the inverse of) a true
covariance matrix, as it is not positive definite. Barnes et al.
(2021) define the regularisation term for the U´ a ice model asð
Ω
γjrðC � C0Þj2 þ δðC � C0Þ2dx: ð6:48Þ

When discretised, this term expresses a proper prior
distribution of C. In such a prior, δ expresses our

confidence in the value of C at a location, while γ
expresses our confidence in its persistence over a certain
length scale. This regularisation term uses a gradient oper-
ator, but such an operator leads to infinite pointwise
variance (Bui-Thanh et al., 2013), and so methods which
quantify posterior uncertainty with Eq. (6.46) use
Laplacian-based regularisation (Isaac et al., 2015).

The equivalence between cost function and negative-
log posterior density (with the caveat that the regular-
isation term must be a proper probability distribution)
suggests that minimising a deterministic function with
respect to the control parameters is equivalent to finding
the point of maximum likelihood, or mode, of the pos-
terior distribution. This alone does not aid in quantify-
ing the uncertainty of C, however: the probability space
is of very high dimension (tens to hundreds of thousands
in realistic applications) and querying the posterior dens-
ity requires solving a large-scale non-linear model
(Martin et al., 2012). A local approximation of the pos-
terior density can be found through a second-order
approximation of Eq. (6.46) in the neighbourhood of
CMAP. It can be shown that the covariance of this local
approximation is given by the inverse of the Hessian of
the cost function at CMAP:

Γ�1post ¼ HðCMAPÞ ¼
∂2J
∂C2 jCMAP

¼ HmisðCMAPÞ þ Γ�1prior;

ð6:49Þ

where HmisðCMAPÞ is the Hessian of the data norm
only. Essentially, the approach approximates
pðCjvobsÞ by NðCMAP;HðCMAPÞ�1Þ, that is, a Gaussian dis-
tribution with mean CMAP and covariance HðCMAPÞ�1. This
approximation is sometimes referred to as a Laplacian
approximation.

Calculating the complete Hessian is challenging as it is
a large, dense matrix requiring extensive computation,
and inverting directly is even more challenging as it is
often singular or near-singular. Previous authors (Bui-
Thanh et al., 2013; Petra et al., 2014; Isaac et al., 2015)
find a low-rank approximation to the Hessian that is
easy to invert (see also Kalmikov and Heimbach,
2014). Details can be found in these and other refer-
ences, but the low-rank approximation is generated
via a singular value decomposition of the prior-
preconditioned misfit Hessian, ΓpriorHmis. The space of C
is decomposed into principal components – with the
significance that the leading principal components, or
directions, are those most strongly constrained by the
assimilation (Koziol et al., 2021).

Together with an adjoint of the forward model,
the parameter uncertainty Γpost can be projected to estimate
uncertainties related to various scalar Quantities of Interest
ðQoIsÞ, such as future sea level rise contribution. Using prop-
erties of joint Gaussian distributions,
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σ2QoI ¼
∂QoI
∂C

� �T

Γpost
∂QoI
∂C

� �
; ð6:50Þ

where σ2QoI is the variance of the Quantity of Interest. ðσQoI ,
the standard deviation, is then a proxy for uncertainty).
Isaac et al. (2015) used this framework to estimate posterior
uncertainty of sliding parameters in a full-Stokes model
of Antarctica, and the resulting uncertainty in ice loss. In
this work, their parameter dimension is approximately
1.2 million, but only e1,000 principal components are
retained in their low-rank approximation. The framework
represents a powerful method to deal with uncertainty with
a parameter space of very high dimension, but it is compu-
tationally challenging for a number of reasons, which we
discuss in Section 6.3.6. The discussion here emphasises the
connection between cost functions and posterior densities.
However, it is important that the observational covariance
be taken into account correctly. Equation (6.45) is an inner
product involving modelled and observed values at discrete
locations, and these locations do not depend on model
resolution. On the other hand, Eq. (6.30) is a functional
which considers observations to be a continuous function,
and many inversions use integral-based cost functions. Such
an approach introduces mesh-dependent terms into the pos-
terior covariance (Koziol et al., 2021). Essentially, treating
such a cost function as a likelihood function implies a very
high density of independent observations, effectively adding
information that does not exist and therefore underestimat-
ing parameter uncertainty.

6.3.4 Stochastic Newton MCMC Methods
The posterior distribution of parameter uncertainty, Eq.
(6.46), is non-Gaussian (even if the observational and
prior distributions are Gaussian). As such, the Hessian-
based uncertainty quantification (UQ) framework
described in Section 6.3.3 is an approximation, and
potentially a poor one in the case of highly skewed
distributions. Markov-Chain Monte Carlo (MCMC)
methods provide a means for sampling the posterior
density, but the high-dimensional probability spaces
and computational expense of the forward model
make this challenging. Stochastic Newton MCMC
methods build on the Hessian-based methods discussed
in Section 6.3.3 to make this more tractable.

Markov-Chain Monte Carlo methods generate new sam-
ples of a probability space by selecting based on a proposal
density centred at the previous sample. For a given sample
αt, Stochastic Newton MCMC uses as its proposal density
the local approximation to the posterior given by

Nðαt;HðαtÞ�1Þ: ð6:51Þ

Importantly, the evaluation of the posterior density is not
approximated – only the basis on which new samples are

taken. The low-rank approximation discussed in
Section 6.3.3, which retains the directions in probability
space which are most constrained by the assimilation,
ensures these directions are explored.

Stochastic Newton MCMC has been shown to accelerate
‘standard’ MCMC schemes by two orders of magnitudes in
seismic inversion problems (Martin et al., 2012). However, it
requires a new, Hessian-based approximation to the poster-
ior for each new sample, which is computationally costly.
The approach can be modified, however, by computing the
Hessian only at the MAP point, and using the correspond-
ing density as a proposal distribution, rather than recom-
puting the proposal density with every sample. It was found
that using the MAP-based Hessian led to convergence at
least as rapidly as the original Stochastic Newton MCMC
method.

The problems considered inMartin et al. (2012) and Petra
et al. (2014) were of large dimension ðOðe100ÞÞ relative to
the ensemble-based methods discussed in Section 6.3, but
quite small compared to adjoint-based inversions in glaci-
ology (e.g. Cornford et al., 2015). Thus, more work is
needed to determine whether such methods are tractable
for continental ice-sheet models.

6.3.5 Ensemble Kalman Filter Approach
The time-dependent variational approach in Section 6.2.3
has similarities to a variational assimilation approach devel-
oped in numerical weather prediction (NWP), 4DVAR.
Another method used in NWP is the EnKF (Lorenc, 2003),
essentially a Monte Carlo analysis in which an ensemble of
model states are run forward in time. The states are updated
at discrete time intervals based on observational data.

Gillet-Chaulet (2020) applied EnKF techniques to glacio-
logical assimilation. Only the basic idea of the algorithm is
given here; for further details, please seeGillet-Chaulet (2020).
The forward model used in this study is a Shallow-Shelf
Approximation. The model ‘state’ considered is composed of
(time-dependent) ice surface elevation and (time-independent)
bed elevation and basal friction, and observations are of sur-
face elevation and surface velocity, available at times tk. An
ensemble of state vectors fxg is generated, where xi represents
the discretised fields comprising the state for realisation i. The
filter then consists of a sequence of forecast-analysis steps.
Each member of fxg is evolved from time tk�1 to time tk,
yielding the forecast fxgf ;k, the forecast ensemble at time tk.
An update is then applied to generate the analysis ensemble:

Sa;k ¼ ðBTΓobsBþ S f ;kÞ�1; ð6:52Þ

xa;k ¼ xf ;k þ Sa;kBTðΓ k
obsÞ

�1ðykobs �Hðx f ;kÞÞ: ð6:53Þ

Here xf ;k and S f ;k are the mean and covariance matrix of
the forecast ensemble, xa;k and Sa;k similarly for the ana-
lysis, and ðΓk

obsÞ is the observational covariance at tk. The
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parameter-to-observable operator is H , and its linearised
form is B. The analysis ensemble is then evolved in time to
tkþ1. Under the assumption of Gaussianity, Eqs. (6.52) and
(6.53) represent a Bayesian update of the state.

Gillet-Chaulet (2020) implements a type of EnKF called the
error subspace ensemble transform Kalman filter (ESTKF).
In applications such as ice-sheet assimilation, the size of the
ensemble is much smaller than the state dimension, meaning
the forecast covariance matrix is a low-rank approximation of
the full covariance matrix. The ESTKF reformulates the ana-
lysis update as a linear combination of the forecast ensemble,
such that Eqs. (6.52) and (6.53) are satisfied. To address
spurious correlations within the covariance matrix due to
the small ensemble size, covariances over long-length scales
are set to zero in an ad hoc manner (known as localisation).

Gillet-Chaulet (2020) apply their ESTKF to the finite-
element model Elmer/Ice in an idealised, one-dimensional
configuration and use synthetic observations taken over
a 35-year period.

The model dimension is e104 and ensemble sizes of e102
are used. By testing forecasts from the ESTKF against those
of the ‘true’ model state, it is seen that the fidelity of fore-
casts is greatly improved by assimilating over time periods
of rapid change. However, the method has yet to be tested in
larger-scale or more realistic settings.

Figure 6.1 provides a schematic diagram showing the key
differences between the two approaches to assimilation of
time-varying data discussed: the time-dependent variational
approach discussed in Section 6.2.3; and the EnKF approach.

6.3.6 Comparison of Probabilistic Methods
The preceding sections discuss a number of diverse
approaches, which aim to quantify uncertainty in ice-sheet
assimilation for the purpose of estimating forecast uncer-
tainty. The approaches attempt, in various ways, to resolve
trade-offs between large model dimension, large parameter
dimension, full representation of probability spaces, and
computational complexity. Hessian-based uncertainty
quantification and ensemble Kalman filters approximate
probability densities as Gaussian, potentially biasing esti-
mates of uncertainty. Stochastic Newton MCMC makes
a Gaussian approximation in its proposal density, while it
queries the true posterior distribution.

Meanwhile, ensemble methods make no assumptions
regarding the form of the posterior and have potential to
reveal multimodal distributions; however, such methods are
limited to parameter dimensions on the order of e10, while
Hessian-based and EnKF methods allow parameter dimen-
sions on the order of e104 � 106 (Note that Stochastic
Newton MCMC can theoretically accommodate large
parameter dimensions as well, but such studies have not
yet been implemented in glaciology). Additionally, where
higher-order models are used to generate ensembles, each
ensemble member may involve a deterministic inversion
involving tens of thousands of parameters (Nias et al.,
2016; Wernecke et al., 2020) – and the uncertainty inherent
in these inversions is not accounted for. An exception is the
study of Brinkerhoff et al. (2021), who use emulation to
constrain parameter uncertainty in a coupled model of
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Figure 6.1 A schematic diagram (adapted from Gillet-Chaulet, 2020) describing the two leading approaches to assimilating time-
dependent glaciological data into ice-sheet models, VDA, or 4DVar (Section 6.2.3), and ensemble Kalman filtering (EnKF; Section 6.3.5).
The true time-evolving ‘state’ of the ice sheet between t0 and tf is represented by the blue dotted line, with error-prone observations at
intermediate times t1 and t2. The 4DVar approach, beginning from the initial forecast (cyan line) generated using a priori internal
parameters, iteratively adjusts its parameters to reduce the model data misfit, J 0 (as indicated by the dashed violet line). EnKF generates
multiple forecasts over each analysis window ([t0, t1], [t1, t2], etc.). Importantly, 4DVar adjusts its parameters globally in each iteration,
meaning the final result is a continuous, physically consistent trajectory. EnKF introduces ‘jumps’ in each analysis step, but also provides
estimates of uncertainty, while 4DVar generates only the optimal state.
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subglacial hydrology and higher-order glacier physics – and
therefore directly model basal slipperiness rather than rep-
resenting it with a high-dimensional parameter space.

The methods all consider low-rank approximations in
order to make their computations tractable. Ensemble and
EnKF methods carry out principal component decompos-
itions on computed ensembles, meaning the methods ultim-
ately depend on the information contained within the
ensembles, which must be generated prior to the analysis.
By contrast, Hessian-based UQ and Stochastic Newton
MCMC prioritise the directions of parameter space that
are most strongly determined by the data. Thus, the compo-
nents analysed are, by design, the most important to
consider.

Ensemble and EnKF methods do not require extensive
modifications to the ice-sheet models themselves.
Emulation-based ensemble studies require only the output
of a model ensemble, and in EnKF methods the analysis
computations can be run in an ‘offline’ mode, where the
forecast state is processed externally to provide the analysis
state. Hessian-based UQ and Stochastic Newton MCMC
for non-linear models require second-derivative informa-
tion; such information requires either higher-order AD
(Kalmikov and Heimbach, 2014; Maddison et al., 2019)
or the solution of differential equations not solved by most
ice-sheet models (Petra et al., 2012; Isaac et al., 2015).
Applying AD remains a challenge for established ice-
sheet models, with successes primarily only where the
model code adheres to a certain structure (Goldberg and
Heimbach, 2013; Goldberg et al., 2016; Logan et al., 2020).
There is growing use of automated code generation finite-
element libraries such as FEniCS and Firedrake in glacio-
logical model development (Kyrke-Smith et al., 2017;
Brinkerhoff et al., 2021), and features of these libraries
can easily be exploited to find higher-order functional
derivatives (Maddison et al., 2019; Koziol et al., 2021). It
also may be sufficient in certain cases to avoid high-order
derivative calculation by using the Gauss–Newton
approximation to the Hessian (Koziol et al., 2021;
Shapero et al., 2021):

Hmis ≈ BTΓ�1obsB; ð6:54Þ

where B is the gradient of the observation operator (cf.
Section 6.3.3). Essentially, AD and derivative calculation
for probabilistic ice-sheet data assimilation is not as great
a barrier as it once was.

All of the methods discussed here have strengths and
weaknesses and the ideal method will depend on the
problem being investigated. The way forward may lie not
in choosing a method, but in combining different methods.
For instance, elements of Hessian-based UQ and Stochastic
NewtonMCMCmay aid in generating ensembles for EnKF
which efficiently capture variability near the mode of the
posterior and enable smaller ensembles.

6.3.7 Alternative Approaches
Many of the issues mentioned in Section 6.3.6 (non-
Gaussianity, computational complexity) arise because of the
non-linearity of the glaciologicalflow equations.A completely
different approach has been proposed by Raymond and
Gudmundsson (2009), which makes use of a linear theory
developed by Gudmundsson (2003) to estimate basal proper-
ties of glaciers using a probabilistic Bayesian approach. In this
approach, basal topography and slipperiness are inferred
from surface elevation and velocity. However, due to the
linear approximations made, the method is limited to small
perturbations around a known reference state. The frame-
work is not suitable for constraining projection uncertainty
but may be effective in characterising basal environments. To
date, the framework has been applied to a flowline onRutford
Ice Stream (Pralong and Gudmundsson, 2011).

6.3.8 Model Uncertainty
The likelihood operator as written (Eq. (6.45)), implicitly
assumes that the model v(α) is perfect, and that any uncer-
tainty is due to imperfect observations. In truth, there is
a great degree of model uncertainty (i.e. error in mathemat-
ically and numerically representing the physical system).
Model uncertainty is extremely difficult to characterise
(Chatfield, 1995), and various studies take different
approaches. The idealised studies of Gillet-Chaulet (2020)
and Koziol et al. (2021) ignore model uncertainty com-
pletely; Wernecke et al. (2020) consider model uncertainty
as uncorrelated Gaussian noise based on the variance inher-
ent in their ensemble; and Werder et al. (2020) (see
Section 6.4.3) treats per-glacier model uncertainty as add-
itional parameters in the Bayesian estimation.

Babaniyi et al. (2021) applied a Bayesian Approximation
Error (BAE) approach to estimate ice-sheet basal properties
in the presence of rheological uncertainty. Ice-sheet rhe-
ology is governed by parameters which are themselves
uncertain (such as the Glen’s law exponent, n). The BAE
step involves generating an ensemble of model output by
sampling from prior distribution parameters, and using the
ensemble statistics to produce a modified likelihood covari-
ance matrix which accounts for the impacts of rheological
uncertainty. The BAE framework could, in theory, be
applied to a range of structural uncertainties in ice-sheet
models, leading to a more accurate accounting of model
uncertainty – but this, as well as application to realistic
problems, still needs to be done.

6.4 Reconstructing of Bed Topography and Ice
Thickness

Data assimilation methods have also been employed to map
the beds of glaciers and ice sheets. Ice thickness and bed
topography are most efficiently measured by ice-penetrating
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radar (either ground-based or airborne; Evans and Robin,
1966), but the vast majority of mountain glaciers, and many
parts of the ice sheets remain unmapped. Data assimilation
offers a cost-effective way to construct estimates where no
data are available. Several approaches have been proposed
(see, e.g., the Ice Thickness Models Intercomparison
eXperiment projects; Farinotti et al., 2017, 2021), and we
will only focus on a few popular ones. Most approaches are
based on the conservation of mass (Eq. (6.6)), the conserva-
tion of momentum (Eq. (6.1)) or a combination of the two.

6.4.1 Two-Step Methods
The majority of bed/thickness mapping methods rely
on a two-step approach, which consists of using the con-
servation of mass first, followed by the conservation of
momentum.

Flux Conservation
In the first step, we rely on the mass transport equation to
determine the depth-integrated flux q ¼ q n ¼ Hv:

r � q n ¼ _ms � _mb �
∂H
∂t
¼ _a; ð6:55Þ

where n is a unit vector describing the two-dimensional
direction of the depth-integrated flux, q, and _a is the right-
hand side, sometimes referred to as apparent mass balance.
If the right-hand side and the flux directions are known, the
distribution of the flux can be determined by using a routing
algorithm (e.g. Budd and Warner, 1996) or by solving this
transport equation using standard approaches such as
finite-elements or finite-differences.

To estimate the flux directions, one can use surface gradi-
ents, as dictated by the Shallow-Ice Approximation. This
approximation will only be valid at a length scale of a few ice
thicknesses and some smoothing of the surface topography
must be applied. Another possible approach is to use
observed surface velocities instead, but many mountain
glaciers remain poorly mapped.

For the right-hand side, the basal melt term is generally
negligible under grounded ice compared to the other terms.
The surface mass balance can come from regional climate
models but is, most of the time, simply parameterised as
a function of the elevation with respect to the Equilibrium-
Line Altitude (ELA), the presence of debris and other param-
eters (e.g. Farinotti et al., 2009). The thinning rate is generally
ignored, but can be estimated from surface altimetry.

Momentum Balance
The flux conservation step yields a complete map of the
depth-integrated flux q ¼ Hjvj. In order to reconstruct the
ice thickness and bed topography, an estimate of the depth-
averaged velocity v ¼ jvj is needed. The vast majority of bed

mapping methods for mountain glaciers relies on the
Shallow-Ice Approximation (SIA; Hutter, 1983), which is
a zeroth-order approximation of ice sheet flow and only
accounts for vertical shear stresses. Under the SIA assump-
tions, the ice velocity reads:

vðzÞ ¼ vb � 2ðρgÞnjrsjn�1rs
ðz
b
ðs� zÞnA dz; ð6:56Þ

where vb is the basal sliding speed, and s is the surface
elevation. If it is assumed that ice is isothermal (i.e. A is
uniform with depth), and that the ice basal velocity is negli-
gible ðvb ¼ 0Þ, the ice thickness can be reconstructed as:

H ¼ ðnþ 2Þq
2AðcρgÞnjrsjn
� �1=ðnþ2Þ

; ð6:57Þ

where c is a parameter introduced to account for potential
sliding. This method, or similar approaches, have been used
inmany studies (e.g. Fastook et al., 1995;Warner and Budd,
2000; Farinotti et al., 2009; Huss and Farinotti, 2012) and
led to the first global mapping of mountain glacier volumes
(Huss and Farinotti, 2012).

Fürst et al. (2017) proposed a more advanced approach,
where the surface mass balance is first used as a control in
Eq. (6.55) in order to have a flux that is positive and smooth,
and use the SIA to infer the bed topography. The flow rate
factor is calibrated with radar-derived thickness measure-
ments. Then, in a second step, a second optimisation is
performed in regions where surface velocities are available.
In these regions, another cost function is minimised that
measures the misfit between the calculated ice thickness
and radar measurements (together with other terms to
ensure that the inferred ice thickness is physically consist-
ent). This second optimisation is only performed in regions
of fast flow, where ice flow is primarily controlled by basal
sliding, and the controls are the surface mass balance and ice
velocities. This approach was first applied to Svalbard
(Fürst et al., 2018).

6.4.2 Mass Conservation with Observed Velocities
There is now complete coverage of surface velocities for
both ice sheets and several large ice caps from satellite
interferometry (Rignot et al., 2011; Rignot and Mouginot,
2012; Joughin et al., 2018). In this case, one can rely directly
on these observations instead of the SIA. However, assump-
tions are needed regarding how to convert these surface
velocities to depth-averaged velocities. In some studies
(Rasmussen, 1988; Morlighem et al., 2010), it is assumed
that surface velocities are good approximations for depth-
averaged velocities. In the worst-case scenario, when there
is no basal sliding, Eq. (6.56) shows that depth-averaged
velocities can be 20% smaller than surface velocities
ðv ¼ ðnþ 1Þ=ðnþ 2Þ vðsÞÞ. In regions of fast flow, far from
the ice divide and along ice streams, this is an excellent
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approximation that avoids having to introduce basal con-
ditions and rheological factors. In this case, the ice thickness
is estimated by solving for ice flux (Eq. (6.55)), where the ice
thickness is the unknown (i.e. the velocity and velocity direc-
tions are given). This hyperbolic equation requires measure-
ments of ice thickness at the inflow boundary, Γ�, of the
domain in order to properly constrain the system:

r �Hv ¼ _a in Ω
H ¼ Hobs on Γ�

:

�
ð6:58Þ

Morlighem et al. (2011, 2013a) further refined this method
by assimilating radar-derived ice thickness measurements
in order to constrain the calculation so that the final bed
map is as close as possible to observations where they are
available. To account for all measurements of ice thickness
Hobs, along flight tracks T, that lie within the model
domain Ω, the following cost function is minimised:

J ðHÞ ¼
ð
T

1

2
ðH �HobsÞ2dT þ

ð
Ω
γ∥ðrH � n∥Þ

2dΩ

þ
ð
Ω
γ?ðrH � n?Þ

2dΩ; ð6:59Þ

where n∥ and n? are unit vectors parallel/perpendicular to
ice velocity, and γ∥ and γ? are constant regularisation
parameters. The controls are the observed velocity and the
apparent mass balance. These input fields are allowed
to change within their respective error margins. This
method led to the development of BedMachine Greenland
(Morlighem et al., 2014, 2017) and BedMachine Antarctica
(Morlighem et al., 2020).

6.4.3 Bayesian Method
Werder et al. (2020) proposed to combine the two-step
approach from Huss and Farinotti (2012) with a Bayesian
inversion scheme. In Werder et al. (2020), the parameters α
(cf. Eq. (6.42)) are apparent mass balance (parameterised in
Huss and Farinotti, 2012), ice temperature, basal sliding
factor, and extrapolation parameters for thickness and vel-
ocity. The last two parameters are considered because the
method of Huss and Farinotti (2012) collapses each glacier
into a flowline, and then extends to a thickness map through
an ad-hoc extrapolation. The observations considered are
surface velocities (which the model of Huss and Farinotti,
2012 was augmented to calculate) and (where available)
thickness measurements. A Markov-Chain Monte Carlo
(MCMC) method is used, allowing for efficient investiga-
tion of the posterior probability density. The method is very
powerful as it does not presume the form of the posterior
distribution (as opposed to methods which make the
Laplacian approximation) and allows a means to incorpor-
ate the growing repository of glacier velocities. However,
the parameters are not spatially resolved within a glacier due
to computational expense, even with the use of MCMC.

6.4.4 Simultaneous Mass and Momentum Method
Perego et al. (2014) introduced a variational assimilation
method, which infers both the basal sliding parameter C (c.
f. Section 6.2) and ice-sheet topography. The method uses an
approach similar to that described in Section 6.2.2 –with key
differences being that the cost function includes a term pen-
alising any imbalance in the mass-transport equation, and
also that ice thickness (or equivalently ice bed) is included as
a control parameter. The method was developed primarily to
initialise climate-forced ice-sheet models without large non-
physical transients in thickness evolution, and was success-
fully applied to a model of the Greenland Ice Sheet.

As with other ‘dual’ inversions for multiple parameters
(Section 6.2.2), there is risk of parameter mixing and non-
uniqueness of solution (Goldberg and Heimbach, 2013).
For this reason, it may be a preferable strategy to adopt an
approach for bed inversion which does not depend on the
momentum balance (such as mass continuity) and then use
the resulting topography to infer ice-dynamical parameters.

6.4.5 Artificial Intelligence and Machine Learning
Neural networks are being used more and more frequently
in environmental science to improve the computational
efficiency of certain processes in numerical model
(Krasnopolsky and Schiller, 2003), or to infer unknown
quantities from a set of input data.

One of the first applications of neural networks in glaci-
ology is from Clarke et al. (2009), who used a neural net-
work to infer the subglacial topography of mountain
glaciers from surface topography with some success.

More recently, Leong and Horgan (2020) proposed
a new technique that is based on adapted architecture of the
enhanced super-resolution Generative Adversarial Network
(GAN) to reconstruct basal roughness in bed topography
maps from ice surface elevation, velocity, and snow accumu-
lation. The neural network is trained in a few regions of
Antarctica where high-resolution (250 m) bed elevation
maps are available, and applied over the entire ice sheet to
generate high resolution bed topography. Meanwhile Jouvet
et al. (2022) and Jouvet (2023) introduce an approach, which
a deep learning-based ice dynamics emulator acts as the
forward model in the assimilation of observations. The emu-
lator is trained on the output of an ensemble of runs carried
out with a physically-based glacier model. These sorts of new
approaches have a lot of potential as the amount of remote
sensing data collected in polar regions increases.

6.5 Perspectives and Outlook

While data assimilation has been an important and popular
research topic since the 1990s, glaciology has been rapidly
shifting from a data-poor state to a data-rich one. In the
1990s, modellers only had partial coverage of ice velocity
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and the thinning rates were mostly unknown. Data assimi-
lation was a powerful tool to add knowledge to the model,
by inferring boundary or initial conditions. Today, we have
time series of complete velocity maps and thinning rate
maps at an ever-increasing spatial and temporal resolution.
Modellers are not yet equipped to take advantage of this
data revolution, as the vast majority of glaciological assimi-
lation platforms cannot assimilate this breadth of informa-
tion. There may additionally be data redundancies (e.g. ice
velocities may be of such high resolution that more resolved
velocities do not add information); however, without
sophisticated uncertainty quantification, these will go
undetected. In order that both existing and newly collected
data are used to their full potential in improving projections
of sea level, transformative data science and machine learn-
ing solutions may be needed.
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7
Data Assimilation in Hydrological
Sciences

Fabio Castelli

Abstract: Hydrological sciences cover a wide variety of
water-driven processes at the Earth’s surface, above, and
below it. Data assimilation techniques in hydrology have
developed over the years along many quite independent
paths, following not only different data availabilities but
also a plethora of problem-specific model structures. Most
hydrologic problems that are addressed through data assimi-
lation, however, share some distinct peculiarities: scarce or
indirect observation of most important state variables (soil
moisture, river discharge, groundwater level, to name a few),
incomplete or conceptual modelling, extreme spatial hetero-
geneity, and uncertainty of controlling physical parameters.
On the other side, adoption of simplified and scale-specific
models allows for substantial problem reduction that par-
tially compensates these difficulties, opening the path to the
assimilation of very indirect observations (e.g. from satellite
remote sensing) and efficient model inversion for parameter
estimation. This chapter illustrates the peculiarities of data
assimilation for state estimation and model inversion in
hydrology, with reference to a number of representative
applications. Sequential ensemble filters and variational
methods are recognised to be the most common choices in
hydrologic data assimilation, and the motivations for these
choices are also discussed, with several examples.

7.1 Introduction

Hydrological sciences cover a vast variety of water-driven
processes at the Earth’s surface, above, and below it. By
a consensus definition, ‘Hydrology is the science that
encompasses the occurrence, distribution, movement and
properties of the waters of the earth and their relationship
with the environment within each phase of the hydrologic
cycle’ (Fabryka-Martin et al., 1983). On more practical
grounds, disciplines other than hydrology deal with the
parts of the hydrologic cycle regarding the open atmosphere
and the oceans, so that the term ‘land components of the
water cycle’ may provide a more accurate term for what
most of the hydrologic scientific community deals with.
Even with this restriction, land hydrology covers an excep-
tionally large variety of processes on spatial scales ranging
from nanometres (e.g. adsorption and transport of

contaminants in porous media) to thousands of kilometres
(e.g. continental land–atmosphere interactions). Over the
last hundred years, hydrology has progressively evolved
from the simple ‘conceptual surface hydrology’ driven by
engineering design problems to a rich ensemble of ramifica-
tions into sub-disciplines and new specialisations such as
hydrometeorology, geohydrology, ecohydrology, sociohy-
drology, and so forth. Main drivers for this continuing
evolution are the physical connectivity of water through
many environmental and social sciences and, for what is
central for the subject of this chapter, by the capacity of
improving the physical base of the hydrologic modelling
through the assimilation of an increasing amount and var-
iety of data. On the other side, the growth of many – and
often largely independent – sub-disciplines has not favoured
the development of main leading or guiding principles,
beyond simple mass and energy balances, which would
remain robust and usable across the many relevant spatial
and temporal scales. When compared to atmospheric sci-
ences, as an example, the route to a holistic modelling
approach is still in its infancy (e.g. Frey et al., 2021).
Therefore, data assimilation techniques in hydrology have
developed over the years along many quite independent
paths, following not only different data availability but
also a plethora of problem-specific model structures (Liu
et al., 2012). Even when dealing with a specific hydrologic
process (e.g. river flow), operational flood predictionmodels
may differ from hydrologic balance models used in water
resources management.

Most hydrologic problems that are addressed through
data assimilation, however, share some distinct peculiarities
that contrast with data assimilation in nearby disciplines
that deal with fluid flows, such as meteorology.

(a) Most of the complexity resides not in the flow itself, but
in the environment that contains/constraints the flow,
and in the forcing. As an example, what may diminish
the predictability of the propagation of a flood wave
along a river reach, and of the possible floodplain
inundation, is not the turbulent nature of the flow,
but the uncertainty in the representation of a complex
river geometry (its vegetation, levees, transverse
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structure, movable bed, etc.; Mudashiru et al., 2021).
Groundwater flow is laminar in most of the cases, but
the porous media that contains the flow is character-
ised, at all relevant scales, by huge variabilities that are
minimally resolved by available direct survey tech-
niques (Maliva, 2016). Evapotranspiration reflects the
complexity of both the turbulent atmospheric bound-
ary layer and the plant structure and physiology
(Wang and Dickinson, 2012); variations of vegetation
canopy structure and soil matric potential are again
enormous, both in time and space. Even though pre-
cipitation is routinely measured at the ground and
from space, its intermittent nature still leaves
a significant amount of error in the reconstruction of
the precipitation fields at the spatial detail that is
required by many hydrologic prediction models, espe-
cially during intense events over small- (Ochoa-
Rodriguez et al., 2015) and medium-size watersheds
(Maggioni et al., 2013). Model structural uncertainties
are strictly bound to parameter-estimation uncertain-
ties (Moges et al., 2021). Process conceptualisation or
oversimplification in many commonly used hydro-
logical models is often the consequence of the limita-
tion in calibrating the parameters of a more physically
based, complex model, so that the response from quite
different models may turn out to have similar likeli-
hoods with respect to some validation dataset (Beven
and Binley, 2014).

(b) Strictly connected with the previous point, the most
important governing equations in hydrology are
instead convergent in nature: for a given environment
(e.g. a given set of model parameters), the mathemat-
ical model will converge in time towards the same
solution even when starting from quite different initial
conditions. A vertical column of soil will tend to dry
out, towards a certain equilibrium soil moisture pro-
file, until a new precipitation event arrives (Zeng and
Decker, 2009). The initial soil moisture content will
control only the timing to approach equilibrium, not
the shape of the equilibrium profile, which is instead
determined by other environmental parameters (the
soil structure, the density and the osmotic potential of
the plant roots, the depth to the water table . . .). The
convergent, non-chaotic nature of hydrologic equa-
tions is a clear advantage in terms of general system
predictability (no butterfly effect in most hydrologic
processes!), but this theoretical advantage can be fully
used only in case a perfect model is available with
precisely known forcing. For imperfect models and
forcing, the convergent nature affects the efficiency of
many DA techniques. As an example, in sequential
ensemble approaches it may be problematic to explore
the model space with standard filter formulations
(Bauser et al., 2021), requiring ad-hoc techniques
such as bias correction or ensemble inflation. Errors

in model parameters and/or forcing will drive all the
ensemble members towards a biased solution.
Regardless of perturbed model states, new observa-
tions following at too large a distance from the ensem-
ble of the model predictions may cause a rapid filter
degeneracy.

(c) Some key state variables are routinely observed on
a very sparse set of discrete points (e.g. river discharge,
groundwater level) or inferred quite imprecisely from
very indirect measurements. Among these last vari-
ables, soil moisture is the most notable one. On one
side, it provides the key control on substantially all the
surface hydrologic fluxes so that its estimation is a
central issue in most hydrologic problems (Entekhabi
et al., 1996; Seneviratne et al., 2010; Berghuijs et al.,
2016). On the other side, while station density in
ground measurement networks is too low to resolve
soil moisture spatial variability, current satellite
remote sensing techniques provide soil moisture
retrievals that are characterised by accuracy levels
that, in many cases, are just a few tens of percent better
than open-loopmodel simulations with reliable forcing
(Dong et al., 2020). Also, accuracy of satellite remote
sensing retrievals of soil moisture dramatically drops
below the very few top centimetres of the soil and over
regions characterised by high variability of terrain
slope or by dense vegetation cover (Chan et al., 2017;
Babaeian et al., 2019).

(d) Scarce or indirect observation of most important state
variables, together with extreme spatial heterogeneity
and uncertainty of controlling physical parameters,
has traditionally pushed towards the development
and operational use of incomplete or conceptual mod-
elling. It is then still pending the enormous (and too-
often neglected) problem of dealing with large and
statistically unknown model structural errors. On the
other side, adoption of simplified and scale-specific
models allows for a substantial problem reduction
that partially compensate these difficulties, opening
the path to the assimilation of very indirect observa-
tions and efficient model inversion for parameter
estimation.

In the remaining sections, we will illustrate, with reference
to a selection from a large literature and a few specific
studies, how the techniques of data assimilation in hydrol-
ogy have been shaped by these peculiarities. We will distin-
guish in the first case among state estimation and
geophysical inversion problems, with broad distinction in
the first case between large-scale state estimation for land–
atmosphere interaction and basin-scale hydrologic predic-
tion, and in the second case, between static and dynamic
inversion. Data assimilation in snow hydrology is intention-
ally omitted in this review, being the topic of a dedicated
chapter in this same book. A short last section addresses
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some emergent topics, fuelled by the unprecedented avail-
ability of new types of data and by the spreading of the joint
use of physically based and artificial intelligence (AI)-based
modelling.

7.2 State Estimation

7.2.1 Soil Moisture, Global Earth Observation,
and Large-Scale Land Assimilation Systems

State estimation (in the sense of theDA terminology) in land
surface hydrology has been developed with reference to
a number of different variables, but soil moisture is by far
the one that has received the most attention. This is because:
(a) soil moisture is the key variable controlling and coupling
the water cycle, energy cycle, and carbon cycle at the land
surface (Seneviratne et al., 2010); it also controls the occur-
rence of hydrologic extremes such as droughts (Bolten et al.,
2010) and floods (Berthet et al. 2009); (b) soil moisture
measurements at the ground are way too sparse and discon-
tinuous to provide enough data for most state estimation
problems, while satellite remote sensing provides indirect
and partial measurements limited to the very few top centi-
metres of the soil layer (Babaeian et al., 2019); moreover,
only very recent missions provide soil moisture estimates at
kilometre-scale resolution useful for small- and mid-size
watershed studies, to the cost of quite long revisit times
(Bauer-Marschallinger et al., 2019). Aside from empirical
techniques based on short-wave infrared remote sensing
(Verstraeten et al., 2006; Zhang et al., 2014), retrieval of
soil moisture with active and/or passive microwave remote
sensing is itself a geophysical inversion (data assimilation)
problem (Entekhabi et al., 1994; Kerr et al., 2012; Das et al.,
2018). Solutions of such inversion problems are however
generally provided to the hydrologic users’ community as
remote sensing products. They are mainly based on single-
imagery processing with eventual ancillary information on
atmospheric state and land use, with no actual use of a true
hydrologic model. More advanced inversion techniques are
recently used to provide enhanced products (in terms of
spatial resolution) by post-processing the overlapping of
consecutive measurement footprints or by merging the
observations from different satellite platforms (Hajj et al.,
2017; Lievens et al., 2017). As an example of the first case,
the Backus–Gilbert interpolator, that is an optimal solution
to ill-posed inverse linear problems, is used to obtain a soil
moisture product at 9 km resolution starting from the native
resolution of about 36 km of the passive radiometer of the
Soil Moisture Active Passive (SMAP) mission (Chan et al.,
2017). Still provided to the users as a SMAP soil moisture
product (precisely, a Level-4 product) is the result of the
sequential assimilation of the SMAP radiometer brightness
temperature observations into a physically based hydrologic
model (Reichle et al., 2019); the assimilation algorithm is
based on the NASA Catchment land surface model with

a spatially distributed ensemble Kalman filter (EnKF).
Several important advantages are obtained through this
extensive data assimilation approach in a model capable
of resolving the joint water and energy balance in the soil-
vegetation layers: production of a continuous 9-km, 3-hour
product, covering also the regions where high vegetation or
terrain slope variability are known to decorrelate the surface
soil moisture from the sensor signal (Chan et al., 2017);
estimation of the soil moisture state and profile down to
about 100 cm, a depth considerably larger than the very few
top centimetres whose moisture directly influences the sur-
face brightness temperature measured by the radiometer,
hence covering most of what is considered as the ‘hydro-
logically active’ soil layer (Castillo et al., 2015); use of a very
informative signal for the soil moisture dynamics, that is
precipitation, with data from a variety of sources (Balsamo
et al., 2018). On the flip side, there is the potential bias
introduced by the model structural error and poorly
known model parameters, in particular the soil hydraulic
properties, aggravated by the typical convergent behaviour
mentioned in the introduction; a delicate pre-calibration of
the hydrologic model is then needed, that may be periodic-
ally improved as new calibration datasets become available,
but still resulting in quite nonhomogeneous product accur-
acy over different regions (Reichle et al., 2017).

Together with land surface temperature, soil moisture is
the central state variable in the large-scale Land Data
Assimilation Systems (LDAS; Balsamo et al., 2018), that
have been developed as hydrological companions to oper-
ational weather forecasting systems to improve their estima-
tion and prediction of near-surface temperature and
moisture. Advanced Scatterometer (ASCAT) soil wetness
observations (Wagner et al., 2013) are assimilated together
with standard ground meteorological data in the UK
MetOffice LDAS using an extended Kalman filter (Gomez
et al., 2020). The North American hydrologic community
model ‘Noah’ is used at the US NCEP to assimilate daily
soil moisture fields from the NOAA-NESDIS Soil Moisture
Operational Product System (SMOPS), based on both
ASCAT and Soil Moisture and Ocean Salinity (SMOS)
data, with an EnKF (Zheng et al., 2018). Themore complete
global Land Surface Model (LMS) of this kind is probably
the CHTESSEL used at ECMWF, also representing the
surface–atmosphere carbon exchanges together with the
water and energy ones (Boussetta et al., 2013). A large revi-
sion effort is underway for such an LDAS, with the aim of
better exploiting the use of different data sources to improve
the hydrologic components, such as the vegetation dynam-
ics or the fluxes from snow cover and large water bodies, and
also to directly connect the land analysis to downstream
operational applications such as flood prediction (Mason
et al., 2020; Boussetta et al., 2021).

Most of these LSMs here have been initially designedwith
the main purpose of providing lower-boundary conditions
to the atmosphere by describing the vertical fluxes of energy
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and water (recently carbon too), between the land surface
and the atmosphere; much less attention was originally
devoted on horizontal fluxes such as runoff (Massari et al.,
2015; Zsoter et al., 2019). This allowed the development of
quite simplified modelling and data assimilation frame-
works, with the main goal of improving the accuracy of
the weather forecast but not necessarily the hydrologic one
too. Up to quite recently, LSMs have suffered from signifi-
cant limitations in the representation of important hydro-
logic fluxes and states, also at the surface; not to mention
groundwater, the generation and propagation of runoff is
the most important one (Wang et al., 2016). From the data
assimilation point of view, with most techniques based on
sequential filters, the increments of the surface moisture
state, while improving the lower boundary condition for
the weather prediction model, usually add or remove water
independently from each computational cell. This may have
a potentially strong negative impact on the correct represen-
tation of the hydrologic cycle by opening the water budget,
causing potential problems when the focus switches to
hydrologic runoff forecasting such as in the Global Flood
Awareness System (GloFAS), based on the ECMWF-
HTESSEL LDAS (Harrigan et al., 2020). As an example,
Zsoter et al. (2019) again point out that while this version
of the LDAS system largely improves the accuracy of the
estimation of some key variable for the vertical land–
atmosphere exchanges, such as the 2-m temperature and
snow depth, it is, at the same time, deteriorating the
prediction of peak river flow in high latitude snowmelt-
dominated areas. Localised improvements in flood predic-
tion are also detected, but, in general, the overall water
budget suffers from adding or removing water during the
data assimilation, introducing possible inconsistency
between upstream and downstream flood predictions in
the same watershed.

To overcome these drawbacks, global LMSs have been
coupled with river routing models, constructing Global
Hydrologic Models. The main purpose is to quantify fresh-
water flows and storage changes at regional and continental
scales, hence preserving the water budget of world major
watersheds (Sood and Smakhtin, 2015; Iscitsuka et al.,
2021). As a further indication of the widespread hydrologic
approach where model structure (represented or neglected
processes, resolved scales, etc.) is strongly bound to the
possibility of assimilating specific data sources, these type
of modelling are considered to be the ideal framework for
assimilating data from upcoming satellite missions specific-
ally designed to monitor global surface waters, such as
the SWOT (Surface Water and Ocean Topography;
Biancamaria et al., 2016), launched in December 2022. In
a set of OSSEs experiments, Emery et al. (2020) propose an
asynchronous EnKF assimilation scheme to solve the prob-
lem of very long and asynchronous SWOT revisit times
(21 days) over the modelled domain. However, this family
of Global Hydrologic Models still uses quite coarse spatial

resolutions (typically a 0.5 x 0.5 cell grid). In eachmodel grid
cell, the surface reservoir is a unique river channel that may
gather multiple real river branches, not fully resolving yet
the full details of river-waters extent (river widths larger
than about 100 m) that SWOT will provide (Altenau et al.,
2021).

7.2.2 State Estimation in Distributed Hydrologic
and Hydraulic Models for Runoff and Flood
Prediction

When the main focus of state estimation (and eventual
prediction) is channel runoff, river flow (stage or discharge)
observations are the most commonly assimilated data in
watershed distributed hydrologic (Clark et al., 2008; Xie
et al., 2014; Ercolani and Castelli, 2017) and river hydraulic
models (Neal et al., 2007). Assimilation of river flow data
faces a number of specific problems: (a) discharge data, or
translation of stage data into discharge estimates, are char-
acterised by a non-trivial error structure, with relative error
increasing in magnitude for extreme flow conditions
(Domeneghetti et al., 2012); and (b) river gauging stations
are very sparse and usually cover a very limited number of
main river branches also in quite large watersheds; small size
(e.g. areas of the order of 100 km2 or less) watersheds
remain substantially ungauged and the global number of
functioning river gauges is progressively decreasing (Allen
et al., 2020).

As an alternative to relying on sparse ground observa-
tions, in particular for prediction or estimation of flood
inundation dynamics, several recent studies explored the
use of satellite altimetry data over open water for improving
the accuracy of hydrologic and hydraulic modelling
(Grimaldi et al., 2016). Most common choice, dictated by
the need of resolving meter-scale river and flood plain fea-
tures (Annis et al., 2019), is the use of SAR products
(Hostache et al., 2018, Cooper et al., 2019). High-
resolution SAR imagery comes to the detriment of the
revisit time frequency, so that the available data for assimi-
lation in the flood inundation model may be considered as
sporadic: it is quite commonly the case that only one inun-
dation map (or a very few in the largest basins) falls within
the time-span of the flood wave (Dasgupta et al., 2021).
Also, quality of SAR observation of flood extent may vary
dramatically from case to case, depending on the geomet-
rical characteristics of the inundated environment (Pierdicca
et al., 2009), and this needs to be taken explicitly into
account in the design of the assimilation algorithm (Waller
et al., 2018). As previously discussed, mathematical models
of river flooding are typical convergent systems, where the
dynamics is strongly constrained by boundary conditions
(e.g. hydrologic runoff converging into the river network)
and model parameters (e.g. geometry and roughness of
the river and floodplain). For such a system, assimilation
of observations that are sporadic in time is affected by
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a serious problem of the short persistence of the improve-
ments of the model performances. Regardless of the assimi-
lation technique, the model predictions after the state
update rapidly converge, in a few hours or even minutes
depending on the watershed size, to the same open-loop
prediction without the SAR altimetry assimilation
(Andreadis and Schumann, 2014). This problem intersects
with the one, common to many other assimilation problems
over large multidimensional domains tackled with ensemble
techniques, of spurious error growth due to under-sampling.
Two-dimensional flood inundation models assimilating
SAR water altimetry data would require, if a global filtering
approach were to be adopted, a number of ensemble mem-
bers larger than the dimension of the state vector. This
is usually prohibitive from a computational perspective,
and unavoidable under-sampling may bring inconsistent
updates with spurious, unphysical spatial correlations over
distances that are too large. On the other hand, surface
water flow in rivers and floodplains is again very strongly
constrained by the channel and terrain geometries. At spa-
tial resolutions of tens of meters commonly used by such
models, river flow direction is given; in the floodplains,
where the depth-averaged flow may follow more complex
2D patterns, terrain slope, and land singularities (road
embankments, buildings, etc.) strongly reduce its degrees
of freedom. This prior constraint to the modelled dynamics
opens the door to the possibility of tackling the under-
sampling problem through localised filters (Anderson,
2007), where the localisation of the covariance may be
based on physical grounds. As an example, Garcia-
Pintado et al. (2015) use a spatial metric, to localise the
covariance, defined as the maximum among the Euclidean
and the ‘along-the-channels-network’ distance. The main

assumption is that the physical connectivity of flows along
predefined paths, that is the channel networks, would
strongly influence the development of the forecast error
covariance.

A promising path to improve the estimation and predict-
ability of flood inundations is the joint assimilation of trad-
itional river gauge data and satellite imagery. Sinergy
among the two different data sources may potentially
solve both the issue of spatial sparsity of river gauge data
and the sporadicity of high-resolution satellite flood map-
ping. Along this path, Annis et al. (2022) use an EnKF to
jointly assimilate ground observations from a set of river
gauging stations and inundation extent imagery from
a Landsat-7 overpass. Among other advantages, the quite
precise level measurements at the river gauging stations
balance the lower informative content of the optical imagery
(i.e. flooding extent only), with respect to SAR altimetry; as
in many other possible cases, especially for fast flooding
dynamics, SAR imagery was not available for the studied
event. As shown in Fig. 7.1, the estimation uncertainty of
the flood extent is sensitive to the data assimilation config-
uration. If only river gauge data were available, one river
stage time series only would reduce the uncertainty by
a substantial amount; almost an order of magnitude reduc-
tion is attained assimilating the Landsat water extent, but
such a reduction is limited to a very few hours if Landsat is
assimilated alone; river gauge data at four different loca-
tions are necessary in this case study to reach the same
level of uncertainty of the Landsat assimilation, with
further improvement for a few hours in case of joint
assimilation. Localisation of the update needs to be
applied for the assimilation of point river stage observa-
tions too. The along channel upstream and downstream
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water level correction is performed applying a distance-
based gain function in this case, then propagated to the
nearest floodplain cells. Furthermore, to coherently
assimilate more than one simultaneous stage observa-
tion, updates propagated to the same computational
cell from different gauge locations are weighted with
the inverse of the distance.

Sequential filters such as the EnKF are quite straightfor-
ward to implement in their standard formulation, also for
multidimensional problems, and this is one of the main
reasons for the wide spread of its use. When filter modifica-
tions need to be introduced, such as the covariance or
update localisation as described here, the issue is not the
more complex implementation but rather the introduction
of quite arbitrary choices in the form and parameters of the
filter modifiers. Not to be forgotten is the issue of conver-
gent behaviour of many hydrologic systems, including the
flood modelling. Recognising that the problem of the rapid
attraction of the model trajectories towards a biased solu-
tion can be efficiently addressed by reducing the model
structural error, the most adopted filter modification is the
filter augmentation to estimate the most uncertain model
parameters and/or model inputs and/or boundary condi-
tions on top of model states (Moradkhani et al., 2005;
Zhang et al., 2017; Liu et al., 2021). As an example, in the
case of SAR imagery assimilation for flood estimation,
Garcia-Pintado et al. (2015) augment the filtered bathym-
etry state with channel Manning roughness parameter,
downstream river level, and lateral hydrologic input flows
to channels.

As mentioned, river gauging sparsity may be such that
a given watershed of interest may result totally ungauged.
State augmentation with model parameters has also been
introduced to address this issue. Xie et al. (2014) propose
an EnKF assimilation strategy for improving the runoff
prediction of a distributed hydrologic model in nested
ungauged subbasins (i.e. ungauged subbasins that have
gauged upstream or downstream neighbours); state aug-
mentation with model parameters for both ungauged and
gauged subbasin, with prescribed correlation among them,
is demonstrated to successfully propagate state updates
from gauged to ungauged locations.

Variational assimilation techniques, and variational
assimilation with an adjoint in particular, may be more
challenging to implement, with respect to ensemble-based
sequential filters, as they require the capability of imple-
menting the task of coding the adjoint model. This may be
an impossible task in cases where the numerical details of
the chosen prediction hydrologic model are not available.
However, when the adjoint model can be implemented, the
variational assimilation approach has the undoubted merit
of a physically based representation of the sensitivities
among the model states and between the model states and
model parameters (Margulis and Entekhabi, 2001). This
physically based sensitivity estimate may turn out to be

crucial in case of sparse observations, and it may then be
a valid alternative to the empirical definition of the localisa-
tion structures in EnKF techniques. Ercolani and Castelli
(2017) take advantage of the predefined paths and directions
of the flow routing along the channel network to reduce the
assimilation of sparse river discharge data, with a fully
distributed (2D) hydrologic model for flood prediction,
into a multivariate 1D variational assimilation scheme
(see Appendix for a general formulation of such a scheme).
The scheme allows, without the need of predefined correl-
ations, the estimation of non-observed model states and
parameters. In a first hindcast experiment on a set of real
high-flow events in a mid-size (approx. 8,000 Km2)
Mediterranean watershed, simultaneous assimilation of
half-hourly discharge data at multiple locations was demon-
strated to improve the accuracy of the flood peak prediction
along the entire channel network, provided that assimilated
data at least cover part of the rising limb of the flood wave.
As largely expected, accuracy of prediction at downstream
locations further increases when flood peak is observed
upstream (Fig. 7.2). However, as a further demonstration
of the convergent nature of the problem, full advantage of
the flow data assimilation is reached by updating not only
the flow state along the channel network, but also the
hydrologic input to the channel (i.e. the runoff in the direct
contributing hillslope cells).

The possibility of updating the prior estimate of the event-
antecedent soil moisture condition by assimilating the river
flow data is also explored in the same study, based on the
frequently verified hypothesis that the runoff response
to precipitation events is strongly sensitive to such a condi-
tion (DeChant and Moradkhani, 2012). To overcome the
difficulty of computing the Jacobian around threshold-
switching soil moisture state, a mixed Monte Carlo–
Variational approach is proposed, addressing at the same
time the need of mass conservation that would be violated
by updating runoff only (Fig. 7.3). At each iteration of the
variational algorithm, an iteration of a particle filter is also
run for the component of the model generating the hill-slope
runoff, where main stochastic perturbation is inserted in the
structure of the spatial interpolation of rain gauge data and
in the initial soil moisture condition. The update of the
lateral runoff input to the channel network is then used to
estimate the posterior likelihood of the runoff fields result-
ing by the various particles.

Direct assimilation of various soil moisture products in
hydrologic flood prediction models has been also demon-
strated to improve the prediction accuracy in several cases
(Cenci et al., 2017; Massari et al., 2018; Azimi et al., 2020;
Baugh et al., 2020). The main target of the prediction is now
the formation of the flood-wave and its propagation along
the main rivers, while eventual floodplain inundations are
resolved in downstream, loosely coupled hydraulic models.
In most of such studies, the EnKF, the particle filter, and
their variants are the preferred choices given the direct
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spatial observation of the main state variable. However,
accuracy of EnKF depends on the ensemble size. The
ensemble size may remain quite small for lumped or semi-
distributed models (Alvarez-Garreton et al., 2015). For
operational spatially extensive or high resolution fully dis-
tributed models, CPU and storage availability may limit the
ensemble size to number much smaller than the one needed
for a potentially reachable accuracy. Alternative paths have
also been recently proposed in the hydrologic literature
to overcome this limitation, using Polynomial Chaos
Expansion to implement what is termed Probabilistic (or
Stochastic) Collocation Method as a substitute of the
Monte Carlo simulations that are at the base of the classical
EnKF (Fan et al., 2015). If the computation of the PCE
polynomial coefficients is still challenging for high-
dimensional problems (the number of coefficients to be
estimated scales quadratically with the number of
unknowns), such a framework allows for a more efficient
implementation of the multi-fidelity decomposition of the
filter. As an example, Man et al. (2020) use an analysis of
variance (ANOVA type) to decompose the low-fidelity and
the high-fidelity-residual model responses in a limited set of
members. A quite subjective choice is however left in the
multi-fidelity approach: which simplification the low-fidelity
model operates needs to be specified by choices of terms to

be cancelled from the high-fidelity one. It results in an
experience-based compromise between the need to cut off
the most computationally demanding terms in the hydro-
logic model and the danger of an excessive structural error
in the low-fidelity model (Ng and Willcox, 2014).

7.3 Geophysical Inversions

7.3.1 Inversion for Static Parameters
A classical inversion problem in hydrological sciences,
dating back long before the era of widespread availability
of remote sensing data, has been formulated in the field of
hydrogeology, where the main challenge to be faced was
the estimation of spatially variable hydraulic properties of
aquifers using very sparse wells data (Carrera and Neuman,
1986). What was termed the Bayesian geostatistical
approach in the earlier groundwater data assimilation
literature (Kitanidis, 1996) essentially relied on the formula-
tion, with the use of Bayes’ theorem, of the joint posterior
probability density function (pdf) of the unknown model
parameters and their prior expectations. The pdf of
unknown parameters is itself parameterised through
a generalised covariance function. Optimal parameters are
obtained by seeking the minimum of the negative log
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likelihood of the pdf through an iterative Gaussian–Newton
method. Geophysical inversion for groundwater modelling
leads quite often to ill-posed problems, which can be tackled
by prescribing a probabilistic model for the unknown priors
as in the method here. An alternative, when a prior pdf
cannot be conveniently prescribed, is the addition of one
ormore regularisation terms to the function to beminimised
(Steklova and Haber, 2017). These terms also need some
sort of ‘prescription’, which can be formulated on the base
of preliminary geological studies or Kriging-like geostatis-
tical analysis.

Continuous advances in hydrogeological sensing technol-
ogy now provide increasing volumes of hydrogeophysical
and geochemical data that can be assimilated to estimate
high resolution fields of aquifer properties (Harvey and
Gorelick, 1995; Hochstetler et al., 2016; Rajabi et al.,
2018). Two main implementation bottlenecks arise, in con-
sideration also that very few hydrogeological studies are
supported by such large projects to gain access to high-
performance computing resources: storage andmatrix oper-
ations (e.g. inversion) on large and dense covariances of
the order of the square of the model size; the computation
of the variations of the forward map (i.e. the sensitivity of
the groundwater hydrogeochemical model with respect to
the unknown parameters) from the model parameters
to the available measurements on model states. At each
iteration, a number of model runs of the order of min
(M,N) is required to compute a numerical approximation
to the Jacobian, M being the number of unknown param-
eters and N the number of states. The use of the adjoint
technique (Talagrand and Courtier, 1987), when the model
structure allows the development of an adjoint model (see
again Appendix for a general formulation of a variational
assimilation/inversion problem with an adjoint in
a multivariate dynamics), increases the accuracy of the esti-
mation of the model sensitivity to parameters also for very
non-linear problems, hence increasing the convergence
speed of the iterative procedure, but the number of model
runs needed in each iteration remains substantially the
same. Recent study efforts have been then focused on the
goal of decreasing the computational burden of the original
Bayesian Geophysical Inversion (Ghorbanidehno et al.,
2020), introducing such techniques as the eigenspectrum-
based compression of covariances, the use of principal com-
ponents to reduce the number of needed model runs (Lee
et al., 2016), the use of proper orthogonal decomposition to
reduce the adjoint model space in order to save both com-
putational and coding costs (Altaf et al., 2013), or of meta-
models such as polynomial chaos expansion (Laloy et al.,
2013).

As in other fields, the geophysical inversion for aquifers
characterisation also proceeds in the direction of explor-
ing the usability of observations on state variables
describing also processes that are not the main traditional
hydrologic ones but that are physically linked to them.

The conceptual path is, as in other applications recalled
further down, having the use of new data driving the
increase in complexity of the modelling, and not vice
versa. As an example, Ceccatelli et al. (2021) coupled
a surface hydrologic model with a groundwater model
including aquifer compaction dynamics to study the sub-
sidence induced by excessive groundwater abstraction.
Unknown aquifer parameters (hydraulic conductivity,
elastic and inelastic storage coefficients) have been esti-
mated by assimilating three years of dense Sentinel-1
ground displacement data and sparse (in space and
time) wells data (Fig. 7.4), with aquifer recharge provided
by the coupled surface hydrologic model whose main
parameters were calibrated through river discharge data.
Given the ill-posedness of the problem, a variational data
assimilation scheme with non-linear Tikhonov regularisa-
tion (Hou and Jin, 1997) has been used in this case.

Finally, it can be considered as a prototypal form of
geophysical inversion the use of states observations for the
more traditional calibration of distinct types of (hydrologic)
model parameters, both conceptual and physically based
ones. The review of the main approaches to hydrologic
model calibration would require an entire chapter; we just
mention here a few recent examples, such as Yang et al.
(2016) and Pinnington et al. (2021), where the calibration is
more formally framed as a data assimilation problem.

7.3.2 Inversion for Dynamic Parameters
Geophysical inversion may be dynamic too, that is, finalised
at the estimation of time-varying model parameters. From
a formal point of view, a variable that would be considered
as a state in a more complex model may be considered
a time-varying parameter in a simpler model; a prediction
equation for the variable is not provided in the first case, so
that the variable can be mathematically treated as a model
parameter. This may be a convenient alternative to direct/
sequential state estimation when the variable to be estimated
is not observed (or, more precisely, an invertible observation
operator cannot be explicitly provided for that variable).

A typical example is the use of simplified surface energy
balance models (Chen and Liu, 2020) to infer the partition-
ing of residual solar energy into latent (i.e. evapotranspir-
ation) and sensible heat flux by assimilation of Land Surface
Temperature data from geostationary (Xu et al., 2014) and
polar orbiting (Xu et al., 2019) satellites. Eventually, these
methods can simultaneously assess the turbulent fluxes and
the control of soil moisture on their partitioning, through
the definition of ad hoc soil moisture indices or soil-moisture
related dynamic parameters such as the evaporative fraction
(Caparrini et al., 2003, 2004; Bateni et al., 2013, 2014).
Parsimony of the model, beyond obvious computational
aspects, is chosen in these cases for a variety of reasons:
the possibility of easily formulating and coding an adjoint
model, reducing the problem from a full 4D to a lower
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Figure 7.4 Main results from a DA assimilation experiment of well hydraulic head and ground displacements for geophysical inversion of
a phreatic aquifer in Central Italy (adapted from Ceccatelli et al., 2021). Top and mid panels: scatter plots of modelled vs. observed
hydraulic heads and displacements at selected verification locations (not used in DA) prior (left) and after (right) parameters optimisation.
Bottom left: resulting overall aquifer balance, highlighting strong interactions with surface hydrology. Bottom right: one of the spatial
fields of aquifer properties estimated through geophysical inversion.
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dimensional domain; minimising the further noise that may
be introduced by model components whose parameters or
forcing are poorly constrained or observed at the scale of
interest. Specifically, the use of the simple surface energy
balance, eventually separating the contribution of soil and
vegetation as sources of flux with distinct dynamics (Kustas
and Norman, 1999), is chosen to the very purpose of not
using a full soil–water mass balance. At scales from a few
hundred meters up, horizontal redistribution of energy at
the surface can be neglected and the problem treated as
multivariate rather than multidimensional in the horizontal
directions; model spatial resolution is immediately adapted
to the characteristics of available land surface temperature
(LST) satellite observations; no systematically biased soil
moisture estimates are forced by inadequate representation
of soil hydraulic properties or rainfall input; even more
important for the development of a variational assimilation
techniques, the complexity of the variational treatment of
the threshold behaviour of soil moisture dynamics and infil-
tration and switching boundary conditions is avoided.

With reference to the mathematical formulation of the
1-D variational assimilation provided in the Appendix, in
the simpler formulation of Caparrini et al. (2003, 2004) the
energy balance is represented as an ordinary differential
equation in time for LST, in the so-called force–restore
method (Noilhan and Planton, 1989) with weighted contri-
bution from vegetation canopy and bare soil, solved inde-
pendently for each ‘pixel’ of LST observations. Inverted
dynamical parameters are the evaporative fraction for soil
and vegetation, implicitly controlled by soil moisture in
water-limited hydrologic regimes, and the bulk neutral
heat transfer coefficient, depending on vegetation type and
phenological state. To accommodate a possible underdeter-
mination of the inversion problem (M ¼ 2N, in the notation
of the Appendix), the inverted parameters are forced to
remain constant on different time scales while assimilating
hourly LST observations: daily for the evaporative fraction
and half-monthly for the bulk heat transfer coefficient. The
assimilation, fully resolving the diurnal cycle of land energy
balance components including the ground heat flux, pro-
ceeds with a daily assimilation cycle nested in an outer half-
monthly one. Simplicity of the formulation allowed to easily
merge hourly, lower resolution, LST observations from
geostationary satellites (GOES, METEOSAT) with
higher resolution, daily observations from instruments on
polar orbiting platforms (AVHRR, MODIS). More recent
improvements of this quite simple scheme followed what
can be termed a ‘data-driven physically based’ approach,
where further physically based model equations are added,
limited to the need of assimilating the observations of other
variables to resolve some parameter indeterminacy in the
main reference model equation. As an example, Bateni et al.
(2014) added a predictive equation for the Leaf Area Index
to the surface energy balance in order to assimilate SEVIRI
estimates of Fraction of Photosynthetically Active

Radiation absorbed by vegetation (FPAR) and hence to
further constrain the inverted values of the vegetation heat
transfer coefficients; even more, adding a new assimilated
observation allowed a more robust inversion for the evap-
oration fraction with distinct values for vegetation and bare
soil. A similarly very parsimonious bulk water balance
model has been finally added in Abdolghafoorian and
Farhadi (2020) to assimilate also soil moisture retrieval
from the SMAP mission.

7.4 Some Emerging Topics

Progress in the development and testing of new data assimi-
lation systems for hydrologic applications is in continuous
acceleration, with the number of scientific publications
doubling about every decade. A search on Scopus of the
terms ‘data AND assimilation AND hydrology’ (quite
restrictive, but still indicative) on 29 September 2021,
returned 12 items for year 2000, 31 for 2010, and 62 for
2020. Important drivers for such growth have been the large
availability of new data sources, mainly from satellite, such
as the development of efficient data distribution platforms
in the early 2000s or the new satellite missions for soil
moisture monitoring about a decade later. On top of the
increase of available computational power, which has
always been and remains to be a crucial limiting factor,
fuel for some important recent advancements is coming
from two sides: the availability of new sources of data and
the inclusion of AI algorithms in the data assimilation
systems.

A notable example of new types of observations, well
representative of the ‘big-data era’, that just started to
enter in formal assimilation processes are the so-called
crowdsourced data produced by a variety of activities
mainly (but not only) in the realm of ‘citizen science’
(Nardi et al., 2021). These observations may constitute
a valuable complement of standard hydrological monitor-
ing, useful to cover the large number of still ungauged or
poorly gauged small- and mid-size watersheds. Typical
examples are images and video taken from cellular phones
during flooding events (Le Coz et al., 2016), simplified
river stage measurements submitted by volunteers via cel-
lular phone text messages (Weeser et al., 2018), or hydro-
meteorological data from a variety of opportunistic
sensors (e.g. smartphones, personal weather stations,
commercial microwave links; de Vos et al., 2020). Main
challenges in the assimilation of such data are related to
their being characterised by random accuracies, larger
errors than standard professional observations, and
irregular temporal frequencies. Avellaneda et al. (2020)
used an augmented EnKF to calibrate the parameters
of a distributed hydrologic model for daily river flow
simulation using stream stage and stream temperature
volunteer data, assessing the sensitivity of the model
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accuracy with respect to the temporal sampling character-
istics. The effects of varying space-time coverage from
social sensors are analysed, with reference to the flood
prediction of two real events, in Mazzoleni et al. (2021).

There is a much longer measurement history and appli-
cation in various hydrological studies of water-stable iso-
topes, which have been demonstrated to provide new
insights into the underlying physics of many hydrological
processes, such as the partitioning of the soil vadose zone
water into evapotranspiration, percolation and discharge
(Good et al., 2015). However, despite the rich literature on
the use of stable water isotopes data in regional and water-
shed studies (see Sprenger et al., 2016a, for a quite exten-
sive review), the formal data assimilation of such data is
still at its infancy and has been so far substantially limited
to model calibration exercises (Birkel et al., 2014; Sprenger
et al., 2016b). Only very recently has the use of stable water
isotopes been framed in state estimation frameworks,
such as the Bayesian update of prior isotopic signatures
to assess the altitude dependence of groundwater recharge
(Arellano et al., 2020), while a first true data assimilation
experiment in a physically based prediction model just
appeared in the atmospheric sciences literature (Tada
et al., 2021), with the use of a local ensemble transform
Kalman filter to assimilate water vapor isotopes in a gen-
eral circulation model.

About the second point of attention, that is, the use of
AI-based algorithms, the novelty of interest here is the
transition from the mere use of machine learning models
as black-box substitutes of the ‘physically based’ hydro-
logical prediction models (Abrahart et al., 2012) to the
joint use of both type of models to improve the efficiency
of data assimilation systems. The ability of AI algorithms
to learn non-linear relationships between different sets
of variables is being proved to overcome certain DA diffi-
culties, with applications on hydrologic prediction and
simulation too. In describing a DA framework as a two-
component system (i.e. a prediction model for the sates
dynamics and a measurement operator relating measure-
ments to model states), machine learning has been proposed
to replace a physically based measurement operator that
may be biased with respect to model states or even
unknown, while leaving untouched the states dynamics
model. Rodriguez-Fernandez et al. (2019) use a neural
network to directly assimilate SMOS brightness tempera-
ture in the H-TESSEL LSM for updating the soil moisture
rather than assimilating, with a standard linear operator,
the SMOS soil moisture product; the neural network is
trained against the H-TESSEL simulations to guarantee
the same climatology for the SMOS-neural network and
the H-TESSEL soil moisture. A similar approach was also
previously followed by Kolassa et al. (2017) with SMAP
data. While these two studies propose an alternative to
existing measurement operators (or measurement models)
upon which the standard soil moisture products are based,

Boucher et al. (2020) even push forward the concept of using
a machine learning algorithm in the place of a classical
measurement operator. They explore the case where this
measurement operator could not be defined on the base of
the prediction model structure. In particular, they use two
distinct types of neural networks to assimilate, with an
EnKF, river discharge and temperature at different time
lags in a lumped hydrologic model where the state variables
to be updated are the levels in conceptual reservoirs (i.e.
conceptual state variables that cannot be measured, neither
directly nor indirectly). With classical techniques, such
a problem could have been solved by using a variational
assimilation with an adjoint such as in the Appendix; the use
of the AI component allows to use the EnKF instead, avoid-
ing the difficulty of having to develop and code the adjoint
model. As previously discussed, hydrological models are
highly likely to have quite large structural errors with sys-
tematic biases. In this respect, AI techniques are also pro-
posed to postprocess the detectable bias of model ensembles
in Monte Carlo type of assimilation with respect to meas-
urements. As an example, King et al. (2020) demonstrate
how a random forest algorithm outperforms other classical
linear postprocessing algorithms in analysing the non-linear
and seasonal behaviour of the bias in a regional snow data
assimilation system.

7.5 Conclusions

A broad review has been presented in this chapter about
how the main data assimilation techniques span the various
fields and key problems in such a wide discipline as hydrol-
ogy. Main ingredients of data assimilation (i.e. observations
and models), vary dramatically across hydrologic applica-
tions in terms of space-time density (the first), complexity
and computational demand (the second), and accuracy and
error structure (both), so that dominant or preferred path-
ways cannot be identified. On the other side, two main
drivers distinguish DA in hydrology from other broad geo-
physical disciplines, namely the large uncertainty in many
environmental parameters (e.g. soil hydrologic properties)
that control the model dynamics, and the very uncertain
observation of key state variables (soil moisture being the
most notable case).

The first driver was initially employed in data assimilation
to solve inverse problems, both static and time-dependent.
Variational techniques have been often preferred over
sequential (filter-type) techniques in this case, mainly due
to the possibility of more easily and directly exploring the
sensitivity of model response with respect to model param-
eters even when the observable model states and unknown
parameters to be inverted for were quite ‘conceptually dis-
tant’ (e.g. the discussed case of inverting for aquifer proper-
ties while observing ground surface subsidence). Among
different variational techniques, the use of adjoint models
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had quite a success due to the possibility, in specific
application-oriented problems, to use quite parsimonious
models’ structure; a parsimony that brought the double
advantage of reducing the dimension of model states and
parameters and strongly facilitating the coding of the
adjoint model. Among the various aspects that still require
scientific advancement in hydrologic inversion problems,
the most challenging remains the solution of many under-
determined problems, where the number of available obser-
vations is smaller than the number of unknown parameters
and, on top of that, such observations are affected by large
measurement errors. The use of new types of data, in par-
ticular the ones coming from citizen science initiatives, is
opening newer challenges along this general pathway.

Treatment of large measurement errors, even in the pres-
ence of frequent and/or dense observations such as from
remote sensing, is again the main challenge along the path
of state estimation problems. Various types of non-linear
sequential filters (the EnKF being the most widely used)
coupled to more and more complex models has been the
main answer so far to this challenge: in the face of large
measurement errors, it is attempted to reduce the model
errors as much as possible by increasing the number of
represented processes (i.e. the model’s ‘completeness’);
sequential filtering, especially the ensemble one, allow for
a more precise and consistent treatment of both error types
and the objective definition of their optimal weighting.
Computational demand and algorithmic efficiency remain
among the key issues, despite the continuous increase in
available computational power, when this approach is
applied to large data assimilation systems; merging AI algo-
rithms with ‘process-based’ data assimilation techniques is
already established as themost promising direction to tackle
these issues.

7.6 Appendix: Multivariate 1D-VAR Assimilation
with an Adjoint

Let the hydrologic model be described by a set of coupled
ordinary differential equations for the set of different state
variablesX1;…;XN (e.g. soil moisture, surface storage, river
discharge), possibly distributed in space, controlled by the
set of model parameters and forcing inputs θ1;…; θM (e.g.
soil hydraulic conductivity, channel roughness, but also
precipitation, solar radiation, etc.), eventually distributed
in space too:

dXi

dt
¼ FiðX1;…;XN jθ1;…; θMÞ ; i ¼ 1;…;N: A7:1

For the sake of conciseness, both stationary model
parameters and time-varying forcing inputs are included in
the same set of variables θ, whose main difference from the
states X is the lack of a physical constraint for the dynamics
(i.e. a predicting equation).

Let Y1;…;YN be the set of observations, related to the
state variables by measurement operators H1;…;HN .
Without much loss of generality, we may assume that the
measurement operators are linear and mutually independ-
ent, i.e.:

Yi ¼ HiXi ; i ¼ 1;…;N: A7:2

A variational data assimilation algorithm may be then con-
structed as an optimisation problem by minimising the fol-
lowing penalty functional, defined over a time assimilation
window ½t0; t1� (e.g. Le Dimet and Talagrand, 1986):

J ¼
XN
i¼1

1

t1 � t0

ðt1
t0

ðHiXi � YiÞTG�1Yi
ðHiXi � YiÞdt

þ
XN
i¼1
ðHiXi � YiÞTG�1Yi

ðHiXi � YiÞjt0

þ
XM
j¼1

1

t1 � t0

ðt1
t0

ðθj � θ̂jÞTG�1θj ðθj � θ̂jÞdt

þ
XN
i¼1

ðt1
t0

λTi
dXi

dt
� FiðX1;…;XN jθ1;…; θMÞ

� �
dt: A7:3

The first term represents the misfit of the estimated states
with respect to observations. Different misfit components
are weighted by the inverse of a covariance matrixGYi . This
inverse may be simply replaced by the null matrix at any
time when a state variable cannot be observed. The second
term in Eq. A7.3 is similar to the first one, but it is evaluated
at the start time of the assimilation window. It is introduced
separately from the first one in case the assimilation goal is
the estimation of some initial condition (e.g. the soil satur-
ation prior to some flooding event). The third term is the
update of the model parameters with respect to some prior
θ̂, with the corresponding covariance Gθj . The last term is
the ‘physical constraint’ provided by the hydrologic predic-
tion model. As a constraint to the minimisation problem,
the prediction equations are added to the penalty functional
through the Lagrange multipliers λ1;…; λN . The physical
constraint brings implicitly in the optimisation problem all
the correlations (sensitivities) among model states and
parameters. Based on this consideration, the entire states–
parameters covariance matrix is simplified as a block-
diagonal one, composed by the blocks GYi and Gθj . These
covariance blocks need to be prescribed, and their magni-
tude plays a significant role in the convergence of the itera-
tive procedure described in the next paragraph. To this end,
prescription criteria are not that different from the one
used for prior covariance in recursive state estimation
approaches. In particular, while GYi may be easily inferred
from available information on the error structure of the
used measurement technique,Gθj requires a more subjective
evaluation on the (co)-variabilities on unknown parameters,
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which may be based on existing relevant literature of the
case study.

In the adjoint technique, the solution to the minimisation
problem is sought with an iterative procedure based on the
Euler–Lagrange equations. These are obtained by first tak-
ing the full derivative of the functional and then integrating
by parts the Lagrangian term. After some algebra, equating
to zero all independent variations of J with respect toXi and
θj gives the following system of equations for i ¼ 1;…;N
and j ¼ 1;…;M:

dλi
dt
¼ �λTi

∂Fi

∂Xi
þ ðHiXi � YiÞTG�1Yi

Hi; A7:4

λijt1 ¼ 0; A7:5

ðHiXi � YiÞTG�1Yi
Hijt0 ¼ λijt0 ; A7:6

ðθj � θ̂jÞTG�1θj ¼
XN
i¼1

λTi
∂Fi

∂θj
: A7:7

For those model parameters that are to be considered as
constant in time, Eq. A7.7 may be replaced by:

ðθj � θ̂jÞTG�1θj ¼
1

t1 � t0

XN
i¼1

ðt1
t0

λTi
∂Fi

∂θj
dt: A7:8

The iterative procedure starts by integrating forward the
hydrologic model (Eq. A7.1) with the prior model param-
eters θ̂j and a first guess initial condition Xijt0 . Then the
adjoint model (Eq. A7.4) is integrated backward with
homogenous ‘end condition’ (Eq. A7.5). Note that if the
forward hydrologic model has a convergent behaviour, the
adjoint is also convergent when integrated backward. In
particular, the adjoint model is convergent towards homo-
geneous null values for vanishing forcing term (the last term
in Eq. A7.4), that is, when model states and observations
ideally match. Non-homogeneous solutions for the
Lagrange multipliers λi are then used to update the initial
condition (Eq. A7.6) and the model parameters (Eq. A7.7 or
A7.8). The cycle is repeated until some converge criterion is
reached, such as a negligible value for the norm of the
Lagrange multipliers.

Contrary to what is commonly believed, the variational
method with an adjoint can also provide a quantitative
measure of the uncertainty in the estimation. The Hessian
of the cost function J can be used to this purpose. To a good
level of approximation, in the vicinity of its minimum, the
cost function has a quadratic shape. With the further
assumption of Gaussian distribution of the parameters to
be estimated (more precisely, of the parameters update with
respect to a prior near the minimum of the cost function),
the Hessian provides a good approximation to the inverse of

the parameters’ covariance (Thacker, 1989). However, iter-
ations for seeking the minimum of the cost function are
terminated in the usual practice at some non-negligible dis-
tance from the ‘true’ minimum. A correct computation of
the Hessian should take care of all the residual cross-
correlations among the cost function components repre-
sented by both the forward and the adjoint model. An
accurate method for computing the Hessian is based on
considering the gradient of the cost function as a model,
with each component of the gradient corresponding to
a new cost function for each of the parameters, to be min-
imised with new Lagrange multipliers qj and pj (Burger
et al., 1992):

Φj ¼
∂J
∂θj
þ
XN
i¼1

ðt1
t0

qTj
dXi

dt
� FiðX1;…;XN jθ1;…; θMÞ

� �
dt

þ
XN
i¼1

ðt1
t0

pTj
dλi
dt
þ λTi

∂Fi

∂Xi
� ðHiXi � YiÞTG�1Yi

Hi

� �
dt:

A7:9

Taking again the first variations, a new set of Euler-
Lagrange equations is obtained:

dpj
dt
¼ �pTj

XN
1¼1

∂Fi

∂Xi
�
XN
1¼1

∂Fi

∂θj
; A7:10

dqj
dt
¼ qTj

XN
1¼1

∂Fi

∂Xi
� pTj

XN
1¼1

G�1Yi
; A7:11

with conditions:

pjjt0 ¼ 0; A7:12

qjjt1 ¼ 0: A7:13

Finally, the condition of minimum for the new penalty
functions provides the following formula for the diagonal
and off-diagonal components of the Hessian matrix:

Hθjθj ¼
XN
i¼1

pTj
∂2Fi

∂θj∂Xi
λi � qTj

∂Fi

∂θj

� �
þG�1θj : A7:14

Hθjθk ¼
XN
i¼1

pTj
∂2Fi

∂θk∂Xi
λi � qTj

∂Fi

∂θk

� �
; A7:15

or, for time constant parameters:

Hθjθj ¼
1

t1 � t0

XN
i¼1

ðt1
t0

pTj
∂2Fi

∂θj∂Xi
λi � qTj

∂Fi

∂θj

� �
dtþG�1θj ;

A7:16

Hθjθk ¼
1

t1 � t0

XN
i¼1

ðt1
t0

pTj
∂2Fi

∂θk∂Xi
λi � qTj

∂Fi

∂θk

� �
dt: A7:17
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7
Data Assimilation in Hydrological
Sciences

Fabio Castelli

Abstract: Hydrological sciences cover a wide variety of
water-driven processes at the Earth’s surface, above, and
below it. Data assimilation techniques in hydrology have
developed over the years along many quite independent
paths, following not only different data availabilities but
also a plethora of problem-specific model structures. Most
hydrologic problems that are addressed through data assimi-
lation, however, share some distinct peculiarities: scarce or
indirect observation of most important state variables (soil
moisture, river discharge, groundwater level, to name a few),
incomplete or conceptual modelling, extreme spatial hetero-
geneity, and uncertainty of controlling physical parameters.
On the other side, adoption of simplified and scale-specific
models allows for substantial problem reduction that par-
tially compensates these difficulties, opening the path to the
assimilation of very indirect observations (e.g. from satellite
remote sensing) and efficient model inversion for parameter
estimation. This chapter illustrates the peculiarities of data
assimilation for state estimation and model inversion in
hydrology, with reference to a number of representative
applications. Sequential ensemble filters and variational
methods are recognised to be the most common choices in
hydrologic data assimilation, and the motivations for these
choices are also discussed, with several examples.

7.1 Introduction

Hydrological sciences cover a vast variety of water-driven
processes at the Earth’s surface, above, and below it. By
a consensus definition, ‘Hydrology is the science that
encompasses the occurrence, distribution, movement and
properties of the waters of the earth and their relationship
with the environment within each phase of the hydrologic
cycle’ (Fabryka-Martin et al., 1983). On more practical
grounds, disciplines other than hydrology deal with the
parts of the hydrologic cycle regarding the open atmosphere
and the oceans, so that the term ‘land components of the
water cycle’ may provide a more accurate term for what
most of the hydrologic scientific community deals with.
Even with this restriction, land hydrology covers an excep-
tionally large variety of processes on spatial scales ranging
from nanometres (e.g. adsorption and transport of

contaminants in porous media) to thousands of kilometres
(e.g. continental land–atmosphere interactions). Over the
last hundred years, hydrology has progressively evolved
from the simple ‘conceptual surface hydrology’ driven by
engineering design problems to a rich ensemble of ramifica-
tions into sub-disciplines and new specialisations such as
hydrometeorology, geohydrology, ecohydrology, sociohy-
drology, and so forth. Main drivers for this continuing
evolution are the physical connectivity of water through
many environmental and social sciences and, for what is
central for the subject of this chapter, by the capacity of
improving the physical base of the hydrologic modelling
through the assimilation of an increasing amount and var-
iety of data. On the other side, the growth of many – and
often largely independent – sub-disciplines has not favoured
the development of main leading or guiding principles,
beyond simple mass and energy balances, which would
remain robust and usable across the many relevant spatial
and temporal scales. When compared to atmospheric sci-
ences, as an example, the route to a holistic modelling
approach is still in its infancy (e.g. Frey et al., 2021).
Therefore, data assimilation techniques in hydrology have
developed over the years along many quite independent
paths, following not only different data availability but
also a plethora of problem-specific model structures (Liu
et al., 2012). Even when dealing with a specific hydrologic
process (e.g. river flow), operational flood predictionmodels
may differ from hydrologic balance models used in water
resources management.

Most hydrologic problems that are addressed through
data assimilation, however, share some distinct peculiarities
that contrast with data assimilation in nearby disciplines
that deal with fluid flows, such as meteorology.

(a) Most of the complexity resides not in the flow itself, but
in the environment that contains/constraints the flow,
and in the forcing. As an example, what may diminish
the predictability of the propagation of a flood wave
along a river reach, and of the possible floodplain
inundation, is not the turbulent nature of the flow,
but the uncertainty in the representation of a complex
river geometry (its vegetation, levees, transverse
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structure, movable bed, etc.; Mudashiru et al., 2021).
Groundwater flow is laminar in most of the cases, but
the porous media that contains the flow is character-
ised, at all relevant scales, by huge variabilities that are
minimally resolved by available direct survey tech-
niques (Maliva, 2016). Evapotranspiration reflects the
complexity of both the turbulent atmospheric bound-
ary layer and the plant structure and physiology
(Wang and Dickinson, 2012); variations of vegetation
canopy structure and soil matric potential are again
enormous, both in time and space. Even though pre-
cipitation is routinely measured at the ground and
from space, its intermittent nature still leaves
a significant amount of error in the reconstruction of
the precipitation fields at the spatial detail that is
required by many hydrologic prediction models, espe-
cially during intense events over small- (Ochoa-
Rodriguez et al., 2015) and medium-size watersheds
(Maggioni et al., 2013). Model structural uncertainties
are strictly bound to parameter-estimation uncertain-
ties (Moges et al., 2021). Process conceptualisation or
oversimplification in many commonly used hydro-
logical models is often the consequence of the limita-
tion in calibrating the parameters of a more physically
based, complex model, so that the response from quite
different models may turn out to have similar likeli-
hoods with respect to some validation dataset (Beven
and Binley, 2014).

(b) Strictly connected with the previous point, the most
important governing equations in hydrology are
instead convergent in nature: for a given environment
(e.g. a given set of model parameters), the mathemat-
ical model will converge in time towards the same
solution even when starting from quite different initial
conditions. A vertical column of soil will tend to dry
out, towards a certain equilibrium soil moisture pro-
file, until a new precipitation event arrives (Zeng and
Decker, 2009). The initial soil moisture content will
control only the timing to approach equilibrium, not
the shape of the equilibrium profile, which is instead
determined by other environmental parameters (the
soil structure, the density and the osmotic potential of
the plant roots, the depth to the water table . . .). The
convergent, non-chaotic nature of hydrologic equa-
tions is a clear advantage in terms of general system
predictability (no butterfly effect in most hydrologic
processes!), but this theoretical advantage can be fully
used only in case a perfect model is available with
precisely known forcing. For imperfect models and
forcing, the convergent nature affects the efficiency of
many DA techniques. As an example, in sequential
ensemble approaches it may be problematic to explore
the model space with standard filter formulations
(Bauser et al., 2021), requiring ad-hoc techniques
such as bias correction or ensemble inflation. Errors

in model parameters and/or forcing will drive all the
ensemble members towards a biased solution.
Regardless of perturbed model states, new observa-
tions following at too large a distance from the ensem-
ble of the model predictions may cause a rapid filter
degeneracy.

(c) Some key state variables are routinely observed on
a very sparse set of discrete points (e.g. river discharge,
groundwater level) or inferred quite imprecisely from
very indirect measurements. Among these last vari-
ables, soil moisture is the most notable one. On one
side, it provides the key control on substantially all the
surface hydrologic fluxes so that its estimation is a
central issue in most hydrologic problems (Entekhabi
et al., 1996; Seneviratne et al., 2010; Berghuijs et al.,
2016). On the other side, while station density in
ground measurement networks is too low to resolve
soil moisture spatial variability, current satellite
remote sensing techniques provide soil moisture
retrievals that are characterised by accuracy levels
that, in many cases, are just a few tens of percent better
than open-loopmodel simulations with reliable forcing
(Dong et al., 2020). Also, accuracy of satellite remote
sensing retrievals of soil moisture dramatically drops
below the very few top centimetres of the soil and over
regions characterised by high variability of terrain
slope or by dense vegetation cover (Chan et al., 2017;
Babaeian et al., 2019).

(d) Scarce or indirect observation of most important state
variables, together with extreme spatial heterogeneity
and uncertainty of controlling physical parameters,
has traditionally pushed towards the development
and operational use of incomplete or conceptual mod-
elling. It is then still pending the enormous (and too-
often neglected) problem of dealing with large and
statistically unknown model structural errors. On the
other side, adoption of simplified and scale-specific
models allows for a substantial problem reduction
that partially compensate these difficulties, opening
the path to the assimilation of very indirect observa-
tions and efficient model inversion for parameter
estimation.

In the remaining sections, we will illustrate, with reference
to a selection from a large literature and a few specific
studies, how the techniques of data assimilation in hydrol-
ogy have been shaped by these peculiarities. We will distin-
guish in the first case among state estimation and
geophysical inversion problems, with broad distinction in
the first case between large-scale state estimation for land–
atmosphere interaction and basin-scale hydrologic predic-
tion, and in the second case, between static and dynamic
inversion. Data assimilation in snow hydrology is intention-
ally omitted in this review, being the topic of a dedicated
chapter in this same book. A short last section addresses
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some emergent topics, fuelled by the unprecedented avail-
ability of new types of data and by the spreading of the joint
use of physically based and artificial intelligence (AI)-based
modelling.

7.2 State Estimation

7.2.1 Soil Moisture, Global Earth Observation,
and Large-Scale Land Assimilation Systems

State estimation (in the sense of theDA terminology) in land
surface hydrology has been developed with reference to
a number of different variables, but soil moisture is by far
the one that has received the most attention. This is because:
(a) soil moisture is the key variable controlling and coupling
the water cycle, energy cycle, and carbon cycle at the land
surface (Seneviratne et al., 2010); it also controls the occur-
rence of hydrologic extremes such as droughts (Bolten et al.,
2010) and floods (Berthet et al. 2009); (b) soil moisture
measurements at the ground are way too sparse and discon-
tinuous to provide enough data for most state estimation
problems, while satellite remote sensing provides indirect
and partial measurements limited to the very few top centi-
metres of the soil layer (Babaeian et al., 2019); moreover,
only very recent missions provide soil moisture estimates at
kilometre-scale resolution useful for small- and mid-size
watershed studies, to the cost of quite long revisit times
(Bauer-Marschallinger et al., 2019). Aside from empirical
techniques based on short-wave infrared remote sensing
(Verstraeten et al., 2006; Zhang et al., 2014), retrieval of
soil moisture with active and/or passive microwave remote
sensing is itself a geophysical inversion (data assimilation)
problem (Entekhabi et al., 1994; Kerr et al., 2012; Das et al.,
2018). Solutions of such inversion problems are however
generally provided to the hydrologic users’ community as
remote sensing products. They are mainly based on single-
imagery processing with eventual ancillary information on
atmospheric state and land use, with no actual use of a true
hydrologic model. More advanced inversion techniques are
recently used to provide enhanced products (in terms of
spatial resolution) by post-processing the overlapping of
consecutive measurement footprints or by merging the
observations from different satellite platforms (Hajj et al.,
2017; Lievens et al., 2017). As an example of the first case,
the Backus–Gilbert interpolator, that is an optimal solution
to ill-posed inverse linear problems, is used to obtain a soil
moisture product at 9 km resolution starting from the native
resolution of about 36 km of the passive radiometer of the
Soil Moisture Active Passive (SMAP) mission (Chan et al.,
2017). Still provided to the users as a SMAP soil moisture
product (precisely, a Level-4 product) is the result of the
sequential assimilation of the SMAP radiometer brightness
temperature observations into a physically based hydrologic
model (Reichle et al., 2019); the assimilation algorithm is
based on the NASA Catchment land surface model with

a spatially distributed ensemble Kalman filter (EnKF).
Several important advantages are obtained through this
extensive data assimilation approach in a model capable
of resolving the joint water and energy balance in the soil-
vegetation layers: production of a continuous 9-km, 3-hour
product, covering also the regions where high vegetation or
terrain slope variability are known to decorrelate the surface
soil moisture from the sensor signal (Chan et al., 2017);
estimation of the soil moisture state and profile down to
about 100 cm, a depth considerably larger than the very few
top centimetres whose moisture directly influences the sur-
face brightness temperature measured by the radiometer,
hence covering most of what is considered as the ‘hydro-
logically active’ soil layer (Castillo et al., 2015); use of a very
informative signal for the soil moisture dynamics, that is
precipitation, with data from a variety of sources (Balsamo
et al., 2018). On the flip side, there is the potential bias
introduced by the model structural error and poorly
known model parameters, in particular the soil hydraulic
properties, aggravated by the typical convergent behaviour
mentioned in the introduction; a delicate pre-calibration of
the hydrologic model is then needed, that may be periodic-
ally improved as new calibration datasets become available,
but still resulting in quite nonhomogeneous product accur-
acy over different regions (Reichle et al., 2017).

Together with land surface temperature, soil moisture is
the central state variable in the large-scale Land Data
Assimilation Systems (LDAS; Balsamo et al., 2018), that
have been developed as hydrological companions to oper-
ational weather forecasting systems to improve their estima-
tion and prediction of near-surface temperature and
moisture. Advanced Scatterometer (ASCAT) soil wetness
observations (Wagner et al., 2013) are assimilated together
with standard ground meteorological data in the UK
MetOffice LDAS using an extended Kalman filter (Gomez
et al., 2020). The North American hydrologic community
model ‘Noah’ is used at the US NCEP to assimilate daily
soil moisture fields from the NOAA-NESDIS Soil Moisture
Operational Product System (SMOPS), based on both
ASCAT and Soil Moisture and Ocean Salinity (SMOS)
data, with an EnKF (Zheng et al., 2018). Themore complete
global Land Surface Model (LMS) of this kind is probably
the CHTESSEL used at ECMWF, also representing the
surface–atmosphere carbon exchanges together with the
water and energy ones (Boussetta et al., 2013). A large revi-
sion effort is underway for such an LDAS, with the aim of
better exploiting the use of different data sources to improve
the hydrologic components, such as the vegetation dynam-
ics or the fluxes from snow cover and large water bodies, and
also to directly connect the land analysis to downstream
operational applications such as flood prediction (Mason
et al., 2020; Boussetta et al., 2021).

Most of these LSMs here have been initially designedwith
the main purpose of providing lower-boundary conditions
to the atmosphere by describing the vertical fluxes of energy
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and water (recently carbon too), between the land surface
and the atmosphere; much less attention was originally
devoted on horizontal fluxes such as runoff (Massari et al.,
2015; Zsoter et al., 2019). This allowed the development of
quite simplified modelling and data assimilation frame-
works, with the main goal of improving the accuracy of
the weather forecast but not necessarily the hydrologic one
too. Up to quite recently, LSMs have suffered from signifi-
cant limitations in the representation of important hydro-
logic fluxes and states, also at the surface; not to mention
groundwater, the generation and propagation of runoff is
the most important one (Wang et al., 2016). From the data
assimilation point of view, with most techniques based on
sequential filters, the increments of the surface moisture
state, while improving the lower boundary condition for
the weather prediction model, usually add or remove water
independently from each computational cell. This may have
a potentially strong negative impact on the correct represen-
tation of the hydrologic cycle by opening the water budget,
causing potential problems when the focus switches to
hydrologic runoff forecasting such as in the Global Flood
Awareness System (GloFAS), based on the ECMWF-
HTESSEL LDAS (Harrigan et al., 2020). As an example,
Zsoter et al. (2019) again point out that while this version
of the LDAS system largely improves the accuracy of the
estimation of some key variable for the vertical land–
atmosphere exchanges, such as the 2-m temperature and
snow depth, it is, at the same time, deteriorating the
prediction of peak river flow in high latitude snowmelt-
dominated areas. Localised improvements in flood predic-
tion are also detected, but, in general, the overall water
budget suffers from adding or removing water during the
data assimilation, introducing possible inconsistency
between upstream and downstream flood predictions in
the same watershed.

To overcome these drawbacks, global LMSs have been
coupled with river routing models, constructing Global
Hydrologic Models. The main purpose is to quantify fresh-
water flows and storage changes at regional and continental
scales, hence preserving the water budget of world major
watersheds (Sood and Smakhtin, 2015; Iscitsuka et al.,
2021). As a further indication of the widespread hydrologic
approach where model structure (represented or neglected
processes, resolved scales, etc.) is strongly bound to the
possibility of assimilating specific data sources, these type
of modelling are considered to be the ideal framework for
assimilating data from upcoming satellite missions specific-
ally designed to monitor global surface waters, such as
the SWOT (Surface Water and Ocean Topography;
Biancamaria et al., 2016), launched in December 2022. In
a set of OSSEs experiments, Emery et al. (2020) propose an
asynchronous EnKF assimilation scheme to solve the prob-
lem of very long and asynchronous SWOT revisit times
(21 days) over the modelled domain. However, this family
of Global Hydrologic Models still uses quite coarse spatial

resolutions (typically a 0.5 x 0.5 cell grid). In eachmodel grid
cell, the surface reservoir is a unique river channel that may
gather multiple real river branches, not fully resolving yet
the full details of river-waters extent (river widths larger
than about 100 m) that SWOT will provide (Altenau et al.,
2021).

7.2.2 State Estimation in Distributed Hydrologic
and Hydraulic Models for Runoff and Flood
Prediction

When the main focus of state estimation (and eventual
prediction) is channel runoff, river flow (stage or discharge)
observations are the most commonly assimilated data in
watershed distributed hydrologic (Clark et al., 2008; Xie
et al., 2014; Ercolani and Castelli, 2017) and river hydraulic
models (Neal et al., 2007). Assimilation of river flow data
faces a number of specific problems: (a) discharge data, or
translation of stage data into discharge estimates, are char-
acterised by a non-trivial error structure, with relative error
increasing in magnitude for extreme flow conditions
(Domeneghetti et al., 2012); and (b) river gauging stations
are very sparse and usually cover a very limited number of
main river branches also in quite large watersheds; small size
(e.g. areas of the order of 100 km2 or less) watersheds
remain substantially ungauged and the global number of
functioning river gauges is progressively decreasing (Allen
et al., 2020).

As an alternative to relying on sparse ground observa-
tions, in particular for prediction or estimation of flood
inundation dynamics, several recent studies explored the
use of satellite altimetry data over open water for improving
the accuracy of hydrologic and hydraulic modelling
(Grimaldi et al., 2016). Most common choice, dictated by
the need of resolving meter-scale river and flood plain fea-
tures (Annis et al., 2019), is the use of SAR products
(Hostache et al., 2018, Cooper et al., 2019). High-
resolution SAR imagery comes to the detriment of the
revisit time frequency, so that the available data for assimi-
lation in the flood inundation model may be considered as
sporadic: it is quite commonly the case that only one inun-
dation map (or a very few in the largest basins) falls within
the time-span of the flood wave (Dasgupta et al., 2021).
Also, quality of SAR observation of flood extent may vary
dramatically from case to case, depending on the geomet-
rical characteristics of the inundated environment (Pierdicca
et al., 2009), and this needs to be taken explicitly into
account in the design of the assimilation algorithm (Waller
et al., 2018). As previously discussed, mathematical models
of river flooding are typical convergent systems, where the
dynamics is strongly constrained by boundary conditions
(e.g. hydrologic runoff converging into the river network)
and model parameters (e.g. geometry and roughness of
the river and floodplain). For such a system, assimilation
of observations that are sporadic in time is affected by
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a serious problem of the short persistence of the improve-
ments of the model performances. Regardless of the assimi-
lation technique, the model predictions after the state
update rapidly converge, in a few hours or even minutes
depending on the watershed size, to the same open-loop
prediction without the SAR altimetry assimilation
(Andreadis and Schumann, 2014). This problem intersects
with the one, common to many other assimilation problems
over large multidimensional domains tackled with ensemble
techniques, of spurious error growth due to under-sampling.
Two-dimensional flood inundation models assimilating
SAR water altimetry data would require, if a global filtering
approach were to be adopted, a number of ensemble mem-
bers larger than the dimension of the state vector. This
is usually prohibitive from a computational perspective,
and unavoidable under-sampling may bring inconsistent
updates with spurious, unphysical spatial correlations over
distances that are too large. On the other hand, surface
water flow in rivers and floodplains is again very strongly
constrained by the channel and terrain geometries. At spa-
tial resolutions of tens of meters commonly used by such
models, river flow direction is given; in the floodplains,
where the depth-averaged flow may follow more complex
2D patterns, terrain slope, and land singularities (road
embankments, buildings, etc.) strongly reduce its degrees
of freedom. This prior constraint to the modelled dynamics
opens the door to the possibility of tackling the under-
sampling problem through localised filters (Anderson,
2007), where the localisation of the covariance may be
based on physical grounds. As an example, Garcia-
Pintado et al. (2015) use a spatial metric, to localise the
covariance, defined as the maximum among the Euclidean
and the ‘along-the-channels-network’ distance. The main

assumption is that the physical connectivity of flows along
predefined paths, that is the channel networks, would
strongly influence the development of the forecast error
covariance.

A promising path to improve the estimation and predict-
ability of flood inundations is the joint assimilation of trad-
itional river gauge data and satellite imagery. Sinergy
among the two different data sources may potentially
solve both the issue of spatial sparsity of river gauge data
and the sporadicity of high-resolution satellite flood map-
ping. Along this path, Annis et al. (2022) use an EnKF to
jointly assimilate ground observations from a set of river
gauging stations and inundation extent imagery from
a Landsat-7 overpass. Among other advantages, the quite
precise level measurements at the river gauging stations
balance the lower informative content of the optical imagery
(i.e. flooding extent only), with respect to SAR altimetry; as
in many other possible cases, especially for fast flooding
dynamics, SAR imagery was not available for the studied
event. As shown in Fig. 7.1, the estimation uncertainty of
the flood extent is sensitive to the data assimilation config-
uration. If only river gauge data were available, one river
stage time series only would reduce the uncertainty by
a substantial amount; almost an order of magnitude reduc-
tion is attained assimilating the Landsat water extent, but
such a reduction is limited to a very few hours if Landsat is
assimilated alone; river gauge data at four different loca-
tions are necessary in this case study to reach the same
level of uncertainty of the Landsat assimilation, with
further improvement for a few hours in case of joint
assimilation. Localisation of the update needs to be
applied for the assimilation of point river stage observa-
tions too. The along channel upstream and downstream
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water level correction is performed applying a distance-
based gain function in this case, then propagated to the
nearest floodplain cells. Furthermore, to coherently
assimilate more than one simultaneous stage observa-
tion, updates propagated to the same computational
cell from different gauge locations are weighted with
the inverse of the distance.

Sequential filters such as the EnKF are quite straightfor-
ward to implement in their standard formulation, also for
multidimensional problems, and this is one of the main
reasons for the wide spread of its use. When filter modifica-
tions need to be introduced, such as the covariance or
update localisation as described here, the issue is not the
more complex implementation but rather the introduction
of quite arbitrary choices in the form and parameters of the
filter modifiers. Not to be forgotten is the issue of conver-
gent behaviour of many hydrologic systems, including the
flood modelling. Recognising that the problem of the rapid
attraction of the model trajectories towards a biased solu-
tion can be efficiently addressed by reducing the model
structural error, the most adopted filter modification is the
filter augmentation to estimate the most uncertain model
parameters and/or model inputs and/or boundary condi-
tions on top of model states (Moradkhani et al., 2005;
Zhang et al., 2017; Liu et al., 2021). As an example, in the
case of SAR imagery assimilation for flood estimation,
Garcia-Pintado et al. (2015) augment the filtered bathym-
etry state with channel Manning roughness parameter,
downstream river level, and lateral hydrologic input flows
to channels.

As mentioned, river gauging sparsity may be such that
a given watershed of interest may result totally ungauged.
State augmentation with model parameters has also been
introduced to address this issue. Xie et al. (2014) propose
an EnKF assimilation strategy for improving the runoff
prediction of a distributed hydrologic model in nested
ungauged subbasins (i.e. ungauged subbasins that have
gauged upstream or downstream neighbours); state aug-
mentation with model parameters for both ungauged and
gauged subbasin, with prescribed correlation among them,
is demonstrated to successfully propagate state updates
from gauged to ungauged locations.

Variational assimilation techniques, and variational
assimilation with an adjoint in particular, may be more
challenging to implement, with respect to ensemble-based
sequential filters, as they require the capability of imple-
menting the task of coding the adjoint model. This may be
an impossible task in cases where the numerical details of
the chosen prediction hydrologic model are not available.
However, when the adjoint model can be implemented, the
variational assimilation approach has the undoubted merit
of a physically based representation of the sensitivities
among the model states and between the model states and
model parameters (Margulis and Entekhabi, 2001). This
physically based sensitivity estimate may turn out to be

crucial in case of sparse observations, and it may then be
a valid alternative to the empirical definition of the localisa-
tion structures in EnKF techniques. Ercolani and Castelli
(2017) take advantage of the predefined paths and directions
of the flow routing along the channel network to reduce the
assimilation of sparse river discharge data, with a fully
distributed (2D) hydrologic model for flood prediction,
into a multivariate 1D variational assimilation scheme
(see Appendix for a general formulation of such a scheme).
The scheme allows, without the need of predefined correl-
ations, the estimation of non-observed model states and
parameters. In a first hindcast experiment on a set of real
high-flow events in a mid-size (approx. 8,000 Km2)
Mediterranean watershed, simultaneous assimilation of
half-hourly discharge data at multiple locations was demon-
strated to improve the accuracy of the flood peak prediction
along the entire channel network, provided that assimilated
data at least cover part of the rising limb of the flood wave.
As largely expected, accuracy of prediction at downstream
locations further increases when flood peak is observed
upstream (Fig. 7.2). However, as a further demonstration
of the convergent nature of the problem, full advantage of
the flow data assimilation is reached by updating not only
the flow state along the channel network, but also the
hydrologic input to the channel (i.e. the runoff in the direct
contributing hillslope cells).

The possibility of updating the prior estimate of the event-
antecedent soil moisture condition by assimilating the river
flow data is also explored in the same study, based on the
frequently verified hypothesis that the runoff response
to precipitation events is strongly sensitive to such a condi-
tion (DeChant and Moradkhani, 2012). To overcome the
difficulty of computing the Jacobian around threshold-
switching soil moisture state, a mixed Monte Carlo–
Variational approach is proposed, addressing at the same
time the need of mass conservation that would be violated
by updating runoff only (Fig. 7.3). At each iteration of the
variational algorithm, an iteration of a particle filter is also
run for the component of the model generating the hill-slope
runoff, where main stochastic perturbation is inserted in the
structure of the spatial interpolation of rain gauge data and
in the initial soil moisture condition. The update of the
lateral runoff input to the channel network is then used to
estimate the posterior likelihood of the runoff fields result-
ing by the various particles.

Direct assimilation of various soil moisture products in
hydrologic flood prediction models has been also demon-
strated to improve the prediction accuracy in several cases
(Cenci et al., 2017; Massari et al., 2018; Azimi et al., 2020;
Baugh et al., 2020). The main target of the prediction is now
the formation of the flood-wave and its propagation along
the main rivers, while eventual floodplain inundations are
resolved in downstream, loosely coupled hydraulic models.
In most of such studies, the EnKF, the particle filter, and
their variants are the preferred choices given the direct
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spatial observation of the main state variable. However,
accuracy of EnKF depends on the ensemble size. The
ensemble size may remain quite small for lumped or semi-
distributed models (Alvarez-Garreton et al., 2015). For
operational spatially extensive or high resolution fully dis-
tributed models, CPU and storage availability may limit the
ensemble size to number much smaller than the one needed
for a potentially reachable accuracy. Alternative paths have
also been recently proposed in the hydrologic literature
to overcome this limitation, using Polynomial Chaos
Expansion to implement what is termed Probabilistic (or
Stochastic) Collocation Method as a substitute of the
Monte Carlo simulations that are at the base of the classical
EnKF (Fan et al., 2015). If the computation of the PCE
polynomial coefficients is still challenging for high-
dimensional problems (the number of coefficients to be
estimated scales quadratically with the number of
unknowns), such a framework allows for a more efficient
implementation of the multi-fidelity decomposition of the
filter. As an example, Man et al. (2020) use an analysis of
variance (ANOVA type) to decompose the low-fidelity and
the high-fidelity-residual model responses in a limited set of
members. A quite subjective choice is however left in the
multi-fidelity approach: which simplification the low-fidelity
model operates needs to be specified by choices of terms to

be cancelled from the high-fidelity one. It results in an
experience-based compromise between the need to cut off
the most computationally demanding terms in the hydro-
logic model and the danger of an excessive structural error
in the low-fidelity model (Ng and Willcox, 2014).

7.3 Geophysical Inversions

7.3.1 Inversion for Static Parameters
A classical inversion problem in hydrological sciences,
dating back long before the era of widespread availability
of remote sensing data, has been formulated in the field of
hydrogeology, where the main challenge to be faced was
the estimation of spatially variable hydraulic properties of
aquifers using very sparse wells data (Carrera and Neuman,
1986). What was termed the Bayesian geostatistical
approach in the earlier groundwater data assimilation
literature (Kitanidis, 1996) essentially relied on the formula-
tion, with the use of Bayes’ theorem, of the joint posterior
probability density function (pdf) of the unknown model
parameters and their prior expectations. The pdf of
unknown parameters is itself parameterised through
a generalised covariance function. Optimal parameters are
obtained by seeking the minimum of the negative log
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Figure 7.3 Antecedent soil moisture analysis prior to a flood event obtained with a mixed particle filter and variational assimilation of
point river flow data (adapted from Eercolani and Castelli, 2017).
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likelihood of the pdf through an iterative Gaussian–Newton
method. Geophysical inversion for groundwater modelling
leads quite often to ill-posed problems, which can be tackled
by prescribing a probabilistic model for the unknown priors
as in the method here. An alternative, when a prior pdf
cannot be conveniently prescribed, is the addition of one
ormore regularisation terms to the function to beminimised
(Steklova and Haber, 2017). These terms also need some
sort of ‘prescription’, which can be formulated on the base
of preliminary geological studies or Kriging-like geostatis-
tical analysis.

Continuous advances in hydrogeological sensing technol-
ogy now provide increasing volumes of hydrogeophysical
and geochemical data that can be assimilated to estimate
high resolution fields of aquifer properties (Harvey and
Gorelick, 1995; Hochstetler et al., 2016; Rajabi et al.,
2018). Two main implementation bottlenecks arise, in con-
sideration also that very few hydrogeological studies are
supported by such large projects to gain access to high-
performance computing resources: storage andmatrix oper-
ations (e.g. inversion) on large and dense covariances of
the order of the square of the model size; the computation
of the variations of the forward map (i.e. the sensitivity of
the groundwater hydrogeochemical model with respect to
the unknown parameters) from the model parameters
to the available measurements on model states. At each
iteration, a number of model runs of the order of min
(M,N) is required to compute a numerical approximation
to the Jacobian, M being the number of unknown param-
eters and N the number of states. The use of the adjoint
technique (Talagrand and Courtier, 1987), when the model
structure allows the development of an adjoint model (see
again Appendix for a general formulation of a variational
assimilation/inversion problem with an adjoint in
a multivariate dynamics), increases the accuracy of the esti-
mation of the model sensitivity to parameters also for very
non-linear problems, hence increasing the convergence
speed of the iterative procedure, but the number of model
runs needed in each iteration remains substantially the
same. Recent study efforts have been then focused on the
goal of decreasing the computational burden of the original
Bayesian Geophysical Inversion (Ghorbanidehno et al.,
2020), introducing such techniques as the eigenspectrum-
based compression of covariances, the use of principal com-
ponents to reduce the number of needed model runs (Lee
et al., 2016), the use of proper orthogonal decomposition to
reduce the adjoint model space in order to save both com-
putational and coding costs (Altaf et al., 2013), or of meta-
models such as polynomial chaos expansion (Laloy et al.,
2013).

As in other fields, the geophysical inversion for aquifers
characterisation also proceeds in the direction of explor-
ing the usability of observations on state variables
describing also processes that are not the main traditional
hydrologic ones but that are physically linked to them.

The conceptual path is, as in other applications recalled
further down, having the use of new data driving the
increase in complexity of the modelling, and not vice
versa. As an example, Ceccatelli et al. (2021) coupled
a surface hydrologic model with a groundwater model
including aquifer compaction dynamics to study the sub-
sidence induced by excessive groundwater abstraction.
Unknown aquifer parameters (hydraulic conductivity,
elastic and inelastic storage coefficients) have been esti-
mated by assimilating three years of dense Sentinel-1
ground displacement data and sparse (in space and
time) wells data (Fig. 7.4), with aquifer recharge provided
by the coupled surface hydrologic model whose main
parameters were calibrated through river discharge data.
Given the ill-posedness of the problem, a variational data
assimilation scheme with non-linear Tikhonov regularisa-
tion (Hou and Jin, 1997) has been used in this case.

Finally, it can be considered as a prototypal form of
geophysical inversion the use of states observations for the
more traditional calibration of distinct types of (hydrologic)
model parameters, both conceptual and physically based
ones. The review of the main approaches to hydrologic
model calibration would require an entire chapter; we just
mention here a few recent examples, such as Yang et al.
(2016) and Pinnington et al. (2021), where the calibration is
more formally framed as a data assimilation problem.

7.3.2 Inversion for Dynamic Parameters
Geophysical inversion may be dynamic too, that is, finalised
at the estimation of time-varying model parameters. From
a formal point of view, a variable that would be considered
as a state in a more complex model may be considered
a time-varying parameter in a simpler model; a prediction
equation for the variable is not provided in the first case, so
that the variable can be mathematically treated as a model
parameter. This may be a convenient alternative to direct/
sequential state estimation when the variable to be estimated
is not observed (or, more precisely, an invertible observation
operator cannot be explicitly provided for that variable).

A typical example is the use of simplified surface energy
balance models (Chen and Liu, 2020) to infer the partition-
ing of residual solar energy into latent (i.e. evapotranspir-
ation) and sensible heat flux by assimilation of Land Surface
Temperature data from geostationary (Xu et al., 2014) and
polar orbiting (Xu et al., 2019) satellites. Eventually, these
methods can simultaneously assess the turbulent fluxes and
the control of soil moisture on their partitioning, through
the definition of ad hoc soil moisture indices or soil-moisture
related dynamic parameters such as the evaporative fraction
(Caparrini et al., 2003, 2004; Bateni et al., 2013, 2014).
Parsimony of the model, beyond obvious computational
aspects, is chosen in these cases for a variety of reasons:
the possibility of easily formulating and coding an adjoint
model, reducing the problem from a full 4D to a lower
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dimensional domain; minimising the further noise that may
be introduced by model components whose parameters or
forcing are poorly constrained or observed at the scale of
interest. Specifically, the use of the simple surface energy
balance, eventually separating the contribution of soil and
vegetation as sources of flux with distinct dynamics (Kustas
and Norman, 1999), is chosen to the very purpose of not
using a full soil–water mass balance. At scales from a few
hundred meters up, horizontal redistribution of energy at
the surface can be neglected and the problem treated as
multivariate rather than multidimensional in the horizontal
directions; model spatial resolution is immediately adapted
to the characteristics of available land surface temperature
(LST) satellite observations; no systematically biased soil
moisture estimates are forced by inadequate representation
of soil hydraulic properties or rainfall input; even more
important for the development of a variational assimilation
techniques, the complexity of the variational treatment of
the threshold behaviour of soil moisture dynamics and infil-
tration and switching boundary conditions is avoided.

With reference to the mathematical formulation of the
1-D variational assimilation provided in the Appendix, in
the simpler formulation of Caparrini et al. (2003, 2004) the
energy balance is represented as an ordinary differential
equation in time for LST, in the so-called force–restore
method (Noilhan and Planton, 1989) with weighted contri-
bution from vegetation canopy and bare soil, solved inde-
pendently for each ‘pixel’ of LST observations. Inverted
dynamical parameters are the evaporative fraction for soil
and vegetation, implicitly controlled by soil moisture in
water-limited hydrologic regimes, and the bulk neutral
heat transfer coefficient, depending on vegetation type and
phenological state. To accommodate a possible underdeter-
mination of the inversion problem (M ¼ 2N, in the notation
of the Appendix), the inverted parameters are forced to
remain constant on different time scales while assimilating
hourly LST observations: daily for the evaporative fraction
and half-monthly for the bulk heat transfer coefficient. The
assimilation, fully resolving the diurnal cycle of land energy
balance components including the ground heat flux, pro-
ceeds with a daily assimilation cycle nested in an outer half-
monthly one. Simplicity of the formulation allowed to easily
merge hourly, lower resolution, LST observations from
geostationary satellites (GOES, METEOSAT) with
higher resolution, daily observations from instruments on
polar orbiting platforms (AVHRR, MODIS). More recent
improvements of this quite simple scheme followed what
can be termed a ‘data-driven physically based’ approach,
where further physically based model equations are added,
limited to the need of assimilating the observations of other
variables to resolve some parameter indeterminacy in the
main reference model equation. As an example, Bateni et al.
(2014) added a predictive equation for the Leaf Area Index
to the surface energy balance in order to assimilate SEVIRI
estimates of Fraction of Photosynthetically Active

Radiation absorbed by vegetation (FPAR) and hence to
further constrain the inverted values of the vegetation heat
transfer coefficients; even more, adding a new assimilated
observation allowed a more robust inversion for the evap-
oration fraction with distinct values for vegetation and bare
soil. A similarly very parsimonious bulk water balance
model has been finally added in Abdolghafoorian and
Farhadi (2020) to assimilate also soil moisture retrieval
from the SMAP mission.

7.4 Some Emerging Topics

Progress in the development and testing of new data assimi-
lation systems for hydrologic applications is in continuous
acceleration, with the number of scientific publications
doubling about every decade. A search on Scopus of the
terms ‘data AND assimilation AND hydrology’ (quite
restrictive, but still indicative) on 29 September 2021,
returned 12 items for year 2000, 31 for 2010, and 62 for
2020. Important drivers for such growth have been the large
availability of new data sources, mainly from satellite, such
as the development of efficient data distribution platforms
in the early 2000s or the new satellite missions for soil
moisture monitoring about a decade later. On top of the
increase of available computational power, which has
always been and remains to be a crucial limiting factor,
fuel for some important recent advancements is coming
from two sides: the availability of new sources of data and
the inclusion of AI algorithms in the data assimilation
systems.

A notable example of new types of observations, well
representative of the ‘big-data era’, that just started to
enter in formal assimilation processes are the so-called
crowdsourced data produced by a variety of activities
mainly (but not only) in the realm of ‘citizen science’
(Nardi et al., 2021). These observations may constitute
a valuable complement of standard hydrological monitor-
ing, useful to cover the large number of still ungauged or
poorly gauged small- and mid-size watersheds. Typical
examples are images and video taken from cellular phones
during flooding events (Le Coz et al., 2016), simplified
river stage measurements submitted by volunteers via cel-
lular phone text messages (Weeser et al., 2018), or hydro-
meteorological data from a variety of opportunistic
sensors (e.g. smartphones, personal weather stations,
commercial microwave links; de Vos et al., 2020). Main
challenges in the assimilation of such data are related to
their being characterised by random accuracies, larger
errors than standard professional observations, and
irregular temporal frequencies. Avellaneda et al. (2020)
used an augmented EnKF to calibrate the parameters
of a distributed hydrologic model for daily river flow
simulation using stream stage and stream temperature
volunteer data, assessing the sensitivity of the model
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accuracy with respect to the temporal sampling character-
istics. The effects of varying space-time coverage from
social sensors are analysed, with reference to the flood
prediction of two real events, in Mazzoleni et al. (2021).

There is a much longer measurement history and appli-
cation in various hydrological studies of water-stable iso-
topes, which have been demonstrated to provide new
insights into the underlying physics of many hydrological
processes, such as the partitioning of the soil vadose zone
water into evapotranspiration, percolation and discharge
(Good et al., 2015). However, despite the rich literature on
the use of stable water isotopes data in regional and water-
shed studies (see Sprenger et al., 2016a, for a quite exten-
sive review), the formal data assimilation of such data is
still at its infancy and has been so far substantially limited
to model calibration exercises (Birkel et al., 2014; Sprenger
et al., 2016b). Only very recently has the use of stable water
isotopes been framed in state estimation frameworks,
such as the Bayesian update of prior isotopic signatures
to assess the altitude dependence of groundwater recharge
(Arellano et al., 2020), while a first true data assimilation
experiment in a physically based prediction model just
appeared in the atmospheric sciences literature (Tada
et al., 2021), with the use of a local ensemble transform
Kalman filter to assimilate water vapor isotopes in a gen-
eral circulation model.

About the second point of attention, that is, the use of
AI-based algorithms, the novelty of interest here is the
transition from the mere use of machine learning models
as black-box substitutes of the ‘physically based’ hydro-
logical prediction models (Abrahart et al., 2012) to the
joint use of both type of models to improve the efficiency
of data assimilation systems. The ability of AI algorithms
to learn non-linear relationships between different sets
of variables is being proved to overcome certain DA diffi-
culties, with applications on hydrologic prediction and
simulation too. In describing a DA framework as a two-
component system (i.e. a prediction model for the sates
dynamics and a measurement operator relating measure-
ments to model states), machine learning has been proposed
to replace a physically based measurement operator that
may be biased with respect to model states or even
unknown, while leaving untouched the states dynamics
model. Rodriguez-Fernandez et al. (2019) use a neural
network to directly assimilate SMOS brightness tempera-
ture in the H-TESSEL LSM for updating the soil moisture
rather than assimilating, with a standard linear operator,
the SMOS soil moisture product; the neural network is
trained against the H-TESSEL simulations to guarantee
the same climatology for the SMOS-neural network and
the H-TESSEL soil moisture. A similar approach was also
previously followed by Kolassa et al. (2017) with SMAP
data. While these two studies propose an alternative to
existing measurement operators (or measurement models)
upon which the standard soil moisture products are based,

Boucher et al. (2020) even push forward the concept of using
a machine learning algorithm in the place of a classical
measurement operator. They explore the case where this
measurement operator could not be defined on the base of
the prediction model structure. In particular, they use two
distinct types of neural networks to assimilate, with an
EnKF, river discharge and temperature at different time
lags in a lumped hydrologic model where the state variables
to be updated are the levels in conceptual reservoirs (i.e.
conceptual state variables that cannot be measured, neither
directly nor indirectly). With classical techniques, such
a problem could have been solved by using a variational
assimilation with an adjoint such as in the Appendix; the use
of the AI component allows to use the EnKF instead, avoid-
ing the difficulty of having to develop and code the adjoint
model. As previously discussed, hydrological models are
highly likely to have quite large structural errors with sys-
tematic biases. In this respect, AI techniques are also pro-
posed to postprocess the detectable bias of model ensembles
in Monte Carlo type of assimilation with respect to meas-
urements. As an example, King et al. (2020) demonstrate
how a random forest algorithm outperforms other classical
linear postprocessing algorithms in analysing the non-linear
and seasonal behaviour of the bias in a regional snow data
assimilation system.

7.5 Conclusions

A broad review has been presented in this chapter about
how the main data assimilation techniques span the various
fields and key problems in such a wide discipline as hydrol-
ogy. Main ingredients of data assimilation (i.e. observations
and models), vary dramatically across hydrologic applica-
tions in terms of space-time density (the first), complexity
and computational demand (the second), and accuracy and
error structure (both), so that dominant or preferred path-
ways cannot be identified. On the other side, two main
drivers distinguish DA in hydrology from other broad geo-
physical disciplines, namely the large uncertainty in many
environmental parameters (e.g. soil hydrologic properties)
that control the model dynamics, and the very uncertain
observation of key state variables (soil moisture being the
most notable case).

The first driver was initially employed in data assimilation
to solve inverse problems, both static and time-dependent.
Variational techniques have been often preferred over
sequential (filter-type) techniques in this case, mainly due
to the possibility of more easily and directly exploring the
sensitivity of model response with respect to model param-
eters even when the observable model states and unknown
parameters to be inverted for were quite ‘conceptually dis-
tant’ (e.g. the discussed case of inverting for aquifer proper-
ties while observing ground surface subsidence). Among
different variational techniques, the use of adjoint models
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had quite a success due to the possibility, in specific
application-oriented problems, to use quite parsimonious
models’ structure; a parsimony that brought the double
advantage of reducing the dimension of model states and
parameters and strongly facilitating the coding of the
adjoint model. Among the various aspects that still require
scientific advancement in hydrologic inversion problems,
the most challenging remains the solution of many under-
determined problems, where the number of available obser-
vations is smaller than the number of unknown parameters
and, on top of that, such observations are affected by large
measurement errors. The use of new types of data, in par-
ticular the ones coming from citizen science initiatives, is
opening newer challenges along this general pathway.

Treatment of large measurement errors, even in the pres-
ence of frequent and/or dense observations such as from
remote sensing, is again the main challenge along the path
of state estimation problems. Various types of non-linear
sequential filters (the EnKF being the most widely used)
coupled to more and more complex models has been the
main answer so far to this challenge: in the face of large
measurement errors, it is attempted to reduce the model
errors as much as possible by increasing the number of
represented processes (i.e. the model’s ‘completeness’);
sequential filtering, especially the ensemble one, allow for
a more precise and consistent treatment of both error types
and the objective definition of their optimal weighting.
Computational demand and algorithmic efficiency remain
among the key issues, despite the continuous increase in
available computational power, when this approach is
applied to large data assimilation systems; merging AI algo-
rithms with ‘process-based’ data assimilation techniques is
already established as themost promising direction to tackle
these issues.

7.6 Appendix: Multivariate 1D-VAR Assimilation
with an Adjoint

Let the hydrologic model be described by a set of coupled
ordinary differential equations for the set of different state
variablesX1;…;XN (e.g. soil moisture, surface storage, river
discharge), possibly distributed in space, controlled by the
set of model parameters and forcing inputs θ1;…; θM (e.g.
soil hydraulic conductivity, channel roughness, but also
precipitation, solar radiation, etc.), eventually distributed
in space too:

dXi

dt
¼ FiðX1;…;XN jθ1;…; θMÞ ; i ¼ 1;…;N: A7:1

For the sake of conciseness, both stationary model
parameters and time-varying forcing inputs are included in
the same set of variables θ, whose main difference from the
states X is the lack of a physical constraint for the dynamics
(i.e. a predicting equation).

Let Y1;…;YN be the set of observations, related to the
state variables by measurement operators H1;…;HN .
Without much loss of generality, we may assume that the
measurement operators are linear and mutually independ-
ent, i.e.:

Yi ¼ HiXi ; i ¼ 1;…;N: A7:2

A variational data assimilation algorithm may be then con-
structed as an optimisation problem by minimising the fol-
lowing penalty functional, defined over a time assimilation
window ½t0; t1� (e.g. Le Dimet and Talagrand, 1986):

J ¼
XN
i¼1

1

t1 � t0

ðt1
t0

ðHiXi � YiÞTG�1Yi
ðHiXi � YiÞdt

þ
XN
i¼1
ðHiXi � YiÞTG�1Yi

ðHiXi � YiÞjt0

þ
XM
j¼1

1

t1 � t0

ðt1
t0

ðθj � θ̂jÞTG�1θj ðθj � θ̂jÞdt

þ
XN
i¼1

ðt1
t0

λTi
dXi

dt
� FiðX1;…;XN jθ1;…; θMÞ

� �
dt: A7:3

The first term represents the misfit of the estimated states
with respect to observations. Different misfit components
are weighted by the inverse of a covariance matrixGYi . This
inverse may be simply replaced by the null matrix at any
time when a state variable cannot be observed. The second
term in Eq. A7.3 is similar to the first one, but it is evaluated
at the start time of the assimilation window. It is introduced
separately from the first one in case the assimilation goal is
the estimation of some initial condition (e.g. the soil satur-
ation prior to some flooding event). The third term is the
update of the model parameters with respect to some prior
θ̂, with the corresponding covariance Gθj . The last term is
the ‘physical constraint’ provided by the hydrologic predic-
tion model. As a constraint to the minimisation problem,
the prediction equations are added to the penalty functional
through the Lagrange multipliers λ1;…; λN . The physical
constraint brings implicitly in the optimisation problem all
the correlations (sensitivities) among model states and
parameters. Based on this consideration, the entire states–
parameters covariance matrix is simplified as a block-
diagonal one, composed by the blocks GYi and Gθj . These
covariance blocks need to be prescribed, and their magni-
tude plays a significant role in the convergence of the itera-
tive procedure described in the next paragraph. To this end,
prescription criteria are not that different from the one
used for prior covariance in recursive state estimation
approaches. In particular, while GYi may be easily inferred
from available information on the error structure of the
used measurement technique,Gθj requires a more subjective
evaluation on the (co)-variabilities on unknown parameters,
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which may be based on existing relevant literature of the
case study.

In the adjoint technique, the solution to the minimisation
problem is sought with an iterative procedure based on the
Euler–Lagrange equations. These are obtained by first tak-
ing the full derivative of the functional and then integrating
by parts the Lagrangian term. After some algebra, equating
to zero all independent variations of J with respect toXi and
θj gives the following system of equations for i ¼ 1;…;N
and j ¼ 1;…;M:

dλi
dt
¼ �λTi

∂Fi

∂Xi
þ ðHiXi � YiÞTG�1Yi

Hi; A7:4

λijt1 ¼ 0; A7:5

ðHiXi � YiÞTG�1Yi
Hijt0 ¼ λijt0 ; A7:6

ðθj � θ̂jÞTG�1θj ¼
XN
i¼1

λTi
∂Fi

∂θj
: A7:7

For those model parameters that are to be considered as
constant in time, Eq. A7.7 may be replaced by:

ðθj � θ̂jÞTG�1θj ¼
1

t1 � t0

XN
i¼1

ðt1
t0

λTi
∂Fi

∂θj
dt: A7:8

The iterative procedure starts by integrating forward the
hydrologic model (Eq. A7.1) with the prior model param-
eters θ̂j and a first guess initial condition Xijt0 . Then the
adjoint model (Eq. A7.4) is integrated backward with
homogenous ‘end condition’ (Eq. A7.5). Note that if the
forward hydrologic model has a convergent behaviour, the
adjoint is also convergent when integrated backward. In
particular, the adjoint model is convergent towards homo-
geneous null values for vanishing forcing term (the last term
in Eq. A7.4), that is, when model states and observations
ideally match. Non-homogeneous solutions for the
Lagrange multipliers λi are then used to update the initial
condition (Eq. A7.6) and the model parameters (Eq. A7.7 or
A7.8). The cycle is repeated until some converge criterion is
reached, such as a negligible value for the norm of the
Lagrange multipliers.

Contrary to what is commonly believed, the variational
method with an adjoint can also provide a quantitative
measure of the uncertainty in the estimation. The Hessian
of the cost function J can be used to this purpose. To a good
level of approximation, in the vicinity of its minimum, the
cost function has a quadratic shape. With the further
assumption of Gaussian distribution of the parameters to
be estimated (more precisely, of the parameters update with
respect to a prior near the minimum of the cost function),
the Hessian provides a good approximation to the inverse of

the parameters’ covariance (Thacker, 1989). However, iter-
ations for seeking the minimum of the cost function are
terminated in the usual practice at some non-negligible dis-
tance from the ‘true’ minimum. A correct computation of
the Hessian should take care of all the residual cross-
correlations among the cost function components repre-
sented by both the forward and the adjoint model. An
accurate method for computing the Hessian is based on
considering the gradient of the cost function as a model,
with each component of the gradient corresponding to
a new cost function for each of the parameters, to be min-
imised with new Lagrange multipliers qj and pj (Burger
et al., 1992):

Φj ¼
∂J
∂θj
þ
XN
i¼1

ðt1
t0

qTj
dXi

dt
� FiðX1;…;XN jθ1;…; θMÞ

� �
dt

þ
XN
i¼1

ðt1
t0

pTj
dλi
dt
þ λTi

∂Fi

∂Xi
� ðHiXi � YiÞTG�1Yi

Hi

� �
dt:

A7:9

Taking again the first variations, a new set of Euler-
Lagrange equations is obtained:

dpj
dt
¼ �pTj

XN
1¼1

∂Fi

∂Xi
�
XN
1¼1

∂Fi

∂θj
; A7:10

dqj
dt
¼ qTj

XN
1¼1

∂Fi

∂Xi
� pTj

XN
1¼1

G�1Yi
; A7:11

with conditions:

pjjt0 ¼ 0; A7:12

qjjt1 ¼ 0: A7:13

Finally, the condition of minimum for the new penalty
functions provides the following formula for the diagonal
and off-diagonal components of the Hessian matrix:

Hθjθj ¼
XN
i¼1

pTj
∂2Fi

∂θj∂Xi
λi � qTj

∂Fi

∂θj

� �
þG�1θj : A7:14

Hθjθk ¼
XN
i¼1

pTj
∂2Fi

∂θk∂Xi
λi � qTj

∂Fi

∂θk

� �
; A7:15

or, for time constant parameters:

Hθjθj ¼
1

t1 � t0

XN
i¼1

ðt1
t0

pTj
∂2Fi

∂θj∂Xi
λi � qTj

∂Fi

∂θj

� �
dtþG�1θj ;

A7:16

Hθjθk ¼
1

t1 � t0

XN
i¼1

ðt1
t0

pTj
∂2Fi

∂θk∂Xi
λi � qTj

∂Fi

∂θk

� �
dt: A7:17
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8
Data Assimilation and Inverse
Modelling of Atmospheric Trace
Constituents

Dylan Jones

Abstract: During the past two decades, there have been
significant efforts to better quantify emissions of envir-
onmentally important trace gases along with their
trends. In particular, there has been a clear need for
robust estimates of emissions on policy-relevant scales
of trace gases that impact air quality and climate. This
need has driven the expansion of the observing network
to better monitor the changing composition of the
atmosphere. This chapter will discuss the use of various
data assimilation and inverse modelling approaches to
quantify these emissions, with a focus on the use of
satellite observations. It will discuss the inverse problem
of retrieving the atmospheric trace gas information from
the satellite measurements, and the subsequent use of
these satellite data for quantifying sources and sinks of
the trace gases.

8.1 Introduction

Human activity has produced dramatic changes in the com-
position of the atmosphere, with profound implications for
climate and air quality. Air pollution is now a leading cause
of human mortality globally (GBD 2019 Risk Factors
Collaborators, 2020). In North America and Europe, air
quality regulation has led to dramatic improvements in air
quality in the past two decades. However, there are still
many people in North America and Europe exposed to
high levels of air pollution. In the United States, for
example, in 2020, there were 79 million people living in
regions where ozone (O3) levels exceeded the air quality
standard.1 Anthropogenic emissions of nitrogen oxides
(NOx = NO + NO2), which are key ozone precursors, have
declined in North America, Europe, and China, but there is
uncertainty in the trend of these emissions (Jiang et al.,
2022).

Anthropogenic emissions of carbon have led to unpre-
cedented high levels of atmospheric CO2 and CH4.
Developing effective carbon emission policies to limit

future atmospheric increases in these greenhouse gases
(GHGs) will require robust estimates of their sources
and sinks on policy-relevant scales. For example, the
atmospheric growth rate of CH4 began decreasing in the
early 1990s, stabilised between 2000 and 2007, and has
begun increasing again. The processes that led to the stabil-
isation and subsequent recovery of the growth rate are
uncertain (Rigby et al., 2017; Turner et al., 2019).
Emissions of CO2 from fossil fuel combustion are about
9–10 Pg C/yr (Le Quéré et al., 2018), but 50–60% of this is
taken up, almost equally, by the oceans and the terrestrial
biosphere. However, the terrestrial biospheric sink is highly
variable and there are large uncertainties in regional esti-
mates of these fluxes (e.g. Sitch et al., 2015). Inverse model-
ling using atmospheric trace gas observations has emerged
as a widely used approach to better quantify these fluxes.
This chapter will focus on these inverse modelling efforts
for both GHGs and air quality applications.

In the past, a significant challenge for data assimilation
and inversemodelling of atmospheric compositionmeasure-
ments in the troposphere has been that the observing
network was too sparse. This limitation led to a major
expansion of the observing system, both ground-based and
space-based. In particular, space agencies around the world
have invested significant resources during the past three
decades to better monitor the changing composition of the
atmosphere. In situ observations are typicallymore accurate
and precise than space-based atmospheric composition
data, but, as a result of the global nature of the human
influence on the carbon cycle, as well as the impact of
intercontinental transport of air pollution on local air qual-
ity, space-based observations have become a key component
of the expanding global observing system.

Continuous measurements of atmospheric composition
from space have been made since the 1970s with the
launch of instruments such as the Solar Backscatter
Ultraviolet (SBUV) instrument and the Total Ozone
Mapping Spectrometer (TOMS) on the NIMBUS-7

1 www.epa.gov/air-trends/air-quality-national-summary
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spacecraft in 1978. These instruments measured reflected
solar radiation in the nadir from which atmospheric
ozone abundances were retrieved. Data from SBUV and
TOMS, and the follow-on SBUV/2 that was launched in
1984, were critical to understanding the halogen-catalysed
ozone loss that led to the stratospheric ozone hole. By the
1990s, these data were increasingly assimilated into
models to constrain stratospheric ozone. The
Stratospheric Aerosol and Gas Experiment II (SAGE
II), launched in 1984, provided information on the verti-
cal distribution of ozone, water vapour, NO2, and aerosol
optical depth using solar occultation. The Microwave
Limb Sounder (MLS), launched on the Upper
Atmospheric Research Satellite (UARS) in 1991, pro-
vided vertical profile information on a much larger suite
of trace gases in the stratosphere. Data from SAGE II
and MLS were widely used in the emerging data assimi-
lation systems in the 1990s. For example, Levelt et al.
(1998) assimilated MLS ozone data into a chemical trans-
port model (CTM) using an optimal interpolation
approach. They found that the assimilation reduced the
mean bias and the root-mean-square errors in the mod-
elled ozone. Khattatov et al. (1999) used a variational
approach and an extended Kalman filter to assimilate
data from MLS and the Cryogenic Limb Array Etalon
Spectrometer (CLAES) into a photochemical box model
to improve the short-lived chemical constituents in the
model. At the NASA Global Modeling and Assimilation
Office, continuous assimilation of stratospheric ozone
data began with the Goddard Earth Observing System
Data Assimilation System (GEOS-DAS), which assimi-
lated data from TOMS and SBUV/2 (Riishøjgaard et al.,
2000).

Atmospheric composition measurements from limb
viewing satellite instruments such as SAGE II and
MLS offer valuable information on the vertical distri-
bution of trace gases with greater vertical resolution
than is possible from nadir viewing instruments. But
these profiles are confined mainly to the stratosphere
since limb viewing instruments are unable to probe the
lower atmosphere because of the long paths associated
with the limb view and the greater likelihood of inter-
ference of clouds in the troposphere. It was the avail-
ability of nadir measurements from the growing suite of
satellite instruments during the past two decades that
drove the increasing focus on tropospheric chemical
data assimilation. This chapter will focus on the use
of these nadir measurements for data assimilation and
inverse modelling of trace constituents in the tropo-
sphere. It will begin with a discussion of the inverse
problem associated with retrieving the tropospheric
abundance of trace gases from space-based measure-
ment, and then examine the use of these retrievals for
data assimilation and inverse modelling of the sources
and sinks of the gases.

8.2 Remote Sounding Retrievals of Atmospheric
Composition

The Bayesian inversion approach is one of the most widely
used methods for inferring atmospheric composition infor-
mation from remote sounding measurements, as well as for
inverse modelling of surface sources and sinks of atmos-
pheric trace gases. In this context, these inversion analyses
typically employ the maximum a posteriori (MAP) estima-
tor, following the approach described by Rodgers (2000). In
the MAP framework, we assume a linear relationship of the
following form between the observations y2ℝm, which are
the radiances measured by the satellite, and the atmospheric
state x2ℝn, discretised on n levels:

y ¼ Hxþ ϵ; ð8:1Þ

with observation errors ϵ. If the errors are Gaussian in their
distribution, then the estimate of the state can be obtained
by minimising the cost function

JðxÞ ¼ 1

2
ðy�HxÞTR�1ðy�HxÞ þ 1

2
ðx� xbÞTB�1ðx� xbÞ;

ð8:2Þ

where H2ℝm�n is the observation operator (or forward
model) that maps the state to the observation space, and
ϵ are the observation errors, with observation error
covariance matrix R2ℝm�m. Here xb 2ℝn is the a priori
(or background) estimate of the state, with a priori error
covariance matrix B2ℝn�n. The optimised estimate of the
state is given by

xa ¼ xb þ ðHTR�1Hþ B�1Þ�1HTR�1ðy�HxbÞ: ð8:3Þ

This form of the solution is used when n ⪡ m, which is
typically the case for satellite retrievals. For the case in
which m ⪡ n, Eq. (8.3) can be expressed as

xa ¼ xb þ BHTðHBHT þ RÞ�1ðy�HxbÞ; ð8:4Þ

as it would be more efficient computationally to deal with
the matrix ðHBHT þ RÞ rather than ðHTR�1Hþ B�1Þ.

Atmospheric trace gases in the troposphere are retrieved
from remote sounding measurements in the UV-visible
(UV/VIS), shortwave infrared (SWIR), or thermal infrared
(TIR) regions of the spectrum. The different spectral regions
can provide different information on the vertical structure
of the trace gases. Nadir measurements in the UV/VIS
region capture the absorption signature of the trace gas of
interest in backscattered solar radiation. As a consequence,
these measurements offer little information on the vertical
distribution of the trace gas. In contrast, nadir measure-
ments of thermal emission can provide more vertical profile
information. In either case, it is important to recognise that
the vertical information is limited.

The Measurement of Pollution in the Troposphere
(MOPITT) satellite instrument, which was launched in
1999 to measure air pollution in the lower atmosphere,
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measures carbon monoxide (CO) in the SWIR and TIR
regions of the spectrum, at 2.3 µm and 4.6 µm, respectively.
The initial MOPITT retrievals were conducted on
a 7-element state vector, corresponding to seven pressure
levels from the surface to 150 hPa. Despite the 7-element
state vector, the retrieved CO profile information is highly
correlated, with less than two independent pieces of infor-
mation, or degrees of freedom for signal (DOFS). Starting
with version 5 of the MOPITT product (Deeter et al., 2012),
the retrievals have been conducted on a 10-element vertical
grid, but the TIR retrievals still provide less than two
DOFS. For the SWIR retrievals, the DOFS is ≤ 1.
However, combined TIR and SWIR retrievals (Worden
et al., 2010) often have DOFS > 2, but only over limited
land scenes. The Tropospheric Emission Spectrometer
(TES), which was launched on the Aura spacecraft in
2004, measures thermal emission between 3.3 µm and
15.4 µm, from which a wide range of trace gases are
retrieved. The initial TES retrievals were conducted on
a 65-element state vector, but for the ozone retrievals, for
example, the whole atmospheric profile has 2–4 DOFS, and
the tropospheric portion of the profile has DOFS < 2.

The limited vertical information in the retrieved vertical
profile of the trace gases must be properly accounted for
when using the data. This smoothing of the vertical profile is
captured by the averaging kernel matrix ðA2ℝn�nÞ, which
is retained as a diagnostic product of the retrieval. Using Eq.
(8.1), we can express the retrieval, Eq. (8.3) as

xa ¼ xb þKðy�HxbÞ þKϵ; ð8:5Þ

where K ¼ BHTðHBHT þ RÞ�1 is the gain matrix. If we let

A ¼ KH; ð8:6Þ

we obtain

xa ¼ xb þ Aðx� xbÞ þKϵ; ð8:7Þ

¼ ðI� AÞxb þ AxþKϵ; ð8:8Þ

which expresses the retrieval as a linear representation of the
true atmospheric state ðxÞ, with A ¼ ∂xa=∂x, corresponding
to the sensitivity of the retrieval to the true state. Equation
(8.8) shows that the retrieval is a combination of the a priori
information ðI� AÞxb and a smooth representation of the
true state Ax. The DOFS is given by the trace of the aver-
aging kernel matrix,

DOFS ¼ trðAÞ: ð8:9Þ

The ideal averaging kernel would be the identity matrix ðIÞ,
but in realityA differs significantly from I. In the case where
the retrieval sensitivity is low, the retrieval will reflect mainly
the a priori (background) information ðxbÞ.

An example of the averaging kernel for the ozone retrieval
from TES is shown in Fig. 8.1. The individual lines in the
figure correspond to the rows ofA (the n retrieval levels). As

can be seen, the levels in the lower troposphere (between the
surface and 500 hPa) have similar sensitivity, that is low near
the surface and peaks around 700 hPa. This suggests that
ozone retrieved on these levels will be a weighted combin-
ation of the actual ozone on these levels. At the surface, the
sensitivity is low since TIR measurements cannot capture
variations in the trace gases near the surface unless there is
a large thermal contrast between the ground and the overly-
ing atmosphere. The need to account for the smoothing
influence was described by Rodgers and Connor (2003)
and demonstrated by Crawford et al. (2004), who compared
MOPITT retrievals with coincident in situ aircraft measure-
ments of CO over the North Pacific. They found that the
MOPITT CO profiles differed significantly from the aircraft
profiles and did not capture the localised pollution plume
seen by the aircraft. However, there wasmuch greater agree-
ment between MOPITT and the aircraft profile after trans-
forming the aircraft profile with the MOPITT averaging
kernels and a priori profile as follows:

x̂ac ¼ xb þ Aðxac � xbÞ; ð8:10Þ

where xac is the in situ aircraft profile interpolated onto the
retrieval grid and x̂ac is the transformed aircraft profile.
With this transformation, the in situ profile will appropri-
ately reflect the contribution of the MOPITT a priori infor-
mation and the smoothing influence of the retrieval. It is
critical to perform this transformation when comparing any
in situ or modelled profile with a satellite retrieval.

Since trace retrievals using UV/VIS or SWIR measure-
ments offer limited information on the vertical distribution
of the gases, these retrievals often report the vertically inte-
grated column abundance of the trace gas (e.g. in
molecules cm−2). For these retrievals, Eq. (8.8) can be
expressed as

ca ¼ hTxb þ hTAðx� xbÞ þ hTKϵ ð8:11Þ

¼ cb þ aTðx� xbÞ þ ϵc; ð8:12Þ

where ca and cb are the retrieved and background column
abundances, respectively, h is the vertical integration oper-
ator (which can take the form of a pressure weighting func-
tion), a is the column averaging kernel, and ϵc is the error on
the retrieved column. The column averaging kernels typic-
ally are unity throughout the troposphere and decrease
sharply in the stratosphere, suggesting a uniform vertical
weighting of the trace gas in the troposphere. An example of
this is shown in Yoshida et al. (2011) for the column aver-
aging kernels for CO2 and CH4 from the Greenhouse gases
Observing SATellite (GOSAT). For long-lived trace gases,
which are well-mixed in the atmosphere, variations in mass
of the atmospheric column associated with surface topog-
raphy can contribute significantly to spatial variations in the
retrieved column abundance of the gases, and can confound
analyses using the data to estimate sources and sinks of the
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gases. Consequently, the retrieved column abundances for
these gases are normalised by the column abundance of dry
air, producing a column-averaged dry-air mole fraction of
the trace gas, designated XG for trace gas G. It is this
column-averaged dry-air mole fraction that is used in data
assimilation and inverse modelling analyses to estimate
sources and sinks of these long-lived trace gases.

8.3 Surface Source and Sink Estimation

As with the remote sounding inversions, the Bayesian
approach has emerged during the past two decades as one
of the most widely used frameworks for inverse modelling of
sources and sinks of environmentally important trace gases.
For source and sink estimation, the inverse problem is simi-
lar to the satellite retrieval problem except that the observa-
tions are the atmospheric trace gas measurements, that are
distributed in time, and the inversion state vector consists of
the surface sources or sinks that are lagged in time compared
to the observations. To relate the sources or sinks to the
atmospheric abundance of a given trace gas requires the use
of an atmospheric model that simulates the evolution of the
atmospheric distribution of the trace gas. This relationship
can be characterised as

xi ¼Mðxi�1;pi�1Þ; ð8:13Þ

whereM is the atmospheric model, xi is the model state (the
atmospheric distribution of the trace gas) at the time step i,
and p are the surface fluxes of the trace gas (or other model
parameters, such as chemical reactions). The observation
model (Eq. (8.1)) takes the form

y ¼ HðMðx; pÞÞ þ ϵ; ð8:14Þ

with observation operator H. In the case of satellite obser-
vations, H would account for any spatial interpolation as
well as the smoothing influence of the retrieval, as described
in Eq. (8.10). It should be noted that the errors here in
Eq. (8.14) are different from those in Eq. (8.1) as they
represent the errors in the model simulation of the trace
gas retrievals that would arise even if the true sources and
sinks were known. Assuming Gaussian errors, the corres-
ponding cost function is given by

JðpÞ ¼ 1

2
½y�HðMðx; pÞÞ�TR�1½y�HðMðx; pÞÞ�

þ 1

2
ðp� pbÞTB�1p ðp� pbÞ; ð8:15Þ

where pb is the a priori emission estimate and Bp is the a priori
error covariance matrix. The MAP solution is given by
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Figure 8.1 Averaging kernels for TES ozone retrievals at 30°N and 87°W, on 15 August 2007. The averaging kernels for the retrieval levels
in the lower troposphere, the upper troposphere, and the stratosphere are shown in red, green, and blue, respectively. Source: Parrington
et al., 2008.
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pa ¼ pb þ ðHTR�1Hþ B�1p Þ
�1HTR�1ðy�HpbÞ ; ð8:16Þ

with H ¼ ∂HðMðx; pÞÞ=∂p. In the case of a linear problem,
Eq. (8.15) is perfectly quadratic and Eq. (8.16) is easily
obtained. For moderately non-linear problems, a numerical
scheme that iteratively solves for pa would be needed. To
simplify the problem, atmospheric inversion analyses typic-
ally employ CTMs, in which the model meteorology is
prescribed by meteorological reanalyses. Use of meteoro-
logical reanalyses to drive the models ensures that transport
of the trace constituents will be reliable without the need to
also assimilate meteorological data in the inversions to con-
straint the model transport.

8.3.1 Bayesian Synthesis Inversions
Many of the early inverse modelling studies used a Bayesian
synthesis approach, which employed a coarse discretisation
of the state vector and constructed theHmatrix in Eq. (8.16)
by individually perturbing each element in the state vector
and sampling the resulting field at the observation locations
and time. This approach yields an ‘influence function’ that
captures the sensitivity of the atmospheric abundance of the
trace gas to a unit change in the surface fluxes represented by
the perturbed state vector element. For each element of the
state vector, the influence function corresponds to a column
of H. This approach was widely used throughout the 1990s
and early 2000s for inverse modelling of observations of
trace gases such as atmospheric CO2, CO, nitrous oxide
(N2O), CH4, and some halocarbons. A key benefit of this
approach is that the Bayesian framework provides a means
of obtaining an estimate of the a posteriori uncertainty of the
inferred sources or sinks for the trace gas of interest. For
example, using observations of atmospheric CO2 and
13CO2, Enting et al. (1995) estimated an uncertainty of
�1:2 Gt C y�1 for the net exchange of CO2 between the
ocean and the atmosphere, and found that their estimated
fluxes were sensitive to the observations ingested. When the
inversion ingested ship data from the South Pacific, it sug-
gested that the Southern Ocean was a source of CO2,
whereas without the ship data the region was estimated to
be a weak sink. Limited observational coverage from the
surface observing network was a major challenge for these
early inverse modelling studies and, as mentioned in the
Introduction, this limitation was one of the factors that
drove the development of satellite instruments to measure
the global distribution of CO2, CO, and other trace gases.

The MOPITT instrument has provided the longest con-
tinuous record of CO in the lower atmosphere, and during
the past two decades there have been numerous studies
focused on quantifying emissions of CO. Atmospheric CO
is produced as a by-product of incomplete combustion and
from the oxidation of CH4 and volatile organic compounds
(VOCs). The combustion sources comprise fossil fuel

combustion as well as biomass burning from natural wild-
fires and agricultural-related vegetation fires. It is removed
from the atmosphere by reaction with the hydroxyl radical
(OH), the main atmospheric oxidant. In fact, CO is the
dominant sink for OH, and, consequently, changes in the
abundance of CO will drive changes in the abundance of
OH, which will impact the lifetime of other gases, such as
CH4. It was because of its influence on the oxidative cap-
acity of the atmosphere that interest emerged in the 1970s
and 1980s in understanding how human activity was driving
changes in atmospheric CO.

Pétron et al. (2004), conducted the first time-dependent
Bayesian synthesis inversion of MOPITT CO data to
estimate monthly mean emissions of CO. The inversion
was set up such that each month of observations was used
to update emissions from the previous two months, with
the a posteriori emissions for each month based on the
last update. They linearised the CO chemistry by using
prescribed OH fields from a full-chemistry version of the
model with detailed tropospheric chemistry. But to
account for the impact of the non-linearity in the chemis-
try on the inversion, they conducted three iterations of
the inversion in which they ran the full-chemistry version
of the model after each iteration with the optimised CO
emissions to obtained new OH fields that were then used
in the subsequent iteration of the inversion. They found
that the inferred CO emissions from all regions were
higher in the first iteration compared to the two subse-
quent iterations, illustrating the importance of capturing
the feedback of the optimised CO emissions on the OH
distribution. Their inversion analysis suggested higher
wintertime emissions from fossil and biofuel fuel combus-
tion, which were 30% and 100% larger, respectively, in
winter than in summer. Pétron et al. (2004) also estimated
significantly greater emissions from biomass burning in
Africa than their a priori.

Arellano et al. (2006) also conducted a time-dependent
Bayesian synthesis inversion of MOPITT CO data and esti-
mated significantly greater CO emissions from biomass
burning compared to their a priori. They estimated higher
biomass burning emissions from northern Africa, Oceania,
and Indonesia, and from Europe and Russia. For some
source regions, the estimated emissions from Pétron et al.
(2004) and Arellano et al. (2006) were inconsistent. For
example, inferred biomass burning emissions from South
America and northern Africa were much higher in Arellano
et al. (2006) than in Pétron et al. (2004). The estimated
biomass burning emissions in Arellano et al. (2006) for
Europe and Russia were also greater than those in Pétron
et al. (2004) and peaked in May, whereas the Pétron et al.
(2004) emissions peaked in July and August.

The differences in the regional CO emission estimates
between Pétron et al. (2004) and Arellano et al. (2006) are
emblematic of the discrepancies found between different
inverse modelling emission estimates of CO in the literature
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(e.g. Heald et al., 2004; Stavrakou and Müller, 2006; Jones
et al., 2009; Kopacz et al., 2010; Hooghiemstra et al., 2012;
Jiang et al., 2015, 2017; Zheng et al., 2019; Miyazaki et al.,
2020). The CO inversion analyses using satellite observa-
tions yield consistent source estimates on global and hemi-
spheric scales, but can produce large differences on
regional scales, reflecting differences in a priori emissions,
differences in the information content of the data sets
assimilated, and discrepancies in the chemistry and trans-
port in the atmospheric models. A particular issue with the
Bayesian synthesis approach is the implicit assumption
that the spatial distribution of the sources or sinks are
known at the scales at which the state vector is discretised,
and that only the strength of the sources or sinks is uncer-
tain. However, errors in the spatial distribution of the
sources or sinks can result in aggregation errors. Ideally,
the inversion should be conducted at the highest resolution
possible, and then aggregated to the scales that are actually
constrained by the observations, but high-resolution
Bayesian synthesis inversions can be computationally
expensive.

As a result of the increasing availability of massively
parallel computing systems, it is becoming more feasible to
conduct Bayesian synthesis inversions at the native reso-
lution of global CTMs, which are run at lower resolution
than weather forecast models. For example, Maasakkers
et al. (2019) used the GEOS-Chem model at a resolution
of 4° × 5° to estimate mean 2010–15 emissions of CH4. The
H matrix in their inversion was constructed by perturbing
the individual 4° × 5° emission grid boxes in their 1,009-
element state vector. They also solved for the 2010–15 trend
in the emissions on the same 4° × 5° grid. A benefit of the
Bayesian synthesis approach is that it provides a complete
representation of theH, B, and Rmatrices, which offers the
means of constructing an averaging kernel matrix (Eq. (8.6))
for the inversion, from which the DOFS (Eq. (8.9)) can be
estimated.

Maasakkers et al. (2019) used space-based CH4 measure-
ments from GOSAT and although their inversion consisted
of 1,009 emission elements in the state vector, they estimated
that the inversion provided only 128 DOFS. Shown in
Fig. 8.2 are the diagonal elements of their averaging kernel
matrix. The inversion exhibited strong sensitivity to CH4

emissions in central Africa, South America, East Asia, and
South Asia, and weak sensitivity to emissions in North
America and Europe. For the emission trends,
Maasakkers et al. (2019) obtained only 7 DOFS, but sug-
gested that emissions from wetlands, livestock, and oil and
gas accounted for 43%, 16%, and 11%, respectively, of the
observed increase in atmospheric CH4 after 2007. The
Maasakkers et al. (2019) analysis illustrates well the utility
of the Bayesian synthesis inversion approach, when con-
ducted at the resolution of the model, and the value of
averaging kernels for characterising the information content
of the inversion.

8.3.2 Variational Approaches
Adjoint methods offer a computationally efficient means
of conducting inversions at the resolution of the atmos-
pheric model. In particular, the four-dimensional vari-
ational (4D-Var) scheme is an adjoint-based approach
that is widely used for inverse modelling of emissions of
environmentally important trace gases. The 4D-Var was
initially used in atmospheric science for numerical weather
prediction, and was first used operationally at the
European Centre for Medium Range Weather Forecasts
(ECMWF) (Rabier et al., 2000). As typically used, the 4D-
Var scheme seeks to optimise the initial model state to best
match a set of observations distributed in time (over an
assimilation window). The model trajectory, Eq. (8.13), is
used as a strong constraint in the optimisation. An early
application of the 4D-Var scheme for regional air quality
forecasting over Europe was presented by Elbern and
Schmidt (2001), who showed that optimisation of the
initial ozone state resulted in improved short-term
(6–12 hours) ozone forecasts. For the application of the
4D-Var scheme for source and sink estimation, the cost
function takes the form

JðpÞ ¼ 1

2

XN
i¼0
½yi �HiðxiÞ�TR�1i ½yi �HiðxiÞ�

þ 1

2
ðp� pbÞTBp

�1ðp� pbÞ; ð8:17Þ

where yi are the observations distributed in time, and the
other variables are as defined in Eq. (8.15). The cost function
is minimised by constructing the Lagrangian function

Lðp; xi; λiÞ ¼
1

2
ðp� pbÞTB�1p ðp� pbÞ þ

XN
i¼0

1

2
½yi �HiðxiÞ�T

R�1i ½yi �HiðxiÞ� þ
XN
i¼1

λTi ½xi �Mðxi�1; pÞ�; ð8:18Þ

where λi are the Lagrange multipliers. The gradients of
L with respect to xi and p are given by

Averaging Kernel sensitivities

DOFS = 128

0.25 0.50 0.75 1.000.00

Figure 8.2 Diagonal of the averaging kernel matrix for a GOSAT
CH4 inversion analysis to estimate mean CH4 emissions for
2010–14. Source: Maasakkers et al., 2019.
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� �T
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where MT ¼ ∂M
∂xi

� �T
is the adjoint of the tangent linear

model M. At the minimum, the gradients are equal to
zero, and the adjoint model equations are given by
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i R
�1
i ½yN �HixN �;

λi ¼
∂M
∂xi

� �T

λiþ1 �HT
i R
�1
i ½yi �Hixi�:

ð8:22Þ

A useful feature of the 4D-Var scheme is that it is a
smoother, which means it can use observations in the future
to inform emission estimates in the past. This is particularly
useful when the spatio-temporal coverage of the observa-
tions is sparse, as the inversion can use a long assimilation
window to ingest sufficient data to obtain constraints on the
sources or sinks. However, the length of the window is
constrained by the assumption of linearity in the adjoint.
For gases such as CO2, for which the inversion problem is
linear (if the winds are prescribed and variations in CO2 do
not feed back on the meteorology, as is the case in CTMs),
the inversion can employ exceedingly long windows. For
example, Basu et al. (2013) estimated monthly mean fluxes
of CO2 using a 22-month assimilation window, and Liu et al.
(2014) and Deng et al. (2016) estimated monthly CO2 fluxes
using a 12-month window. For shorter-lived gases such as
CO, which has a global mean lifetime of about two months,
4D- Var inversions to estimate monthly mean CO emissions
have typically used an assimilation window of about one
month (e.g. Jiang et al., 2015, 2017; Kopacz et al., 2010),
although some studies such as Hooghiemstra et al. (2012)
used a three-month window. In a 4D-Var multiconstituent
assimilation, Zhang et al. (2019) assimilated space-based
observations of CO, NO2, and O3 to quantify emissions of
CO and NOx using a two-week assimilation window. In
their analysis, they also optimised the O3 state, and because
of the short lifetime of O3 andNO2 in the lower troposphere,
and the non-linearity in the chemistry, it was necessary to
use a short assimilation window. They argued that the con-
straints on the chemistry provided by the O3 and NO2

observations enabled them to use a short window for the
estimation of the CO sources in contrast to a CO-only
inversion analysis. They had selected a two-week window
because of the 16-day repeat cycle of the orbit of TES, which
provided the O3 observations used in the assimilation.

However, they conducted a sensitivity analysis and found
that using a window as short as two days would not have
had a significant impact on the CO and NOx emission
estimates.

The value of jointly assimilating CO and NO2 observa-
tions to quantify emissions of CO was first shown byMüller
and Stavrakou (2005), who used an adjoint-based approach
to assimilate surface observations of CO with NO2 data
from the Global Ozone Monitoring Experiment (GOME)
satellite instrument. Müller and Stavrakou (2005) found
that the assimilated NO2 data impacted the unobserved
constituents in the model chemistry, which corrected dis-
crepancies in the chemical sink for CO in the model, and
resulted in a posteriori CO fields that were in better agree-
ment with independent observations than when only CO
data were assimilated.

The joint assimilation of multiple chemical constituents
that have similar emission types also offers a means of
quantifying emissions from different fossil fuel sectors. Qu
et al. (2022) used a 4D-Var scheme to assimilate space-based
observations of CO, NOx, and SO2 to quantify emissions of
these gases in China from biomass burning and the follow-
ing six fossil fuel sectors: transportation, industry, residen-
tial, aviation, shipping, and energy. Because of the
computational cost of the assimilation, they only estimated
emissions for January of each year between 2005 and 2012
to determine trends in the emissions. Their analysis sug-
gested that NOx emissions increased in China until 2011
due to emissions from transportation, energy, and industry.
In contrast, CO emissions decreased during the same period
due to changes in residential and industrial emissions. Qu
et al. (2022) also found that SO2 emissions peaked in 2007
and were associated with changes in emissions from the
energy, residential, and industry sectors.

Another well-established application of the 4D-Var
scheme in an air quality context is for the assimilation of
space-based observations to quantify emissions of isoprene.
Tropospheric ozone is produced by the oxidation of CH4

and VOCs in the presence of NOx, and emissions of iso-
prene represent the dominant biogenic source of VOCs.
During the past two decades, there has been much effort
(e.g. Palmer et al., 2003; Millet et al., 2006; Marais et al.,
2012; Barkley et al., 2013) to better quantify isoprene emis-
sions using space-based observations of formaldehyde
(HCHO), which is a by-product of isoprene oxidation.
Bauwens et al. (2016) used an adjoint-based scheme
to assimilate HCHO observations from the Ozone
Monitoring Instrument (OMI) to quantify isoprene emis-
sions between 2005 and 2013. Their analysis suggested large
reductions (30–40%) in tropical emissions, mainly in the
Amazon and northern Africa, relative to their a priori esti-
mates. They also inferred greater emissions in Eurasia, with
a positive trend in emissions in Siberia that they attributed
to increasing temperatures and forest expansion in the
region.
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A powerful feature of the adjoint-based inversions is that
the adjoint model offers a computationally efficient means
of assessing the sensitivity of a given observing network to
the sources and sinks to be optimised. Liu et al. (2015)
examined the source–receptor relationship for XCO2 obser-
vations from GOSAT and found that because of the atmos-
pheric transport pathways, XCO2 data over North America
have strong sensitivity to CO2 fluxes over northern South
America and central Africa. Similarly, they found that
XCO2 over Europe exhibited strong sensitivity to North
American fluxes. In contrast, they found that in the tropics,
the XCO2 data were sensitive mainly to local fluxes. In
a similar analysis, Byrne et al. (2017) assessed the sensitivity
of observations from the in situ surface network, the Total
Carbon Column Observing Network (TCCON), GOSAT,
and the Orbiting Carbon Observatory-2 (OCO-2) to surface
fluxes of CO2. These four observing networks exhibit large
differences in observational coverage, from the relatively
sparse TCCON observations to the much more dense
OCO-2 data. Byrne et al. (2017) used an adjoint model
to calculate the sensitivity of the modelled XCO2 at the

locations and times of the observations to the CO2 sources
and sinks. Fig. 8.3 shows the spatial distribution of the
sensitivity, on seasonal time scales, estimated by Byrne

et al. (2017). The in situ network, which has good spatio-
temporal coverage over North America, provides strong sen-
sitivity to North American CO2 fluxes during all seasons, but
offers limited sensitivity to fluxes in the tropics and southern
hemisphere. The OCO-2 observational coverage, in contrast,
provides the greatest sensitivity to fluxes in the tropics and
subtropics, and to fluxes in the extratropical northern hemi-
sphere during boreal summer. The Byrne et al. (2017) results
highlighted the complementarity between the ground-based
and space-based observing systems for CO2 and demon-
strated the utility of the type of sensitivity studies that are
possible with adjoint-based analyses.

Despite the utility of the 4D-Var scheme, a major limita-
tion of the scheme is that it does not provide a full description
of the a posteriori error covariance matrix. Consequently, it is
difficult to calculate the DOFS in the inversion and identify
which components of the a posteriori estimate of the state
vector reflect information from the observations rather than
the a priori. For example, the Maasakkers et al. (2019)
Bayesian synthesis inversion using GOSAT XCH4 data
obtained only 128 DOFS for the 1,009 emission grid boxes

optimised in the inversion. This means that different 4D-Var
inversions using different a priori CH4 emissions would
produce different a posteriori CH4 emission estimates, and
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Figure 8.3 Sensitivity of CO2 observations from the in situ surface network (top row), TCCON (second row), GOSAT (third row), and
OCO-2 (bottom row) to surface fluxes of CO2 for September–November (first column), December–February (second column), March–
May (third column), and June–August (fourth column). Source: Byrne et al., 2017.
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it would be challenging to determine where the differences are
due mainly to the different a priori and where they reflect
actual information from the observations. The inability to
obtain a full representation of the posteriori error covariance
matrix is a major limitation of the 4D-Var scheme that makes
it difficult to assess the degree to which the inversion reduces
uncertainty in the estimated sources and sinks.

8.3.3 Ensemble Kalman Filters
In a Bayesian inversion context, the ensemble Kalman
filter (EnKF) (e.g. Anderson, 2001) is a powerful alter-
native to the 4D-Var scheme as it uses an ensemble
approach to characterise and propagate the error covari-
ance. This alleviates the need for an adjoint model and it
can easily take advantage of massively parallel comput-
ing systems to efficiently conduct long inversions. As
a Bayesian scheme, the fundamental formulation of the
inverse problem is similar to that described in the previ-
ous sections, with the notable difference being that the
forecast error covariance ðPÞ at a given time step, used in
constructing the gain matrix K ¼ PHTðHPHT þ RÞ�1; is
given by

P ¼ XXT ; ð8:23Þ

where X2ℝn�p
is a matrix of the deviations with respect to

the ensemble mean ðxÞ for the p ensemble members

X ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
p� 1
p ðx1 � x; x2 � x;…; xp � xÞ: ð8:24Þ

For the inverse problem, the state here is augmented to
include the distributions of the trace gases of interest as
well as their surface sources and sinks. The EnKF approach
described here is known as the square-root scheme. An
alternative approach also perturbs the observations to gen-
erate an ensemble of observations and is referred to as the
stochastic scheme. Another form of the EnKF is the local
ensemble transform Kalman filter (LETKF) (Hunt et al.,
2007), in which the analysis is conducted locally at themodel
grid box using only observations in a limited domain around
the grid box. This offers significant computational benefits
as it enables the assimilation to more effectively exploit
massively parallel computing architectures.

A challenge that arises with using the EnKF for estimat-
ing sources and sinks is that the inversion typically lacks
a dynamical model for the sources and sinks. As a result,
ad hoc approaches are often used to represent the temporal
evolution of the sources and sinks. The simplest of these
approaches is to assume persistence, but that does not
allow for error growth in the sources and sinks. Another
well-known issue with the EnKF is that the ensemble size is
typically much smaller than that of the state (i.e. p ⪡ n),
which results in a rank-deficient covariance matrix. As

a result, there will be spurious correlations in P, which can
be mitigated using localisation (Hamill et al., 2001), but the
localisation must be tuned for the inversion.

The CarbonTracker model from the National Oceanic
and Atmospheric Administration (NOAA) is a well-
known ensemble-based CO2 flux inversion system.2 The
assimilation system is based on a square-root EnKF
scheme and assimilates ground-based, shipboard, and
aircraft in situ measurements of CO2 to obtain weekly
estimates of CO2 fluxes. CarbonTracker does not opti-
mise the model state; only the surface fluxes of CO2 are
included in the state vector. To limit aggregation error
while reducing the computational cost to run the assimi-
lation, the surface fluxes are discretised into a maximum
of 239 elements in the state vector, consisting of 30 ocean
regions and 11 large land regions, with each land region
further disaggregated into 19 ecoregions based on vegeta-
tion type. The assimilation solves for scaling factors for
the fluxes in each of these ecoregions and ocean regions.
The most recent version of CarbonTracker, version
CT2019B (Jacobson et al., 2020), provides estimates of
weekly CO2 fluxes from 2000–18. CarbonTracker has also
been used to assimilate space-based observations of CO2

as part of a model intercomparison project (MIP) in
support of the Orbiting Carbon Observatory-2 (OCO-2)
(Crowell et al., 2019).

Another example of the use of an ensemble-based
approach for CO2 flux estimation is Feng et al. (2011,
2016), who used an LETKF scheme for inverse modelling
of space-based CO2 data, and also contributed to the OCO-
2 MIP. Using the same LETKF approach, Palmer et al.
(2019) assimilated data from GOSAT and OCO-2 to esti-
mate CO2 fluxes for 2015 and 2016. They found that the
satellite data suggested an unexpected large source of CO2

from tropical Africa, estimated to be 1.48 Pg C in 2015 and
1.65 Pg C in 2016, with the largest emissions in western
tropical Africa and western Ethiopia. The processes respon-
sible for this large putative source are unknown, reflecting
current uncertainty about the tropical carbon cycle.

The EnKF has also been used for assimilation of space-
based measurements of CO together with meteorological
observations (Arellano et al., 2007; Barré et al., 2015;
Gaubert et al., 2020). The Gaubert et al. (2020) analysis
was conducted for the Korea–United States Air Quality
(KORUS-AQ) experiment in May–June 2016. Their inver-
sion suggested that the a priori CO emissions significantly
underestimated CO emissions, particularly in northern
China where the underestimate was as large as 80%. Their
a posteriori CO emissions also led to improvements in the
model simulation of other trace gases such as O3, HO2, OH,
and long-lived VOCs.

The utility of the ensemble-based approach for chemical
data assimilation is illustrated by Miyazaki et al. (2012,

2 https://gml.noaa.gov/ccgg/carbontracker/.
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2017, 2020), who assimilated space-based observations of
a suite of trace constituents to produce a chemical reanalysis
for tropospheric chemistry. In Miyazaki et al. (2012) they
assimilated observations of O3, NO2, CO, and HNO3 to
constrain the concentrations of all of the predicted constitu-
ents in the chemical mechanism in the model, together with
emissions of CO and NOx (from the surface and from
lightning). Because of the correlations in the chemistry,
which is captured by the covariance matrices, the assimila-
tion is able to provide constraints on the unobserved con-
stituents. As shown in Miyazaki et al. (2012) (see their
figure 3), there were strong correlations between many of
the constituents in their analysis, reflecting the chemical
coupling in the model. In particular, they found that in the
middle troposphere the correlations were particularly
strong between the various hydrocarbons and their oxida-
tion products. In the most recent version of their tropo-
spheric chemistry reanalysis (TCR-2) (Miyazaki et al.,
2020), they extended the reanalysis from 2005–18 at
a spatial resolution of 1.1° globally. The availability of long-
term chemical reanalyses raises the possibility of using
these products to better quantify trends in atmospheric
composition as well as in the emissions of gases such as
CO and NOx.

8.4 Summary

Despite the considerable expansion of the observing sys-
tem during the past three decades, it is still a challenge
for inverse modelling analyses to provide reliable emis-
sion estimates on policy-relevant scales. Comparisons of
emission estimates in the literature reveal large discrep-
ancies between the inferred emissions. For example,
Elguindi et al. (2020) compared various emission esti-
mates for CO, NOx, SO2, non-methane volatile organic
compounds (NMVOCs), black carbon (BC), and organic
carbon (OC) and found a large spread in the reported
inventories. They found that inferred emissions of CO
in Europe and western Africa in 2010 varied between
26.8–40.9 and 16.8–63.5 Tg CO, respectively. One pos-
sible contributing factor to these discrepancies is that
there may be insufficient observational coverage from
the previous generation of satellite instruments to con-
strain the emission estimates on the desired scales. For
example, the MOPITT instrument has a footprint of
22� 22 km2 and achieves global coverage every three
days, with significant data loss due to cloud cover. In con-
trast, the TROPOspheric Monitoring Instrument
(TROPOMI), which was launched in 2017, has a footprint
of 7� 3:5 km2 and achieves global coverage daily. Next-
generation instruments such as TROPOMI offer signifi-
cantly greater observational coverage to better quantify
local emissions. This observational capability will be further
enhanced by the availability of atmospheric composition

measurements from geostationary satellites, which will pro-
vide observations at much greater spatio-temporal density
than is possible from low-Earth orbiting satellites. The
Geostationary Environment Monitoring Spectrometer
(GEMS) was launched in 2020 to monitor air quality in
Asia, the Tropospheric Emissions: Monitoring of Pollution
(TEMPO) instrument will be launched in 2023 to provide
geostationary observations of North American air quality,
and the Sentinel-4 satellite will be launched by the European
Space Agency in 2024 to monitor air quality in northern
Africa and Europe.

Another factor that may contribute to discrepancies
between inferred emission estimates is the implicit assump-
tion that the atmospheric models employed in the inversions
are unbiased. Biases in the models due to discrepancies in the
chemical mechanisms in the models or the representation of
atmospheric transport will get projected onto the inferred
emission estimates. However, characterising and mitigating
these model biases is not straightforward. Stanevich et al.
(2021) suggested the use of a weak constraint 4D-Var scheme
(Derber, 1989; Trémolet, 2006, 2007), which relaxes the use of
the model trajectory as a strong constraint in the 4D-Var
optimisation, as a possible means of characterising and miti-
gating the impact of systematic model errors in chemical data
assimilation. There is a clear need for new approaches for
mitigating biases online in the context of the assimilation to
produce more robust emission estimates.

A significant challenge in chemical data assimilation is
the large range of spatial and temporal scales involved. It is
important to capture the impact of local emissions on the
distribution of the tracers, accounting for the influence of
atmospheric transport from local to synoptic scales and
larger, for tracers with lifetimes that differ by orders of
magnitude, from hours for a gas like NO2 to months for
CO. One potential solution to this problem might be
approaches that combine machine learning with traditional
data assimilation schemes, with the machine learning used
to represent the chemistry and transport on the small scales
not well represented in global models. Such a hybrid data
assimilation approach could help bridges the scales.
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9
Data Assimilation of Volcanic
Clouds: Recent Advances
and Implications on Operational
Forecasts

Arnau Folch and Leonardo Mingari

Abstract: Operational forecasts of volcanic clouds are a key
decision-making component for civil protection agencies
and aviation authorities during the occurrence of volcanic
crises. Quantitative operational forecasts are challenging
due to the large uncertainties that typically exist on charac-
terising volcanic emissions in real time. Data assimilation,
including source term inversion, has long been recognised
by the scientific community as a mechanism to reduce quan-
titative forecast errors. In terms of research, substantial
progress has occurred during the last decade following the
recommendations from the ash dispersal forecast work-
shops organised by the International Union of Geodesy
and Geophysics (IUGG) and the World Meteorological
Organization (WMO). The meetings held in Geneva in
2010–11 in the aftermath of the 2010 Eyjafjallajökull erup-
tion identified data assimilation as a research priority. This
Chapter reviews the scientific progress and its transfer into
operations, which is leveraging a new generation of oper-
ational forecast products.

9.1 Introduction

Explosive volcanic eruptions can inject large quantities of
particles and aerosols into the atmosphere that, after
entraining and mixing with the ambient air, develop sus-
tained buoyant plumes (eruption columns) able to rise up to
stratospheric levels (Sparks et al., 1997). The particles that
result from magma fragmentation and its subsequent
quenching can span in size from volcanic bombs (diameter
d > 64mm), which easily decouple from the ascending mix-
ture and settle to the ground following ballistic trajectories,
to coarse (2 mm> d> 64 μm) and fine (d< 64 μm) ash, which
can be carried upwards efficiently to form volcanic ash
clouds that disperse downwind from the volcano. On the
other hand, volcanic emissions can also include a substantial
component of SO2 that can lead to the formation of sulphate
aerosols and be co-located with the emissions of ash or
injected at different atmospheric layers (SO2 is not always
an ash proxy). The long-range dispersal of both types of

clouds, at scales varying from regional to global, jeopardises
aerial navigation (Miller and Casadevall, 2000). High con-
centrations of ash particles, angular in shape and highly
abrasive, can damage turbine blades, airplane windscreens,
and fuselage, disrupt navigation instruments and, in the
worst scenario, can even melt in the combustion chamber
resulting in clogging of cooling passages and potential
engine stall (Dunn and Wade, 1994). Diluted clouds may
not pose an immediate threat to safety but, nonetheless,
aircraft operations under harsh aerosol environments
degrade overall engine performance, yielding to a lower
time on wing and increasing the engine maintenance costs
(Clarkson and Simpson, 2017). The likelihood of aircraft
encounters is enhanced because volcanic clouds are often
injected at or near the tropopause and, in many latitudes of
the planet, this happens to coincide with the jet streams
and the airplane cruise levels. However, larger eruptions
have the potential for stratospheric injection of ultra-fine
particles and sulfate aerosols that affect the atmospheric
radiative budget and cause measurable atmospheric
alterations persisting for months to years (Robock and
Oppenheimer, 2003). Considering these aspects, the import-
ance of early warning systems and operational forecasts of
volcanic ash/SO2 clouds becomes obvious.

The modelling and forecasting of volcanic clouds aims
at obtaining their location in the atmosphere and time
evolution of concentration, and involves three different
components (Folch, 2012), namely: (i) a meteorological or
numerical weather prediction model, which describes the
4-D state of the atmosphere (wind field, air density, tem-
perature, moisture, precipitation rate, etc.), (ii) a particle
(ash)/SO2 dispersal model, which accounts for transport
(advection by wind, turbulent diffusion, particle sedimenta-
tion), removal (dry and wet deposition mechanisms, even-
tual particle aggregation), and chemical reactions and/or
phase changes and, finally, (iii) an emission model, which
defines the source term (i.e. the eruptive column) in time and
space and that, typically, is embedded in the dispersal
model. Clearly, uncertainties exist in all these components,
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either in the physics of the models (e.g. model parameterisa-
tions) or in their inputs and underlying meteorological
drivers. However, the characterisation and quantification
of the emission term is, in most cases, the most challenging
aspect and constitutes a first-order factor limiting the accur-
acy of volcanic cloud forecasts. These volcanic ash/SO2

emission terms are characterised by the so-called Eruption
Source Parameters (ESPs) that include the starting and the
end times of each eruptive phase, its maximum injection
height, the vertical distribution of mass released along the
eruption column, and the emission rate (source strength or
total mass emitted per unit time). Moreover, in the case of
volcanic ash, the ESPs also include the granulometric char-
acteristics of the particles, needed by dispersal models to
compute sedimentation velocities (i.e. size, density, and
shape factor). The in situ quantification of the ESPs is very
difficult or simply impossible in many occasions (e.g. remote
and/or unmonitored volcanoes, obscured observation con-
ditions). As a result, large epistemic uncertainties can exist
from uncertain model inputs, yielding to model error propa-
gation and amplification. For example, variations (uncer-
tainties) in the cloud top height can result in progressively
larger cloud shape and location mismatches with observa-
tions under wind shear scenarios. Similarly, uncertainties in
the total ash/SO2 emission rates translate into concentration
errors downwind and, consequently, into poorer quantita-
tive forecasts.

Until a decade ago, all operational forecast systems in
place worldwide only delivered qualitative ash cloud forecast
products, consisting of ‘ash/no ash’ delineation zones. This
was largely motivated by the conservative ‘zero ash toler-
ance’ regulatory Convention on International Civil Aviation
which, in practice, made the source strength quantification
unnecessary in operational model setups. However, the erup-
tions of the Eyjafjallajökull (Iceland, 2010) and Cordón
Caulle (Chile, 2011) volcanoes dramatically revealed how
such a precautionary criterion for flight banning and air-
space closure could yield to overreaction and billions of US$
economic losses to the aviation sector, particularly when
volcanic clouds pass through congested air traffic regions.
The adoption of new guidelines based on quantitative ash
concentration thresholds (e.g. the 4, 2, and 0.2 mg/m3

defined at that time in Europe) had important implications
for operational systems, which had to face the question of
how to better constrain the source parameters and their
uncertainties. In parallel, the aviation sector has experienced
a growing demand from engine lessors and maintenance,
repair, and overhaul (MRO) stakeholders to quantify engine
ingestions and, thereby, optimise the costs of engine main-
tenance cycles. All these aspects boosted research progress
on monitoring and modelling of volcanic clouds, leveraged
also by community efforts such as the 2010/2011 IUGG-
WMO workshops on Ash Dispersal Forecast and Civil
Aviation (Bonadonna et al., 2012), which delineated
a roadmap to implement forecasting strategies to better

deal with uncertainties in model inputs and ultimately trans-
fer developments into operations. In particular, data assimi-
lation (DA) was soon identified as a priority to reduce
quantitative forecast errors, where the term ‘data assimila-
tion’ is understood here in a very broad sense, from a simple
manual update of model inputs by forecasters to truly auto-
mated variational or sequential data assimilation methodolo-
gies. In the field of DA and related observations, advances
have occurred both in terms of in situ ground-based moni-
toring techniques and in terms of fusing models with distal
cloud observations from satellites, distal ground-based net-
works, or even from instruments on board aircrafts. Note
that the first strategy makes use of in situ ground-based
observations, typically from volcano observatories (VOs),
and aims at direct measurement of the ESPs. In contrast,
the second approach builds on distal observations of clouds
and, consequently, is more tailored to long-range dispersal
forecasts. Given the practical impossibility of exhaustively
monitoring in situ the 1500+ active volcanoes that exist
worldwide and, at the same time, the aviation requirement
for global-coverage forecasts, the second approach has nat-
urally been adopted by almost all operational settings. These
include the nine Volcanic Ash Advisory Centers (VAACs)
but also some national-level institutions and VOs with oper-
ational mandates.

This chapter reviews the scientific advances that have
occurred in DA of volcanic clouds during the last decade
and discusses how its implementation and transfer into
operations can contribute to a new generation of forecast
products. Section 9.2 summarises the different observation
platforms and detection/retrieval mechanisms, including
their pros and cons. With this background in mind,
Section 9.3 presents the recent advances in DA for volcanic
clouds, which span from simpler data insertion or source
term inversion mechanisms to more sophisticated vari-
ational and sequential data assimilation techniques.
Finally, Section 9.4 discusses the implications of transfer-
ring research findings into operations and the emerging
perspectives.

9.2 Volcanic Cloud Observation

Volcanic clouds can be observed using a myriad of instru-
ments including active or passive satellite-based sensors,
ground-based monitoring, or even in situ particle sampling
from research aircrafts. Ground-based instrumentation net-
works, for example, laser remote sensors such as ceilometers
or multi-wavelength polarisation LIDARs, are used for
measuring properties and distribution of tropospheric aero-
sols, vertical structure of meteorological clouds, or height of
the atmospheric boundary layer. These instruments are
deployed for atmospheric research and monitoring purposes
but, nonetheless, they have been successfully used to detect
and characterise volcanic components. For example, during

9 Data Assimilation of Volcanic Clouds 145

https://doi.org/10.1017/9781009180412.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009180412.010


the passage of the Eyjafjallajökull ash clouds over Europe,
data from the European Aerosol Research LIDAR
NETwork (EARLINET) was available in near real-time
(e.g. Balis et al., 2016). However, the limited network dens-
ities, the data process latency, and the lack of oceanic and
global coverage, are limiting factors for considering ground-
based instrumentation in operational forecast systems. In
contrast, space-based sensors can furnish high-resolution
temporally resolved global observations, something advan-
tageous for punctuated, sparse, sporadic, and short-lived
events like volcanic eruptions. In fact, DA of volcanic clouds
relies almost exclusively on satellite observations, leaving
other data sources for model validation purposes. This sec-
tion gives a succinct review of satellite detection and retrieval
of volcanic ash/SO2. The reader is referred to the vast litera-
ture existing on this topic including, for example, the recent
review by Prata and Lynch (2019).

The absorption of electromagnetic radiation by particles
varies with the wavelength. In the long-wavelength infrared
(IR) region of the spectrum (8–15 μm), silicate-rich particles
like volcanic ash are more absorbent at shorter wavelengths
whereas ice and water droplets in meteorological clouds
show an opposite behaviour. This ‘reverse absorption’ char-
acteristic of volcanic ash motivated the introduction of dual-
band IR measurements to discriminate between ash and
meteorological clouds from space by taking the Brightness
Temperature Difference (BTD) at two different channels, for
example, at 10.8 and 12 μm (Prata, 1989), with negative-
value pixels indicative of the presence of ash. This simple
idea underpins all real-time automated ash detection algo-
rithms developed since then (e.g. Pavolonis et al., 2006),
which nowadays include combinations of multiple IR chan-
nels and other detection corrections. It should be mentioned
that, despite their enormous success and popularity, passive
IR detection methods present limitations, including that
overlying meteorological clouds can obscure the ash cloud,
that absorption signals can be masked by the presence of ice,

or that the BTD method fails in detecting too optically thick
or thin clouds. Table 9.1 lists the main passive IR sensors
and platforms currently used to detect (and retrieve) volcanic
ash and SO2 worldwide. This includes the latest generation
of geostationary satellites that provide high temporal (10–15
min) and spatial (1–2 km) resolution observations. Ash
detection algorithms give a binary answer (yes/no) on the
presence of ash or, at most, an ash presence probability
based on the level of detection confidence (e.g. Francis
et al., 2012). However, detection algorithms do not provide
any quantitative result and, consequently, are of more
limited utility in terms of DA. In contrast, retrieval algo-
rithms go further and invert the raw observation signal with
a microphysical model of the ash particles and a radiative
transfer model to derive an ‘effective’ particle size, cloud
opacity (optical depth), and column mass loading, all with
constrained retrieval uncertainties (30–50% on average).
These are more meaningful quantities for models and assimi-
lation of ‘observations’, and underpin most DA strategies
discussed next. It is important to note that passive-based
retrievals can only give a top (vertically integrated) view of
the cloud and an estimation of its height; vertically resolved
quantification typically requires active remote sensing (e.g.
LIDARs). Unfortunately, only polar-orbiting satellites carry
active sensors (e.g. CALIOP) and, consequently, the narrow
field-of-view of the instrument and the frequency of satellite
overpasses limit the coverage and the quantity of vertically
resolved observations.

On the other hand, the detection of SO2 clouds from
satellite observations is less challenging than volcanic ash
although this depends on the wavelength the sensor is meas-
uring, for example, IR versus ultraviolet (UV) (Carn et al.,
2009; Clarisse et al., 2012). First, in the long-wavelength IR
region, the SO2 retrieval for imager satellites such as
Himawari-8/AHI is based on the strongest IR absorption
band for SO2 (i.e. the 7.3 μm band) (e.g. Muser et al., 2020,
Prata et al., 2021). Second, the UV region (280–340 nm) is

Table 9.1 Summary of the main passive IR sensors and platforms used for detection/retrieval of volcanic ash and SO2. (*) p:
polar-orbiting, g: geostationary (image period in parentheses). Modified from Prata (2016) and Prata and Lynch (2019).

Sensor Acronym Platform Platform type (*) Resolution (km)

Advanced Very High Resolution Radiometer AVHRR-2/3 NOAA-POES p 1
High-Resolution Infrared Radiation Sounder HIRS-2/3 MET-Op p 26
Moderate-Resolution Imaging Spectroradiometer MODIS Aqua / Terra p 1
Visible Infrared Imaging Radiometer Suite VIIRS Suomi-NPP p 1
Atmospheric Infrared Sounder AIRS Aqua p 13
Cross-Track Infrared Sounder CrIS Suomi-NPP p 14
Infrared Atmospheric Sounding Interferometer IASI METOP-A p 12
Advanced Himawari Imager AHI Himawari-8/9 g (10 min) 2
Spinning Enhanced Visible and InfraRed Imager SEVIRI MSG g (15 min) 1–2
Advanced Baseline Imager ABI GOES-R g (15 min) 2
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also very suitable formeasurements of volcanic SO2. Several
hyperspectral spectrometers (see Table 9.2) give observa-
tions of global SO2, including retrieval algorithms from
backscattered radiance measurements. The sensitivity of
SO2 retrievals depends on a priori assumption of the SO2

cloud height, and the retrievals often provide different prod-
ucts depending on this assumption. Among the hyperspec-
tral spectrometers, it is worth mentioning the success of
TROPOMI with its very high detection sensitivity (~1 DU;
Theys et al., 2019).

9.3 Data Assimilation Advances

9.3.1 Data Insertion
Data insertion is a simple DA strategy and, essentially,
consists of initialising a dispersal model with an effective
‘virtual source’ inserted away from the volcano. The obvi-
ous advantage of such a forecast initialisation is that no
prior knowledge on the uncertain ESPs is needed.
Moreover, if multiple observations are available at different
time steps, successive data insertions can be used to restart
a forecast and to halt the forward propagation in time of
other model uncertainties. A possible forecast strategy built
upon data insertion is to generate an ensemble of runs, for
example, with each ensemble member initialised from obser-
vations at different times. The ensemble mean or any other
weighted combination of the ensemble members can then
furnish a deterministic forecast, but with the additional
advantage that some observation snapshots may reveal
parts of the cloud obscured during other initialisation
steps (e.g. due to overlaying of meteorological clouds). In
contrast, the main disadvantage of the data insertion mech-
anism is that the virtual sources are normally obtained from
passive column load satellite retrievals, something that may
require additional assumptions on the cloud top height,
thickness, and vertical distribution of concentration in
order to reconstruct the three-dimensional structure of the
source. This issue can be partially addressed by co-locating
the column load retrievals with some additional vertically
resolved observation, for example, profiles from the
CALIOP LIDAR aboard the CALIPSO polar-orbiting sat-
ellite (if a coincident overpass exists). On the other hand,

data insertion does not consider the mass emitted since the
last retrieval and, for this reason, it is particularly tailored to
cases where the cloud is already detached from the volcano
at the time of initialising the forecast model. Finally,
another important aspect of data insertion to consider is
that retrieval errors are actually ingested into the model and
propagated forward.

Wilkins et al. (2014) used SEVIRI retrievals of ash column
load and cloud top height from the 13–14 May 2010
Eyjafjallajökull ash cloud to initialise four different
Numerical Atmospheric-dispersion Modelling Environment
(NAME) dispersal model simulations driven by the global
version of the Met Office Unified Model (MetUM). With
these, the authors proposed a ‘conservative’ composite fore-
cast considering the greatest ash column load values at each
grid cell. This pioneering work on data insertion showed the
potential of the multiple retrieval analysis strategy, which
improved the forecast skills of the reference run with no
data insertion. Clearly, this method is likely to be more
effective under little cloud cover and to worsen whenever
parts of the cloud are consistently undetected by all retrievals.
This idea of amultiple data insertion composite forecasts was
further expanded byWilkins et al. (2016) including amore in-
depth forecast validation using the structure, amplitude, and
location (SAL) and the Figure Metric of Space (FMS) met-
rics for the 8 May 2010 Eyjafjallajökull and the 24May 2011
Grímsvötn ash clouds. In this case, up to six IR retrievals in
a 35-hour time window were used, and the results showed
that all single data insertion forecasts performed similarly to
theNAMEbest guess forecast, whichwas initialised from the
volcanic source alone and included measurements of the
ESPs (i.e. with fewer uncertainties than in operational set-
tings). Not surprisingly, the six-member composite forecast
using the maximum loads scored worse than any single mem-
ber, essentially because this conservative estimate was actu-
ally designed to ensure that most observable ash is captured.
Wilkins et al. (2016) concluded that, for scenarios in which
a lot of ash is obscured, the data insertion method alone is
likely to be insufficient. Crawford et al. (2016) initialised the
HYSPLIT dispersal model with Moderate Resolution
Imaging Spectroradiometer (MODIS) mass and cloud
top retrievals complemented with particle effective radius
estimations. The 2008 Kasatochi eruption was used here

Table 9.2 Summary of the main nadir-viewing spectrometers and platforms used for detection/retrieval of volcanic SO2 usingUV
(and shortwave IR)

Sensor Acronym Platform Platform type Resolution (km)

Ozone Monitoring Instrument OMI Aura p 13 x 25
Global Ozone Monitoring Experiment GOME-2 ERS-2, MetOp p 40 x 320
Ozone Mapping and Profiler Suite OMPS JPSS p 50
TROPOspheric Monitoring Instrument TROPOMI Sentinel-5P p 3 x 5

9 Data Assimilation of Volcanic Clouds 147

https://doi.org/10.1017/9781009180412.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009180412.010


as the test case, for which a high-resolution and long-
lasting observation dataset with little presence of
meteorological clouds was available. These ideal observa-
tion conditions were complemented by co-locating
CALIOP data from several polar-orbiting passes to
derive further information on the vertical structure of
the ash cloud. The data insertion option was compared
against two operational source model settings, the uni-
form line source and the cylindrical source, using the
Critical Success Index (CSI) metrics to measure the over-
lap of the two datasets. Their conclusion was also that
the data insertion option performed as well or better than
initialising the model at the vent, particularly when using
the early retrievals (i.e. when the cloud is optically thick
and has a simpler structure). On the other hand, Folch
et al. (2020) implemented a simple ash/SO2 data insertion
mechanism in the version 8.0 of the FALL3D model. In
the model initialisation step, an option was added to
interpolate gridded satellite data from latest generation
geostationary satellites into the model grid imposing con-
servation of mass, that is, ensuring that the resulting
column mass in the model (computed concentration
multiplied by cloud thickness) equals that of satellite
data over the same cell area. As test cases, Prata et al.
(2021) used the FALL3D-8.0 data insertion mechanism
with fine ash and SO2 for the June 2011 Cordón Caulle
(Meteosat-9 SEVIRI data) and the June 2019 Raikoke
(Himawari-8 AHI data) eruptions, respectively. Time ser-
ies of SAL and FMS metrics were used to validate simu-
lations with and without data insertion initialisations,
showing that simulations initialised with data insertion
consistently outperformed their counterparts. For illus-
trative purposes, Fig. 9.1 shows an example of data inser-
tion and its benefits on the forecast. However, Prata et al.
(2021) also pointed out that retrievals could be affected
by several factors (e.g. cloud interference, high water
vapour burdens, chosen detection thresholds) meaning
that the ash/SO2 detection schemes may miss some legit-
imate ash or SO2 that the model is otherwise predicting.
These aspects can partially explain the reluctance in
implementing data insertion mechanisms in operational
forecast model settings. In fact, in terms of operational
implementation, data insertion strategies are of limited
use. To our knowledge, only the Tokyo VAAC includes
an initial particle distribution consistent with the
observed cloud boundaries (Eliasson and Yoshitani,
2015) and the Darwin VAAC fuses data insertion with
source characterisation to filter members during the ana-
lysis stage (see next sections).

9.3.2 Source Term Inversion
Source term inversion is a modelling strategy that, essen-
tially, aims at finding the combination of key eruption
source parameters (ESPs) that bring the model into best
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Figure 9.1 Example of a data insertion forecast using FALL3D
for the 2019 Raikoke SO2 cloud. (a) Cloud column mass of the
control run forecast (no DA) at 23 June 06:00 UTC, 36h after the
eruption start. (b) Forecast with data insertion at the same instant
(insertion at 22 June 18:00 UTC, 12h before the plot). (c) Column
mass retrieval from AHI Himawari-8 observations.
All plots in Dobson Units (DU); same colour scale.
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agreement with observations, typically consisting on col-
umn mass retrievals. Like in the simpler data insertion
mechanisms, the different source term inversion strat-
egies also provide an initial condition to the forecast
but with two important advantages. On the one hand,
the source inversion explicitly resolves the vertical struc-
ture of the cloud so that, as opposed to data insertion,
no additional hypotheses are needed on cloud top height,
thickness, and mass concentration distribution. On the
other hand, the emission profiles resulting from the
inversion procedure can be used to produce a complete
forecast, a desirable feature when the cloud is not yet
detached from the vent.

Eckhardt et al. (2008) did the first implementation of an
inverse modelling procedure for volcanic clouds using the
FLEXPART Lagrangian dispersion model and consider-
ing SO2 observations from various satellite-borne instru-
ments (AIRS, OMI, and SEVIRI). Their inversion
method, built upon the original approach of Seibert
(2000), uses an iterative algorithm to minimise a cost func-
tion using an a priori for the unknown sources and
a Bayesian formulation involving uncertainties for both
the prior and the observations. In this strategy, the prior
source profiles are first decomposed in a number of elem-
entary points above the volcano and the dispersal model is
solved forward in time up to the ‘assimilation’ instant(s),
when the inversion mechanism computes corrections
for each elementary component. The cost function in
Eckhardt et al. (2008) results from adding three different
contributions, namely, model-observation misfits at recep-
tors, deviation from the a priori values, and deviation from
smoothness. This results in a linear system of equations to
be solved for the elementary source corrections (i.e. giving
the increments with respect to the prior) and providing the
‘most likely’ solution in the statistical sense. It is important
to note that this strategy is very optimal for Lagrangian
model formulations because the contribution to the recep-
tors from each elementary point source is always available
(Lagrangian ‘puffs’ can be tagged trivially). As a result,
only one forward run of the dispersal model with all the
prior elementary sources is, in theory, needed. This is not
true in Eulerian frameworks because, in this case, model
grid points do not know the elementary source contribu-
tions (only the total aggregated concentration/load exists),
preventing the construction of a source–receptor matrix.
Nonetheless, this elementary-based method can be
extended to Eulerian models, but this comes at the cost of
running an ensemble of n single-point prior simulations,
where n is the number of elementary sources in the emission
profile. Considering that n is typically of the order or larger
than 100, this can impose computational constraints that
make Eulerian models less suitable for this particular
inversion strategy in operational settings.

The elementary Bayesian inversion strategy was first
applied by Eckhardt et al. (2008) to reconstruct the 2007

Jebel at Tair (Yemen) SO2 cloud to obtain emission profiles
and altitudes, allowing further simulation of sulphur trans-
port across Asia and over the Pacific Ocean for about a week
after the inversion time instant. Later on, Kristiansen et al.
(2010) did a second application example to derive the verti-
cal SO2 emission height profile for the 7–8 August 2008
Kasatochi eruption. The simulated Kasatochi SO2 cloud
was compared against independent satellite data up to six
days after the eruption, with a good overall agreement.
The same inversion method existing in FLEXPART for
SO2 was later extended to time-dependent volcanic ash
emissions by Stohl et al. (2011), in this case considering
coincident SEVIRI and IASI measurements of the
14 April to 24 May 2010 Eyjafjallajökull clouds, yielding
to a vertically and temporally resolved a posteriori emission
quantification. It is worth mentioning that the inversion
reduced the root-mean-square (RMS) errors in
FLEXPART by 28% when comparing a priori and a
posteriori source inversion results. Kristiansen et al. (2012)
ported this time-resolved source term option to the
Lagrangian NAME model, in this case driven by the
MetUM meteorological model. For both FLEXPART
and NAME Lagrangian dispersal models, the a posteriori
Eyjafjallajökull source terms differed significantly from the
a priori guess in that the inverted emissions were more pulse-
like, resulting in ash being released near the top of the
eruptive column. In addition, and thanks to the exception-
ally good set of observations available for this well-studied
eruption, the inverted simulations could be compared
against ground-based and research aircraft measurements,
resulting in a factor of 2 uncertainty reduction and
improved overall forecast skill scores. More applications
can be found in Steensen et al. (2017) and Moxnes et al.
(2014), who did the first ash/SO2 joint inversion applying the
fully resolved approach in Stohl et al. (2011) to the
May 2011 Grímsvötn clouds and considering IASI data up
to four days after the start of the eruption. At operational
level, a variant of the elementary Bayesian inversionmethod
was implemented in the London VAAC to assist with the
provision of forecast guidance. In this case, the UK Met.
Office inversion system (INTEM) was extended to estimate
volcanic ash source parameters and furnish the NAME
dispersal model with vertical emission profiles in an auto-
mated way (Pelley et al., 2015). For INTEM, the a priori ash
profiles are first set with observations of the eruptive column
height (with associated uncertainty estimations) and then
the embedded INTEM system runs to obtain the refined
(inverted) source term profile given all the SEVIRI satellite
retrievals available from the start of the eruption up to the
inversion (analysis) time. This procedure can run cyclically
(e.g. every six hours) to give automated updates to the ESPs
as more retrievals become available. Similar Bayesian-based
approaches have been implemented in other models, basic-
ally differing from the original formulation of Eckhardt
et al. (2008) on the definition of the cost function. For
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example, Chai et al. (2017) implemented a source inversion
system in the HYSPLIT Lagrangian model to estimate opti-
mal ash profiles emission rates from MODIS mass loadings
and ash cloud top heights, and tested it with the 2008
Kasatochi eruption. In this case the cost function only inte-
grates the differences between the model predictions and the
observations and the deviations of the (optimal) final solu-
tion from the first guess. This study found that multiple-
retrieval assimilations at different times produced a better
hindcast than only assimilating the latest observation
available.

On the other hand, and in parallel, another inversion
mechanism for SO2 clouds was proposed by Boichu et al.
(2014) using the CHIMERE regional Eulerian chemistry-
transport model driven by the Global Forecasting System
(GFS) reanalysis. The method considers a feedback loop
between the model and the polar-orbiting Infrared
Atmospheric Sounding Interferometer (IASI) retrievals.
The inverse problem is solved here by determining the time
history of the SO2 flux that minimises (in the least squares
sense) the misfit between observed and modelled spatial and
temporal distributions of SO2 within one or several images
and, as opposed to the Bayesian approach, no a priori know-
ledge on mass flux is required. More recently, Zidikheri and
Potts (2015) introduced a completely different source inver-
sion approach, initially only to invert SO2 emissions but
later on extended to volcanic ash by Zidikheri et al. (2016).
As opposed to the previous Bayesian approaches, this
method does not decompose the prior emission profiles
into elementary source terms but considers instead that the
emission profiles are characterised by known functions
depending on a small number of parameters that need to
be optimally determined by the inversion. For example, the
vertical distribution of mass could be given as a two-
parameter Suzuki parameterisation (Suzuki, 1983), the
total source strength can depend on the fraction of fine ash
and eruption column height through a Mastin-like relation-
ship (Mastin et al., 2009), and so on. In this way, a set of
prior dispersal model simulations is run with each simula-
tion characterised by a single combination of parameter
values sampled within a constrained range. The novel idea
introduced by Zidikheri and Potts (2015) was to find the
optimal combination(s) of values using cloud mass loading
pattern correlations as ameasure of themodel–observations
agreement. To this purpose, a pattern correlation is com-
puted for each model run considering the scalar product of
two normalised vectors in an n-dimensional space, where n is
the number of points with observations. The first vector
contains local deviations of observations from the spatial
(over all points) and temporal means, whereas the second
vector is analogous but for model forecasts. The inversion
consists of finding the combination of source parameters
with maximum pattern correlation, which mathematically
implies a maximum alignment of these two vectors. In fact,
an optimal pattern correlation of 1 implies that the model

and the observations have, at every receptor point and time
slab, the same relative deviations with respect to mean
quantities. It is clear that, compared with the elementary
Bayesian inversion, this method requires running a number
of prior simulations depending on the dimension of the
parameter space and its discretisation. However, it presents
multiple advantages. First of all, no assumptions are strictly
needed on model/observation uncertainties. Second, the
resulting emissions are, by construction, positive-definite
and no extra procedure is required to filter out spurious non-
physical negative solutions as occurs with the previous
functional forms. Third, the method is independent of the
modelling framework so that Eulerian models pay no par-
ticular penalty. Last but not least, during the inversion
process, the prior simulations can be ranked according to
their correlation pattern and this can be used to define the
members for an ensemble forecast, for example, by selecting
(filtering) the subset of runs in the analysis with most ‘opti-
mal’ parameter values.

Zidikheri et al. (2017a, 2017b) tested the pattern-based
inversion approach using the HYSPLIT model driven by
the ACCESS-R regional meteorological model on various
recent eruptions affecting the Darwin VAAC domain –

Kelut (February 2014), Sangeang Api (May 2014), Rabaul
(August 2014), Manam (July 2015), and Soputan
(January 2016) – using mass load retrievals from the
Japanese Meteorological Agency’s geostationary satellite
MTSAT and, for the most recent events after 2015, also
from Himawari-8. In this case, the parametric emission
profiles were defined in terms of vertical mass distribution
(a blend of top-Gaussian and vertically constant forms),
time-dependent column height, and particle grain size (log-
normal distribution). In addition to showing how pattern-
based inversion can improve forecasts, a main finding was
that tuning the vertical mass distribution is normally the
most important aspect to match observed cloud mass load
patterns.

9.3.3 Variational Data Assimilation
Variational DA methods aim at estimating the best
model pattern that is consistent with the observations
within a given observing window (Carrassi et al., 2018).
Variational methods seek an optimal analysis solution
by minimising a cost function depending on the differ-
ence between model outputs and observations in order
to estimate the control variables of a model, which can
include both state variables and model parameters (Lu
et al., 2016a). Variational methods are widely employed
in many fields (e.g. meteorology) but their application to
volcanic clouds is limited to a few studies. Flemming
and Inness (2013) proposed a technique based on the
4D-Var method to estimate the total SO2 emission rate
and plume height, without determining the vertical emis-
sion distribution. This limitation was corrected by Lu

150 Folch & Mingari

https://doi.org/10.1017/9781009180412.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009180412.010


et al. (2016a), who conducted several twin experiments
to determine the vertical profile of emission rate by
assimilating synthetic observations of volcanic ash
mass loading. Their conclusion was that the standard
4D-Var method was unable to correctly estimate the
vertical structure of the emission source term due to
the lack of vertical information in the observational
dataset. For this reason, a modified 4D-Var method
was proposed and evaluated using twin experiments.
This alternative sought an optimal linear combination
of model realisations by minimising a reformulated 4D-
Var cost function in order to estimate the vertical distri-
bution of the emission source term (assumed to be
a constant input parameter) over an assimilation time
window. According the authors, this approach showed
better performance than the traditional 4D-Var method
and has the potential to be applied to real cases using
satellite retrievals. Lu et al. (2016b) did a further step by
integrating observations of the ash column height and
the mass loading in the data assimilating system. Twin
experiments were conducted to evaluate the performance of
this technique and it was concluded that it is possible to
reconstruct the vertical profile if large assimilation windows
(>6 h) are considered. Moreover, it was suggested that the
assimilation system is unable to produce reliable forecasts
by assimilating only two-dimensional mass loading and
therefore vertical information must be integrated to remove
spurious vertical correlations. In fact, Inness et al. (2022)
used the Raikoke eruption in June 2019 to show how
adding TROPOMI SO2 height data to the total SO2 column
products improved the Copernicus Atmosphere Monitoring
Service (CAMS) operational forecasts, which make no use
of prior knowledge of the plume height. On the other hand,
Vira et al. (2017) explored the well-known relationship
between the 4D-Var data assimilation and the source term
inversion to estimate temporal and vertically resolved SO2

emission fluxes using the SILAM atmospheric chemistry
model during the 2010 eruption of Eyjafjallajökull. The
authors found that assimilating the plume height retrievals
reduced the overestimation of injection height during indi-
vidual periods of one to three days.

9.3.4 Ensemble-Based Sequential Data Assimilation
Sequential DAmethods have been extensively used to study
and forecast geophysical systems (Carrassi et al., 2018). This
approach is based on the estimation theory and can be
applied to a broad range of operational and research scen-
arios. In sequential schemes, the assimilation process is
characterised by a sequence of steps involving a forecast
step and an analysis step in which model variables are
corrected whenever observations are available. During the
analysis step, the a posteriori estimate is computed from the
a priori forecast state and the observational dataset to be
assimilated.

9.3.4.1 Particle Filter Methods
Ensemble-based forecasting has long been recognised and
used as a proper way to deal with model uncertainties,
providing an adequate framework for full data assimilation
strategies. However, before reviewing the more classical
Kalman-based sequential DA schemes, it is worth mention-
ing a strategy that makes use of data insertion and/or source
term inversion to define the ensemble members and their
spread. Zidikheri and Lucas (2021a, 2021b) used a large
number of ensemble runs generated from perturbations of
the volcano source term, data insertion, or a combination of
both. The novel contribution from these recent studies was
to filter the trial runs based on their degree of agreement
with observations within the analysis time window, resulting
in a kind of ‘particle filter’ strategy. Moreover, Zidikheri
and Lucas (2021a, 2021b) considered not only quantitative
mass load retrievals but also a mix of several observation
fields including also ash detection, particle size, or cloud top
height.With these, a multiple-step filtering process is used to
determine the optimal subset of analysis ensemble members
that is retained for the successive forecast stage.

9.3.4.2 Kalman-Filter Methods
Sequential DA techniques are mostly based on the Kalman
filter (KF; Kalman, 1960), which represents the optimal
sequential technique for linear dynamics. Given a model
state vector and an observation vector, the KF gives the
optimal solution for the dynamical and observational models
(both assumed to be linear and with Gaussian noise).
However, it was soon recognised that the KF is not feasible
for realistic geophysical problems involving high-
dimensional numerical models and, for this reason, several
algorithms based on the original KF have been proposed to
reduce the computational requirements and handle the non-
linearities characteristic of real physical problems. The
ensemble-based KFs are a popular family of methods in
which the probability distributions are approximated by an
ensemble of system states and the error covariance matrix of
the original KF formulation is replaced by a sampled covari-
ance matrix computed from the ensemble. One of the most
important practical advantages of ensemble-based tech-
niques is the independence of the filter algorithm on the
specific forward model. In addition, ensemble-based KFs
are relatively easy to implement (no adjoint operators are
required) and can benefit from massively parallel computer
architectures due to the large degree of parallelism that can be
achieved. In each assimilation step, a forecast is used as a first
guess to generate an ensemble of improved model states or
posterior ensemble which is compatible with available obser-
vations. The analysis is an estimate of the three-dimensional
model state and can be used to initialise the next forecast step.
In a sequential approach, this procedure can be repeated
multiple times to continuously correct the dispersal model
state by assimilating a sequence of observations recorded at
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regular time intervals. Most ensemble-based formulations
can be divided into two major categories depending on how
the analysis is generated: stochastic and deterministic
approaches (Houtekamer and Zhang, 2016). The ensemble
Kalman filter (EnKF) introduced by Evensen (1994) is one of
themost popularmethods based on a stochasticMonteCarlo
approach, and has been widely used in oceanography and
meteorology applications (Evensen, 2003). Subsequently,
Burgers et al. (1998) showed that the observations must be
treated as random variables to arrive at a consistent analysis
scheme and proposed the perturbed observations-based
EnKF formulation. In contrast, the deterministic approaches
do not perturb observations randomly. Instead, deterministic
filters use algorithms to generate the analysis ensemble
through an explicit transformation of the state ensemble.
A remarkable example is the Ensemble Transform Kalman
Filter (ETKF, Bishop et al., 2001), a popular square-root
filter formulation (Nerger et al., 2012) which is suitable for
high-dimensional systems, relatively easy to implement, and
is computationally efficient. The application of ensemble
filters in geophysical systems can lead to spurious correlations
and underestimations of the ensemble spread due to a limited
size of the ensemble, sampling errors, and model errors
(Anderson and Anderson, 1999). The problem of variance
underestimation (filter collapse) is usually addressed by using
inflation methods, whereas localisation is adopted to sup-
press spurious correlations. The localised version of the
ETKF (i.e. LETKF) proposed by Hunt et al. (2007) is
a popular method for data assimilation with localisation
suitable for high-dimensional systems and computationally
efficient. Both ETKF and LETKF methods have previously
been used to assimilate volcanic observations.

Most work on ensemble assimilation dealing with vol-
canic ash/SO2 has focused on ensemble KF techniques.
Numerical experiments are based on both global (Fu et al.,
2015, 2017; Osores et al., 2020) and localised (Fu et al., 2016;
Pardini et al., 2020; Mingari et al., 2022) filters (i.e. on
applying the filter over the whole computational domain
or over a part of it). For example, Osores et al. (2020)
proposed an ensemble-based data assimilation system for
volcanic ash using the global ETKF. Alternatively, the
localised version of the ETKF (i.e. LETKF) was imple-
mented in the assimilation systems used by Pardini et al.
(2020) andMingari et al. (2022) in order to improve volcanic
ash/SO2 forecasts. In the numerical studies conducted by Fu
et al. (2015, 2016, 2017), the LOTOS-EUROS model was
combined with an ensemble square-root filter to reconstruct
the optimal model state and improve quantitative forecasts
of the 2010 Eyjafjallajökull volcanic eruption.

Typically, the ensemble model states are constructed by
perturbing uncertain model parameters such as eruption
source parameters (ESPs) and meteorological fields
(assumed to be an input parameter when the meteorological
and dispersal models are coupled according to an off-line
approach) with typical ensemble sizes ranging between 32

and 128 members. In fact, uncertainties in ESPs are known
to be first-order contributors to model errors (Costa et al.,
2016) and the eruption column height is recognised as one of
the most relevant source parameters, perturbed in all pub-
lished studies. Other perturbed EPS include mass eruption
rate, vertical mass distribution, and eruption start time and
duration. In addition, horizontal wind components have
also been perturbed. Some preliminary work is based on
twin experiments (e.g. Fu et al., 2015; Osores et al., 2020;
Mingari et al., 2022), where observations are generated from
a control model simulation by adding random errors. In
contrast, other numerical experiments are based on real
observations corresponding to recent volcanic eruptions,
including the 2010 Eyjafjallajökull (Fu et al., 2016, 2017),
2018 Etna (Pardini et al., 2020), and 2019 Raikoke (Mingari
et al., 2022) eruptions. Fig. 9.2 illustrates how this sequential
DA strategy improves the forecast skills for the latter case.

In the filter-based methods, the observation operator that
translates themodel state into the observation spacemust be
defined depending on the specific observational dataset to
be assimilated. Typically, this entails satellite-retrieved or
synthetic two-dimensional column mass loading for assimi-
lation purposes (Osores et al., 2020; Pardini et al., 2020;
Mingari et al., 2022). In this case, the observation operator
involves a vertical integration of concentration, a sum over
different species (if multi-species observations are being
assimilated) and, finally, the interpolation to the observa-
tion coordinates. Alternatively, the full concentration field
can also be assimilated as in Fu et al. (2017), where the
authors defined a pre-processing operator to translate ash
mass loading and cloud top height satellite retrievals into
three-dimensional concentrations. This procedure avoids
the problem of the artificial vertical correlations that could
potentially be introduced by the assimilation of a two-
dimensional dataset of observations. Note that the observa-
tional operator in this case is trivial as it only translates
concentrations at model grid into observation locations. In
addition, the ash cloud was assumed uniformly distributed
within a layer with a given vertical thickness sampled from
a range of plausible values obtained from a literature review.
However, as this thickness was assumed to be uniform and
constant, artificial vertical correlations were not completely
removed. Note that the definition of a linear observation
operator is required to assimilate mass loading and mass
concentration, while other observables (e.g. optical depth),
would lead to a non-linear observation operator. So far, all
published work has focused on linear operators.

9.4 Conclusions and Emerging Perspectives

Until a decade ago, all operational forecast systems in
place worldwide only delivered qualitative ash cloud fore-
cast products, consisting of ‘ash/no ash’ delineation
zones. Today, the operational Volcanic Ash Advisory
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Centres (VAACs) are under a complex transition process
that includes updating of products with quantitative fore-
casts, use of the System Wide Information Management
(SWIM) of the International Civil Aviation Organization
(ICAO) or integration with the WMO information system
(WIS) global infrastructure. At a scientific level, substantial
progress has occurred during the last decade on implemen-
tation, verification, and validation of DA strategies for
volcanic clouds. However, technical challenges still exist
for transfer of DA into operations, including the definition
of complex workflows able to access data from distributed
sources, manage data streams, and fuse data and models in
a robust and automated way.

A range of possible DA methodologies exists depending
on the available observations. Satellite-based observations
are clearly the preferred choice, although column mass
retrievals have no vertical resolution and this can yield to
spurious correlations in some DAmethodologies. This limi-
tation can be circumvented if mass observations are com-
plemented with column height retrievals, more difficult to
obtain at operational level. An alternative could be to
assimilate radiance products but, to this purpose, dispersal
models need to embed a radiative transfer model.

In terms of porting DA strategies into operations, source
inversion is the simplest promising option, particularly for
Lagrangian models. Unlike data insertion, inversion needs
no additional observations on cloud top height, thickness,
and vertical distribution of concentration in order to recon-
struct the three-dimensional structure of the source. More
sophisticated options like sequential DA (Kalman filters)
have shown to be a promising alternative for assimilation
of volcanic ash/SO2. According to several evaluation met-
rics, this approach results in a significant improvement of
quantitative forecast. However, some limitations of this
method leading to suboptimal filter performance should be
highlighted. Specifically, the assimilation of ash/SO2 chal-
lenges the Gaussian assumption of model and observation
errors that underpins KF methods. It has been shown that
the skewness of probability distributions is a significant issue
that violates the Gaussian assumption in ensemble forecast-
ing, resulting in suboptimal behaviour of the ensemble KF.
As a result, the analysis step can yield an unrealistic posterior
estimate that is not consistent with the non-Gaussian Bayes’
theorem, introducing artificial negative concentrations. Even
if the previous results reported in the literature are encour-
aging, further work needs to be carried out to establish
more appropriate methodologies for positively skewed,
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Figure 9.2 Comparison between SO2 cloud observations and
forecasts for the 2019Raikoke eruption using the FALL3Dmodel.
(a) Comparison between 1 gm–2 mass loading contour for obser-
vations (green shaded area) and model (solid red line) at
23 June 00:00 UTC. Model results correspond to the free run
without DA. (b) Same for the analysis stage using LETKF to
assimilate satellite retrievals. (c) Root-mean-square error in the
observation space for each assimilation cycle (19 cycles, assimila-
tion every 3h). The LETKF simulations consider three different

localisation radii (LR = 2º,4º,6º), all clearly outperforming the free
run. Multiple assimilation cycles were required to keep the evalu-
ation metrics below the reference values given by the free run.
Overall, the analysis errors were decreased by more than 50%
relative to the free run errors, showing the importance of DA to
improve the predictive capability of dispersal models.

Figure 9.2 (Cont.)
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non-Gaussian prior distributions. Different approaches have
been proposed to deal with non-Gaussianity, including vari-
able transformations (e.g. Zhou et al., 2011; Amezcua and
Van Leeuwen, 2014), Bayesian approaches, such as particle
filter (Van Leeuwen and Ades, 2013), and ensemble Kalman
filtering methods for highly skewed non-negative uncertainty
distributions (Bishop, 2016).
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Abstract: Energetic charged particles trapped by the
Earth’s magnetic field present a significant hazard for
Earth-orbiting satellites and humans in space. Application
of the data assimilation tools allows us to reconstruct the
global state of the radiation particle environment from
sparse single-point observations. The measurements from
different satellites with different observational errors can
be blended in an optimal way with physics-based models.
The mathematical formulation on the diffusion and diffu-
sion-advection equations for the Earth’s Van Allen radi-
ation belts and ring current is described. We further
describe several recent studies that successfully applied
the data assimilation tools to the near-Earth space radi-
ation environment. The applications to the reanalysis of
the radiation belts and ring current, real-time predictions,
and analysis of the missing physical processes are described
and motivation for these studies is provided. We further
discuss various assimilation techniques and potential topics
for future research.

10.1 Introduction: Societal Impact of Space Weather
and Current State of Understanding
of the Physical Processes

Energetic particles in the Van Allen radiation belts, com-
monly referred to as trapped radiation, pose a significant
risk to Earth-orbiting satellites and humans in space.
During solar storms, the radiation in the near-Earth space
can significantly increase. During disturbed geomagnetic
conditions numerous anomalies have been reported by sat-
ellite operators (Robinson Jr, 1989; Baker, 2000). Currently,
there are over 4000 satellites orbiting the Earth (UCS, 2021).
There are a number of communication satellites that assist
in navigation, weather predictions, telecommunications,
and national defence.

The near-Earth space environment is a central focus
of many ongoing international missions, including the
ESA Cluster mission (Escoubet et al., 1997), NASA’s

Time History of Events and Macroscale Interactions
during Substorms (THEMIS) mission (Sibeck and
Angelopoulos, 2008), NOAA’s Polar Orbiting
Environmental Satellites (POES), and the Japanese
Exploration of energization and Radiation in Geospace
‘ARASE’ (ERG) project (Miyoshi et al., 2018) (Fig. 10.1).
Engineering analysis of anomalies in space and determin-
ation of the cause of anomalies require accurate know-
ledge of fluencies (flux of particles integrated over
a period of time) along the satellite orbit. The under-
standing of satellite observations from different space-
craft is complicated by the fact that measurements are
given at various locations in space, have different instru-
mental errors, and often vary by orders of magnitude.
Fluencies can only be obtained either when particle
detectors are installed on a spacecraft or when the global
reconstruction of the fluxes is available at all times, radial
distances, and geomagnetic latitudes and longitudes.
Models and observations can be combined by means of
data assimilation tools to reconstruct the global evolution
of the radiation environment which allows us to calculate
fluencies for any given satellite orbit.

The Van Allen radiation belts are two donut-shaped
regions of the near-Earth space, where the magnetic field
of the Earth traps high energy particles. The highly ener-
getic particles in the Van Allen belts can produce deep
dielectric charging in satellites and damage satellite elec-
tronics (Rosen, 1976; Baker et al., 1987). Another popula-
tion of particles in the near-Earth space which is
hazardous for satellites is usually referred to as ‘ring cur-
rent’. The name originates from the current that is gener-
ated by these particles and the magnetic field that is
produced by this current. The hazardous effects of the
ring current include degradation of satellite solar panels,
charging of satellite surfaces that can damage them, and
induction of currents in power grids that can damage
transformers or can cause voltage instabilities
(Lanzerotti, 2001; Baker, 2002, 2005).
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10.2 Modelling the Near-Earth Radiation
Environment

10.2.1 Earth’s Van Allen Radiation Belts
Electrons in the radiation belts (kinetic energy above
several hundred keV) exhibit a two-zone structure. The
inner electron belt is typically located between 1.2 and 2.0
Earth radii (RE), while the outer zone extends from 4 to 8
RE . Relativistic electrons in the Earth’s radiation belts
can penetrate through satellite protective shielding, get
deposited in dielectric materials, and produce discharges
that can damage miniature electronics (Rosen, 1976;
Baker et al., 1987).

The dynamics of energetic particles are still poorly
quantified. Reeves et al. (2003) found that geomagnetic
storms can increase, significantly decrease, or not substan-
tially change the fluxes of relativistic electrons during
storms. The variability in the responses of the radiation
belts to geomagnetic disturbances has been attributed to
the complex competing nature of acceleration and loss (see
review by Friedel et al. (2002); Shprits et al. (2008a);
Shprits et al. (2008b)). As radiation belt electrons undergo
azimuthal drift in the Earth’s magnetosphere, they
encounter several distinct classes of plasma waves that
can exchange energy with them, produce acceleration or
deceleration, and scatter electrons into the atmosphere
where they will be lost from the system. Electrons can
also be lost to the interplanetary medium when they hit
the boundary of the magnetosphere (magnetopause)
(Shprits et al., 2006; Turner et al., 2012).

The motion of relativistic electrons in the Earth’s radi-
ation belts can be simplified and described in terms of the
three basic periodic motions: gyro-motion around the field
line, the bounce motion in the Earth’s magnetic mirror field
along the field line, and the azimuthal drift around the
Earth due to magnetic gradients and curvature (Fig. 10.2).

Charged particles in the magnetosphere undergo
three types of periodic motion: (1) gyration about
a geomagnetic field line, (2) bounce motion along the
field line between mirror points, and (3) drift around the
Earth. Each type of periodic motion is associated with
an adiabatic invariant, which stays approximately con-
stant under slow variations of parameters of the system,
compared to the period of the corresponding motion. In
order to simplify the six-dimensional description of par-
ticles in space, one can consider the description of the
phase space density in terms of adiabatic invariants and
ignore the variations in phases of invariants. The calcu-
lation of invariants is a challenging task as invariants
depend on the time-varying three-dimensional dynamic
changes of the magnetic field.

The first adiabatic invariant µ, which corresponds to
the cyclotron motion of a particle, can be expressed as
follows:

μ ¼ p2?
2m0B

; where p? ¼ p sin α; ð10:1Þ

p? is the component of the particle momentum that is
perpendicular to the magnetic field line, m0 is the rest mass

Figure 10.1 Radiation belts and orbits of satellites including Van Allen Probes (formerly named Radiation Belt Storm Probes (RBSP
A and RBSP B)), THEMIS, NSF-supported Lomonosov mission (launched on April 28, 2016), and multiple new CubeSat missions on
Low-Earth Orbit (LEO). Modified figure; original from NASA’s Goddard Space Flight Center.
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of the particle, and B is the magnitude of the magnetic field
at the location of the particle. It is convenient to consider p?
as a function of pitch angle α (the angle between magnetic
field and the total momentum of the particle p, when the
particle passes the equator). If there is no electric field
parallel to the magnetic field line at which the particle res-
ides, p is conserved, andB ¼ Bm is also conserved, as follows
from the conservation of µ.

The second adiabatic invariant J is associated with the
particle’s bounce motion between the mirror points. It can
be written as:

J ¼ 2
pffiffiffiffiffiffiffi
Bm
p

ðs00
s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bm � BðsÞ

p
ds; ð10:2Þ

where p is the momentum of the particle, and the integral
is taken along the magnetic field line between mirror
points s′ and s′′. In practice, it is convenient to use the
modified second adiabatic invariant K instead of J:

K ¼
ðs00
s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bm � BðsÞ

p
ds: ð10:3Þ

Unlike the adiabatic invariant J, K does not depend on
particle energy and can be considered as a purely field-
geometric quantity. Note that calculation of K requires
knowledge of the magnetic field which is changing with
solar activity and can be compressed, twisted, and stretched.
Subbotin and Shprits (2012) suggested a new adiabatic
invariant V = µ(K + 0.5)2 that is convenient for radiation
belt modelling. The factor 0.5 has been chosen empirically in
order to simplify the interpolation, but a different value
could also be used. A grid in V and K coordinates facilitates

implementation of numerical schemes and improves accur-
acy, stability, and performance of radiation belt codes.

The third adiabatic invariant Φ is the magnetic flux
enclosed by the drift path (within surface S) of a charged
particle. This invariant is defined only for particles on
closed drift orbits and is important for the most energetic
part of the particle population. A more intuitive form of
the third adiabatic invariant is the L∗ parameter (Roederer,
2012):

L� ¼ 2πBER2
E

Φ
; where Φ ¼

ð
S
B � dS; ð10:4Þ

which is the radial distance from the centre of the Earth to
the field line in the equatorial plane, if the field changes
slowly to dipolar (note that L� is by definition unitless); RE

is the Earth’s radius, and BE is the magnetic field magnitude
at the Earth’s surface at the geomagnetic equator in a dipole
field approximation. The calculation of invariants K and L�

(Eqs. (10.3) and (10.4)) is particularly computationally
expensive and requires tracing particles in realistic empirical
magnetic field models.

By ignoring diffusion in terms of the phases of adiabatic
invariants, the Fokker–Planck equation for diffusive evolu-
tion of the phase-averaged six-dimensional PSD of the rela-
tivistic electrons may be simplified by specifying the phase
averaged PSD in terms of only three adiabatic invariants
and written as follows:

∂f
∂t
¼

X
i; j¼1;2;3

∂
∂Ji

Dij
∂f
∂Jj

; ð10:5Þ

where Dij are diffusion coefficients, and Ji are adiabatic
invariants. Note that the modified Fokker–Planck equa-
tion (Eq. (10.5)) does not contain advective terms as, in

FLUX TUBE

TRAJECTORY OF
TRAPPED PARTICLE

MIRROR POINT

DRIFT OF
PROTONS

MAGNETIC FIELD LINE

DRIFT OF
ELECTRONS

MAGNETIC CONJUGATE POINT

NORTH

Figure 10.2 The trajectory of trapped particles (electrons and ions) experiencing gyro-motion, magnetic mirroring between the mirror
points, and gradient and curvature drifts in the geomagnetic field. Each periodic motion can be associated with an adiabatic invariant.
Modified figure; original from Cohen et al. (2005).
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collisionless plasmas, second-order coefficients can be
related to the first-order coefficients. Although some
diffusive processes may violate all three adiabatic invari-
ants, it is customary and convenient to separately con-
sider radial diffusion, which violates the third adiabatic
invariant, pitch angle and energy diffusion, which violate
the first and second invariants (Schulz and Lanzerotti,
1974). This separation of processes allows us to rewrite
the 3-D time-dependent Fokker–Planck equation for
PSD evolution as a superposition of radial diffusion
and local processes in terms of L∗, the pitch angle α,
and relativistic momentum p (Shprits et al., 2008b;
Subbotin et al., 2011):

∂f
∂t
¼ L�

2 ∂
∂L�


μ; J

DL�L�L�
�2 ∂f
∂L�


μ; J

 !

þ 1

p2
∂
∂p


α;L

p2〈Dppðα; pÞ〉
∂f
∂p


α;L
þ 〈Dpαðα; pÞ〉

∂f
∂α


p;L

 !
ð10:6Þ

þ 1

TðαÞsinð2αÞ
∂
∂α


p;L

TðαÞsinð2αÞ 〈Dααðα; pÞ〉
∂f
∂α


p;L

 

þ 〈Dαpðα; pÞ〉
∂f
∂p


α;L

�

� f
τ
þ S;

where 〈Dpp〉; 〈Dpα〉 ¼ 〈Dαp〉, and 〈Dαα〉 are bounce and drift
averaged scattering rates (or momentum, mixed, and pitch-
angle diffusion coefficients) due to resonant wave-particle
interactions with ULF and VLF electromagnetic waves

inside the magnetosphere. In Eq. (10.6), α is assumed to be
the equatorial pitch angle, which is generally denoted with
the subscript ‘eq’ as in the following equations; TðαÞ is
a function related to the pitch-angle dependence of the
bounce frequency; S represents the convective source of
particles; and τ is a characteristic lifetime parameter
accounting for the loss to the atmosphere which is assumed
to be infinite outside the loss cone (cone of pitch angles at
which particles’ mirror points lie below the top of iono-
sphere). The estimation of the averages over the bounce
orbit (Eqs. (10.17) to (10.19)) is discussed in the following
paragraphs.

The three-dimensional Versatile Radiation Belt code
(VERB-3D code) (Shprits et al., 2009) models the violation
of adiabatic invariants by solving the modified 3-D Fokker–
Planck diffusion equation (Eq. (10.6)) that incorporates
energy diffusion, pitch-angle scattering, mixed diffusion,
and radial diffusion into the drift and bounce-averaged
particle PSD.

The VERB-3D code has been validated against 100 days
of phase space density reanalysis and 100 days of flux data
(Subbotin et al., 2011), a year (Drozdov et al., 2015; Wang
and Shprits, 2019), individual storms (NSF Geospace
Environmental Modeling (GEM) workshop events; Kim
et al., 2012; Wang et al., 2020), and super storms (Shprits
et al., 2011). Results from the GEM challenge have been
made publicly available (Kim et al., 2012; see example in
Fig. 10.3). The VERB-3D can resolve small pitch angles
near the edge of the loss cone, can model fluxes at LEO
(e.g. Shprits et al., 2011), and thus can be used to link
equatorial (such as THEMIS, Van Allen Probes) and low
latitude, non-equatorial, particle measurements (e.g. POES,
SAMPEX, Lomonosov). The VERB-3D code uses a non-
uniform pitch-angle grid, which also allows for accurate

(a) Dst and Kp

(b) CRRES MEA observations, E = 1 MeV,α0 ~ 90°

(c) VERB simulation, E = 1 MeV,α0 ~ 90°
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Figure 10.3 The VERB-3D model is able to repro-
duce key features of Combined Release and
Radiation Effects Satellite (CRRES) radiation belt
observations during storms. Modified figure, from
Kim et al. (2012).
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calculation of precipitating fluxes. The code has also been
recently used to model 87 years of electron dynamics (Saikin
et al., 2021). Simulations with the VERB code require cal-
culation of the diffusion coefficients. Radial diffusion is
usually parameterised as a function of the geomagnetic
index Kp and local diffusion coefficients need to be calcu-
lated from wave models by means of quasilinear diffusion
equations.

According to quasilinear theory (e.g. Kennel and
Engelmann, 1966; Lyons et al., 1972; Albert, 2005; Glauert
and Horne, 2005) the diffusion coefficients can be given by:

Dαα ¼
Xnh
n¼nl

ðXmax

Xmin

XdXDnX
αα ð10:7Þ

Dαp ¼ Dpα ¼
Xnh
n¼nl

ðXmax

Xmin

XdXDnX
αp ð10:8Þ

Dpp ¼
Xnh
n¼nl

ðXmax

Xmin

XdXDnX
pp ; ð10:9Þ

where the summation is over harmonics (n) of the cyclotron
frequency, X ¼ tanðψÞ, where ψ is the wave normal angle, α
is the local pitch angle, and

DnX
αα ¼

X
i

q2σω
2
i

4πð1þ X2ÞNðωiÞ
nΩσ=ðγωÞ � sin2α

cos α

� �2
�B2ðωiÞgðXÞ

jΦn;kj2v∥ � ∂ω
∂k∥



k∥i

; ð10:10Þ

DnX
αp ¼ DnX

αα
sin α cos α

nΩσ=ðγωÞ � sin2α

� �
k∥i

; ð10:11Þ

DnX
pp ¼ DnX

αα
sin α cos α

nΩσ=ðγωÞ � sin2α

� �2
k∥i

; ð10:12Þ

where qσ is the charge of the particle species σ, Ωσ is the
particle gyrofrequency including the sign of its charge, and γ
is the relativistic correction factor. B(ω) is the intensity of
the magnetic field squared per unit frequency and N(ω) is
a normalisation factor ensuring that the wave energy
per unit frequency is given by B2(ω). The dependence of
wave magnetic field energy with wave normal angle is
given by g(X):

gðXÞ ¼ exp � X � Xm

Xw

� �2
 !

Xmin ≤X ≤Xmax;

0 otherwise;

8><>:
ð10:13Þ

where Xw is the angular width and Xm is the peak. The term
jΦnkj2 depends on the wave refractive index μ ¼ cjkj=ω for
the particular wave mode:

jΦnkj2 ¼
μ2 � L
μ2 � S

Jnþ1 þ
μ2 � R
μ2 � S

Jn�1

� ��

� μ2 sin2ψ � P
2μ2

þ cot α sinψ cosψ Jn

� ��2

� R� L
2ðμ2 � SÞ

� �2 P� μ2 sin2ψ
μ2

� �2

þ P cosψ
μ2

� �2
" #�1

;

ð10:14Þ

where Jn is the n-th order Bessel function of first kind with
argument k?p?=ðmσΩσÞ

It should be noted that Dαα and Dpp are always positive,
while Dαp can become negative. The integrands in Eqs.
(10.7)–(10.9) are evaluated at the resonant parallel wave
number k∥;i and the resonant frequency ωi, which satisfies
the resonance condition, given by:

ω� k∥v∥ ¼ nΩσ=γ; ð10:15Þ

and the dispersion relation Dðk;ω;XÞ ¼ 0, which for a cold
magnetised plasma is given by

Dðω; k;XÞ ¼ ðSX 2 þ PÞμ4 � ðRLX2 þ PSð2þ X 2ÞÞμ2

þ PRLð1þ X2Þ ¼ 0; ð10:16Þ

where R, L, S, and P are the usual Stix parameters (Stix,
1962). For a given wave of normal angle, cyclotron reson-
ance n, and energy, there may be several resonant frequen-
cies for a particular wave mode.

As a particle moves along the field line between the mirror
points, it will experience different magnetic field intensities,
plasma density, and ion composition, and it will change its
pitch angle. Since, the local diffusion coefficients will be
changing along the bounce orbit, the local diffusion coeffi-
cients should be bounce-averaged. The bounce-averaged
diffusion coefficients, 〈Dαeqαeq〉, 〈Dαeqp〉, and 〈Dpp〉 are given
by

〈Dαeqαeq〉 ¼
1

τB

ðτB
0
Dαα

∂αeq
∂α

� �2

dt; ð10:17Þ

〈Dαeqp〉 ¼
1

τB

ðτB
0
Dαp

∂αeq
∂α

� �
dt; ð10:18Þ

〈Dpp〉 ¼
1

τB

ðτB
0
Dppdt; ð10:19Þ

where τB is the period of bouncing between the mirror
points. Changing the integration from time to magnetic
latitude and assuming a dipole magnetic field gives
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〈Dαeqαeq〉 ¼
1

T

ðλm
0
Dαα

cos α
cos2 αeq

cos7 λdλ; ð10:20Þ

〈Dαeqp〉 ¼
1

T

ðλm
0
Dαp
ð1þ 3 sin λÞ1=4

cos α
cos4 λdλ; ð10:21Þ

〈Dpp〉 ¼
1

T

ðλm
0
Dpp
ð1þ 3 sin λÞ1=2

cos α
cos λdλ; ð10:22Þ

where λm is the latitude at which the particle mirrors and
T (αeq) is a function related to the variation of τBwith αeq . In
a dipole magnetic field, T (αeq) can be approximated follow-
ing Hamlin et al. (1961) by

TðαeqÞ ¼ 1:30� 0:56 sin αeq: ð10:23Þ

The mirror latitude is found by solving the polynomial

C6
l þ 3Cl sin

4 αeq � 4 sin4 αeq ¼ 0 ð10:24Þ

for Cl ¼ cos2 λm. In practice, one assumes distributions of
waves BðKp;X ;MLT ;L; λÞ where MLT is the magnetic
local time, Xðλ;MLTÞ, and distributions in frequency of
chorus and hiss plasma waves that are inferred from the
statistics of satellite measurements. Those distributions are
statistically derived from wave observations.

10.2.2 Electron Ring Current
Lower energy electrons (kinetic energy < 100 keV), often
referred to as the magnetospheric ring current, are capable
of producing surface charging and can cause satellite anom-
alies. The ring current, unlike radiation belts, is asymmetric
around the Earth and closes in the ionosphere through so-
called region 1 and region 2. The dynamics of the ring
current electron population are modelled using the modified
Fokker–Planck equation with additional advective terms,
that are often referred to as ‘convective’ terms (Shprits et al.,
2015):

∂f
∂t
¼ �vφ

∂f
∂φ
� vR0

∂f
∂R0
þ 1

GðV ;K;L�Þ

∂
∂L�

GðV ;K;L�ÞDL�L�
∂f
∂L�

þ 1

GðV ;K;L�Þ

∂
∂V

GðV ;K;L�Þ DVV
∂f
∂V
þDVK

∂f
∂K

� �
þ 1

GðV ;K;L�Þ

∂
∂K

GðV ;K;L�Þ DKV
∂f
∂V
þDKK

∂f
∂K

� �
� f

τ
;

ð10:25Þ

where L�, K, and V are adiabatic invariants, f ðφ;R0;V ;KÞ
is the phase space density, t represents time, φ is MLT, R0 is
the radial distance from the centre of the Earth at the
geomagnetic equator, τ is the electron lifetime related to
scattering into the loss cone and magnetopause shadowing,
vφ and vR0 are bounce-averaged drift velocities, and DL�L� ,
DVV DVK , DKV and DKK are bounce-averaged diffusion

coefficients. HereGðV ;K;L�Þ is the Jacobian of the coordinate
transformation from ðμ; J;ΦÞ to ðV ;K;L�Þ coordinates
defined as:

GðV ;K;L�Þ ¼ �2πBER2
E

ffiffiffiffiffiffiffiffiffiffiffiffi
8m0V

p
=ðK þ 0:5Þ3=L�2 ð10:26Þ

The first and second terms on the right-hand side of Eq.
(10.25) describe advection dynamics, driven by the E × B,
gradient, and curvature drifts; the third term describes
radial diffusion; terms 4 and 5 represent local diffusion;
and sources and losses are estimated by the sixth term.

Bounce-average drift velocities (Eq. (10.27)) (Volland,
1973; Maynard and Chen, 1975; Stern, 1975).

〈v0〉 ¼
E0 � BE

B2
E
þ 1

qτB2
E
rJ � BE ð10:27Þ

where E0 and BE are the electric and magnetic fields at the
equator, respectively, and are generally calculated using an
empirical magnetic field model (e.g. T89 (Tsyganenko,
1989)) and the Volland–Stern Kp-dependent empirical elec-
tric field model. In order to prepare measurements for the
ring current simulations, invariants L�, K, and V have to be
estimated along the satellite orbit for each measurement.

10.3 Data Assimilation

10.3.1 Kalman Filter (KF)
The Kalman filter (KF) is a celebrated data assimilation
method that allows for optimal combination of model
results and sparse data from various sources contaminated
by noise (Kalman, 1960). Using a physics-based model and
available satellite observations, we can estimate the optimal
state of the electron PSD in the radiation belts (i.e. f at time
k, denoted in Eqs. (10.28) to (10.30) as zak) and the uncer-
tainty of the state estimate (described by the error covariance
matrix Pa

k) associated with errors in the model and the data.
The Kalman filter allows us to determine estimates of the
state and covariance analytically by defining an initial state
vector za0 (estimated as the steady state solution of the radial
diffusion equation) and initial covariance Pa

0. Iteration over
two elementary steps is then performed:

(1) The forecast step: the time evolution of the state vector
z is assumed to be governed by the numerically discret-
ised linear partial differential operator Mk (Eq. 10.6):

z fk ¼Mkz
a
k�1; ð10:28Þ

where z fk is the PSD state vector in the 3-D phase space
volume advanced by the modelMk in time, and superscripts
‘ f ’ indicate forecasted state. Deviations of the forecast state
estimate from the true state of the system are defined by the
forecast error covariance matrix P f

k which can be calculated
from a previous analysis step as
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P f
k ¼MkP

a
k�1M

T
k þQk: ð10:29Þ

The model errors are commonly assumed to be
a sequence of uncorrelated white noise with zero mean.
In our field of application, the corresponding model
error covariance Qk is usually a diagonal matrix defined
as a fraction of the squared forecast state, Qk ¼ ηðz fkÞ

2,
and is therefore time dependent. The factor η modulates
the statistical impact of the model on the estimated ana-
lysis state. In radiation belt studies, the value of η ranges
between 0.2 and 0.7 (Naehr and Toffoletto, 2005;
Kondrashov et al., 2007, 2011; Shprits et al., 2007; Daae
et al., 2011; Schiller et al., 2012; Shprits et al., 2012)
depending on the focus of the study and on the particular
parameters of the model (e.g. diffusion coefficients,
boundary and initial conditions). Such a scaling of
model errors is important as the state can change very
fast by up to several orders of magnitude and errors need
to be adjusted accordingly.

(2) The analysis step or update step: the observations of the
system yobsk are assumed to have uncertainties described
by uncorrelated white noise with zero mean and obser-
vation error covariance Rk. This error covariance is
chosen to be a diagonal matrix and errors are propor-
tional to the state. If at time step k, a new data point is
available, the covariance is defined as Rk ¼ βðyobsk Þ

2. In
this case, the coefficient β controls the statistical influ-
ence of the observation on the estimated analysis state.
The value of β commonly ranges between 0.3 and 0.5.
Combining the forecast error covariance matrix P f

k
with the uncertainty of the data Rk, the KF finds opti-
mal weights (defined in the Kalman gain Kk) that min-
imise the error covariance Pa

k of the optimal state
estimate zak at time k,

Kk ¼ P f
kH

T
k ðRk þHkP

f
kH

T
k Þ
�1;

zak ¼ z fk þKkðyobsk �Hkz
f
kÞ;

Pa
k ¼ ðI�KkHkÞP f

k;

ð10:30Þ

Where the observation operator Hk maps the model space
onto the observation space at times when new observations
become available, and accounts for differences in dimen-
sionality between data and model, due to the sparsity of the
observations.

10.3.2 Ensemble Kalman Filter (EnKF)
The ensemble Kalman filter (EnKF) (Evensen, 2003) can
be seen as a Monte Carlo approximation of the KF. In
this case, the optimal state of the system zak at time k is
approximated by the mean Z

a
k of an ensemble of samples

fzai;kg, where i ¼ 1; ::;Nens and Nens ¼ number of ensem-
ble members:

zak ≈ zak ¼
1

Nens

XNens

i¼1
zai;k ð10:31Þ

The ensemble error covariance (Pe) gives the spread of the
ensemble distribution and can be linked to the error covari-
ance matrices (P f

k and Pa
k) of the optimal state estimate by

the following empirical approximations:

P f
k ≈P

f
e ¼

1

Nens � 1

XNens

i¼1
z fi; k � zfk

� �
z fi; k � zfk

� �T
Pa
k ≈P

a
e ¼

1

Nens � 1

XNens

i¼1
zai; k � zak

� �
zai; k � zak

� �T ð10:32Þ

Perturbations ðϵi; kÞ are drawn from a Gaussian distribution
with mean equal to the observed value and covariance Rk

are used to generate an ensemble of observations, when
a new measurement yobsk is available:

yobsi; k ¼ yobsk þ ϵi; k ð10:33Þ

where i ¼ 1;…;Nens. Every state in the ensemble is propa-
gated in the update step, as follows:

zai; k ¼ z fi; k þKk yobsi; k �Hkz
f
i; k

� �
ð10:34Þ

where the Kalman gain (Kk) with the optimal weighting
factors is calculated as in Eq. (10.30). A number of studies
have used this approach (e.g. Koller et al., 2005; Bourdarie
and Maget, 2012; Castillo et al., 2021)

10.4 What Can Be Done with Data Assimilation
in the Van Allen Radiation Belts?

10.4.1 Global Analysis of the State of the Radiation Belts
Using Data Assimilation

In the past,most of the radiation belt and ring current research
concentrated on the analysis of data from individual space-
craft. Such an analysis does not allow us to infer the global
evolution of the radiation environment. While measurements
in space are sparse, satellite data of pitch-angle distributions,
energy distribution, and fluxes at different energies can add up
to terabytes. In situ satellite observations are often restricted to
a limited range of radial distances and energies, and also have
different observational errors. Additionally, observations at
different radial distances are taken at different times. These
unavoidable data acquisition limitations complicate the ana-
lysis of the radial profiles of the PSD, which is essential for
understanding the relative contribution of the local acceler-
ation and radial transport on the evolution of the radiation
belt electrons. Data assimilation allows us to fill in the tem-
poral and spatial gaps left by sparse in situ measurements and
combinemeasurements and themodel according to the under-
lying error structure of different observations and the model.
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Equation (10.6) can be abstracted to:

∂f
∂t
¼MðDÞf ; ð10:35Þ

where M represents the Fokker–Planck evolution operator
(linearised Eq. (10.6)) for the PSD f , and D represents
various model parameters (e.g. diffusion coefficients). This
equation requires knowledge of the initial condition of f and
boundary conditions to make predictions into the future.
Data assimilation methods use partial observations of f
within a time period (observation period) to estimate the
initial condition using an inverse problem. Then the recon-
structed initial condition is used to issue predictions for PSD
beyond the observation period. This process can be repeated
in a sequential manner in time.

A variety of initial studies using simple one-dimensional
radial models show the efficiency of Kalman filtering applied
to the field of radiation belts. Friedel et al. (2003) performed
direct insertion of geosynchronous and GPS data into the
Salammbô code (Beutier and Boscher, 1995). Naehr and
Toffoletto (2005) used a log-transform of the PSD and an
extended Kalman filter (EKF) for a performance study using
synthetic data. Shprits et al. (2007) used a KF with a simple
one-dimensional radial diffusion model to reconstruct radi-
ation belt PSD for a period of 50 days. Figure 10.4 shows the
sparse Combined Release and Radiation Effects Satellite
(CRRES) spacecraft data (top), and the result of the reanalysis
with a one-dimensional radial diffusion model (bottom). Using
an EnKF, Koller et al. (2007) analysed a storm in 2002 and
showed that data assimilation can be used not only to recon-
struct the state of the system, but also to infer missing physical
processes. Kondrashov et al. (2007) and Schiller et al. (2012)
augmented the KF to perform parameter estimation studies.

Additionally, Ni et al. (2009b) tested four different empirical
external magnetic field models and found that combined

reanalyses have rather negligible response to the choice of mag-
netic field model. The authors also showed that the errors of
PSD obtained by assimilating multi-satellite measurements at
different locations can be reduced in comparisonwith the errors
of individual satellite assimilation.The sensitivity of the reanaly-
sis of electron radiation belt PSD to various outer boundary
conditions and loss models was studied by Daae et al. (2011),
who showed that the KF has a remarkable performance when
enough satellite data is available at all considered locations. Ni
et al. (2009a) assimilated Akebono electron flux measurements
into the VERB-3D code and validated their results against
CRRES data. Using the same methodology, Shprits et al.
(2012) and Ni et al. (2013) performed a long-term multi-
spacecraft reanalysis and analysed the location of the peak of
the PSD, finding good correlation with the plasmapause loca-
tion. The authors were also able to find a link between PSD
dropouts and solar wind dynamic pressure increases.

Two methods have been recently tested for specific events
to assimilate data in 3-D. First, Bourdarie andMaget (2012)
applied EnKF (Evensen, 2003) to the Salammbô code to
reconstruct the 3-D state of the radiation environment.
While EnKF may be convenient in its implementation, as
it uses the physics-based codes as a black box, it may present
a significant computational challenge when the number of
ensemble members is high. Another known complication
associated with the EnKF is that underestimation of the
forecast covariance can result in a ‘filter divergence’. The
divergence is a state of the filter in which observations
cannot influence the solution. Another approach was imple-
mented by Shprits et al. (2013) who applied 3-D data assimi-
lation using CRRES data and the VERB-3D model using
a suboptimal operator-splitting method. They applied the
standard formulation of a Kalman filter, but only for the
1-D diffusion operators in radial distance, energy, and pitch
angle sequentially. For each of the 1-D diffusion operators,
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Figure 10.4 Example of assimilation of sparse satellite
data with a simple 1-D radial diffusion model and
Kalman Filter. (Top) Hourly averaged PSD inferred
from CRRES MEA observations for K ¼ 0:11G0:5RE
and μ ¼ 700 MeV/G for a 50-day period starting on
18 August 1990. (Bottom) Results of the data
assimilation with a radial diffusion model. Modified
figure, from Shprits et al. (2007).
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they used only data points that lie along the direction of the
one-dimensional diffusion.

10.4.2 Real-Time Predictions
Data assimilation allows us to blend data from very
different sources with state-of-the-art models to glo-
bally reconstruct the evolution of energetic and relativ-
istic electrons in the near-Earth environment.
Sequential Kalman filtering has been recently imple-
mented for real-time data assimilation and data assimi-
lative predictions. This stable framework assimilates
data from different sources and provides real-time
data assimilative nowcast and predictions. The data
assimilative predictions using the split-operator KF

(Shprits et al., 2013) are now broadcasted (Fig. 10.5)
at the website of the German Research Center for
Geosciences (GFZ-RB-forecast, 2021) and have been
made available for satellite operators. Further, the
resulting reanalysis, models, and data assimilation
framework is made available to the community through
the GFZ website (GFZ-data, 2021).

We are currently using a very stable version of the
VERB-3D code that does not include mixed terms. That
significantly simplifies the operations of the code and
speeds up the code execution. Neglect of the mixed terms
also allows us to use a relatively coarse grid of 25 × 25 ×
25 in pitch angle, energy, and L�. Numerical experiments
presented by Subbotin and Shprits (2009), and Aseev et al.
(2016) showed that errors associated with such a grid

Figure 10.5 Real-time display shown at GFZ-Potsdam. Two-day radiation belt forecast of 1MeV electrons using the data-assimilative
VERB code, real-time ARASE, ACE, POES and GOES data. (Top left) Real-time satellite trajectories and geometry of the magnetic field
lines used for calculation of the transformation into the coordinate system of adiabatic invariants. (Bottom left) 3-D visualisation of the
radiation belts. (Right panels) Top panel depicts real-time flux measurements. Second panel shows the slice in energy and equatorial pitch
angles interpolated at 1MeV kinetic energy and 50° equatorial pitch angle. Third panel shows the resulting reanalysis of the radiation belts
and a prediction with a horizon of two days. The dashed red line demarcates the historical reanalysis from the forecast for 2 days ahead of
real-time. The bottom panels show propagated solar wind parameters and the geomagnetic index Kp index of geomagnetic activity,
respectively. Source: GFZ-RB-forecast (2021).
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resolution are small in comparison with the uncertainties
of the model, while stability and speed of the real-time
algorithm are maintained. Higher grid resolution and
inclusion of mixed terms may be needed when data assimi-
lation is used to infer physical processes from the innov-
ation vector (as recently done in Cervantes et al., 2020a).
The prediction framework first uploads the available data
in real time. Then the measurements of fluxes at the satel-
lite orbit are remapped to the equatorial pitch angles.
After that, we calculate the PSD as a function of the
adiabatic invariants for assimilation into the VERB code
that provides the model matrix for the data assimilation.
The outer boundary condition in L� is assumed to be
a zero derivative in the radial gradient at L� ¼ 6:6. If the
L� value calculated with T89 model magnetopause is
inside L� ¼ 6:6, we assume that the outer boundary con-
dition is a zero value. That condition allows the code to
adjust to real-time data at all L-shells and also allows the
algorithm to promptly respond to the magnetopause loss
and to outward radiation diffusion caused by it (Shprits
et al., 2006) during the main phase of storms. The Kp
forecast is provided by GFZ-Potsdam and is utilising
machine learning (ML) (Shprits et al., 2019). This predict-
ive system has previously worked with NASA’s Van Allen
Probes measurements and is now operating with GOES,
Arase, and POES data that is provided in real-time.

10.4.3 Radiation Belt Reanalysis
A statistical study of a data assimilation reanalysis of the
relativistic electron PSD for a 200-day period was presented
by Shprits et al. (2012). The authors used the innovation
vector to locate the peaks in PSD and sources of local
acceleration. Additionally, correlation of PSD dropouts
with sudden jumps of solar wind dynamic pressure is shown
in their study. In a recent study, Cervantes et al. (2020a)
successfully reconstructed the long-term evolution of the
radiation belt fluxes, which now provides a continuous evo-
lution of the 3-D cube of the radiation belt fluxes (Fig. 10.6)
for four consecutive years. In this study, the VERB-3D code
including the mixed diffusion was used. Such reconstruction,
or reanalysis as it is referred to in data assimilation, will help
future radiation belt research and may help develop more
accurate empirical models. Reanalysis allows the operators of
spacecraft to fly a virtual spacecraft through the 4-D (three
spatial dimensions and one temporal dimension) cube of the
radiation belt to infer the radiation environment at the space-
craft orbit and perform anomaly resolution analysis.

Uncertainty quantification is a key element in the devel-
opment of data assimilation techniques as proper imple-
mentation of the Kalman filter algorithm is linked to
prior knowledge of the statistical characteristics of uncer-
tainties in the model and the satellite data. Inaccurate
parameterisations of physical processes may arise from
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assumptions of the quasilinear theory that simplify the
diffusion equation. Since the environmental conditions
of the plasma in the radiation belts cannot be repro-
duced in experimental laboratory set-ups on Earth, the
true state of the system remains unknown to us, and
therefore quantification of model error statistics and its
properties is a rather difficult task in practice. On the
other hand, uncertainty could be further increased due
to the presence of observation errors. Measurement
errors are introduced by the limitations of the satellite
instruments measuring electron fluxes in space, by the
interaction of the instruments with electronics on board
the satellite itself, by background noise in the near-Earth
environment, and by strong geomagnetic conditions that
can cause bias measurements and degeneration of the
detectors over the years (Galand and Evans, 2000;
Asikainen and Mursula, 2011, 2013). Such uncertainties
are difficult to estimate due to unknown conditions in
space and limited access to the instruments after the
launch of the satellite (McFadden et al., 2007).
Significant errors also arise from mapping from the
observational space of fluxes as a function of pitch
angle and energy to modelling space of phase space
density as a function of adiabatic invariants (e.g.
Green and Kivelson, 2004).

Podladchikova et al. (2014b) proposed an approach to the
identify the model errors of a 1-D radial diffusion model by
estimating the unknown bias and the model error covariance
matrix from the sparse CRRES observations over a period
of 441 days. Both the identified bias and the covariance
matrix of model errors appear to depend on the L-shell.
Sensitivity of the PSD reanalysis to model error statistics
showed that neglecting the bias can cause significant errors
in the state estimate when satellite data is not available. An
identification technique to estimate the observation error
statistics was presented by Podladchikova et al. (2014a).
The authors estimated the residuals describing the mismatch
between the satellite observations and independent pseudo
measurement vectors. The expectation and covariance
matrix of the residuals deliver coefficients of proportionality
characterising the dependence of the observation error on
the measurement itself for every L-shell. Further work on
uncertainty estimation for filtering applications in the radi-
ation belts is necessary and will be the focus of future studies.

Reanalysis in the inner magnetosphere will soon become
a standard for data analysis in space physics and will change
the way data are analysed. The impact of the data assimilation
tools will be comparable to the impact that NCEP/NCAR
reanalysis (Kalnay, 2003) had onmeteorological climate stud-
ies. In the future, the results of reanalysis will be used to
develop next generation specification models. Reanalysis will
be used by engineers to obtain the average fluencies during
a mission and understand potential limits of the variability.

10.4.4 Search for Missing Physics by Means of Data
Assimilation Tools

Applications of data assimilation may also help to reveal the
underlying physical processes in the near-Earth space that will
help us to better understand the space environment.
Figure 10.7 illustrates how missing physical processes can be
determined from the innovation vector. The innovation vector
Dk is generally defined as Dk ¼ Kkðyobsk �Hkz

f
kÞ and gives

a notion of the difference between the observations and the
forecast state. A number of studies have defined the innov-
ation vector as dk ¼ yobsk �Hkz

f
k. The figure shows the mag-

nitude of the innovation vector of radiation belt PSD for
50 days of simulations, using a simple one-dimensional
radial diffusion model of radiation belts (Shprits et al.,
2007). The innovation vector peaks in the heart of the
outer radiation belt, suggesting a missing acceleration pro-
cess that the one-dimensional radial diffusion model is not
able to reproduce. A number of radiation belt studies used
reanalysis or innovation to quantify and understand the
radiation belt dynamics (Kondrashov et al., 2007; Daae
et al., 2011; Schiller et al., 2012; Shprits et al., 2012; Ni
et al., 2013; Cervantes et al., 2020a,b).

In a recent study by Cervantes et al. (2020b), various
acceleration and loss mechanisms in the radiation belts were
quantified by means of analysing the innovation in the data
assimilation framework. Cervantes et al. (2020a) developed
a framework for data assimilation of the 3-D code including
mixed diffusion. Previous efforts simply ignored numerically
difficult mixed terms, which complicated the physical inter-
pretation of the results. Inclusion of the mixed terms that
facilitate the loss of particles allowed the authors to analyse
the innovation and to make conclusions on the underlying
physical process, that may be missing from the simulations.
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10.4.5 Data Assimilation in Electron Ring Current
While there are a number of recently developed ring current
physics-based models (e.g. RAM (Jordanova et al., 1997;
Jordanova and Miyoshi, 2005); RBE model (Fok et al.,
2008, 2011), IMPTAM (Ganushkina et al., 2013, 2014),
VERB-4D code (Shprits et al., 2012; Aseev et al., 2016))
and a number of satellites providing measurements of ring
current fluxes, there have only been a few attempts to assimi-
late the measurements in the physics-based model (Nakano
et al., 2008; Godinez et al., 2016; Aseev and Shprits, 2019)
and there is currently no model that is using data assimila-
tion for real-time forecasting or nowcasting.

In general, for the ring current (in the most general case),
we need to specify the four-dimensional distribution func-
tion, as the ring current has an asymmetry in the local time
(fourth variable). Another complication of modelling the
ring current is that the evolution of phase space density is
described by the advection-diffusion equation, which is
more difficult to solve numerically than just a diffusion
equation. The ring current is also much more dynamic
than the radiation belts and it is difficult to distinguish
between the spatial and temporal evolution.

Numerical solutions of Eq. (10.25) in the full four-
dimensional space are computationally expensive. In
a recent study by Aseev and Shprits (2019), preliminary
synthetic data simulations and sensitivity tests with
Kalman filtering of the log of electron fluxes were per-
formed by solving for convection (advective term in
Eq. 10.25) and assimilating data in MLT and radial dis-
tance for fixed first and second adiabatic invariants.
Diffusion terms were substituted by exponential decay
rates (parameterised lifetimes τ) and radial diffusion
(third term in (10.25)) was neglected. A comparison of
the model with and without data assimilation is shown in
Fig. 10.8. These initial results indicate that data assimila-
tion can be successfully applied for the ring current elec-
trons and the sparse data is capable of providing enough
information to change the entire state of the system.

The innovation vector may help us to identify the
impact of changes related to the electric field, magnetic
field, or inappropriate lifetimes parameterisation in the
ring current system. Magnetic and electric fields play an
important role for the ring current electron transport, but
it is difficult to observe them in space, because available
satellite measurements are very sparse, and the fields’
strength varies dramatically in time. For these reasons,
global models of electric and magnetic fields inevitably
contain significant uncertainties that lead, in turn, to
errors in the model forecast. Model errors and what
causes them can be estimated from the innovation vector.
On the basis of the sign and magnitude of the innovation
vector and telltale signatures of different processes, it is
possible to identify if the errors are due to inaccuracies of
electric or magnetic field models, missing particle injec-
tions, or other processes.

10.5 Discussion and Future Directions of the Research

Both the KF and the EnKF have their own advantages. The
EnKF does not require linearisation of the physics-based
model and the physics-based model can be used as a black
box. However, unlike the suboptimal EnKF, the KF pro-
vides an exact solution for optimal blending of model and
observations. While the exact KF requires handling of large
covariance matrices, the EnKF requires multiple ensemble
runs of the code. Implementation of the EnKF may also
suffer from occasional filter divergence and may require
implementation of inflation and possibly localisation.
However, the EnKF may be easily adopted to be used with
a non-liner observation operator. Therefore, the choice of
the filter should depend on the application.

In a recent work, Castillo et al. (2021) performed
a detailed comparison of the split-operator KF with a sto-
chastic split-operator EnKF and studied how these simula-
tions should be set up to provide the most accurate
reconstruction of the radiation belt fluxes in 3-D. This
study has provided a detailed description of how to properly
set up the code for the EnKF and demonstrated how EnKF
can be used and extended for future applications for ring
current and for parameter estimation (Castillo et al., 2021).
It is possible that similar methods can be used for the ring
current electron population. Nevertheless, there is currently
no operational model that is using data assimilation for the
predictions of ring current.

Generally, particle detectors aboard satellites measure
particle fluxes at specified energies and pitch-angle ranges
along the satellite orbits. However, since the theoretical
description of plasma dynamics is stated in terms of PSD,
observations need to be converted to PSD and remapped
into the invariant space. Measurements from some satel-
lites (e.g. NOAA POES), do not provide pitch-angle
resolved measurements, but only single pitch angles. The
development of parametrisations of the pitch-angle distri-
butions can help to extrapolate data to large pitch angles
and to assimilate data. Such measurements can also be
used for the validation. Additionally, dependence on
MLT has to be taken into account for ring current par-
ticles, which is not necessarily the case for radiation belts.
Once all measurements have been transformed into
invariant coordinates, we can convert particle fluxes
(either differential or integral fluxes, depending on the
instrument) to PSD. As data assimilation routinely esti-
mates the innovation vector, the systematic difference
between the model and data may be eliminated as a part
of the assimilation cycle. Similarly, the bias in data may
be also corrected as a part of assimilation cycle simplify-
ing the introduction of new data into ring current and
radiation belt models. Intercalibration of the processed
electron data for ring current from various satellites, may
be performed using satellite conjunctions and using data
assimilation tools.
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Trans-Dimensional Markov Chain
Monte Carlo Methods Applied
to Geochronology
and Thermochronology

Kerry Gallagher

Abstract: Trans-dimensional Markov chain Monte Carlo
(MCMC) treats the number of model parameters as an
unknown, and provides a natural approach to assess models
of variable complexity. We demonstrate the application
of these methods to geochronology and thermochronology.
The first is mixture modelling, physically a finite dimension
problem, which aims to extract the number and characteris-
tics of component age distributions from an overall distribu-
tion of radiometric age data. We demonstrate the MCMC
method with Gaussian and skew-t component distributions,
the latter containing the former as a special case, applied to
a suit of U-Pb zircon data from a sediment in northern
France. When considering the posterior distributions
obtained from the MCMC samplers, the asymmetrical skew
distribution models imply fewer components than the sym-
metrical Gaussian distribution models. We present some
heuristic criteria based on different ways to look the results
and aid in model choice in the mixture modelling problem.
The second application is a thermal history model, physically
a continuous time-temperature function but here paramet-
rised in terms of a finite number of time temperature nodes.
We consider a suite of synthetic data from a vertical profile to
demonstrate the variable resolution in models constrained
from single and multiple samples. Provided the implicit
assumptions made when grouping multiple samples are
valid, the multi-sample approach is preferable as we exploit
the variable information on the model (thermal history) con-
tained in different samples.

11.1 Introduction

This chapter presents some example applications of inverse
methods, specifically trans-dimensional Markov chain
Monte Carlo (MCMC), to geochronological and thermo-
chronological data. We first give some background to geo/
thermochronology, then present applications from two dif-
ferent contexts: mixture modelling applied to detrital
geochrononological data, and thermal history modelling
applied to thermochronological data. The purpose is not
to present all the details of the inverse method, but more

the nature of the applied problems and how the results of the
inverse modelling process can be presented to assess the
quality of the results.

Geochronology is the science of dating rocks and minerals,
based on the radioactive decay of one or more parent isotopes
to produce atoms of a daughter isotope of a different element.
The simplest case is that of a single parent isotope, and the
decay of one parent atom producing one daughter isotope in
a single decay step. Then the ratio of the number of daughter
atoms ðDÞ to the number of parent atoms ðPÞ, combined with
the decay constant (λ) for the parent, allows us to calculate
a date ðtdateÞ for the host rock or mineral, according to

tdate ¼
1

λ
Ln

D
P
þ 1

� �
: ð11:1Þ

Here, we note that geologists often differentiate between the
date as defined in Eq. (11.1), calculated directly from meas-
ured data, and an age. An age is effectively an interpretation
of a calculated date (or series of dates) in terms of some kind
of geological event, or activity (e.g. Schoene, 2014). One
reason for this distinction is related to the concept of closed
and open systems in geochronology. We can define
a geochronological system in terms of a given radioactive
decay scheme (the combination of parent and daughter
isotopes in a given mineral, such as fission track analysis in
apatite, orU-Pb dating of zircon). In brief, a closed system is
one in which both the parent and daughter isotopes only
change over time due to the radioactive decay/production
process. Then Eq. (11.1) can provide a geologically valid age
(e.g. the time of formation of a rock or mineral). In contrast,
an open system is one in which either or both the parent and
daughter can escape over time, for example, due to ther-
mally activated chemical diffusion. This typically leads to
loss of the daughter rather than the parent as the former is
generally smaller and often a gas, so diffuses more easily
than the latter, for example. Then, in the case of an open
system, the measured number of atoms for the daughter is
not necessarily truly representative of the decay/production
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over the lifetime of the mineral. Consequently, the calcu-
lated date will be younger than that expected for a closed
system. Then the date may not represent the age of
a geological event, and certainly not the time of formation
of the mineral.

A rigorous mathematical formulation for the loss of
the daughter isotope due to thermally activated diffusion
was developed in detail by Dodson (1973). He considered
diffusion/production equation given below

∂C
∂t
¼ 1

xn
∂
∂x

xnDðTÞ ∂C
∂x

� �
þ P; ð11:2Þ

where C can be number of atoms, or concentration, of the
daughter isotope, t is time (s), x is a spatial coordinate, for
example, radius in a sphere or cylinder (m), n is an integer
that describes the geometry (n = 0,1,2 represent respect-
ively an infinite slab, an infinite cylinder, and a sphere), and
P is the rate of production of the daughter isotope by
radioactive decay of the parent (C s−1 with C the appropri-
ate units for the daughter isotope). Then D(T) is the tem-
perature dependent chemical diffusion coefficient, which is
defined as

DðTÞ ¼ Doe�E=RT ; ð11:3Þ

where T is absolute temperature (K), R is the universal gas
constant (Jmol−1K−1), E is activation energy (Jmol−1), and
Do (m2s−1) is a constant, equivalent to the diffusivity at
infinite temperature. The last two parameters, known as
the kinetic parameters, are specific to a given geochrono-
logical (parent-daughter-mineral) system and can be esti-
mated from diffusion experiments in the laboratory (e.g.
McDougall and Harrison, 1988; Farley, 2000).

Dodson’s major contribution was to provide an expres-
sion for the closure temperature as a function of the diffusiv-
ity parameters (E;Do;R), grain size (r) and geometry (A),
both of which define the diffusion domain, and the cooling
rate over geological time dT

dt

	 

. The concept of the closure

temperature is illustrated in Fig. 11.1 and the expression
derived by Dodson (1973) is given as

Tc �
E

RLn ADoRT2
c

r2EdT
dt

� � ¼ 0: ð11:4Þ

The closure temperature is then taken to be the temperature
of the mineral at the time given by the calculated date, or
the calculated date represents the time at which the mineral
was at the closure temperature. Figure 11.2 summarises
estimates of closure temperatures for different systems
over a range of cooling rates typical of geological processes
and we can see there is a wide range of temperature sensitiv-
ity, depending on the method and the geological question
under consideration. For example, questions concerning the
formation of the continental crust typically exploit high
temperature systems such as U-Pb in zircon, while questions

concerning erosion and landscape evolution will use the
lower temperature systems such as U-Th-He in apatite, or
even cosmogenic isotopes produced in minerals in the top
few metres from the Earth’s surface. The recognition of the
temperature dependence of dating systems and the complex-
ities introduced due to that dependency led to the definition
thermochronology as a sub-discipline of geochronology.
Thermochronology exploits the temperature dependence
of different dating systems (in particular systems sensitive
to temperatures < 250–300°C) to understand the rates and
magnitudes of near surface geological processes such as
tectonics, erosion, and transport to sedimentary basins.

Useful though the closure temperature concept is, it has
some limitations. For example, as presented here, it assumes
monotonic cooling at a constant rate and also that the tem-
perature range over which diffusive loss of the daughter
occurs is a small proportion of the closure temperature itself.
Since the 1990s, thermochronology has advanced through
laboratory experiments aimed specifically at improving
understanding of the temperature dependence of some ther-
mochronological methods. These methods involve fission
track analysis (primarily in the mineral apatite), (U-Th)/
He dating (in apatite, zircon, and more recently Fe-oxides)
and 40 Ar/39 Ar dating (e.g. feldspars and mica).
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Figure 11.1 The concept of closure temperature (modified from
Braun et al., 2009) which reflects the rate of thermally activated
diffusion decreasing with decreasing temperature. The system is
represented by the box, with the green and orange circles
representing the parent (P – dark grey) and daughter (D – light
grey) elements. We consider a continuous cooling history (thin
black curve) starting at a temperature (> To) high enough such that
the system is fully open (the daughter product is lost by thermally
activated diffusion faster than it is produced by radioactive decay).
Once the temperature drops below To (at to) D is retained, the ratio
D/P (thicker black curve) increases, tending to linear growth over
time. Once the temperature drops below the blocking temperature
(Tb at time tb), diffusive loss is negligible, and the D/P ratio
increases linearly to the present day value. The closure temperature
(Tc) corresponds to the temperature at the time equivalent to the
calculated age (tc), (based on the assumption of linear growth, the
dashed line, and no diffusive loss).
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In the following, we will present some applications of
trans-dimensional inverse methods to geo- and thermochro-
nological data to identify the number of potential source
components for detrital material in sedimentary basins and
to extract temperature histories of rocks over geological
time. Although the forward models are generally computa-
tionally simple and fast, the relationships between the
observed data and these processes are often complex and
non-linear. Here we are interested in applications of inverse
methods to understand and interpret geochronological/
thermochronological data and so we will not go into details
of the analytical methods. However, useful overviews of
those and the underlying principles are available in

Reiners and Ehlers (2005), Reiners et al. (2018), and
Malusa and Fitzgerald (2019).

11.2 Application of Inverse Methods Applied
to Geothermochronology

11.2.1 Bayesian Mixture Modelling to Extract Age
Component Distribution

Identifying underlying component distributions contained in
a general distribution withmixturemodelling is a classic prob-
lem in statistics (e.g. Everitt and Hand, 1981; Titterington
et al., 1985). In general the problem is specified in terms of

(i) the number of component distributions,
(ii) the form of the component distributions (typically

parametric, e.g. Gaussian),
(iii) the parameters of the component distributions (e.g.

mean, variance),
(iv) the proportion of each component distribution (with

the constraint that these sum to 1).

The inverse problem is then, given the observed discrete
data, what are the underlying component distributions? We
note that this problem is naturally discrete in that there is
a finite number of parameters (number of component distri-
bution and their parameters). In the geochronological con-
text, probably the first applicationwas that of Galbraith and
Green (1990) applied to fission track age data, based on
using a Poissonian statistical model appropriate to discrete
fission track count data that leads to a binomial probability
mass function, the parameter of which is related to the
component age. They estimated the relevant parameters
(parameter for the binomial distribution, and proportions)
using maximum likelihood methods (see also chapters 5 and
6 of Galbraith (2005) for more details of this approach).
Sambridge and Compston (1994) presented a similar max-
imum likelihood approach, but formulated the problem in
terms of Gaussian and double exponential probability dens-
ity functions, applied to U-Pb zircon age data. Both of these
approaches specified the number of component distribu-
tions in advance, estimated the means and proportions
using maximum likelihood, and assessed uncertainty in
terms of covariance matrices. The choice of the number of
components was made primarily by visual inspection of
either radial plots (Galbraith and Green, 1990) or relative
misfit as a function of the number of components
(Sambridge and Compston, 1994) or a test statistic (sum of
squares of residuals, Kolmogorov–Smirnoff) comparing the
predicted and observed distributions.

Identifying the number of components is obviously a key
aspect of any mixture modelling method. Motivated by the
limitations in previous approaches mentioned here, Jasra
et al. (2006) presented a Bayesian mixture modelling
method, following Richardson and Green (1997) and

Cosmogenic isotopes (10Be, 25Al, 14C)
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Rb-Sr biotite
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U-Pb rutile

Th-Pb monazite

U-Pb zircon
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U-Th (He) titanite

U-Th (He) zircon

FT apatite
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Figure 11.2 Estimated closure temperature ranges for different
geochronological systems with a system being defined by a parent-
daughter-mineral combination (based on a colour original from
Pollard et al., 2003, New Departures in Structural Geology and
Tectonics NSF White Paper, www.pangea.stanford.edu/~dpollard/
NSF/).The range represents different cooling rates, grain size and
geometries, and the difference in the temperatures when the system
is fully open or fully blocked for diffusive loss of the daughter (To or
Tb and see Fig. 11.1) for each system. For lower temperature
systems the range is often referred to as the partial retention or
annealing zone (PRZ, PAZ).
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Richardson et al. (2002), implemented with reversible jump
(RJ) or trans-dimensional MCMC. In this case, the number
of component distributions is a parameter to estimate, and
in the context of the Bayesian approach, we obtain
a distribution on that parameter. To make comparisons
with previous approaches, Jasra et al. (2006) considered
normal distributions for the components, each defined by
the mean (or location parameter), μ, and the variance (or
scale parameter), σ2. They also presented a more general
form of component distribution, a skew-t distribution. This
distribution is unimodal and defined in terms of its location
parameter (μ), inverse scale parameter w ¼ 1

σ2, and also two
skew parameters ðυ; ζ Þ as in the following:

f ðx; μ; ω; υ; ζ Þ ¼ Cυ; ζ 1þ ωðx� μÞ�
υþ ζ þ ðωðx� μÞÞ2

�1
2

0B@
1CA

υ þ 1
2

1� ωðx� μÞ�
υþ ζ þ ðωðx� μÞÞ2

�1
2

0B@
1CA

ζþ1
2

; ð11:5aÞ

with the normalisation constant defined as

Cυ; ζ ¼
ω

2υ þ ζ þ 1Bðυ; ζ Þðυþ ζ Þ
1
2

; ð11:5bÞ

where Bð:; :Þ is the Beta function. The location of the mode
of this distribution is given as

xmode ¼ μþ ðυ� ζÞ
ω

ðυþ ζÞ
ð2υþ 1Þð2ζþ 1Þ

� �1
2

: ð11:5cÞ

The two skew parameters υ; ζ control the amount of
skewness, leading to left (negative) when υ > ζ and right
(positive) skew when υ< ζ , and the skewness is more pro-
nounced for smaller values of these parameters. Finally, if
υ ¼ ζ , the distribution is symmetric with heavier tails when
the values are small and approaches a Gaussian when the
values are large, similar to the behaviour of standard
t distribution (as a function of the degrees of freedom).

The inverse problem was set up as follows: firstly, we
allow for uncertainty in the observed data (dobs), assuming
that each datum is sampled from a Gaussian distribution
centred on the unknown true datum values (dtrue) with
a standard deviation equal to the reported measurement
error (σ as a standard deviation), that is,

pðdobsjdtrue; σ2Þ∼Nðdtrue; σ2Þ; ð11:6Þ

then the mixture model is formulated in terms of the
unknown true, or measurement error free, values. The justi-
fication for this is that we should not try to fit the mixture
model parameters to the noisy observations, but prefer to
sample the true, but unknown, values. In doing this, we
explicitly allow for the uncertainty (measurement error) on

the observations. The distribution of these values for
a mixture model is then defined as

pðdtruejk; π; θÞ∼
Xk
i¼1

πifðdtrue; θiÞ; ð11:7Þ

where k indicates the number of components, πi is the pro-
portion of the i-th component with distribution fð:Þ, and
finally θi represents the distribution parameters (e.g. μ; σ for
a Gaussian, or μ; ω; υ; ζ for a skew). The aim is to use
MCMC sampling to approximate the posterior distribution,
which can be written (up to a proportionality constant) as

pðdtrue; k; π; θjdobs; σ2Þ α∏N
i¼1 pðdobs; ijdtrue; i; σ2Þ

pðdtrue; ijk; π; θÞ� pðkÞpðπjkÞ∏
k

j¼1
pðμjÞpðωjÞpðυj; ζ jÞ; ð11:8Þ

where N is the number of data and k the number of compo-
nents. The first two terms on the right effectively represent
the data likelihood and the term after the x contains the
prior terms for the parameters to be estimated.

To solve the problem, it is necessary to define priors for all
parameters k; μ; ω; υ; ζ ; π. A range of possible priors
(and associated hyper-parameter priors) was presented in
Jasra et al. (2006) together with the appropriate form of the
posterior for different hyper-parameters. We refer the
reader to that publication for the mathematical details. In
general, they present one prior for each parameter type,
except for number of components and the skew parameters.
Some priors use hyper-parameters (parameters defining the
prior distributions themselves to be treated as unknowns
with a prior to be resampled as part of theMCMC process).
For the results we present here, we used a uniform prior on
the number of components ðpðkÞ ¼ 1=kmaxÞ with kmax the
maximum allowed number of components.

For the prior on the skew parameters, we present results
based on both of the two priors described in Jasra et al.
(2006). The first is a weakly informative prior (prior 1),
which allows equally for symmetrical, positive, or negative
distributions, but tends to avoid distributions with heavy
tails and high skew. The second (prior 2) favours heavy tails
and more highly skewed distributions. Thus, as symmetrical
distributions will tend to imply more components than
an asymmetric one, we expect prior 2 to suggest fewer
components than prior 1 (and also a Gaussian distribution
component model).

The details of the reversible jump, or trans-dimensional
sampler, are also given in Jasra et al. (2006). The approach
sweeps over the different parameters (as in Eq. 11.8), or groups
of parameters, in succession with an acceptance condition
assessed at each stage. As usual with MCMC sampling, we
obtain an ensemble of estimates for all parameters that
approximates the full posterior distribution. The output from
a trans-dimensional model also allows us to examine the
posterior distribution for the number of components, assess
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what number is the most probable, and then examine the
models associated with that chosen number of components.
We can also monitor the maximum likelihood (i.e. equivalent
of the best data-fit) solution which tends to be more complex
(more components) than the maximum posterior model.

Finally, once the posterior distribution has been esti-
mated, we can use that to examine the expected model
calculated under different assumptions. The expected
model is a form of weighted average, with the weighting
being the posterior distribution. As the MCMC samples are
selected (accepted) according to the posterior distribution,
the expected model is then just the average of the MCMC
samples. With the usual definition of the expected model as
an integral, we can write

EðmÞ ¼
ð
mpðmÞ dm ¼ 1

M

XM
i¼1

mi; ð11:9aÞ

whereM is the number ofMCMC samples of the parameter
vector m. Similarly, the expected value of a function of the
model parameters, fðmÞ can be written as

Eð f ðmÞÞ ¼
ð
f ðmÞ pðmÞ dm ¼ 1

M

XM
i¼1

f ðmÞi: ð11:9bÞ

In the results presented in Section 11.2.1.1, we will consider
the expected distribution calculated from the distributions
calculated for each accepted set of model parameters
Eð f ðmÞÞ and also the distribution calculated with the
expected values of the component distribution parameters
Eð f ðmÞÞ. We note we expect Eð f ðmÞÞ to be equal to
f ðEðmÞÞ if the function f is linear (as expectation is linear).

11.2.1.1 Mixture Modelling Example
We choose a set of U-Pb agesmeasured on zircons separated
from a Devonian sedimentary sample (SA5) from the
Ancenis Basin in northern France (Ducassou, 2009). There
are 40 ages ranging from 401 to 2,343 Myr, and errors (1σ)
from 12 to 55 Myr, with the younger ages tending to have
the larger error (lower precision). The measured data are
summarised in Fig. 11.3 in histogram form, which does not
take into account the errors, and as a radial plot, which
does. The radial plot (Galbraith, 1988) is a graphical sum-
mary of data with different precisions. The data are trans-
formed such that x co-ordinate = 1/error is a measure of
relative precision and the y-axis = measured value/error is
an error-normalised value. Often the y-axis is centred on
the mean (or better the variance weighted mean) to give
a z-score (measured value – weighted mean)/error). In this
form, each point on the plot has the same standard error (on
the y-scale), more precise data plot further from the origin,
and the slope of a line from the data point to the origin is
equivalent to the measured value (or measured value –

weighted mean). The radial plot is a convenient graphical
representation to assess heterogeneity in a data set and in the

case of mixture modelling, to assess visually the possibility
of having different components in the data. We can see that
both visual representations of the data imply at least two
components.

All the model results presented here are based on 106

burn-in and 106 post-burn-in iterations, and a thinning fac-
tor of 50. We first ran the mixture modelling using Gaussian
distributions for the component distribution and the results
are summarised in Fig. 11.4. Figure 11.4a shows the likeli-
hood, posterior, and number of components as a function of
iteration. This demonstrates the wide range (2–15) in the
number of components sampled, and also the natural parsi-
mony of the Bayesian approach. This is manifested as the
best data fitting (higher likelihood) models with a relatively
large number of components having lower posterior prob-
abilities (e.g. where the blue and green curves touch, around
1.35 x 106 and just before 1.6 x 106 iterations). The preferred
number of components from the posterior distribution
(Fig. 11.4b) is three or four (having about 75% of the pos-
terior probability of three components), with up to eight
with p(k) > 0.05. Figure 11.4c presents the expected model
conditional on three components. As mentioned, we con-
sider two models, the expected model formed by summing
the predicted distributions for all models with three compo-
nents and the predicted distribution using the expected val-
ues for the parameters ðμ; σ; πÞ, equivalent to Eð f ðmÞÞ and
f ðEðmÞÞ, respectively. We can see in the case for three
components, the two expected models are not too different,
and neither are the individual component distributions
(Fig 11.4d), particularly for the two well-defined compo-
nents, defining the youngest and oldest components.
Figures 11.4c and 11.4d also show the 95% credible interval
on the expected location parameters (i.e. the range that is
defined between the 2.5% lowest values and the 2.5% highest
values for a given parameter). We see that these are pretty
much symmetrical about the expected values for the young-
est and oldest components, but a little skewed to younger
values for the central component. The inference of three
components with a Gaussian distribution component
model is predictable with this particular data set, given the
two well-defined peaks at younger and older ages and the
smaller central peak (ages around 1,200 Myr ago [Ma]).

Figures 11.5a and 11.5b show the results for four
Gaussian distribution components and we can see more
obvious differences in the two expected models mentioned
previously. The total distribution based on the expected
values of the parameter estimates does not capture the
form of the data histogram as the mean values reflect that
bimodal sampling of the two central components of the four
to try and capture what is the well-resolved central compo-
nent in the three-component model. This suggests that con-
sideration of the two different forms of expected models can
be an additional criterion for model selection, given that the
posterior probability of having four components is not that
different to having three components (see Fig. 11.4a).
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The results for the skew model with the two prior
distributions are shown in Figs. 11.6 (prior 1, preference
for lighter skew) and 11.7 (prior 2, preference for heavier
skew), respectively. As expected, prior 1 tends to infer more
components than prior 2. However, relative to the Gaussian
distribution results, prior 1 implies a higher probability for
models with two components, reflecting the ability to intro-
duce some asymmetry in the component distributions.
Those models tend to imply a skew to older ages for the
younger of the two age components, to accommodate the
ages around 1,200 Ma. Prior 2 clearly prefers two inferred
components, reflecting the preference for higher skew
models in that prior choice. Although not shown here, we

note that the maximum likelihood models for the two skew
priors (1 and 2) contain 12 and 4 components respectively.

Figures 11.6c and 11.7c show another aspect of themixture
modelling process, that is the probabilistic classification of
the data in terms of the different components identified
in a given model. These are shown for the observed data
and the expected value of the resampled data. For these
examples, the resampled data tend to be less distinctly classi-
fied than the observed values, but the preferred classifications
do not change. Figures 11.6d and 11.7d show the relationship
between the observed and resampled data (with the error bars
on the former being the input errors and those on the latter
being the 95% credible range for the resampled values over all
accepted models). Here we can see that this resampling pro-
cess does not drastically change the values used in the model-
ling, as the input errors are fairly small (at least relative to the
actual ages).

The results of the three different model formulations
(Gaussian v. skew-t, and two different priors for the skew-t
models) on the same data illustrate the effect of these model
assumptions on the results. Visual inspection, coupled perhaps
with additional geological information/constraints, allows us
to assess which model may be preferable. While we do not
address this aspect here, it is possible to make a more quanti-
tatively based model choice by calculating the evidence from
Bayes’ rule (e.g. Sambridge et al., 2006; Trotta, 2008; Friel and
Wyse, 2012). In words, this is the probability of having the
observed data for a given hypothesis. In doing so, the data are
fixed (i.e. the observed data), and this allows us to assess the
probability of different hypotheses. The hypothesis that has
the maximum evidence (or maximum support from the data)
is then the most likely. The evidence is defined as

pðdjMÞ ¼
ð
pðdjm; MÞ p ðmjMÞ dm;

whereM is a given model formulation and we can see that
the evidence is the expected likelihood (sometimes called
the marginal likelihood) for that model formulation. From
the evidence, we can calculate the posterior probability of
the model formulation, given the data, again from Bayes’
rule, that is,

pðM jdÞ α pðdjMÞpðMÞ;

Where pðMÞ is the prior probability of the model formula-
tion. Typically, the priors are chosen to be equal for differ-
ent models. Then that leads to the ratio of posterior
probabilities for two models, a and b, being equal to the
ratio of the evidence (also known as the Bayes factor, Bab):

Bab ¼
pðdjMaÞ
pðdjMbÞ

:

There are now various approaches have been proposed
that provide practical recipes to do the appropriate cal-
culations for the evidence and the Bayes factor in
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Figure 11.3 (a) Histogram of U-Pb-zircon age data (sample SA5)
from a Devonian aged sediment (St Anne Grit) in the Ancenis
Basin in northern France (Ducassou, 2009). (b) Radial plot of the
data in (a). This representation (Galbraith, 1988) uses age/error as
the y-ordinate and 1/error as the x-ordinate. The slope of a line
joining a data point to the origin is the age of that data point. All
data have the same relative error (e.g. ±2 on the y-axis as shown by
the two red lines bounding the mean age (with slope = 0). The
radial plot provides a rapid visual assessment of age components,
and also explicitly incorporates the error for each observation such
that more precise data plot further to the right.
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a reasonable time (Liu et al., 2016; Pooley and Marion,
2018; Higson et al., 2019). One of the more reliable
methods, thermodynamic integration (e.g. Lartillot and
Philippe, 2006), can be implemented using an approach
that also deals elegantly with the problem of multimodal
likelihood functions mentioned earlier. This approach is
known as parallel tempering (e.g. Sambridge, 2014) and
requires running many MCMC simulations in parallel.
Each MCMC simulation uses a slightly modified
measure of how well we fit the data and allows the
sampling to move between different modes in the likeli-
hood function. Subsequently, all the sampling chains can
be used to calculate the evidence (support provided by
the data) for a given model hypothesis and so
allow quantitative comparisons between different
hypotheses.

11.2.2 Inverse Thermal History Modelling
in Thermochronology

As outlined in the Introduction (Section 11.1), thermo-
chronology takes advantage of the temperature sensitivity
of different dating systems to infer rate and magnitudes of
geological processes that involve changing temperature
over time. The aim of inverse modelling is to use measured
thermochronological data to reconstruct thermal history
of a rock or mineral. In practice, this has been most
widely considered in the context of low-temperature ther-
mochronology (loosely defined as systems sensitive to
temperatures < 300°, which include the fission track,
(U-Th)/He, and 40Ar/39Ar methods (see Reiners and
Ehlers, 2005; Braun et al., 2009). These systems are sensi-
tive to temperatures from near surface values (~30–40°C)
to a maximum around 300°C, or a little higher. The range
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Figure 11.4 (a) Log likelihood (red), log posterior (blue), and number of components (green) of accepted models for the post-burn-in
iterations for a mixture model for the data in Fig. 11.3, based onGaussian component distributions. (b) The inferred posterior distribution
on the number of components (the green curve in (a)), and most probable number of components is three. (c) The total distribution
(E(par) = f (E(m)) for the three-component model based on the expected values of the mean and standard deviation for each component
(Eq. 11.9a) and the expected distributionmathnormal (E(dist) = E( f (m)), (Eq. 11.9b). The coloured vertical lines show the expected values
for the location parameter (mean) of each Gaussian component with the dotted lines defining the 95% credible range. The height of each
line indicates the expected value of the proportion (right-hand scale) for each component. (d) The individual component distributions for
the three-component model. The dotted line distributions are those calculated using the expected values of the mean and standard
deviation for each component. The solid line distributions are the expected distributions (as in Eq. 11.9b) for each component. The vertical
lines are as for (c). The solid line distribution for the central component is slightly displaced relative to dotted line equivalent, but otherwise
the two different estimates are similar.
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in temperature sensitivity is often referred to as the partial
annealing zone (PAZ) for fission track analysis and the
partial retention zone (PRZ) for noble gas diffusion (He,
Ar). In these low-temperature systems, the range of tem-
perature sensitivity which leads to loss of the daughter
product is manifested as a progressive decrease in meas-
ured age depending on how long a given rock sample has
resided in, or has taken to cool across, the partial retention/
annealing zone. In this case, a measured age will not neces-
sarily reflect any particular discrete geological or thermal
event, but the data can still be used to try and recover
information on the thermal history.

To undertake (inverse) thermal history modelling
requires understanding, often empirical, of the controls

on the temperature sensitivity for different thermochro-
nometric systems. The most important physical process
is some form of thermally activated chemical diffusion
(e.g. Reiners and Ehlers, 2005), which, in its most simple
form, leads to the loss of the daughter product (e.g. the
isotope 4He in the case of (U-Th)/He dating) from the
host mineral. Due to this loss, the age of the mineral will
be reduced, and will be zero if all the daughter product
has been lost. Partial loss, the extent of which depends
on the thermal history, will lead to a reduced age
(reduced relative to that expected with no loss of the
daughter product).

Although not well understood, some kind of diffusion
type process is also likely to be the main control on the
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Figure 11.5 Results for four components for the data in Fig. 11.3. (a) shows the total distributions (as in Fig. 11.4c) and we see the
distribution based on the expected values of the parameters, E(par), does not really capture the form of the data. The vertical bars represent
the expected values for the location (mean) parameter, the dashed lines the 95% credible range, and the height of each line is the expected
value of the proportion for each component. The lower limit for the credible range on the green component pretty much corresponds with
the expected value for the red (youngest) component, and the upper limit for the blue component corresponds to the expected value for the
cyan (oldest) component. This suggests that the four-component model is not particularly well resolved. (b) The individual component
distributions (as in Fig. 11.4d). The expected distributions for the two of the central component are both bimodal reflecting a trade-off
between the different components and also implies that the four-component model is not particularly well resolved. (c) Proportion
v. location parameter (means for each component Gaussian distribution). As the second (green) component mean reduces, its proportion
tends increase and in a form of compensation or trade-off, the first component age (red) also tends to decrease as does its proportion. (d)
Themean of component distributions 1, 3, and 4 as a function of themean age for component distribution 2 (the components have the same
colour code as (a) and (b)). The black diagonal line is a 1:1 relation for the two axes. Components 1 (red) and 3 (blue) tend to trade off with
component 2 such as if the 2 becomes younger, 1 also becomes younger and as 2 becomes older, 3 becomes older (and also 4 becomes older
as 3 becomes older). This trade-off behaviour suggests that the four-component model is not particularly well resolved.
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shortening, or annealing, of fission tracks (Li et al., 2011).
A track, meta-stable physical damage to the crystal lattice
due to the passage of positive charged ions, is considered as
the relevant daughter product of the spontaneous fission
of 238U. New fission tracks are formed continuously over
time and the final length of each individual track will depend
on the temperature history it has experienced. The fission
track age is a function of the distribution of lengths (for
details, see Galbraith, 2005). Analogous with 4He loss, track
shortening (annealing) leads to a reduction in the fission
track age. If all tracks are totally annealed, there is then no
daughter product, and the age will be zero.

In terms of an inverse problem, we want to reconstruct
temperature as a function of time (i.e. the thermal history).
While some form of the heat transfer equation can be used
to predict the thermal history (e.g. Braun et al., 2009;
Licciardi et al., 2020), this requires specification of

boundary conditions (heat flow, surface temperature) over
time and also the relevant thermophysical properties (e.g.
thermal conductivity, heat capacity, density, heat produc-
tion). It is more common to try and extract the thermal
history directly without a physically based model for heat
transfer. While this implies a continuous function, the
forward problem is generally formulated to represent the
thermal history as a series of piecewise continuous linear
segments, and the model parameters for a single sample are
then defined as a finite number (N) of time-temperature
points or nodes:

m ¼ fti; Tig; i ¼ 1; N:

In some cases, we deal with several samples (jointmodelling)
at the same time, under the assumption that they have all
experienced the same form of thermal history (e.g. the same
heating and cooling episodes) but not necessarily the same
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Figure 11.6 Mixture modelling results based on skew-t component distributions, with a prior oriented to low degrees of skew. (a) The
inferred posterior distribution on the number of components and most probable number of components is three, similar to the Gaussian
component distribution model (Fig. 11.4) but the probability of two components is higher. (b) The total and individual component
distributions based on the expected distributions (Eq. 11.9b). The coloured vertical lines show the expected values for the location
parameter (mean) of each component with the dotted lines defining the 95% credible range. The height of each line indicates the expected
value of the proportion (right-hand scale) for each component. Note the central component is slightly trimodal, with minor peaks
corresponding to the expected values of the minimum and maximum age components. The 95% credible intervals for the expected value of
this central component also extend close to the expected values for two components. This behaviour suggests that the three-component
model is not that well resolved (support by the higher probability of having two components for this skew-t model). (c) The classification
probabilities (the probability that a given value is assignable to a given component) for the observed (+ plotted on the coloured lines) and
resampled (solid circle plotted on black lines) ages. (d) The relationship between the observed and resampled ages, together with the
expected values for the location parameter (mean) of each component shown by the solid lines and the dotted lines define the 95% credible
range. The diagonal line is 1:1.
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temperature values. Given that temperature generally
increases with depth in the Earth’s crust, it is often valid to
assume that samples that are deeper in a borehole (or per-
haps currently at lower elevations if exposed on the Earth’s
surface in a recently cut valley for example) were hotter than
those at shallower depth (or higher elevations). This is
referred to as vertical profile modelling. In this case, the
model parameters are augmented by the temperature differ-
ence, or offset, between the top and bottom samples in the
vertical profile, to give

m ¼ fti; Ti; Oig; i ¼ 1; N:

We choose either the top or the bottom sample as a reference
point, and the offset then allows us to define a thermal
history for each sample as a function of the depth or eleva-
tion difference between the reference sample and the sample
of interest. The first MCMC approach proposed to solve
this problem was presented by Gallagher et al. (2005), in
which the number of nodes, N, was specified in advance.
Gallagher (2012) later presented a trans-dimensional
MCMC approach with N treated as an unknown.

Stephenson et al. (2006) presented an extension of the
Gallagher et al. (2005) approach to allow joint modelling
of spatially distributed samples, which uses partition mod-
elling to group or cluster samples with a similar (but
unknown) thermal history. The locations of the partitions
are defined by the centres of Voronoi cells. This approach

has the advantage of allowing discontinuous spatial changes
in the thermal histories, and therefore can readily deal with
the presence of faults, for example. The inference of the
partition structure was treated as a trans-dimensional prob-
lem (e.g. Denison et al., 2002), such that the number the
partitions is allowed to vary, while the thermal history
modelling was fixed dimensional (as in Gallagher et al.,
2005). A fully trans-dimensional approach incorporating
the RJ-MCMC thermal history modelling method
(Gallagher, 2012) together with the partition model is cur-
rently under development. This is motivated in part by
recent exchanges (Herman et al., 2013; Schildgen et al.,
2018; Willett et al., 2021) related to spatial modelling of
thermochronological data and the possibility of artefacts
introduced in model results when samples are grouped
together. If the grouping is based on distance criteria (closer
is more likely to be similar) but may lead to incompatible
thermal histories, due to faulting, for example.

Here we will look at the approaches for modelling single
and vertical profile samples based on synthetic data, the aim
being to illustrate how well we can recover a known thermal
history model. The details of MCMC algorithms are
presented in Gallagher (2012) and Licciardi et al. (2020)
and we will not repeat them here. As described here,
a thermal history for a vertical profile is defined as
fti; Ti; Oig; i ¼ 1; N, and in a trans-dimensional approach,
N, the number of nodes, is treated as an unknown. The prior
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Figure 11.7 As for Fig. 11.6, but for a prior oriented to high degrees of skew. In this case, the preference for high skew leads to a preferred
model with two components (see the caption of Fig. 11.6 for caption details). The classification (c and d) changes with the ages assigned to
the central component in Fig. 11.6 (low skew model) tend to be taken up by the high skew of the younger component.
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is uniform, N∼Uð2;NmaxÞ, such that the thermal history
will have a minimum of two nodes (the present-day tem-
perature and one time-temperature point in the geological
past) and up to Nmax. The priors on the temperature, time,
and offset are also uniform with the upper and lower limit
determined by the nature of the data (different thermochro-
nological systems having different temperature
sensitivities). For example, a range from 0 to 140°C is
appropriate for fission track analysis and (U-Th)/He dating
on the mineral apatite, providing a slightly large range
than the PAZ/PRZ defined earlier, to allow some flexibility
to ensure that the sample can experience total annealing/
diffusive loss (open system at higher temperature) and to be
totally retentive (closed system at low temperature).

A characteristic of thermochronometric systems is that
the data reflect a cumulative or time-integrated signal to
variable degrees. The ability to recover the thermal history
is often dominated by the maximum temperature experi-
enced. In principle, thermal histories that involve multiple
heating/cooling episodes can be recovered to variable
degrees depending on the magnitude of the reheating event
(maximum temperature experienced at the peak of heating).
One consideration is that a reheating event will tend to
overprint (or even totally erase) any existing thermal history
information contained in the data if the maximum tempera-
ture exceeds the maximum temperature from any previous
heating events. McDannell and Issler (2021) have demon-
strated that some reheating events can be recovered (to
variable extents), depending on the nature of the data avail-
able. Often, however, the data themselves do not necessarily
require reheating events (even if the true thermal history
contains them). In some cases, well-defined geological con-
straints are available. These can be imposed on the thermal
models (as a form of prior information) to force all thermal
histories to respect these constraints. Typical constraints
can be the age of formation of an igneous rock (either
intrusive or extrusive), or inferred ages of unconformities,
implying that a particular sample was close to or at the
surface at a given time. These constraints are generally
defined in terms of a range for both temperature and time,
the magnitudes of which should depend on the reliability of/
confidence in the geological information available.

11.2.2.1 Predictive Models in Thermochronology
Diffusion Models For diffusion problems, we need to solve
a differential equation (11.2). For (U-Th-Sm)/He dating, the
production term defined in Eq. (11.2) is given as

P ¼ 8238λ½238U� þ 7235λ½235U � þ 6232λ½232Th�þ147λ½147Sm�;
ð11:10aÞ

where [] is concentration, or number of atoms, and λ is the
decay constant for a given isotope. This reflects the production
ofHebydecayof one atomof each the different parent isotopes

238 U (eight atoms ofHe), 235 U (seven atoms ofHe), 232 Th (six
atoms of He) and 147 Sm (one atom of He). In the absence of
diffusion, the concentration, or number of atoms, of the daugh-
ter (in this case He) produced after time t is given as

½4He� ¼ 8½238U�ðe238λt � 1Þ þ 7½235U �ðe235λt � 1Þ
þ6½232TH �ðe232λt � 1Þ þ ½147Sm�ðe147λt � 1Þ: ð11:10bÞ

Of course, the interest in thermochronology comes from
the temperature dependent diffusion aspect and so we need
so solve the diffusion equation (Eq. 11.2).

Usually, we adopt some numerical approach to deal with
the diffusion equation (e.g. Meesters and Dunai, 2002a;
Braun et al., 2009) and we solve for the time-dependent
distribution of the daughter isotope in a volume, or
diffusion domain. The diffusion domain may represent
a complete grain (as is the assumed for He in apatite,
Farley, 2000), or an effective domain, not necessarily repre-
senting a physically identifiable region in a grain, as is the
case for multi-domain diffusion models (e.g. Ar in feldspar,
Lovera et al. (1989); He in calcite, Cros et al. (2014); or He in
haematite, Farley and McKeon (2015)). Consequently, the
size and geometry of the grain (or diffusion domain) are
important inputs for the modelling procedure. In many
cases, we use an effective grain size (e.g. the radius of
a spherical grain with the same volume/surface area ratio
as the actual grain) and solve a 1D diffusion problem rather
than for a full 3-D geometry. This speeds up the forward
model and has little effect on the final solution (Meesters
and Dunai, 2002a). The predicted age is given as the ratio of
the daughter to the production rate, integrated over the
grain/domain volume, such as

Age ¼
ð
V

½DðrÞ�
PðrÞ dr: ð11:11Þ

For He dating, we also need also allow for the fact that
alpha particles are ejected some distance (10–30 μm; Farley
et al., 1996) from the parent nucleus. The ejection distance
depends on the nature of both the parent nucleus and the
host grain lattice. If the distance from the parent atom to the
edge of the grain is less than the ejection distance, then there
is a finite probability that the alpha particle will be ejected
out of the grain, leading to a lower than expected He age.
However, once ejection distances are known, it is straight-
forward to allow for this effect (Meesters andDunai, 2002b)
at the same time as modelling diffusive loss of He.

In some cases (e.g. apatite and zircon He dating in cra-
tonic domains), we may need to allow for the dependence of
the diffusivity on radiation damage (apatite: Flowers et al.,
2009, Gautheron et al., 2009, Recanati et al., 2017; zircon:
Willet et al., 2017, Guenthner et al., 2013, Ginster et al.,
2019). During radioactive decay of U and Th isotopes, an
alpha particle is ejected out of the parent nucleus. In
response, the parent nucleus recoils (like the kick of
a rifle). This recoil creates damage to the surrounding
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grain lattice (Shuster et al., 2006). Such damage zones can
then trap diffusing He which then requires an anomalously
high activation energy (or higher effective diffusivity) to
escape the damaged zones, or traps. As the amount of radi-
ation damage increases, the effective diffusivity increases up
to a point where the damage zones may become connected,
and then the effective diffusivity may decrease (Ketcham
et al., 2013). This effect is more pronounced in zircon than
apatite due to the higher concentrations of U and Th. Given
the low contribution to the total He budget by decay of
Sm and its low value of decay constant, we can ignore this
contribution. When considering this radiation damage
effect, models are typically calibrated in terms of effective
uranium, eU = U + 0.235Th. The value of eU is effectively
the equivalent concentration of U, allowing for the different
concentrations and decay rates of U and Th.

Annealing Models The approach used for modelling fission
track shortening, or annealing, is somewhat different,
although again based on calibrating parameters from labora-
tory experiments. In a series of landmark papers in the mid
1980s, researchers at the University of Melbourne presented
the results of laboratory experiments calibrating the tempera-
ture and time dependence of fission track length in apatite
(Green et al., 1986; Laslett et al., 1987; Duddy et al., 1988,
1989). They heated grains of Durango apatite to remove any
existing natural fission tracks, and produced new fission
tracks by irradiating the grains with thermal neutrons in
a nuclear reactor. Subgroups of the grains when exposed to
different thermal conditions (i.e. a constant time at a constant
temperature), similar in a way to the diffusion experiments
described earlier. The lengths (l) of fission tracks under the
different time temperature conditions were measured to pro-
vide calibration data for the annealing model. Subsequently,
data from additional annealing experiments were presented
on apatite (Carlson et al., 1999; Donelick et al., 1999) and
zircon (Tagami et al., 1998; Yamada et al., 2007) and simi-
larly used to calibrate annealing models.

The initial length ðl0Þ of a newly formedfission track ismore
or less constant (around 16–17 m in apatite and 12–13 m in
zircon. The predictive models are parametrised in terms of the
fractional reduction ðr ¼ l=l0Þ) in track length (i.e. annealing),
as a function of temperature and time. A typical mathematical
formulation for an annealingmodel (e.g.Ketcham et al., 1999,
2007) with a time duration of t at temperature T, is given as

ð1�rβÞ
β

h iα
� 1

α
¼ c0þc1

lnðΔtÞ � c2
1
T

	 

� c3

" #
; ð11:12Þ

where α, β, and c1-4 are all parameters estimated from the
laboratory data. Note this model is essentially empirical and
is not based on any profound understanding of the anneal-
ing process at the atomic level. In practice, themodels can be
modified to allow for additional factors such as chemical

composition (e.g. Cl-rich apatites are more resistant to
annealing than F-rich apatites), anisotropic annealing
(tracks parallel to the c crystallographic axis of apatite
tend to anneal more slowly than tracks perpendicular),
and segmentation of tracks at high degrees of annealing
(Green, 1988; Ketcham et al., 1999, 2007). Calibration of
models based on different apatite composition leads to dif-
ferent values of the parameters in Eq. (11.12). Thus, the
basic formulation remains the same but the predictions
(track length) will differ depending on the apatite compos-
itional parameters.

The formulation in Eq. (11.12) involves a constant
temperature over a given time interval. To apply these
models to a time-varying thermal history, the principle
of equivalent time (Goswami et al., 1984) is used to set
up a time-stepping approach. This is developed as
follows: we calculate the fractional track length (r1)
for the first time step, t1, at the first (constant) tempera-
ture (e.g. the average temperature over the time step,
given as T1). For the next time step, t2 with a different
temperature, T2, we first calculate how long we would
need to anneal a new track at temperature, T2, to
produce same the fractional track length (r1) as the
first step. This done by writing Eq. (11.12) as

ð1�rβ1Þ
β

h iα
� 1

α
¼ c0þc1

lnðΔteqÞ � c2
1
T2

� �
� c3

24 35; ð11:13Þ

and solving for teq, the equivalent time. Then we use
Eq. (11.12), setting t = t2 + teq, and T = T2 to calculate the
fractional track length (r2) at the end of the second time step.
We simulate the formation of fission tracks at a continuous
rate over time. In practice, this involves simulating new
track formation at constant time intervals over the duration
of the thermal history (tTOTAL). The equivalent time
approach process is repeated for each time step over the
duration of thermal history relevant for each simulated
track (which depends on its time of formation).

The fission track age can be calculated in different ways,
but is effectively based on the mean fractional track length
of the simulated tracks, converted into an equivalent frac-
tional track density using a formulation similar to

ρ ¼ aþ br; ð11:14aÞ

where a and b are constants estimated from laboratory data
(e.g. Green, 1988; Ketcham, 2005). The predicted age can be
estimated using a function such as

AgeFT ¼
ρ
ρ0

tTOTAL: ð11:14bÞ

The term ρ0 is a correction factor based on the obser-
vation that the longest natural (spontaneous) tracks are
shorter than the longest artificial (induced) tracks. The
predicted track length distribution is given by first
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converting the fractional track length to an actual
length by choosing a value for the initial length, l0,
which also depends on the composition of apatite.
Then taking each of these lengths in turn, we use
a Gaussian distribution kernel, using the length as the
mean, and a standard deviation (which is inversely
proportional to the length, and calibrated from labora-
tory experiments). These individual distributions are
then summed to produce the final predicted track length
distribution.

11.2.2.2 Data and Likelihood
The data used to constrain the thermal histories are primarily
ages but in the case of fission track analysis, we also have the
track length distribution. When considering (U-Th/He) dat-
ing, the data set typically contains several ages often made on
grains of different sizes and or eU contents. For fission track
analysis, the typical data set is a series (20–30) of ages meas-
ured on single grains, and the track length distributions
(typically based on 50–100 individual length measurements).
In simple terms, we can think of the oldest ages as providing
constraints on the overall duration of the thermal history we
can recover. Detail of the temperature variations is contained
in the variability of ages, reflecting the temperature sensitivity
of diffusion as a function of grain size and composition (the
eU effect discussed earlier), and for fission track analysis, in
the form of the track length distribution.

To implement MCMC, we need to define the likelihood
function and the form of this depends on the data type. For
example, when using (U-Th)/He age data, we use aGaussian
likelihood,

pðdjmÞ ¼ ∏
N

i¼1

1

σi
ffiffiffiffiffi
2π
p e

�1
2

dobs
i
�dpred

i
σi

� �2

; ð11:15Þ

whereN is the number of observations (ages), dobs
i is the i-th

observation (age), dpred
i is the equivalent predicted value for

a particular thermal history model (m), and σi is the meas-
urement error or uncertainty associated with dobs

i .
Gallagher (1995) presented a likelihood function appropri-

ate for fission track count (age) and length data for
the external detector method (EDM). The count data repre-
sent the number of natural (spontaneous) and induced counts
(Ns and Ni). The spontaneous tracks represent the daughter
product of natural fission of 238 U, and the induced tracks
represent the daughter product of reactor-induced fission
of 235 U. The induced tracks are used to estimate the
present day concentration of 238 U, and the calculated age
with the EDM approach uses the ratioNs=Ni and the daugh-
ter parent ratio in a slightly modified version of the age
equation (Eq. 11.1, and see Galbraith, 2005, for more details).

The likelihood for the count data is based on the assump-
tion that these spontaneous and induced counts (Ns and Ni)
follow independent Poisson distributions for measured single

grain age. It is possible to derive a distribution for the spon-
taneous counts, conditional on the total number of tracks
counted, and this is a binomial distribution given as

pðNsjNs þNiÞ ¼
ðNs þNiÞ!
Ns!Ni!

θNsð1� θÞNi ; ð11:16Þ

where θ ¼ ρs
ρsþρi

and ρs
ρi
is the predicted ratio of spontaneous to

induced track densities, calculated from the predicted age
(Age), for a given thermal history model, as
ρs
ρi

≈ ðeλAge � 1Þβr; ð11:17Þ

where λ is the alpha decay constant for 238U, r is the pre-
dicted fractional length r ¼ l=l0; and β is a constant deter-
mined from the observed age value (see Gallagher 1995).

The likelihood for observed track lengths uses the predicted
length distribution, f (l), as a probability distribution, and the
likelihood of having a measured length, lk, is obtained by
integrating this distribution over a small range centred on
the measured length, for example,

pðlkÞ ¼
ðlkþ0:1
lk�0:1

f ðlÞdl: ð11:18Þ

Taking all fission track (FT) count and length data, the
combined likelihood is just the product of all the individual
likelihoods forNage single grain ages andNlength track length
measurements

pðFT-dataÞ ¼ ∏
Nage

j¼1
pðNj

sjNj
s þNj

i Þ ∏
Nlength

k¼1
pðlkÞ: ð11:19Þ

To avoid numerical problems in the implementation of the
MCMC approach, the log of the likelihood is used in pref-
erence to the actual likelihood functions defined in this
section.

11.2.2.3 Examples of MCMC Inversion
with Thermochronological Data

Here we will present an example of inverse modelling based
on a known thermal history and synthetic data produced
from thermal history. The thermal history starts at temper-
atures above the effective closure temperature for all
samples and subsequently contains two heating/cooling
events in the geological past that produce a range of max-
imum temperatures across the partial annealing/retention
zones described earlier. The idea is to explore how we
much of the thermal history information we can recover
in a relatively standard inversion approach with relatively
standard data. The thermal history incorporates a constant
temperature gradient of 25°C/km (or temperature offset of
50°C) over time until the present day. The present day tem-
perature gradient was 7°C/km (typical of the atmospheric
temperature lapse rate) to represent the samples ending up

11 Trans-Dimensional MCMC Methods 187

https://doi.org/10.1017/9781009180412.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009180412.012


on the Earth’s surface (e.g. exposed at different elevations in
a valley). The prescribed thermal history and associated
predicted data are shown in Fig. 11.8.

We produce synthetic data for nine samples from a vertical
profile covering an elevation range of 2,000 m. For each sam-
ple, we have apatite fission track data (with 30 single grain
ages, and 100 track length measurements), and 5 (U-Th)/He
ages, with grain size of 30, 40, 50, 60, and to 70 m. We add
noise to the He data (sampled from a Gaussian distribution
with mean = 0 and standard deviation of 5% the predicted
age). For both types of data, we do not incorporate any
variation in chemical composition, nor the radiation damage
effect for the (U-Th)/He data. The fission track data (counts
and lengths) are randomly sampled from predicted distribu-
tions so have some inherent uncertainty but probably less that
we might expect for most real data sets. Given this, both types
of data would be considered high quality.

Single Sample Modelling We first consider just one sample
for the inverse modelling to demonstrate some of the char-
acteristics associated with recovering the original thermal
history in that case. We chose the upper and lower samples
(whose thermal histories correspond to the upper and lower
temperature paths shown in Fig. 11.8) and will examine the
results for each in turn. The priors for the thermal history
are all uniform with a maximum of 50 time-temperature
points. The time prior range was defined as 75 ± 75 Myr
and the temperature prior range is 70 ± 70°C, except for the
present day temperature which has a prior of 10 ± 10°C. The
MCMC sampling chain was run for 105 burn-in iterations
and 105 post-burn-in iterations.

Figure 11.9 summarises the results for the upper sample.
Figure 11.9a shows the log likelihood (red), log posterior

(blue), and number of time-temperature points (green) of
accepted models for the post-burn-in thermal history
models. While the likelihood remains fairly flat, the poster-
ior shows a tendency to have an inverse correlation with
the complexity (number of time-temperature points) in the
thermal history, illustrating the natural parsimony of the
Bayesian approach. Figure 11.9b summarises a range of
different thermal history models for this one sample. The
coloured pixel image represents what is known more for-
mally as the marginal posterior distribution of temperature.
We could take a slice from this image at a given time (e.g.
100 Ma), and produce a histogram of temperature at 100
Ma. This is a conditional probability distribution, that is,
the probability of temperature at a given time conditional
on the variation of accepted temperature values at all other
times. Note this is not the same as the probability of the
temperature at 100 Ma (due to the conditional dependence
on the other parts of the thermal history). We can see that
the green-yellow colours (higher probability) highlight two
segments of effectively linear cooling (from about 150 to 100
Ma and 60–70 Ma to the present day, 0 Ma) with little
obvious indication of reheating.

Figure 11.9b also presents some individual thermal
histories models: the maximum likelihood (best data flitting
equivalent to the highest value of the likelihood in
Fig. 11.9a), maximum posterior (highest value of the poster-
ior in Fig. 11.9a), and also the expected model, with the 95%
credible interval range also shown. The expected model
(averaged over all accepted thermal histories irrespective of
the number of time-temperature points), is generally rela-
tively smooth as it is a form of (weighted) average. The
highest values of any peaks of the marginal distribution as
a function of time define the maximum mode distribution.
When the marginal distribution is highly asymmetrical at
any given time, the expected model does not lie along
the peaks (modes), but deviates towards the direction of
maximum skew. For example, in comparison to the max.
likelihood/max.posterior (ML/MP) models, we can see in
Fig. 11.9b that the expected model underestimates the max-
imum temperature around 70–60 Ma. This timing is a little
earlier than the true thermal history (50 Ma). However, we
can see that the credible intervals become narrower around
50 Ma, and also support the possibility of a reheating. For
example, we can see that the lower limit of the credible
interval prior to 50 Ma approaches the lower limit of the
temperature prior while the upper limit tends to be lower
than the value around 50 Ma. This implies that the magni-
tude of the reheating after the initial cooling ending around
100 Ma is not well resolved, but the data perhaps inform us
better about the timing of the most recent reheating. We also
note that the maximum likelihood model is relatively com-
plex, with some structure that is not present in the true model
(e.g. prior to 120Ma). This is often the case as variations can
lead to just a slight improvement, or even no change, in the
likelihood, but these models can still be accepted.
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Figure 11.8 The specified thermal history used to produce
synthetic thermochronological data. The upper and lower lines are
the thermal histories for the highest and lowest elevation samples
respectively and the thinner grey lines indicate the thermal histories
for the samples at intervening elevations. The light horizontal lines
denote the approximate partial annealing zone (PAZ) for fission
track annealing and the darker horizontal lines the partial
retention zone (PRZ) for He diffusion in apatite. If a thermal
history exceeds the upper limit of the PAZ/PRZ, the relevant
thermochronological system is effectively reset to zero. Then the
data do not contain any information on the thermal history prior
to that time.
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Relative to the ML and MP models, the predictions from
expected model are not close to the observed values (as can be
seen in Figs. 11.9c and d) with lower log likelihood values.
Also we can see that the predicted ages, and also the track
length distributions, are a little older/longer. This is a relatively
commonly feature and is due to the lower maximum temper-
atures in the reheating episode around 50–60 Ma that do not
produce enough diffusive loss/annealing. Of course, the
expected model is not an individual model sampled during
the MCMC iterations so is not directly constrained through
fitting the data. Figure 11.10 illustrates a selection of 1,000
models selected from the accepted post-burn-inmodels, colour
coded in terms of the relative likelihood/posterior. The indi-
vidual models tend to have a form of cooling from the initial
constraint at 150 Ma at 150°C, a reheating starting anywhere
between 120 and 60 Ma to a maximum temperature of up to
about between 70 and 50Ma, 90°C and a final cooling to near
surface temperatures at the present day. When classified

according to the likelihood (Fig. 11.10a), we see higher likeli-
hood models (e.g. those coloured red/pink) can be relatively
complex (e.g. some structure early in the thermal history,
multiple minor reheating/cooling events after 50 Ma, a wide
range on timing associated with the initiation of the main
reheating event and the maximum temperature of that reheat-
ing relatively loosely constrained). We see a collection of less
complex models when classified by the posterior value
(Fig. 11.10b). This is as expected given that the Bayesian
approach tends to penalise complexity and more complex
models tend to have lower posterior values. The models with
higher posterior (again the red/pink models in Fig 11.10b)
capture the form of the true thermal history fairly well, with
some dispersion in the initial timing of the reheating event, but
less than that implied based on the likelihood classification.

Overall, the reconstructed thermal histories using the
uppermost sample seem to identify the timing of the peak
temperature for the reheating event around 50Ma. The data
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provide little information on the rates of heating/cooling
either side of this event and do not seem to require a signifi-
cant structure in the thermal histories after 50 Ma. This is
expected due to the fact that the temperatures for the upper-
most sample never exceed 40°C after 40 Ma. This is outside
the PRZ/PAZ range and so the data are not sensitive to any
temperature variations in the true thermal history.

We now consider the results based on the lowest (hottest)
sample in the vertical profile and use the same prior as the
upper sample. Given the nature of the data, the PRZ/PAZ
ranges, we do not expect the data to be sensitive to temperat-
ures > 130–140°C (i.e. the range of the prior on temperature)
so the fact the prior does not span the temperature range of the
true model for this sample is not a problem. We just want to
compare how much of the thermal history we can recover for
this single sample. Given the true thermal history (Fig. 11.8),
we expect that the resolution of the thermal history prior to 50
Mawill be poor. This is because the maximum temperature of
the lowest sample exceeds the upper limit or the PRZ/PAZand
so all information on the earlier thermal history is lost. The
results are given in Fig. 11.11 in the same format as Fig. 11.9.
Again, we see the inverse correlation between the posterior
and the model complexity (Fig. 11.11a) with the maximum
posterior model having the lowest number of time-
temperature of all accepted post-burn-in models. We see the
anticipated lack of resolution of the thermal history prior to
50 Ma in terms of the credible intervals effectively span the
prior range and the expectedmodel temperature over that time
is the mean of the prior. Between 50 and 10Ma, the resolution
of the thermal history is still relatively poor. However, in
contrast to the uppermost sample, this sample does constrain
the recent cooling event starting at 10Ma and also constraints
the upper range of the marginal posterior to be less than the
maximum temperature at 10 Ma (i.e. < 90°C). Again, we see
the expected model predictions are not as good as those from
the maximum likelihood/posterior models and the likelihood
values are significantly lower. This is because this sample
primarily constrains the last cooling event, and due to the

nature of smoothing implicit in the expected mode, the max-
imum temperature at that time is underestimated relative to
the individual models. Then the observed length distribution
is not well reproduced (Fig. 11.11c) and the ages are over-
predicted (Fig. 11.11d).

Having considered two (upper and lower) samples inde-
pendently, we have seen how they can inform us differently
about the temperature history with variable resolution
depending on the temperatures relative to the PRZ/PAZ
(i.e. the temperature sensitivity of the thermochronological
systems under consideration). Therefore, an obvious
approach is to model all samples jointly, to take advantage
of any common information and exploit information
particular to individual samples.

Multi-sample (Vertical Profile) Modelling For the multi-
sample (vertical profile) inverse model, we use just five of the
nine samples, but make predictions of the data for the other
four samples to highlight the fact that vertical profiles samples
contain common information that can improve the resolution
of the combined thermal history. In this case, we define the
prior on time and temperature for the uppermost sample in the
profile and use the same priors as for the single samplemodels.
When modelling a vertical profile, we add the extra tempera-
ture offset (or gradient) parameters and we use a temperature
gradient prior range that was 30 ± 15°C/km (with 10 ± 10°C/
km for the present day). The MCMC sampling chain was run
for 120,000 burn-in iterations, then 50,000 post-burn-in
iterations.

The likelihood, posterior, and number of time-temperature
points for the accepted models in the post-burn-in stage are
shown in Fig. 11.12. As in the single sample model runs, we
can see that while the likelihood is relatively constant, the
number of time-temperature points (representing in part the
complexity of a continuous function) varies from 5 to 27, but
generally stays at relatively low values (< 15). Again, there
is a clear visual anti-correlation between the number of time-
temperature points and the posterior value, reflecting the
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natural parsimony of the trans-dimensional MCMC
approach (i.e. the preference for simpler solutions).
However, this does not preclude sometimes accepting more
complex solutions but reduces the tendency of accepting
them, unless the likelihood improves significantly.

The recovered thermal histories are shown in Fig. 11.12
with the expected model (Fig. 11.12a) and the maximum
posterior model (Fig. 11.12b) – the maximum likelihood
model is not significantly different to the posterior. We can
see the advantages of the multi-sample relative to the single-
sample modelling. As we expect, the lower temperature parts
of the thermal history, prior to a reheating, are not well
resolved. However the timing and maximum temperatures
of the two reheating events (50 and 10 Ma) are well resolved
(as indicated by the narrow credible intervals at those times in
Fig. 11.12b). The data are well reproduced (Fig. 11.12d),
including for the samples that were not used for the inversion
(marked by the * on the error bars). The expected model
again slightly, but systematically, over-predicts the ages, but
less dramatically than for the single samples. This is again
attributable to the smoothing of the thermal history, and in
particular, a reduction in the peak temperatures. In practice,
each sample has the possibility to constrain different parts of
the thermal history better than others. Effectively, this is the
part of the thermal history where a given sample is in the
appropriately sensitive temperature range (e.g. the PRZ/PAZ

temperature ranges for apatite). As was discussed for the
single sample models, the upper sample spends a significant
part of the total thermal history (from about 140 Ma to the
present day) in that range, while the lower sample cools into
that range around 50 Ma. Clearly, if the vertical profile has
remained structurally intact, the samples in between will
record the thermal history over a range of durations between
those two end members.

Finally, Fig. 11.13 shows a selection of individual thermal
history models colour coded by the log likelihood
(Fig. 11.13a) and the log posterior (Fig. 11.13b). In contrast
to the same representation for single sample models, the two
are fairly similar, except for that part of the thermal history
poorly or not at all constrained by the data (prior to around
120Ma). Again, this demonstrates the advantages of jointly
modelling the data such that the true signal is reinforced,
and random noise tends to destructively interfere (i.e.
cancels out). Furthermore, the unwarranted complexity is
reduced as the combined data does not allow such variation
in the thermal histories to be accepted, as the combined
likelihood is more sensitive than that for individual samples.

11.3 Summary

We have considered two applications of Bayesian trans-
dimensional MCMC modelling in the context of
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geothermochronology. The advantage of this approach is that
the model complexity, typically in terms of the number of
model parameters, adapts to the information contained in
the data. The first application, mixture modelling, has a truly
finite number of parameters and the model complexity is
reflected in the number of components, and the number of

parameters associated with the component distributions. We
presented results with a real data example, and two different
component distribution models, Gaussian (with two param-
eters) and skew-t (with four parameters, and contains the
Gaussian as a special case). The skew-t approach was imple-
mentedwith two different priors, one preferring light skew and
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the other preferring heavier skew. As we expect, the results
show that the heavier skew models imply fewer components
than more symmetrical models. In terms of choosing
a preferred model, the posterior probability distribution for
the number of components is a useful guide. However, it was
also shown that some models that seem reasonable (e.g.
the second most probable number of components) can reflect
a form of trade-off between the components. Examination of
the expected distributions (total or the individual compo-
nents), calculated under different assumptions (based on the
distributions themselves or the parameters of the distributions)
can reveal this effect, and aid in model choice for a given set of
model assumptions (e.g. Gaussian or skew-t distributions).
The second application, extracting thermal histories from
thermochronological data. Physically, the model is
a continuous function (temperature over time) but the inverse
model parameterisation is typically in terms of a finite number
of parameters (nodes of the time-temperature function, and
linear interpolation between the nodes). Again, the model
complexity is reflected in the number of time-temperature
nodes that define the form of the thermal history. We con-
sidered examples based on synthetic data in a vertical profile
for which we know the true thermal history. The aim was to
illustrate how different data inform us about different parts of
the thermal history. Modelling constrained by just one sample
illustrates this aspect. The upper (coldest) sample in the verti-
cal profile contains the earlier part of the thermal history, but
loses detail once the temperature is below the lower limit of
temperature sensitivity of the data types used. In contrast, the
lower (hottest) sample spends most of the time above the
upper limit of temperature sensitivity, and we only recover
the most recent cooling event during which the sample rapidly
crosses the full range of temperature sensitivity. Jointly mod-
elling multiple samples exploits this aspect of different infor-
mation available from different samples to define a common
form of thermal history experience by all samples. The actual
thermal history for a given sample (at a specific elevation or
depth today) is defined relative to a reference thermal history
(e.g. that for the upper sample) using a temperature offset/
gradient parameter that may or may not be constant over
time. The results of the joint modelling demonstrate improved
resolution of the thermal history relative to that inferred from
single samples. Work is ongoing to extend the multi-sample
approach to samples distributed over a region (rather than just
a local vertical profile) based on trans-dimensional partition
models (for spatial clustering, allowing for local discontinu-
ities) coupled with the trans-dimensional thermal history
models as presented here.
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12
Inverse Problems in Lava Dynamics

Alik Ismail-Zadeh, Alexander Korotkii, Oleg Melnik, Ilya Starodubtsev, Yulia Starodubtseva, Igor Tsepelev, and Natalya
Zeinalova

Abstract: Lava flow and lava dome growth are two main
manifestations of effusive volcanic eruptions. Less-viscous
lava tends to flow long distances depending on slope topog-
raphy, heat exchange with the surroundings, eruption rate,
and the erupted magma rheology. When magma is highly
viscous, its eruption on the surface results in a lava dome
formation, and an occasional collapse of the dome may lead
to a pyroclastic flow. In this chapter, we consider two
models of lava dynamics: a lava flow model to determine
the internal thermal state of the flow from its surface ther-
mal observations, and a lava dome growth model to deter-
mine magma viscosity from the observed lava dome
morphological shape. Both models belong to a set of inverse
problems. In the first model, the lava thermal conditions at
the surface (at the interface between lava and the air) are
known from observations, but its internal thermal state is
unknown. A variational (adjoint) assimilation method is
used to propagate the temperature and heat flow inferred
from surface measurements into the interior of the lava flow.
In the second model, the lava dome viscosity is estimated
based on a comparison between the observed and simulated
morphological shapes of lava dome shapes using computer
vision techniques.

12.1 Introduction: Effusive Eruptions and Lava
Dynamics

Volcanism takes place mainly along plate margins in areas
of subduction and spreading with exceptions such as hot-
spot volcanism (Turcotte and Schubert, 2002). Athanasius
Kircher (1602–80), a German scholar and polymath, was
perhaps the first who could assimilate knowledge about
volcanoes and their eruptions into the Earth’s deep interior,
illustrating it in his Mundus Subterraneus of 1664 as ‘a big
fire’ in the Earth’s core interconnected with ‘smaller fires’ in
the mantle. Today, our knowledge about origin, dynamics,
andmanifestations of volcanoes has reached the stage where
volcanic eruptions can be predicted with a high probability
(Poland and Anderson, 2020), and relevant measures can be
taken to reduce disaster risks (e.g. Ismail-Zadeh and
Takeuchi, 2007).

Molten rock (magma) flows through volcanic con-
duits in the crust towards the surface, leading to

explosive or effusive (non-explosive) eruptions. The
magma’s viscosity depends on its composition (mainly
on silica [SiO2] content), crystal content, and tempera-
ture; viscosity increases with increasing silica or crystal
content and decreases with temperature elevation.
Silica-poor magma (under 50 wt% SiO2) feeds basaltic
volcanoes, and silica-rich magma (over 50 wt% SiO2)
forms felsic (andesitic to rhyolitic) volcanoes. The bas-
altic-to-rhyolitic magmas have pre-eruptive viscosities
ranging from 101 to 108 pascals (Pa) (Takeuchi, 2011).
High gas and water contents make felsic volcanoes
more explosive compared to basaltic volcanoes
(Bryant, 2005).

Volcanic eruptions produce a variety of lava flow
morphologies depending on the chemical composition
and temperature of the erupting material, and the sur-
face topography over which the lava flows (e.g. Griffiths,
2000; Rumpf et al., 2018). The effusion rate (the volume
of magma generated over a certain time) controls lava
flow dynamics; the higher the effusion rates, the more
rapidly and longer lava flows advance (e.g. Walker,
1973; Harris et al., 1998; Castruccio and Contreras,
2016).

Non-explosive volcanic eruptions are associated with lava
dome growth and lava flow on the Earth’s surface. Lava
domes grow by magma extrusion from a volcanic conduit,
and the lavas having low average eruption rates and high
viscosities are associated with high groundmass crystallinity
and substantial yield strength (e.g. Lavallée et al., 2012; Calder
et al., 2015; Sheldrake et al., 2016; Tsepelev et al., 2020, 2021;
Zeinalova et al., 2021). Non-linear dynamics of lava dome
growth result from crystallisation and outgassing of the highly
viscous lava in the volcanic conduit (Melnik and Sparks,
1999). Through the intermittent build-up of gas pressure,
growing domes can often experience episodes of explosive
activity (e.g. Voight and Ellsworth, 2000; Heap et al., 2019).
Lava dome destruction can generate pyroclastic flows which
can devastate building constructions and infrastructure and
become a major threat to the surrounding population
(Kelfoun et al., 2021). Although effusive eruptions are least
hazardous and permit for evacuation, flows of lava can ser-
iously damage cities, as happened in and around Catania
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(Italy) during the Mt. Etna eruption in 1669 (Branca et al.,
2013). The lava flow hazard is not negligible as hot lava kills
vegetation, destroys infrastructure, andmay trigger floods due
to melting of snow/ice (e.g. Papale, 2014).

Mathematical/numerical modelling plays an essential role
in understanding lava dynamics (e.g. Costa and Macedonio,
2005; Cordonnier et al., 2015; Tsepelev et al., 2019; and refer-
ences herein). A mathematical model links the basic charac-
teristics of lava dynamics (e.g. temperature, viscosity, and
velocity) with its observed/measured properties (e.g. tempera-
ture at the interface between the lava flow and the air, morph-
ology, and the volume of erupted lava). The aim of a direct
problem is to determine the basic dynamic characteristics of
the model for a given set of initial and boundary conditions
and for known physical properties of the magma. An inverse
model problem is considered when there is a lack of informa-
tion on the basic characteristics or initial and boundary condi-
tions, but some information on lava thermal and dynamic
properties exists (Ismail-Zadeh et al., 2016).

There are several approaches to solving inverse problems
of lava dynamics. One approach is associated with data
assimilation and the use of a variational method tominimise
the difference between the model solution and observations
(e.g. Korotkii et al., 2016). This method involves an analyt-
ical derivation of the gradient of a cost function, and hence it
is restricted to simple cases. Another approach is based on
the use of image processing and computer vision techniques
to determine the physical properties of a lava dome (e.g. its
viscosity) by analysing images of the observed and modelled
morphological shapes of the dome at each time of lava dome
growth (Starodubtseva et al., 2021). And the third approach
is based on the replacement of an inverse problem by the
direct problem conjugated with the inverse problem. The
direct problem can be solved then by varying model param-
eters to fit observations at each time step (Zeinalova et al.,
2021). Although this approach is simpler than the previous
two approaches, it requires a significant number of numer-
ical experiments to find the best fit to the observations.

In Sections 12.2 and 12.3, we consider two inverse
problems related to lava flow (model 1) and lava dome
growth (model 2). Model 1 uses variational data assimi-
lation to determine the temperature and the velocity of
a lava flow from its thermal observations at the interface
between the lava and the air. Model 2 determines the
lava dome viscosity by comparing morphological shapes
of observed and modelled domes and employing com-
puter vision techniques.

12.2 Model 1: Reconstructing the Thermal State
of a Lava Flow

The rapid development of ground-based thermal cam-
eras, drones, and satellite data allows collection of

repeated thermal images of the surface of active lava
flows during a single lava flow eruption (Calvari et al.,
2005; Wright et al., 2010; Kelfoun and Vargas, 2015).
For example, remote sensing technologies (e.g. air-borne
or space-borne infrared sensors) allow for detecting the
absolute temperature at the Earth’s surface (e.g. Flynn
et al., 2001). The Stefan–Boltzmann law relates the total
energy radiated per unit surface area of a body across all
wavelengths per unit time to the fourth power of the
absolute temperature of the body. Hence the absolute
temperature can be determined from the measurements
by remote sensors (e.g. Harris et al., 2004), and the heat
flow could be then inferred from the Stefan–Boltzmann
law using the temperature. Is it possible to use the
surface thermal data obtained this way to constrain
the thermal and dynamic conditions of lava flow below
the surface? Following Korotkii et al. (2016), in this
chapter we present a quantitative approach to the prob-
lem of reconstructing temperature and velocity in
a steady-state lava flow when the temperature and the
heat flow are known on the lava interface with the air.

12.2.1 Mathematical Statement
To state a lava flow problem mathematically, we need to
consider the following components of a model:
a computational domain (e.g. topography on which
lava flows or slope of the inclined surface or channel
as well as vent geometry); equations governing the lava
flow; boundary conditions on flow velocity (e.g. effusion
rate, free-slip or no-slip or free surface conditions) and
on temperature (e.g. eruption temperature as well as
radiative, convective, or conductive heat flow at the
interface with the air and with the underlying surface);
and physical properties of the lava (i.e. viscosity, dens-
ity, thermal conductivity, etc.).

The model domain Ω ⊂ ℝ2 (Fig. 12.1) covers part of
a lava flow at some distance from the volcanic vent and
the lava flow front. The boundary of the model domain
consists of the following parts: Γ1 is a line segment
connecting points A and D; Γ2 is a circular arc connect-
ing points A and B; Γ3 is a line segment connecting
points B and C; and Γ4 is a circular arc connecting
points C and D. Although the lava flow rate depends
on the effusion rate, a steady-state lava flow is assumed
in the modelling for the sake of simplicity (a justifica-
tion to this assumption is provided by Korotkii et al.,
2016).

In a two-dimensional model domain Ω, the Stokes,
incompressibility, and heat equations are employed to
determine the velocity and temperature of the incompress-
ible heterogeneous fluid under gravity in the Boussinesq
approximation (Chandrasekhar, 1961; Ismail-Zadeh and
Tackley, 2010):
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rp ¼ r �
�
ηðTÞ ðruþruTÞ

�
þ RaT e2; ð12:1Þ

r � u ¼ 0; ð12:2Þ

r � ðκðTÞ rTÞ ¼ 〈u;rT〉; ð12:3Þ

where x ¼ ðx1; x2Þ 2Ω are the Cartesian coordinates;
u ¼ ðu1ðxÞ; u2ðxÞÞ is the vector velocity; p ¼ pðxÞ is the pres-
sure; T ¼ TðxÞ is the temperature; η ¼ ηðTÞ is the viscosity;
κðTÞ ¼ kðTÞ=ðρmcpÞ is the thermal diffusivity; k ¼ kðTÞ is
the heat conductivity; ρm is the lava density at the typical
lava melting temperature Tm; and cp is the specific
heat capacity. The Rayleigh number is defined as
Ra ¼ βgρmΔTh

3η�1� κ�1� , where β is the thermal expansivity;
g is the acceleration due to gravity; η� and κ� are the typical
lava viscosity and thermal diffusivity, respectively;
ΔT ¼ Tm � Ts is the temperature contrast; Ts is the solidus
temperature; h is the typical lava thickness; e2 ¼ ð0;�1Þ is
the unit vector;r, T, and 〈 �; �〉 denote the gradient vector, the
transposed matrix, and the scalar product of vectors,
respectively.

Although the lava rheology can be more complicated, we
assume that the lava behaves as a Newtonian fluid with
a temperature- and volume-fraction-of-crystals-dependent
viscosity and temperature-dependent density and thermal
conductivity (e.g. Dragoni, 1989; Giordano and Dingwell,
2003; Costa et al., 2009; Tsepelev et al., 2019). It was shown
that crystallisation is responsible for the increase of the vis-
cosity during emplacement ofmafic lava flows (Chevrel et al.,
2013). The following lava viscosity is considered in the
modelling:

ηðTÞ ¼ η�η12ðTÞ; η12ðTÞ ¼
η1η2; η1η2 < η0;
η0; η1η2 > η0;

�
ð12:4Þ

where η0 (¼ 103 Pa s) introduces a restriction on the
exponential growth of the viscosity with temperature.
Here η1 is the temperature-dependent viscosity (Dragoni,
1989)

η1ðTÞ ¼ exp
�
nðTm � TÞ

�
; ð12:5Þ

where n ¼ 4� 10�2 K-1; and η2 is the volume-fraction-of-
crystals-dependent viscosity (Marsh, 1981; Costa et al.,
2009)

η2ðTÞ ¼ ð1þ ψδÞ 1� ð1� ζ Þ � erf
ffiffiffi
π
p

2ð1� ζ Þψð1þ ψγÞ
� �� ��Bϕ�

;

ð12:6Þ

where ψ ¼ ϕ=ϕ�; ϕ ¼ 0:5½1� erfðb1½ðT � TsÞ=ΔT � 0:5�=
b2Þ� is the volume fraction of crystals; ϕ� is the specific
volume fraction of crystals; the coefficient B is determined
from the Einstein equation (Mardles, 1940) and varies from
1.5 to 5 (Jeffrey and Acrivos, 1976); δ ¼ 13� γ, ζ , and γ are
the rheological parameters (see Table 12.1; Lejeune and
Richet, 1995; Costa et al., 2009); b1 ¼

ffiffiffiffiffi
30
p

(Marsh, 1981);
b2 = 1.5 (Wright and Okamura, 1977); and erfð�Þ is the error
function.

The thermal conductivity (Hidaka et al., 2005) and the
density (Kilburn, 2000) are represented in the form:

kðTÞ ¼ 1:15þ 5:9 � 10�7ðT � eT Þ2; T < eT ;

1:15þ 9:7 � 10�6ðT � eT Þ2; T > eT ;

�
ð12:7Þ

ρ ¼ ρmð1� ϕðTÞÞ þ ðρc � δρÞϕðTÞ; ð12:8Þ

where eT = 1,473 K is the specific temperature at which the
thermal conductivity reaches its minimum value (Buttner
et al., 1998); ρc is the typical crystal density corresponding to
the crystals composed of 50% olivine and 50% plagioclase.
As the effective density of the lava crust with about 20%
volume of vesicles is estimated to be about 2,200 kg m–3

(Kilburn, 2000), we decrease the crystal density by δρ (where
δρ = 750 kg m–3) to permit crustal pieces drifting with and
not sinking into the lava. The model parameters are speci-
fied in Table 12.1.

The following conditions for temperature T and velocity
u are assumed at the model boundary:

Vent

x2

x1

D

C
flow front

B

Γ4

Γ3

Γ2

Γ1
h

h/2

A

10h

Ω

Figure 12.1 Model 1: Geometry of a lava flow. After Tsepelev et al. (2019).
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Γ1 : T ¼ T1; u ¼ u1; ð12:9Þ

Γ2 : u ¼ 0; ð12:10Þ

Γ3 : T ¼ T3; σn ¼ 0; p ¼ 0; ð12:11Þ

Γ4 : T ¼ T4; � k〈rT ;n〉 ¼ φ; 〈u;n〉 ¼ 0;

σn� 〈σn; n〉n ¼ 0; ð12:12Þ

where σ ¼ ηðruþruTÞ is the deviatoric stress tensor, and
n is the outward unit normal vector at a point on the
model boundary. The principal problem is to find the solu-
tion to Eqs. (12.1)–(12.8) with the boundary conditions

(12.9)–(12.12), and hence to determine the velocity
u ¼ uðxÞ, the pressure p ¼ pðxÞ, and the temperature
T ¼ TðxÞ in the model domain Ω when temperature T4

and heat flow φ ¼ k ∂T=∂n are known at boundary Γ4. We
note that Tsepelev et al. (2019) obtained the synthetic tem-
perature and the heat flow at the interface of lava flow and
the air (boundary Γ4) by solving a direct problem of lava
flow with relevant boundary conditions. The temperature
and the heat flow so obtained were used as the conditions at
boundary Γ4 in the principal problem.

In addition to the principal problem, an auxiliary problem
is defined as a set of Eqs. (12.1)–(12.8) with the following
boundary conditions:

Γ1 : T ¼ T1; u ¼ u1; ð12:13Þ

Γ2 : T ¼ T2; u ¼ 0; ð12:14Þ

Γ3 : T ¼ T3; σn ¼ 0; p ¼ 0; ð12:15Þ

Γ4 : T ¼ T4; 〈u; n〉 ¼ 0 ; σn� 〈σn; n〉n ¼ 0: ð12:16Þ

Equations (12.1)–(12.16) are transformed to
a dimensionless form assuming that length, temperature,
viscosity, and heat conductivity are normalised by h, Ta,
η�, and k� (see Table 12.1).

The auxiliary problem (12.1)–(12.8), (12.13)–(12.16) is
a direct problem compared to the problem (12.1)–(12.12),
which is an inverse problem. The conditions at Γ1 and Γ3 are
the same in the direct and inverse problems. TemperatureT2

at Γ2 and temperature T4 (but no heat flow) at Γ4 are
prescribed in the auxiliary problem compared to the inverse
problem (12.1)–(12.12). The well- and ill-posedness of the
similar problems has been studied by Ladyzhenskaya
(1969), Lions (1971), Temam (1977), Korotkii and
Kovtunov (2006), and Korotkii and Starodubtseva (2014).

12.2.2 Variational Data Assimilation Method
Consider ‘guess’ temperature T2 ¼ ξ at model boundary Γ2.
Solving the auxiliary problem (12.1)–(12.8), (12.13)–(12.16),
we can determine the heat flow at model boundary Γ4 and
compare it to the heat flow φ (the known synthetic data) at
the same boundary. The following cost functional for
admissible functions ξ determined at Γ2 is to be then
assessed:

JðξÞ ¼
ð
Γ4

kðTξÞ
∂Tξ

∂n
� φ

� �2

dΓ; ð12:17Þ

where kðTξÞ ∂Tξ=∂n is the heat flow at Γ4 corresponding to
temperature T2 ¼ ξ at Γ2; and Tξ is the temperature deter-
mined by solving the auxiliary problem. Therefore, we
reduce the inverse problem to a minimisation of the func-
tional (12.17) or to a variation of the function ξ at Γ2, so that

Table 12.1 Notations, parameters, and their values in
modelling

Notation parameter, unit
Model 1
Lava flow

Model 2
Lava dome

B Theoretical value of the
Einstein coefficient

2.5

cp Specific heat capacity of
lava, J kg–1 K–1

1,000 –

h Typical thickness, m 2 100
g Acceleration due to

gravity, m s–2
9.81

Ta Temperature of air, K 300 –

Tm Lava melting temperature,
K

1,333 –

Ts Lava solidus temperature,
K

1,053 –

β Thermal expansivity of
lava, K–1

10–5 –

ϕin Initial volume fraction of
crystals

0.4

ϕeq Volume fraction of crystals
at equilibrium

0.8

ϕ� Specific volume fraction of
crystals

0.384 (1) 0.591 (2)

γ Rheological parameter in
Eq. (12.5)

7.701 5.76

ηa Air viscosity, Pa s – 10–4

η� Typical lava viscosity, Pa s 106 –

κ� Typical lava thermal
diffusivity, m2 s–1

10–6 –

ρa Air density, kg m–3 – 1
ρl Typical lava density, kg m–3 – 2,500
ρc Crystal density, kg m–3 2,950 –

ρm Lava density at T = Tm,
kg m–3

2,750 –

ζ Rheological parameter in
Eq. (12.5)

2� 10�4 4:63� 10�4

Notes: (1) Lejeune and Richet (1995); (2) Costa et al. (2009)
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the model heat flow at Γ4 becomes closer to the ‘observa-
tions’ (known heat flow φ) at Γ4.

The cost functional (12.17) is minimised using the Polak–
Ribière conjugate-gradient method (Polak and Ribière,
1969). Korotkii et al. (2016) showed that the gradient of
the cost functional can be found as the solution to the
adjoint problem. The solution of the minimisation problem
is then reduced to solutions of series of well-posed (auxiliary
and adjoint) problems. The algorithm for solving the vari-
ational data assimilation problem is based on solving itera-
tively the auxiliary and adjoint problems and on the
assessment JðξðiÞÞ, where i is the iteration number. The
numerical method and algorithm are not discussed here
and can be found in Korotkii et al. (2016).

The performance of the algorithm is evaluated in terms of
the number of iterations n required to achieve a prescribed
relative reduction of the cost functional (Fig. 12.2). Also,
Tsepelev et al. (2019) checked the quality of the gradient of
the cost functional with respect to the control variable using
the χ-test by Navon et al. (1992). We note that the Polak–
Ribière stable iterative conjugate gradient method provides
a rapid convergence to the solution to the adjoint and
auxiliary problems on the condition that the Rayleigh num-
ber is small, and lava viscosity is high (Tsepelev et al., 2019).
Meanwhile, the convergence of iterations depends on
a choice of the ‘guess’ temperature: the closer the ‘guess’
temperature to the ‘true’ solution, the more rapid conver-
gence of the iteration process. An iterative convergence
slows at high Rayleigh numbers, and the iterations diverge
at Rayleigh numbers greater than 106. At lava viscosity
ranging from 103 Pa s to 106 Pa s and lava flow thickness
from 1 m to 10 m, the Rayleigh number takes values from
103 to 106. As the injection rate of lava into the model
domain increases, the minimisation process slows down
(Fig. 12.2). A rapid injection results in advection of high
temperature with flow and, hence, in a decrease of lava
viscosity, and in slowing convergence of iterations and
their divergence.

12.2.3 Results
We present here the results of a reconstruction of the
thermal state of a lava flow developed by Tsepelev et al.
(2019). The model domain covers a portion of the lava
flow selected on a two-dimensional profile along the
lava flow (the area marked by red in Fig. 12.3a). The
lava thickness at the left and right sides of the model
domain are 14 m and 31 m, respectively, and the length
of the model lava flow is 515 m. The Rayleigh number is
about 6� 105. A lava is injected from the left boundary of
the model domain with a prescribed effusion rate. The
model problem (12.1)–(12.12) is solved by the variational
data assimilation method in the selected domain to deter-
mine the lava’s temperature, velocity, and viscosity based on
the known thermal data on its interface with the air

(Tsepelev et al., 2019). Figure 12.3b presents the target
viscosity, temperature, and velocity (the solution of the
direct problem presented by Tsepelev et al. (2019), which
generated the synthetic thermal conditions at the interface
between the lava and the air), and Fig. 12.3c their residuals
after the 1st and the 31st iterations. The lava’s physical
parameters are recovered well enough from the surface
thermal data after 30 iterations. A thin crust developing at
the left end of the model domain becomes thicker towards
its right end, and the flow velocity drops by a factor of about
3 with the lava advancement.

If surface temperature and heat flow data are of high
resolution and radiometric accuracy, the temperature and
velocity in the lava’s interior can be determined properly
from measured data using the data assimilation approach.
Meanwhile, the spatial resolution of many satellites is too
coarse to allow for high-resolution monitoring and precise
measurements, and this gives rise to uncertainties in thermal
measurement as well as in the inferred parameters (e.g.
Zakšek et al., 2015). Hence, if the measured temperature
and heat flow data are biased, this information can be
improperly assimilated into the lava flow models.

The presented model describes steady-state flow,
although lava flows are non-stationary. As measurements
of the absolute temperature are discrete in time inmost cases
(e.g. depending on the location of Landsat satellites),
a problem of non-steady-state flow can be reduced to
a series of steady-state flow problems with varying model
domain and boundary conditions assimilating thermal data
available at the discrete-in-time measurements. Also, air-
borne and space measurements of absolute temperature at
the lava interface with the air, being almost instantaneous
compared to the duration of the lava flow, allow searching
for thermal conditions at the bottom of the lava flow using
the cost functional (12.17). Once the boundary conditions at
the lava bottom are determined, the steady-state problem
can be replaced by a non-steady-state problem, and the lava
flow can bemodelled forward in time to determine its extent,
lava’s temperature, and flow rate, as well as backward in
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Figure 12.2 Relative reduction of the cost functional J with the
number of iterations at three dimensionless rates of lava injection:
ϑ ¼ 10 (solid line), ϑ ¼ 20 (dotted line), and ϑ ¼ 40 (dashed line).
After Tsepelev et al. (2019).
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time using variational (Korotkii et al., 2016) or quasi-
reversibility (Ismail-Zadeh et al., 2007) methods to search
for the initial temperature of the lava flow and for the
evolution of the effusion rate.

12.2.4 Sensitivity Analysis
The results of numerical modelling of the problem (12.1)–
(12.12) show that the optimisation works effectively: the
residuals of temperature, viscosity, and velocity already
become small after a few dozen iterations within almost
the entire model domain. Meanwhile, measurements
(observations) are polluted by errors. For example, in
the case of lava temperature measurements at the surface,
the accuracy of the calibration curve of remote sensors
and the noise of the sensors can influence measurements
and contribute to the measurement errors (Short and
Stuart, 1983). Korotkii et al. (2016) performed numerical
experiments introducing a noise on the ‘measured’ heat
flow data and analysed the sensitivity of the model to the
noise. They showed that the temperature and velocity
residuals get larger with increase of the noise of the
input data but are still acceptable at the level of noise
(errors in measurements) of up to 10%. It should be noted

that the error analysis of subpixel temperature retrieval
from satellite infrared data showed that errors in meas-
urements of the radiant heat flux are within about 5% to
10%, and can be reduced (Lombardo et al., 2012).

The cost functional related to the inverse (optimisation)
problem with noisy measurements at the lava flow interface
with the air can be written in the following form:

JδðξÞ ¼
ð
Γ4

kðTξÞ
∂Tξ

∂n
� φδ

� �2

dΓ ¼ JðξÞ

þ 2δ
ð
Γ4

kðTξÞ
∂Tξ

∂n
� φ

� �
νdΓþ δ2 ‖ ν ‖ 2; ð12:18Þ

whereφδ ¼ φ� δν, δ is the magnitude of the noise, and νð�Þ is
the function generating numbers that are uniformly distrib-
uted over the interval [–1, 1]. Substituting the solution ξ� to
Eq. (12.17) into Eq. (12.18), we obtain Jδðξ�Þ∼ δ2, because
the first and second terms of the right-hand side of Eq.
(12.18) turn to zero at ξ�. Therefore, at the minimisation
of the functional Jδ, the functional will be approaching
the non-vanishing value equal to the square of the noise’s
magnitude (δ2). In the case of synthetic thermal data pre-
scribed at the upper model boundary (instead of real
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Figure 12.3 Reconstruction of dimensionless viscosity, temperature, and velocity of a lava flow. (a) A relief map (6000 m × 4000 m) of
three-dimensional lava flow pattern, view from the top (upper panel) and the cross-section AB (lower panel) along the line indicated in the
upper panel; the flow was computed by Tsepelev et al. (2016). The red area marks the numerical model domain. (b) Target viscosity,
temperature, and velocity. (c) The relevant residuals after the 1st iteration (the left panel) and after 31st iteration (the right panel). After
Tsepelev et al. (2019).
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measurements), the ‘plateau’ in the curves illustrating the
minimisation of the functional (see Fig. 12.2) is likely to be
associated with numerical errors. Forcing the solution to the
functional to attain zero may lead to an unstable (or errone-
ous) solution.Moreover, some a priori information assists in
solving the problem. For example, the temperature inside
the model domain cannot be higher than that at the left
boundary of the model domain (where the lava is injected
into the model domain). This can serve as a control param-
eter for the computed temperature in the minimisation
problem.

Rather accurate reconstructions of the model tempera-
ture, viscosity, and flow velocity in this study rely on the
chosen method for minimisation of the cost functional
(12.18). In the general case, a Tikhonov regularisation
term should be introduced in the cost functional as:

JδðξÞ ¼
ð
Γ4

kðTξÞ
∂Tξ

∂n
� φδ

� �2

dΓ

þ ω
ð
Γ2

Λðξ � ξ0ÞdΓ; ð12:19Þ

where ω is a small positive regularisation parameter, Λ > 0
is the operator accounting for a priori information on the
problem’s solution (e.g. its monotony property, maximum
and minimum values, and the total variation diminishing),
and ξ0 is a priori known function close to the solution of the
problem. The introduction of the regularisation term in the
cost functional makes the minimisation problem more
stable and less dependent on measurement errors. For
a suitable regularisation parameter ω ¼ ωðδÞ, the minimum
of the regularised cost functional will tend to the minimum
of the functional (12.17) at δ! 0 (Tikhonov and Arsenin,
1977). The choice of the regularisation parameter is
a challenging issue as it depends on several factors, for
example, on errors of measured data (e.g. Kabanikhin,
2011). Meanwhile, if there is a lack of information on the
solution of the problem, a better strategy is to minimise the
functional (12.17) using a stable minimisation method (e.g.
the Polak–Ribière method).

12.3 Model 2: Lava Viscosity Inferred from Lava
Dome Morphology

Lava domes form because of the extrusion of highly viscous
magma. The domes develop a solid surface layer remaining
mobile and undergoing deformations for days or even
months. Several types of lava dome morphology are distin-
guished. In the endogenous regime, magma intrudes inside
the dome without extrusion of fresh magma on the surface.
In the exogenous regime, fresh lava pours out over the
surface forming various forms of domes, such as obelisks,

lobes, pancake-shaped structures, and some others. Lava
dome collapse can cause explosive eruptions, pyroclastic
flows, and lahars, and, therefore, studies of the conditions
of lava dome growth are important for hazard assessment
and risk reduction.

Lava dome growths have been monitored at several
volcanoes (e.g. Swanson et al., 1987; Daag et al., 1996;
Nakada et al., 1999; Watts et al., 2002; Harris et al.,
2003; Wadge et al., 2014; Zobin et al., 2015; Nakada
et al., 2019). Monitoring allows mapping the spatial and
temporal development of lava domes and determining the
morphological changes during the growth as well as the
changes in the lava volume over time. The morphology of
lava domes is influenced by the rheology of magma and
lava discharge rate (DR). Magma viscosity depends on
temperature and the volume fraction of crystals, which is
determined by crystallisation kinetics, namely, the char-
acteristic time of crystal content growth, CCGT (Tsepelev
et al., 2020). At small CCGT values (i.e. fast lava crystal-
lisation), obelisk-type structures develop at lower DR and
pancake-like structures at higher DR; at high CCGT
values, the domes form either lava lobes or pancake-like
structures.

It was shown that cooling does not play a significant role
in the development of the lava dome. If the crystal content is
controlled only by the cooling, then the lava viscosity
increases in the near-surface layer of the dome, and the
thickness of the temperature boundary layer remains small
compared to the dome height (Tsepelev et al., 2020). In the
dome body, a significant increase in the viscosity occurs due
to crystallisation caused by a loss of volatiles. Thus, the
evolution of the lava dome can be modelled using the rhe-
ology depending on CCGT and DR.

How do we determine lava dome viscosity (e.g. the rheo-
logical properties of the lava within the dome), if the lava
domemorphological shape and theDR are known?Here we
present a computer vision approach to solving this inverse
problem based on minimising the deviation between the
observed and simulated lava dome shapes (see details of
the approach in Starodubtseva et al., 2021). Lava domes
are modelled numerically at different values of CCGT, DR,
and the conduit radius r. Using numerical experiments,
a database of morphological shapes of modelled domes is
developed for specified extrusion durations. The results of
the experiments (the elements of the database) and an
observed dome are analysed in the form of two-
dimensional images. To estimate the viscosity of the
observed lava dome, the difference between the observed
and simulated dome shapes is estimated using three different
functionals, which are used in computer vision and image
processing theory. The viscosity of the observed lava dome
is then assessed based on the parameters of the modelled
lava dome which shape best fits the shape of the observed
dome.
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12.3.1 Mathematical Statement
A two-dimensional model of two-phase immiscible incom-
pressible fluid is considered to approximate the lava (one
phase) and the air (another phase). The two phases are separ-
ated by a moving interface – the lava dome surface. The
influence of the air phase on lava dome growth is insignificant
due to a large ratio between densities/viscosities of the air and
the lava. Meanwhile, numerical schemes are usually inaccur-
ate at the interfaces, where model parameters (e.g. density
and viscosity) are discontinuous; it leads to a smearing of the
parameters along the interface (e.g. Christensen, 1992;
Naimark and Ismail-Zadeh, 1995; Naimark et al., 1998). In
this modelling, the viscosity jump at the lava–air interface is
significant, and a finer mesh is introduced around the inter-
face to reduce the smearing. In the model domain (Fig. 12.4),
the lava motion is described by the following set of equations
supplemented by the initial and boundary conditions (Ismail-
Zadeh and Tackley, 2010; Tsepelev et al., 2019; 2020).

The Navier–Stokes equations with the initial condition
u(t = 0, x) = 0,

∂ðρuÞ
∂t
þ 〈u;r〉ðρuÞ � r �

�
ηðruþruTÞ

�
¼ �rp� ρg;

ð12:20Þ

and the continuity equation (Eq. 12.2) are employed to describe
the lava dynamics, where t2 ½0; ϑ� is the time; ϑ is the duration
of the model experiments; ρ is the density; η is the viscosity;
and g ¼ ð0; gÞ, g is the acceleration due to gravity. The
temperature dependence of the physical parameters and the
surface tension forces are neglected in the modelling. Model
density and viscosity are represented as ρ ¼ ρlαðt; xÞþ
ρað1� αðt; xÞÞ and η ¼ ηlαðt; xÞ þ ηað1� αðt; xÞÞ, respect-
ively, where ρa is the air density, ρl is the typical lava density,
ηa is the air viscosity, and ηl is the lava viscosity. The

function αðt; xÞ equals 1 for the lava and 0 for the air at
each point x and at time t, and this function is transported
with the velocity u according to the advection equation

∂α
∂t
þr � ðαuÞ ¼ 0; ð12:21Þ

with the initial condition αðt ¼ 0; xÞ ¼ 0, which means that
the entire model domain is filled with the air at the initial
time.

We assume that lava viscosity depends on the volume
fraction of crystals ϕ (Eq. 12.5), which is determined from
the evolutionary equation describing the simplified kinetics
of crystal growth during crystallisation due to magma
degassing:

∂ϕ
∂t
þr � ðϕuÞ ¼ �

ϕ� ϕeq
τ

; ð12:22Þ

with the initial condition ϕðt ¼ 0; xÞ ¼ 0. Here ϕeq is the
volume fraction of crystals at the equilibrium; τ is the
CCGT. The smaller the CCGT, the faster the crystallisation
process converges to its equilibrium state. Note that
although the viscosity depends also on the petrological
(chemical) composition of the lava and the volatile content
of the lava (its water saturation), these viscosity dependen-
cies are not considered here.

The following conditions are set on the boundary
Γ ¼ Γ1 ∪Γ2 ∪Γ3 ∪Γ4 ∪Γ5 ∪Γ6 of the model domain (see
Fig. 12.4). At Γ1, impenetrability condition <u; n>¼ 0 and
the free slip condition ðruþruTÞn� 〈ðruþruTÞ
n; n〉n ¼ 0 are assumed. Lava enters the model domain
through the boundary Γ2 at the given DR Q = 0.7 m3 s–1.
At the boundaries Γ3, Γ4 and Γ5, no-slip condition u = 0 is
assumed. The outflow conditions are determined at Γ6 by
removing the air from themodel domain proportional to the
given lava DR and to guarantee the condition of incom-
pressibility. It is assumed that the volume fraction of crys-
tals is equal ϕ ¼ ϕin at the boundary Γ2 and ϕ ¼ 0 at Γ6.

12.3.2 Morphological Shapes of Modelled Lava Domes
Initially, the model of lava dome growth (Eqs. 12.2, 12.5,
12.20–12.22, with the boundary and initial conditions) is
solved numerically for model parameters specified in
Table 12.1, and for the parameter τ (CCGT), the vent’s radius
r, and the time intervals specified in Table 12.2. The numer-
ical method for solving the model is discussed by
Starodubtseva et al. (2021). Morphological shapes
Fk ¼ Fðτ;Q; r; t ¼ tkÞ at time tk of the modelled lava
domes (Fig. 12.5a) are stored in the database. Here the
stored shapes have been generated by a few values of param-
eters τ, Q, and r; and the database can be extended by
varying the parameter values to ensure that different pos-
sible morphological shapes are present in the database.
A natural lava dome considered here is approximated by
Starodubtseva et al. (2021) as a model dome taken from the
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Figure 12.4 Model 2: Geometry of a lava dome. The large black
arrow shows the part of the boundary, through which magma
enters the model domain. The interface between the lava and the
air is indicated by a dotted line. The solid dashed line indicates the
border of binary images (ΩABCD) stored in the model database.
Modified after Starodubtseva et al. (2021).
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database, which morphological shape was distorted by
a random perturbation (see Fig. 12.5b). The developed syn-
thetic dome L� ∪F� allows for approximating real distor-
tions caused by the growth of a natural lava dome and/or its
partial collapse, and/or by errors in measurements of the
morphological shape of a lava dome.

To compare the shape of the synthetic dome F* with the
shapes of modelled lava domes Fk from the database, lava
domes are presented by binary images. Namely, a uniform
rectangular partitioning of the area ΩABCD into cells I � J as

Ωij ΩABCD ¼ ∪ I�1; J�1
i¼0; j¼0 Ωij

� �
is introduced. A rectangular

matrix PðFÞ ¼ fpijgI�1; J�1i¼0; j¼0 of size I � J is assigned to each

shape of the dome F, where the matrix element pij equals to
0, if the corresponding cell contains more than 50% of
the air, and equals to 1 in all other cases.

12.3.3 Computer Vision Methods for Evaluation
of Closeness of Lava Morphology Images

A closeness of the synthetic dome (with shape F*) to the
arbitrary modelled dome (with shape Fk) from the database
is assessed by the methods used in the theory of computer

vision and image processing (e.g. Salomon, 2007). Namely,
the following functionals are considered.

1. The functional based on the symmetric difference:

J1ðF�;FÞ ¼ k1 � S
�
ðL� ∪LÞ n ðL� ∩LÞ

�
; ð12:23Þ

where Sð�Þ (m2) is the area of the region and k1 (m
–2) is

the scaling multiplier. Sub-domains L* and L are pre-
sented in Fig. 12.5.

2. The functional based on peak signal-to-noise ratio
measure (Salomon, 2007):

J2ðF�;FÞ ¼ k2 k3 þ 10log10
XI�1;J�1

i¼0; j¼0 ðpij � p�ijÞ
2=ðIJÞ

h i� �
;

ð12:24Þ

where k2 is the scaling factor, and k3 is a positive con-
stant. In numerical implementations, if P(F) and P� ¼
PðF�Þ ¼ fp�ijg

I�1;J�1
i¼0; j¼0 match completely, the user receives

a message containing the number of the modelled dome,
where the condition of the complete match between the
two matrices is reached.

3. The functional based on the structure similarity index
measure (SSIM) (Wang et al., 2004):

J3ðF�;FÞ ¼
k4
�
2μðPÞμðP�Þ þ c1

��
σðP;P�Þ þ c2

�
�
μ2ðPÞ þ μ2ðP�Þ

��
σ2ðPÞ þ σ2ðP�Þ þ c2

� ;
ð12:25Þ

where μð�Þ is the mathematical expectation, σð�; �Þ is the
covariance, σ2ð�Þ is the dispersion, k4 is the scaling
multiplier, c1 = 0.01, and c3 = 0.03. Here we consider
a probabilistic model of image representation, namely,
the image is considered as a field of random variables,
and the value at each point of this field is a realisation of
a random variable.

12.3.4 Results
The values of the functionals (Eqs. (12.23)–(12.25)) are
calculated for each element of the database and plotted in
descending order. Figure 12.6 shows the values of the three
functionals on several elements from the database; three
functionals reach their minimum at modelled dome image
#135. Note that functionals J1, J2, and J3 estimate the
quantitative deviation of the modelled and synthetic
domes, while the functional J3 also estimates the structural
features of themorphological shapes of the domes, although
it leads to time-consuming computations. To consider quali-
tative and quantitative closeness of the synthetic and mod-
elled domes simultaneously, a linear combination of the
described functionals can be employed (Starodubtseva
et al., 2021). The time of a lava dome formation, the

a b

10 m10 m

L *

F * L ′*

L

L ′F

Figure 12.5 Morphological shapes of the modelled dome F (a) and
the synthetic dome F* (b). L and L* are lava sub-domains, and L

0

and L
0 �
are air sub-domains. After Starobubtseva et al. (2021).

Table 12.2 Parameters of lava domes in model 2

Dome
number
k τ, s r, m tk, s

1–22 1:8� 104 15 f3� 104 þ k� 103g; k ¼ 0; 1; 2;…; 21
23–44 5� 104 15 f3� 104 þ k� 103g; k ¼ 0; 1; 2;…; 21
45–92 5� 104 5 f4� 103 þ k� 103g; k ¼ 0; 1; 2;…; 47
93–114 5� 105 15 f3� 104 þ k� 103g; k ¼ 0; 1; 2;…; 21
115–136 6� 104 15 f3� 104 þ k� 103g; k ¼ 0; 1; 2;…; 21
137–181 6� 104 5 f4� 103 þ k� 103g; k ¼ 0; 1; 2;…; 44
182–190 7� 104 15 f3� 104 þ k� 103g; k ¼ 0; 1; 2;…; 8
191–238 7� 104 5 f4� 103 þ k� 103g; k ¼ 0; 1; 2;…; 47
239–260 8� 104 15 f3� 104 þ k� 103g; k ¼ 0; 1; 2;…; 21
261–308 8� 104 5 f4� 103 þ k� 103g; k ¼ 0; 1; 2;…; 47
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discharge rate, and the vent’s size can help with a practical
selection of the closest modelled dome.

Using the functionals (Eqs. (12.23)–(12.25)), the shape of
the synthetic dome F* is compared to dome shapes Fk from
the database of morphological shapes. Considering a set of
elements Fk, on which the smallest values of the considered
functionals are achieved, we see that modelled dome shapes
F41, F133, F134, and F135 are the closest shapes to the syn-
thetic dome shape F*. Figure 12.7, presenting the synthetic
dome and the four closest modelled domes from the data-
base, shows a distribution of the lava dome viscosity. The
lava viscosity can be determined from observations of the
morphological shapes of the dome by solving inverse prob-
lems using computer vision methods.

Here the inverse problem is related to a search for lava
dome viscosity distribution, which is presented as a certain
function with a small number of model parameters. This
search is reduced to determine CCGT, on which the viscos-
ity depends, and this has been performed by minimising the
differences between the morphological shapes of the
observed (synthetic, in this case) and modelled lava domes.
Natural lava domes are three-dimensional objects.

Although the approach presented here is two-dimensional,
it can be extended to the three-dimensional case and used to
reconstruct the growth conditions of natural lava domes
(Starodubtseva et al., 2021).

12.4 Concluding Remarks

If direct problems present models dealing with understand-
ing of phenomena, inverse models are related to finding
either initial and boundary conditions or model characteris-
tics (e.g. temperature, viscosity) based on observations and
measurements. Data assimilation and artificial intelligence
methods become important tools in studies of natural lava
flow and lava dome dynamics. Observations and permanent

monitoring of lava flow and dome growth processes facili-
tate research and data-driven modelling. The presented
models employ synthetic data (instead of real observations)
as it is an important step to ensure that the data assimilation
methods are applicable for problems in lava dynamics. The
models and methods discussed here can be used to analyse
effusive eruptions, lava flow, and lava dome growth by (i)
assimilating of thermal measurements to obtain the infor-
mation about a thermal state of the lava, and (ii) history
matching of dome growth by nudging model forecasts to
observations (i.e. minimising misfits between the modelled
and observed morphological shapes of domes).

Modelling of direct and inverse problems provides know-
ledge of the thermal and dynamic characteristics of lava
advancement, and it becomes important for lava flow haz-
ard and disaster risk assessments (e.g. Papale, 2014; Cutter
et al., 2015; Loughlin et al., 2015). Potentially hazardous
volcanic eruptions should be accompanied by their virtual
numerical model that is constantly tuned by available new
observations and history matching to allow for short- and
long-term forecasts of the eruption dynamics and associated
hazards (Zeinalova et al., 2021).

135 134 133 41

8.67.5 9.7

log10 (lava viscosity)

10.8 11.9 13.0

10 m

Figure 12.7 Comparison of the shape of the synthetic dome F* (grey curve) and the shapes of four modelled domes 135, 134, 133, and 41
(black curves). Colours indicate the distribution of lava dome viscosity. Modified after Starodubtseva et al. (2021).
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13
Data Assimilation for Real-Time
Shake-Mapping and Prediction
of Ground Shaking in Earthquake
Early Warning

Mitsuyuki Hoshiba

Abstract: Earthquake early warning (EEW) systems aim to
provide advance warning of impending strong ground shak-
ing, in which earthquake ground shaking is predicted in
real-time or near real-time. Many EEW systems are based
on a strategy which first quickly determines the earthquake
hypocentre andmagnitude, and then predicts the strength of
ground shaking at various locations using the hypocentre
distance and magnitude. Recently, however, a new strategy
was proposed in which the current seismic wavefield is rap-
idly estimated by using data assimilation, and then the
future wavefield is predicted on the basis of the physics of
wave propagation. This technique for real-time prediction
of ground shaking in EEW does not necessarily require the
earthquake hypocentre and magnitude. In this paper,
I review real-time shake-mapping and data assimilation
for precise estimation of ongoing ground shaking, and pre-
diction of future shaking in EEW.

13.1 Introduction

Real-time prediction of earthquake ground shaking is
a strong tool for disaster prevention and mitigation of
earthquake disaster, and it has been applied for earthquake
early warning (EEW). In recent decades, EEW systems have
been deployed to issue warnings to the general public in
Mexico, Japan, Taiwan, and the west coast of the United
States (Hoshiba et al., 2008; Cuellar et al., 2014; Chen et al.,
2015; Cochran et al., 2019), and their possible use has been
investigated in the European Union, Turkey, South Korea,
China, Israel, and other regions (Erdik et al., 2003; Peng
et al., 2011; Gasparini and Manfredi, 2014; Sheen et al.,
2017; Kurzon et al., 2020). Many current EEW systems
operate by quickly determining the earthquake source
parameters, such as hypocentre location and magnitude,
and then predict the strength of ground motions at various
sites by applying a ground-motion prediction equation
(GMPE) that uses the hypocentral distance and magnitude.
This approach is referred as ‘the source-based method’.

For example, a typical form of log yij = a Mi – b log rij +
c is used, where yij is the index of peak ground motion, such
as peak ground acceleration (PGA) of the seismic waveform
or peak ground velocity (PGV) from the ith event at site j,
Mi is the magnitude of event i, and rij is the distance (hypo-
central distance, epicentral distance, or fault distance)
between event i and site j. Coefficients a, b, and c are usually
empirically estimated in advance. The 2011 off the Pacific
Coast of Tohoku earthquake (hereinafter, the Tohoku
earthquake, Mw(moment magnitude): 9.0) and its quite
active aftershocks, however, revealed important technical
issues with the approach: the EEW system of the Japan
Meteorological Agency (JMA) underpredicted ground
motion at distant sites because of the large extent of the
fault rupture, and it sometimes overpredicted ground
motion because the system was confused by multiple simul-
taneous aftershocks (Hoshiba et al., 2011; Hoshiba and
Ozaki, 2014).

To address the issue of the extent of rupture during large
earthquakes, Böse et al. (2018) proposed a method to esti-
mate rupture extents in real-time. To address the issue of
multiple simultaneous events, Tamaribuchi et al. (2014)
proposed a method to use amplitude data for hypocentre
determination. Their approaches are extensions of the
source-based method that still relies on rapid estimation of
the source parameters. Recently, however, an alternative
algorithm that skips the process of the source estimation
has been intensively investigated; this algorithm does not
necessarily require source parameters to predict the strength
of ground motion. Instead, future ground motions are pre-
dicted directly from observed ground motion (Hoshiba,
2013a; Hoshiba and Aoki, 2015; Furumura et al., 2019).
The wavefield-based method or ground-motion-based
method (hereinafter wavefield-basedmethod, for simplicity)
first estimates the current wavefield, and then predicts the
future wavefield based on the physics of wave propagation.
Because source parameters are not estimated, this method
avoids the issues of source-based methods (rupture extent,
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and simultaneous multiple earthquakes). Hoshiba (2021)
has reviewed the wavefield-based method for EEW in detail.

In the wavefield-based method, the precise estimation of
the current wavefield is key for precise prediction of the
future wavefield. Data assimilation (Kalnay, 2003; Awaji
et al., 2009) is a powerful technique for estimating the
current wavefield. In the data assimilation procedure, the
spatial distribution of the wavefield is estimated from not
only actual observations but also the simulation of wave
propagation based on wave propagation physics, which
leads to a precise estimation of the current wavefield. That
is, data assimilation incorporates actual observations into
the simulation of wave propagation.

The strength of ground motion is measured by PGA,
PGV, and/or seismic intensity observed by seismometers,
yielding data that constitute a point image of information.
At present, except for special observations, seismic
networks deploy seismometers at intervals of ~10 to
~100 km; the resulting distribution is too sparse for precise
estimation of spread of strong ground motion and poten-
tial areas of damage. Map images of the distribution of
ground motion, or shake-maps, are a useful approxima-
tion. Some organisations publish such images online soon
after large earthquakes: examples include the US
Geological Survey (USGS) ShakeMap (e.g. Wald et al.,
2005), and the JMA Contour-map of Estimated Seismic
Intensity.1 The JMA map images are derived by interpol-
ation of the point image after taking into account site
amplification at individual sites (e.g. large amplification
at sites in basins and small amplification at sites on hard
rock), and the USGS images are made by a combination of
the interpolation and estimation by GMPE. These shake-
mapping images are estimates of the eventual observations
of ground shaking, such as PGA and PGV, and they do not
depict the propagation of shaking. Data assimilation
makes it possible to obtain an ongoing shake-mapping
image in real-time at each time step, because the technique
estimates current wavefields. Successive wavefields can be
combined into an animation that visualises the evolving
wavefield, and shows the propagation of the shaking. Such
animations can be helpful for understanding characteris-
tics of seismic wave propagation.

In this chapter, I explain the use of data assimilation for
real-time estimation of seismic wavefields (i.e., real-time
shake-maps), and then its application for prediction of
ground shaking in EEW. I present examples of real-time
shake-mapping and prediction, using the 2011 Tohoku
earthquake (Mw9.0), the deep 2015 off Bonin islands earth-
quake (Mw7.9), three inland earthquakes (Mw6.2–6.4) in
Japan, and the 2016 Kumamoto earthquake (Mw7.1) which
was followed byM~6 triggered earthquake. These examples
indicate advantages of data assimilation for precise

estimation of ongoing wavefields and ground-shaking pre-
diction in EEW.

13.2 Seismic Wave Propagation and Its Simulation

Because seismic waves are controlled by the physics of wave
propagation, future wavefields can be predicted by using
wave propagation theory. In this section, I explain the the-
oretical background of the physics of seismic wave propa-
gation and its simulation, following Hoshiba (2021). I use
a scalar wave expression for simplicity, although seismic
waves are vector waves.

13.2.1 Finite Difference Method
Wave propagation is expressed by the wave equation:

1

cðxÞ2
€uðx; tÞ ¼ r2uðx; tÞ; ð13:1Þ

where u(x, t) is the wave amplitude at location x and time
t, c is the phase velocity, ∇2 is the Laplacian, and ü is
the second order differential of u with respect to t (i.e. ∂2u/
∂ t2). This equation implies that the time-evolution of
a wave’s amplitude, ü, is determined by its spatial distribu-
tion (∇2u). Therefore, future wavefields can be predicted
from the spatial distribution of a known wavefield when
the velocity structure, c(x), is known. Equation (13.1) is
approximated as

uðx; tþ DtÞ ≈ 2uðx; tÞ � uðx; t� DtÞ þ Dt2 � cðxÞ2 � r2uðx; tÞ:
ð13:2Þ

The wavefield one time step Δt in the future, u(x, t + Δt), can
be estimated from the current wavefield, u(x, t), and that one
time step prior, u(x, t-Δt). Then, u(x, t + 2Δt) is computed
from u(x, t + Δt) and u(x, t) as,

uðx; tþ 2DtÞ ≈ 2uðx; tþ DtÞ � uðx; tÞ
þDt2 � cðxÞ2 � r2uðx; tþ DtÞ: ð13:3Þ

Thus, the wavefield at any future time can be obtained by
repeating this procedure.

Furumura et al. (2019) and Oba et al. (2020) applied the
finite difference approach to estimate the current wavefield
using data assimilation, and then predicted long-period
(> 3–10 s) ground motions. Furumura and Maeda (2021)
applied a time-reversal propagation technique in an attempt
to estimate source images from the current wavefield. At
present, however, the finite difference method is not useful
for computing short-period ground motions (< 1 s) because
the very fine mesh size required exceeds modern computing
capabilities, and the very precise velocity structure required

1 www.data.jma.go.jp/svd/eew/data/suikei/kaisetsu.html, in Japanese.
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to simulate wave propagation is not easily obtained by
current survey techniques.

13.2.2 Radiative Transfer Theory
To simulate high-frequency wave propagation, the ray the-
ory approach is valid, and radiative transfer theory (RTT) is
a powerful tool for representing it, in which scattering,
attenuation, and reflection are easily treated, although it is
difficult to include refraction. Radiative transfer theory cal-
culates the propagation of energy instead of the propagation
of the wave itself. Many authors obtain the time history of
energy, F(x, t), from the running average of the squared
amplitude of the band-pass filtered waveform, u(x, t), at
location x and time t: F(x, t) = |u(x, t)|2. Radiative transfer
theory has been widely used to represent the envelope shape
of seismic waveforms with frequency greater than 1 Hz
(Sato et al., 2012).

When isotropic scattering is assumed, RTT is expressed as:

_f ðx; t : qÞ þ cðxÞqrf ðx; t : qÞ ¼ �gsðxÞ � cðxÞ � f ðx; t : qÞ

þ cðxÞ
4π

ð
gsðxÞf ðx; t : q0Þdq0;

ð13:4Þ

where f is the energy density at location x and time
t travelling in direction q (here q is the unit vector),
c(x) is the velocity of the seismic wave at x, and gs(x)
is the strength of scattering at x (Sato et al., 2012). Here
it is assumed that scattering does not cause wave con-
version between P and S waves, such that the propaga-
tion of P waves and S waves can be calculated
independently. The time history of energy, F(x, t), is
the sum of f(x, t: q) in all directions:

Fðx; tÞ ¼
ð
f ðx; t : qÞdq: ð13:5Þ

Here, for simplicity, I assume that both the velocity and
scattering structures are homogeneous; thus, velocity and scat-
tering strength are independent of x: c(x) = c0 and gs(x) = g0.
With this assumption Eq. (13.4) is expressed as,

_f ðx; t : qÞ þ c0qrf ðx; t : qÞ ¼ �g0c0f ðx; t : qÞ

þ c0
4π

ð
g0f ðx; t : q0Þdq0: ð13:6Þ

The left-hand side of this equation represents advec-
tion, and the two terms on the right-hand side represent
scattering attenuation and scattering from direction q′ to
q, respectively. Because the first term on the left-hand
side is the differential of f with respect to time, Eq.
(13.6) means that it is possible to predict future
f provided that the current spatial and directional distri-
butions of f are known. Equation (13.6) is approximated
as:

f ðx; tþ Dt : qÞ ≈ f ðx; t : qÞ þ Dt
�
� c0qrf ðx; t : qÞ

� g0c0f ðx; t : qÞ þ
c0
4π

ð
g0f ðx; t : q0Þdq0

�
: ð13:7Þ

Repeating this processmakes it possible to predict f at any
future time.

In actual applications of RTT, a particle method based on
the Monte-Carlo technique has been widely used for effi-
cient calculation. Gusev and Abubakirov (1987), Hoshiba
(1991), Yoshimoto (2000) and others have used particle
methods for simulating high-frequency seismic wave propa-
gation to explain the envelopes of seismic coda.

Hoshiba and Aoki (2015), Wang et al. (2017a,b) and
Ogiso et al. (2018) have applied RTT to make predictions
of the strength of seismic ground motion for EEW. They
have called the method ‘numerical shake prediction’,
because of its analogy to numerical weather prediction in
meteorology, in which physical processes are simulated
from a precise estimate of present conditions made by data
assimilation. Whereas the finite difference method is a good
approach for calculating low-frequency waveforms but not
high-frequency waveforms, RTT is valid for high-frequency
but not necessarily valid for low-frequency because RTT
expresses energy transportation based on ray theoretical
approach in which refraction is not well included.

13.3 Data Assimilation

The first step in the wavefield-based method is to estimate
the current wavefield. Data assimilation is a powerful tech-
nique for estimating current conditions that is widely used
for this purpose in numerical weather prediction, oceanog-
raphy, and rocket control (Kalnay, 2003; Awaji et al., 2009).
The technique is applied to precise estimation of current
seismic wavefield which correspond to ongoing shake-
maps in terminology in seismology. In data assimilation,
the spatial distribution of the wavefield is estimated from
not only actual observations but also the simulation of wave
propagation based on wave propagation physics, leading to
a precise estimation of the current wavefield. Therefore,
data assimilation incorporates actual observations into the
simulation of wave propagation. Figure 13.1 schematically
indicates the process from data assimilation to prediction.
The explanation in this section follows Hoshiba and Aoki
(2015) and Hoshiba (2021).

Let un indicate the wavefield in the model space at time
tn = nΔt, in which un = [u(x, nΔt), u(x, (n-1)Δt)] in the finite
difference method, or un = [f(x, nΔt: q)] in RTT, where [·]
means the elements of the vector. When the three-
dimensional space is discretised as 0 to LxΔx, 0 to LyΔy and
0 toLzΔz, the number of elements of un is I = 2·Lx·Ly·Lz in the
finite difference method, and when the azimuth is discretised
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Figure 13.1 Schematic illustration of the method from data assimilation to prediction. In the data assimilation process, one-step ahead
prediction, ubn = P(u a

n-1), is combined with the actual observation, vn, to estimate the present situation, uan = ubn + W(vn-Hubn). In the
prediction process, one-step ahead prediction is repeatedly applied to predict the future situation. In the assimilated and predicted
wavefields, small dots indicate the locations of KiK-net stations of the National Research Institute for Earth Science and Disaster
Prevention (NIED), and stations of the Japan Meteorological Agency (JMA) network in the Kanto district, Japan. Source: Hoshiba and
Aoki, 2015.
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as 0 toLqΔq, the number is I =Lx·Ly·Lz·Lq inRTT.When un-1
is given, we can predict un by simulating the propagation of
the wave; this prediction for one time-step-ahead is expressed
as un = P(un-1), where P is the operator of Eq. (13.2) or (13.7).
To discriminate between un before and after being combined
with the actual observations, the wavefields before and after
are denoted by ubn and uan, respectively. P is applied to the
wavefield after the combination at one time step before (i.e.
tn-1); thus, the one-step-ahead prediction is expressed as

ubn ¼ Pðuan�1Þ: ð13:8Þ

Let vn = (vn1, vn2, vn3, . . . vnj, . . . vnJ)
T be the actual

observation in observational space at time tn, in which vnj
means the observed data at the j-th element. Let the total
number of observation elements be J. Usually I (the number
of grids in themodel space) is much larger than J (number of
observation elements). The data assimilation is expresses as

uan ¼ ubn þWðvn �HubnÞ: ð13:9Þ

Here H is the J× I matrix called the observation matrix,
representing the interpolation of grid points onto the loca-
tion of the observation point, and then (vn – Hubn) is the
difference between the one-step-ahead prediction and
the actual observation at time tn.W is the I × Jmatrix called
the weight matrix, andW(vn –Hubn) indicates the correction
of the one-step-ahead prediction in the simulation of wave
propagation. From un

a, un+1
b is obtained from Eq. (13.8).

Iterative application of Eqs. (13.8) and (13.9) produces time-
evolution of estimated wavefield, thus constructing ongoing
shake-maps.

The parameter setting ofW is important in data assimila-
tion, and several techniques have been proposed. The sim-
plest is the optimal interpolation method, in which W is
constant irrespective of time n, although in the Kalman filter
method, W changes with increasing n. In the optimal inter-
polation method, matrix W is expressed in relation to the
errors in the one-step-ahead prediction (background error,
σb), and in the observations (observational error, σo). When
the correlation distance of the background error and the
ratio σo/σb are assumed, matrix W is obtained (for details,
see Kalnay, 2003; Awaji et al., 2009; Hoshiba and Aoki,
2015). When the correlation distance is large, theW(vn –Hu
b
n) correction is applied to a wide area around each obser-
vation point, and when the distance is small, the correction
is restricted to a small area. When the observational errors
are assumed to be much larger than the background errors,
σo/σb ≫ 1,W ≈ 0 and thus uan ≈ ubn. Iterative application of
Eqs. (13.8) and (13.9), therefore, results in the simulation of
wave propagation alone, because the observation have no
effect. In contrast, σo/σb ≈ 0 corresponds to the case where
the contours of the actual observations are drawn independ-
ently at each time step, because the one-step-ahead predic-
tion has little effect in Eq. (13.9).

Although the seismic wavefield is observable at the
ground surface when stations are densely deployed at the
surface (i.e. in 2-D space), the underground wavefield at
depths of more than a few kilometres cannot be observed
because many borehole observations deeper than a few kilo-
metres are not realistic at present. Because actual seismic
wavefields are expressed in three-dimensional space,
assumptions are required to apply data assimilation to esti-
mate the three-dimensional wavefield. Handling the differ-
ence between the two- and three-dimensional spaces is an
important subject for future advancement of the data
assimilation technique in seismology.

13.4 Shake-Mapping and Prediction

In the process of the data assimilation, the current wavefield,
uan, can be estimated in real-time when current observations,
vn, is obtained in real-time, as shown in Eq. (13.9). This real-
time estimation corresponds to real-time shake-mapping.
Animation of un

a (for 1,. . ., n–3, n–2, n–1, n) indicates time-
evolving wavefields; that is, an ongoing shake-map.

Once the present wavefield, uan, has been precisely esti-
mated by the data assimilation technique, the future wave-
field, uP, is predicted from the current wavefield, ua n,

uPnþ1 ¼ PðuanÞ; ð13:10Þ

and uPn+2 is forecast from uPn+1; that is, u
P
n+2 = P (uPn+1) =

P2 (u a
n). Repeating this process

uPnþk ¼ PðuPnþk�1Þ ¼ P2ðuPnþk�2Þ
¼… ¼ Pk�1ðuPnþ1Þ ¼ PkðuanÞ: ð13:11Þ

Future wavefield at any time can be predicted from the
current wavefield.

13.5 Application Examples

This section presents examples of the use of data assimila-
tion to estimate precise seismic wavefields based on RTT.
The first example involves a numerical experiment with
multiple simultaneous earthquakes, and then several
examples are presented that involve actual earthquakes.

For the latter, given that the amplitude of high-frequency
seismic waves depends strongly on subsurface geological
conditions around the observation site (i.e. large amplifica-
tion on sediment sites and small amplification on hard rock
sites, and the amplification is frequency-dependent), cor-
rections for site amplification are required, especially for
high-frequency seismic waves, to isolate propagation phe-
nomena. Hoshiba (2013b) proposed a method to correct
frequency-dependent site amplification in real-time in the
time domain, and Ogiso et al. (2016) evaluated the site
amplification factors of more than 2,200 stations in Japan
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to apply this method. In the following examples, site amp-
lification is corrected before data assimilation.

13.5.1 Numerical Experiment with Multiple Simultaneous
Earthquakes

As explained in Section 13.1, for a couple of weeks after the
2011 Tohoku Earthquake (Mw9.0), the JMA operational
EEW system sometimes overpredicted the strength of
ground shaking because it misinterpretedmultiple simultan-
eous aftershocks as a single large event.

Figure 13.2 shows an example of a numerical experiment
involving four simultaneous earthquakes, showing (A) true
wavefields, (B) observation by seismometers, (C) estimated
wavefields (shake-maps) with data assimilation, and (D) esti-
mated wavefields without data assimilation. Physics of wave
propagation is considered in panel C by data assimilation, but
is not taken into account in panel Dwhere contours are drawn
each time step independently from other time step. It is not
easy to recognise the four earthquakes from panels B and D,
but possible to do it from panel C. This example shows the
merit of data assimilation for estimatingwavefields and shake-
mapping.

13.5.2 Examples of the 2011 Tohoku Earthquake
The 2011 Tohoku earthquake (Mw9.0) occurred off the
pacific coast of Japan on 11 March 2011, and generated

a huge tsunami that killed 18,958 people and left 2,655
people missing.2 Strong motion was observed over a wide
area of northeastern Japan. Accelerations exceeding
1,000 cm/s2 were recorded at some stations in the Kanto
district, more than 300 km from the epicentre (Hoshiba
et al., 2011). To explain the wide area of strong ground
motion, some authors have proposed source models com-
posed of multiple strong-motion-generation areas (SMGAs):
for example, Asano and Iwata (2012) proposed a source
model with four SMGAs, and Kurahashi and Irikura
(2013) proposed models with five SMGAs. All of these
studies identified at least two major SMGAs off Miyagi
Prefecture in the Tohoku district and up to several SMGAs
off Fukushima Prefecture southwest of the hypocentre.

Figure 13.3 shows the estimated wavefields (current
shake-maps) of the earthquake at several elapsed times.
All seismic waveforms are corrected according to the
frequency-dependent site amplification of Ohtemachi
station in Tokyo (Hoshiba and Aoki, 2015). Here
P and S waves from the four SMGAs (G1, 2, 3, and 4
identified by Asano and Iwata, 2012) can be recognised:
shaking at Sendai was brought by strong motions from
G1 and G2, whereas shaking at Tokyo was by those
from G3 and G4. Therefore, the source locations of the
strong motions are different between Sendai and Tokyo.
Data assimilation enables us to identify strong-motion
propagation from different SMGAs. Hoshiba and Aoki
(2015) used current shake-maps to demonstrate real-time
prediction of strong shaking at Tokyo once strong shak-
ing was recognised to approaching to Tokyo (see the
130 s panel in Fig. 13.3).

13.5.3 Example of a Very Deep and Distant Earthquake
On 30 May 2015, a Mw7.9 earthquake occurred off the
Bonin Islands with a focal depth of 682 km and an epicentre
about 870 km from Tokyo. It was the deepest event (even
including small earthquakes) in and around Japan in the
recent 100 years of modern seismic observation. Though it
was a distant and very deep event, 13 persons were slightly
injured in the Tokyo metropolitan area. Hypocentral loca-
tions of such distant and deep events are difficult to estimate
in EEW, and moreover there are no valid GMPEs for such
deep events for predicting the strength of ground shaking.
The JMA EEW system did not issue a warning because the
focal depth was out of range of the GMPE.

Figure 13.4 showswavefields that were estimated using data
assimilation. The S wave arrived at Tokyo 100 s after the
P wave. Shaking due to P wave is visible at 15 s in Fig. 13.4,
and propagated northward, after which shaking was weak in
the Tokyo metropolitan area until the S wave arrival at 115
s. Strong shaking did not propagate to thewest. Shaking in the
Tohoku region was stronger on the east coast than the west

0
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Figure 13.2 Numerical experiment of four simultaneous
earthquakes, showing (A) true wavefields, (B) observation by
seismometers, (C) estimated wavefields (shake-maps) with data
assimilation technique, and (D) shake-maps without data
assimilation. Strength of shaking is shown by grey shading. Small
dots indicate location of seismometers (K-NET andKiK-net sites).

2 Fire Disaster Management Agency, Japan, report on 7 March 2014.
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Figure 13.3 Current shake-maps made by using data assimilation showing estimated wavefields of the 2011 Tohoku earthquake (Mw9.0).
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outside the area of large slip (Japan Meteorological Agency, 2012; Hoshiba, 2020). P and S waves from the SMGAs can be recognised on
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coast. These noteworthy phenomena are easily recognised in
the ongoing shake-maps, which thereby offer geophysical
insights.

13.5.4 Examples of Three Inland Earthquakes
Figure 13.5 shows the locations of three Mw6.2–6.4 earth-
quakes that occurred in central Japan: the 2014 Hakuba
earthquake (A), the 2011 Sakae earthquake of 12 March,
one day after the 2011 Tohoku earthquake (B), and the
largest aftershock of the 2004 Chuetsu earthquake (C).
Tokyo is almost equidistant from the three earthquakes, but
the strength of ground motion there differed among these
events. The PGA during the 2004 Chuetsu aftershock (C)
exceeds that of the 2014 Hakuba earthquake (A) by a factor
of 9 in Tokyo and Maebashi, and in Kumagaya by a factor
greater than 10. For the sites in group γ in Fig. 13.5, the
ground motion from the 2004 Chuetsu aftershock (C) was
the strongest of the three events. However, for the sites in
group α the 2014 Hakuba earthquake (A) was the strongest,
and for the sites in group β the 2011 Sakae earthquake (B)
was the strongest. This comparison indicates that the source

location and magnitude alone are not enough to reproduce
precise distributions (i.e. shake-maps), and that precisely
predicting the strength of ground motion is difficult.

Figure 13.6 (left panel) shows the propagation of seismic
ground motion (i.e. ongoing shake-map) of the three earth-
quakes, as estimated by the data assimilation technique. For
the 2004 Chuetsu aftershock (C) the strong ground motion
propagated towards Tokyo, whereas for the 2011 Sakae
earthquake (B) it travelled towards Tsukuba. For the 2014
Hakuba earthquake (A), it propagated south. Data assimi-
lation makes it easy to trace the propagation of ground
motion and observe how azimuthal differences in propaga-
tion result in large differences in observed ground motion.
The non-concentric propagation phenomena were often
observed from the other earthquakes occurred around the
three earthquakes. The examples of the prediction of
ground motion from some time points were indicated in
Fig. 13.6 (centre panel). For the 2011 Sakae earthquake
(B) at time t = 45 s relatively strong motion was observed
towards Tsukuba, and the strong motion was arrived at
Tsukuba 10 s later (i.e. t = 55 s). Examples for the 2004
Chuetsu aftershock (C) were indicated in Hoshiba (2021), in
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Figure 13.5 Map of central Japan showing locations and focal mechanisms of three island earthquakes – (A) Hakuba, (B) Sakae, and (C)
Chuetsu-aftershock – with similar Mw and distances from Tokyo. Note that Mw estimation is slightly different depending on the
organisations: F-net, JMA and global CMT. Observation of peak ground acceleration (PGA) and seismic intensity on JMA scale from the
three earthquakes are shown.

216 Hoshiba

https://doi.org/10.1017/9781009180412.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009180412.014


which strong motion was predicted at Tokyo once strong
motion towards Tokyo was recognised.

13.5.5 Examples of the 2016 Kumamoto Earthquake
(Mw7.1) and Triggered Event

Figure 13.7 illustrates the example of the 2016 Kumamoto
earthquake (Mw7.1; 16 April 2016, focal depth 12 km). The
earthquake triggered M~6 earthquake that occurred about
40 s later about 70 km from the hypocentre (e.g. Suzuki et al.,
2017). Strong motion from the triggered event, exceeding the
seismic motion from the Mw7.1 mainshock, was observed at
Yufu City, but the operational JMA EEW system did not
identify the triggered earthquake, and therefore underpre-
dicted the strength of ground motion in that area. By using
data assimilation to plot ongoing shake-maps, it is easy to
recognise the occurrence of the triggered earthquake and
predict the ground motion resulting from the earthquake.

13.6 Summary

Data assimilation has been used mainly in meteorology and
oceanography in geophysics, and applied to weather predic-
tion. Recently the technique is also used in solid-earth

geophysics. Ongoing shake-mapping and estimation of cur-
rent wavefields are examples of how the technique enables
us to more accurately model seismic wave propagation in
detail and recognise new earthquakes that are masked by
preceding large earthquakes. From precise knowledge of the
current wavefield, we can confidently predict future wave-
fields. This prediction technique is applicable to EEW for
real-time prediction of ground shaking that avoids the prob-
lems posed by large rupture events and simultaneous mul-
tiple events.
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14
Global Seismic Tomography Using
Time Domain Waveform Inversion

Barbara Romanowicz

Abstract: In this chapter, I present an overview of waveform
tomography, in the context of imaging of the Earth‘s whole
mantle at the global scale. In this context, waveform tomog-
raphy is defined utilising entire wide-band filtered records of
the seismic wavefield, generated by natural earthquakes and
observed at broadband receivers located at teleseismic dis-
tances. This is in contrast to imaging methodologies that first
extract secondary observables, such as,most commonly, travel
times of the most prominent energy arrivals (i.e. seismic
phases), that can be easily identified and isolated in the
records. Waveform tomography is a non-linear process that
requires the ability to compute the predicted wavefield in
a given three-dimensional Earth model and compare it to the
observed wavefield. One of its main challenges, is the compu-
tational cost involved. I first review the history of methodo-
logical developments, specifically focusing on the global,
whole mantle Earth imaging problem. I then discuss and
contrast the two recent methodologies that have led to the
development of the first three-dimensional elastic global shear
velocitymodels that have been published to-date using numer-
ical integration of the wave equation, specifically, using the
spectral elementmethod. I discuss how the forward problem is
addressed, the data selection approaches, definitions of the
misfit function, and computation of kernels for the inverse
step of the imaging procedure, as well as the choice of the
optimisation method. I also discuss model parametrisation,
and, in particular, the important topic of how the strongly
heterogeneous crust is modelled. In the final parts of this
chapter, I discuss efforts towards resolving the difficult prob-
lem of model evaluation and present my views on promising
directions and remaining challenges in this rapidly evolving
field, aiming at further improving resolution of deep mantle
elastic structure with the goal of informing our understanding
of the dynamics of our planet.

14.1 Introduction: Some History

The first seismic tomographic models of the Earth’s mantle
were developed in the late 1970s in the framework of tele-
seismic travel time tomography, in pioneering work, at the
global scale for the lower mantle (Dziewonski et al., 1977),
and at the local scale for the upper mantle and crust (Aki

et al., 1977). In both cases, advantage was taken of the
simple infinite frequency approximation, in which the
travel time of a first-arriving teleseismic P or S wave
through the Earth could be calculated in a reference, spher-
ically symmetric Earth model (hereafter one-dimensional
(1-D) reference model) by invoking Fermat’s principle.
This also assumed that three-dimensional (3-D) elastic
perturbations from the 1-D reference model could be con-
sidered small.

Over the following decades, building upon these initial
studies, many generations of global and regional mantle
models have been developed, supported by the expansion
of high-quality digital broadband seismic networks, and
relying on travel time measurements of first-arriving P and
S waves, sometimes complemented by travel times of other
phases that can be well separated on the seismogram (and
therefore accurately measured), such as PP, SS, ScS (e.g.
see reviews by Romanowicz, 2003, 2020; Thurber and
Ritsema, 2015; Ritsema and Lekic, 2020). This has been
particularly successful in subduction zone regions, where
illumination of the target region from different directions
is readily available – a necessary condition for model qual-
ity in tomography. Remarkably, these travel time–based
models have led to the intriguing observation that sub-
ducted slabs change direction as they sink into the mantle,
and extend for thousands of kilometres horizontally at the
top of the transition zone, or, in several regions, around
1,000 km depth (e.g. Fukao and Obayashi, 2013). Such
global seismic images of slabs sinking deep into the mantle
have been used to help reconstruct past motions of tectonic
plates in the last 200+ Ma (e.g. Richards and Engebretsen,
1992; Replumaz et al., 2004; Sigloch et al., 2008; van der
Meer et al., 2010).

Resolving the deep structure beneath ocean basins has
been more challenging, given the paucity of recording sta-
tions, mostly limited to islands. The addition of surface
wave dispersion data helped improve lateral resolution in
the upper mantle (e.g. Ritsema et al., 1999, 2011). However,
addressing such questions as the presence of narrow mantle
plumes beneath hotspot volcanoes, and the depth extent of
their roots, required yet higher resolution, and motivated
two types of efforts: on the one hand, the deployment of
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temporary arrays of ocean bottom broadband stations, such
as offshore Hawaii, to increase the aperture of the land-
based arrays (e.g. Laske et al., 2009), or in Polynesia, to
sample regions with few land-based stations (e.g. Suetsugu
et al., 2009; Obayashi et al., 2016). On the other hand,
theoretical improvements were proposed, such as iterative
approaches to account for ray-path perturbations in
3-D structure (e.g. Thurber and Ritsema, 2015), or the
introduction of finite-frequency kernels (e.g. Montelli
et al., 2004) that helped address wavefront healing effects
(e.g. Nolet and Dahlen, 2000) which can make narrow, low-
velocity bodies poorly visible when the arrival time of
a body wave is picked at the first onset.

Still, the limitation in sampling by direct P and S waves,
resulting from too few oceanic stations remained (e.g. van
der Hilst and de Hoop, 2005; Boschi et al., 2006). One
proposed solution has been to send floats into the oceans,
equipped with hydrophones, that detect and record tele-
seismic P waveforms and send back the signal through
satellites (e.g. Hello et al., 2011). These MERMAIDS
(Mobile Earthquake Recorder in Marine Areas by
Independent Divers) drift with ocean currents eventually
covering large areas of the ocean. It has been shown that, if
data were available from 1,000 MERMAIDs providing
uniform coverage of the ocean basins, resolution of deep
structure could significantly be improved, using only the
recording of P waves (Sukhovich et al., 2015). At present,
MERMAIDs are being launched in different parts of the
ocean, and are starting to provide improved images of
target objects, such as the deep structure beneath the
Galapagos hotspot (e.g. Nolet et al., 2019). Still, currently,
they only record compressional waves at body wave fre-
quencies (1–10 s period; Pipatprathanporn and Simons,
2022).

Meanwhile, a seismic record contains much more infor-
mation about global Earth structure than that provided by
first-arriving waves, even when combined with travel time
data from a few additional seismic phases that are well
separated from others on the records. Indeed, a seismic
record contains information from seismic waves that have
bounced around the Earth’s interior, reflecting not only off
major ‘1-D’ discontinuities such as the Earth’s surface or
the core-mantle boundary (CMB), but also interacting
with smaller-scale structure. This ‘scattered’ wavefield
helps improve illumination, while at the same time provid-
ing information about small-scale structures of geophys-
ical interest. This has led to the idea of full-waveform
tomography, also referred to as full waveform inversion
(FWI), in which entire seismograms – appropriately band-
pass filtered – are considered as data in inverse tomo-
graphic imaging. In practice, seismograms are also
windowed either to remove problematic parts of data or
choose waveforms with high correlation to synthetics to
reduce non-linearities, as explained in more detail in the
following.

Some authors restrict the definition of FWI to a specific
class of methods, where the inverse step makes use of
adjoint-state kernels (e.g. Fichtner et al., 2010), arguing
that in this case, no approximations are made either in the
forward or inverse step. This is however not quite correct, as
the inverse problem is solved in the framework of the Born
approximation, and conditioning is also necessary to obtain
a stable solution. I will refer to that class of approaches as
‘adjoint tomography’. In contrast, I define full waveform
inversion (FWI), as any method that retrieves 3-D seismic
structure exclusively from the analysis of seismic wave-
forms, that is, without first introducing any secondary
observables.

In the context of geophysical exploration, the concept of
FWI was initially proposed by Tarantola (1984). In the
context of earthquake seismology, waveform tomography
was first proposed and applied by Woodhouse and
Dziewonski (1984) (hereafter referred to as WD84) and led
to the development of the first global shear velocitymodel of
the upper mantle based on three component long period
waveforms comprised of fundamental mode and overtone
surface waves. Here, I will only discuss methodologies and
progress in FWI in the context earthquake seismology,
focusing primarily on the global scale, with reference to
continental scale studies as appropriate.

I will also not discuss – and therefore not give justice
to – the many generations of global tomographic studies
of the Earth’s mantle based on secondary observables,
such as travel times of body waves, surface wave disper-
sion and/or normal mode splitting functions, that have
enormously contributed, and continue to contribute, to
our knowledge of 3-D global structure. For a more
complete overview, the reader is referred to reviews by
Romanowicz (2003) and, more recently, Ritsema and
Lekic (2020).

Seismic FWI is a significantly non-linear problem which
involves an iterative process. I first present the ‘forward
problem’, that is, how the predicted seismic wavefield is
computed and compared to observed records at each iter-
ation. I discuss different types of misfit functionals chosen
by different groups, and then discuss different approaches
to the ‘inverse problem’, that is, the different methods used
to iteratively update the model. Next, I address the challen-
ging question of model assessment and present comparisons
of two recent global radially anisotropic shear velocity
models obtained by FWI, using different approaches
(SEMUCB_WM1, French and Romanowicz, 2014, and
GLAD-M25, Lei et al., 2020). Finally, I discuss remaining
challenges and possible ways ahead for deep Earth’s interior
imaging.

I note that Fichtner (2011) describes many technical
aspects of adjoint-based FWI in much more detail than is
presented here. For more information about progress and
current approaches in exploration geophysics, see, for
example, reviews by Virieux and Operto (2009) and
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Virieux et al. (2014), and for a recent comparison of FWI
approaches at scales ranging from exploration geophysics to
the global scale, see the review by Tromp (2020).

14.2 The Forward Problem and Sensitivity Kernels
in Full Waveform Tomography

Travel time tomography involves relatively rapid computa-
tions of the predicted travel times along ray paths, for
individual seismic phases, under the approximation of infin-
ite frequency, or, in more recent work, the ‘finite-frequency’
(i.e. Born) approximation, which results in the famous
‘banana-doughnut’ sensitivity kernels (e.g. Dahlen et al.,
2000). In contrast, when working with full waveforms, the
concept of seismic phase is no longer relevant, and the
problem is significantly non-linear. In particular, one
needs to have a way to compute the full teleseismic wavefield
as accurately as possible, in the current iteration 3-Dmodel,
in order to compare it to the observed records and compute
a misfit function.

In earthquake seismology, until relatively recently, the
only practical method for the computation of the teleseismic
wavefield has been normal mode summation (e.g.
Woodhouse and Deuss, 2015), which is accurate and fast
in 1-D Earth models down to ~10 s period, less efficient than
other 1-D codes such as the DSM (Direct SolutionMethod;
Geller and Ohminato, 1994) at shorter periods, but has the
advantage that it can be extended to 3-D models using
normal mode perturbation theory, under various levels of
approximation, that I will describe briefly here.

Starting with normal modes computed in a 1-D reference
Earth model, and in order to account for the effect of small
3-D elastic perturbations, WD84 introduced minor and
great circle average frequency shifts for each mode and
each source-station path, corresponding to a zeroth-order
asymptotic approximation (high frequency approximation)
to first-order normal mode perturbation theory. This
approach was later shown to be equivalent to the path
average approximation (PAVA), on which most surface
wave dispersion studies are based (Mochizuki, 1986; Park,
1987; Romanowicz, 1987). In fact, a ‘travelling wave’
equivalent to WD84 was already proposed by Lerner-Lam
and Jordan (1983), although it involved a two-step proced-
ure, that is, extracting phase velocities first, then inverting
the obtained dispersion curves at depth, as opposed to
a one-step inversion for 3-D structure as in WD84 and in
our definition of FWI.

The underlying assumption in PAVA is that seismic
waves are sensitive to the 1-D average structure in the
great circle plane containing the source and the receiver,
and the corresponding sensitivity kernels are 1-D (i.e. they
depend only on depth, not location along a wavepath).
Tanimoto (1987) extended this type of FWI to retrieve

structure down to ~1000 km using surface wave overtone
waveforms. TheWD84waveformmethodwas later applied,
combined with body wave travel times, in the construction
of several generations of whole mantle global shear velocity
models (e.g. Su et al., 1994; Kustowski et al., 2008).
A similar approach, named ‘partitioned waveform inver-
sion’, was proposed in a propagating wave, rather than
standing mode framework (Nolet, 1990), to image upper
mantle structure using fundamental mode and overtone
surface waveforms. This led to several generations of con-
tinental scale (e.g. van der Lee and Nolet, 1997; Schaeffer
and Lebedev, 2014), and global scale (Schaeffer and
Lebedev, 2013) upper mantle shear velocity models.

PAVA accounts asymptotically for along-branch mode
coupling due to 3-D heterogeneity. While it is a good
approximation for fundamental mode surface waves, it
does not accurately represent the sensitivity of body waves,
which are concentrated around the infinitesimal ray-path.
To better represent the sensitivity of body waves and over-
tone surface waves, it is necessary to consider across-branch
mode coupling, as shown by Li and Tanimoto (1993) using
standing modes, and Marquering et al. (1998) in
a propagating wave framework. The formalism of Li and
Tanimoto (1993) was combined with PAVA into the non-
linear asymptotic coupling theory (NACT; Li and
Romanowicz, 1995) and used to develop the first global
shear velocity models of the Earth’s mantle based entirely
on time domain, transverse component waveforms
(SAW12D, Li and Romanowicz, 1996; SAW24B16,
Mégnin and Romanowicz, 2000). This approach was later
extended to three components and radially anisotropic
models (Gung et al., 2003; Panning and Romanowicz,
2006). It is also possible to include a higher order asymptotic
approximation, which allows to approximately model off-
path effects (e.g. Gung and Romanowicz, 2004). The rela-
tive merits of the different normal mode approximations are
illustrated and discussed in Romanowicz et al. (2008).

The use of first-order normal mode perturbation theory for
the computation of the teleseismic wavefield has many advan-
tages: relatively fast forward calculations and ability to com-
pute the corresponding Fréchet derivatives, and therefore
a physics-based Hessian, subsequently leading to fast conver-
ging inversion using Gauss-Newton optimisation. It also pro-
vides for accurate computation of the effect of perturbations
to the gravitational potential, which is important at periods
longer than 200 s. However, there are restrictions on its applic-
ability: the lateral variations in theEarthmodel are assumed to
be smooth (i.e. relatively long wavelength) and weak enough
for first-order perturbation theory to apply (several percent).
In particular, it is no longer appropriate for accurately com-
puting the effects of 3-D structure at scales much shorter than
~2,000 km, and cannot handle the strong lateral variations in
Moho depth around the globe. Still, in Fig. 14.1, I illustrate
how a model based entirely on waveforms from a relatively
small number of three component seismograms (Mégnin and
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Romanowicz, 2000), using NACT (Li and Romanowicz,
1995) for both forward and inverse steps, is able to retrieve
long-wavelength features in the lowermantle, arguably as well
as models based on hundreds of thousands, to millions of
travel times of a small number of seismic phases.

To make further progress in resolution, accurate numer-
ical methods based on the direct integration of the wave
equation are necessary. Finite difference (FD) methods (e.g.
Moczo et al., 2004) can be applied, but present challenges
when applied in the global seismology, spherical Earth con-
text (e.g. Fichtner, 2011; Tromp, 2015). In particular, mod-
elling surface waves accurately using FD presents
a challenge, because of how the boundary conditions are
implemented (strong form of the wave equation). The intro-
duction to global seismology of the spectral element method
(SEM) represents a major advance, as it offers the possibil-
ity, among others, to accurately compute the teleseismic
wavefield in arbitrary 3-D Earth models with theoretically
no restrictions on the scale and size of heterogeneities, and
at relatively accessible computational cost. The SEM is an
FEM-based method where the equation of motion is solved,
in its weak form, using Gauss–Lobatto–Legendre (GLL)
integration, which results in a diagonal mass-matrix
(Komatitsch and Vilotte, 1998; Komatitsch and Tromp,
2002a,b). The main downside of the current SEM imple-
mentations is that they rely on the Cowling approximation:
the perturbation to the gravitational potential is not
included so that Poisson’s equation is not solved, which
makes it inappropriate for modelling long paths in
a 3-D Earth at periods longer than ~200–250 s (e.g.
Chaljub and Valette, 2004). The main computational
advantage of the SEM is due to the diagonal mass matrix,
which is lost when Poisson’s equation needs to be solved,
significantly slowing down the computations. Several

groups are presently working on ways to include the per-
turbation to the gravitational potential efficiently, with
some recent progress, at least in a 1-D Earth (e.g. van
Driel et al., 2021). Note that solutions to Poisson’s equation
in the context of SEM have been applied in geodesy (Gharti
et al., 2018).

The first SEM-based models were developed at local
(Chen et al., 2007; Tape et al., 2010) and regional
(Fichtner et al., 2009; Lee et al., 2014) crust and uppermost
mantle scale, followed by continental scale upper mantle
models (e.g. Rickers et al., 2013; Zhu et al., 2015). This list
is not meant to be exhaustive and up to date, as in this
chapter, I focus on global mantle modelling.

The first global upper mantle, radially anisotropic shear
velocity models constructed using FWI and the SEM are
SEMum (Lekic and Romanowicz, 2011) and SEMum2
(French et al., 2013), followed by whole mantle radially
anisotropic shear velocity models: SEMUCB_WM1 (French
and Romanowicz, 2014), GLAD-M16 (Bozdag et al., 2016),
and most recently GLAD-M25 (Lei et al., 2020). These
models, and the different approaches chosen for their con-
struction, will be discussed in more detail in the following.

In what follows, I restrict further discussion to models
that were constructed based exclusively on waveforms at the
global, whole mantle scale, and using the SEM for wavefield
computations. I will contrast and discuss the pros and cons
of the two approaches that have so far led to published
global mantle seismic models based on FWI: one in which
the SEM is used both in the forward and inverse parts of
model construction, the so-called adjoint-based full wave-
form inversion (hereafter A-FWI), and the other, a ‘hybrid
full-waveform inversion’ approach, where the forward com-
putations are based on SEM, while the inverse part is based
on normal mode perturbation theory (hereafter H-FWI).
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Figure 14.1 Maps of lateral variations in Vs at 2,800 km depth in four whole mantle tomographic studies (A: Kustowski et al., 2008; B:
Ritsema et al., 2011; C: Mégnin and Romanowicz, 2000; D: Houser et al., 2008). Model C was constructed entirely using FWI (a total of
about 20,000 records), while Model A used a combination of body wave travel times for the lower mantle and waveforms for the upper
mantle. Model B was constructed using Rayleigh wave phase velocities, normal mode splitting functions and body wave travel times.
Model Dwas constructed using surface wave phase velocity data and body wave travel times.Models A, B, andD are based on the analysis
of hundreds of thousands/millions of travel times.
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14.2.1 Data Selection and Misfit Function Computation
In global FWI, teleseismic waveforms are selected for events
that typically range in Mw between ~6.0 and ~7.0, in order
to ensure a high signal-to-noise ratio, while avoiding com-
plexities due to extended source-time functions and source
directivity. Data selection and misfit computations rely on
the comparison of observed time-domain earthquake
records and ‘synthetic seismograms’ computed initially in
the starting model, and subsequently in the 3-D model
obtained from the previous iteration.

The accuracy of the predicted wavefield computation is
important in that it controls the shape of the misfit surface,
and therefore the location of the misfit minimum towards
which the inversion process should proceed (Tarantola,
2005). This is where using the SEM represents a very signifi-
cant improvement compared to the methodology based on
normal mode perturbation theory, on which the first FWI
global models had to rely (e.g. Li and Romanowicz, 1996;
Mégnin and Romanowicz, 2000).

Usually, the first step in data selection is to reject entire
records that are noisy or that have incorrect metadata due to
errors in the instrument response function or time-shifts
related to clock errors. Comparison with synthetics com-
puted in SEM in the global 3-D model of the current iter-
ation is very helpful at this stage. There are different
approaches to additional steps for data selection, generally
related to the choice of misfit function, which itself depends
on themodelling goal (e.g. elastic versus anelastic structure).

A common approach is to divide each record into time-
windows or ‘wavepackets’, identifying those parts of the
record where seismic energy is strong because they contain
identifiable seismic ‘phases’ or a combination thereof:

- The development of the first global A-FWI whole mantle
shear velocity models followed the automated
FLEXWIN methodology (Maggi et al., 2009) which
comprises several stages. The first stage considers the
envelope of the synthetic signal and an LTA/STA criter-
ion to identify portions of the record where local maxima
of energy are present. In the second stage, a ‘water level’
is defined and used together with the results of stage 1 to
define a set of candidate time windows. Time windows
are then rejected if they are too short or fall below the
water level. In the last stage, observed and synthetic
traces are compared within each remaining window,
and different time windows are accepted or rejected
according to similarity of the observed and synthetic
waveforms. This similarity assessment includes several
criteria: signal-to-noise ratio, cross-correlation coeffi-
cient and corresponding time-lag, as well as amplitude
ratio. The method is described in detail in Maggi et al.
(2009). This approach has been used in the development
of the first global adjoint-based whole mantle models
(Bozdag et al., 2016; Lei et al., 2020) and is illustrated
in Fig. 14.2. Note that similar methodologies have been
developed by other groups that work with waveforms,
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Figure 14.2 Example of window selections (blue) obtained using FLEXWIN (Maggi et al., 2009) for two of the four bandpass categories
used in the development of model GLAD-M15 (Bozdag et al., 2016). Observed three component waveforms are in black, and synthetics in
red, for an event on the southeast Indian Ridge observed at station LLB (Canada). Courtesy of Ebru Bozdag.
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not necessarily in the context of adjoint-based
tomography.

- The H-FWI modelling follows the methodology first
implemented in Li and Romanowicz (1996) for trans-
verse component records, and later extended to three
component records and fully automated (e.g. Panning
and Romanowicz, 2006). In this method, contiguous and
sometimes overlapping time windows are selected,
designed to separate physically meaningful seismic
phases, as predicted from travel time curves, both in the
case of surface waves and body waves. The windows are
precomputed depending on the depth of the event and
the source-station distance, for two frequency ranges,
one for surface waves (400–250–100–80 s in Li and
Romanowicz, 1996; Mégnin and Romanowicz, 2000:
extended to 400–250–80-60 s more recently in Lekic and
Romanowicz, 2011; French et al., 2013; French and
Romanowicz, 2014), and a second one for body waves
(300–180–37–32s). Surface wavepackets are separated
into fundamental mode, overtone, and ‘mixed’ wave-
packets, as well as first, second and in the case of over-
tones, third orbit wavetrains. Body wavepackets can

contain one or several body wave phases (e.g.
Fig. 14.3). This approach has the advantage that the
selected windows can be indexed by the combination of
seismic phases they contain, which is later useful to keep
track of redundancy in path coverage in a 3-D sense. In
each time window, waveforms are compared in the time
domain to synthetics computed in the current 3-Dmodel.
The initial boundaries of each time window are adjusted
in order to take into account shifts in the arrival times of
energy due to yet unmodelled 3-D structure, when neces-
sary. Wavepackets are then accepted or rejected, simi-
larly to the FlexWin approach, according to several
criteria, including variance reduction and correlation
coefficient (see Panning and Romanowicz, 2006, appen-
dix B for details). While synthetics were computed using
NACT in the earlier models, substituting them by more
accurate SEM-based synthetics in more recent models
was straightforward (Lekic and Romanowicz, 2011).

A central issue in FWI is to mitigate cycle skipping, which
can occur if the model in which the synthetic seismograms
are computed is not close enough to the real Earth and
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Figure 14.3 Example of window selection used in the development of model SEMUCB-WM1 (French and Romanowicz, 2014), shown for
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Courtesy of Heng-Yi Su.
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causes large phase shifts (more than half a cycle) on some
paths. As is well-known from ‘traditional’ surface wave
phase velocity dispersion measurements, cycle skipping is
not a problem at long periods (periods longer than ~80 s),
because the observed dispersion curves fall close to those
predicted by well-established reference 1-D models. Long
wavelength 3-D models (at least to degree 20 is a spherical
harmonics expansion laterally) are currently well-enough
constrained that they can be used to compute synthetic
waveforms down to 80 s period without worrying about
cycle-skipping. The waveform dataset can be filtered in
different frequency bands, and data in the longer period
bands are inverted first, adding shorter periods after some
iterations.

In the most recent H-FWI, the lower frequency band-
passed data (cut off at 60 s) were first inverted for upper
mantle structure (Lekic and Romanowicz, 2011; French
et al., 2013) and later shorter-period body waveforms (cut
off at 30 s) were added to extend the model to the whole
mantle (French and Romanowicz, 2014). The length of
record considered for the ‘surface wave’ bandpass is 10,000
s, starting from earthquake origin time, in order to include
both first and second orbit fundamental mode surface
waves. The length of record for the ‘body wave’ bandpass
is 5,000 s and includes up to the fundamental Rayleigh wave
at a distance of 165° (Fig. 14.3). In the case of A-FWI
(Bozdag et al., 2016; Lei et al., 2020) four different ‘categor-
ies’ of waveforms are considered, involving different band-
pass filters: one with corners at 250.90 s for surface waves,
two with corners at 100.40 s, separately for surface waves
and body waves, and the last one with corners at 40.17 s for
body waves (Fig. 14.2). The total length of record con-
sidered is 10,000 s for the surface wave categories, and
5,000 s for the body wave categories. These authors progres-
sively include data from the shorter period bands as the
inversion iterations proceed.

14.2.1.1 Choice of Misfit Measure
Because waveforms can be decomposed into phase and
amplitude components, and since most studies aim at
imaging elastic velocity structure, which is well captured in
the phase, some authors favour a time and/or time-
frequency dependent phase misfit function, in order to
avoid the numerous additional sources of uncertainty in
the amplitude. The phase can be computed for entire seis-
mograms (e.g. Fichtner et al., 2008), or, in the case of
A-FWI, after selection of specific time windows where
energy is strong, distinguishing a time and frequency
dependent travel-time misfit computed for the two surface
wave windows usingmultiple tapers, and a travel-timemisfit
computed for the two body wave windows by cross-
correlation (Bozdag et al., 2016). In contrast, as mentioned
previously, in H-FWI, point-by-point variance reduction
within each wavepacket is measured in the time-domain

(i.e. including amplitude information), as well as cross-
correlation coefficient between observed and predicted
waveforms. Other misfit functions can be chosen, such as
instantaneous phase and/or envelope misfits (e.g. Bozdag
et al., 2011) and have been applied in regional scale FWI.

In the case of attenuation tomography based on FWI,
which relies on amplitude information, other choices of
measure of fit can be implemented. Zhu et al. (2015) con-
sidered amplitude ratios between observed and synthetic
wavepackets. Karaoglu and Romanowicz (2017) compared
misfit definitions based on time-domain matching of wave-
forms, signal envelope, and amplitude ratios (within each
wavepacket), and recommended amplitude ratios in the
context of global H-FWI, which they then applied for the
construction of the first global upper mantle shear attenu-
ation model based on SEM (Karaoglu and Romanowicz,
2018).

14.2.1.2 Data Weighting
Once data selection is completed for the current iteration, an
important step is to assign appropriate weights to each
datum in order to define the misfit function that will be
minimised in the inverse part of the process. These weights
are designed to take into account data uncertainty, back-
ground noise, and, importantly, path redundancy. In the
A-FWI case, the path weighting scheme takes into account
source and station proximity, and the number of wavepack-
ets in each of several categories defined as a function of
frequency band, and for each component, that is, twelve
categories in total for four frequency bands (e.g. Ruan
et al., 2019), but only nine categories were used in the
development of GLAD-M25. Also, each measurement win-
dow is normalised by its own energy, in order to equalise
amplitudes among windows.

The Berkeley weighting scheme has more granularity.
This is because the windowing scheme of Li and
Romanowicz (1996) allows an indexing of windows by
the seismic phases they contain. These different phases
sample different parts of the mantle, and not all the
same windows are necessarily accepted in the data selec-
tion for source-station paths that are close to one another.
Thus, the proximity of the paths of seismic phases by
which wavepackets are indexed are taken into account.
For example, in the surface wave frequency band con-
sidered in currently published Berkeley models (cut offs
at 400 and 60 s), different weights are calculated for fun-
damental mode, overtone, and mixed wavepackets, also
distinguishing first and second orbit arrivals. In the body
wave passband (cut offs at 300s and 32s), weights are
computed for a total of about 20 different types of wave-
packets (per component), corresponding to individual or
mixed body wave arrivals that differ according to source–
station distance (see table 2 in Mégnin and Romanowicz,
2000, for an earlier version of this labelling scheme). In
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this case, the misfit function includes not only travel time
but also amplitude information, so this weighting scheme
additionally considers differences in amplitude due to dif-
ferences in seismic moment, which can be large. It also
takes into account the relative amplitude of different
wavepackets within a single record, so as to balance the
contribution of strong phases (i.e. fundamental mode sur-
face waves, or SS) compared to smaller amplitude over-
tones or body waves such as Pdiff or Sdiff, as well as
length of the time window corresponding to each
wavepacket.

14.2.2 Physical Model Parametrisation
When using three-component waveforms for whole mantle
modelling, it is important to include radial anisotropy (i.e.
VTI, vertical transverse isotropy) in the parametrisation of
the model, at least in the upper mantle, although evidence
for the presence of anisotropy in the lowermost mantle is
also abundant (e.g. review by Romanowicz and Wenk,
2017). In A-FWI, radial anisotropy has so far been con-
sidered only for the upper mantle, due to concerns about
data coverage in the lower mantle. In H-FWI, the early
whole mantle models (SAW12D, SAW24B16) were devel-
oped using only transverse component data, but the subse-
quent generations of models include VTI in the whole
mantle. The same density to Vs scaling is used in both
groups (dln ρ/dln Vs = 0.33, Montagner and Anderson,
1989). Parametrisation of VTI is different: in A-FWI,
anisotropy is assumed to be significant only for S waves,
and the global models are parametrised in terms of
bulk sound speed, Vsv, Vsh, and the anisotropic parameter
η = F/(A-2L). In contrast, H-FWImodels are parametrised
in terms of Voigt average isotropic velocity Vsiso, and the
shear anisotropy parameter ξ = (Vsh/Vsv)2, while the
parameters related to P velocity – Vpiso, α, and ф – are
scaled to Vs using the expressions of Montagner and
Anderson (1989), which technically are valid only for
upper mantle rocks, and for lack of better geological
constraints.

So far, SEM based global elastic models have not
included topography of discontinuities, although some
synthetic experiments are underway on how to implement
adjoint inversion for upper mantle discontinuities (e.g.
Koroni and Trampert, 2021). In current generation elastic
models, the Q model considered is 1-D and is not updated
during the inversion. Both A-FWI models and H-FWI
models rely on model QL6 (Durek and Ekström, 1996),
which has been shown to predict amplitudes in better
agreement with observations for higher orbit surface
wave data than the reference PREM model (Dziewonski
and Anderson, 1981). Because A-FWI only uses phase
information, this distinction is likely not significant, but
it does appear in dispersion corrections due to
attenuation.

14.2.3 Geographical Parametrisation
The first global model constructed by FWI, model M84C
(WD84) was parametrised using globally defined basis func-
tions: spherical harmonics laterally, and Legendre polyno-
mials vertically. This was also the parametrisation chosen
for the development of FWI-based whole mantle model
SAW12D (Li and Romanowicz, 1996). In SAW24B16
(Mégnin and Romanowicz, 2000), as in other whole mantle
shear velocity models of that generation (e.g. Ritsema et al.,
2004), a more flexible vertical parametrisation using
B-splines was introduced. Later models replaced the spher-
ical harmonics basis by locally defined spherical splines (e.g.
Wang and Dahlen, 1995). This type of parametrisation
(B-splines vertically and spherical splines horizontally) con-
tinued to be used in the development of the SEM-based
models SEMum, SEMum2, and SEMUCB_WM1, as well
as SEMUCB-WMQ.

For A-FWI, a parametrisation that is anchored on the
SEM mesh has been adopted, and Gaussian-function
smoothing is applied to balance data coverage and remove
numerical noise from kernels (e.g. Ruan et al., 2019).
Smoothing and pre-conditioning are also used to speed up
convergence (e.g. Modrak and Tromp, 2016).

14.2.4 Implementation of the Earth’s Crust
Long period waveforms are sensitive to lateral variations in
crustal structure, and especially the large variations in sur-
face topography and Moho depth, but unless short-enough
periods are included, it is not possible to constrain this
shallow structure accurately by inversion. Yet, properly
accounting for strongly heterogeneous crustal structure is
important, because it results in strongly non-linear effects
and can influence the structure retrieved deeper in the man-
tle, and particularly so for the anisotropic part of the model
(e.g. Bozdag and Trampert, 2008; Ferreira et al., 2010; Lekic
et al., 2010; Chang et al., 2014).

Before the introduction of the SEM to seismic tomog-
raphy, crustal effects were usually dealt with by means of
approximate crustal corrections which were computed by
combining tectonic regionalisation (to account for large
variations inMoho depth), with normalmode perturbations
within each region (e.g. Woodhouse and Dziewonski, 1984;
Marone and Romanowicz, 2007).

Since the SEM can accurately account for complex
crustal structure, it is now possible to include a realistic
3-D crustal model in the seismic wavefield computation
and invert for perturbations of the model both in the crust
and in the mantle, given appropriate data. However, there
are several challenges. First, the presence of thin low-
velocity layers results in slowing down the SEM computa-
tions, because of the CFL (Courant–Friedrichs–Levy) or
Courant condition imposed. Second, at the global scale,
fundamental mode surface waveforms have not been con-
sidered below ~30 s, at least until now, because of the strong
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crustal multipathing effects that are observed at shorter
periods. This implies that sensitivity of the considered sur-
face wave data to crustal structure is weak, although still
strong enough to affect waveforms. Meanwhile, body wave
sampling of the crust is sparse. Third, existing 3-D crustal
models are not perfect, and, in many poorly sampled regions
of the globe, the model is extrapolated from well-sampled
regions, based on an a priori tectonic regionalisation. It has
been shown that, at least on some paths, predictions from
these models do not fit waveform data well (Meier et al.,
2007; Pasyanos and Nyblade, 2007).

The A-FWI and H-FWI approaches differ when it comes
to accounting for the effect of the crust. In publishedA-FWI
models, a recent global crustal model, Crust2.0 (Bassin
et al., 2000), has been implemented in the starting model of
this series of models (Bozdag et al., 2016). This model was
combined with S362ANI, which required some manipula-
tion given that S362ANI is defined bounded by a spherically
symmetric Moho (Tromp et al., 2010; Bozdag et al., 2016).
The SEM mesh honours the Moho in regions where the
crust is thinner than 15 km or thicker than 35 km, while
mesh elements straddle across transition regions. The mesh-
ing strategy is described in detail in Zhu et al. (2015). In this
approach, the crustal structure is updated at every iteration
of the inversion.

A different strategy has been chosen in H-FWI. In order
to mitigate some of the issues described when using existing
crustal models in SEM, it is possible to use the concept of
homogenisation (i.e. the replacement of a complex medium
by a smooth medium that is equivalent within a particular
target frequency band), from the point of view of seismic
wave propagation. Construction of effective media in 3-D is
a topic of active research, but in 1-D, it is possible to replace
a finely layered velocity model by a smooth radially aniso-
tropic model (e.g. Backus, 1962; Capdeville and Marigo,
2007) that is locally constrained by short-period surface
wave dispersion data. Such a model can be conveniently
parametrised to match the parametrisation of the SEM
mesh in the crust.

Aiming at improving the computational cost of SEM in
a model with a 3-D crust, Fichtner and Igel (2008) used
a simulated annealing (SA) algorithm to develop a family
of smooth, radially anisotropic crustal models designed to
fit a synthetic surface wave dispersion dataset derived from
model Crust2.0. This was applied, for example, to develop
FWI, adjoint-based models of the Australasian continent
(Fichtner et al., 2009, 2010).

Instead of homogenising an existing layered crustal
model, the published H-FWI models build a smooth crustal
model by locally inverting group velocity surface wave dis-
persion data available globally (Shapiro and Ritzwoller,
2002), while making sure that the SEM mesh honours the
Moho discontinuity. In model SEMum (Lekic and
Romanowicz, 2011), after performing a series of tests, the
apparent crustal thickness was chosen to be uniformly

60 km, while in subsequent models (SEMum2, French
et al., 2013; SEMUCB_WM1, French and Romanowicz,
2014), the Moho depth follows that of Crust2.0 (Bassin
et al., 2000) in regions where crustal thickness is larger
than 30 km, while keeping it ‘saturated’ at 30 km where it
is thinner, thus avoiding the slow-down of the SEM compu-
tations due to thin crustal layers. The methodology is
described in detail in French and Romanowicz (2014).
Because the shortest period considered in the H-FWI
models is 30 s, dispersion data down to 25 s, which are
well constrained globally, were used. In the future, as the
period range of the FWI extends to shorter periods, it is
possible to include dispersion data extending to shorter
periods, for example in regions where such data are avail-
able from ambient noise tomography.

More generally, there are several advantages to working
with a smooth crustal model in SEM. First, it avoids thin
low-velocity layers, which slow down wavefield computa-
tions. Second, because of the non-linearity involved in intro-
ducing a sharp fixed Moho that conforms with the SEM
mesh, any errors introduced in the starting crustal model
will be propagated throughmodel iterations, while a smooth
equivalent model is more linearly related to the data.
Moreover, the complexity of the Earth’s 3-D crustal struc-
ture leads to surface wave multipathing at periods of 20 s or
shorter, and the corresponding parts of the record are not
considered, since they cannot be modelled with presently
available approaches, because of theoretical limitations
either in an adjoint formalism or in normal-mode perturb-
ation-based approaches.

14.3 The Inverse Step: Choice of Optimisation
Approach

FWI is a non-linear inverse problem that needs to be
addressed through an iterative process of model updating.

Before the introduction of SEM, synthetic waveforms
were computed using asymptotic approximations to normal
mode perturbation theory (e.g. PAVA, NACT), which
allowed the efficient computation of Fréchet derivatives
based on the same theory, and of an approximate, but full
and physically meaningful Hessian at relatively small com-
putational cost. This led to fast, quadratically converging,
Gauss–Newton optimisation approaches, according to an
equation of the form (e.g. Tarantola and Valette, 1982):

δmk ¼ ðGT
k C
�1
D Gk þ C�1M Þ

�1 � fGT
k C
�1
D ½d � gðmkÞ�

�C�1M ðmk �m0Þg;

whereGk is thematrix of Frechet derivatives of the wavefield
with respect to model parameters, computed at iteration k,
and Hk = Gk

TCD
–1Gk is the corresponding approximate

Hessian, weighted by the data covariance matrix CD. Here
d is the data vector, mk is the model vector at the k’th
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iteration, m0 the starting model, and CM the covariance
matrix inmodel space, which contains regularisation factors
(i.e. norm or roughness damping, correlation lengths and
such).

In H-FWI, the computation of the seismic wavefield
g(mk) (i.e. forward problem) is performed using SEM, and
the gradient –Gk

TCD
–1[d-g(mk)] and approximate Hessian

Hk are computed using NACT (and attenuation is taken
into account in the gradient and Hessian computation). In
contrast, A-FWI computes the gradient numerically from
the zero-lag correlation of the forward and adjoint wave-
fields, using SEM (e.g. Tromp et al., 2005). In this case, the
computation of Hk is prohibitively costly, so a linear opti-
misation scheme based on the gradient, such as the conju-
gate gradient method, is employed, combined with
smoothing of the gradient (Bozdag et al., 2016). In the latest
iterations of the A-FWI published global model (Lei et al.,
2020), conditioning using the quasi-Newton numerical
method L-BFGS (e.g. Fichtner et al., 2010; Nocedal and
Wright, 2017) was applied.

There are pros and cons to both approaches. The adjoint
approach uses an ‘exact’ gradient which points in the direc-
tion of steepest descent, at the cost of requiring a larger
number of iterations for convergence, and at least two
SEM computations per event. This is only possible with
access to considerable HPC computational resources. The
methodology relies on the computation of vector-matrix
products to avoid handling of huge matrices. There are no
limitations on the parametrisation of the 3-D model, which
can be based on the SEMmesh, but pre-conditioning of the
gradient is applied to speed up convergence, while smooth-
ing by 3-D Gaussian filters is applied to compensate for
imperfection in the coverage provided by the available
data, which eventually limits resolution (e.g. Zhu et al.,
2015; Bozdag et al., 2016). Notably, the numerical condi-
tioning (i.e. L-BFGS) approximates the Hessian in
a different way than does H-FWI.

On the other hand, the hybrid H-FWI approach capitalises
on the fact that it is more important to compute the misfit
function accurately (hence the SEM in the forward computa-
tion) than the gradient (Tarantola, 1984; Lekic and
Romanowicz, 2011), provided the physics-based theory
used in the computation of the gradient and Hessian is
a good enough approximation (Valentine and Trampert,
2016). This is the case for NACT, at least at the wavelengths
considered so far for the global scale (e.g. Romanowicz et al.,
2008). The gradient is indeed approximate, but multiple for-
ward scattering in the current 3-D model is included in the
PAVA term, both in the gradient and the Hessian computa-
tion. The dimension of the corresponding full Hessian matrix
can be very large, depending on the parametrisation of the
model, and therefore the target nominal resolution – however
an efficient method for parallel assembly of large matrices –
has been implemented, using the UPC++ library, an addition
to C++ developed at UC Berkeley (French et al., 2015). The

advantage is the relatively fast convergence: starting from
a 1-D model in the upper mantle and model SAW24B16 in
the lower mantle (e.g. Lekic and Romanowicz, 2011), a total
of 14 iterations were needed to construct model
SEMUCB_WM1 (French and Romanowicz, 2014), with
only one SEM computation per event at each iteration,
compared to 25 iterations for GLAD-M25 starting from
the whole mantle 3-D model S362ANI (Lei et al., 2020),
with two SEM computations per event, albeit accelerated
using GPUs, and reaching shorter periods (17 s in GLAD-
M25 compared to 30 s in SEMUCB_WM1). The main dis-
advantage of H-FWI compared to an adjoint inversion,
which becomes a more important problem as higher spatial
resolution is sought (i.e. at shorter periods), is that, at each
iteration, the computations of the gradient and Hessian are
tied to a 1-D average model, and even with the path-
dependent adjustments that are included through the
PAVA term, it does not lend itself conveniently to the imple-
mentation of significant discontinuity topographies. An
approach currently being investigated in the Berkeley
group, is to combine the ‘exact’ numerical gradient computed
using adjoints with the physics-based approximate Hessian.

Another difference between the modelling approaches of
the H-FWI and A-FWI is that the period range of one of the
A-FWI body wave categories extends down to 17 s (instead
of 30 s in H-FWI), and one of the surface wave categories
extends to 45 s (instead of 60s). The latter provides some-
what more sensitivity to crust as well uppermost mantle
structure. In contrast, for the construction of the latest
global H-FWI model, SEMUCB-WM1, there was not
enough information in the waveforms down to 60 s to fully
constrain the uppermost part of the mantle, so that the
waveform inversion for uppermost mantle structure (and
crustal updates) was combined with dispersion data in the
period range 25 to 150 s. See French and Romanowicz
(2014) for details.

14.4 Model Evaluation

As is well-known, model evaluation is generally quite chal-
lenging in seismic tomography. In ‘traditional’ global mantle
travel time tomography, it is performed by computing the
resolution matrix R, and examining how a series of synthetic
input models are recovered or distorted by the inversion
process. The resolution matrix is a concept that is theoretic-
ally valid only for linear inverse problems (Tarantola, 2005)
and therefore does not strictly apply in the case of FWI. Still,
when the full Hessian is computed using normal mode per-
turbation theory, as done in H-FWI, it is possible to compute
the resolution matrix at each iteration of the model, and in
particular at the last iteration (e.g. French and Romanowicz,
2014). While such tests, and in particular the famous
‘checkerboard test’, have limited scope (e.g. Levêque et al.,
1993), they give some idea of model recovery at different
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wavelengths and in different locations. They can help assess
the robustness of features of geophysical interest, such as, for
example, whether periodic low-velocity fingers seen in the
upper mantle and aligned with absolute plate motion are
robust features (French et al., 2013), or whether the inversion
can distinguish a bundle of mantle plumes from a compact
large low shear velocity province (e.g. Davaille and
Romanowicz, 2020). However, they do not address import-
ant aspects of the problem such as the dependence of the final
model on the starting model, or the theoretical approxima-
tions in either the forward or inverse part of the FWI.

It is not possible, in practice, to compute a full resolution
matrix in A-FWI. Stochastic probing of the Hessian or reso-
lution matrix and computation and recovery of point-spread
functions and similar methods have been proposed (e.g.
review by Rawlinson et al., 2014), and new, ever more effi-
cient methods are the subject of active research both in the
applied geophysics and in the global seismology community

(e.g. Liu et al., 2022, and references therein). Notably, in the
construction of GLAD-M25, Lei et al. (2020) used the point-
spread function approach of Fichtner and Trampert (2011a,
b) to probe the model at selected locations of interest.

A more rigorous approach would require starting with
a series of relevant test 3-D models, and, for each of them,
computing synthetic waveform data matching the distribu-
tion of real data, and redo the entire FWI process with its
many iterations. This is clearly out of reach due to the com-
putational time required. It is also practically impossible to
fully test the dependence of the final model on the starting
model. Still, this has been attempted once in H-FWI, as
illustrated in Fig. 14.4, to test the reliability of the deep mantle
low-velocity plume conduits found in SEMUCB_WM1.

It is likewise challenging to assign reliable uncertainties to
model values obtained by FWI. A possible approach is statis-
tical resampling of the data using Bootstrap (e.g. Efron and
Tibishirani, 1991), or deleted jackknife (Efron and Stein,

Starting model:S362ANI

(A)

(E)

(F)

(B)

(C)

(D)

Pitcairn
Guadelupe 2

1

0

–1

–2

Target model: SEMUCB_WM1 Iteration 3

Iteration 2

Iteration 1

SAW24B16

Figure 14.4 Vertical cross-section for a great circle path in the vicinity of hotspot Pitcairn (see insert). (A–D) evolution of the whole mantle
model starting frommodel S362ANI (Kustowski et al., 2008), shown in (A), and performing successively three iterations (B,C,D), using the
same waveform dataset as used in the development of SEMUCB_WM1 (French and Romanowicz, 2014). While small-scale details remain
different, the large low-velocity conduit extending from the core–mantle boundary through the mantle under Pitcairn progressively
appears. For comparison, the same cross section is shown in (E) in model SAW24B16 (Mégnin and Romanowicz, 2000), which was the
starting model in the lower mantle for the development of SEMUCB_WM1, while (F) shows model SEMUCB_WM1.
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1981), that is, performing an inversion based on a series of
realisations of data from which some waveforms (say 10%)
have been randomly removed. This is only possible when the
full Hessian is available, and, for that case, details can be
found in French and Romanowicz (2014). Note that only the
last iteration of the inversion can be tested this way, which
addresses the issue only partly.

Another semi-quantitative way to evaluate the model is to
compare data with synthetics for a subset of events and
source–station paths, that have not been used in the inversion.
One can also evaluate how the model performs on selected
paths, when extending the period range to higher frequencies
thanwere used in the construction of themodel (e.g. Figs. 14.5
and 14.6).

Finally, in lieu of a better approach, comparison of FWI
models obtained by different groups with different datasets
and methodologies can inform on the robustness of features
of geophysical interest. Figure 14.7 shows a comparison
between the isotropic part of SEMUCB_WM1 and GLAD-

M25 on two cross sections: one samples the models in the
vicinity of the Samoa hotspot, with very similar structure in
both models (Fig. 14.7a,b). The other one (Fig. 14.7c,d)
samples them in the vicinity of three hotspot volcanoes
and one subducting slab. The two models show consistent
features: the strong low-velocity conduit beneath Pitcairn
(stronger in SEMUCB-WM1), a low-velocity conduit in the
vicinity of San Felix, which appears to be better resolved in
GLADM25, and a conduit under Easter Island, which is
more out of plane for this particular cross-section, in
GLADM25 than in SEMUCB-WM1. Both models show
the subducted Nazca Plate ponding between 660 and
1,000 km depth, and evidence for older portions of the
slab in the lower mantle. The slab is likely better resolved
in GLADM25 in the upper mantle and down to the mid-
mantle. Combining the information from the two models,
one is tempted to infer that individual plume conduits likely
exist beneath each of the three hotspots, extending from the
core–mantle boundary to the upper mantle.

46°

C200907071911A: Z

42°

39°

38°

36°

34°

32°

30°

23°

Data

Synthetics SEMum2

18°

11°

200s

EDW2

R11A

DUG

M17A

RRI2

G17A

D18A

A19A

FFC

GDLN

BULN

Figure 14.5 Validation of model SEMum2 (French et al., 2013). Comparison of vertical component records for an event in Baffin Island
(07/07/2009) observed at stations across North America. Paths and CMT solution are shown on the map on the left side. Observed
waveforms are in black, and have not been used in the construction of SEMum2. SEM synthetics computed in SEMum2 using CSEM
(Capdeville et al., 2003) are shown in red. Data and synthetics are filtered down to a cut-off period of 40 s, compared to the 60 s cut-off used
in the development of model SEMum2.
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14.5 The Future of Global Mantle FWI

In its quest to further improve resolution of deep mantle
elastic structure, global FWI whole mantle modelling in the
era of numerical wavefield computations faces many
challenges.

First is the computational challenge: increasing reso-
lution implies extending computations to shorter periods
and extracting more information from the scattered
coda of the main seismic phases, while computational
time in SEM increases like the fourth power of fre-
quency, and the choice of the misfit function becomes
more critical at short periods, where cycle skipping is
a threat.

Second, accounting accurately for the effects of
3-D crustal structure in the full frequency range used for
FWI, and notably in parts of the world where current crustal
models are not accurate, is important to avoid contamin-
ation of deeper structure, while trying to avoid slowing
down computations (the thin layer problem). Current
approaches (both A-FWI and H-FWI) update the crust in
successive iterations, but there is still progress to be made to
exploit information contained in multi-pathing surface
waves at periods shorter than 25 s.

Third, even with exploiting as much as possible of the
information contained in waveforms, resolution is limited
by the non-uniform distribution of high-quality broadband
stations and sources around the world. Finally, the focus so
far has been on inversion for radially anisotropic structure,
while FWI applied to imaging azimuthal anisotropy (e.g.
Bozdag et al., 2021) and 3-D anelastic attenuation (e.g.
Karaoglu and Romanowicz, 2018) at the global scale, is
emerging. Meanwhile, resolution of 3-D density structure
remains in its infancy.

Efforts towards addressing each of these challenges are
underway. Here I briefly discuss some of them.

To address the computational challenge, source stacking,
or source encoding, has been proposed. In this approach,
the seismic wavefield is computed for a large number of
sources simultaneously, by first aligning them on the earth-
quake origin time. This was first proposed by Capdeville
et al. (2005), who showed that they could recover a long
wavelength global whole mantle shear velocity model (up to
degree 6 in a spherical harmonics expansion, total number
of model parameters 274) using stacked waveforms from 84
events filtered at periods longer than 160 s, recorded at 174
stations, and adjoint kernels.While the concept is attractive,
as it can potentially lead to orders of magnitude fewer
wavefield computations, it presents several drawbacks.
First, it is no longer possible to weigh the data so as to
balance contributions from waves sampling different paths
and different parts of the mantle. To overcome this,
a promising approach, at least in H-FWI, is to combine
stacking with correlation of the stacked traces, which allows
path weighting and, to some extent, windowing and

weighting down of large amplitude fundamental mode sur-
face waves (Romanowicz et al., 2013, 2019).

When using A-FWI, another complication is the presence
of cross-talk in the computation of the kernels. To minimise
the effect of such cross-talk, random source encoding is used
in exploration geophysics (e.g. Krebs et al., 2009). This still
leaves the challenge of application to real data at the global
scale, which is plagued by missing data: indeed, when stack-
ing N sources, the synthetics are computed automatically at
all stations, regardless of whether usable data are available
at any particular station. To address the missing data issue,
Zhang et al. (2018) proposed a source encoding approach
based on Fourier decomposition of the wavefield, which
allows the synthetic wavefield for each event to be extracted
from the synthetic stacked record at each station.
Application of this approach to global scale A-FWI appears
promising (Tromp and Bachmann, 2019).

Another way of extending the frequency range to shorter
periods in global scale FWI, while keeping computational
time manageable, is to try and restrict the volume in which
the numerical wavefield computations and inversion iter-
ations are performed. For many years, hybrid methods
have been designed and applied to forwardmodel structures
in specific areas of the deep mantle near the core–mantle
boundary. The wavefield is computed by coupling a fast
‘1-D’ method outside the target region and a numerical
scheme, either in two-dimensional, such as finite differences
(e.g. Wen and Helmberger, 1998), or in 3-D (Capdeville
et al., 2003b). Recently, 1-D synthetics outside the target
region computed using DSM (Geller and Ohminato, 1994)
have been combined with 3-D FWI inside it using the Born
approximation (Kawai et al., 2014) to image structures in
D″ in the northern and western Pacific (Suzuki et al., 2016,
2020) and in the transition zone in central America (Borgeaud
et al., 2019).

Full waveform inversion using numerical wavefield com-
putations inside the target region, coupled with DSM out-
side of it has been developed and applied for regional upper
mantle tomography (Monteiller et al., 2015; Lin et al.,
2019). In such a case, the iterative 3-D wavefield computa-
tions need only be performed inside the small target region,
considerably saving computational time. It is desirable to be
able to accurately account for 3-D structure outside the
target region, which requires coupling a global 3-D solver
and a regional 3-D solver. In global seismology, one such
approach has been coined ‘box tomography’ (Masson et al.,
2014; Masson and Romanowicz, 2017a, 2017b) and has so
far been applied at continental scale in North America
(using different numerical solvers outside and inside the
region), for the specific case when sources are outside the
target region and stations inside (Clouzet et al., 2018).
A forward modelling approach, in the case where both
sources and stations are outside the target region (as
would be for targets in the mid and lower mantle), has
been demonstrated by Pienkowska et al. (2020), coupling
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the 1D instaseis code (van Driel et al., 2015) outside the
target region with SPECFEM3D Cartesian (Tromp et al.,
2005) inside it. Recently, Adourian et al. (2023) coupled
SPECFEM3D_globe outside with a regional 3D SEM
code, RegSEM (Cupillard et al., 2012) inside a target region.

These types of approaches hold promise for global
tomography, not only because they can save considerable
computation time, but also because the distribution of
sources and stations is limited on the globe, so that
attaining equally high resolution everywhere is not pos-
sible. Application to the global scale of the mini-batch
approach combined with a multi-scale approach (van
Herwaarden et al., 2020) or using wavefield adapted
meshes (e.g. Thrastarson et al., 2020) are other ways
that are being explored to save computational time
while progressively improving resolution.

In many parts of the world, significantly improving reso-
lutionwill not be possible until the oceanfloor canbepopulated
with high-quality broadband observatories. Much effort has
been devoted internationally to the development of such ocean
floor observatories for decades (e.g. COSOD-II, 1987;
Romanowicz and Suyehiro, 2001), but the logistics and costs
have thwarted progress. Initiatives for the deployment of large
aperture broadband ocean floor arrays, coordinated inter-
nationally, such as PacificArray aremuch needed and represent
a critical target for future progress in seismic imaging towards
improving our understanding of deep mantle dynamics.1

As for applying some form of FWI to resolve deep mantle
lateral variations in density at the global scale, it is at present
only possible using first-order normal mode perturbation
theory (e.g. Yang and Tromp, 2015; Al-Attar et al., 2012) –
although higher-order developments exist (e.g. Clévédé and
Lognonné, 1996) – while awaiting the full development of
numerical methods that do not require Cowling’s approxi-
mation, but with reasonable computational requirements.

Finally, beyond the SEM, more efficient numerical solvers
of the wave equation in a spherical Earth, with complex
topography, may become available in the years to come (e.g.
Masson, 2023). This topic is beyond the scope of this chapter.

14.6 Conclusions

Full waveform tomography of the Earth’s deep mantle
has benefited in the last decade from the availability of an
efficient numerical solver of the wave equation in its weak
form, the spectral element method. I have discussed the
contrasting approaches used by the two groups that so far
have published global whole mantle elastic models that
rely on the SEM. The resulting models have revealed or
confirmed features within our planet that were previously
not resolved, or poorly so. In order to improve resolution
of the Earth’s mantle structure going forward, including

3-D imaging of attenuation, anisotropy, and density
structure, it is necessary to increase efforts at instrument-
ing ocean basins with seismic sensors – and in particular
three-component broadband ones – and to continue
developing promising approaches aiming at improving
computational efficiency, so that higher frequencies can
be reached at reasonable cost.
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15
Solving Larger Seismic Inverse
Problems with Smarter Methods

Lars Gebraad, Dirk-Philip van Herwaarden, Solvi Thrastarson, and Andreas Fichtner

Abstract: The continuously increasing quantity and qual-
ity of seismic waveform data carry the potential to pro-
vide images of the Earth’s internal structure with
unprecedented detail. Harnessing this rapidly growing
wealth of information, however, constitutes
a formidable challenge. While the emergence of faster
supercomputers helps to accelerate existing algorithms,
the daunting scaling properties of seismic inverse prob-
lems still demand the development of more efficient solu-
tions. The diversity of seismic inverse problems – in terms
of scientific scope, spatial scale, nature of the data, and
available resources – precludes the existence of a silver
bullet. Instead, efficiency derives from problem adapta-
tion. Within this context, this chapter describes
a collection of methods that are smart in the sense of
exploiting specific properties of seismic inverse problems,
thereby increasing computational efficiency and usable
data volumes, sometimes by orders of magnitude. These
methods improve different aspects of a seismic inverse
problem, for instance, by harnessing data redundancies,
adapting numerical simulation meshes to prior know-
ledge of wavefield geometry, or permitting long-distance
moves through model space for Monte Carlo sampling.

15.1 Introduction

Recordings of the seismic wavefield are an enormously rich
source of information that may be used to constrain the
structure and evolution of the Earth, to infer the locations
and dynamics of earthquakes and other sources (e.g. under-
ground explosions, ocean dynamics, urban noise), or to
produce estimates of future ground motion for hazard
assessment.

Much of the history of seismology revolves around
efforts to harness this wealth of information in a more
comprehensive fashion. A key element of these efforts is
the development of theories and methods that allow us to
simulate the seismic wavefield more completely and more
accurately. Numerical wave propagation, enabled by mod-
ern supercomputers and sophisticated spatiotemporal

discretisation schemes (e.g. Komatitsch and Vilotte, 1998;
Moczo et al., 2002; de la Puente et al., 2007; Afanasiev
et al., 2019) may be considered the preliminary culmination
of this trend. Combined with adjoint techniques, or vari-
ants thereof (e.g. Tarantola, 1988; Tromp et al., 2005;
Fichtner et al., 2006; Plessix 2006; Chen et al., 2007a),
numerical wave propagation may be combined into
a class of inverse problem solutions, loosely and somewhat
exuberantly referred to as full-waveform inversion (FWI).
Conceived already in the late 1970s and early 1980s (e.g.
Bamberger et al., 1977, 1982), FWI for realistic
3-D problems is a more recent achievement that has pro-
duced detailed images of Earth structure from local to
global scales (e.g. Chen et al., 2007b; Fichtner et al.,
2009; Sirgue et al., 2010; Tape et al., 2010; Bozdag et al.,
2016; Fichtner et al., 2018).

The basic mechanics of FWI have been described in sev-
eral review papers and books (e.g. Virieux andOperto, 2009;
Fichtner, 2010; Liu and Gu 2012), and will be repeated here
only in a very condensed form that provides some context
for the following sections. In a narrow sense, FWI can be
regarded as an optimisation problem, aiming to find an
Earth model that explains observed seismograms to within
their uncertainties. Starting from an initial model, often
obtained from ray-based travel-time tomography, the first
step consists in the calculation of synthetic seismograms
using a suitable (i.e. problem-adapted), numerical method.
The pairwise comparison of observed and synthetic seismo-
grams yields amisfit value that we wish tominimise. Adjoint
techniques provide the gradient of the misfit with respect to
the Earth model parameters of interest (e.g. P- and S-wave
speeds). The misfit gradient can then be used in a gradient-
based descent method, which iteratively repeats the
sequence of (1) synthetic seismogram calculation, (2) misfit
evaluation, (3) gradient computation, and (4) model
updating.

This basic FWI theme has numerous variations, depend-
ing on the numerical wave propagation method, the misfit
functional used to compare observed and synthetic seismo-
grams, the iterative optimisation and regularisation scheme,
and the choice of model parameters that are in- or excluded.
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Furthermore, and in a broader sense, any inversion involves
both some sort of optimisation and an analysis of alterna-
tive models that may explain the observations equally well
(Backus and Gilbert, 1968). Clearly, the search for alterna-
tive models, closely related to uncertainty quantification,
adds yet another level of complexity, that we will consider
more closely in Section 15.4.

Though waveform inversion methods based on simplified
forward problem solutions date back, at least, to the pion-
eering work of Woodhouse and Dziewonski (1984), FWI in
the current and admittedly diffuse interpretation, may
naively be considered the silver bullet for the solution of
seismic, or similar wave-based, inverse problems. Despite
being computationally expensive, quasi-continuous streams
of success stories about ever-growing supercomputers
should make us hopeful that an assimilation of the full
observable bandwidth and volume of seismic data is within
reach. Shouldn’t it?

A more critical look quickly reveals that the scaling of
seismic inverse problems puts the increase of computational
power into a different perspective. In fact, the cost of
a forward numerical wavefield simulation in 3-D scales
with frequency f as f 4 (e.g. Fichtner, 2010; Igel, 2016).
Increasing frequency by a certain factor, shrinks the volume
of a Fresnel zone by the same factor, meaning that, loosely
speaking, higher frequencies ‘see’ less of the Earth, though
in more detail. Using more data compensates for the shrink-
ing of Fresnel zones but also modifies the frequency scaling
from f 4 to roughly f 5. Even an optimistic interpretation of
Moore’s law then implies that growing computational
power allows us to increase the maximum frequency in
FWI by only about 7% per year.

An alternative to waiting for several decades until
supercomputers are finally fast enough is suggested by
the No-Free-Lunch theorem (Wolpert and Macready,
1997; Mosegaard, 2012). In simple words, it states that
the efficiency of any algorithm does not rest within the
algorithm itself, but instead derives from its specialisation
or tuning towards a specific problem. In this sense, the
No-Free-Lunch theorem is a mathematical corroboration
of our intuition and experience that problem-adapted
solutions may greatly outperform a one-size-fits-all
approach.

Problem adaptation in the context of FWI is the central
theme of this chapter. Its purpose is to describe and high-
light a collection of recent developments that improve the
performance of existing inversions, sometimes by orders of
magnitude. This leads not only to more detailed images of
Earth structure, but it also opens up new perspectives, for
instance, in uncertainty quantification.

This chapter is organised as follows. In Section 15.2, we
consider improvements on the data side of the inverse prob-
lem, including source stacking and source encoding
approaches, as well as non-linear optimisation schemes
that automatically take advantage of data redundancies.

This is followed in Section 15.3 by the description of for-
ward problem solvers that reduce computational require-
ments through the use of prior knowledge on the geometry
of seismic wavefields. Finally, in Section 15.4, we discuss
novel approaches to uncertainty quantification based on
efficient, approximate solutions to Bayesian inference
problems.

This chapter complements other chapters in this book.
Chapter 2 on Emerging Directions in Geophysical Inversion
(Valentine and Sambridge, this volume) summarises prom-
ising methodological developments, including approaches
based on non-Euclidean metrics, new ensemble- and sam-
pling-based methods, as well as generative models.
Chapter 11 on Global Seismic Tomography Using Time-
Domain Waveform Inversion (Romanowicz, this volume)
focuses on FWI strategies for whole-Earth imaging, with
an emphasis on data selection, the choice of misfit, model
parameterisation, and optimisation schemes.

15.2 Static and Dynamic Optimisation of Wavefield
Sources and Receiver Configurations

This section is dedicated to an overview of techniques that
reduce the computational requirements of FWI by producing
more useful data in thefirst place, or by using already available
data more efficiently. In this context, we will discuss three
main directions. The first is optimal experimental design,
which attempts the balancing act of positioning sources and
receivers statically, prior to the experiment, such that their
numbers can be minimised while maximising the information
content of the data. The second is source stacking and source
encoding. With this family of techniques, it becomes possible
to simultaneously simulate wavefields of multiple sources,
which reduces the total number of wavefield simulations.
Finally, we discuss the use of mini-batches, which can be
interpreted as a dynamic version of optimal experimental
design that adjusts automatically to the current state of an
interactive FWI. With mini-batches, model updates are com-
puted from variable subsets of the complete dataset, which are
chosen in a quasi-random fashion that exploits redundancies.

15.2.1 Optimal Experimental Design
Optimal experimental design (OED), as the name suggests,
revolves around the design of an optimal experiment, where
the amount of exploitable information can be quantified
and maximised. Though different from today’s common
understanding of OED, the foundations of geophysical
inverse theory laid by Backus and Gilbert (1968, 1970)
may be considered the pioneering contributions in this
field. Their approach aims to construct observables that
maximise the resolution of Earth structure. Seismological
research on OED, as it is now mostly interpreted, started
with the goal to design optimal seismic receiver networks
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(e.g. Kijko, 1977; Rabinowitz and Steinberg, 1990; Hardt
and Scherbaum, 1994). These early works had the goal to
improve the resolution power of seismic networks for the
determination of the epicentre and focal depth of earth-
quakes. Later, OED was applied to select optimal source
and receiver locations to maximise image quality in the
context of travel-time tomography (e.g. Curtis, 1999; Ajo-
Franklin, 2009). Within the context of FWI, OED may be
used to reduce the computational cost by maximising data
information content for the smallest number of source and
receiver locations (Krampe et al., 2021). In contrast to OED
for travel-time tomography, this, however, requires the
computation of sensitivity kernels for representative subsur-
face models (e.g. Djikpesse et al., 2012; Maurer et al., 2017).
While these techniques may be of great use in exploration
geophysics, their applicability is more limited in the context
of earthquake seismology, where the locations of earth-
quakes cannot be chosen, and where the geometry of net-
works is strongly influenced by topography, oceans, and
political circumstances. Nevertheless, OED techniques pro-
vide suggestions for optimal new station locations.
Variations of the OED theme within the FWI context,
which are still in their infancy, are the design of optimal
model parameterisations (Sieminski et al., 2009) and of
misfit functionals that are particularly (in)sensitive to
selected model parameters (Bernauer et al., 2014).

15.2.2 Source Encoding
In a conventional FWI, sources are simulated individually.
This means that the simulation cost scales linearly with the
number of sources present in the dataset. Since the wave
equation is linear with respect to the source input, the idea
arose to simulate multiple sources simultaneously. This
approach, commonly referred to as source stacking, was
first proposed in seismology by Capdeville et al. (2005).
The method, however, suffers from the problem that all
sources are required to be recorded by all stations, which is
hardly the case in seismology. In seismic exploration,
a variant of source stacking, termed source encoding, was
proposed (e.g. Krebs et al., 2009; Choi and Alkhalifah,
2011; Schiemenz and Igel, 2013). The challenge here was
that physically unrelated forward and adjoint components
have the chance to interact, leading to a noisy ‘crosstalk’
component in the gradients, which may then reduce the final
image quality. To mitigate this issue, several strategies can
be applied, such as limiting the number of sources in a stack
(e.g. Romero et al., 2000), or randomly changing the source-
encoding functions between iterations (e.g. Krebs et al.,
2009). Eventually, this helps to average out the noisy com-
ponent over the course of many iterations.

More recently, crosstalk-free methods have been devel-
oped to mitigate these earlier issues completely. Krebs et al.
(2018) and Huang and Schuster (2018) employed narrow-
band filtering to ensure that source and receiver wavefields

are orthogonal. Essentially, more sources can be simulated
at the cost of a loss of frequency content in each source.
However, as Sirgue and Pratt (2004) showed, reconstruc-
tions can be made successfully from only a limited number
of all frequencies. Zhang et al. (2018) introduced a crosstalk-
free method where sources are given a frequency band, and
forward and adjoint wavefields are simulated until they
reach a steady state. At this point, the steady-state wave-
fields are decoded by integrating over time to obtain the
contributions of each individual source. The introduction of
these crosstalk-free techniques also meant that the earlier
requirement that all sources be recorded by all stations was
removed.

Tromp and Bachmann (2019) further extended this
approach and showed how it may be used in combination
with explicit time-domain solvers and in combination with
a variety of misfit functions. Using this technique, the over-
all computational cost may be reduced to just two simula-
tions per iteration when adjoint sources are computed based
onmeasurements of the source-encoded Fourier coefficients
of the observed and synthetic seismograms. This theoretic-
ally leads to a very large performance improvement for
a large number of sources. However, when standard meas-
urements based on specific time windows are used,
a separate simulation for each source is still required. Only
two extra simulations are required to compute the gradient,
but since each forward wavefield needs to be computed
individually, the computational gain is upper-bounded by
a factor of three under ideal conditions.

15.2.3 Mini-Batches
A third option to reduce the computational cost of large-
scale FWI by adaptations on the data side is the use of
mini-batches (i.e. subsets of the complete dataset), which
represents a form of stochastic optimisation. In contrast to
standard FWI without source encoding, where the cost per
iteration scales linearly with the total number of sources,
the cost of a mini-batch iteration depends only on the
number of sources contained in a mini-batch. Misfits and
gradients of individual events are sample-averaged rather
than summed, which enables the approximation of the
sample average of the large dataset using a smaller number
of samples.

Van Leeuwen and Herrmann (2013) explored this idea,
giving it the name ‘fast waveform inversion without source
encoding’. They argued that randomised source encoding,
developed to reduce crosstalk (e.g. Krebs et al., 2009), is
equivalent to stochastic approaches that also rely on mul-
tiple iterations with approximate versions of gradients and
misfits. Hence, there is no need to use explicit source encod-
ing to reap the benefits of the fast convergence that stochas-
tic optimisation techniques have in the early phase of
optimisation. Van Leeuwen andHerrmann (2013) proposed
a hybrid approach, using gradually growing batches that
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simultaneously bring the benefits of both stochastic and
conventional optimisation, while performing equally well
as source encoding techniques. This was illustrated with
several synthetic examples of a reflection seismology setup.

Van Herwaarden et al. (2020) further developed these
ideas to make them suitable for FWI on large scales using
earthquake data. The use of earthquake data, rather than
active source data, poses specific extra challenges. Data
from earthquakes tend to be heterogeneous. Within
a particular frequency band, certain earthquakes may create
high-quality waveform data, while others do not.
Furthermore, earthquakes tend to be recorded by tempor-
arily existing arrays. These two factors result in the fact that
some earthquakes have many high-quality recordings, while
others only have few.

This, in turn, may cause a seismologist to select many
more measurement windows for one event than for the
other, which makes the misfit and gradient of the complete
dataset much more sensitive to these particular high-quality
events. This, combined with the observation by van
Leeuwen and Hermann (2013) that the misfit and model
convergence per iteration depends on the quality of the
gradient approximation, led van Herwaarden et al. (2020)
to propose the use of dynamic mini-batches.

This technique differs from earlier mini-batch approaches
in several ways. First, it uses control-group events. These are
a subset of the mini-batch that is used again in the next
iteration, in order to check if the misfit indeed reduces
between iterations without requiring any extra simulations.
Second, the dynamic mini-batches seek to become
a reasonable approximation of the full gradient. This is
achieved through a gradient approximation algorithm that
tests how the mini-batch sample average gradient direction
changes as events are removed from the mini-batch. If the
removal of events does not significantly alter the sample
average, it is seen as an indicator that the mini-batch
approximation is good, and that the number of samples in
the batch is appropriate. On the other hand, if the gradient
direction changes significantly when events are removed, it
is seen as an indicator that the mini-batch may give a poor
approximation of the full dataset, after which the number of
sources in the next mini-batch is increased.

In addition to the dynamic sizing of the batches, the
dynamic mini-batch method also keeps track of which
events had a significant contribution to the sample average
gradient. Events with a small contribution in earlier iter-
ations have a smaller chance of being randomly selected
again. In short, it seeks to iterate more often with the most
informative events, while making sure that the mini-batch
approximation is of sufficient quality to ensure rapid
convergence.

Figure 15.1 shows an example of a synthetic inversion
that aims to recover a known input model using an actual
distribution of earthquakes and seismic stations on and
around the African continent. Though the recoveredmodels

are visually indistinguishable and equally similar to the
input model in terms of L2 distance, the dynamic mini-
batch approach requires only about 20% of the computa-
tional resources of a ‘traditional’ FWI that uses all sources
in each iteration. Similar results were achieved with a real-
data example presented in van Herwaarden et al. (2021).

15.3 Goal-Oriented Wavefield Simulations

With the large number of wavefield simulations required for
FWI, it is worth considering the most computationally feas-
ible way to perform the simulations. In studies of regional
Earth structure using teleseismic data, the domain for
expensive numerical calculations may be limited by wave-
field decomposition and extrapolation (e.g. Masson and
Romanowicz, 2017), leading to the concept of ‘box tomog-
raphy’ (Clouzet et al., 2018).

In addition to the domain, the geometry and type of
relevant waves may also be exploited to optimise simulation
algorithms. For example, exploration-scale studies focus
mostly on reflected and refracted waves off interfaces in
the shallow subsurface and ignore surface waves. In con-
trast, regional- to global-scale studies are dominated by
surface waves and transmitted body waves. Although these
two problems have the same underlying physical laws, the
way the wavefield interacts with the medium is quite differ-
ent, suggesting that they should not be solved in the same
way. In fact, there is room to adapt the numerical solution of
the wave equation to the respective problems.

Here we focus on large-scale problems and demonstrate
how the wave equation can be solved numerically in a way
that properly accounts for the physics most relevant to the
problem, while ignoring less relevant aspects.

15.3.1 Wavefield-Adapted Meshes
When examining a rock, it can be viewed at multiple scales.
From far away, the eye is only sensitive to the bulk structure;
when looking closer, however, it becomes apparent that the
rock is composed of multiple minerals, and looking even
closer into the minerals, they have an atomic structure. The
Earth can, in a similar way, be seen as a multi-scale medium.
The way in which a seismic wave experiences the medium
depends on the wavelength of the wave. Seismic waves are
not directly sensitive to individual heterogeneities much
smaller than their minimum wavelength but rather to some
kind of average over all heterogeneities, that is, to their
ensemble action, which can be described in terms of an
effective medium (Capdeville et al., 2010).

Another important feature of most wavefields is that their
complexity depends on the direction of inspection. For
example, wavefields in smooth media exhibit approximate
spherical symmetry with rapid oscillations in propagation
(radial) direction, while changing only slowly in the
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perpendicular (azimuthal) direction. This observation was
the inspiration behind AxiSEM3D by Leng et al. (2016),
where the radial and latitudinal dimensions are solved using
the spectral-element method, and the azimuthal one is solved
using the pseudo-spectral method. In favourable cases, such
as simulating global wave propagation through smooth
tomographic models, the required simulation cost can be
reduced by over an order of magnitude, compared to the
standard approach of using cubed-sphere meshes (Ronchi
et al., 1996) and the spectral-element method in all three
dimensions.

With the two presented features in mind, van Driel et al.
(2020) developed an approach to adapt the computational
mesh to the expected wavefield propagating from the
source. As the number of required elements in a mesh is
controlled by the complexity of the wavefield, fewer elem-
ents are needed to cover the azimuthal dimension, compared

to the other dimensions (see Figs. 15.2c and 15.3a).
A wavefield travelling through laterally smooth media can
thus be modelled using fewer elements than traditionally.
The novel meshing approach can result in an order of mag-
nitude reduction in compute cost, while no modifications
are needed in the wave propagation algorithm.

15.3.2 Use Case: Full-Waveform Inversion
Being able to simulate a wavefield propagating through
a given medium can already be useful in data analysis.
Furthermore, it can be used to infer the structure of that
medium through FWI. Doing so requires observed data,
multiple wavefield simulations, and a method to compute
the gradient of the misfit between observed and simulated
data with respect to the model parameters.
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Figure 15.1 Overview of results of the dynamic mini-batch method for a synthetic inversion with a ‘true’ input model. (a) Starting from
a 1DEarth model, both traditional FWI and dynamic mini-batch FWI were used to invert for the true model shown on the left. The panels
in the middle and right show spherical slices of the recovery at 100 and 300 km depth for traditional FWI and dynamic mini-batch FWI,
respectively. (b) Convergence in terms of the L2 distance between the input model and the recovered model for both methods. Dynamic
mini-batch FWI recovers the structure at a significantly lower cost. (c) Number of events in each mini-batch iteration. There is a general
tendency to use more events as the inversion progresses.
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With the need for multiple wavefield simulations,
being able to compute them efficiently becomes critical.
Using wavefield-adapted meshes for the inversion can
therefore dramatically reduce the computational cost of
the whole inversion. In contrast to standard FWI work-
flows, however, wavefield adapted meshes require
a different mesh for each source, thereby requiring
slightly more book-keeping.

Thrastarson et al. (2020) introduced an FWI workflow
that exploits wavefield-adapted meshes and demonstrated
its computational benefits. In a 2D experiment, they com-
pared the FWI results from a standard approach to their
developed workflow and showed that they could achieve the
same quality of results at only 12% of the previous compute
cost. The experiment aimed to reconstruct a random target
medium (Fig. 15.2a), using nine sources and eighty
receivers. As a reference, the medium was reconstructed
using a rectilinear grid (Fig. 15.2b). The same reconstruction
was then attempted using wavefield-adapted meshes,
achieving the same quality result (Fig. 15.2c).

The synthetic proof of concept serves as the methodo-
logical basis for a real-data, global-scale FWI (Thrastarson
et al., 2021, 2022). For this, wavefield-adapted meshes are
constructed in 3D, as shown in Fig. 15.3a, and combined
with the dynamic mini-batch method of van Herwaarden
et al. (2020), described before in Section 15.2.

Starting from the spherically symmetric Earth model
PREM (Dziewonski and Anderson, 1981), data from 1,200
earthquakes were inverted, using waveforms in the 100–200
s period range. The latest model, obtained after 70 iter-
ations, is shown in Fig. 15.3b. The velocities are plotted as
percentage deviations from the lateral mean velocity of the
depth level.

The cost of the 70 iterations was comparable to only 70%
of a single iteration using a standard FWI approach with
a cubed-sphere mesh. Mini-batch iterations and full iter-
ations are not directly comparable, however, being able to
construct a geologically plausible model using fewer com-
putations than a single model update, showcases the benefit
of the methods.

15.3.3 Discussion
The presented methods for accelerating numerical wave
propagation, wavefield-adapted meshes and AxiSEM3D,
in both forward and adjoint mode, can add to the benefits
of other approaches described in this chapter. As they
rely on single source simulations, they do, however, not
function in combination with source stacking or source
encoding methods. Yet, wavefield-adapted meshes and
AxiSEM3D harmonise well with the dynamic mini-batch
approach, as presented in the previous paragraph, and
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Figure 15.2 A comparison of two inversions. The mesh is in the top panel with its corresponding resulting model in the bottom panel. The
models show percentage deviations of the shear modulus from the mean value. (a) The target model that the synthetic inversion aims to
recover. Artificial data were created using a rectilinear grid. (b) The results obtained by using the standard approach to FWI, with
a rectilinear grid as a mesh. (c) The results obtained with the wavefield-adapted meshes. The displayed mesh is for a source in the middle,
but in the complete FWI eachmodelled source needs its ownmesh. Themesh has a Cartesian rectilinear grid at the source location, but then
expands away using cylindrical coordinates. This result only used 12% of the computational time required to reach the result in (b). Such
wavefield-adapted meshes are an ideal way to solve large-scale simulations in laterally smooth media. As the medium becomes more
complex (e.g. in the course of an iterative FWI), more elements in azimuthal direction may need to be added. For a strongly scattering
medium, the mesh would eventually converge towards a standard mesh, and the method loses its benefits.
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they may enable the solution of Bayesian inference prob-
lems for uncertainty quantification, covered in the follow-
ing paragraphs.

15.4 Tomographic Uncertainty Quantification

Improved algorithms combined with modern HPC cap-
abilities have not only satisfied the quest for solving larger
inverse problems in seismology, but also enabled more
complete and less biased uncertainty quantification.
Model uncertainties arise from measurement errors and
a lack of sensitivity, which, in turn, is related to data
coverage in space and frequency. The uneven source–
receiver distribution controls which parts of the wavefield
can be recorded and which regions of the Earth can be
constrained. Additionally, seismic waves do not carry the
same amount of information on every Earth model par-
ameter of interest. The canonical example is density,
which is notoriously difficult to resolve using seismic
data.

Inversions utilising gradient-based deterministic algo-
rithms do not provide information on either of these aspects
of uncertainty. Furthermore, in cases where information on
a specific parameter or part of the Earth is particularly
weak, gradient-based methods rely heavily on regularisa-
tion, the effect of which is hardly distinguishable from
actual data constraints. Hence, when interpreting tomo-
graphic models, one might over-interpret features that
were actually imposed by regularisation.

Throughout this section, we focus on how the latest algo-
rithms can tackle uncertainty quantification in seismic tomog-
raphy. Before delving into the details of concrete approaches
to uncertainty quantification in a tomographic context, we

provide a condensed review of Bayesian inference. This will
be followed by the fundamentals ofHamiltonianMonte Carlo
(HMC) sampling. We will discuss a case of HMC applied to
a synthetic FWI experiment, and an alternative to HMC
sampling applied to the same test case.

The two methods share the probabilistic interpretation of
parameter estimation problems, which is drastically differ-
ent from deterministic approaches. Importantly, both
methods also employ gradients typically used in determinis-
tic approaches.

15.4.1 Bayesian Interpretation of Inverse Problems
and Its Use

Deterministic inversion aims to produce a single model
that explains observations within their errors, starting
from a hopefully suitable initial model that prevents trap-
ping in a local minimum. The probabilistic interpretation,
in contrast, aims to construct a posterior probability dis-
tribution of the model parameters, taking data errors and
prior information into account (e.g. Tarantola 2005;
Fichtner 2021). The posterior distribution is considered
the solution of the inverse problem, which contains all
information one can possibly obtain from the data. This
wealth of information includes, but is not limited to, the
maximum-likelihood model, other plausible models,
uncertainties of specific parameters, and trade-offs
between pairs of parameters.

A prior distribution p(m) is a probability density that
encodes information about model parameters m that is
available prior to the experiment. Prior information may
constrain the approximate value of a specific parameter or
correlations between parameters. The classical example is
a Gaussian distribution as prior with mean zero,

60° 60°
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a) b) 6
[%]

420
Vsv perturbation at 150.0 km depth

–2–4–6
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Figure 15.3 Global velocity model inferred by using wavefield-adaptedmeshes. (a) A 3Dwavefield-adaptedmesh for a source at the North
Pole. The elements are stretched along the equatorial direction (azimuthal direction) compared to the other directions. (b) A slice through
the model recovered at 150 km depth. Displayed are percentage variations in vertically polarised shear wave velocities from the lateral
mean velocity.
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pðmÞ α exp � 1=2 m
TM�1m

	 

; ð15:1Þ

where T denotes a transpose, and M-1 is the inverse of the
prior model covariance matrix. More sophisticated prior dis-
tributions may be derived from physical laws that place
bounds on some parameters, from smoothness or sparsity
constraints, from requirements of invariance and symmetry,
or from the statistics of laboratory samples (e.g. Calvetti and
Somersalo 2017; Fichtner 2021). Frequently, priors are also
built on the basis of physical intuition, which adds an explicit
subjective component to an inverse problem.

The probability distribution related to measurement
errors, referred to as the likelihood function, is denoted by
p(d|m). It describes the probability that a modelm generates
the observed data d. The numerical value of p(d|m) can be
computed by solving the forward problem dsyn = F(m)
withm as input and then comparing the computed data dsyn
to the observed data d. Again, the classical example is that of
Gaussian observational errors with covariance matrix D,
which induce the probability density,

pðdjmÞ α exp –1=2 ðd� dsynÞTD�1ðd� dsynÞ
h i

: ð15:2Þ

Although this equation isGaussian indanddsyn, the appear-
ance of a potentially non-linear forward problem F(m) may
cause p(d|m) to be non-Gaussian inm. Different observational
error statistics produce different expressions for p(d|m).

Bayes’ theorem allows us to combine the prior probability
densities p(m) and p(d|m) into the posterior distribution p(m|d),
which captures all information one can possibly infer aboutm,
(Bayes, 1764):

pðmjdÞ ¼ pðdjmÞ pðmÞ=pðdÞ: ð15:3Þ

The denominator p(d), called the evidence, scales the pos-
terior p(m|d) so that its integral overm equals 1. It describes
the probability that the assumptions made in the numerics
and parameterisation can explain the observations at all,
and therefore plays an important role in trans-dimensional
inference (e.g. Green, 1995; Malinverno, 2002; Sambridge
et al., 2006; Bodin et al., 2012; Sambridge et al., 2013). Since
the evidence does not affect the relative probability of dif-
ferent models, this section is limited to the proportionality
of p(m|d) to the product p(d|m) p(m), which, in the case of
Gaussian priors, takes the form

pðmjdÞ α exp –1=2 ðd� dsynÞTD�1ðd� dsynÞ
h i

:

exp –1=2 mTM�1m
	 


: ð15:4Þ

The posterior distribution is closely linked to the misfit
function Χ(m) of deterministic inversions. In fact, one may
find the maximum-likelihood model by minimising a misfit
defined as the negative logarithm of the posterior, which,
again in the Gaussian case, produces the familiar least-
squares misfit

Χ ðmÞ ¼ �log pðmjdÞ ¼ 1=2 ðd� dsynÞTD�1ðd� dsynÞ
þ 1=2 m

TM�1mþ const: ð15:5Þ

This equation reveals that the prior p(m) in probabilistic
inversion and the regularisation term ½ mT M-1m in deter-
ministic inversion play comparable roles.

15.4.2 Hamiltonian Monte Carlo
A class of methods often considered to be the staple of
Bayesian inference is Markov chain Monte Carlo
(MCMC) sampling, which aims to draw a sequence of test
models, called samples in this context, with a density that is
proportional to the posterior distribution. This means that
the number of samples falling within an arbitrary (and
potentially infinitesimally small) subvolume of model

space V equals const
ð
V
pðmÞdm. Hence, relative probabil-

ities and probability densities can be quantified simply by
counting samples within model space subvolumes. MCMC
achieves this goal by randomly drawing samples, evaluating
the distribution at that point, and deciding whether or not
this is acceptable. As this decision only depends on the
previous sample in the algorithm, it becomes a Markov
chain, that is, a memoryless stochastic process.

MCMC theory does not prescribe how the proposal for
a new sample should be made, and there are more or less
efficient ways of doing this. Applying a suitable variation of
the general MCMC concept to a specific problem is just
another instance of the No-Free-Lunch theorem.

With this in mind, we discuss HMC (Duane et al., 1987;
Neal, 2011; Betancourt, 2017) for probabilistic seismic tom-
ography. HMC integrates the randomness of MCMC with
the gradients used in deterministic optimisation. For prob-
lems of sufficient dimensionality n, traditionalMCMC tech-
niques such as Metropolis–Hastings (MH) sampling (e.g.
Chib and Greenberg, 1995) quickly become too computa-
tionally expensive. This is because the amount of forward
problem solutions required to obtain an independent sam-
ple grows unfavourably with dimensions, for example, with
O(n²) (Neal, 2011) for the MH algorithm. Using HMC
relaxes this to O(n5/4) (Neal, 2011), making it particularly
well-suited for large-scale problems, including FWI.

Hamiltonian Monte Carlo works by interpreting the misfit
surface as a gravitational potential that controls the move-
ment of a model through model space. Models with relatively
low misfit correspond to potential lows. Gravitational forces,
proportional to the gradient of the potential, point towards
these lows. The movement of the model is determined by
Hamilton’s equations, the solutions of which are trajectories
that roughly orbit local minima. This recipe only allows for
the movement in model space giving some starting location,
but it does not provide the randomness required from
MCMC methods. Therefore, the movement of this particle
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is stopped after some time, and its momentum is randomly
refreshed.

The gradients used in deterministic inversions for the
optimisation of the misfit find their place in HMC in the
integration of Hamilton’s equations. In fact, the same gra-
dient that guides gradient-descent methods towards the
models of lower misfit, guides the HMC particle in its gravi-
tational potential.

15.4.3 Test Case: Probabilistic FWI Using HMC
To demonstrate the strength of uncertainty quantification
using HMC for tomographic problems, we show how the
algorithm can be applied to a synthetic FWI. The high
dimensionality of the model space paired with the computa-
tional costs of the forward problem of FWI has so far
limited its applicability to low-dimensional special cases
(Käufl et al., 2013; Afanasiev et al., 2014; Hunziker et al.,
2019; Visser et al., 2019; Kotsi et al., 2020). For the same
reasons, resolution and uncertainty analysis in FWI is still
mostly based on making the assumption of a Gaussian pos-
terior centred near a hopefully meaningful approximation

of the maximum-likelihood model (Fichtner and Trampert
2011; Bui-Thanh et al., 2013; Fichtner and van Leeuwen
2015; Liu et al., 2019a, 2019b), that is, the result of
a gradient-descent type algorithm.

Gebraad et al. (2020) investigated P-SV wave propaga-
tion in a synthetic transmission-type setting, shown in
Fig. 15.4. The free parameters for this example are P-wave
velocity, S-wave velocity, and density. For each of these,
there are values at 180� 60 grid points to estimate, bringing
the total number of free parameters to 32,400. The sources
are randomly oriented moment tensor sources with 50 Hz
dominant frequency. At this frequency, the structure of the
target is partially sub-wavelength. The waveforms are
recorded at the top of the medium, and the wave equation
is solved using a finite-difference scheme (Virieux, 1986).

Using HMC, it was possible to reliably recover important
aspects of the posterior. Shown in Fig. 15.4 are two poster-
ior properties: the posterior means and standard deviations.
Although these quantities fail to describe the non-linear
aspects of the posterior fully, they do in this case provide
useful first-order information, such as the approximate best
model, and model resolution. For example, it can be seen
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Figure 15.4 Synthetic transmission FWI setup (left column) and inference results from HMC (middle and right column). All columns
contain, from top to bottom, P-wave velocity, S-wave velocity, and density. The posterior statistics are computed using 30,000 samples.
Adapted from Gebraad et al. (2020).
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that S-wave velocity is much better constrained than P-wave
velocity. This is due to the fact that S-waves have larger
amplitudes, thereby having a larger weighting in the likeli-
hood function. Additionally, the experimental geometry
also shapes the posterior. Depending on the strength of
material variations, the posterior can be significantly non-
Gaussian, as found in several P-wave and density marginals.
These, along with additional details, can be found in
Gebraad et al. (2020).

A particularly significant result from this example is the
appraisal of density, which recently received new attention
with the emergence of FWI (e.g. Blom et al., 2017). Known
to be a notoriously ill-resolved parameter, density has typ-
ically been strongly regularised in seismic tomography.
Deterministic results may therefore fail to quantify if the
resulting density images are controlled by regularisation or
required by the data (e.g. Kuo and Romanowcz 2002;
Resovsky and Trampert, 2002). Using HMC allows us to
circumvent the regularisation effect. The resulting density
image is rather poor, showing only regions where density
contrast is strong. However, one can assert that this is due to
the data, which provides more confidence in the images and
their uncertainties.

15.4.4 Variational Inference
A second approach to approximate the posterior distribu-
tion p(m|d) is variational inference. It rests on the design of
a convenient analytical function, for instance,
a superposition of Gaussians, that closely matches p(m|d).
Since it is impossible to compute both p(m|d) and its analyt-
ical approximation over the entire model space to compare
them, they are evaluated only for specific models m.
Following such an evaluation, the analytical approximation
is updated to better fit p(m|d). Specifically, the aim of vari-
ational inference is to minimise the Kullback–Leibler (KL;
Kullback and Leibler, 1951) divergence, which measures the
discrepancy between two probability distributions , e.g. the
posterior and its approximation.

The specific functional form of the analytical approxi-
mation can, in principle, be chosen freely. It controls the
amount of detail that can be represented, as well as com-
putational cost. A very basic approximation would be to fit
a Gaussian to an unknown posterior p(m|d), but its ability
to capture non-linear effects, including local optima, is
obviously limited. The real power of variational inference
lies in using more advanced functions to approximate the
posterior.

Much work has been done on finding optimal approxi-
mating functions in many different settings. For seismol-
ogy, and especially probabilistic tomography, readily
accessible gradient information already points in the dir-
ection of variational methods that employ gradients. One
such method, Stein Variational Gradient Descent (SVGD;
Liu and Wang, 2016), works by transporting an ensemble

of models through model space until their distribution
density matches that of the posterior distribution p(m|d).
Since computations for the individual models in the
ensemble are independent, parallelisation on HPC systems
is straightforward.

The SVGD is given special mention, as a study by Zhang
and Curtis (2020) applied the method to the same posterior
as shown in Fig. 15.4. They found posterior statistics (the
means and standard deviations) very similar to those found
by the study from Gebraad et al. (2020), which increases
confidence in both methods.

15.4.5 Discussion
In the previous paragraphs, we described two modern algo-
rithms for uncertainty quantification in seismic inverse
problems. Although both methods were applied to
a synthetic FWI, their success in this computationally
expensive problem with many free parameters indicates
a potential for future developments towards large-scale
uncertainty quantification in seismology.

Although HMC is shown to compute reliable posterior
quantities, the runtimes required for the algorithm are
much higher than for deterministic methods. The simula-
tion of physics (e.g. the wave equation), can typically be
parallelised on HPC systems. However, parallelising
MCMC by running multiple copies of it, typically does
not scale performance linearly with increasing computa-
tional power.

The SVGD lends itself better to parallelisation onmodern
HPC systems, and the analytical approximation of the pos-
terior facilitates the calculation of statistical properties.
These advantages are balanced by the inherent simplifica-
tions of the variational approach, which limit the ability to
explore more complex posterior distributions. These simpli-
fications include the prescribed functional shape of the dis-
tribution and the number of ensemble members used to
actually compute an approximation. Hence, it is impossible
to obtain arbitrarily precise posteriors by running the algo-
rithm for more iterations. This is in contrast to MCMC
methods, which often exhibit slower convergence but higher
precision.

These trade-offs between methods show how both are
specialised tools. The common denominator between these
methods is that they exploit all readily available information
as much as possible, which, in the case of many seismo-
logical problems, is misfit and gradient information. The
decision between the discussed and possibly other methods,
including those presented in Sambridge (this volume), needs
to be carefully made, depending on the aim of a study and
the inverse problem considered. Streamlining this selection
process will require the development of concepts and tools
for the quantitative comparison of algorithms for a usefully
broad range of target problems. This topic is a focus of
current research.
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15.5 Concluding Remarks

The past decade of seismological research has been marked
by an astonishing diversification of forward and inverse
modelling methods. This trend is largely driven by the
need to achieve higher resolution and lower uncertainties
in tomographic images or earthquake source models.
Hence, we act in accord with the No-Free-Lunch theorem,
often without knowing it explicitly.

Ultimately, however, diversification is bound by the
complexity of the algorithms that we can use without
misusing them, and that we can maintain with realistic
funding and human resources. To some extent, we can
push the boundary of complexity by adopting a better
programming style, where codes are properly com-
mented, documented, continuously tested, and comple-
mented by reproducible and educationally valuable
examples.

The number of recently proposed methods may seem
daunting, even for experienced scientists. Identifying the
methods that ultimately move our science forward requires
community-driven trial and error. Similar to natural selec-
tion, this process maps out the niches where certain
approaches are fitter than others. Considering the omnipres-
ence of exponential distributions in nature, science, and
technology, it may be suspected that the vast majority of
niches will be very small, whereas few others will dominate
the ecosystem of seismological applications.

On average, newly proposed methods seem to become
more complicated, building on increasingly sophisticated
mathematical concepts. Hence, the application of a specific
method and the community-driven trial and error require
proper education, to which this chapter aims to contribute.
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16
Joint and Constrained Inversion
as Hypothesis Testing Tools

Max Moorkamp

Abstract: In this chapter, I discuss an alternative perspective
on interpreting the results of joint and constrained inver-
sions of geophysical data. Typically such inversions are
performed based on inductive reasoning (i.e. we fit
a limited set of observations and conclude that the resulting
model is representative of the Earth). While this has seen
many successes, it is less useful when, for example, the
specified relationship between different physical parameters
is violated in parts of the inversion domain. I argue that in
these cases a hypothesis testing perspective can help to learn
more about the properties of the Earth. I present joint and
constrained inversion examples that show how we can use
violations of the assumptions specified in the inversion to
study the subsurface. In particular I focus on the combin-
ation of gravity and magnetic data with seismic constraints
in the western United States. There I see that high velocity
structures in the crust are associated with relatively low
density anomalies, a possible indication of the presence of
melt in a strong rock matrix. The concepts, however, can be
applied to other types of data and other regions and offer
an extra dimension of analysis to interpret the results of
geophysical inversion algorithms.

16.1 Introduction

Within the Earth Sciences and, more specifically, solid-
Earth geophysics the term joint inversion typically describes
approaches where datasets obtained through different
measurement techniques are inverted within a single inver-
sion algorithm. This can be data sensitive to one physical
parameter (e.g. seismic shear wave velocity), but sensing the
Earth in fundamentally different ways (e.g, receiver func-
tions and surface wave dispersionmeasurements; Julia et al.,
2000), or datasets sensitive to different physical parameters
(e.g. seismic velocity and electrical resistivity; Gallardo and
Meju, 2003). In joint inversion, all data under consideration
are input into the algorithm and the combined parameter
model is adjusted until all data are fit to a satisfactory level
(e.g. Lines et al., 1986). In contrast, constrained inversion in
the context of this discussion relates to methods that utilise
a fixed model as a constraint in the inversion of a single

dataset (e.g. Mackie et al., 2020; Harmon et al., 2021;
Martin et al., 2021). Other types of constrained inversion
exist, for example, those based on fitting physical properties
to a priori defined clusters (e.g. Carter-McAuslan et al.,
2015), possibly with some updates to the cluster centres
(e.g. Sun and Li, 2015b; Astic and Oldenburg, 2019) or
specifying different parameter ranges in different parts of
the model (e.g. Darijani et al., 2021). I focus on model-
constrained inversions, i.e. where spatial similarity to
a known model is enforced (e.g. Zhou et al., 2014; Franz
et al., 2021), as they are very similar to joint inversion
methods. However, many of the concepts described here
can extended to other types of joint and constrained
inversion.

There have been a variety of reviews of joint inversion
approaches in recent years (Gallardo and Meju, 2011;
Haber and Holtzman Gazit, 2013; Moorkamp et al.,
2016b; Moorkamp, 2017; Spichak, 2020) which describe
both the theory behind joint inversion and give examples
of applications for Earth imaging. I will therefore keep the
description relatively brief and focus on issues relevant to
using inversion as a hypothesis testing tool. Similar ideas
have been expressed previously (Bosch and McGaughey,
2001; Sun and Li, 2015a; Kamm et al., 2015), but, in my
view, have not received the attention they deserve. I will also
mention new developments that have arisen in the last
couple of years.

16.2 Basic Principles of Joint and Constrained
Inversion

In order to simplify themathematical notation, I will discuss
the joint inversion and model constrained inversion in the
context of gravity and surface wave dispersion data which
I also use in some of the examples here. The principles
extend to any other coupled inversion with two methods.
More general mathematical treatments and extensions to
more than two methods are given in Moorkamp et al.
(2011) and Bosch (2016), for example. Considering meas-
urements of gravitational acceleration gz and Rayleigh
wave dispersion dr we have the corresponding physical
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parameters density ρ and shear wave velocity vs. Rayleigh
wave dispersion also has a minor sensitivity to the density
structure of the Earth. However, in practice, this sensitivity
is often ignored (e.g. Fishwick, 2010; Weise, 2021) and so
I will do the same here. To solve the joint inverse problem
for these two methods we have to define an objective func-
tion Φ, viz.

Φðρ;vsÞ ¼ Φgrav;dðρÞ þ Φdis;dðvsÞ þ λgravΦgrav;rðρÞ
þ λdisΦdis;rðvsÞ þ νΦcouplingðρ;vsÞ:

Here Φgrav;dðρÞ is the data misfit term for the gravity data,
Φdis;dðvsÞ the misfit for the dispersion measurements,
Φgrav;rðρÞ the regularisation for density, Φdis;rðvsÞ the regu-
larisation for shear wave velocity, and Φcouplingðρ;vsÞ the
coupling between density and shear wave velocity; λgrav
and λdis are the Lagrange parameters for the regularisation
and ν the weight for the coupling term.

Note that only the coupling term contains both physical
parameters, all other terms only depend on one of the two
parameters. Thus the coupling term is crucial for the joint
inversion problem and I will give some examples of popular
approaches. Using the same notation, the objective function
for a density inversion constrained by a seismic velocity
model can be written as

ΦvsðρÞ ¼ Φgrav;dðρÞ þ λgravΦgrav;rðρÞ þ νΦcouplingðρ;vsÞ:

Here the notation Φvs reflects the fact that the velocity
model is provided by the user and needed for the coup-
ling calculation, but does not change during the inver-
sion. The example of the model-constrained inversion
particularly highlights the importance of the coupling
term, as it is the only thing that distinguishes it from
a regular inversion of a single dataset. The goal of the
inversion algorithm is then to find a model that fits the
observed data and has a small coupling constraint, cor-
responding to high similarity or correlation between the
models. The regularisation largely serves to stabilise the
inversion and model roughness considerations are often
secondary for joint inversion (e.g. Moorkamp et al.,
2016a).

To couple different parameters, a variety of methods have
been proposed (e.g. Haber and Oldenburg, 1997; Gallardo
and Meju, 2003; Haber and Holtzman Gazit, 2013;
Zhdanov et al., 2012; Sun and Li, 2016; Heincke et al.,
2017). I will focus on three methods: (i) direct functional
parameter relationships, (ii) cross-gradient coupling, and
(iii) variation of information coupling. A more extensive
discussion of different coupling methods can be found in
Meju and Gallardo (2016) and Colombo and Rovetta
(2018).

Direct functional relationships are conceptually and
mathematically among the simplest ways to couple two
different physical parameters. One defines a function
ρ ¼ f ðvsÞ and assumes that it describes the connection

between the different parameters in the inversion domain.
Such a relationship can be linear (e.g. Tiberi et al., 2003;
Moorkamp et al., 2011) or more complex (e.g. Maceira and
Ammon, 2009; Panzner et al., 2016; Heincke et al., 2017),
and in some cases the relationship is allowed to vary (e.g.
O’Donnell et al., 2011). Direct parameter relationships
establish a strong link between the physical parameters
and thus a strong coupling between the methods
(Moorkamp, 2017). However, they can be difficult to esti-
mate from independent information and it is often question-
able to which degree an estimated relationship is
representative of the region of interest. Even where high-
quality borehole-logs exist and the geology can be assumed
to be relatively homogeneous, e.g. in sub-basalt hydrocar-
bon exploration, different researchers can estimate different
relationships with significant impact on the final results
(Panzner et al., 2016; Heincke et al., 2017; Moorkamp,
2017). Therefore direct parameter relationships are not
very common in joint inversion with the exception of seis-
mic-gravity inversions (e.g. Tiberi et al., 2003; Maceira and
Ammon, 2009; O’Donnell et al., 2011; Blom et al., 2017;
Zhao et al., 2020), where a linear relationship is often
deemed appropriate (Birch, 1961; Gardner et al., 1974;
Barton, 1986).

The most commonly applied coupling constraint in joint
inversion, the cross-gradient constraint (Gallardo and
Meju, 2003), side-steps issues with unknown direct relation-
ships by focusing on structural similarity (Meju and
Gallardo, 2016). The underlying assumption is that there
should be a correlation between parameter changes if all
methods sense the same geological structures. Compared to
previous structural coupling constraints (Haber and
Oldenburg, 1997), the cross-gradient even permits cases
where one parameter changes and the other stays constant.
These very loose assumptions suggest that cross-gradient
coupling should be appropriate in the majority of geological
scenarios and has led to its general success (e.g. Gallardo
and Meju, 2007; Lelièvre et al., 2016; Linde and Doetsch,
2016; Bennington et al., 2015; Shi et al., 2017; Gross, 2019).
Furthermore, we can use the results from a cross-
gradient–based joint inversion to estimate parameter rela-
tionships (e.g. Linde et al., 2006; Moorkamp et al., 2013)
and further analyse these relationships for geological classi-
fication (e.g. Sun et al., 2020; Li and Sun, 2022) or estimate
petrophysical properties (e.g. Meju et al., 2018). This data-
driven analysis can complement approaches that use petro-
physical relationships directly in the joint inversion (e.g.
Wagner et al., 2019; Afonso et al., 2019; Manassero et al.,
2021). However, there are some situations where cross-
gradient coupling is too weak to result in any meaningful
changes in the inversion output (Franz et al., 2021; Weise,
2021), and this appears to be particularly the case when two
methods with moderate resolution are combined.

Recently I presented a new coupling constraint based on
the concept of variation of information (VI) (Moorkamp,
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2021, 2022). Variation of information is closely related to
mutual information, an information theoretical quantity
used in machine learning and medical imaging (e.g. Pluim
et al., 2003). Using mutual information for geophysical
joint inversion was first proposed by Haber and
Holtzman Gazit (2013), but they reported severe issues
with convergence and did not show any practical results.
Later Mandolesi and Jones (2014) used mutual informa-
tion for 1D constrained inversion of MT data and seismic
models. Until recently no successful examples of a full joint
inversion based on VI or mutual information have been
shown. The core idea of using VI for joint inversion is that
it measures the amount of information that is lost when
transforming from one variable to the other (Meilă, 2003).
In other words, how much does knowing variable a (e.g.
seismic velocity), tell us about variable b (e.g. density).
Variation of information decreases the smaller the amount
of information loss and thus a joint inversion approach
that minimises VI as part of the objective function seeks
a one-to-one correspondence between the physical param-
eters without specifying a preferred form (e.g. clusters,
functional), between the quantities. Thus, VI might be
a reasonable middle ground between the strong assump-
tion of a specified relationship and the loose coupling
provided by the cross-gradient.

16.3 Joint Inversion and Hypothesis Testing

The common idea behind joint inversion expressed in most
publications is that we want to obtain models that are better
in some loosely defined sense (e.g. Moorkamp et al., 2013;
Giraud et al., 2017; Astic et al., 2021; Ghalenoei et al., 2021;
Moorkamp, 2021; Tu and Zhdanov, 2021). More import-
antly though, a model that is constructed from a variety of
observations is likely to be a better representation of the
Earth. However, this view point also leads to a variety of
issues that frequently arise when judging joint inversion
results and are controversially discussed in the joint inver-
sion community:

1. Does it make sense to combine methods with different
resolution capabilities (e.g. full-waveform seismic and
electromagnetic data) or are we just transferring struc-
tures from the high-resolution method to the low-
resolution method?

2. To which degree do the regions of sensitivity have to
overlap, particularly when combining methods sensi-
tive to different parameters? Is it enough when there is
some overlap in sensitivity or do they have to largely
agree?

3. Which coupling approach is appropriate?
4. What does it mean when a joint inversion fails, that is,

we cannot find a model that fits all observations satis-
factorily and has a low coupling constraint?

5. How do we reconcile different results produced by joint
inversions with different types of coupling?

These are valid and important questions when trying to
understand the value of a joint inversion result for inter-
pretation. It is also related to the fact that we often use
inversions in an explorative manner, meaning, we do not
have a pre-conceived idea, but try to image unknown
structures in the Earth. This exploration is often based on
inductive reasoning (Elsasser, 1950; Fullagar and
Oldenburg, 1984; Hong and Sen, 2009). Based on the misfit
at a limited number of measurement locations, we con-
clude how representative the Earth model is in the whole
region of investigation. In addition, we often perform
selected synthetic tests and infer from the success of these
tests that the inversion algorithm also produces reasonable
Earth models with the real observations. However, when
using inversion for hypothesis testing many of the afore-
mentioned issues can be resolved.

The first thing to realise is that joint inversions operate
largely in the null-space of the individual methods. Early
hopes that, due to the additional data and different sensitiv-
ities, joint inversion leads to better-behaved inverse prob-
lems and thus potentially to solutions that match the
observations better than individual inversions have not
been realised. In fact, many current joint inversion
approaches need more iterations and are more difficult to
lead to converge than individual inversions (Moorkamp
et al., 2011, 2016a; Heincke et al., 2017). Thus the typical
goal for a joint inversion is to reach a comparable misfit to
the individual inversion results for each dataset under con-
sideration (e.g. Kamm et al., 2015; Paulatto et al., 2019).
Thus when comparing the models from joint inversion and
individual inversion from the perspective of a singlemethod,
we have two different models with the same data misfit and
thus by definition the models are connected through the
model null-space. Thus when looking at the joint inversion
results for each of the methods, the coupling in the joint
inversion is akin to regularisation. Instead of seeking only
a smooth model, the inversion seeks a model that is similar
to the current model from the other methods under the
coupling constraint.

I illustrate this idea in Fig. 16.1. Within the nullspace for
each method we have the individual inversion results ρind
and vind with a specific regularisation term and two sets of
joint inversion results for two different types of coupling.
Each of those joint inversion results has its own null-space
under the respective coupling constraint. This null-space is
a sub-space of the null-space of each method individually
and might or might not overlap with the null-space from the
other joint inversion results. When the joint inversion litera-
ture discusses improved resolution or decreased ambiguity
of the results, this is what is typically meant: Under a given
coupling constraint the null-space is a sub-region of the
nulls-space for each method individually. However, two
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different coupling methods will result in different results
that are typically not reconcilable in the sense that the null-
spaces do not overlap. Thus when comparing the results
from two different joint inversions, we might end up with
differing results that fit all observations to the same level and
where the models are strongly linked to the respective coup-
ling constraint. Accordingly, it becomes difficult to decide
which of these results should be preferred and used for
further interpretation.

In my view, the situation becomes conceptually easier and
intellectually better to handle when we switch from the
explorative application of inverse methods (‘show me what
is there?’) to a hypothesis testing viewpoint. If we use inver-
sion with a single method for hypothesis testing, the hypoth-
esis to be tested is: ‘No distribution of physical properties
with the chosen discretisation and smoothness level exists
that can produce data that fit the observations.’ If the inver-
sion finds a model that fits the data to a satisfactory level we
can refute this hypothesis. For joint inversion, the hypothesis
to be tested is modified to: ‘No distributions of physical
properties with the chosen discretisation and smoothness
level that also adhere to the coupling constraints exists that
can produce data that fit all the observations.’

For the inversion of an individual dataset, the hypoth-
esis testing approach might appear relatively dull and not
particularly interesting. After all, we know that, for
example, a density distribution must exist that produced
the gravity observations. So the hypothesis test is mainly
about technical details such as discretisation and level of
smoothness. Once we have found appropriate values for
those and other parameters for the inversion algorithm,
we should be able to find a model. It is different for the
joint inversion problem though. If we perform individual
inversions first, we have demonstrated that we can fit the
observations with some parameter distribution for each
method separately. Thus the hypothesis test is now about

the appropriateness of the coupling approach. This leaves
us with two interesting possible outcomes for our joint
inversion experiment: (i) We can fit the data to the same
degree as the individual inversions and the coupling criter-
ion is adhered to throughout the modelling domain. We
have therefore demonstrated that this coupling constraint
is a potential candidate to connect those two physical
properties and can analyse the connection to learn more
about the Earth. (ii) We cannot fit the observations to the
same level or have regions of the model that violate the
coupling constraint. Thus the coupling constraint is not
a feasible candidate or it is only applicable in parts of the
inverted region. I find the last scenario (i.e. a result that
suggests that the relationship is applicable in large parts of
the model but not everywhere), particularly interesting. Of
course, a large number of coupling constraints exist that
are obviously nonsensical. For example, we could force
electrical resistivity and seismic velocity in each cell to
have identical numerical values. The fact that the used
coupling works in parts of the model suggests that it is
a reasonable assumption. However, the existence of
a region that does not conform with this assumption indi-
cates that something unexpected is happening there. To
say it in the famous quote ascribed to Isaac Asimov: ‘The
most exciting phrase to hear in science, the one that her-
alds new discoveries, is not “Eureka!” but “That’s funny.”’
Furthermore, the existence of this region must be man-
dated by the data, as the coupling constraint works to
reduce the deviation from the assumptions. In particular,
all data need to have significant sensitivity to the proper-
ties of this structure as otherwise the minimisation of the
objective function would produce a model that does not
include the constraint violation.

To my knowledge, the first example of using joint inver-
sion in this way was presented in Moorkamp et al. (2007)
and, in more detail, in Moorkamp (2007). There I analyse
magnetotelluric and receiver function data from the Slave
Craton, Canada with a 1D joint inversion approach.
Individual inversions of both datasets indicate a conduct-
ive structure that approximately coincides with the depth
of the Moho based on the receiver functions. Given the
uncertainty in each dataset, it is conceivable that the top of
this conductor is located just above the Moho in the lower-
most crust or just below the Moho (i.e. in the uppermost
mantle). I therefore designed two joint inversion experi-
ments based on coincident layer interfaces: one where the
conductor is forced to be located below the Moho and one
where the conductor is allowed to start above the Moho.
The results of these experiments are shown in Fig. 16.2.
When the conductor is forced to be located just below the
Moho, the joint inversion cannot fit both datasets simul-
taneously as indicated by the strong trade-off in fitting the
two datasets (red squares in Fig. 16.2a). When the receiver
function data are fit, the conductor is too deep to explain
the MT measurements. Conversely, when the MT data are

Coupling 2

Coupling 1

Acceptable density models Acceptable velocity models

ρjoint,1

ρjoint,2

υjoint,2

υjoint,1

υind

ρind
ρ
null,1

Acceptable
under Coupling 1

Acceptable
under Coupling 2

Figure 16.1 Illustration of the relationship between the results of
individual inversions ðρind ; vindÞ and the results of two joint
inversions with different coupling approaches, ðρjoint;1; vjoint;1Þ and
ðρjoint;2; vjoint;2Þ, within the null-space of each method.
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fit, the Moho is shallower than permitted by the receiver
functions. As soon as the restriction of the conductor to the
mantle is lifted, the issue of not fitting all data vanishes
(black circles in Fig. 16.2a) and a model can be found that
fits all observations. The combined experiments clearly
demonstrate that, under the assumption of a layered
Earth, the conductive material is located in the crust and
not in the mantle.

This first example demonstrates the power of negative or
unsuccessful joint inversion results when seen through the
perspective of hypothesis testing. It might become apparent
at this point that I am using the term hypothesis testing in
a qualitative sense, even though it is a well-developed field of
statistics with clear procedures. While this is feasible in the
context of assessing error-weighted data misfits under the
assumption of Gaussian errors, the statistical distributions
for coupling constraints such as the cross-gradient or vari-
ation of information are currently not known. Thus
a rigorous statistical significance test is currently not pos-
sible and the assessment of what constitutes a significant
deviation or a violation of the hypothesis is left to the
researcher. Despite these difficulties the concept is useful
as the first example illustrates.

16.4 Examples from the Western United States

To demonstrate these concepts further, I use data from the
western United States around the Yellowstone Hotspot and
the Snake River plain (SRP; Fig. 16.3). This is a region of
high interest due to the location of the hotspot, the adjacent
flood basalts, and the transition from active tectonic exten-
sion in the Basin and Range province in the south to old
cratonic structures of theWyoming Craton in the north (e.g.
Kelbert et al., 2012; Meqbel et al., 2014). Thanks to the

USArray program, the region is well covered with MT
stations (de Groot-Hedlin et al., 2003–2004; Schultz et al.,
2006–2018) and passive seismic measurements (IRIS, 2003).
As a result, a variety of velocity and resistivity models have
been created to investigate the structure of the lithosphere
(e.g. Schmandt and Humphreys, 2011; Kelbert et al., 2012;
Bedrosian and Feucht, 2014; Meqbel et al., 2014; Liu and
Gao, 2018; Gao and Shen, 2014). In addition, the European
Space Agency’s GRACE and GOCE missions provide glo-
bal coverage of gravity data (e.g. Pail et al., 2018; Zingerle
et al., 2020) and magnetic measurements are available
through the North America magnetic database (Bankey
et al., 2002). Thus it is an ideal setting to demonstrate the
capabilities of joint inversion and the idea of hypothesis
testing.

The study region is shown as a blue rectangle in Fig. 16.3.
For all inversion experiments, I discretise the Earth into 64 ×
64 × 30 rectilinear cells with horizontal dimensions of 10 km×
10 km. In vertical direction, the cell size increases from 1 kmat
the surface to 16 km at depth and the model covers the upper
160 km of the Earth. I extract Bouguer-corrected gravity data
with a spacing of 0.1 degree from the XGM2019 global grav-
ity model (Zingerle et al., 2020) resulting in 3,350 data points.
Magnetic data with identical spacing are taken from the
North America magnetic database (Bankey et al., 2002). To
reduce the influence of small-scale near-surface features,
I upward continue the full datasets to a height of
10,000 m before filtering and downsampling. As a seismic
reference model, I use the shear wave velocity model of
Gao and Shen (2014). It is based on full-waveform ambi-
ent-noise tomography and covers the upper 200 km of the
lithosphere. Its resolution characteristics are comparable
with the lateral resolution that can be expected from the
potential field inversions and thus is a suitable candidate
for a constrained inversion.
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As a first example, I perform a constrained inversion of
total field magnetic data and the seismic model coupled
by a VI constraint. Strictly speaking, I am testing two
hypotheses simultaneously: (a) The velocity model of Gao
and Shen (2014) is a reasonable representation of crustal
structure. (b) There is a one-to-one correspondence
between seismic velocity in this model and magnetic sus-
ceptibility. Given that the seismic velocity model has been

widely used in other studies, for the purpose of this
experiment I will assume (a) to be true. While certainly
the model is not a perfect representation of the Earth and
some structures are due to regularisation choices and
inversion strategy, assumption (b) is more likely to be
problematic. First of all, the regions of sensitivity are
not identical. Gao and Shen (2014) give the depth range
of 40–150 km as the region of highest resolution and
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Figure 16.3 Study region with magnetotelluric (MT) site distribution from the USArray MT initiative (top left) (de Groot-Hedlin et al.,
2003–2004, Kelbert et al., 2011). I also plot a horizontal slice through the reference velocity model of Gao and Shen (2014) at a depth of 15
krn (top right), the Bouguer gravity anomaly from XGM2019 (bottom left), and the magnetic anomaly from the North America magnetic
database (Bankey et al., 2002) (bottom right). The blue lines mark the extent of the inversion domain.
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structures above 20 km depth are likely to be poorly
resolved. In contrast, magnetic measurements are typic-
ally only sensitive to crustal structures where Earth
materials are above the Curie temperature which is esti-
mated to be reached at a depth of 23–30 km in the study
area (Bouligand et al., 2009). Thus there should be some
overlapping sensitivity, but there are certainly some dis-
crepancies in resolution at different depth levels.

A further complication is that I model the data under the
assumption of an inducing field with magnitude and direc-
tion corresponding to the current magnetic field according
to the WMM model (Chulliat et al., 2020) and thus neglect
remnant magnetisation. Given that flood basalts are present
throughout the Snake River plane, this is a simplification.
However, measurements of magnetisation directions on
basalts from the SRP show that these coincide with the
current spin axis of the Earth (Tauxe et al., 2004). Thus
assuming a single source of magnetisation will result in
anomalies with the correct shape, but will attribute the
amplitude of the anomaly only to changes in susceptibility.
Other magnetic studies in the region have also assumed
coincident directions of induced and remanent magnetic
directions (Finn andMorgan, 2002; Bouligand et al., 2014).

For the inversion, I start with a high coupling weight ν,
trying to force as much coupling as possible. When the
inversion stops progressing, I reduce the coupling weight ν
by a factor of 10. In all inversions performed here, the
algorithm progresses again after the reduction of the coup-
ling weight, indicating that the coupling is the main obstacle
preventing an adequate data fit. For the constrained mag-
netic inversion, the initial starting value of ν ¼ 106 is
reduced once to a final value of ν ¼ 105. I show horizontal
slices through the inversion results at depths of 15 km and
30 km as well as the recovered velocity susceptibility rela-
tionship in Fig. 16.4. On average, the magnetic observations
are fit within�1 nT, which is at the lower end of the reported
data uncertainty (Bankey et al., 2002). Comparing the sus-
ceptibility model with the velocity model used as
a constraint at a depth of 15 km (upper row in Fig. 16.4)
reveals some similarities, but also significant differences
between the two models. For example, there appears to be
a spatial correlation between low velocity and low suscepti-
bility features along the eastern edge of the modelling
domain. In contrast, high velocities are associated with
high susceptibility in some regions,e.g. south of the SRP,
and average susceptibility elsewhere. In addition, some of
the high susceptibility anomalies within the SRP show dif-
ferent shapes compared to the features in the seismic vel-
ocity model.

The situation is different at a depth of 30 km (middle row
in Fig. 16.4). Here we can see good correspondences
between most structures in the susceptibility model and the
velocitymodel. Particularly in the western half of the region,
the two models vary in a similar manner. The impression of
disparity between the models at shallow depths is confirmed

by the parameter cross-plots for the two models (bottom
row in Fig. 16.4). Here I plot susceptibility versus velocity in
each model cell for the entire inversion domain (left) and the
depth slices at 15 km and 30 km depth (right), respectively.
When looking at the relationship for the whole inversion
domain, we can see strong variability of susceptibility cor-
responding to velocities between 2.5 and 4.0 km/s. Despite
the inclusion of the variation of information constraint, no
discernible relationship can be identified. As can be seen
from the colours and suggested by the relatively low seismic
velocity, these scattered estimates correspond largely to the
crust. The constrained inversion indicates that throughout
the entire crust no relationship between the seismic model
and the susceptibility model can be established.

This observation changes abruptly when looking at sus-
ceptibilities corresponding to shear wave velocities > 4:0
km/s, i.e. the upper mantle. Here a well-defined relationship
emerges. As discussed, this is somewhat suspicious as rocks
at this depth should be significantly above the Curie tem-
perature and thus lose their magnetic properties (Pasquale,
2011). In addition, due to the decay of the sensitivity kernel
with depth, magnetic data are most sensitive to near-surface
structures (e.g. Hinze et al., 2013). In this example, tests
confirm that the data have little to no sensitivity to struc-
tures below 30 km depth. Thus this relationship is an arte-
fact of the constrained inversion approach. As the data have
no sensitivity at this depth range, the inversion algorithm is
free to set the susceptibility values and thus the coupling
constraint forces a unique relationship, as it is designed to
do. The depth slice at 30 km is an example of the transition
between a region with significant sensitivity and low sensi-
tivity at depth. Large parts of themodel are transferred from
the seismic velocity model without much influence on the
data fit. However, the regions that show differences in struc-
tures and where the parameter relationship is nonunique,
correspond to aspects of the model that are required by the
magnetic data in direct contradiction to the coupling con-
straint. Therefore, these regions are probably themost inter-
esting aspects of the constrained model.

Based on the constrained inversion, we can refute the
hypothesis that there is a susceptibility model with a one-
to-one relationship with the seismic velocity model in the
crust. Two possible conclusions can be drawn from this: (a)
The velocity model is not a good representation of struc-
tures in the crust, or (b) Susceptibility and velocity sense
different structures above 30 km depth. Based on the reso-
lution analysis of the seismic model discussed above, it is
likely that some velocity structures are missing or poorly
represented. As the following experiment with constrained
inversion of gravity shows, the overall structure of the crust
appears to be reasonably represented though. Thus my
conclusion is that there is a difference in causative forma-
tions for the two physical properties in the Earth. A full joint
inversion could shed further light in this question, as there
might be alternative models that are compatible with the
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Figure 16.4 Results of inversion of magnetic data constrained by the velocity model of Gao and Shen (2014). I show horizontal slices
through the susceptibility model (left column) and the reference velocity model (right column) at a depth of 20 km (top row) and 30 km
(middle row). The bottom row shows the velocity–susceptibility relationship for the whole model (left) and for the depth slice at 30 km
(right). Note that the colourbars are different between the upper two rows to improve the visibility of features.

16 Joint and Constrained Inversion 259

https://doi.org/10.1017/9781009180412.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009180412.017


seismological observations. This is, however, beyond the
scope of this discussion.

Instead, I want to discuss the results of a constrained
inversion of gravity data with the same seismic model to
demonstrate some of the differences. The general inversion
approach is identical to the inversion of magnetic data. The
mean is subtracted from the data and the inversion is for-
mulated in terms of density anomaly. I start with a large
coupling constraint that is gradually reduced when the
inversion stops making progress (from ν ¼ 106 to ν ¼ 105).
The final misfit is 1–2 mGal on average and is compatible
with the uncertainty of the gravity data. A slice through the
resulting model at a depth of 30 km and parameter relation-
ships are shown in Fig. 16.5. For this inversion we see
a strong correspondence between density anomaly and

velocity. Boundaries and shapes of structures in the velocity
model are mirrored in the density anomaly results. The par-
ameter relationship for the whole model shows a well-defined
shape at all velocities below 4.4 km/s. It appears to rise
linearly between 3.0 km/s and 4.0 km/s and then changes
slope and exhibits a more complex behaviour between 4.0
and 4.4 km/s. At the highest velocities, the relationship for the
whole model starts to scatter strongly but different branches
can still be identified. In this context, it is also important to
note that these branches are not associated with different
depths, but density values at similar depth show strong vari-
ability. Thus this effect cannot be explained by the fact that
I invert for density anomaly instead of absolute density.

When only looking at the relationship for the 30 km depth
slice in Fig. 16.5, a more well-defined relationship is evident.
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Each velocity corresponds to a density range of approxi-
mately �25 kg/m3. The non-linear behaviour of this rela-
tionship is interesting and somewhat surprising. Instead of
a monotonously increasing density anomaly with increasing
velocity as expected from typical velocity-density relation-
ships (e.g. Nafe and Drake, 1957; Birch, 1961; Barton,
1986), the density anomaly corresponding to the highest
seismic velocities is close to zero. I outline the regions of
highest seismic velocities in Fig. 16.5. Apart from some
small regions in the north-western corner of the model
which could be due to boundary effects, there is a high-
velocity region at the southern boundary of the Snake
River plain. It coincides with the Albion–Raft River–
Grouse Creek metamorphic core complex (Konstantinou
et al., 2012) where a lower crustal mush zone has been
invoked to explain the development of the complex. While
more focused investigations are necessary, it is conceivable
that the density model identifies a low-density zone caused
by a mix of fluids and melts while the seismic velocity is
dominated by high velocities of the surrounding rocks. This
is compatible with the interpretation based on the joint
inversion of resistivity and density for the same region
(Moorkamp, 2022).

On a broader level, the well-defined relationship at shear
wave velocities below 4.5 km/s and the good fit to the gravity
data of the constrained model indicate that both methods
image compatible structures. The complexities of the rela-
tionship suggest that simple linear velocity–density relation-
ships might not be appropriate as previously discussed by
Barton (1986). More work is needed to understand the
origin of this relationship and its connection to petrophysics
of the crust and mantle (Afonso et al., 2016). Here the
combination with resistivity from magnetotellurics and
a full joint inversion with seismic data can provide further
insights.

16.5 Discussion and Conclusions

The examples collected here demonstrate how unexpected
results and deviations from the assumed parameter relation-
ships can be used to gain insights into Earth structure if
considered in the framework of hypothesis testing. The core
idea is that such departures from the constraints imposed
during the inversion are caused by features in the data and
only evolve because the data demand it. Conversely when
the parameters adhere to the assumed relationship, it can be
seen as evidence supporting the assumption but also due to
a lack of resolution of one of the datasets as shown in the
magnetic data inversion. In that example, structures at
depth are clearly an expression of the null-space of magnetic
susceptibility inversions and not a reflection of true Earth
structure. The constrained gravity inversion shows how
seismology and gravimetry, for the most part, sense the
Earth in a similar manner as can be expected from

theoretical considerations. Still, the recovered relationship
exhibits complexities that do not adhere to the often-
assumed linear density velocity relationships.

Regardless whether the results confirm or refute our
assumptions, it is essential to explore different model par-
ametrisations, regularisation parameters, and other inver-
sion parameters. If not performed with care, inadequate
model discretisation etcetera can lead to spurious inver-
sion results and therefore incorrect conclusions. This is
even more critical in joint and constrained inversions
than in inversions of a single dataset, as the assumptions
of all involved methods have to be considered. However,
when used correctly, we can utilise both the successes and
failures of integrated inversion approaches to learn about
the Earth.
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All model and data files used for the two constrained
inversion examples including Python scripts to plot them
can be downloaded from https://doi.org/10.5281/zenodo
.6552879. The gravity data have been extracted from the
global XGM2019 gravity model (Zingerle et al., 2020),
which is accessible at http://doi.org/10.5880/icgem.2017.003.
Grids for the study region can be obtained through the
ICGEM calculation service http://icgem.gfz-potsdam.de/
tom_longtime by selecting XGM2019 (model 176) and cal-
culating the Bouguer anomaly (gravity anomaly bg).
Magnetic data can be downloaded from https://mrdata
.usgs.gov/magnetic/. The seismic velocity model used as
a constraint can be downloaded from https://doi.org/10
.17611/DP/10009352.

Information about the inversion codes used for this study
can be found at: https://sourceforge.net/projects/jif3d/.
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17
Crustal Structure and Moho Depth
in the Tibetan Plateau from Inverse
Modelling of Gravity Data

Shuanggen Jin and Songbai Xuan

Abstract: Although many geophysical observations and
models are available for the Tibetan Plateau (TP) and its
surroundings regions, our knowledge and understanding of
the uplift and deformation in the TP caused by the India–Asia
collision is still incomplete. Due to the environmental com-
plexity, the gravity method is indispensable to investigate the
evolution of the TP. This study concentrates on the Moho
depth and crustal density structure in the TP from gravity
inversion of Bouguer anomalies. The results show Moho
deeper than 60 km in the regions of the TP, suggesting thick-
ening of the crust. Two sinkingMohobelts in the southern and
northern plateau regions and the linearly increasing Moho
depth from the Indian Plate (IP) to the Indus-Yalu suture
can be used to infer the crustal fold that has resulted from
the India–Asia collision. On the other hand, the density struc-
tures show the lower density is commonly found in the crust
and the underlying lithospheric mantle beneath the TP, con-
trasting with the high density in the surrounding blocks.
Notably, the high density of the IP is observed underneath
the Himalayas, suggesting that the Indian lithosphere extends
northward, at least reaching the Indus-Yalu suture.
Corresponding to the sinkingMoho belts, the crustal densities
in these regions present relatively low, which may be evidence
for the absence of the eclogites in the lower crust beneath the
Himalayas and the Lhasa terrane. In contrast, the relatively
high densities underneath the Bangong-Nujiang suture are
potentially contributions to the interpretation of the eclogi-
tised lower crust.

17.1 Introduction

The India–Asia collision began at ~50 Ma and resulted in the
uplift of the Himalayas and the Tibetan Plateau (hereafter TP;
Molnar and Tapponnier, 1975; Yin andHarrison, 2000).With
an average elevation of 4–5 km and ~70 km thick crust (Li
et al., 2006; Teng et al., 2013, 2020; Li et al., 2014), the TP is an
excellent region for studying the mechanics of continental
deformation (Jin and Park, 2006; Jin et al., 2007). Over the
last few decades, several geophysical investigations have been
conducted and many tectonic activities beneath the TP have

been investigated (Owens and Zandt, 1997; Wang et al., 2003;
Huang and Zhao, 2006; Kumar et al., 2006; Hetényi et al.,
2007; Shin et al., 2007, 2009, 2015; Zheng et al., 2007; Jiménez-
Munt et al., 2008; Li et al., 2008; Nábělek et al., 2009; He et al.,
2010; Bai et al., 2013; Zhao et al., 2013; Zhang et al., 2014; Bao
et al., 2015; Liang et al., 2016; Wang et al., 2019; Teng et al.,
2020; Zhao et al., 2020). However, the long-standing question
on the tectonic mechanism responsible for the crustal thicken-
ing and uplift in the TP caused by the India–Asia collision is
still debated. Two contrasting models to explain the rheology
and structure of the lithosphere are the so-called jelly sandwich
and crème brûleé models (Searle et al., 2011). Several remark-
able models, including internal deformation (Houseman and
England, 1986), block extrusion (Tapponnier et al., 1982), and
lower crustal flow (Royden et al., 1997; Clark and Royden,
2000), have been proposed to interpret the India–Asia
collision.

The Tibetan Plateau, generated by the India–Asia collision,
is bounded by the Tarim Basin and Qaidam Basin to the
north, and the Himalaya, Karakoram, and Pamir mountain
chains to its south and west. As shown in Fig. 17.1, following
Yin and Harrison (2000), four bordering sutures – the Indus-
Yalu suture (IYS), the Bangong-Nujiang suture (BNS), the
Jinshajiang suture (JS), and the Anyimaqen-Kunlun-
Mutztagh suture (AKMS) – separate the TP into the
Himalaya mountains (HM), the Lhasa terrane (LT), the
Qiangtang terrane (QT), the Songpan-Ganzi terrane (ST),
and the Kunlun-Qilian terrane (KT). West–east variations in
the distances of the under thrusting Indian lithosphere along
the HM and LT have been inferred in previous studies (e.g.
Liang et al., 2016). As the main belt responded to Indian–
Eurasian convergence and collision, the crustal structures
underneath the HM and LT provide important clues for
understanding the tectonic environments and dynamic process
of continent-continent collision, such as the thrusting distance
of the Indian lithosphere (Searle et al., 2011; Liang et al., 2016)
and the eclogitised lower crust (Hetényi et al., 2007; Bai et al.,
2013).

Gravity modelling for investigations of the crustal struc-
ture has a distinct advantage in the inaccessible regions of the
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TP. Although previous studies have reported the Moho
undulation (Braitenberg et al., 2000; Shin et al., 2007, 2009,
2015; Tenzer et al., 2015; Xu et al., 2017; Zhao et al., 2020)
and crustal density (Hetényi et al., 2007; Jiménez-Munt et al.,
2008; Bai et al., 2013) in the TP, there are only few studies of
them together. In this chapter, we present the Moho depth
and crustal density structure in the TP from inversemodelling
of gravity data. The results allow us to understand the inter-
actions between the TP and the adjacent tectonic blocks, as
well as the responses of the tectonic blocks to the lateral
variations beneath the central part of the TP.

17.2 Data and Methods

17.2.1 Gravity Data and Its Multi-scale Analysis
The Bouguer gravity anomaly data shown in Fig. 17.2 is
calculated by the Bureau Gravimetrique International on
the basis of the EGM2008 spherical harmonic coefficients
(Pavlis et al., 2008). Overall, the gravity anomalies in the
western and central areas are lower in magnitude than in
other areas. The medium to large wavelength negative grav-
ity anomalies which are related to crustal thickening due to
isostatic compensation are better visualised in the Bouguer
anomaly map. In addition, the gravity anomaly data

demonstrates an excellent correlation with the topography,
wherein a lower gravity anomaly value corresponds to
a higher terrain. The high mountains (with heights of over
6 km) in the central region correspond to low Bouguer
gravity anomalies (approximately –500 mGal), while the
Tarim Basin and Sichuan Basin, which are less than
1.5 km, have high anomaly (–100 mGal). The altitude of
the QaidamBasin is at least 2 km, which is lower than that of
the surrounding mountains, and its gravity anomaly values
are approximately –200 mGal. Moreover, large-scale tec-
tonic features can be revealed directly from the Bouguer
gravity anomaly data. Negative gravity anomalies in the
central area indicate present–day mass deficits beneath the
region. The positive–negative alternating zones and high–
low gravity gradient belts correspond to the boundaries of
major tectonic blocks. The significant feature of this
Bouguer gravity map is that the gradient belts are consistent
with the major faults around the TP and Pamir Plateau,
such as the Main Boundary Thrust to the south, the Altyn
Tagh Fault to the north, and the Longmenshan to the east.
Positive anomaly values over 100 mGal cover the Indian
Plate. The high negative anomaly values are distributed
across the TP and Pamir Plateau and correspond to
a higher terrain and. In particular, the –250 mGal contour
is nearly coincident with the margin of the plateaus. In the
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Figure 17.1 Topographic map of the TP region showing the major faults (solid lines), geo-block boundaries (white dotted lines), and
earthquakes with Mw ≥ 6 since 1976 (www.globalcmt.org). Abbreviations are as follows: HM, Himalayan Mountain Range; LT, Lhasa
Terrane; QT, Qiangtang Terrane; ST, Songpan-Ganzi Terrane; KT, Kunlun Terrane; QM, Qilian Mountain Range; AM, Altyn Tagh
Mountains; AU, Alashan Uplift; YP, Yungui Plateau; IYS, Indus-Yarlung Suture; BNS, Bangong-Nujiang Suture; JS, Jinsha River
Suture; AKMS, Anyimaqen-Kunlun-Mutztagh Suture; XXFS, Xianshuihe-Xiaojiang Fault System.
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Tian Shan region, the anomaly values are approximately –

200 mGal.
Although the Bouguer gravity anomaly data can reveal

rich tectonic and geophysical information, it must be noted
that it reflects the integrated effects of heterogeneous mater-
ials sourced from different scales and depths within the
Earth’s interior. To extract the signal caused exclusively by
Moho undulations, the Bouguer gravity anomaly data must
be further decomposed and analysed accordingly. The dis-
crete wavelet transform method was applied for the multi-
scale analysis of the Bouguer gravity anomaly data in the TP
(Jiang et al., 2012; Xuan et al., 2016; Xu et al., 2017). Xu
et al. (2017) decomposed the Bouguer gravity anomaly data
in the TP using the base function of Coif3. Following Xu
et al. (2017), the sum of the first-, second-, and third-order
wavelet details (Fig. 17.3a) primarily reflected the tectonic
structure of the upper to middle crust. Although interference
from covered sediments is obvious within the first through
the third order wavelet details, the major tectonic units and
boundaries, such as HM, Pamir, Longmenshan Fault (LMS)
and Altyn Tagh Fault, can still be identified. The sixth-order
wavelet detail (Fig. 17.3c) reflects the material distribution at
the bottom of the lithosphere, as argued by Xu et al. (2017).
The sixth-order wavelet detail (Fig. 17.3c) with respective
average source depths of 130 km suggested an attenuating
lateral density inhomogeneity within the upper mantle.

Xuan et al. (2016) presented the fourth- and fifth-order
wavelet details in the south-eastern TP (Fig. 17.4). Gravity
anomalies are complex, reflecting the complex density struc-
tures in the middle crust. It is evident that a high-gravity
anomaly existed beneath the JS near the western boundary
of the Chuan-Dian block (CDB) and a low-gravity anomaly

existed beneath the Jiali fault. The parallel anomalies in the
southwestern region of the study area implied strong deform-
ation in the lower crust, induced by eastward extrusion of the
Burmese block and clockwise rotation of the CDB
around the Eastern Himalayan syntaxis. The fifth-order
detail map (Fig. 17.4b) reveals the density structure of
the lower crust. The local anomalies and the fifth-order
details mainly result from inhomogeneity in the density
distribution of the whole and lower crust, respectively.
In the Indo–China block and Eastern Himalayan syn-
taxis, eastward arcs of lower and high anomalies indicate
that subduction of the Burmese block occurs in the
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Figure 17.3 Decomposed gravity anomalies in the TP following
Xu et al. (2017). (a) Sum of the first-, second, and third-order
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lower crust, a phenomenon that is not obvious in the
middle crust (Fig. 17.4a). In the Longmenshan region,
high anomalies are found along the LMS, and low
anomalies exist in the north-eastern area of the LMS,
suggesting that the effects of the eastward extrusion of
the Bayan Har block exist in the lower crust.

17.2.2 Moho Inversion
The gravity anomaly, Δgðx; yÞ, is related to the undulation
of the density interface, hðx; yÞ, around the reference level,
z0, in the Fourier domain described by Parker (1973):

F ½Δgðx; yÞ� ¼ �2πGΔρeð�kz0Þ
X∞
n¼1

kn�1

n!
F ½hnðx; yÞ�; ð17:1Þ

where F [ ] represents the Fourier transform, G is the
Newton’s gravitational constant, k is the wave vector of
the transformed function, andΔρ is the crust–mantle density
contrast. Oldenburg (1974) presented an iterative algorithm
via modification of Eq. (17.1):

F ½hðx; yÞ� ¼ �F ½Δgðx; yÞ�eð�kz0Þ
2πGΔρ

�
X∞
n¼2

kn�1

n!
F ½hnðx; yÞ�;

ð17:2Þ

and the gravity-derived Moho depth, zcg, is obtained as
follows:

zcg ¼ z0 þ hðx; yÞ: ð17:3Þ

Oldenburg (1974) defined a filter B(k) to restrict parts of the
observations with high frequencies via the frequency param-
eters WH and SH as follow:

BðkÞ ¼

1 jk=2πj < WH;
1

2
1þ cos

k � 2πWH
2ðSH �WHÞ

� �� �
WH ≤ jk=2πj ≤SH;

0 jk=2πj > SH:

8>><>>:
ð17:4Þ

Given the reference level z0, the crust–mantle density con-
trast Δρ, and the cut-off frequencies (WH and SH) in Eq.
(17.4), it is possible to compute the Moho relief hðx; yÞ,
versus reference depth using Eq. (17.2) iteratively, and
then obtain the gravity Moho depth zcg using Eq. (17.3).

17.2.3 Density Inversion
To solve the non-unique and ill-conditioned linear inverse
problem g ¼ Gρ, the density transformed from Vp is con-
sidered as the priori density ρ

prior
, and the least-squares cri-

terion is used to determine the density model eρ by
minimising the objective function (Barnoud et al., 2016):

ϕð eρÞ ¼ ðg � G eρÞTC�1g ðg � G eρÞ þ ð eρ � ρ
prior
ÞC�1ρ ð eρ � ρ

prior
Þ;

ð17:5Þ

where Cg and Cρ are the data and priori model covariance
matrices, the superscript ‘T’ denotes the transposition.
The second term in Eq. (17.5) is a regularisation term. The
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Figure 17.4 Decomposed gravity anomalies of the Chuan-Dian region (Xuan et al., 2016). (a) Fourth-order wavelet detail. (b) Fifth-order
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solution of Eq. (17.5), solved in the data space, can be
written as

eρ ¼ ρ
prior
þ ðGTC�1g G þ C�1ρ Þ

�1GTC�1g ðg � Gρ
prior
Þ: ð17:6Þ

The data can be considered to be independent, therefore, the
Cg is a diagonal matrix and its diagonal values σ2g are esti-
mated errors of the input data. The covariance matrix of the
priori model Cρ includes a variance on density and a spatial
correlation. The details can be found in Barnoud et al.
(2016).

17.3 Gravity-Inverted Moho Depth beneath
the Tibetan Plateau

Several results of theMoho depth from the gravity inversion
using the Parker–Oldenburg method beneath the TP have
been published (Braitenberg et al., 2000; Shin et al., 2007;
Shin et al., 2009; Steffen et al., 2011; Bagherbandi, 2012;
Shin et al., 2015; Xuan et al., 2015; Zhang et al., 2015; Chen,
2017; Chen and Tenzer, 2017; Xu et al., 2017; Zhao et al.,
2020), although the values and locations of the maximum
depths were different among these models. In particular,
two depressed belts were found in the LT and QT using
the Moho maps (Braitenberg et al., 2000; Shin et al., 2007;
Shin et al., 2009; Shin et al., 2015; Xuan et al., 2015; Xu
et al., 2017; Zhao et al., 2020).

Figure 17.5 showed the gravity-inverted Moho depth
modified from that of Xuan et al. (2015). The reference
Moho depth of 40 km and crust–density contrast of
0.4 kg/m3 are used during the gravity inversion. The main
features of this Moho depth model were that the deeper

Moho (> 60 km) covers the TP and Pamir Plateau, while
the maximum depth of ~74 km occurs in the southern TP.
The Moho depths of the tectonic units in the surroundings
of the TP are not consistent with those of the plateau, that is,
a depth of ~40 km under the Indian Plate, ~50 km beneath
the Tarim Basin, and about 40 km beneath the Sichuan
Basin. The Pamir region, northwest of the TP, has
a deeper Moho with a maximum depth of ~65 km; and the
Tian Shan region, north of the Tarim Basin, also has
a deeper Moho depth of ~60 km. It should also be noted
that aMoho uplift of ~5 km occurs under the central part of
the Tarim Basin.

For comparison, four results of the Moho depth from
CRUST1.0 (Laske et al., 2013), seismic study (Li et al.,
2014), gravity inversion (Zhao et al., 2020), and local isostasy
are shown in Fig. 17.6. Moho depth from CRUST1.0
(Fig. 17.6a) shows the deepest Moho (~70 km) is observed
in the middle LT, and the shallower Moho (50–60 km) in the
northwestern TP and Pamir region. Moho depth of Xuan
et al. (2015) (Fig. 17.5) was deeper than that from
CRUST1.0 (> 10 km) in the north-western Tibet region,
eastern Tarim Basin, and Pamir region. The seismic Moho
depth shown in Fig. 17.6b shows that the deepest Moho
exceeding 80 km was found in the eastern TP. As shown in
Fig. 17.6c, the deepest Moho was observed in the Pamir
region reported by Zhao et al. (2020). Moho depth deeper
than that of Zhao et al. (2020) was found in the eastern Tarim
Basin, LT, and QT along the BNS in western Tibet, as well as
the western HM. It is worth noting that the three deep belts in
the TP reported by Shin et al. (2007), Xuan et al. (2015), and
Zhao et al. (2020) were not found from the seismic-derived
Moho (Fig. 17.6b) and the local isostatic Moho (Fig. 17.6d).
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Figure 17.5 Gravity-inverted Moho depth
beneath the TP following Xuan et al. (2015). The
contours of 73 km (black dotted lines) outline the
two depressed belts at the base of the crust.
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The Moho is deeper than 70 km in the western LT and QT;
however, it was ~60 km throughout the eastern part of the
TP. Along the Indian subduction zone, the Moho depth
exhibited a narrow gradient belt and increases linearly from
~40 km to exceeding 70 km with different angles from west to
east (Fig. 17.7), and the relatively wider gradient belt was
consistent with the smaller angle underneath the western
and eastern ends of the Himalayan Mountains. Although
Moho depth derived from Vening Meinesz–Moritz isostatic
hypothesis are in better agreement with the CRUST2.0Moho
depth (Bagherbandi, 2012; Tenzer and Bagherbandi, 2012),
the deepest Moho of ~61.5 km is shallower than that of
~70 km presented by the most of the previous studies (e.g.
Shin et al., 2007, 2009; Li et al., 2014; Chen et al., 2017; Xu
et al., 2017; Zhao et al., 2020), suggesting that the isostatic
gravity disturbance is more suitable for determining isostatic
Moho depth than Bouguer gravity anomaly (Vaníček et al.,
2004; Tenzer and Bagherbandi, 2012; Sjöberg et al., 2013).

Xuan et al. (2016) presented the 3D view of the topog-
raphy and the Moho depth around the Eastern Himalayan
Syntaxis region (Fig. 17.8), where the crustal thickness
decreased from northwest to southeast beneath the CDB.
There was a significant change in the depth of the Moho
undulation between the TP and the surrounding regions.
The obvious steep belt of deep Moho appeared in both the
LMS and the Eastern Himalayan syntaxis. Fu and She
(2017) suggested the Moho depth increased linearly from
south to north with an angle of 12° across the Eastern
Himalayan syntaxis, however this larger dip angle was not
found in Figs. 17.5 and 17.8, potentially resulting from the
space resolution of the different gravity data sets. The
Moho dip angle of Fu and She (2017) is larger than 8–9°

in the middle thrusting belt of the Indian Plate (Bai et al.,
2013). The depth of the Moho on both sides of the LMS
decreased from nearly 70 km to less than 50 km from
northwest to southeast. There were abnormal belts paral-
lel to the LMS at a depth of 65 km in the northwest and
30–44 km in the Sichuan Basin to the southeast. The depth
of the Moho was approximately 60 km in the northern
portion of the CDB and approximately 50 km in the
southern portion, reaching a depth of approximately
70 km in the Qiantang block (QTB). On both the west
and east side of the Sagaing Fault, the depth of the Moho
is less than 40 km. In the south segment of the
Xianshuihe–Xiaojiang Fault system, the depth increased
from 50 to 55 km in the west. From the west, near the
Eastern Himalayan syntaxis across the middle of the
CDB, to the east (the LMS region), the Moho had
a Y-shaped relief. In conjunction with the topography
belt, this suggested that the CDB was a transitional zone
of the TP, the South China block and the Indo-China
block.

17.4 Crustal Density Structure beneath the Tibetan
Plateau

17.4.1 Initial Density
The density ρ from surface to 80 km depth can be derived
from P-wave velocity Vp according to the velocity-density
relationship (Brocher, 2005):

ρ ¼ 1:6612VP � 0:4721V2
P þ 0:0671V3

P � 0:0043V4
P

þ 0:000106V5
P: ð17:7Þ
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The layeredVpmaps from surface to 80 km in the region 80–
108°E and 23–42°N shown in Fig. 17.9 (Zhang et al., 2011).1

The horizontal spatial resolution of this dataset is 0.25° ×
0.25°. The reference densities of 2,750 kg/m3, 2,900 kg/m3,
and 3,300 kg/m3 were used for 0–20 km, 20–60 km, and 60–
80 km, respectively. Subsequently, the initial density shown

in Fig. 17.10 was transformed from the Vp maps (Fig. 17.9)
using the Eq. (17.7). The calculated anomalies induced by
the initial density and the residual anomalies after removal
of the calculated anomalies from the Bouguer anomalies are
presented in Fig. 17.11. The residual anomalies were used to
determine the density model.

17.4.2 Density Structure from Modelling of Gravity Data
We modelled density from the surface to 80 km in the TP
using the inversion method described above and the initial
density transformed from Vp (Fig. 17.11). The layered and
profile densities were shown in Figs. 17.12a–h and 17.13.
The average and standard deviation (STD) of residuals are –
2.44 and 0 mGal (Fig. 17.12i), respectively, suggesting the
inversion result is reasonable.

Densities of ~2.5–2.8 g/cm3 present at 0–30 km depth in
the whole region (Fig. 17.12a –c), and the lateral heterogen-
eity were not apparent. By contrast, the high densities in the
rigid blocks around the TP at a depth of 30–80 km are visible
(Fig. 17.12d–h), such as for the Indian Plate, the Sichuan
Basin and Tarim Basin, especially at the depth of 50–80 km
(Figs. 17.12f–h and 17.13a–d). Significantly, the high dens-
ities (~3.0–3.4 g/cm3) in the region from the Indian Plate to
the HM, clearly observed in the profile images
(Figs. 17.13a–c), suggest the lithosphere of the Indian
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Figure 17.8 3D map view of the regional topography and
underlying Moho relief.
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Plate is being subducted northwardly under the HM. The
subducting Indian lithosphere reached the IYS at least
inferred by the high-density distribution (Figs. 17.13a–c).
Although the density in the lithospheric mantle of the Tarim
Basin was less than that in the Indian lithospheric mantle, it
was greater than that in the TP, reaching ~3.2 g/cm3

(Figs. 17.12f–h and 17.13a,b) suggesting the rigid block of
the Qaidam Basin.

Interestingly, there was a relative high-density belt with
density of ~2.9 g/cm3 beneath the BNS along the profiles of
80°E and 90°E (Fig. 17.13a,b), but the relative low densities
occurred along the IYS and JS, where there are negative
belts of the gravity anomaly (Fig. 17.3c) and two belts of the
Moho subsidence (Fig. 17.5). The low-density in the crust of
the HM and LT was corresponding to low velocity
(Monsalve et al., 2008; He et al., 2010; Basuyau et al.,
2013) and low density (Basuyau et al., 2013). However,
Tiwari et al. (2006) argued that the lower crust presents
high density inferred from the gravity modelling. In con-
trast, the density at depth of 30–70 km beneath the BNS is
relatively high, reaching ~3.0 g/cm3, which is probably
related to the eclogites in the lower crust (Bai et al., 2013).

17.5 Discussion and Conclusions

Following the India–Asia collision, the continuing
northward movement and subducting under the
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Figure 17.11 (a) Gravity anomaly calculated from initial density
(Fig. 17.10) and (b) residual anomaly after removing the calculated
anomaly from the Bouguer gravity anomaly values (Fig. 17.2).
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Eurasian Plate has resulted in continued and accelerated
crustal thickening and uplift of the TP. The Himalayan
Mountains (HM) and Lhasa Terrane (LT) have acted as
the main belts of convergence and collision between the
Indian and Eurasian plates. Their crustal structures can
be used to understand the dynamic process of continent–
continent collision and the thrusting earthquakes that
occur in the subduction zone. Correspondingly, the
Moho depth linearly increased from south to north
(Figs. 17.5 and 17.7) and the high-density was noted
beneath the HM. However, lower density can be found
in the lower crust beneath LT in the southern TP
(Figs. 17.12f–h; Figs. 17.13a,b).

The Indian lithosphere subducted under the TP with
small angle and thickened the relatively weak Tibetan
crust resulting from the resistance of the rigid blocks (e.g.
Tarim Basin). The dense lithosphere of the Indian Plate has
sunk at the subduction zone due to its negative buoyancy
(Stern, 2007; Chen et al., 2020), which allowed for the
delamination of the subducting lithospheric mantle from
the crust. The suction induced by the subducting slab has
resulted in mantle convection on both sides of the slab
(Conrad and Lithgow-Bertelloni, 2004). If the downwelling
of the Indian lithospheric mantle with large angle occurs
beneath the HM, the thin lithospheric mantle caused by the
upwelling of the asthenosphere will occur to the north of the
subducting lithospheric mantle, which was in agreement
with the low-velocity anomaly reported by seismic studies
(Zhang et al., 2014; Liang et al., 2016). Furthermore, the

less-dense lithospheric mantle under the LT and Qiangtang
terrane (QT) (Fig. 17.13a,b) is likely to be associated with
the partial melting due to the upwelling of the astheno-
spheric material (Tilmann et al., 2003; Zhang et al., 2014).
To accommodate the convergence of the subducting Indian
and Asian lithosphere, the Tibetan crust beneath Indus-
Yarlung suture (IYS) and the Jinsha suture (JS) are folded
and the Moho depth exceed 70 km (Figs. 17.5 and 17.7b,c).
The increasingMoho depth from south to north is probably
due to the negative buoyancy of the under-thrusting Indian
Plate, which would induce the local mantle convection
under the southern and northern parts of the
under-thrusting plate (Tilmann et al., 2003). The upwelling
asthenospheric materials are considered to be the main rea-
son for the low density in the lithospheric mantle of the TP
(Fig. 17.13a,b).

The lateral variations in the density in the TP (Figs. 17.12;
17.13a,b) may infer the probable presence and absence of
eclogites in the lower crust beneath the HM, LT, and QT.
The presence of eclogites has been widely used in support of
the theory of mass transfer from the lower crust to the under-
lying mantle (Tiwari et al., 2006; Hetényi et al., 2007). Bai
et al. (2013) suggested that the lower crust beneath HM and
the southern LT was not eclogitised based on the lower
density from gravity modelling, which was in keep with our
inversing density model (Figs 17.12 and 17.13). The lower
crust beneath the Bangong-Nujiang suture with relatively
high density (Figs 17.12e–g; Figs. 17.13a,b) aids in interpret-
ing the presence of the eclogites.
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The eastward extruded Tibetan lithosphere was expected
to change direction towards the south and southwest
because of resistance from the Sichuan Basin within the
NE trending margin. Eastward arcs of negative and positive
anomalies (Fig. 17.4) and 40–50 km Moho relief (Figs. 17.5
and 17.8) near the Eastern Himalayan syntaxis suggest that
the effects of subduction of the Burmese block in the lower
crust (Socquet and Pubellier, 2005; Wang et al., 2007)
spread to the CDB. Thus, the movement towards the
south and southwest would cause the CDB to rotate clock-
wise around the Eastern Himalayan syntaxis along the
strike-slip faults (Royden et al., 1997; Wang et al., 2008),
corresponding to the multiple-order en echelon patterns of
positive and negative anomalies across the Indo-China
block from west to east (Fig. 17.4).
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18
Geodetic Inversions
and Applications in Geodynamics

Grigory M. Steblov and Irina S. Vladimirova

Abstract: The primary observables of the Global Positioning
System (GPS) ground tracking sites for geodynamics are the
Earth’s surface motions, and their geophysical interpretation
is based on the numerical models of various tectonic pro-
cesses. The key issues for geophysical interpretation of the
GPS observations are adequate mechanical models of brittle
and ductile rock behaviour used to predict surface motions
related to various tectonic processes, and the corresponding
inversion techniques which allow separation of the processes,
and evaluation of their parameters. For large-scale heteroge-
neous processes, the inversion of the GPS observations
requires regularisation because it implies evaluation of some
complicated distributed undergroundmotions from their dis-
crete manifestation at the surface. One of the fastest growing
applications of the satellite geodetic observations is investi-
gation of the seismotectonic deformation associated with
great earthquakes worldwide at all stages of the seismic
cycle – inter-seismic, co-seismic, post-seismic. The inversion
techniques based on dislocation models in elastic or visco-
elastic medium is one of the approaches that may be widely
used for GPS-based studies of various seismotectonic
deformations.

18.1 Introduction

Satellite geodetic observations based on Global Navigation
Satellite Systems (GPS, GLONASS, etc.) systems have
made significant progress since their initial deployment
worldwide in early 1990s. Originally designed for navigation
purposes, they reached an accuracy level suitable for track-
ing tectonic motions of the Earth’s surface, thereby becom-
ing suitable for geodynamic research (Dixon, 1991).
Occasional observations of selective active tectonic belts
were among of the first well-known applications of the
satellite geodetic investigations for geodynamics, and, as
the precision of the measurements and their processing tech-
nique evolved, global-scale tectonic plate motions (Argus
and Gordon, 1991; Argus and Heflin, 1995; Kogan and
Steblov, 2008) also become the subject of such research.
As the tracking network expanded and densified, turning
into a set of permanent GPS sites well distributed globally,
a lot of irregular time-varying phenomena added to the

topics addressed by space geodesy. The whole scope of
geodynamic processes investigated by means of GPS has
been continuously growing, now including global scale
plate motions, plate boundary deformation, mantle and
asthenosphere flow, seismotectonic deformation, volcan-
ology, postglacial isostatic rebound, ice flow, water mass
flow, and so on. All of them are characterised by various
spatial and time scales, from global to regional, from
instantaneous to centennial.

One set of applications of satellite geodesy, actively devel-
oped for more than two decades, involves observations of
seismotectonic deformations at all stages of the seismic
cycle, including inter-seismic, co-seismic, post-seismic. The
most significant factor of such geodetic applications is their
ability to directly resolve slow aseismic motions, both inter-
seismic and post-seismic, as well as co-seismic static offsets.
All these processes are usually beyond the sensitivity of
seismic instrumentation, which show only indirect effects
of those motions, such as foreshocks, aftershocks, and
main shocks. Seismic instrumentation is also subject to
limited frequency response, especially at low band, and
magnitude saturation at close proximity of the great earth-
quakes. Analysis of such observations substantially
improved understanding of seismotectonic deformations
backgrounds: distributed asperities associated with locking
along the seismogenic fault, slip distribution for the finite
fault seismic source model, mechanisms of post-seismic
transient response.

Using satellite geodesy data, initially only quite simple
models were implemented for inversion for the first-order
features, such as a single plane uniform co-seismic slip to
evaluate the earthquake rupture size, a uniform interplate
locking to evaluate its depth, and so on. Appropriatemodels
were developed to predict surface motions based on disloca-
tion model in various media: single rectangular patch in
homogenous half-space (Okada, 1992), point sources in
layered half-space (He et al., 2003) or multiple rectangular
patches in stratified spherical media (Rundle, 1980;
Piersanti et al., 1995; Pollitz, 1996, 1997). This approach
was used for numerous investigations of inter-seismic coup-
ling and asperity distribution in many subduction zones, for
example, Kamchatka (Bürgmann et al., 2005) as well as for
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co-seismic slip and afterslip evaluation after great earth-
quakes like 1997 Kronotsky Kamchatka earthquake
(Bürgmann et al., 2001) and 2000 Uglegorsk earthquake
(Kogan et al., 2003). Subduction zones release ∼90% of
the total global seismic moment, and thus constitute much
of the Earth’s seismic potential. To better determine the
seismic potential of a specific subduction zone, the spatial
and temporal distribution of elastic strain accumulation and
release along the plate boundary underthrust must be
understood (Bürgmann et al., 2005).

While the observation network density increased, the more
detailed patterns were sought for inversion of the surface
displacements. The spatial-temporal variations of the fault
locking and spatially distributed slip became resolvable,
which raised the issue of stability of the inversion technique.
For large-scale spatially heterogeneous processes the inver-
sion of the GPS observations requires regularisation because
it implies evaluation of some complicated distributed under-
ground motions from their discrete manifestation at the sur-
face. Thus, the key issues for geophysical interpretation of the
GPS observations are adequate rheological models used to
predict surface motions related to various tectonic processes
and the corresponding inversion technique which allows to
separate the processes and to evaluate their parameters.

18.2 Dislocation Model

The most common approach to evaluate surface displace-
ments due to active faults motion is based on the dislocation
model in various media, like an elastic half space or
a spherical layered elastic or viscoelastic media. Such
models are widely used for investigation of either static co-
seismic offsets or aseismic motions, the latter significantly
contributing to the strain inter-seismic build-up and its
release during post-seismic creep and viscoelastic relaxation
in the asthenosphere.

In general, while solving linear equations of static or
quasi-static equilibrium with a point source, the surface
response to any deep dislocation may be expressed through
convolution with a Green’s function:

uðr; tÞ ¼
ðð
S

Gðr; rs; t; tsÞUðrs; tsÞdS; ð18:1Þ

where Uðrs; tsÞ is the source dislocation at the point rs at the
moment ts, S is the dislocation surface, uðr; tÞ is the surface
displacement at the point r at the moment t, and
Gðr; rs; t; tsÞ is the Green’s function determined by the
medium’s rheology.

Then the inversion of the surface motion for the deep
dislocation assuming the noise in the observable uðr; tÞ is
equivalent to finding the Uðrs; tsÞ which minimises the resid-
uals of the observation equation (Eq. 18.1):

Uðrs; tsÞ ¼ arg min
Uðrs;tsÞ

‖ uðr; tÞ �
ðð
S

Gðr; rs; t; tsÞ

8><
>:

Uðrs; tsÞdS ‖ þ αR½Uðrs; tsÞ�g; ð18:2Þ

where the regularisation term R½Uðrs; tsÞ� is introduced to
stabilise and/or smooth the solution with the weighting coeffi-
cient α. Various types of regularisation can be applied to min-
imise not onlymisfit to the data, but also tominimise/constrain
any of the following commonly used forms of R½Uðrs; tsÞ�:
- the magnitude of the estimated parameters (with

Tikhonov (L2) or Manhattan norm);
- the second spatial derivative of the parameter vector

(Laplacian smoothing);
- the difference between estimated model and a priori

model.

In practice, the observations are sampled in discrete
manner in the spatial and time domain, which means
that we have a set of surface displacements uij ¼ uðri; tjÞ
at a finite number of sites ri and moments tj. Possible
significant spatial variations of the Green’s function
Gðr; rs; t; tsÞ necessitate consideration of a non-uniform
spatial distribution of Uðrs; tsÞ for great earthquakes in
the convolution (Eq. 18.1). Thus, numerical modelling
of the distributed slip for large scale faults requires
discretisation of the Uðrs; tsÞ. The common approach
for discretisation of slip distribution is the approxima-
tion of the fault surface S by a finite number of elem-
ents. In the two-dimensional case, triangular or
rectangular elements are most often used. Triangular
elements are more suitable to approximate areas
bounded by curvilinear contours than rectangular. But
the latter are easier to apply, because the widely used
dislocation modelling approaches are designed for rect-
angular dislocations (Okada, 1985; Pollitz, 1996, 1997).
In general, the finite element method can be performed
using irregular grids, but numerical procedures for solv-
ing problems with such grids become more complicated.
An irregular grid provides better resolution in case of
sharp uneven spatial variations of any parameter, but
for most geophysical problems in which the modelling
domain is defined by simple geometric shapes, it is most
appropriate to use a regular grid (Ismail-Zadeh and
Tackley, 2010). In this chapter a regular grid is used
to discretise the modelling area, and rectangles are
chosen as finite elements. Thus, for numerical calcula-
tions the solution is sought in discretised form as
a piecewise constant vector field: Uðrs; tsÞ ¼ UkðtsÞ for
rs 2Sk, where Sk are the elements of the dislocation surface
S ¼ fS1;S2;…;Smg (Fig. 18.1).

Expansionof eachvectorUkðtsÞ into its components in terms
of an orthonormal basis ek1, ek2 for each surface element Sk:
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UkðtsÞ ¼ ek1Uk1ðtsÞ þ ek2Uk2ðtsÞ ð18:3Þ

yields Eq. (18.1) in a discrete form:

uij ¼
X
k;l

UklðtsÞ
ðð
Sk

Gðri; rs; tj; tsÞekldS ð18:4Þ

which is a system of linear equations:

Lm ¼ d: ð18:5Þ

Here d is the data column composed of the components of
the observed displacements vectors uij, m is model param-
eters column vector composed of unknown dislocation com-
ponents UklðtsÞ, L is the operator predicting the data from
the model, composed of the separate integrals over fault

elements

ðð
Sk

Gðri; rs; tj; tsÞekldS, each representing the surface

response to a uniform dislocation ekl over the surface element
Sk. Then the constrained damped least squares can be used to
invert the observed surface motions for the dislocation distri-
bution over the fault model. Similar to Eq. (18.1) in discrete
form, the inversion minimises the objective function

OBJ ¼ χ2r þ α
X
l

m2
l ; ð18:6Þ

where χ2r ¼ 1
N

XN
i¼1

1

σ2i
di �

XM
j¼1

Lijmj

 !2

is conventionally

called the reduced chi-square of the inverse problem with
zeroth order regularisation (Press et al., 2007).

Such a representation allows to use various existing algo-

rithms to calculate the integrals

ðð
Sk

Gðri; rs; tj; tsÞekldS of the

Green’s functions over each element of the dislocation surface.

The most straightforward is the case when the elements Sk are
rectangles. Themost widely used are the Okada (Okada, 1992)
and Pollitz (Pollitz, 1996, 1997; Wang et al., 2003; Barbot and
Fialko, 2010;Tanaka, 2013) approaches.The former approach
(Okada, 1992) is designed for a rather simple medium, an
elastic homogeneous half-space and it is an explicit finite rep-
resentation of the strains and displacements over the medium
with a uniform rectangular dislocation. The latter approach
(Pollitz, 1996, 1997) is rather more complicated, for the uni-
form rectangular dislocations set in a spherically symmetric
layered elastic or viscoelasticmedium, and it is basedona series
expansion in spherical functions of the solution. The approach
of Okada is well applicable at small distances for shallow
dislocations when sphericity and elastic stratification are
neglectable. For deeper dislocations and large distances, the
Pollitz approach is preferable since neglecting sphericity and
stratification yields tangible errors (up to 20%). Either
approach provides a tool for direct calculation of the surface
integrals of aunit dislocationover the elementsSk inEq. (18.4),
thus making the minimisation task (Eq. 18.6) straightforward
with use of standard optimisation techniques.

Non-linear programming algorithm implemented by
NPSOL software (Gill et al., 1986) is one of such optimisa-
tion tools, used in this chapter to minimise non-linear
objective function in Eq. (18.2) with linear and nonlinear
constraints on the parameter vector. For visualisation pur-
poses, the resulting slip and coupling patterns were further
smoothed by means of B-spline interpolation when plotted
with the GMT software (Wessel et al., 2019).

This methodology for interpreting the Earth’s surface
offsets can be used with minor adjustments to analyse vari-
ous satellite geodetic data in the vicinity of great earth-
quakes. The results of the analysis, depending on the input
data used, are, for example, estimates of the rate and vari-
ations in the rate of the elastic stresses accumulation at the
fault surface, co-seismic source slip distribution, parameters
of post-seismic processes, and also estimates of the rheo-
logical parameters of the medium.

18.3 Preliminary Setting of the Modelling

The primary issues of GPS-data interpretation based on
dislocation techniques are the choice of an adequate rheo-
logical model of the medium and the correct specification of
the fault geometry. The PREM Earth model (Dziewoński
and Anderson, 1981) used in this chapter can be considered
as quite suitable to model elastic deformations in a stratified
medium with the viscosity introduced to model viscoelastic
behaviour when appropriate (Table 18.1).

The most common methods to determine the linear dimen-
sions of the initial co-seismic fault include on-site investigation
methods such as direct mapping of the faults at the surface in
the case of strong crustal earthquakes or geodetic measure-
ments of the offsets and tilts of the Earth’s surface induced by

ri

Uk
ek2

ek1

u(r,t )

Rupture surface

GPS
station

∫∫G(r,rs,t,ts)ek2dSk
sk

∫∫G(r,rs,t,ts)ek1dSk
sk

Figure 18.1 Non-uniform dislocation: discretisation.
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an earthquake. It is also possible to use theoretical methods
based on considerations about the possible tensile strength of
the material in the vicinity of the source considering know-
ledge of such quantities as seismic energy or material elasticity
(Riznichenko, 1985).

The following approach for specification of the geometry
of the fault zone is suitable for any large earthquake with
long fault zone. Many great earthquakes with long fault
occur in subduction zones. The main difficulty of the fault
geometry evaluation in the case of subduction earthquakes is
their typical underwater localisation. That means that inves-
tigation of the surface trace or direct offsets measurements in
the source zones in most cases is impossible, and thus the
source modelling is based on seismological data and empir-
ical patterns instead of direct on-site observations. An
approximate fault geometry can be inferred from instrumen-
tal data on the epicentral location and depth of the main
shock, foreshocks, and aftershocks, and the relative position
of the foreshock, main shock, and aftershocks; data on the
tsunami source location, approximating seismic source loca-
tion; an empirical dependence of the fault sizes on the earth-
quake magnitude (Fedotov, 1965; Riznichenko, 1985).

One of the widely used methods to determine the seismic
rupture dimensions is the outlining of the aftershocks cloud,
which is expected to coincide approximately with the rup-
ture zone subject to maximum displacements and deform-
ations at the moment of the main shock. And at the same
time, the highest concentration of aftershocks should be
observed along the edges of the rupture (Fedotov, 1965;
Kuchay, 1982; Das and Henry, 2003). The characterisation
of aftershock sequences for estimating the linear dimensions
of the rupture is based on the statistical or cluster analysis of
seismic event catalogues (Molchan and Dmitrieva, 1992).

The resolution of the GPS data inversions for the seismic
rupture depends on many factors, including the source signal
pattern and the rupture model discretisation, as well as the
observing network density. A general idea of the data reso-
lution canbe inferred fromacheckerboard test,which is applic-
able to any inversion procedure independent of the internal
operator of the inverse problem.The test is basedon simulating
a hypothesised signal at the GPS sites used for inversion. The
source signal pattern is usually composed of spatially alternat-
ing patcheswith opposite signals (source slip, for example)with
random noise applied. Usually, the random errors are con-

sidered as Gaussian with zero mathematical expectation and
standard deviation equal to the mean data errors. Then the
synthesised observations are inverted for the source signal and
the recovery of the original source signal pattern is considered
as a stability criterion (Lévêque et al., 1993; Zelt et al., 2006).

Inversion of the surface motions for a finite fault model
also requires information on its spatial orientation.
Attempts to simultaneously estimate the source slip distri-
bution together with the dislocation surface orientation
greatly increases the number of degrees of freedom in the
inversion, thus necessitating additional a priori constraint
on the vertical cross section of the faults. For subduction
zones, such information can be inferred from the local seis-
micity as the seismic focal zone profile delineated by the
subduction type earthquakes. Then the dip of each fault
element Sk in Eq. (18.4) is estimated from piecewise linear
approximation of such profiles.

An example of the co-seismic rupture evaluation and
discretisation for the Great Tohoku earthquake 2011 is
shown in Fig. 18.2.

18.4 Co-seismic Motions

Considering static surface offsets following an earthquake as
the result of finite fault rupture, all the variables in Eq. (18.1),
including the Green’s functions, take static form without time
dependence:

uðrÞ ¼
ðð
S

Gðr; rsÞUðrsÞdS: ð18:7Þ

With this static form, inversion based on Eqs. (18.1)–(18.6) of
the static surface offsets for slip distribution provides an esti-
mate which is usually in good agreement with various teleseis-
mic inversions. The advantage of inversion of surface geodetic
offsets is its stability for great events in the nearfield zone,while
the seismic inversions usually degrade due to limitations of the
seismic equipment frequency response, especially at low fre-
quencies, and amplitude saturation at small epicentral dis-
tances. This is especially important for the case of shallow
undersea events for correct assessment of their tsunamigenic
potential.

Some examples of geodetic co-seismic offsets analysis
performed by the authors of this chapter for the earthquake
source investigation follow. All GPS time series used in the
simulations have been obtained by the authors from the raw
GPS data. An example of simulation for the 2006–7
Simushir earthquakes, including the input data, is available
through a public repository (Vladimirova et al., 2019). Raw
GPS data for the 2011 Tohoku earthquake are available
upon request from the Geospatial Information Authority
of Japan (GSI).1

Table 18.1 Lithosphere and mantle rheology

Depth, km Maxwell viscosity, Pa∙s Elastic moduli

0−63 η1→∞ PREM Earth model
(Dziewoński and
Anderson, 1981)

63−220 η1 ¼ 1� 1017 � 1� 1019

220−670 η1 ¼ 5� 1020

670−2900 η1 ¼ 5� 1021

1 www.gsi.go.jp/ENGLISH/geonet_english.html.
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18.4.1 Mid-Kuril (Simushir) Earthquakes 2006–2007
On 15November 2006, a thrust event ruptured the subduction
interface between the Pacific andNorth American plates; then
on 13 January 2007, an extensional event ruptured the outer
rise of the Pacific lithosphere near the Kuril trench. The

earthquakes struck at a distance of about 100 km from each
other in the Kuril arc segment where such large events had not
happened since 1915 (Fedotov, 1965; United States
Geological Survey (USGS)2). The tsunami runup of the
2006 earthquake reached 20 m on the Kuril Islands
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Figure 18.2 (a) Spatial distribution of aftershocks of the Tohoku earthquake extracted from ISC Bulletin (International Seismological
Centre, 2022) data, (b) optimal grid spacing for slip distribution obtained by checkerboard test for Tohoku earthquake, and (c) second-
degree polynomial regression of the vertical profile of Japan subduction zone, obtained by mapping the depths of the subduction
earthquakes from the Centennial Catalog (Engdahl and Villaseñor, 2002).

2 http://earthquake.usgs.gov.
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(Bourgeois et al., 2007). The detected horizontal co-seismic
offsets for these two events captured at the regional satellite
geodetic network ranged from several mm to over half a metre
at the nearest GPS stations Matua (MATC) and Ketoy
(KETC), shown in Fig. 18.3a. The rupture surface S to
model each event was chosen to comply with the sub-
duction interface. Its vertical cross section was con-
strained by the local shallow seismicity in the centre of
the Kuril subduction zone by projecting hypocentres of
thrust events since 1976 from the region bounded by the
modelling surface. The boundaries of the rupture surface
model were chosen so as to include the area that com-
prises the GCMT hypocentre and the aftershocks cloud
from National Earthquake Information Center (NEIC)
(Masse and Needham, 1989). To compose the linear
operator in Eq. (18.5), the contributions from fault elem-

ents

ðð
Sk

Gðri; rsÞekldS were calculated with the (Pollitz, 1996)

approach for a spherically symmetrical layered Earth.
For the first Mid-Kuril event (Fig. 18.3a), the following

a priori constraints were imposed for inversion:

rake ¼ 90°� 30°; jslipj≤30 m; ‖ slip� slipaveraged ‖≤ 6 m;

which yielded χ2 ¼ 2:6.
And for the second Mid-Kuril event (Fig. 18.3b), a priori

constraints

jslipj≤ 30 m; ‖ slip� slipaveraged ‖ ≤ 5 m

yielded χ2 ¼ 5:5.

Comparison of various source slip models (Table 18.2)
shows that the distributed slip over finite fault model in the
spherically symmetric layered media provides the most
adequate models for great earthquakes, compared to
a point source or uniform slip model. The distributed slip
model agrees better in terms of scalar seismic moment with
the updated teleseismic body-wave solution (Lay et al., 2009).

The inversion of the surface offsets for slip distribu-
tion shows that the highest slip locations for the 2006
and 2007 earthquakes are adjacent to each other
(Fig. 18.3); this correlation suggests (although does not
prove) that the 2007 extensional event was triggered by
redistribution of stresses following the 2006 thrust event.
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Figure 18.3 Co-seismic GPS offsets observed during the 2006 (a) and the 2007 (b) Mid-Kuril (Simushir) earthquakes with the distributed
source slip models for these earthquakes.

Table 18.2 Scalar moment release (din ⋅ cm) and magnitude:
Various estimates

Solution

Event
15/11/2006 13/01/2007

Distributed slip M0 = 5.93 × 1028,
Mw = 8.5

M0 = 3.05 × 1028,
Mw = 8.3

Uniform slip M0 = 1.57 × 1028,
Mw = 8.1

M0 = 0.85 × 1028,
Mw = 7.9

GCMT M0 = 3.51 × 1028,
Mw = 8.3

M0 = 1.78 × 1028,
Mw = 8.1

P-waves, body-waves
(Lay et al., 2009)

M0 = 5.0 × 1028

Mw = 8.4
M0 = 2.6 × 1028

Mw = 8.2
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18.4.2 Tohoku Earthquake 2011
Another example of inversion of co-seismic surface offsets for
distributed source slip is the great Tohoku earthquake. On
11 March 2011, a thrust event ruptured the subduction inter-
face between thePacific andEurasian plateswhere such a large
event had not happened since 869 (Namegaya and Satake,
2014). The tsunami runup of the 2011 earthquake was as high
as 40 m along the Sanriku coast (Lay et al., 2011; Yamazaki
et al., 2018). The detected horizontal co-seismic offsets for this
event captured at the GEONET satellite geodetic network
ranged from several centimetres to over 5 m, shown in
Fig. 18.4. Considerations similar to those for the Mid-Kuril
earthquakes 2006–7were used to choose the rupture surface in
compliance with the subduction interface delineated by the
shallow thrust events in the north part of the Japan subduction
zone. The boundaries of the fault model were chosen to
include the GCMT hypocentre and the aftershocks cloud
from NEIC. The approach of (Pollitz, 1996) for a spherical
layered Earth was used to calculate the convolution fault
element integrals constituting the linear operator in Eq.
(18.5). Due to the diurnal intervals used to estimate the pos-
ition time series, the static offsets taken for inversion include
not only instantaneous co-seismic jumps associated with the
main shock, but also co-seismic jumps caused by its two largest
aftershocks with Mw = 7.9 and Mw = 7.6 occurred on the
same day. The following a priori constraints were imposed for

inversion: rake = 90° ± 30°,│slip│ ≤ 50 m, which yielded
χ2 ¼ 25:18.

Similar to the Mid-Kuril earthquakes 2006–7, a compari-
son of various source models (Table 18.3) shows that the
distributed slip over finite fault model in the spherically
symmetric layered media provides the most adequate
models for this great earthquake compared to point source
model or uniform slip. The distributed slip complies better
with the teleseismic body-waves solution (Yokota et al.,
2011).

The inversion of the surface offsets for slip distribution
shows that the highest slip for the 2011 earthquake was
located at shallow depth close to the trench (Fig. 18.4).
The revealed large near-trench slip (up to 28 m) is one of
the reasons for such a devastating tsunami.

18.5 Inter-seismic Motions at the Plate Boundaries

The analysis of inter-seismicmotion is based on awell-known
superposition approach (Savage, 1983). The main idea of this
approach is that the accumulation of elastic stresses can be
described as a superposition of steady state subduction,
which doesn’t contribute to the deformation of the medium,
and a repetitive cycle of slip on the shallow main thrust zone
causing elastic deformation observable on the earth’s surface.
Thus, the surface deformation caused by the accumulation of
elastic stresses due to the coupling φðrs; tÞ of the interplate
interface and relative plate motion Vconvðrs; tÞ can be mod-
elled by adding a reverse (back) slip at each point of the
interface plane, the magnitude of which is determined as:

Vbackðrs; tÞ ¼ �φðrs; tÞ � Vconvðrs; tÞ: ð18:8Þ

Differentiation of (18.1) with respect to time yields the rela-
tion between the surface velocities and the back slip rate
over the fault:

vðr; tÞ ¼
ðð
S

Gðr; rsÞVbackðrs; tÞdS: ð18:9Þ
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Figure 18.4 Co-seismic GPS offsets observed by GEONET sta-
tions during the Tohoku earthquake and model of distributed slip
in the source zone of the Tohoku earthquake.

Table 18.3 Scalar moment release (din ⋅ cm) and magnitude:
Various estimates

Solution Event 11/03/2011

Distributed slip M0 = 4.12×1029,
Mw = 9.01

Uniform slip (Zhou et al., 2018) M0 = 3.55×1029,
Mw = 8.97

GCMT M0 = 5.31×1029,
Mw = 9.1

P-waves, body-waves (Yokota et al.,
2011)

M0 = 4.3×1029,
Mw = 9.0
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Here inelastic response components are considered neglect-
able at a given strain rate thus making the Green’s function
Gðr; rsÞ independent of time while possible temporal vari-
ations of the velocities Vbackðrs; tÞ are presumed.

The back slip is interpreted as a result of the plate boundar-
ies motion opposite to the relative plates motionVconvðrs; tÞ at
their interface due to asperities. The coupling ratio φ between
the residual displacement at the interface (slip deficit)
Vsl:def ðrs; tÞ ¼ Vconvðrs; tÞ þ Vbackðrs; tÞ and the collinear
relative rigid plate motion Vconvðrs; tÞ indicates the degree
of mechanical locking at their boundaries:

φðrs; tÞ ¼
Vsl:def ðrs; tÞ
Vconvðrs; tÞ

; 0≤ φðrs; tÞ≤ 1: ð18:10Þ

This ratio reflects the strain build-up rate and it is an ana-
logue of the seismic locking calculated as the ratio of the
seismic part of the relative plates motion to their full rate.
The latter was commonly used to evaluate the seismogenic
potential of various subduction zones before space geodesy.
The advantage of the geodetic kinematic estimates of the
mechanical locking compared to the seismic locking is due
to the better spatial-temporal resolution. The seismic lock-
ing estimates are based on the following assumptions: plate
convergence rate is estimated from geological data averaged
over a few million years (NUVEL-1A (DeMets et al., 1994);
MORVEL (DeMets et al., 2010), etc.); the whole seismo-
genic layer is fully locked between the megathrust earth-
quakes, which makes the averaging period to be the
duration of the seismic cycle of dozens or hundreds of
years. In contrast, the geodetic kinematic estimates are
based on the current plate convergence rates obtained in
a rather short period of GPS observations for several years
over stable plates interior, and the seismogenic layer is
considered locked irregularly.

The simplest model of subduction thrusts implies an inter-
seismically locked portion of the plate boundary interface
within a continuous depth interval with upper edge between
5 and 10 km and lower edge between 30 and 70 km, with
adjacent updip and downdip segments deforming aseismi-
cally (Fig. 18.5) (Savage, 1983). The downdip width of the
seismogenic zone differs significantly for any particular

subduction zone as well as between each of them (Pacheco
et al., 1993; Tichelaar and Ruff, 1993; Oleskevich et al.,
1999).

The possible existence of large portions of aseismically
slipping subduction interface follows from comparisons of
plate motions and estimated locking widths with observed
seismic moment release (Pacheco et al., 1993; Tichelaar and
Ruff, 1993; Wang and Dixon, 2004). Comparison of the
source areas of large historic subduction earthquakes and
non-slipping fault areas deduced from geodetic data sug-
gests that asperities on the subduction interface are persist-
ently locked inter-seismically, slip in large stick-slip events,
and are surrounded by areas of stable sliding. Thus, the
subduction thrust should be considered a spatially hetero-
geneous structure (Pacheco et al., 1993; Yamanaka and
Kikuchi, 2004) that may potentially evolve over time.
A wide variety of possible scenarios for different subduction
zones have been revealed byGPSmeasurements throughout
the world: some plate interface faults appear persistently
locked (Mazzotti et al., 2000), others are partially locked
(Lundgren et al., 1999), and some are steadily aseismically
slipping (Freymueller and Beavan, 1999). Such kinematic
interpretation is not related to any considerations about the
frictional strength of either locked or creeping patches of the
fault (Lay and Kanamori, 1981), but only infers their exist-
ence from available observations. Modern studies also indi-
cate a discrepancy that occurs in some cases between
geodetically inferred asperities and sources of large histor-
ical earthquakes (Govers et al., 2017). Such discrepancies
can be explained by the limitations of GPS data (a rather
small number and limited distribution of GPS stations,
a limited observation duration) and possible changes in the
structure of the subduction interface over time.

The factors that control the geometry of the seismogenic
portion of the subduction interface usually include: tem-
perature-related phenomena (transition in behaviour of
clay minerals in unconsolidated accretionary prism, crystal-
plastic flow of rocks at the depth with ∼350°C) (Peacock,
1996; Oleskevich et al., 1999), hydration of the forearc
mantle material, the plate convergence rate and/or the abso-
lute velocity of the upper plate, the size and composition of
the accretionary wedge, and the existence of heterogeneous
features (such as seamounts) on the subducting plate.
A general global correlation of negative free-air gravity
anomalies along subduction zones with the major subduc-
tion asperities broken in great earthquakes was noticed by
(Wells et al., 2003) and (Song and Simons, 2003), which may
indicate either erosion or frictional shear stress on the plate
interface.

An example of geodetic analysis of interplate motions
applied to the Japan subduction zone is shown in
Fig. 18.6. The following a priori constraints were imposed
for inversion: rake = 90° ± 30°, │slip rate│ ≤ 8 cm/year,
χ2 ≤ 30, which yielded χ2 ¼ 5:09� 16:7.
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Figure 18.5 Subduction zone: Inter-seismic state general scheme.
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In general, the calculated yearly locking patterns are
characterised by relative stability before the Tohoku
earthquake (Fig. 18.6a–c), while the observed downdip
locking attenuation agrees with the same decrease of
seismicity along the seismic focal zone with depth. At
the same time, before the Tohoku 2011 earthquake, an
increase in locking near the future source is observed,
which is reflected at the surface as a noticeable acceler-
ation of the GPS station displacements (Fig. 18.6d–e).
So, the interplate locking ratio immediately prior to the
earthquake was relatively high with its maximum near
the trench, which could be one of the factors that
induced the well-known devastating tsunami after the
Tohoku earthquake. The patches of substantially lower

locking are seen at the bottom edge of the whole rupture
zone that could be the reason further propagation of the
mainshock rupture was prevented. A detailed analysis of
the phenomenon of slip acceleration, which has been
going on since at least 1996, is given in (Mavrommatis
et al., 2015). The analysis performed on the basis of GPS
data and data on recurrence intervals of repeating earth-
quakes suggests that the rupture zone of the 2011
Tohoku earthquake was partly outlined by slip acceler-
ation, implying that a substantial portion of the mega-
thrust experienced accelerating aseismic slip, while most
of the rupture area of the Tohoku earthquake was either
locked or creeping at a constant rate at least 15 years
before its occurrence.
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Figure 18.6 Temporal variations of interplate coupling in the northern part of Japan subduction zone based on inter-seismic velocity field
estimated over the periods: (a) 11.03.2008–10.03.2009; (b) 11.03.2009–10.03.2010; (c) 11.03.2010–10.03.2011. Subfigures (d) and (e) show
differences between (b)–(a) and (c)–(b), respectively.
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18.6 Post-Seismic Motions

The stress-strain state variations in the vicinity of the seis-
mogenic faults after the great earthquakes typically show
a transient post-seismic response in the surface motions.
Among the most common mechanisms, the following three
are usually proposed: (1) viscoelastic relaxation (Freed
et al., 2007; Pollitz et al., 2008; Wang et al., 2012), (2)
frictional afterslip (Marone et al., 1991), and (3) poroelastic
rebound (Peltzer et al., 1996). Correct assessment of the
duration, intensity, spatial scales, and energy characteristics
of these processes contributes to understanding the mech-
anics of faulting and the features of the seismic cycle in
a particular subduction zone, as well as to refinement of
regional rheology. In practice, distinction of these processes
from each other requires assumptions on spatial and tem-
poral features specific for each mechanism, and that would
allow independent study of each of them. As a rule, for the
first months after an earthquake, afterslip dominates in the
near field zone, while after about half a year and in the far
zone, the process of viscoelastic relaxation in the astheno-
sphere and upper mantle usually dominates (Scholz, 2019).
At the same time, recent observations of post-seismic
motions with seafloor GPS stations after the Tohoku earth-
quake (Sun et al., 2014; Sun and Wang, 2015) showed that
neglecting the short-term viscoelastic relaxation for events
with Mw ≥ 8.0 leads to an incorrect estimation of the ampli-
tude of the displacements caused by afterslip. This reflects in
the underestimation of the displacement values at shallow
depths and their overestimation at depths exceeding the
lower edge of the rupture.

Rheological modelling of post-seismic processes requires
consideration of a number of factors, among which themost
important are the rock mechanics dependence on the tem-
perature and pressure variations with depth, as well as the
time scale (Scholz, 1988, 2019). At low temperatures and
pressures, typical for the upper layers of the Earth’s crust,
the process of brittle faulting prevails, but in the lower part
of the Earth’s crust, the elastic-brittle behaviour of rocks
turns into plastic. For further deep layers, as the tempera-
ture and pressure grow, such rather complex rheological
behaviour becomes simpler, similar to non-linear or even
Newtonian viscous fluid (Turcotte and Schubert, 2001).

The timing factor implies various response of the medium
depending on the rapidness and duration of the stress rising
and attenuation. If deformation processes occur at higher
temperatures and pressures, then both transient creep (on
small time scales) and viscous behaviour of the medium are
possible (Savage et al., 2005). Such dual viscoelastic behav-
iour is typically modelled for the Earth with Burgers rhe-
ology, which includes both Maxwell and Kelvin elements.
The behaviour of such a bi-viscous medium (Fig. 18.7c) is
determined by the initial rapid response of the low-viscosity
Kelvin element, while at longer time intervals, the Maxwell
element response prevails.

18.6.1 Afterslip Modelling
Rapid frictional afterslip and long aftershock processes both
usually follow immediately after great shallow earthquakes.
The relationship between these two processes is not quite
clear and remains a controversial issue. The total seismic
moment released in aftershocks, as a rule, is significantly
lower than that released in afterslip. This suggests that the
whole post-seismic process is unlikely to be the consequence
of aftershock activity only (Helmstetter and Shaw, 2009).
The spatial and temporal correlations between those pro-
cesses revealed by geodetic methods suggest that at least
some part of the aftershocks is induced by frictional afterslip
(Pritchard and Simons, 2006; Wang, 2010). Simulation
results using a simple spring-slider model that captures the
main features of the temporal evolution of seismicity and
deformation during the seismic cycle (Perfettini and
Avouac, 2004; Perfettini et al., 2005), also support the idea
that the decay rate of aftershocks may be controlled by
reloading due to deep afterslip in the brittle creep fault zone
located deeper than the source zone along the plate interface.

The temporal dependence of the afterslip is approximated
as rapid initial motion logarithmically decaying with time
after the earthquake due to presence of the rate-
strengthening patches at the plates interface (Marone
et al., 1991; Scholz, 1998), with cumulative post-seismic
displacements ranging from decimetres up to metres.

Considering the elastic response of the medium to after-
slip with stationary Green’s functions, the cumulative
amount of slip over the co-seismic rupture and adjacent
patches can be expressed as:

uðr; rs; t; tsÞ ¼
ðð
S

Gðr; rsÞUðrs; tsÞdS: ð18:11Þ

Then the discretisation in Eqs. (18.3)–(18.4) can be applied
for inversion (Eq. 18.6) of the observed surface post-seismic
motions for the afterslip distributed model.

18.6.2 Viscoelastic Relaxation Modelling
The intensity and spatial distribution of the process of vis-
cous relaxation in the asthenosphere and upper mantle
highly depend on rheological parameters of the medium
and on the magnitude of stresses transferred to the astheno-
sphere at the co-seismic and early post-seismic stages of the
seismic cycle, which, in turn, is associated with the spatial
distribution and the magnitude of co-seismic slip and after-
slip in the source zone of subduction earthquake and its
surroundings. The process of afterslip following the main
shock is also one of the reasons that explain the possible
expansion of the search area for post-seismic slip distribu-
tion relative to the co-seismic one.

The first step of the analysis of the viscoelastic relaxation
requires consideration of the compressibility and rheological
stratification of the upper layers of the Earth. The issue of the
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asthenosphere rheological properties is rather debatable; how-
ever, the study of post-seismic deformations after the great
earthquakes makes it possible to set some constraints on
theseproperties (Mutoet al., 2019). Since theMaxwell viscosity
of the asthenosphere is one of the parameters determining non-
stationary medium response to the static co-seismic slip, the
Green’s function becomes explicitly dependent on time and
viscosity:

uðr; tÞ ¼
ðð
S

Gðη1; r; rs; t; tsÞUðrs; tsÞdS: ð18:12Þ

Given the observed surface motions uðr; tÞ and initial co-
seismic source slip Uðrs; tsÞ, the inversion
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η1 ¼ argmin
η1

‖ uðr; tÞ �
ðð
S

Gðη1; r; rs; t; tsÞUðrs; tsÞdS ‖

8><
>:

9>=
>;;

ð18:13Þ

after discretisation similar to Eqs. (18.2)–(18.5), provides an
estimate of the Maxwell viscosity η1. Here the co-seismic
source slipUðrs; tsÞ can be taken either from the inversion of
co-seismic surface displacements or from various other
inversions like teleseismic USGS, NEIC, etc. The convolu-

tion integrals

ðð
Sk

Gðη1; ri; rs; tj; tsÞekldS of the unit disloca-

tions over rectangular dislocation elements used in
discretisation of Eq. (18.13) can be calculated with the
viscoelastic modelling approach of (Pollitz, 1997). To solve
Eq. (18.13), various optimisation methods can be used, such
as a grid search over viscosity. An example of estimating the
best-fitMaxwell viscosity η1 for the central part of the Japan
subduction zone is shown in Fig. 18.7d.

On the second step of the analysis of viscoelastic relaxation,
having the constraints set on the viscosity, one can construct
another inversion of Eq. (18.12) similar to Eq. (18.2) to solve
for the post-seismic (total effective) slip distribution:

Uðrs; tsÞ ¼ arg min
Uðrs;tsÞ

‖ uðr; tÞ �
ðð
S

Gðη1; r; rs; t; tsÞUðrs; tsÞ

8><
>:

dS ‖ þ αR½Uðrs; tsÞ�g: ð18:14Þ

While solving Eq. (18.14), one can resolve the total effective
slip distribution which has induced the observed viscoelastic
response and that may differ from initial co-seismic source
slip inversions due to additional contribution of the fric-
tional afterslip at the early post-seismic stage. Examples of
modelling post-seismic processes after the great Tohoku
2011 earthquake follow (Fig. 18.7a–b). A priori constraints
imposed for inversion for afterslip in the first six months
after the Tohoku earthquake (Fig. 18.7a) were: rake = 90°
± 30°, │slip│ ≤ 20 m, which yielded χ2 ¼ 1:48.

To model the effective slip distribution that induced the
process of viscoelastic relaxation in the asthenosphere, its
rheology was represented by a bi-viscous Burgers body,
comprising both Maxwell and Kelvin viscosities
(Fig. 18.7c). A priori constraints imposed for inversion
for effective slip (Fig. 18.7b) were: rake = 90 ° ± 30°,
│slip│ ≤ 50 m, χ2 ≤ 30, which yielded χ2 ¼ 9:79.

The slip model distribution (Fig. 18.7b) shows a bilateral
pattern that covers a much wider area than co-seismic pat-
tern (Fig. 18.4b), thus indicating the wider spatial scales of
the viscoelastic relaxation process. The areas of the largest
displacements in the effective source slip are localised near

the lower edge of the co-seismic fault, apparently marking
the areas of additional release of residual stresses that had
not dropped during the earthquake. The model of cumula-
tive afterslip (Fig. 18.7a) also demonstrates the bilateral
expansion of the initial co-seismic source slip pattern,
mostly at the lower edge, where the lack of co-seismic slip
has been assumed (Fig. 18.4b). The general pattern of after-
slip being downdip of the co-seismic slip agrees with inde-
pendent models (e.g. Muto et al., 2019). This agreement
confirms the contribution of the initial stage afterslip into
the total effective source of further viscoelastic relaxation.
The influence of the additional energy release during the
afterslip process and the features of the viscoelastic relax-
ation process result in the difference between the slip distri-
butions shown in Figs. 18.4 and 18.7b. The estimated
effectiveMaxwell viscosityof theasthenosphere (1x1018Pa∙s)
is ten times less than the usualmean value for the Earth, but it
is typical for the transient viscosity estimated in many post-
seismic studies (Pollitz, 2019). According to the prediction
based on this model, the viscoelastic relaxation in the
asthenosphere will decay in about 30 years.

18.7 Conclusion

Development of rheological models predicting surface
motions induced by various tectonic deformations is the key
issue for improving interpretation of satellite geodetic obser-
vations. Investigation of many active plate boundaries usu-
ally reveals a superposition of different simultaneous
processes such as rigid block motions, boundary deform-
ations, co-seismic jumps, and post-seismic transient response,
which are the mostly known to affect the surface deform-
ations. Their specific spatial and temporal features need
quantitative evaluation for better distinction, enabling us to
assess their interrelations and predictive potential.
Stabilisation of inversions of the observed surface motions
for deep underground processes requires not only mathemat-
ical constraints usually applied for regularisation but also
development of the observation networks.One of the obvious
ways to improve the resolution of the satellite geodetic data is
expansion and densification of the observation network. The
effect of expansion was demonstrated by Japanese GPS net-
work GEONET, when the sea floor GPS sites were installed
near the deep ocean trench off the Honshu Island coast. This
has led to new details discovered of the co-seismic and post-
seismic motions related to the great Tohoku earthquake in
2011, which had not previously been resolved.

Additional knowledge also comes from other kind of
observations, such as gravity, seismicity, geology/
morphology, and so on. Such data provide information
on the fault geometry, the faulting depth, deep masses
transport, and so on. Combination of all available data
in conjunction with development of each kind of obser-
vation substantially improves geodetic inversions thus
making understanding of tectonic processes better.
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19
Data Assimilation in Geodynamics:
Methods and Applications

Alik Ismail-Zadeh, Igor Tsepelev, and Alexander Korotkii

Abstract: In this chapter, we review basic methods for
data assimilation used in geodynamic modelling: backward
advection (BAD), variational/adjoint (VAR), and quasi-
reversibility (QRV). The VAR method is based on a search
for model parameters (e.g. mantle temperature and flow
velocity in the past) by minimising the differences between
present observations of the relevant physical parameters (e.g.
temperature derived from seismic tomography, geodetic
measurements) and those predicted by forward models for
an initial guess temperature. The QRV method is based on
introduction of the additional term involving the product of a
small regularisation parameter and a higher-order tempera-
ture derivative into the backward heat equation. The data
assimilation in this case is based on a search of the best fit
between the forecast model state and the observations by
minimising the regularisation parameter. To demonstrate
the applicability of the considered data assimilationmethods,
a numerical model of the evolution of mantle plumes is
considered. Also, we present an application of the data
assimilation to dynamic restoration of the thermal state of
the mantle beneath the Japanese islands and their surround-
ings. The geodynamic restoration for the last 40 million years
is based on the assimilation of the present temperature
inferred from seismic tomography, and constrained by the
present plate movement derived from geodetic observations,
and paleogeographic and paleomagnetic plate reconstruc-
tions. Finally, we discuss some challenges, advantages, and
disadvantages of the data assimilation methods.

19.1 Introduction

Geodynamics deals with physical and chemical processes
in the Earth’s interior and their surface manifestations to
provide a better understanding of the thermal convection,
hotspots and plumes in the mantle; lithosphere dynamics
including plate tectonics, spreading, and subduction; and
orogeny, sedimentary basins evolution, volcanism, and seis-
micity (e.g. Turcotte and Schubert, 2002). Many geody-
namic problems can be described by mathematical models,
i.e. by a set of partial differential equations and boundary
and/or initial conditions defined in a specific domain. A
mathematical model links the causal characteristics of a

geodynamic process with its effects. The causal characteris-
tics of themodel process include, for example, parameters of
the initial and boundary conditions, coefficients of the dif-
ferential equations, and geometrical parameters of a model
domain (e.g. Ismail-Zadeh et al., 2016).

A mathematical model of a geodynamic problem can be
transformed into a numerical model to determine quantita-
tively the effects of geophysical processes related to the
geodynamic problem based on the knowledge of its causes.
This type of geodynamic modelling is associated with solv-
ing direct problems. An inverse problem is the opposite of a
direct problem. An inverse problem is considered when
there is a lack of information on the model’s causal charac-
teristics, but an information on the effects of the relevant
geodynamic processes exists, and it comes from observa-
tions and measurements of physical and chemical param-
eters involved in the process. This information presents a set
of geophysical, geodetic, geochemical, and other data, and
utilising the data to estimate the causal characteristics of the
model (e.g. temperature, velocity, rheology) and to study the
evolving geodynamic process is the principal goal of data
assimilation (e.g. Ismail-Zadeh et al., 2016).

Data assimilation in geodynamical models can be defined
as a combination of theory related to geodynamic processes
and mathematical/numerical modelling with available
(observed and/or measured) geo-data. The incorporation
of data and initial/boundary conditions into an explicit
dynamic model will provide time continuity and coupling
among the physical characteristics of a geodynamic prob-
lem. In this chapter, we use a classical approach to data
assimilation considering a mathematical model and obser-
vations as a true model and true data with measurement
errors, respectively.

There are several data assimilation techniques used in
geodynamics (e.g. Ismail-Zadeh et al., 2016). The principal
mathematical difficulty in assimilating geo-data into geody-
namic models (e.g. thermal convective circulations in the
mantle) in the presence of the heat diffusion is the ill-
posedness of the backward heat problem (e.g. Kirsh,
1996). One of the simplest methods in data assimilation in
geodynamics is the backward advection (BAD) method
which suggests neglecting the thermal diffusion term in the
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heat equation. The resulting heat advection equation can
then be solved backward in time. In the case of advection-
dominated flows with an insignificant diffusion, this
approach is valid. Both direct (forward in time) and inverse
(backward in time) advection problems are well-posed. This
is because the time-dependent advection equation has the
same form of characteristics for the direct and inverse vel-
ocity field: the vector velocity reverses its direction when
time is reversed. Therefore, numerical algorithms used to
solve the direct problem can also be used in studies of the
time-reverse problems by replacing positive time steps with
negative ones.

The BAD method has been applied to restore diapiric
structures to their earlier stages (e.g. Ismail-Zadeh et al.,
2001a; Kaus and Podladchikov, 2001; Ismail-Zadeh et al.,
2004b;Massimi et al., 2007; Schuh-Senlis et al., 2020) as well
as to reconstruct a mantle flow in the past from present-day
mantle density heterogeneities (e.g. Forte and Mitrovica,
1997; Steinberger and O’Connell, 1997, 1998; Conrad and
Gurnis, 2003; Moucha and Forte, 2011; Glišović et al.,
2014). For example, using the BAD method, Steinberger
and O’Connell (1998) studied the motion of hotspots rela-
tive to the deep mantle. They combined the advection of
plumes, which are thought to cause the hotspots on the
Earth’s surface, with a large-scale mantle flow field and
constrained the viscosity structure of the Earth’s mantle.
Conrad and Gurnis (2003) modelled the history of mantle
flow using a tomographic image of the mantle beneath
southern Africa as an input (initial) condition for the back-
ward mantle advection model while reversing the direction
of flow. If the resulting model of the evolution of thermal
structures obtained by the BADmethod is used as a starting
point for a forward mantle convection model, present man-
tle structures can be reconstructed if the time of assimilation
does not exceed 50–75 million years (Myr). Moucha and
Forte (2011) simulated mantle convection using the BAD
method to reconstruct the evolution of dynamic topography
of Africa over the past 30 Myr.

In sequential data assimilation, a model is computed
forward in time, and model predictions are updated each
time where observations are available. A sequential data
assimilation was used to compute mantle circulation
models (Bunge et al., 2002). It was shown that the sequen-
tial data assimilation is well adapted to mantle circulation
studies. However, the sequential assimilation requires the
information of mantle states at earlier geological times,
which are poorly known, and hence the updates are rare
or uncertain.

The variational (or adjoint) method of data assimilation
is based on the optimisation of a given criterion (for
example, minimisation of a difference between model fore-
casts and observations). It was pioneered by meteorologists
and used very successfully to improve operational weather
forecasts (e.g. Kalnay, 2003). The adjoint method has also
been widely used in oceanography (e.g. Bennett, 1992) and

in hydrological studies (e.g. McLaughlin, 2002). The use of
variational method of data assimilation in models of mantle
dynamics to estimate mantle temperature and flow in the
geological past has been put forward by Bunge et al. (2003)
and Ismail-Zadeh et al. (2003a,b). The major differences
between the two approaches are that Bunge et al. (2003)
applied this method to the coupled Stokes, continuity, and
heat equations (generalised inverse), whereas Ismail-Zadeh
et al. (2003a) applied it only to the heat equation. The
variational approach by Ismail-Zadeh et al. (2003a) is com-
putationally less expensive because it does not involve the
Stokes equation into the iterations between the direct and
adjoint problems.

Another method used in assimilation of data in geody-
namic models is a quasi-reversibility (QRV) method (Lattes
and Lions, 1969). This method was introduced in geody-
namic modelling by Ismail-Zadeh et al. (2007) and
employed to assimilate data in models of lithosphere/mantle
dynamics beneath Carpathians and Japanese Islands
(Ismail-Zadeh et al., 2008, 2013). A QRV method was used
to reconstruct the global mantle dynamics focusing on the
regions of the Pacific plate, Indian plate, North Atlantic
plate, and the North Atlantic region (Glišović and Forte,
2014, 2016, 2017, 2019).

In the following subsections, we describe two essential
methods for data assimilation in geodynamics – variational
and quasi-reversibility – and present their performance in
the case of reconstructions of mantle plume dynamics.

19.2 Variational (VAR) Method

The VAR data assimilation is based on a search of the best
fit between the forecast model state and the observations by
minimising an objective functional (a normalised residual
between the target model and observed variables) over space
and time. Tominimise the objective functional over time, an
assimilation time interval is defined and an adjoint model is
typically used to find the derivatives of the objective func-
tional with respect to the model states. The VAR method
(sometimes referred to as the adjoint method) can be formu-
lated with a weak constraint (so-called, a generalised
inverse), where errors in the model formulation are taken
into account (Bunge et al., 2003), or with a strong constraint
where the model is assumed to be perfect except for the
errors associated with the initial conditions (Ismail-Zadeh
et al., 2003a,b). The generalised inverse of mantle convec-
tion considers model errors, data misfit and the misfit of
parameters as control variables. As the generalised inverse
presents a computational challenge, Bunge et al. (2003)
considered a simplified generalised inverse imposing a
strong constraint on errors, ignoring all errors except for
the initial condition errors. Therefore, the strong constraint
makes the problem computationally tractable.
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The variational data assimilation method was employed
for numerical restoration of models of present prominent
mantle plumes to their past stages (Ismail-Zadeh et al.,
2004a; Hier-Majumder et al., 2005). Effects of thermal
diffusion and temperature-dependent viscosity on the evo-
lution of mantle plumes was studied by Ismail-Zadeh et al.
(2006) to recover the structure of mantle plumes prominent
in the past from that of present plumes weakened by ther-
mal diffusion. Liu and Gurnis (2008) simultaneously
inverted mantle properties and initial conditions and
applied this method to reconstruct the evolution of the
Farallon Plate subduction (Liu et al., 2008, 2010;
Spasojevic et al., 2009) and northern South America
(Shephard et al., 2010). Horbach et al. (2014) demon-
strated the practicality of the method for use in a high-
resolution mantle circulation model by restoring a
representation of present mantle heterogeneity derived
from the global seismic shear wave study backward in
time for the past 40 million years. Worthen et al. (2014)
used an adjoint method to infer mantle rheological param-
eters from surface velocity observations and instantaneous
mantle flow models. Ratnaswamy et al. (2015) developed
an adjoint-based approach to infer plate boundary
strength and rheological parameters in models of mantle
flow from surface velocity observations, although, com-
pared to Worthen et al. (2014), they formulated the inverse
problem in a Bayesian inference framework. An adjoint
method was derived and used for a compressible mantle
convection model (Ghelichkhan and Bunge, 2016) and
thermochemical convection model (Ghelichkhan and
Bunge, 2018). An adjoint method was also used to recover
simultaneously initial temperature conditions and viscos-
ity parameters in time-dependent mantle convection
models from the current mantle temperature and historic
plate motion (Li et al., 2017). Application of the vari-
ational data assimilation to spherical mantle circulation
models are discussed by Bunge et al. (2022, this volume).

In what follows below we use a strong constraint in
variational data assimilation assuming that the model is
perfect except for errors associated with the initial
conditions.

19.2.1 Mathematical Statement
We consider that the Earth’s mantle behaves as a
Newtonian incompressible fluid with a temperature-
dependent viscosity. The viscous flow in the mantle is
described by heat, motion, and continuity equations
(Chandrasekhar, 1961). To simplify the governing equa-
tions, the Boussinesq approximation (Boussinesq, 1903) is
used by keeping the density constant everywhere except for
buoyancy term in the equation of motion. In the model
domain Ω ¼ ½0;x1 ¼ h1� � ½0; x2 ¼ h2� � ½0; x3 ¼ h3�, where
x= (x1, x2, x3) are the Cartesian coordinates and
h1; h2; and h3 are the domain’s dimensions, we consider

two coupled mathematical problems: (1) the boundary
value problem for the flow velocity including the Stokes
equations (Eq. 19.1) and the incompressibility equation
(Eq. 19.2), subject to impenetrability and perfect slip condi-
tions at the model boundary (19.3)

rp ¼ r � ½ηðruþruTÞ� þ RaTe; x2Ω; ð19:1Þ

r � u ¼ 0; x2Ω; ð19:2Þ

〈u; n〉 ¼ 0; τn� 〈τn; n〉n ¼ 0; x2 ∂Ω; ð19:3Þ

and (2) the initial-boundary value problem for temperature
including the heat equation (Eq. 19.4), subject to appropri-
ate boundary (19.5) and initial (19.6) conditions

∂T=∂tþ 〈u;rT〉 ¼ r2T ; x2Ω; t2 ð0; ϑÞ; ð19:4Þ

σ1T þ σ2∂T=∂n ¼ 0; x2 ∂Ω; ð19:5Þ

Tðt ¼ 0; xÞ ¼ T0ðxÞ; x2Ω: ð19:6Þ

Here t, u ¼ ðu1; u2; u3Þ,T , p, and η are dimensionless time,
velocity, temperature, pressure, and viscosity, respectively;
e = (0,0,1) is the unit vector; n is the outward unit normal
vector at a point on the model boundary; and
τ ¼ ηðruþruTÞ is the stress tensor. In the dimensionless
equation (Eqs. 19.1–19.6), the length, temperature, and time
are normalised by h, ΔT , and h2κ�1, respectively. The
Rayleigh number is defined as Ra ¼ αgρref ΔTh

3η�1ref κ
�1,

where α is the thermal expansivity, g is the acceleration
due to gravity, ρref and ηref are the reference typical density
and viscosity, respectively; ΔT is the temperature contrast
between the lower and upper boundaries of the model
domain; and κ is the thermal diffusivity. Here r, r�, T,
and 〈 �; �〉 denote the gradient operator, the divergence oper-
ator, the transposed matrix, and the scalar product of vec-
tors, respectively. The σ1 and σ2 are piecewise smooth
functions or constants such that σ21 þ σ22 ≠ 0; choosing σ1
and σ2 in a proper way we can specify temperature or heat
flux at the model boundaries; T0ðxÞ is the temperature at
time t= 0. The boundary value problem for the flow velocity
(Eqs. 19.1–19.3) together with the initial-boundary value
problem for temperature (Eqs. 19.4–19.6) describe a thermal
convective viscous flow (circulation) in the mantle.

19.2.2 Objective Functional
Consider the following objective (cost) functional at t2 ½0; ϑ�,

JðφÞ ¼ ‖Tðϑ; �; φÞ � χð�Þ ‖ 2; ð19:7Þ
where ‖ � ‖ denotes the norm in the spaceL2ðΩÞ, theHilbert

space with the norm defined as ‖ y ‖ ¼
ð
Ω

y2ðxÞdx

24 351=2

. Here

Tðϑ; �; φÞ is the solution of the initial-boundary value
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problem for temperature (Eqs. 19.4–19.6) at the final
time ϑ, which corresponds to some (unknown as yet) initial
temperature distribution φðxÞ; χðxÞ ¼ Tðϑ; x;T0Þ is the
known temperature (e.g. the temperature inferred from
measurements or observations) at the final time, which
corresponds to the initial temperature T0ð�Þ. The func-
tional has its unique global minimum at value φ ≡ T0 and
JðT0Þ ≡ 0, rJðT0Þ ≡ 0 (Vasiliev, 2002).

The gradient method is employed to find the minimum of
the functional (7) (k = 0, . . ., j ,. . .):

φkþ1 ¼ φk � βkrJðφkÞ; φ0 ¼ T�; ð19:8Þ

βk ¼
JðφkÞ= ‖rJðφkÞ ‖

2; 0 ≤ k ≤ k�
k�1; k > k�

;

�
ð19:9Þ

where T� is an initial temperature guess. The minimisation
method belongs to a class of limited-memory quasi-Newton
methods (Zou et al., 1993), where approximations to the
inverse Hessian matrices are chosen to be the identity
matrix. Equation (19.9) is used to maintain the stability of
the iteration scheme (19.8).

Let us consider that the gradient of the objective functional
rJðφkÞ is computed with an error ‖rJδðφkÞ � rJðφkÞ ‖< δ,
where rJδðφkÞ is the computed value of the gradient.

Introducing the function φ∞ ¼ φ0 �
X∞
k¼1

βkrJðφkÞ (and

assuming that the infinite sum exists) and the function

φ∞δ ¼ φ0 �
X∞
k¼1

βkrJδðφkÞ (as the computed value of φ∞),

the following inequality should be held for stability of the
iteration method (Eq. 19.8):

‖ φ∞δ � φ∞ ‖ ¼ ‖
X∞
k¼1

βkðrJδðukÞ � rJðukÞÞ ‖ ≤
X∞
k¼1

βk

‖ rJδðφkÞ � rJðφkÞ ‖ ≤ δ
X∞
k¼1

βk: ð19:10Þ

The sum
X∞
k¼1

βk is finite, if βk ¼ 1=kp, p > 1. If p = 1,

but the number of iterations is limited, the iteration
method is conditionally stable, although the convergence
rate of these iterations is low. Meanwhile the gradient of
the objective functional rJðφkÞ decreases steadily with
the number of iterations providing the convergence,
although the absolute value of JðφkÞ= ‖rJðφkÞ ‖

2 increases
with the number of iterations, and it can result in instability
of the iteration process (Samarskii and Vabischevich,
2007).

19.2.3 Adjoint Problem
The minimisation algorithm requires the calculation of the
gradient of the objective functional, rJ. This can be done

using the adjoint problem for the problem (Eqs. 19.4–19.6),
which can be represented in the following form:

∂Ψ =∂tþ 〈u;rΨ 〉þr2 Ψ ¼ 0; x2Ω; t2 ð0; ϑÞ;
ð19:11Þ

σ1Ψ þ σ2∂Ψ =∂n ¼ 0; x2Γ; t2 ð0; ϑÞ; ð19:12Þ

Ψ ðϑ; xÞ ¼ 2ðTðϑ; x; φÞ � χðxÞÞ; x2Ω: ð19:13Þ

Ismail-Zadeh et al. (2004a) proved that the solution Ψ
to the adjoint problem (Eqs. 19.11–19.13) is the gradient
of the objective functional (19.7), that is
rJðφÞ ¼ Ψ ðt ¼ 0; x; φÞ. Therefore, the solution of the
backward heat problem is reduced to iterations between
two forward problems, which are known to be well-posed
(Tikhonov and Samarskii, 1990): the heat problem (Eqs.
19.4–19.6) and the adjoint problem (Eqs. 19.11–19.13).

19.2.4 Solution Method
Here we present a method for solving the coupled prob-
lem (Eqs. 19.1–19.6) backward in time. A uniform parti-
tion of the time axis is defined at points tn ¼ ϑ� δt n,
where δt is the time step, and n successively takes integer
values from 0 to some natural number m ¼ ϑ=δt. At each
subinterval of time [tn+1, tn], the search of temperatureT and
flow velocity u at t = tn+1 consists of the following basic
steps.

Step 1 Given the temperature T ¼ Tðtn; xÞ at t ¼ tn, solve
the boundary value problem (19.1)–(19.3) to determine the
velocity u.

Step 2 The ‘advective’ temperature Tadv ¼ Tadvðtnþ1; xÞ is
then determined by solving the initial-boundary value
problem (Eqs. 19.4–19.6), where the diffusion term in
the heat equation (19.4) is neglected and T ¼ Tðtn; xÞ is
considered as the initial temperature in (19.6). As in the
case of the BAD method, the solution of the problem
backward in time is found by replacing the positive time
step with a negative one. Given temperature T ¼ Tadv at
t ¼ tnþ1, steps 1 and 2 are then repeated to find the
velocity uadv ¼ uðtnþ1; x;TadvÞ.

Step 3 The problem (Eqs. 19.4– 19.6) is solved with the initial
condition (guess temperature) φkðxÞ ¼ Tadvðtnþ1; xÞ;
k ¼ 0; 1; 2;…;m;… forward in time using velocity uadv to
find Tðtn; x; φkÞ.

Step 4The adjoint problem (Eqs. 19.11–19.13) is then solved
backward in time with the initial condition (13) as
Ψ ðtn; xÞ ¼ 2

�
Tðtn; x; φkÞ � χðxÞ

�
and u ¼ uadv to determine

rJðφkÞ ¼ Ψ ðtnþ1; x; φkÞ.

Step 5 The coefficient βk is determined from (19.9), and the
temperature is updated (i.e. φkþ1 is determined) from (19.8).

Steps 3 to 5 are repeated until
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δφn ¼ JðφnÞ þ ‖rJðφnÞ ‖
2 < ε; ð19:14Þ

where ε is a small constant. Temperature φk is then con-
sidered to be the approximation to the target value of the
initial temperature Tðtnþ1; xÞ. And finally,

Step 6 The boundary value problem (Eqs. 19.1–19.3) is
solved at T ¼ Tðtnþ1; xÞ to determine the flow velocity
uðtnþ1; x;Tðtnþ1; xÞÞ.

Note that Step 2 introduces a pre-conditioner to acceler-
ate the convergence of temperature iterations in Steps 1 to 3
at a higher Rayleigh number. At lower Ra, Step 2 is omitted
and uadv is replaced by u. After these algorithmic steps,
temperature T ¼ Tðtn; xÞ and flow velocity u ¼ uðtn; xÞ
(corresponding to t = tn, n = 0,. . ., m) are obtained. Based
on the obtained results, and when required, interpolations
can be used to reconstruct the process on the time interval
½0; ϑ� in more detail.

Hence, at each subinterval of time: (i) the VAR method
is applied to the heat equation only; (ii) the direct and
conjugate problems for the heat equation are solved itera-
tively to find temperature; and (iii) the backward flow is
determined from the Stokes and continuity equations twice
(for ‘advective’ and ‘true’ temperatures). Compared to the
VAR generalised inverse approach (Bunge et al., 2003), the
described numerical approach is computationally less
expensive, because the Stokes equation is not involved in
the iterations between the direct and conjugate problems
(note that the numerical solution of the Stokes equation is
the most time-consuming).

19.2.5 Challenges in VAR Data Assimilation
The VAR data assimilation can theoretically be applied to
many geodynamic problems, although a practical imple-
mentation of the technique for modelling of real geody-
namic processes backward in time is not a simple task. The
mathematical model of mantle dynamics (Eqs. 19.1–19.6) is
simple, and many complications are omitted. For example,
the mantle rheology is more complex (e.g. Karato, 2010);
the adiabatic heating/cooling affects mantle temperature,
especially near the thermal boundary layer; no phase trans-
formations are considered, although they can influence the
thermal convection pattern. To consider these and other
complications in the VAR data assimilation, the adjoint
equations should be derived each time when the set of the
equations is changed. The cost to be paid is in software
development since an adjoint model should be developed.

The solution to the heat problem (Eqs. 19.4–19.6) is a
sufficiently smooth function. The temperature derived from
the seismic tomography should be smooth as well; actually
they are, being the solution to the relevant seismic velocity–
temperature optimisation problem. The requirement of
smoothness is important, because if the initial temperature
is not a smooth function of space variables, recovery of this

temperature using the VAR method is not effective as the
iterations converge very slowly to the target temperature.
Ismail-Zadeh et al. (2006) illustrated the issue of conver-
gence in the cases of a smooth, piecewise smooth, and
discontinuous target function. It was shown that iterations
converge rapidly for the sufficiently smooth target function
(only a few iterations required), and a large number of
iterations (more than 500) is required in the cases of non-
smooth functions.

If the initial temperature guess φ0 is a smooth function, all
successive temperature iterations φk in scheme (19.8) should
be smooth functions too, because the gradient of the object-
ive functionalrJ is a smooth function as the solution to the
adjoint problem (Eqs. 19.11–19.13). However, the tempera-
ture iterations φk are polluted by small errors, which are
inherent in numerical experiments, and these perturbations
grow with time. Samarskii et al. (1997) applied a VAR
method to a 1-D backward heat diffusion problem and
showed that the solution to this problem becomes noisy, if
the initial temperature guess is slightly perturbed, and the
amplitude of this noise increases with the initial perturba-
tions of the temperature guess. To reduce the noise, they
suggested to use a filter based on the replacement of
iterations (19.8) by Bðφkþ1 � φkÞ ¼ �βkrJðφkÞ, where
By ¼ y�r2y (Tsepelev, 2011). An employment of this filter
increases the number of iterations to obtain the target tem-
perature, and it becomes quite expensive computationally,
especially when the model is three-dimensional. Another
way to reduce the noise is to employ high-order adjoint
(Alekseev and Navon, 2001) or regularisation (e.g.
Tikhonov, 1963; Lattes and Lions, 1969; Samarskii and
Vabischevich, 2007) techniques.

19.3 Quasi-Reversibility (QRV) Method

The mathematical idea of the QRV method is based on the
transformation of an ill-posed problem into a well-posed
problem (Lattes and Lions, 1969). In the case of the back-
ward heat equation, this implies an introduction of an add-
itional term into the equation, which involves the product of
a small regularisation parameter and a higher-order tem-
perature derivative. The additional term should be suffi-
ciently small compared to other terms of the heat equation
and allow for simple additional boundary conditions. The
data assimilation in this case is based on a search of the best
fit between the forecast model state and the observations by
minimising the regularisation parameter. The QRV method
is proven to be well suited for smooth and non-smooth input
data (Lattes and Lions, 1969; Samarskii and Vabishchevich,
2007). Note that any regularisation has its advantages and
disadvantages. A regularising operator is used in a mathem-
atical problem to accelerate a convergence, to fulfil the
physical laws (e.g. maximum principal, conversation of
energy) in discrete equations, to suppress a noise in input
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data and in numerical computations, and to account for a
priori information about an unknown solution and hence to
improve a quality of computations. The major drawback of
regularisation is that the accuracy of the solution to a regu-
larised problem is always lower than that to a non-regular-
ised problem.

The transformation to the regularised backward heat
problem is not only a mathematical approach to solving
ill-posed backward heat problems, but has some physical
meaning: it can be explained on the basis of the concept of
relaxing heat flux for heat conduction (e.g. Vernotte 1958).
The classical Fourier heat conduction theory provides the
infinite velocity of heat propagation in a region. The instant-
aneous heat propagation is unrealistic, because the heat is a
result of the vibration of atoms and the vibration propagates
in a finite speed (Morse and Feshbach, 1953). To accommo-
date the finite velocity of heat propagation, a modified heat
flux model was proposed by Vernotte (1958) and Cattaneo
(1958). The modified Fourier constitutive equation is
expressed as ~Q ¼ �krT � τ ∂~Q=∂t, where ~Q is the heat
flux, and k is the coefficient of thermal conductivity. The
thermal relaxation time τ ¼ k=ðρcpv2Þ is usually recognised
to be a small parameter (Yu et al., 2004), where ρ is the
density, cp is the specific heat, and v is the heat propagation
velocity. The situation for τ ! 0 leads to instantaneous
diffusion at infinite propagation speed, which coincides
with the classical thermal diffusion theory. The heat con-
duction equation ∂T=∂t ¼ r2T þ τ ∂2T=∂t2 based on non-
Fourier heat flux can be considered as a regularised heat
equation. If the Fourier law is modified further by an add-
ition of the second derivative of heat flux (e.g.
~Q ¼ �krT þ β ∂2~Q

∂t2 ), where small β > 0 is the relaxation
parameter of heat flux (Bubnov, 1976, 1981), the heat con-
duction equation can be transformed into a higher-order
regularised heat equation.

19.3.1 Mathematical Statement
We consider a mathematical model of thermo-convective
flow in the mantle and search for the velocity u ¼ uðt; xÞ, the
pressure p ¼ pðt; xÞ, and the temperature T ¼ Tðt; xÞ satis-
fying the boundary value problem (Eqs. 19.1–19.3) and the
initial-boundary value problem (Eq. 19.4–19.6). The inverse
problem can be formulated in this case as follows: find the
velocity, pressure, and temperature satisfying the boundary
value problem (Eqs. 19.1–19.3) and the final-boundary
value problem including Eq. (19.4), Eq. (19.5), and the
final condition:

Tðt ¼ ϑ; xÞ ¼ TϑðxÞ ; x2Ω; ð19:15Þ

where Tϑ is the temperature at time t ¼ ϑ.
To solve the inverse problem by the QRVmethod, Ismail-

Zadeh et al. (2007) considered the following regularised
backward heat problem to define temperature in the past
from the known present temperature TϑðxÞ:

∂Tβ=∂t� 〈uβ;rTβ〉 ¼ r2Tβ � βΛ ð∂Tβ=∂tÞ; t2 ½0; ϑ�;
x2Ω; ð19:16Þ

σ1Tβ þ σ2∂Tβ=∂n ¼ T�; t2 ð0; ϑÞ; x2 ∂Ω; ð19:17Þ

σ1∂
2Tβ=∂n2 þ σ2∂

3Tβ=∂n3 ¼ 0; t2 ð0; ϑÞ; x2 ∂Ω;
ð19:18Þ

Tβðϑ; xÞ ¼ TϑðxÞ; x2Ω; ð19:19Þ

where Λ ðTÞ ¼ ∂4T=∂x41 þ ∂4T=∂x42 þ ∂4T=∂x43, and the
boundary value problem to determine the fluid flow:

rPβ ¼ �r � ½ηðTβÞðruβ þruβTÞ� þ RaTβe; x2Ω;
ð19:20Þ

r � uβ ¼ 0; x2Ω; ð19:21Þ

〈uβ; n〉 ¼ 0; σβn� 〈σβ n;n〉n ¼ 0; x2 ∂Ω; ð19:22Þ

where σβ ¼ ηðruβ þruβTÞ. The sign of the velocity field is
changed (uβ by �uβ ) in Eqs. (19.16) and (19.20) to simplify
the application of the total variation diminishing (TVD)
method (Ismail-Zadeh and Tackley, 2010) for solving equa-
tions (19.16)–(19.19). Hereinafter temperature Tϑ is referred
to as the input temperature for the problem (Eqs. 19.16–
19.22). The core of the transformation of the heat equation
is the addition of a high-order differential expression
Λð∂Tβ=∂tÞ multiplied by a small parameter β > 0. Note
that Eq. (19.18) is added to the boundary conditions to
properly define the regularised backward heat problem.
The solution to the regularised backward heat problem is
stable for β > 0, and the approximate solution to Eqs.
(19.16)–(19.22) converges to the solution of (19.1)–(19.5),
and (19.15) in some spaces, where the conditions of well-
posedness are met (Samarskii and Vabischevich, 2007).
Thus, the inverse problem of thermo-convective mantle
flow is reduced to determination of the velocity
uβ ¼ uβðt; xÞ, the pressure Pβ ¼ Pβðt; xÞ, and the tempera-
ture Tβ ¼ Tβðt; xÞ, satisfying Eqs. (19.16)–(19.22).

19.3.2 Optimisation Problem
A maximum of the following functional is sought with
respect to the regularisation parameter β:

δ� ‖Tðt ¼ ϑ; �;Tβkðt ¼ 0; �ÞÞ � φð�Þ ‖ ! max
k

; ð19:23Þ

βk ¼ β0q
k�1; k ¼ 1; 2;…;ℜ; ð19:24Þ

where sign ‖ � ‖ denotes the norm in the space L2ðΩÞ. Here
Tk ¼ Tβkðt ¼ 0; �Þ is the solution to the regularised back-
ward heat problem (Eqs. 19.16–19.19) at t = 0;
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Tðt ¼ ϑ; �;TkÞ is the solution to the heat problem (Eqs. 19.4–
19.6) at the initial condition Tðt ¼ 0; �Þ ¼ Tk at time t ¼ ϑ; φ
is the known temperature at t ¼ ϑ (the input data, i.e. the
present temperature); β0 > 0, 0 < q < 1, and δ > 0 is a given
accuracy. When q tends to unity, the computational cost
becomes large; and when q tends to zero, the optimal solu-
tion can be missed.

The prescribed accuracy δ is composed from the accuracy
of the initial data and the accuracy of computations. When
the input noise decreases and the accuracy of computations
increases, the regularisation parameter is expected to
decrease. However, estimates of the initial data errors are
usually inaccurate. Estimates of the computation accuracy
are not always known, and when they are available, the
estimates are coarse. In practical computations, it is more
convenient to minimise the following functional with
respect to Eq. (19.24)

‖Tβkþ1ðt ¼ 0; �Þ � Tβkðt ¼ 0; �Þ ‖ ! min
k
; ð19:25Þ

where misfit between temperatures obtained at two adjacent
iterationsmust be compared. To implement theminimisation
of temperature residual (19.23), the inverse problem (Eqs.
19.16–19.22) must be solved on the entire time interval as well
as the direct problem (Eqs. 19.1–19.6) on the same time
interval. This at least doubles the number of computations.
The minimisation of functional (19.25) has a lower computa-
tional cost, but it does not rely on a priori information.

19.3.3 Numerical Approach
The numerical algorithm for solving the inverse problem of
thermo-convective mantle flow using the QRV method can
be described as follows. Consider a uniform temporal parti-
tion tn ¼ ϑ� δt n (as defined in Section 19.2.4) and prescribe
some values to parameters β0, q, and ℜ (e.g. β0 ¼ 10�3,
q ¼ 0:1, and ℜ ¼ 10). According to (19.24), a sequence of
the values of the regularisation parameter fβkg is defined.
For each value β ¼ βk, model temperature and velocity are
determined in the following way.

Step 1 Given the temperature Tβ ¼ Tβðt; �Þ at t = tn, the
velocity uβ ¼ uβðtn; �Þ is found by solving problem (Eqs.
19.20–19.22). This velocity is assumed to be constant on
the time interval [tn+1, tn].

Step 2Given the velocity uβ ¼ uβðtn; �Þ, the new temperature
Tβ ¼ Tβðt; �Þ at t = tn+1 is found on the time interval [tn+1, tn]
subject to the final condition Tβ ¼ Tβðtn; �Þ by solving the
regularised problem (Eqs. 19.16–19.19) backward in time.

Step 3 Upon the completion of Steps 1 and 2 for all n =
0,1,. . ., m, the temperature Tβ ¼ Tβðtn; �Þ and the velocity
uβ ¼ uβðtn; �Þ are obtained at each t = tn. Based on the
computed solution, find the temperature and flow velocity
at each point of time interval ½0; ϑ� using interpolation.

Step 4aThedirect problem (Eqs. 19.4–19.6) is solved assuming
that the initial temperature is given as Tβ ¼ Tβðt ¼ 0; �Þ, and
the temperature residual (19.23) is found. If the residual does
not exceed the predefined accuracy, the calculations are ter-
minated, and the results obtained at Step 3 are considered as
the final ones. Otherwise, parameters β0, q, and ℜ entering
Eq. (19.24) are modified, and the calculations are continued
from Step 1 for new set fβkg.

Step 4b The functional (19.25) is calculated. If the residual
between the solutions obtained for two adjacent regularisation
parameters satisfies a predefined criterion (the criterion should
be defined by a user, because no a priori data are used at this
step), the calculation is terminated, and the results obtained at
Step 3 are considered as the final ones. Otherwise, parameters
β0, q, and ℜ entering Eq. (19.24) are modified, and the
calculations are continued from Step 1 for new set fβkg.

In a particular implementation, either Step 4a or Step 4b
is used to terminate the computation. This numerical algo-
rithm allows organising a certain number of independent
computational modules for various values of the regularised
parameter βk that find the solution to the regularised prob-
lem using Steps 1–3 as well as determining an acceptable
result a posteriori according to Step 4a or 4b.

19.4 Restoration of Mantle Plumes

A plume is hot, narrow mantle upwelling that is invoked to
explain hotspot volcanism. In a fluid with the temperature-
dependent viscosity as in the case of the mantle viscosity
model, a plume is characterised by a mushroom-shaped
head and a thin tail. Mantle plumes evolve in three distin-
guishing stages: immature – an origin and initial rise of the
plumes; mature – plume-lithosphere interaction, gravity
spreading of plume head and development of overhangs
beneath the bottom of the lithosphere, and partial melting
of the plume material (e.g. Ribe and Christensen, 1994;
Moore et al., 1998); and overmature – slowing-down of the
plume rise and fading of the mantle plumes due to thermal
diffusion (Davaille and Vatteville, 2005; Ismail-Zadeh et al.,
2006). The ascent and evolution of mantle plumes depend
on the properties of the source region (i.e. the thermal
boundary layer) and the viscosity and thermal diffusivity
of the ambient mantle. The properties of the source region
determine temperature and viscosity of the mantle plumes.
Structure, flow rate, and heat flux of the plumes are con-
trolled by the properties of the mantle through which the
plumes rise. While properties of the lower mantle (e.g. vis-
cosity, thermal conductivity) are relatively constant during
about 150Myr lifetime of most plumes, source region prop-
erties can vary substantially with time as the thermal basal
boundary layer feeding the plume is depleted of hot material
(Schubert et al., 2001). Complete local depletion of this
boundary layer cuts the plume off from its source.
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A mantle plume is a well-established structure in computer
modelling and laboratory experiments. Numerical experi-
ments on dynamics of mantle plumes (Trompert and
Hansen, 1998; Zhong, 2005) showed that the number of
plumes increases and the rising plumes become thinner
with an increase in Rayleigh number. Disconnected ther-
mal plume structures appear in thermal convection at Ra
greater than 107 (e.g. Hansen et al., 1990). At high Ra (in
the hard turbulence regime), thermal plumes are torn off
the boundary layer by the large-scale circulation or by non-
linear interactions between plumes (Malevsky and Yuen,
1993). Plume tails can also be disconnected when the
plumes are tilted by plate scale flow (e.g. Olson and
Singer, 1985). Ismail-Zadeh et al. (2006) presented an alter-
native explanation for the disconnected mantle plume
heads and tails, which is based on thermal diffusion of
mantle plumes.

19.4.1 Model Setup and Methods
To model the evolution of mantle plumes, Ismail-Zadeh et al.
(2006) used Eqs. (19.1)–(19.6) with impenetrability and perfect
slip conditions at the model boundary Ω. A temperature-
dependent viscosity ηðTÞ ¼ expðM=½T þ G� �M=½0:5þ G�Þ
is employed, where M = [225/ln(r)] – 0.25 ln(r), G =15/ln
(r) – 0.5 and r is the viscosity ratio between the upper
and lower boundaries of the model domain (Busse et al.,
1993). The model domain is divided into 37� 37� 29
rectangular finite elements to approximate the vector vel-
ocity potential by tricubic splines, and a uniform grid
112� 112� 88 is employed for approximation of tempera-
ture, velocity, and viscosity (Ismail-Zadeh et al., 2001b,
2006). Temperature in the heat equation (19.4) is approxi-
mated by finite differences and determined by the semi-
Lagrangian method (Ismail-Zadeh and Tackley, 2010). A
numerical solution to the Stokes and incompressibility equa-
tions (19.1) and (19.2) is based on the introduction of a two-
component vector velocity potential and on the application
of the Eulerian finite-element method with a tricubic-spline
basis for computing the potential (Ismail-Zadeh et al., 2001b;
Ismail-Zadeh and Tackley, 2010). Such a procedure results in
a set of linear algebraic equations solved by the conjugate
gradient method (e.g. Ismail-Zadeh and Tackley, 2010).

19.4.2 Forward Modelling
We present here the evolution of mature mantle plumes
modelled forward in time. Considering the following
model parameters, α ¼ 3� 10�5 K–1, ρref ¼ 4000 kg m–3,
ΔT ¼ 3000 K, h = 2,800 km, ηref ¼ 8� 1022 Pa s, and
κ ¼ 10�6 m–2 s–1, the Rayleigh number is estimated to be
Ra ¼ 9:5� 105. While plumes evolve in the convecting het-
erogeneous mantle, at the initial time, it is assumed that the
plumes develop in a laterally homogeneous temperature
field, and hence the initial mantle temperature is considered
to increase linearly with depth.

Mantle plumes are generated by random temperature
perturbations at the top of the thermal source layer associ-
ated with the core–mantle boundary (Fig. 19.1a). The man-
tle material in the basal source layer flows horizontally
towards the plumes. The reduced viscosity in this basal
layer promotes the flow of the material to the plumes.
Vertical upwelling of hot mantle material is concentrated
in low-viscosity conduits near the centrelines of the emer-
ging plumes (Fig. 19.1b,c). The plumes move upward
through the model domain, gradually forming structures
with well-developed heads and tails. Colder material overly-
ing the source layer (e.g. portions of lithospheric slabs sub-
ducted to the core–mantle boundary) replaces hot material
at the locations where the source material is fed into mantle
plumes. Some time is required to recover the volume of
source material depleted due to plume feeding (Howard,
1966). Because the volume of upwelling material is compar-
able to the volume of the thermal source layer feeding the
mantle plumes, hot material could eventually be exhausted,
and mantle plumes would be starved thereafter.

Ismail-Zadeh et al. (2006) showed that the plumes dimin-
ish in size with time (Fig. 19.1d), and the plume tails dis-
appear before the plume heads (Fig. 19.1e,f). Therefore,
plumes start disappearing from bottom up and fade away
by thermal diffusion. At different stages in the plume decay,
one sees quite isolated plume heads, plume heads with short
tails, and plumes with nearly pinched off tails. Different
amounts of time are required for different mantle plumes
to vanish into the ambientmantle, the required time depend-
ing on the geometry of the plume tails.

19.4.3 Performance of the VAR Data Assimilation
To restore the prominent state of the plumes (Fig. 19.1d)
in the past from their ‘present’ weak state (Fig. 19.1f),
Ismail-Zadeh et al. (2006) employed the VAR data
assimilation. Figure 19.2 illustrates the restored states
of the plumes (panel b) and the temperature residuals
δT (panel e) between the temperature TðxÞ predicted by the
forward model and the temperature eT ðxÞ reconstructed to
the same age.

The performance of the VAR data assimilation for
various Rayleigh numbers (Ra) and the mantle viscosity
ratio (r) is evaluated in terms of the number of iterations
n required to achieve a prescribed relative reduction of
δφn (inequality 19.14). Figure 19.3 presents the evolution of
the objective functional JðφnÞ versus the number of iter-
ations at time ~ 0:5θ. The objective functional show a
quite rapid decrease after about seven iterations for Ra =
9:5� 105 and r = 20 (curves 1). AsRa decreases and thermal
diffusion increases (curves 2–4) the performance of the algo-
rithm becomes poor: more iterations are needed to achieve
the prescribed ε.

Despite its simplicity, the minimisation algorithm (19.8)
provides for a rapid convergence and good quality of
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present Figure 19.2 Assimilation of the mantle
temperature and flow to the time of 100
Myr ago and temperature residuals
between the present temperature model (a)
and the temperature assimilated to the same
age, using the VAR (b and e), QRV (c and f;
β ¼ 10�7), and BAD (d and g) methods,
respectively. After Ismail-Zadeh et al.
(2007).
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(b) 195 Myr Figure 19.1 Mantle plumes in the forward
modelling at successive times: from 335Myr
ago (a) to the ‘present’ state of the plumes
(f). The plumes are represented here and in
Fig. 19.2 by isothermal surfaces at 3000 K.
After Ismail-Zadeh et al. (2006).
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optimisation at high Rayleigh numbers (Ismail-Zadeh et al.,
2006). The convergence rate and the quality of optimisation
become worse with the decreasing Rayleigh number. The
use of the limited-memory quasi-Newton algorithm L-
BFGS (Liu and Nocedal, 1989) might provide for a better
convergence rate and quality of optimisation (Zou et al.,
1993). Although an improvement of the convergence rate by
using another minimisation algorithm (e.g. L-BFGS) will
reduce the computational expense associated with the solv-
ing of the problem under question, this reduction would be
not significant, because the largest portion (about 70%) of
the computer time is spent to solve the Stokes equations.

19.4.4 Performance of the QRV Data Assimilation
Todemonstrate the performance of theQRVdata assimilation
and to compare the results with those obtained by the VAR
and BADmethods, the same forwardmodel for mantle plume
evolution as in Section 19.4.2 is used (Ismail-Zadeh et al.,
2007). Figure 19.2 (panels b, c, and d) illustrate the restored
state of mantle plumes with the temperature residuals δT
(panels e, f, and g) obtained by application of the VAR,
QRV, and BAD assimilation, respectively. Ismail-Zadeh et
al. (2007) showed that the VAR method provides the best
performance for the diffused plume restoration. The BAD
method cannot restore the diffused parts of the plumes
because temperature is only advected backward in time.
The QRV method restores the diffused thermal plumes,
meanwhile the restoration results are not so perfect as in
the case of VARmethod. Namely, the temperature residuals
obtained in the case of the VAR method do not exceed 15
degrees (Fig. 19.2e). Meanwhile, the residuals range from
tens to a few hundred degrees in the case of the QRVmethod

(Fig. 19.2f) and from a few hundred to about 1,000 degrees
in the case of the BAD method (Fig. 19.2g). Although the
accuracy of the QRV data assimilation is lower compared to
the VAR data assimilation, the QRV method does not
require any additional smoothing of the input data and
filtering of temperature noise as the VAR method does.

Figure 19.4 presents the residual J1ðβÞ ¼ ‖T0ð�Þ � Tβ

ðt ¼ t0; �;TϑÞ ‖ between the target temperature T0 and the
restored temperature obtained by the QRV data assimila-
tion with the input temperature Tϑ. The optimal accuracy is
attained at β� ¼ arg minfJðβÞ : β ¼ βk; k ¼ 1; 2;…; 10g
≈ 10�7 in the case of r = 20, and at β� ≈ 10�6 and
β� ≈ 10�5:5 in the cases of the viscosity ratio r = 200 and r
= 1000, respectively. Comparison of the temperature resid-
uals for three values of the viscosity ratio r indicates that the
residuals become larger as the viscosity ratio increases. The
numerical experiments show that the algorithm for solving
the inverse problem performs well when the regularisation
parameter is in the range 10�8 ≤ β ≤ 10�6. For greater values,
the solution of the inverse problem retains stability but is
less accurate. The numerical procedure becomes unstable at
β < 10�9, and the computations must be stopped.

19.5 Reconstruction of Plate Subduction

In this section, we consider the application of the QRV data
assimilation to plate subduction beneath the Japanese
islands (Ismail-Zadeh et al., 2013; 2016). An interaction of
the Pacific, Okhotsk, Eurasian, and Philippine Sea litho-
sphere plates with the deeper mantle around the Japanese
islands is complicated by active subduction of the plates
(Fukao et al., 2001; Furumura and Kennett, 2005) and
back-arc spreading (Jolivet et al., 1994), which cannot be
understood by the plate kinematics only (Fig. 19.5). The
Pacific plate subducts under the Okhotsk and the
Philippine Sea plates with the relative speed of about 9 cm
yr–1 and 5 cm yr–1, respectively, whereas the Philippine Sea
plate subducts under the Eurasian plate with the relative
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Figure 19.4 Temperature misfit J1 as the function of the
regularisation parameter β. The minimum of the temperature
misfit is achieved at β�, an optimal regularisation parameter. Solid
curves: r = 20; dashed curves: r = 200; and dash-dotted curves: r =
1000. After Ismail-Zadeh et al. (2007).
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Figure 19.3 Relative reductions of the objective functional J as
functions of the number of iterations. Curves: 1, r = 20,
Ra ¼ 9:5� 105; 2, r = 20, Ra = 9:5� 102; 3, r = 200,
Ra= 9:5� 103; 4, r= 200,Ra= 9:5� 102. After Ismail-Zadeh et al.
(2006).
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speed of about 5 cm yr–1 (Drewes, 2009). Back arcs of
these subduction zones are also known as the site of active
spreading in the past and recent as inferred from both the
geophysical and geological surveys (Jolivet et al., 1994).

P-wave seismic tomography of the mantle beneath the
subducting Pacific plate near the Japanese islands revealed
a low-velocity region extending oceanward at depths
around the 410-km seismic discontinuity, and this low-
velocity anomaly region was interpreted as a zone with an
excess temperature of 200 K and the associated fractional
melt of less than 1% (Obayashi et al., 2006). To clarify the
origin of the hot temperature anomaly beneath the Pacific
plate and its implication for back-arc basin evolution,
Ismail-Zadeh et al. (2013) studied the mantle evolution
beneath the Japanese islands and their surroundings
based on the assimilation of temperature inferred from
seismic tomography, the present movements derived from
geodetic observations, and the past plate motion inferred
from paleogeographic and paleomagnetic plate
reconstructions.

19.5.1 Mathematical Statement and Model Setup
In the domain Ω ¼ ½0; x1 ¼ l1 ¼ 4000 km� � ½0; x2 ¼ l2 ¼
4000 km�� ½0; x3 ¼ h ¼ 800 km�, and for time interval, the
regularised Stokes, the incompressibility, and the backward
heat balance equations are solved with relevant boundary
and initial conditions (presented here) using the QRV
method and the extended Boussinesq approximation
(Christensen and Yuen, 1985):

�rPþr � ðη½ruþ ðruÞT �Þ ¼ ðEþ ςr2Þ�1
½RaT � a1LaΦ1ðπ1Þ � a2LaΦ2ðπ2Þ�e; ð19:26Þ

r � u ¼ 0; ð19:27Þ

∂
∂t
ðEþ βr2Þ2T � u � rT � A�1B  Di�Ra u3 T

¼ �A�1 �r2T þDi�η
X3
i; j¼1
ðeijÞ2

 !
; ð19:28Þ

where

Figure 19.5 Reconstruction of
mantle dynamics beneath the
Japanese islands to the Middle
Eocene times (~40 Myr ago (Ma);
Ismail-Zadeh et al., 2013). (a)
Topography map of the Japanese
Islands and surroundings. The bold
white line marks the surface
projection of the vertical ‘window’,
through which the model domain is
seen from SW. (b)–(f) Snapshots of
the evolution of the lithospheric slab
(blue) and the mantle upwelling (red)
seen through the ‘window’: (b)
present state; (c) 9.7Ma; (d) 19.5Ma;
€ 29.2 Ma; and (f) 38.9 Ma. Arrows
indicate the mantle flow velocities.
Images courtesy A. Helfrich-
Schkarbanenko.
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A ¼ 1þ a1
2

w1
ðΦ1 � Φ1

2Þγ21 þ a2
2

w2
ðΦ2 � Φ2

2Þγ22
� �

Di� La T
� �

> 0;

B ¼ 1þ La
Ra

a1
2

w1
ðΦ1 � Φ1

2Þγ1 þ a2
2

w2
ðΦ2 � Φ2

2Þγ2
� �� �

;

Φ i ¼
1

2
1þ tanh

πi
wi

� �
; πi ¼ zi � x3 � γiðT � TiÞ; i ¼ 1; 2:

Here ϑ is the present time; eijðuÞ ¼ f∂ui=∂xj þ ∂uj=∂xig is
the strain rate tensor; andE is the unit operator.With regard
to the phase changes around 410 km and 660 km, respect-
ively, π1 and π2 are the dimensionless excess pressures; Φ 1

and Φ 2 are the phase functions describing the relative
fraction of the heavier phase, respectively, and varying
between 0 and 1 as a function of depth and temperature.
The Rayleigh (Ra), Laplace (La), and modified dissipation
(Di*) dimensionless numbers are defined as Ra ¼ αgρ�T�h3

ðη�κÞ�1, La ¼ ρ�gh3ðη�κÞ�1, and Di� ¼ η�κðρ�ch2T�Þ�1,
respectively. The operator ðEþ ςr2Þ�1, ς ¼ const > 0 is
applied to the right-hand side of the Stokes equations
(19.26) to smooth temperature jumps at the phase boundar-
ies and to enhance the stability of our computations.
According to the QRV method, the higher dissipation
term, whose magnitude is controlled by the small (regular-
isation) parameter β, is introduced to regularise the heat
balance equation (19.28). The physical parameters used in
this study are listed in Table 19.1.

Although the mantle dynamics is coupled to the litho-
sphere dynamics, the coupling can be weak or strong
depending on the viscosity contrast between the litho-
sphere and the underlying mantle (Doglioni et al., 2011).
There is still a debate about driving forces of plate tecton-
ics: whether a mantle–lithosphere interaction is driven by
a slab pull or by mantle upwellings (e.g. Coltice et al.,
2019). Because of uncertainties in the driving forces, kine-
matic conditions (the direction and rate of plate motion)

Table 19.1 Parameters of the model by Ismail-Zadeh et al. (2013) used in Section 19.5

PARAMETER SYMBOL VALUE

Dimensionless density jump at the 410-km phase boundary a1 0.05
Dimensionless density jump at the 660-km phase boundary a2 0.09
Thermal conductivity c 1,250 W m–1 K–1

Activation energy Ea 3� 105 J mol–1

Acceleration due to gravity g 9:8 m s–2

Depth h 800 km
Length (in x-direction) l1 4,000 km
Length (in y-direction) l2 4,000 km
Universal gas constant R 8.3144 J mol–1 K–1

Difference between the temperatures at the lower (Tl) and upper (Tu) model boundaries T* 1,594 K
Dimensionless temperature at the upper model boundary Tu 290 / T*

Dimensionless temperature at the lower model boundary Tl 1,884 / T*

Dimensionless temperature at the 410-km phase boundary T1 1,790 / T*

Dimensionless temperature at the 660-km phase boundary T2 1,891 / T*

Activation volume Va 4� 10�6 m3 mol–1

Dimensionless width of the 410-km phase transition w1 10 km / h
Dimensionless width of the 660-km phase transition w2 10 km / h
Dimensionless depth of the 410-km phase boundary z1 390 km / h
Dimensionless depth of the 660-km phase boundary z2 140 km / h
Thermal expansivity α 3� 10�5 K–1

QRV regularisation parameter β 0.00001
Dimensionless Clapeyron (pressure-temperature) slope at the 410-km phase boundary γ1 4� 106 Pa K–1

�T�ðρ�ghÞ�1

Dimensionless Clapeyron slope at the 660-km phase boundary γ2 �2� 106 Pa
K–1�T�ðρ�ghÞ�1

Reference viscosity η� 1021 Pa s
Thermal diffusivity κ 10�6m2s-1

Reference density ρ� 3,400 kg m–3

Phase regularisation parameter ς 0.0001
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are normally prescribed to the plates in numerical model-
ling of the mantle–lithosphere dynamics. Current kine-
matic conditions can be estimated from geodetic
measurements. However, the past kinematic conditions
are less reliable due to uncertainties in plate tectonic
reconstructions (e.g. Rowley, 2008).

To constrain the horizontal lithosphere motion, Ismail-
Zadeh et al. (2013) prescribed plate motion velocities at the
upper boundary of the model domain. The present plate
motion velocities were determined from the Actual Plate
Kinematic and Deformation Model (APKIM2005) derived
from geodetic data (Drewes, 2009) and from the PB2002
model for the Philippine Sea and Okinawa Plates (Bird,
2003). To determine mantle dynamics in the geological
past, the past plate velocities were derived from paleogeo-
graphic reconstructions of the Philippine Sea (Seno and
Maruyama, 1984) and Japanese Islands (Maruyama et al.,
1997), Philippine Sea plate motion from paleomagnetic
studies (Yamazaki et al., 2010), relative motion of the
Pacific plate (Northrup et al., 1995), and Cenozoic plate
tectonic evolution of the south-eastern Asia (Hall, 2002).

The input temperature for data assimilation was obtained
from seismic tomography (P-wave velocity anomalies) data
beneath the Japanese islands (Fukao et al., 2001; Obayashi et
al., 2006, 2009) using a non-linear inversion method (Ismail-
Zadeh et al., 2005) and considering the effects of mantle
composition, anelasticity, and partial melting on seismic vel-
ocities as well as surface heat flow data to constrain the
crustal temperature (Wang et al., 1995; Yamano et al.,
2003). The seismic thermal state of the back-arc region
(Ismail-Zadeh et al., 2013) is characterised by shallow hot
anomalies reflecting the remnants of the back-arc spreading
(Jolivet et al., 1994) and deep cold anomalies related to the
stagnation of the lithospheric slabs (Fukao et al., 2001). The
mantle beneath the Pacific plate is characterised by the shal-
low cold anomalies reflecting the existence of the old oceanic
Pacific plate and the deep broad hot anomaly of unknown
origin. This temperaturemodel is used as the initial condition
(input temperature) for a restoration model.

In the numerical modelling, Ismail-Zadeh et al. (2013)
assumed that the Earth’s mantle behaves as a temperature-
dependent Newtonian fluid ηðTðxÞ; x3Þ ¼ η0 exp½ðEa þ
ρ�gx3VaÞ= ðRTÞ�, where η0 is determined so that it will give
2:905� 1020 Pa s at the depth of 290 km and temperature of
1,698 K; the activation energy is Ea ¼ 3� 105 J mol–1, and
the activation volume of Va ¼ 4� 10�6 m3 mol–1. Other
parameters of the rheological law are listed in Table 19.1.
The upper limit of the viscosity is set to be ~1022 Pa s, which
results in the viscosity increase from the upper to the lower
mantle by about two orders of magnitude.

19.5.2 Results
In backward sense, the high-temperature patchy anomaly
beneath the back-arc Japan Sea basin splits into two promin-
ent anomalies showing two small-scale upwellings beneath

the northern part (presented in Fig. 19.5) and the southwest-
ern part of the Japan Sea. The present hot anomalies in the
back-arc region move down eastward, while the broad hot
anomaly under the Pacific plate moves slowly down west-
ward (Fig. 19.5). The hot anomalies tend to merge at 38.9
Myr ago (Ma). The model shows the link between hot anom-
aly in the back-arc region and that in the sub-slab mantle at
depths of about 440–560 km in the Middle to Late Eocene
time. The upwellings are likely to be generated in the sub-slab
hot mantle and penetrated through breaches/tears of the
subducting Pacific plate into the mantle wedge. Hence,
Ismail-Zadeh et al. (2013) proposed that the present hot
anomalies in the back-arc and sub-slab mantle had a single
origin located in the sub-lithospheric mantle. These small-
scale upwellings beneath the northern part of the Japan Sea
predicted by the assimilation of geophysical, geodetic, and
geological data could be a source contributing to the rifting
and back-arc basin opening.

Ismail-Zadeh et al. (2013) performed a sensitivity analysis
to understand how stable the numerical solution was with
respect to small perturbations of input data (the seismic
temperature model). The seismic temperature model was
perturbed randomly by 0.5–1% and then assimilated to the
past to find the initial temperature. A misfit between the
initial temperatures related to the perturbed and unper-
turbed present temperature is about 3–5%, which proves
the stability of the solution.

A test related to the QRV reconstruction accuracy can be
also performed. This test considers the reconstructed tem-
perature as an initial temperature for the forward numer-
ical model. The model is then solved with this initial
temperature forward in time (from the past to the present).
The ‘present’ temperature so obtained is compared to the
input data of the QRVmodel. However, the misfit between
the ‘present’ temperature and the input data may become
significant depending on the time interval of the input data
assimilation, the regularisation parameter β, and the errors
in the input data (Samarskii and Vabishchevich, 2007;
Ismail-Zadeh et al., 2007). This misfit can be amplified by
the errors associated with the numerical solutions backward
and forward in time.

For a given temperature, mantle dynamics depends on
various factors including rheology (Billen, 2008), phase
changes (Liu et al., 1991; Honda et al., 1993), and boundary
conditions. Ismail-Zadeh et al. (2013) conducted a search
over the ranges of uncertain parameters in the temperature-
and pressure-dependent viscosity (activation energy and
activation volume) to achieve ‘plate-like’ behaviour of the
colder material. Also, they tested the influence of phase
changes, model depth variations and boundary conditions
on the model results. In numerical models of mantle dynam-
ics, the choice of boundary conditions and the size of the
model domain influence the pattern of flow and slab dynam-
ics. If the depth of the model domain is significantly smaller
than the horizontal dimensions of the domain, the thermo-
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convective flow in the model with a low-viscosity upper
mantle and higher-viscosity lower mantle will generate the
return flow focused in the upper mantle. Increasing the
model domain’s depth removes the artificial lateral return
flow in the upper mantle. The sensitivity analysis related to
the presence of phase transformations and to changes in
boundary conditions show that the model is robust, and
the principal results of the model do not change (Ismail-
Zadeh et al., 2013).

Numerical experiments using non-Newtonian power-law
rheology showed that the dynamic features of the past plate
subduction look rather similar to the Newtonian rheology
(Fig. 19.6). The Newtonian viscosity was modelled as
ηl ¼ ηrηzp½expðE1=ðRTÞ � E1=ðRTrÞÞ�, and non-Newtonian
power-law viscosity as the combination of both diffusion
and dislocation creeps ðηnÞ

�1 ¼ ðηrηzpÞ
�1½expðE1=ðRTÞ �

E1=ðRTrÞÞ þ expðE2=ðRTÞ � E2=ðRTrÞÞ ðτ=τrÞn�1�, where
ηzp is the depth- and phase-dependent viscosity; ηr
(= 1021 Pa s) is the reference viscosity at reference mantle
temperature T =Tr (= 1330°C); E1 (= 300 kJ mol–1), and E2

(= 540 kJ mol–1) are the activation energy of diffusion creep
and diffusion/dislocation creep, respectively; R is the uni-
versal gas constant; T is the temperature; n (= 3.5) is
the power-law index of the non-Newtonian rheology; τ is
the second invariant of stress tensor, and τr (= 106 Pa) is the
transitional stress at T =Tr, where the linear and effective
non-linear viscosities give the same value ηr. There exist
some differences in the style of subduction between the
two rheological models; for example, the necking of the
subducting lithosphere near the oceanic side of subduction
and the link between the mantle wedge and sub-slab mantle
become clearer. Also, we can observe a significant migration
of the trench of the descending slab. Using data assimila-
tion, Peng and Liu (2022) showed that slabs can migrate
laterally at significant distances due to horizontal mantle

flows (trenchmigration) and surface plate motions influence
the horizontal migration of slab.

19.6 Discussion

In this chapter we have presented two basic methods for
data assimilation in geodynamicmodels and illustrated their
applicability to analyse the mantle plume dynamics and
lithosphere subduction in the geological past. Each method
has its advantages and disadvantages. Table 19.2 summaries
the differences in the methodology of data assimilation. The
VAR data assimilation assumes that the direct and adjoint
problems are constructed and solved iteratively forward in
time. The structure of the adjoint problem is identical to the
structure of the original problem, which considerably sim-
plifies the numerical implementation. However, the VAR
method imposes some requirements for the mathematical
model (i.e. a derivation of the adjoint problem). Moreover,
for an efficient numerical implementation of the VAR
method, the error level of the computations must be
adjusted to the parameters of the algorithm, and this com-
plicates computations.

The QRV method allows employing sophisticated math-
ematical models (because it does not require derivation of an
adjoint problem as in the VAR data assimilation) and hence
expands the scope for applications in geodynamics (e.g.
thermo-chemical convection, phase transformations in the
mantle). It does not require that the desired accuracy of
computations be directly related to the parameters of the
numerical algorithm. However, the regularising operators
usually used in the QRV method enhance the order of the
system of differential equations to be solved.

The BAD method does not require any additional work
(neither analytical nor computational). The major differ-
ence between the BAD method and two other methods

Present
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5 Ma

Newtonian viscosity

Non-Newtonian power-law viscosity

10 Ma 15 Ma
Figure 19.6 Cross-section view of the reconstruction of
mantle dynamics beneath the Japanese islands to the
Middle Miocene times (~15 Ma) along the latitude 53°N
from the longitude 105°E to 175°E (unpublished work by
Honda and Ismail-Zadeh). Snapshots of the evolution of
the lithospheric slab (bluish) and the hotter mantle (red-
dish) in the case of the Newtonian rheology (upper panels)
and the non-Newtonian rheology (lower panels). Numbers
at the top are the age measured from the present in million
years. Red arrows show the positions of the plate
boundaries.
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(VAR and QRV methods) is that the BAD method is by
design expected to work (and hence can be used) only in
advection-dominated heat flow. In the regions of high tem-
perature/low mantle viscosity, where heat is transferred
mainly by convective flow, the use of the BAD method is
justified, and the results of numerical reconstructions can
be satisfactory. Otherwise, in the regions of conduction-
dominated heat flow (due to either high mantle viscosity or
high conductivity of mantle rocks), the use of the BAD
method cannot even guarantee any similarity of recon-
structed structures. If mantle structures are diffused signifi-
cantly, the remaining features of the structures can be only
backward advected with the flow.

Data assimilation is a useful tool for improving our
understanding of the thermal and dynamic evolution of
the Earth’s structures. The geometry of the thermal
structures in the mantle changes with time due to heat
advection, which deforms the structures, and heat con-
duction, which smooths the complex shapes of the struc-
tures. This creates difficulties in understanding the
evolution of the mantle structures in the past. A

quantitative assimilation of the present mantle tempera-
ture and flow into the geological past provides a tool for
restoration of thermal shapes of prominent structures in
the past from their diffusive shapes at present. An
assimilation of geophysical, geodetic, and geological
data and plate tectonic constraints allows us to recon-
struct prominent features of hot upwelling or cold down-
welling in the mantle.

We have presented here the VAR and QRV data
assimilation methods and their realisations with the
aim to restore the evolution of the thermal structures.
The VAR and QRV methods have been compared to the
BAD method. It is shown that the BAD method can be
employed only in models of advection-dominated mantle
flow, that is, in the regions where the Rayleigh number
is high enough (e.g. >107), whereas the VAR and
QRV methods are suitable for the use in models of
conduction-dominated flow (lower Rayleigh numbers).
The VAR method provides a higher accuracy of model
restoration compared to the QRV method, meanwhile
the latter method can be applied to assimilate both

Table 19.2 Comparison of data assimilation methods (after Ismail-Zadeh et al., 2007)

QRV method VAR method BAD method

Method Solving the regularised backward
heat problem with respect to
parameter β

Iterative sequential solving of the
direct and adjoint heat
problems

Solving of heat advection
equation backward in time

Solution’s stability Stable for parameter β to
numerical errors1 and
conditionally stable for
parameter β to arbitrarily
assigned initial conditions
(numerically)

Conditionally stable to
numerical errors depending on
the number of iterations
(theoretically2) and unstable to
arbitrarily assigned initial
conditions (numerically3)

Stable theoretically and
numerically

Solution’s convergence Numerical solution to the
regularised backward heat
problem converges to the
solution of the backward heat
problem in the special class of
admissible solutions4

Numerical solution converges to
the exact solution in the
Hilbert space5

Not applied

Solution’s accuracy Acceptable accuracy for both
synthetic and geophysical data

High accuracy for synthetic data. Low accuracy for both synthetic
and geophysical data in
conduction-dominated mantle
flow

Time interval for data
assimilation

Limited by the characteristic
thermal diffusion time

Limited by the characteristic
thermal diffusion time and the
accuracy of the numerical
solution

No specific time limitation;
depends on mantle flow
intensity

Analytical work Choice of the regularising
operator

Derivation of the adjoint
problem

No additional analytical work

Algorithmic work New solver for the regularised
equation should be developed

No new solver should be
developed

Solver for the advection equation
is to be used

1 Lattes and Lions, 1969; 2 Ismail-Zadeh et al., 2004a; 3 Ismail-Zadeh et al., 2006; 4 Tikhonov and Arsenin, 1977; 5 Tikhonov
and Samarskii, 1990.
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smooth and non-smooth data. Depending on a geody-
namic problem one of the three methods can be
employed in data-assimilation modelling.
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Abstract: Variational data assimilation through the
adjoint method is a powerful emerging technique in geo-
dynamics. It allows one to retrodict past states of the
Earth’s mantle as optimal flow histories relative to the
current state, so that poorly known mantle flow param-
eters such as rheology and composition can be tested expli-
citly against observations gleaned from the geologic
record. By yielding testable time dependent Earth models,
the technique links observations from seismology, geology,
mineral physics, and paleomagnetism in a dynamically
consistent way, greatly enhancing our understanding of
the solid Earth system. It motivates three research fronts.
The first is computational, because the iterative nature of
the technique combined with the need of Earth models for
high spatial and temporal resolution classifies the task as
a grand challenge problem at the level of exa-scale comput-
ing. The second is seismological, because the seismic man-
tle state estimate provides key input information for
retrodictions, but entails substantial uncertainties. This
calls for efforts to construct 3D reference and collaborative
seismic models, and to account for seismic data uncertain-
ties. The third is geological, because retrodictions neces-
sarily use simplified Earth models and noisy input data.
Synthetic tests show that retrodictions always reduce the
final state misfit, regardless of model and data error. So the
quality of any retrodiction must be assessed by geological
constraints on past mantle flow. Horizontal surface veloci-
ties are an input rather than an output of the retrodiction
problem; but viable retrodiction tests can be linked to
estimates of vertical lithosphere motion induced by mantle
convective stresses.

20.1 Introduction

Mantle convection is a key element of the Earth system.
The relentless deformation inside Earth’s mantle from

slow, viscous creep has a far greater impact on our planet
than might be immediately evident. Continuously reshap-
ing Earth’s surface, mantle convection provides the driv-
ing forces necessary to support large-scale horizontal
motion in the form of plate tectonics and the associated
earthquake and mountain building activity.

Mantle convection models have reached an impressive
level of sophistication (e.g. Zhong et al., 2015). Their need
for high numerical resolution has led to the development of
codes based on state-of-the-art numerical techniques suit-
able for massively parallel architectures (e.g. Burstedde
et al., 2013; Heister et al., 2017; Kronbichler et al., 2012;
Bauer et al., 2019). However, many model features, such as
complex rheologies or thermochemical flow properties,
involve ad hoc parameterisations and long-range extrapo-
lations. This calls for growing capabilities to test mantle
convection models against observables. The long time
scales of mantle flow, on the order of millions of years
(Myr), rule out predictions of future system states. But
tests of mantle convection models, to resolve uncertainties
in model parameters and the assumptions they are based
upon, are available by constructing time trajectories of
past mantle states, obtained through so-called retrodic-
tions, and comparing them with constraints gleaned from
the geologic record.

To this end, our understanding of how to retrodict past
mantle states has progressed significantly. Early backward
advection schemes (Bunge and Richards, 1992; Steinberger
and O’Connell, 1997), where one integrates model hetero-
geneity back in time by reversing the time step of the energy
equation and ignoring thermal diffusion, have given way to
a formal inverse problem based on an adjoint approach,
with so-called adjoint equations providing sensitivity infor-
mation in the geodynamic model relative to earlier system
states. Adjoint equations have been derived for incompress-
ible (Bunge et al., 2003; Ismail-Zadeh et al., 2004; Horbach
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et al., 2014), compressible (Ghelichkhan and Bunge, 2016),
and thermochemical (Ghelichkhan and Bunge, 2018) man-
tle flow. There are also reports on savings in computational
cost of the adjoint method by optimising the step sizes (Price
and Davies, 2018), on using a hybrid forward-adjoint
scheme (Zhou and Liu, 2017), on simultaneous recoveries
of initial temperature condition and rheology (Li et al.,
2017), and on multiphysics adjoint modelling (Reuber and
Simons, 2020).

Mantle convection is a chaotic process. This seemingly
rules out any construction of robust flow time trajectories
(Bello et al., 2014); but the chaotic nature of mantle convec-
tion is mitigated if one assimilates the horizontal surface
velocity field (Colli et al., 2015). Knowledge of the latter is
therefore essential to assure convergence of the inverse
problem (Vynnytska and Bunge, 2014). This makes hori-
zontal surface motions in the form of plate motion histories
(e.g. Müller et al., 2016) the input of retrodictions rather
than their output, implying that viable tests of mantle flow
retrodictions should be linked to inferences of vertical litho-
sphere motion induced by mantle convective stresses.
Simply put: it is not possible to construct self-consistent
geodynamic models of plate tectonics that are testable
against the geologic record, because the horizontal velocity
field of past plate motions is an input to the inverse problem
of mantle flow retrodictions.

To this end, geodynamicists have long known that con-
vective stresses deflect Earth’s surface away from its isosta-
tically compensated state (Pekeris, 1935). Termed dynamic
topography by Hager et al. (1985), the deflections have
received renewed attention (Braun, 2010), for instance in
passive margin environments (Bunge and Glasmacher,
2018), where the proximity to a base-level allows one to
gauge topographic changes better than at other places.
There has been much improvement in the amount and
quality of dynamic topography inferences in recent years.
Information on the present-day scale and amplitude of top-
ography in convective support comes from oceanic residual
depth surveys (Hoggard et al., 2017). Additional geologic
indicators constrain the temporal evolution of dynamic top-
ography. They include studies of river profiles (e.g. Roberts
and White, 2010), sediment compaction (Japsen, 2018) and
provenance (e.g. Meinhold, 2010, Şengör, 2001), landform
analysis (Guillocheau et al., 2018), thermochronological
data (e.g. Flowers et al., 2008; Reiners and Brandon,
2006), quantifications of sediment budgets at the scale of
continental margins (Guillocheau et al., 2012; Said, Moder,
Clark, and Abdelmalak, 2015; Said, Moder, Clark, and
Ghorbal, 2015), paleobiological and paleoenvironmental
data (Fernandes and Roberts, 2020), or sequence stratig-
raphy (Czarnota et al., 2013; Hartley et al., 2011). Inferences
can also be drawn from geological hiatus maps. The latter
yield powerful constraints at interregional to continental
scales on past dynamic topography (Friedrich et al., 2018;
Vibe et al., 2018; Carena et al., 2019; Hayek et al., 2020,

2021). An effective review of observations of dynamic top-
ography through space and time is given by Hoggard et al.
(2021).

From this it is clear that techniques and observations are
available to construct and constrain past mantle flow.
However, the most severe limitation for geodynamic retro-
dictions arguably comes from uncertainties in the assumed
modelling parameters for Earth’s mantle. The rheology is
not well known. Information comes from geodynamic stud-
ies of glacial isostatic adjustment (e.g. Mitrovica, 1996) and
the geoid (e.g. Richards and Hager, 1984). A robust conclu-
sion from this work is that the upper part of the mantle has
a lower viscosity than its lower part. The resolving power,
however, is limited and the resulting inference involves a
strong trade-off between the thickness of the low-viscosity
upper layer and its viscosity reduction (e.g. Paulson and
Richards, 2009; Schaber et al., 2009). For geoid models,
the trade-off is aggravated by our limited knowledge of the
loading function (i.e. the assumedmantle density heterogen-
eity structure). Because geoidmodels solve an instantaneous
Stokes equation, the loading function is necessarily fixed in
space and time.Mantle flow retrodictions yield time-varying
loading functions (i.e. density anomalies advected bymantle
flow). Comparing such time-dependent Earth models with
geologic indicators of evolving dynamic topography should
help to reduce the trade-off between competing mantle
viscosity models.

The mantle thermochemical structure from which one ret-
rodicts past mantle states is also not well known. In principle,
one can map seismic heterogeneity to temperature and dens-
ity through thermodynamically self-consistent mantle min-
eralogy models (e.g. Piazzoni et al., 2007; Stixrude and
Lithgow-Bertelloni, 2011; Chust et al., 2017); but the
approach suffers from a well-known trade-off between com-
positional and thermal variations (Mosca et al., 2012). Some
considerations are therefore required. First, mantle density
increases by nearly a factor of two (Dziewonski and
Anderson, 1981) from the surface to the core–mantle bound-
ary (CMB) due to compression induced by self-gravitation.
So compressibility effects should be considered in retrodic-
tions to account for mantle heterogeneity in a dynamically
consistent way. For instance, the depthwise heterogeneity
increase in the lower mantle revealed by seismic imaging
(Ritsema et al., 2011; Simmons et al., 2012; French and
Romanowicz, 2014) seems best explained in mantle convec-
tion models restricted to an incompressible formulation by
invoking compositional variations (McNamara and Zhong,
2005; McNamara, 2019). But compressibility effects and
mantle subadiabaticity (Bunge, 2005) raise the excess tem-
perature of mantle plumes with depth (e.g. Schuberth et al.,
2009). This makes it plausible to account for deep mantle
heterogeneity by temperature alone (Schuberth, Bunge and
Ritsema, 2009; Davies et al., 2012; Schuberth et al., 2012).
Second, the limited data coverage available for seismic stud-
ies makes tomographic inverse problems ill-posed. So an
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explicit regularisation, usually in the form of damping and/or
smoothing of the seismic model, is needed. While regularisa-
tion parameters directly impact the size and amplitude of
seismic anomalies, their choice is to a large extent subjective
(Ritsema et al., 2011). Zaroli et al. (2013) proposed some
objective rationales to constrain the regularisation param-
eters. But their span is still sufficiently large to permit
a factor of ≈2 uncertainty in the RMS amplitude of seismic
anomalies (Zaroli et al., 2013). Damping and filtering effects
are illustrated by synthetic studies, where one constructs
a tomographic image from a geodynamically plausible man-
tle convection input structure (e.g.Mégnin et al., 1997; Bunge
and Davies, 2001; Schuberth, Bunge and Ritsema, 2009) and
finds that dynamically significant features are dampened and
either smeared or absent in the imaged output structure.
Additional uncertainties arise from theoretical simplifica-
tions (e.g. the high-frequency approximation in raypath
travel time tomography) and unmodelled effects.
Tomographic techniques based on finite-frequency and
full-waveform methods employ more complete physics to
improve data coverage and reduce modelling errors. Seismic
tomographies based on these techniques (Fichtner et al.,
2009; Colli et al., 2013) should yield sharper images of seismic
anomalies.

In summary, we note that mantle state estimates involve
uncertainties in mantle heterogeneity structure and ampli-
tude. State estimate uncertainties combine with model
uncertainties. This necessarily restricts our ability to retro-
dict past mantle states. Still, current global tomographic
models agree over length scales of thousands of kilometres
(Becker and Boschi, 2002), making it feasible to construct
mantle flow retrodictions. In the following, we present for-
ward and adjoint mantle convection equations and report
the impact of model inconsistencies and imperfect mantle
state estimates on the outcome of the adjoint method. Next
we turn to geologic archives that constrain long wavelength
vertical motion of the lithosphere. To this end, continent-
scale hiatusmaps are beginning to yield powerful proxies for
mantle-flow-induced dynamic topography. We then briefly
illustrate the dynamic topography evolution of four recent
global mantle flow retrodictions from the early Cenozoic
onward, finding they capture some first-order dynamic
topography changes over the last 50 Myr. This bodes well
for future modelling studies. We complete the chapter with
concluding remarks.

20.2 Geodynamic Data Assimilation with Adjoint
Techniques

20.2.1 Forward and Adjoint Equations
Mantle convection is modelled by forward equations that
embody the conservation principles for mass, momentum,
and energy. To account for compressibility effects, they are

solved in the truncated anelastic-liquid approximation
(Jarvis and Mckenzie, 1980; Baumgardner, 1985) in a time
interval I :¼ ½t0; t1�within a spherical shellV (i.e. the Earth’s
mantle) with boundary ∂V ¼ S∪C, where S denotes the
Earth’s surface and C the CMB:

r � ðρrvÞ ¼ 0;

r � η rvþ ðrvÞT � 2

3
ðr � v1Þ

� �� �
�rPþ αρrgðTav � TÞ ¼ 0;

∂tT þ γTr � vþ v � rT � 1

ρrcv
fr � ðkrTÞ þ τ : rvg

þH ¼ 0;

where v is the velocity, ρr is the radial density profile, η is the
viscosity, P is the pressure, α is the thermal expansivity, g is
the gravitational acceleration, and T is the temperature,
while Tav is its layer-averaged value, γ is the Grüneisen
parameter, cv is the specific heat capacity at constant vol-
ume, k is the thermal conductivity, τ is the deviatoric stress
tensor, and H is the rate of radiogenic heat production. At
the surface, mantle convection models commonly employ
a free-slip (no tangential shear stress) or no-slip (fixed vel-
ocity value) boundary condition for the momentum equa-
tion. Mantle circulation models (e.g. Bunge et al., 1998)
instead impose plate motion histories (e.g. Müller et al.,
2016) on S through a time-dependent velocity boundary
condition. The latter is a form of sequential data assimila-
tion (Bunge et al., 2002) such that geologic information
on the surface velocity history enters the flow. The C is
treated as free-slip. The energy equation commonly applies
Dirichlet boundary conditions (fixed temperatures) on both
boundaries.

The corresponding adjoint equations for compressible man-
tle flow have been derived by Ghelichkhan and Bunge (2016).
They use so-called adjoint variables for three fields, termed
adjoint velocity ϕ, pressure λ, and temperatureY, in analogy
to the forward velocity, pressure, and temperature fields:

r � ϕ ¼ 0;

r � η
�
rϕþ ðrϕÞT

�h i
þYrT � ρrrλ� 2r � Y

ρrcv
τ

� �
¼ 0;

∂tYþ v � rY� ðγ� 1ÞYr � vþr � kr Y
ρrcv

� �� �
þ αρrg � ϕ ¼ ∂TF χ̂ðTFÞ:

Forward and adjoint equations are similar, so that similar
computational strategies and methods can be used for their
solution. The main difference lies in the adjoint energy
equation, where the diffusion term has an opposite sign.
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This makes the equation unconditionally stable to integra-
tion back in time. The adjoint energy equation also includes
a source term related to amisfit functionalwhich acts as a final
time condition and links to the present-day state estimate.
The adjoint equations, too, require a set of boundary condi-
tions in addition to this final time condition. A detailed
explanation of the equations, variables, and boundary condi-
tions is given by Ghelichkhan and Bunge (2016).

The misfit functional χ quantifies the difference between
estimates of the present mantle state TE and its model
prediction TF . From this, one computes the total (Fréchet)
derivativeDTI χðTFÞðΔTIÞ that describes the sensitivity of χ
relative to changes ΔTI in the initial condition TI . The
Fréchet derivative is obtained from the solution of the
adjoint equations. In an iterative procedure (e.g. Bunge
et al., 2003), and starting from an arbitrary first-guess initial
condition TI

0 , one computes a first-guess final state TF
0 . The

adjoint equations are then solved to provide the necessary
information to obtain an improved initial condition, TI

1 .
From this, in turn, one computes a new final state TF

1 and
the procedure is repeated until a desired level of minimisa-
tion in χ is achieved. We give a visual indication (from
Ghelichkhan et al., 2021) for the iterative misfit functional
reduction in Fig. 20.1. Numerical values for χ as function of
the iteration for a number of retrodiction models are shown
in Fig. 20.2. They indicate that a significant misfit reduction
can be achieved in the first few iterations.

20.2.2 Impact of Model-Inconsistencies and Data Error
Mantle flow retrodictions rely on three information sources:
a geodynamicmodel with forward and corresponding adjoint
equations, a present-day mantle state estimate, and a history
of the horizontal surface velocity field. The geodynamic
model expresses our knowledge of the physical laws govern-
ing the flow evolution as described by the conservation equa-
tions for mass, momentum, and energy. The present-day
mantle heterogeneity state ties the general physical system
described by these conservation equations to its one specific
realisation in the Earth system (e.g. Carrassi and Vannitsem,
2010), while the surface velocity field counteracts the chaotic
nature of mantle convection and assimilates information on
the surface velocity history (Vynnytska and Bunge, 2014;
Colli et al., 2015). The accuracy of mantle flow restorations
depends on the error associated with these three essential
information sources. The conservation equations for mantle
flow are not in question. But, asmentioned before, significant
uncertainty exists in the choice of key geodynamic modelling
parameters, such as rheology and composition, and the man-
tle state estimate obtained from seismic tomography.

Synthetic tests, known as twin experiments, provide the
means to explore the impact of model and data uncertainties
on the accuracy of mantle flow retrodictions. To this end,
one generates a reference mantle circulation flow trajectory
via numerical modelling. This is called the reference twin.

The final state of the reference twin serves as a target state
that drives the restoration problem. The reconstructed flow
trajectory is then compared against the reference twin tra-
jectory to assess the inversion quality. Early geodynamic
twin experiments took the true final state and surface vel-
ocity history as input for the inversion, together with the
exact same model parameters that were used to compute the
reference trajectory. So they assumed perfect knowledge of
the physical system and error-free data. For this ideal con-
dition the twin experiments demonstrate that mantle flow
can be restored over time scales comparable to a convective
transit time and that successive iterations improve the
restored flow trajectory (e.g. Bunge et al., 2003). But such
ideal conditions constitute an unrealistic scenario. The act
of using the same model to generate synthetic data and to
invert them has been named an inverse crime (Colton and
Kress, 1992), as it leads to overly optimistic results.

Colli et al. (2020) explored more realistic twin experi-
ments. By inserting on purpose a mismatch between the
geodynamic model used to generate the target final state
and the model used for carrying out the inversion, they
found that mismatched model parameters do not inhibit
misfit reduction: the adjoint method still produces a flow
history that optimally fits the target final state. But the
recovered initial state can be a poor approximation of the
true initial state and deteriorates with increasing iteration
number. So, in the presence of model and data error,
a complete reduction of the cost function may not be desir-
able and a limited number of adjoint iterations seems advis-
able when the goal is a best fit to the initial condition. When
the target final state is a noisy low-pass version of the true
final state, as implied by the finite resolution of seismic
tomography, an appropriate misfit function choice can
help to reduce the generation of artefacts in the initial
state. Figure 20.3 gives numerical values for the iterative
misfit functional reduction for a range of twin experiments
reported by Colli et al. (2020).

20.3 Hiatus Maps as Proxies of Past Dynamic
Topography

Theoretical considerations suggest to link viable tests of
mantle flow retrodictions to inferences of evolving dynamic
topography. Such dynamic topography histories are begin-
ning to emerge for the continents, because the transient
nature of dynamic topography leaves geologic evidence in
sedimentary archives (Şengör, 2001). The approach was
pioneered for regions that underwent periods of low
dynamic topography, such as the Cretaceous Interior
Seaway of North America (e.g. Mitrovica et al., 1989;
Burgess et al., 1997), because low topography enables the
deposition and preservation of sediments. High dynamic
topography, instead, creates erosional/non-depositional
environments expressed as time gaps, that is hiatuses, in
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Figure 20.1 Visual illustration of iterative misfit reduction for two retrodiction models fromGhelichkhan et al. (2021). In both panels, the
top row shows the reference temperature fields that represent two different assumed present-day mantle state estimates. The latter also
serve as first-guess for the unknown initial condition at 50 Ma. Second, third and fourth rows in each panel show the reconstructed final
temperature field for the present-day (II, IV, and VI, or IX, XI, and XIII), and the corresponding misfit (III, V, and VI, or X, XII, and
XIIV) to the assumed present-day mantle state estimate, after zeroth, fifth, and final (here 13th) iteration. The error isosurface is chosen at
300 K. Taking left panel as an example: the model starts from necessarily incorrect first-guess initial condition. After first forward run
(iteration zero) terminal state shows narrow bands of hot material beneath western margin of Africa extending to the southeastern parts of
the continent. The pattern differs substantially from reference temperature field (top row, I), as expected, and indicated by large misfit
amplitudes, because the incorrect first-guess initial condition yields an incorrect final state. Successive model updates improve the
reconstructed final temperature field (IV). The general pattern of the African large low velocity province and the girdling subduction
regions are restored, as confirmed bymuch reducedmisfit isosurface (V).Misfit reductions in subsequent iterations are minor and occur on
shorter wavelengths, such that misfit isosurface after 13 iterations (VII) is further reduced. Details in Ghelichkhan et al. (2021).
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the geologic record. The latter are known as nonconformi-
ties and unconformities (see Miall, 2016, for a review). To
this end, Friedrich et al. (2018) and Friedrich (2019) intro-
duced a hiatus-area mapping approach, because, at contin-
ental scales, what is normally perceived as a lack of data
(material eroded or not deposited) becomes part of the
dynamic topography signal. The method has been applied
to map the spatiotemporal patterns of conformable and
unconformable geological contacts across Europe (Vibe
et al., 2018), Africa (Carena et al., 2019), and the Atlantic
realm and Australia since the Upper Jurassic (Hayek et al.,
2020, 2021). An important finding is that significant differ-
ences exist in the spatial extent of hiatus area across and
between continents at the time scale of geologic series, that
is, ten to a few tens ofMyr (see definition of series as a unit of
chronostratigraphy in the chronostratigraphic chart; Cohen
et al., 2013; updated; Ogg et al., 2016). This is considerably
smaller than the mantle transit time, which as the convective
time scale is about 100–200 Myr (Iaffaldano and Bunge,
2015). It suggests vigorous upper mantle flow, as illustrated
by geodynamic kernels (see Colli et al., 2016, for a review).

Figure 20.4 shows hiatus maps from Hayek et al. (2020,
2021), for North and South America, Europe, Africa, and
Australia for eight geologic series from the Pleistocene to the
Lower Cretaceous. The resolution of geological series is
chosen, because this is the most frequently adopted tem-
poral resolution for interregional geologic maps (Friedrich,
2019), while the choice of the Lower Cretaceous as the oldest
stratigraphic unit is motivated by the time scale of the
mantle transit time, which is about 100–200 Myr, as noted
before. Hayek et al. (2020, 2021) give details of the data
sources, method and results. Here we summarise key obser-
vations. Red/blue colours depict un/conformable (hiatus/no

hiatus) contacts, respectively, indicative of high/low topog-
raphy in the preceding geological series, while blank regions
reveal the absence of the considered geological series and its
immediately preceding unit. Such regions may have under-
gone intense and/or long-lasting erosion or non-deposition,
indicative of intense and/or persistent exhumation and sur-
face uplift (Friedrich et al., 2018; Friedrich, 2019; Vibe et al.,
2018; Carena et al., 2019; Hayek et al., 2020, 2021). Overall,
Fig. 20.4 reveals significant differences in hiatus distribution
across and between continents at the time scale of geologic
series. Base of Pleistocene, Fig. 20.4A, shows North and
South America and Africa with a mix of hiatus and no
hiatus surfaces. Extensive hiatus surface exists in
Australia, except the Nullarbor Plain, Alaska, the eastern
margin of Greenland, and north-central Africa. No hiatus
surface prevails in Europe and the Congo Basin. Base of
Pliocene, Fig. 20.4B, reveals minor hiatus surface and blank
regions. Hiatus is located in central Africa and near the
Canaries. Blank regions occur in eastern North and South
America. No hiatus signals dominate elsewhere. In Base of
Miocene, Fig. 20.4C, hiatus surfaces dominate across the
continents. Prominent examples include North and South
America, parts of Europe, Australia, and Africa. North
America shows conformable contacts surrounding the hia-
tus regions near the Yellowstone hotspot location. Alaska,
Patagonia, and Central Europe also show conformable con-
tacts. Base of Oligocene, Fig. 20.4D, displays blank regions
in Africa. But the foremost occurrence is in South America,
where it signals an almost complete absence of Oligocene
and Eocene strata throughout the continent. Limited hiatus
surface exists in the western part of North America and the
Afar region. Europe, northernmost Africa, the Karoo Basin
and much of Australia show prominent no hiatus regions.
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Figure 20.2 Difference between modelled and assumed present-day temperature field as function of iteration for eight retrodiction models
fromGhelichkhan et al. (2021). Themostminimised iteration is indicated by a colour-filled triangle. A significant reduction of χ̂ is achieved
in the first five iterations, and χ̂ is reduced on average by 55% in all retrodictions. Details in Ghelichkhan et al. (2021).
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Figure 20.3 Residual at initial and final state over the course of successive adjoint iterations evaluated from twin experiments using
a reduced least-squares (blue crosses) and a reduced spherical harmonic misfit (red circles); see Colli et al. (2020). (A) Control case where
perfect knowledge of the reference model is assumed (inverse crime, see text). (B) Mismatched case where model viscosity is larger by one
order of magnitude compared to reference twin. Residuals of the control case are plotted in light grey for comparison. (C) as (B) but for
amismatched viscosity profile. (D) The viscosity profile is mismatched and the absolute viscosity is larger. (E) Target final state is noisy and
low-pass filtered. The actual misfit (i.e. difference between the modelled final state and the filtered target state) is plotted with black stars.
(F) as for (E), but the spherical harmonic misfit is used to drive the adjoint inversion. (G) The history of surface velocities is assumed to be
unknown (free-slip boundary condition). (H) A mismatched (no-net-rotation) reference frame is assumed for the plate motion history.
Note that cases with free slip and mismatched surface velocity fail to restore the initial state despite otherwise identical parameters to
reference twin, as expected, because the horizontal surface velocity history is an input rather than an output to retrodiction problem (see
text). Note also that all cases minimise the final state residual, which on its own cannot be used to assess the flow restoration quality.
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Figure 20.4 Base Hiatus Surface (BHS) fromHayek et al. (2020, 2021) for eight geological series fromBase of Pleistocene to Base of Lower
Cretaceous (A)–(H) reconstructed paleogeographically with a global Mesozoic-Cenozoic plate motion model (Müller et al., 2016) tied to
a reference frame of global moving hotspots and a True Polar Wander (TPW) corrected paleomagnetic reconstruction (Torsvik et al.,
2008), with the latter updated by Seton et al. (2012). BHS is placed into a plate tectonic configuration corresponding to the base of each
geological series. Red/blue colours represent the hiatus/no hiatus surfaces. Each map serves as a proxy for paleotopography (red=high,
blue=low) in the preceding series (see text). Black circles at Base of Miocene (C), Base of Eocene (E), and Base of Lower Cretaceous (H)
maps correspond to the location of flood basalts associated with Afar, Iceland, and Tristan hotspots. Blank regions indicate the absence of
series and its immediately preceding unit, suggesting long hiatus duration. See Hayek et al. (2020) for further information.

318 Bunge, Horbach, Colli et al.

https://doi.org/10.1017/9781009180412.021 Published online by Cambridge University Press

https://doi.org/10.1017/9781009180412.021


Base of Eocene, Fig. 20.4E, presents hiatus surface and
blank regions prominently in two continents: Europe and
South America except the Amazon Basin. No hiatus exists
in the northernmost part of Africa, the Karoo Basin, and
eastern Australia. Base of Paleocene, Fig. 20.4F, reveals
isolated patches of hiatus surface and blank regions along
the east coast of Brazil, in Southern Africa (Karoo Basin),
and Australia. No hiatus regions dominate elsewhere
throughout the continents. Base of Upper Cretaceous,
Fig. 20.4G, shows hiatus and blank regions in parts of
Europe, North and South America. No hiatus is prominent
throughout much of Africa, Australia, and South America
in the Paraná region. Base of Lower Cretaceous, Fig. 20.4H,
shows hiatus surface and blank regions, indicative of high
topography in the Upper Jurassic, in much of North and
South America, Africa, and Australia. No hiatus, indicative
of low Upper Jurassic topography, is prominent in north-
ernmost Africa and Europe.

20.4 Global Mantle Flow Retrodictions

Some prominent topographic changes in the Cenozoic,
Earth’s current geologic era, are likely mantle flow related.
An example is the termination of large-scale marine inunda-
tion in North America at the end of the Cretaceous/
Paleogene (Fig. 20.4 F/E), for which negative dynamic top-
ography induced by mantle downwellings has long been
invoked (e.g. Mitrovica et al., 1989; Burgess et al., 1997),
as noted before. Another example includes long wavelength
tilting of Australia since the late Cretaceous (e.g. DiCaprio
et al., 2009; Sandiford, 2007), which occurred when the
continent approached the subduction systems in Southeast
Asia on its northward passage. Figures 20.5 and 20.6 show
dynamic topography evolutions for four global mantle flow
retrodictions (Ghelichkhan et al., 2021). The models,
described in detail by Ghelichkhan et al. (2021), employ
high numerical resolution and discretise Earth’s mantle
with ≈670 million finite element nodes. This corresponds to
a grid point resolution of 11 km radially, and 14 km tangen-
tially at the surface, decreasing to half that value at the
CMB, and allows one to resolve global mantle flow at earth-
like convective vigour. The models apply two mantle state
estimates, derived for the lower mantle from the whole-
mantle tomographic studies by Simmons et al. (2015)
and French and Romanowicz (2014), and in the upper
mantle from the shear wave speed study of Schaeffer and
Lebedev (2013). The two state estimates are combined
with two mantle viscosity profiles, μ1 and μ2, involving
a deep mantle viscosity of ≈ 2� 1022 Pa.s and 1023 Pa.s,
respectively. This yields the four retrodiction models (RM-
μ1-SL, RM-μ1-SS, RM-μ2-SL, and RM-μ2-SS).

Figure 20.5 shows the models with a view centred on
North America. All four models produce a dynamic topog-
raphy low over the interior of the continent for the earliest

retrodicted time – that is, the early Eocene – regardless of the
tomographic input structure. This is expected, because a fast
seismic velocity structure is robustly imaged in both state
estimates of the lower mantle beneath the continent. The
low has largely disappeared by mid-Eocene, which is some-
what later than its late-Cretaceous-Paleocene demise
inferred by paleoshorelines (Smith et al., 1994). There are
additional variations in amplitude, location, and uplift rates
of dynamic topography between the models, depending on
the chosen state estimate and viscosity profile, with the
stiffer lower mantle viscosity profile yielding smaller ampli-
tudes and slower uplift rates, as expected. For instance, at
40 Ma, the North American interior and Central America
uplift rates exceed 200 m/Myr in RM-μ1-SL, while RM-μ2-
SL has an early Cenozoic uplift rate of about half that value.
North America thus illustrates the sensitivity of retrodic-
tions to the assumed viscosity profile. There is also early
Cenozoic positive dynamic topography along the eastern
margin of North America that gives way to subsidence, in
agreement with reports (Spasojevic et al., 2008).
Importantly, none of the retrodictions yields an Oligo-
Miocene dynamic topography growth for the western
United States. The latter is indicated by hiatus surfaces
(Fig. 20.4C). In other words, the current topographic high-
stand of the western United States is absent from these
models. This is likely owing to the fact that the
Yellowstone plume has been imaged only recently in greater
detail by seismic models (Nelson and Grand, 2018) and
suggests the use of an updated mantle state estimate in
future studies.

Figure 20.6 shows the retrodicted dynamic topography
over Australia, the western Pacific, and Antarctica for the
same four models. We again find similar dynamic topog-
raphy evolutions for the models, modulated in rate and
amplitude by the assumed viscosity profiles, as expected
and seen before for North America. By the early to mid-
Cenozoic, between 50 and 40 Ma, all four retrodictions
develop a regional Cenozoic uplift signal for eastern and
southern Australia, in agreement with reports on the spatial
and temporal patterns of Australian dynamic topography
(Czarnota et al., 2013) and modelling studies (Stotz et al.,
2021). The late Neogene, at 10 Ma, sees subsidence in the
northernmost part of the continent, in a trend that is con-
sistent with long wavelength northward tilting of the con-
tinent, as noted before. Importantly, there is a noticeable
difference in the dynamic topography evolution inferred
from the two tomographic state estimates. Models RM-μ1-
SS and RM-μ2-SS (Fig. 20.6 II,IV), combining Schaeffer
and Lebedev (2013) and French and Romanowicz (2014)
with the μ1 and μ2 viscosity profiles, yield a broad dynamic
topography low in the early Cenozoic over much of
Southeast Asia that gives way to regional uplift. Models
RM-μ1-SL and RM-μ2-SL (Fig. 20.6 I,III), instead yield
a broadly opposite trend. Starting from high dynamic top-
ography in the early Cenozoic over much of Southeast Asia,
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Figure 20.5 Dynamic topography evolution (top row) and its rates (bottom row) over North America computed from four retrodiction
models (see text). Paleo coastlines drawn by back-rotation of present-day coastlines using Young et al. (2019). Rates are calculated over 10
Myr time intervals. In all fourmodels, negative dynamic topography in the interior ofNorthAmerica in the early Cenozoic (at 50Ma) gives
way to uplift, such that by about 30Mamuch of the continent-wide negative dynamic topography has disappeared.Models with the stiffer
lower mantle viscosity profile μ2 (RM-μ2-SL and RM-μ2-SS) show smaller amplitude of dynamic topography and rates of change, as
expected. For example, while RM-μ1-SL show uplift rates exceeding 200 m/Myr in the North American interior and Central America,
RM-μ2-SL shows an early Cenozoic uplift rate of about half that value. RM-μ1-SL and RM-μ2-SL show an early Cenozoic positive
dynamic topography along the eastern margin giving way to subsidence at 35 Ma. See text and Ghelichkhan et al. (2021).
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Figure 20.6 Same as Fig. 20.5 but over Australia and Antarctica. Dynamic topography is initially low over much of the Australian
continent. Between 50 and 40Ma, eastern Australia uplifts, while at 30Ma, uplift moves to the south and southeast of Australia. At 10Ma,
the northernmost part of the continent subsides, in a trend that is more marked in models RM-μ1-SL and RM-μ2-SL.While RM-μ1-SS and
RM-μ2-SS yield a broad dynamic topography low in the early Cenozoic over much of Southeast Asia that gives way to regional uplift,
RM-μ1-SL and RM-μ2-SL instead yield a broadly opposite trend. See text and Ghelichkhan et al. (2021).
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they give way to regional subsidence over the course of the
Cenozoic, consistent with reports on a Late Cretaceous-
Eocene hiatus in Sundaland (Zahirovic et al., 2016). The
Australasian region thus illustrates the sensitivity of retro-
dictions to the assumed state estimate.

20.5 Concluding Remarks

Mantle flow retrodictions are a powerful tool. They allow
one to identify geodynamically relevant observables from
the geologic record, such as hiatus area, that are sensitive to
mantle convection. These underutilised observations in turn
allow one to better constrain key parameters of dynamic
Earth models, such as rheology.

The construction of mantle flow trajectories is enabled by
growing computational capabilities. But the iterative nature
of the adjoint technique poses a large computational cost.
One iteration in the high-resolution mantle flow retrodic-
tions of Colli et al. (2018) and Ghelichkhan et al. (2021),
requires ≈ 40,000 CPUh, translating to ≈ 400,000 CPUh for
10 adjoint-forward iterations needed to reduce the misfit
function. This limits current abilities to perform broad par-
ameter surveys or to extend the flow trajectories beyond the
Cenozoic. It motivates the development of geodynamic
codes suitable for peta- and emerging exa-scale supercom-
puters (Burstedde et al., 2013; Bauer et al., 2019).

Seismic mantle state estimates provide key input informa-
tion for mantle flow retrodictions. But they are subject to
substantial uncertainties. While significant advances are
underway in our ability to illuminate the mantle, they should
be augmented by techniques to account for seismic data
uncertainty (Zaroli, 2016; Freissler et al., 2020) and by efforts
to construct 3D reference and collaborative seismic models
(Fichtner et al., 2018;Moulik et al., 2021). This will strengthen
the link between seismic and geodynamic Earth models.

Plate motion histories (e.g. Müller et al., 2016) provide
the other indispensable information for retrodictions.
They are an input rather than an output of mantle flow
trajectories. So one should link viable tests of mantle flow
retrodictions to other datasets, such as inferences of verti-
cal lithosphere motion induced by mantle convective
stresses.

Studies on the impact of model and data error on mantle
flow retrodictions (Colli et al., 2020) are insightful, because, in
solving retrodiction problems for the real Earth, we are bound
to use simplified Earth models and noisy input data. The
studies demonstrate that retrodictions always achieve a final
state misfit reduction. So a reduction of the latter on its own is
insufficient to judge the quality of the reconstructed flow
history. The quality of any retrodiction must be assessed by
geological constraints. Collaborations across the Earth
Sciences will advance our understanding of the surface expres-
sions of paleo mantle flow so that dynamic Earth models can
be improved.

References

Bauer, S., Huber, M., Ghelichkhan, S. et al. (2019). Large-scale
simulation of mantle convection based on a new matrix-free
approach. Journal of Computational Science, 31, 60–76.

Baumgardner, J. R. (1985). Three-dimensional treatment of con-
vective flow in the Earth’s mantle. Journal of Statistical
Physics, 39(5/6).

Becker, T. W., and Boschi, L. (2002). A comparison of tomo-
graphic and geodynamic mantle models. Geochemistry,
Geophysics, Geosystems, 3(1).

Bello, L., Coltice, N., Rolf, T., and Tackley, P. J. (2014). On the
predictability limit of convection models of the Earth’s man-
tle. Geochemistry, Geophysics, Geosystems, 15, 2319–28.

Braun, J. (2010). The many surface expressions of mantle
dynamics. Nature Geoscience, 3(12), 825–33.

Bunge, H.-P. (2005). Low plume excess temperature and high core
heat flux inferred from non-adiabatic geotherms in internally
heated mantle circulation models. Physics of the Earth and
Planetary Interiors, 153(1–3), 3–10.

Bunge, H.-P., and Davies, J. H. (2001). Tomographic images of
a mantle circulation model. Geophysical Research Letters,
28(1), 77–80.

Bunge, H.-P., and Glasmacher, U. (2018). Models and observa-
tions of vertical motion (MoveOn) associated with rifting to
passive margins: Preface. Gondwana Research, 53, 1–8.

Bunge, H. P., Hagelberg, C. R., and Travis, B. J. (2003). Mantle
circulation models with variational data assimilation:
Inferring past mantle flow and structure from plate motion
histories and seismic tomography. Geophysical Journal
International, 152(2), 280–301.

Bunge, H.-P., and Richards,M. A. (1992). The backward-problem
of plate tectonics and mantle convection (abstract). Eos,
Transactions, American Geophysical Union, 73(14), 281.

Bunge, H.-P., Richards, M. A., and Baumgardner, J. R.
(2002). Mantle-circulation models with sequential data
assimilation: Inferring present-day mantle structure from
plate-motion histories. Philosophical Transactions. Series
A, Mathematical, Physical, and Engineering Sciences, 360
(1800), 2545–67.

Bunge, H.-P., Richards, M. A., Lithgow-Bertelloni, C. et al.
(1998). Time scales and heterogeneous structure in geody-
namic Earth models. Science, 280(5360), 91–5.

Burgess, P. M., Gurnis, M., and Moresi, L. (1997). Formation of
sequences in the cratonic interior of North America by inter-
action between mantle, eustatic, and stratigraphic processes.
Geological Society of America Bulletin, 109(12), 1515–35.

Burstedde, C., Stadler, G., Alisic, L. et al. (2013). Large-scale
adaptive mantle convection simulation. Geophysical Journal
International, 192(3), 889–906.

Carena, S., Bunge, H.-P., and Friedrich, A. M. (2019). Analysis of
geological hiatus surfaces across Africa in the Cenozoic and
implications for the timescales of convectively-maintained
topography. Canadian Journal of Earth Sciences, 56(12),
1333–46.

Carrassi, A., and Vannitsem, S. (2010). Accounting for model
error in variational data assimilation: A deterministic
formulation. Monthly Weather Review, 138(9), 3369–86.

Chust, T. C., Steinle-Neumann, G., Dolejš, D., Schuberth, B. S. A.,
and Bunge, H. P. (2017). MMA-EoS: A computational

322 Bunge, Horbach, Colli et al.

https://doi.org/10.1017/9781009180412.021 Published online by Cambridge University Press

https://doi.org/10.1017/9781009180412.021


framework for mineralogical thermodynamics. Journal of
Geophysical Research: Solid Earth, 122(12), 9881–920.

Cohen, K. M., Finney, S., Gibbard, P. L., and Fan, J.-X. (2013).
The ICS International Chronostratigraphic Chart. Episodes,
36(3), 199–204.

Colli, L., Bunge, H.-P., and Oeser, J. (2020). Impact of model
inconsistencies on reconstructions of past mantle flow
obtained using the adjoint method. Geophysical Journal
International, 221(1), 617–39.

Colli, L., Bunge, H.-P., and Schuberth, B. S. A. (2015). On retro-
dictions of global mantle flow with assimilated surface
velocities. Geophysical Research Letters, 42(20), 8341–8.

Colli, L., Fichtner, A., and Bunge, H.-P. (2013). Full waveform
tomography of the upper mantle in the South Atlantic region:
Imaging a westward fluxing shallow asthenosphere?
Tectonophysics, 604, 26–40.

Colli, L., Ghelichkhan, S., and Bunge, H.-P. (2016). On the ratio of
dynamic topography and gravity anomalies in a dynamic
Earth. Geophysical Research Letters, 43(6), 2510–16.

Colli, L., Ghelichkhan, S., Bunge, H.-P., and Oeser, J. (2018).
Retrodictions of Mid Paleogene mantle flow and dynamic
topography in the Atlantic region from compressible high
resolution adjoint mantle convection models: Sensitivity to
deep mantle viscosity and tomographic input model.
Gondwana Research, 53, 252–72.

Colton, D., and Kress, R. (1992). Inverse Acoustic and
Electromagnetic Scattering Theory. Berlin: Springer Verlag.

Czarnota, K., Hoggard, M., White, N., and Winterbourne, J.
(2013). Spatial and temporal patterns of Cenozoic dynamic
topography around Australia. Geochemistry, Geophysics,
Geosystems, 14(3), 634–58.

Davies, D. R., Goes, S., Davies, J. H. et al. (2012). Reconciling
dynamic and seismic models of Earth’s lower mantle: The
dominant role of thermal heterogeneity. Earth and Planetary
Science Letters, 353–4(0), 253–69.

DiCaprio, L.,Gurnis,M., andMüller,R.D. (2009). Long-wavelength
tilting of the Australian continent since the Late Cretaceous.
Earth and Planetary Science Letters, 278(3–4), 175–85.

Dziewonski, A. M., and Anderson, D. L. (1981). Preliminary
reference Earth model. Physics of the Earth and Planetary
Interiors, 25(4), 297–356.

Fernandes, V.M., and Roberts, G. G. (2020). Cretaceous to recent
net continental uplift from paleobiological data: Insights into
sub-plate support. GSA Bulletin, 133(5–6), 1217–36.

Fichtner, A., Kennett, B. L. N., Igel, H., and Bunge, H.-P. (2009).
Full seismic wave-form tomography for upper-mantle struc-
ture in the Australasian region using adjoint methods.
Geophysical Journal International, 179(3), 1703–25.

Fichtner, A., van Herwaarden, D.-P., Afanasiev, M. et al. (2018).
The collaborative seismic Earth model: Generation 1.
Geophysical Research Letters, 45(9), 4007–16.

Flowers, R., Wernicke, B., and Farley, K. (2008). Unroofing,
incision, and uplift history of the southwestern Colorado
Plateau from apatite (U-Th)/He thermochronometry. GSA
Bulletin, 120(5–6), 571–87.

Freissler, R., Zaroli, C., Lambotte, S., and Schuberth, B. S. (2020).
Tomographic filtering via the generalized inverse: A way to
account for seismic data uncertainty. Geophysical Journal
International, 223(1), 254–69.

French, S. W., and Romanowicz, B. A. (2014). Whole-mantle
radially anisotropic shear velocity structure from
spectral-element waveform tomography. Geophysical Journal
International, 199(3), 1303–27.

Friedrich, A. M. (2019). Palaeogeological hiatus surface mapping:
A tool to visualize vertical motion of the continents.
Geological Magazine, 156(2), 308–19.

Friedrich, A. M., Bunge, H.-P., Rieger, S. M. et al. (2018).
Stratigraphic framework for the plume mode of mantle con-
vection and the analysis of interregional unconformities on
geological maps. Gondwana Research, 53, 159–88.

Ghelichkhan, S., and Bunge, H.-P. (2016). The compressible
adjoint equations in geodynamics: Derivation and numerical
assessment. GEM – International Journal on Geomathematics,
7(1), 1–30.

Ghelichkhan, S., and Bunge, H.-P. (2018). The adjoint equations
for thermochemical compressible mantle convection:
Derivation and verification by twin experiments. Proceedings
of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 474(2220), 20180329.

Ghelichkhan, S., Bunge, H.-P., andOeser, J. (2021), Global mantle
flow retrodictions for the early Cenozoic using an adjoint
method: Evolving dynamic topographies, deep mantle struc-
tures, flow trajectories and sublithospheric stresses.
Geophysical Journal International, 226(2), 1432–60.

Guillocheau, F., Rouby, D., Robin, C. et al. (2012). Quantification
and causes of the terrigeneous sediment budget at the scale of
a continental margin: A new method applied to the
Namibia-South Africa margin. Basin Research, 24(1), 3–30.

Guillocheau, F., Simon, B., Baby, G. et al. (2018). Planation
surfaces as a record of mantle dynamics: The case example
of Africa. Gondwana Research, 53, 82–98.

Hager, B. H., Clayton, R. W., Richards, M. A., Comer, R. P., and
Dziewonski, A. M. (1985). Lower mantle heterogeneity,
dynamic topography and the geoid.Nature, 313(6003), 541–5.

Hartley, R. A., Roberts, G. G., White, N. J., and Richardson, C.
(2011). Transient convective uplift of an ancient buried
landscape. Nature Geoscience, 4(8), 562–5.

Hayek, J. N., Vilacís, B., Bunge, H.-P. et al. (2020). Continent-scale
hiatus maps for the Atlantic Realm and Australia since the
Upper Jurassic and links to mantle flow induced dynamic
topography. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 476(2242), 20200390.

Hayek, J. N., Vilac´ıs, B., Bunge, H.-P. et al. (2021). Correction:
Continent-scale hiatus maps for the Atlantic Realm and
Australia since the Upper Jurassic and links to mantle
flow-induced dynamic topography. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences,
477(2251), 20210437.

Heister, T., Dannberg, J., Gassmöller, R., and Bangerth, W.
(2017). High accuracy mantle convection simulation through
modern numerical methods. II: Realistic models and
problems. Geophysical Journal International, 210(2), 833–51.

Hoggard, M. J., Austerman, J., Randel, C., and Stephenson, S.
(2021). Observational estimates of dynamic topography
through space and time. In H. Marquardt, S. Ballmer,
M. adn Cottaar, and J. Konter, eds., Mantle Convection and
Surface Expressions. Washington DC: American Geophysical
Union (AGU), pp. 371–411.

20 Geodynamic Data Assimilation 323

https://doi.org/10.1017/9781009180412.021 Published online by Cambridge University Press

https://doi.org/10.1017/9781009180412.021


Hoggard, M. J., Winterbourne, J., Czarnota, K., and White, N.
(2017). Oceanic residual depth measurements, the plate cool-
ing model, and global dynamic topography. Journal of
Geophysical Research: Solid Earth, 122(3), 2328–72.

Horbach, A., Bunge, H. P., and Oeser, J. (2014). The adjoint
method in geodynamics: Derivation from a general operator
formulation and application to the initial condition problem
in a high resolution mantle circulation model. GEM –

International Journal on Geomathematics, 5(2), 163–94.
Iaffaldano, G., and Bunge, H.-P. (2015). Rapid plate motion vari-

ations through geological time: Observations serving geody-
namic interpretation. Annual Review of Earth and Planetary
Sciences 43, 571–92.

Ismail-Zadeh, A., Schubert, G., Tsepelev, I., and Korotkii, A.
(2004). Inverse problem of thermal convection: numerical
approach and application to mantle plume restoration.
Physics of the Earth and Planetary Interiors, 145(1–4), 99–114.

Japsen, P. (2018). Sonic velocity of chalk, sandstone and marine
shale controlled by effective stress: Velocity-depth anomalies
as a proxy for vertical movements. Gondwana Research, 53,
145–58.

Jarvis, G. T., and Mckenzie, D. P. (1980). Convection in
a compressible fluid with infinite Prandtl number. Journal of
Fluid Mechanics, 96(03), 515–83.

Kronbichler, M., Heister, T., and Bangerth, W. (2012). High
accuracy mantle convection simulation through modern
numerical methods. Geophysical Journal International, 191,
12–29.

Li, D., Gurnis, M., and Stadler, G. (2017). Towards adjoint-based
inversion of time-dependent mantle convection with nonlinear
viscosity. Geophysical Journal International, 209(1), 86–105.

McNamara, A. K. (2019). A review of large low shear velocity
provinces and ultra low velocity zones. Tectonophysics, 760,
199–220.

McNamara, A. K., and Zhong, S. (2005). Thermochemical struc-
tures beneath Africa and the Pacific Ocean. Nature, 437
(7062), 1136–9.

Mégnin, C., Bunge, H.-P., Romanowicz, B., and Richards, M. A.
(1997). Imaging 3-D spherical convection models: What can
seismic tomography tell us about mantle dynamics?
Geophysical Research Letters, 24(11), 1299–302.

Meinhold, G. (2010). Rutile and its applications in Earth sciences.
Earth–Science Reviews, 102(1), 1–28.

Miall, A. D. (2016). The valuation of unconformities. Earth-
Science Reviews, 163, 22–71.

Mitrovica, J. X. (1996). Haskell [1935] revisited. Journal of
Geophysical Research, 101(B1), 555.

Mitrovica, J. X., Beaumont, C., and Jarvis, G. T. (1989). Tilting of
continental interiors by the dynamical effects of subduction.
Tectonics, 8(5), 1079–94.

Mosca, I., Cobden, L., Deuss, A., Ritsema, J., and Trampert, J.
(2012). Seismic and mineralogical structures of the lower
mantle from probabilistic tomography. Journal of
Geophysical Research, 117(B6).

Moulik, P., Lekic, V., Romanowicz, B. et al. (2021). Global refer-
ence seismological datasets: Multi-mode surface wave
dispersion. Geophysical Journal International, 228(3).

Müller, R. D., Seton, M., Zahirovic, S. et al. (2016). Ocean basin
evolution and global-scale plate reorganization events since

Pangea breakup. Annual Review of Earth and Planetary
Sciences, 44, 107–38.

Nelson, P. L., and Grand, S. P. (2018). Lower-mantle plume
beneath the Yellowstone hotspot revealed by core waves.
Nature Geoscience, 11(4), 280–4.

Ogg, J. G., Ogg, G. M., and Gradstein, F. M. eds. (2016).
Introduction. In J. G. Ogg, G. M. Ogg, and
F. M. Gradstein, eds., A Concise Geologic Time Scale.
Amsterdam: Elsevier, pp. 1–8.

Paulson, A., and Richards, M. A. (2009). On the resolution of
radial viscosity structure in modelling long-wavelength post-
glacial rebound data. Geophysical Journal International, 179
(3), 1516–26.

Pekeris, C. L. (1935). Thermal convection in the interior of the
Earth. Geophysical Journal International, 3(8), 343–67.

Piazzoni, A. S., Steinle-Neumann, G., Bunge, H., and Dolejš, D.
(2007). A mineralogical model for density and elasticity of the
Earth’s mantle. Geochemistry, Geophysics, Geosystems, 8(11).

Price, M. G., and Davies, J. H. (2018). Profiling the robustness,
efficiency and limits of the forward-adjoint method for 3D
mantle convection modelling. Geophysical Journal
International, 212(2), 1450–62.

Reiners, P. W., and Brandon, M. T. (2006). Using thermochronol-
ogy to understand orogenic erosion. Annual Review of Earth
and Planetary Sciences, 34(1), 419–66.

Reuber, G. S., and Simons, F. J. (2020). Multi-physics adjoint
modeling of Earth structure: Combining gravimetric, seismic,
and geodynamic inversions. GEM – International Journal on
Geomathematics, 11, 30. https://doi.org/10.1007/s13137-020-
00166-8.

Richards, M. A., and Hager, B. H. (1984). Geoid anomalies in
a dynamic Earth. Journal of Geophysical Research, 89(B7),
5987–6002.

Ritsema, J., Deuss, A., Van Heijst, H.-J., and Woodhouse, J. H.
(2011). S40RTS: A degree-40 shear-velocity model for the
mantle from new Rayleigh wave dispersion, teleseismic tra-
veltime and normal-mode splitting function measurements.
Geophysical Journal International, 184(3), 1223–36.

Roberts, G. G., and White, N. (2010). Estimating uplift rate his-
tories from river profiles using African examples. Journal of
Geophysical Research: Solid Earth 115(B2), B02406.

Said, A., Moder, C., Clark, S., and Abdelmalak, M. M. (2015).
Sedimentary budgets of the Tanzania coastal basin and impli-
cations for uplift history of the East African rift system.
Journal of African Earth Sciences, 111, 288–95.

Said, A., Moder, C., Clark, S., and Ghorbal, B. (2015).
Cretaceous-Cenozoic sedimentary budgets of the Southern
Mozambique Basin: Implications for uplift history of the
South African Plateau. Journal of African Earth Sciences,
109, 1–10.

Sandiford, M. (2007). The tilting continent: A new constraint on
the dynamic topographic field from Australia. Earth and
Planetary Science Letters, 261(1-2), 152–63.

Schaber, K., Bunge, H.-P., Schuberth, B., Malservisi, R., and
Horbach, A. (2009). Stability of the rotation axis in
high-resolution mantle circulation models: Weak polar wander
despite strong core heating. Geochemistry, Geophysics,
Geosystems, 10, Q11W04. https://doi.org/10.1029/2009GC00
2541.

324 Bunge, Horbach, Colli et al.

https://doi.org/10.1017/9781009180412.021 Published online by Cambridge University Press

https://doi.org/10.1007/s13137-020-00166-8
https://doi.org/10.1007/s13137-020-00166-8
https://doi.org/10.1029/2009GC002541
https://doi.org/10.1029/2009GC002541
https://doi.org/10.1017/9781009180412.021


Schaeffer, A. J., and Lebedev, S. (2013). Global shear speed struc-
ture of the upper mantle and transition zone. Geophysical
Journal International, 194(1), 417–49.

Schuberth, B. S. A., Bunge, H.-P., and Ritsema, J. (2009).
Tomographic filtering of high-resolution mantle circulation
models: Can seismic heterogeneity be explained by tempera-
ture alone? Geochemistry, Geophysics, Geosystems, 10(5).

Schuberth, B. S. A., Bunge, H.-P., Steinle-Neumann, G.,
Moder, C., and Oeser, J. (2009). Thermal versus elastic het-
erogeneity in high-resolution mantle circulation models with
pyrolite composition: High plume excess temperatures in the
lowermost mantle. Geochemistry, Geophysics, Geosystems, 10
(1).

Schuberth, B. S. A., Zaroli, C., and Nolet, G. (2012). Synthetic
seismograms for a synthetic Earth: Long-period Pand S-wave
traveltime variations can be explained by temperature alone.
Geophysical Journal International, 188(3), 1393–412.

Sengör, A. M. C. (2001). Elevation as indicator of mantle-plume
activity. Mantle Plumes: Their identification through Time,
352, 183–245.

Seton, M., Müller, R. D., Zahirovic, S. et al. (2012). Global con-
tinental and ocean basin reconstructions since 200Ma. Earth-
Science Reviews, 113(3–4), 212–70.

Simmons, N. A., Myers, S. C., Johannesson, G., and Matzel, E.
(2012). LLNL-G3Dv3: Global P-wave tomography model for
improved regional and teleseismic travel time prediction.
Journal of Geophysical Research: Solid Earth, 117(10), 1–28.

Simmons, N. A., Myers, S. C., Johannesson, G., Matzel, E., and
Grand, S. P. (2015). Evidence for long-lived subduction of an
ancient tectonic plate beneath the southern Indian Ocean.
Geophysical Research Letters, 42(21), 9270–8.

Smith, A., Smith, D., and Funnel, B. (1994).Atlas of Mesozoic and
Cenozoic landmasses. Cambridge: Cambridge University
Press.

Spasojevic, S., Liu, L., Gurnis, M., and Müller, R. D. (2008). The
case for dynamic subsidence of the U.S. east coast since the
Eocene. Geophysical Research Letters, 35(8).

Steinberger, B., and O’Connell, R. J. (1997). Changes of the
Earth’s rotation axis owing to advection of mantle density
heterogeneities. Nature, 387(6629), 169–73.

Stixrude, L., and Lithgow-Bertelloni, C. (2011). Thermodynamics
of mantle minerals II. Phase equilibria. Geophysical Journal
International, 184(3), 1180–213

Stotz, I. L., Tassara, A., and Iaffaldano, G. (2021). Pressure-
driven Poiseuille flow inherited fromMesozoic mantle circu-
lation led to the Eocene separation of Australia and
Antarctica. Journal of Geophysical Research: Solid Earth,
126(4), e2020JB019945.

Torsvik, T. H., Müller, R. D., Van Der Voo, R., Steinberger, B.,
and Gaina, C. (2008). Global plate motion frames: Toward
a unified model. Reviews of Geophysics, 46(3), RG3004.

Vibe, Y., Friedrich, A. M., Bunge, H.-P., and Clark, S. R. (2018).
Correlations of oceanic spreading rates and hiatus surface
area in the North Atlantic realm. Lithosphere, 10(5), 677–84.

Vynnytska, L., and Bunge, H. (2014). Restoring past mantle con-
vection structure through fluid dynamic inverse theory:
Regularisation through surface velocity boundary conditions.
GEM – International Journal on Geomathematics, 6(1), 83–100.

Young, A., Flament, N., Maloney, K. et al. (2019). Global kine-
matics of tectonic plates and subduction zones since the late
Paleozoic Era. Geoscience Frontiers, 10(3), 989–1013.

Zahirovic, S., Flament, N., Dietmar Müller, R., Seton, M., and
Gurnis, M. (2016). Large fluctuations of shallow seas in
low-lying Southeast Asia driven by mantle flow.
Geochemistry, Geophysics, Geosystems, 17(9), 3589–607.

Zaroli, C. (2016). Global seismic tomography using
Backus-Gilbert inversion. Geophysical Journal International,
207(2), 876–88.

Zaroli, C., Sambridge, M., Le´veˆque, J.-J., Debayle, E., and
Nolet, G. (2013). An objective rationale for the choice of
regularisation parameter with application to global
multiple-frequency S-wave tomography. Solid Earth, 4(2),
357–71.

Zhong, S. J., Yuen, D. A., Moresi, L. N., and Knepley, M. G.
(2015). Numerical methods for mantle convection, in
D. Bercovici, ed., Treatise on Geophysics. Vol. 7: Mantle
Dynamics, 2nd ed. Amsterdam: Elsevier, pp. 197–222.

Zhou, Q., and Liu, L. (2017). A hybrid approach to data assimila-
tion for reconstructing the evolution of mantle dynamics.
Geochemistry, Geophysics, Geosystems, 18(11), 3854–68.

20 Geodynamic Data Assimilation 325

https://doi.org/10.1017/9781009180412.021 Published online by Cambridge University Press

https://doi.org/10.1017/9781009180412.021


21
Understanding and Predicting
Geomagnetic Secular Variation via
Data Assimilation

Weijia Kuang, Kyle Gwirtz, Andrew Tangborn, and Matthias Morzfeld

Abstract: Geomagnetic data assimilation is a recently
established research discipline in geomagnetism. It aims
to optimally combine geomagnetic observations and
numerical geodynamo models to better estimate the
dynamic state of the Earth’s outer core, and to predict
geomagnetic secular variation. Over the past decade,
rapid advances have been made in geomagnetic data
assimilation on various fronts by several research groups
around the globe, such as using geomagnetic data assimi-
lation to understand and interpret the observed geomag-
netic secular variation, estimating part of the core state
that is not observable on the Earth’s surface, and making
geomagnetic forecasts on multi-year time scales. In paral-
lel, efforts have also been made on proxy systems for
understanding fundamental statistical properties of geo-
magnetic data assimilation, and for developing algorithms
tailored specifically for geomagnetic data assimilation. In
this chapter, we provide a comprehensive overview of these
advances, as well as some of the immediate challenges of
geomagnetic data assimilation, and possible solutions and
pathways to move forward.

21.1 Introduction

The observed Earth’s magnetic field, measured on the
ground and in orbits, is the sum of contributions from
various magnetic sources, both within the Earth and exter-
nal to it. Among them is the field originating in the Earth’s
fluid outer core, which accounts for more than 99% of the
observed magnetic energy as described by theMausberger–
Lowes power spectra (Langel and Estes, 1982). This part
of the field, called the ‘core field’ and the ‘geomagnetic
field’ interchangeably in this chapter, is generated and
maintained by turbulent convection in the outer core via
dynamo action (Larmor, 1919), and was first modelled
numerically a quarter century ago (e.g. Glatzmaier and
Roberts, 1995; Kageyama and Sato, 1997; Kuang and
Bloxham, 1997). Thus, geomagnetic observations and geo-
dynamo simulations are powerful tools for understanding
the dynamical processes in the Earth’s outer core, the

thermo-chemical properties in the deep Earth, and the
interactions between the outer core and other components
of the Earth system.

Both geomagnetic observations and geodynamo models
can provide independent glimpses of the core dynamic
state. Surface and orbital measurements can determine
the geomagnetic field up to degree Lobs ≤ 14 in spherical
harmonic expansion (Langel and Estes, 1982), and its slow-
time variation, called the secular variation (SV), at higher
degrees with the data collected from the current Swarm
satellite constellations (e.g. Finlay et al., 2020; Sabaka
et al., 2020). The observed SV can be used to infer core
flow beneath the core–mantle boundary (CMB) via the
‘frozen flux’ approximation (Roberts and Scott, 1965)
and additional constraints on the core flow properties
(e.g. Holme, 2007). The observed field and the inferred
flow provide (observational) pieces of the core dynamics
puzzle (Schaeffer et al., 2016; Aubert and Finlay, 2019;
Kloss and Finlay, 2019), but the dominant part of the
core state remains opaque.

On the other hand, numerical geodynamo simulations
can provide self-consistent approximations of the core
dynamic state, by numerically solving the dynamo equa-
tions with given boundary and initial conditions. These
dynamo equations are the non-linear partial differential
equations derived from first principles with various
simplifications (Braginsky and Roberts, 1995). Due to
computational constraints, numerical geodynamo simu-
lations could not be made with arbitrarily high spatial
temporal resolutions, and are thus limited to the param-
eter regimes far from those appropriate to the Earth’s
outer core (e.g. Roberts and King, 2013; Wicht and
Sanchez, 2019). But estimates of the core state are still
attempted by the asymptotic limits (scaling laws) derived
from numerical simulations with (computationally
permitted) broad ranges of parameter values (e.g.
Christensen, 2010; Yadav et al., 2013; Aubert et al.,
2017; Kuang et al., 2017). Still the differences between
the ‘true’ core state and the numerical asymptotic limits
remain uncertain.
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The capabilities and limitations of geomagnetic obser-
vations and of geodynamo simulations led to the birth
and growth of geomagnetic data assimilation (GDA) for
making optimal estimates of the core dynamic state, and
interpreting and predicting SV, using available geomag-
netic data and numerical geodynamo models (Fournier
et al., 2010). The first ‘proof-of-concept’ studies were
carried out using simplified magnetohydrodynamic
(MHD) systems (Fournier et al., 2007; Sun et al., 2007;
Morzfeld and Chorin, 2012), or numerical dynamo
models (Liu et al., 2007). These ignited subsequent
efforts in GDA for understanding observational con-
straints on core dynamics (e.g. Kuang et al., 2009;
Aubert and Fournier, 2011; Fournier et al., 2011;
Aubert, 2014; Kuang and Tangborn, 2015); GDA error
statistics and model developments (e.g. Kuang et al.,
2008; Canet et al., 2009; Hulot et al., 2010; Fournier
et al., 2011; Li et al., 2011, 2014; Sun and Kuang, 2015;
Tangborn and Kuang, 2015, 2018; Sanchez et al., 2016,
2019; Gwirtz et al., 2021); and geomagnetic predictions
(Kuang et al., 2010; Fournier et al., 2015, 2021b;
Morzfeld et al., 2017; Minami et al., 2020; Sanchez
et al., 2020; Tangborn et al., 2021). Despite these
advancements, many fundamental questions still remain
on geodynamic approximations, assimilation algorithms
and model/observation error statistics, such as model
and observation bias corrections, forecast covariance
matrix convergences, and non-linear assimilation algo-
rithms. However, it is expected that GDA will continue
to rapidly advance and will be broadly used in geody-
namo and geomagnetic field modelling, and in studies of
the Earth’s deep interior.

The goal of this chapter is to present the reader with an
overview of GDA which is easy to comprehend and can
provide a first step into geomagnetic data assimilation
research. This chapter is organised as follows: the geomag-
netic field and geodynamo modelling are reviewed in
Section 21.2; the assimilation algorithm is given in
Section 21.3. The current research results are presented
in Section 21.4, followed by the challenges and future devel-
opment in Section 21.5. Conclusions and Discussions are in
Section 21.6.

21.2 Geomagnetic Field and Geodynamo Modelling

The world (global) magnetic maps can be constructed from
observatory and satellite magnetic measurements, historical
navigation data, and archeo- and paleomagnetic data (e.g.
Jackson et al., 2000; Lesur et al., 2010; Panovska et al., 2019;
Finlay et al., 2020; Huder et al., 2020; Sabaka et al., 2020;
Alken et al., 2021b; Brown et al., 2021). For details of
geomagnetic observations and field models, see, for
example, Mandea and Korte (2011) and Sanchez (this vol-
ume). Despite subtle differences in the algorithms utilised to

produce these field models, they all share the same objective:
optimally separating the different sources that contribute to
the magnetic measurements. Among those contributions is
the magnetic field originated from the Earth’s core, called
the Earth’s intrinsic magnetic field or simply the core field.
In this section, this field is also called the geomagnetic field,
and the corresponding models are called geomagnetic field
models. These models provide descriptions of the spatial
and temporal variations of the modern field, as well as
lower-accuracy descriptions going as far as 100k years
back in time. In a geomagnetic field model, the observed
geomagnetic field B(o) is approximated as a potential field
and is described mathematically by the following spherical
harmonic expansion

BðoÞ ¼ �rV ;

V ¼ a
XLobs

0 ≤m ≤ l

a
r

� �lþ1
ðgml cos mϕþ hml sin mϕÞPm

l ðθÞ; ð21:1Þ

where ðgml ; hml Þ are called the Gauss coefficients; Pm
l are the

Schmidt normalised associated Legendre polynomials of
degree l and order m; Lobs is the highest degree resolved
with the data; a is the mean radius of the Earth’s surface; θ
and φ are the co-latitude and longitude, respectively. The
highest degree Lobs in (21.1) depends on the quality of the
data available, and thus varies over time. By (21.1), BðoÞ can
be continued downward from the surface to any location r�

in the interior, as long as the region r� ≤ r ≤ a is electrically
insulating. In a GDA system, r� is typically the mean radius
rc of the CMB if the entire mantle is assumed electrically
insulating in the geodynamomodel; or, if there is an electric-
ally conducting D″-layer at the base of the mantle, it is the
mean radius rd of the top of the layer. For example, the top
row of Fig. 21.1 are the mean observed radial component Br

and its SV _Br Br in 2010–15 at rd = 3,520 km (i.e. assuming
a 20 km thickD″-layer). Notice thatBr reverses its sign in the
areas around the tip of South America and south of Africa,
which coincide with the South Atlantic Anomaly (SAA),
a region with exceptionally low field intensity (see Fig. 21.2).

The working of the geodynamo can be described simply
as follows. The secular cooling and differentiation through
the Earth’s evolution have provided the buoyancy force
which drives convection in the outer core. Since the core
fluid is an iron-rich liquid alloy and is therefore highly
electrically conducting (e.g. Nimmo, 2007; Hirose et al.,
2013), an additional magnetic field is generated by the core
convection given any seed (background) magnetic field.
A self-consistent dynamo is achieved if the generated mag-
netic field can be maintained without the presence of the
seed field (Larmor, 1919). Braginsky and Roberts (1995)
provide the full set of the partial differential equations for
the geodynamo. But the earliest dynamo models, first by
Glatzmaier and Roberts (1995), and later by Kageyama and
Sato (1997) and Kuang and Bloxham (1997), were
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developed with simplified versions of the Braginsky–
Roberts equations. Since then, many more dynamo models
have been developed with different physics and/or numer-
ical algorithms implemented. Details of these dynamo
models can be found in the past community dynamo bench-
mark efforts (Christensen et al., 2001; Jones et al., 2011;
Matsui et al., 2016).

To better explain the core state defined in geodynamo
models and its correlation to geomagnetic observations,
we use the MoSST core dynamics model (Kuang and
Bloxham, 1999; Kuang and Chao, 2003; Jiang and Kuang,
2008) as an example. Formulations can be easily adapted to
other dynamo models. In MoSST, the core fluid is assumed
Boussinesq; and the core state is described by the velocity
field v, the magnetic field B, and the temperature anomaly Θ
(from the background conducting state). Since v and B are

solenoidal (divergence-free), they are decomposed into the
poloidal and the toroidal components, for example,

B ¼ r� ðTBr̂Þ þ r �r� ðPBr̂Þ; ð21:2Þ

where r̂ is the unit radial vector, and TB and PB are the
toroidal and poloidal scalars, respectively. In MoSST, all
scalar fields are described by spherical harmonic expan-
sions, with the spectral coefficients discretised in radius,
for example,

PB ¼
XLd

0 ≤m ≤ l

bml ðriÞYm
l ðθ; ϕÞ þ C:C:;  for  i ¼ 0; 1; . . .  Nr;

ð21:3Þ

where Ld is the highest degree,Nr is the number of the radial
grid points ri, Ym

l are the orthonormal spherical harmonic

0

Mean Forecast Br for 2010–2015

Mean Observed Br for 2010–2015

Mean Dynamo Br

Mean Observed SV for 2010–2015

Mean Forecast SV for 2010–2015

Mean Dynamo SV

2

(n
T

)

4 5000

0

(n
T

/Y
ea

r)

–5000

5000

0

(n
T

/Y
ea

r)

–5000

5000

0

(n
T

/Y
ea

r)

–5000

6

×105

–2

–4

–6

0

2

(n
T

)

4

6

×105

–2

–4

–6

0

2

(n
T

)

4

6

×105

–2

–4

–6

Figure 21.1 Snapshots of the mean radial component Br of the geomagnetic field (left column) and its mean SV _Br (right column)
at the top of the D″-layer for 2010–15. The top row are downward continued from that of CM6 field model at the mean surface (Sabaka
et al., 2020), the centre row are from NASA GEMS assimilation solutions (Sun and Kuang, 2015; Tangborn et al., 2021), and the bottom
row are from MoSST geodynamo simulation solutions (Kuang and Chao, 2003; Jiang and Kuang, 2008).
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functions, and C.C. stands for the complex conjugate. With
these definitions, the core state vector is

x ¼ ½fbml ðriÞg; fjml ðriÞg; fvml ðriÞg; fωm
l ðriÞg; fζml ðriÞg�

T ;

ð21:4Þ

where jml , v
m
l , w

m
l and ζml are the complex spectral coefficients

of the toroidal magnetic scalar, the poloidal and toroidal
velocity scalars, and the temperature anomaly, respectively.
Thus the dimension of x isNx ¼ 5ðNr þ 1ÞLdðLd þ 2Þ, which
can be very large, for example, Nx ≈ 106 if Nr;Ld ∼ 100. The
time evolution of x is evaluated via given discretised
schemes, which are of the form

xkþ1 ¼ Lxk þ fðxkÞ; ð21:5Þ

where L is the linear matrix describing, for example, the
dissipative effects; f is the vector describing the quadratic
interactions among the fields, for example, motional induc-
tion; and the superscripts k and k þ 1 indicate the state
vector at the time steps tk and tk+1, respectively. In
MoSST, the entire dynamo system is non-dimensionalised,
and is therefore defined with a set of non-dimensional
parameters, namely the Rayleigh number Rth (for the buoy-
ancy force), the magnetic Rossby number Ro (for the fluid
inertia), the Ekman number E (for the fluid viscosity), and

the modified Prandtl number qκ (ratio of the thermal con-
ductivity to the magnetic diffusivity). They are referred to as
the dynamo parameters in this chapter, and are embedded in
L and f of (21.5). It should be pointed out that the mathem-
atical description (21.5) applies to all dynamo models,
though the state vector and the dynamo parameters may
differ. It should also be noted that most of the currently
available dynamo models are non-dimensional (e.g.
Christensen et al., 2001; Jones et al., 2011; Matsui et al.,
2016), thus requiring appropriate rescaling to compare with
the observed geomagnetic field.

Geodynamo simulations, which are also called the ‘free-
running models’ in data assimilation as they are not
constrained by observations, can provide axial-
dipolar–dominant magnetic fields that change in both
space and time. But they are also expected to differ from
observations, mainly because the dynamo parameter values
used in numerical simulation are far from those appropriate
for the Earth’s core (see Section 21.5 for more discussions).
For example, in the bottom row of Fig. 21.1, are the typical
mean Br and mean SV at the top of the D″-layer over
a 100-year period from MoSST dynamo simulation results
with the parameters Ro ¼ E ¼ 1:25� 10�6 and qκ ¼ 1.
Compared to the observations (the top row in Fig. 21.1),
the axial dipole component of the simulated field is too
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Figure 21.2 The South Atlantic Anomaly observed in 2019 (left column) and predicted in 2025 (right column). The top are the magnetic
intensity at the Earth’s mean surface, and the bottom are those at the top of the D″-layer. The intensity levels decrease from the outermost
contour (30,000 nT on the surface) to the innermost contour (22,800 nT on the surface). The observations are from CM6 (Sabaka et al.,
2020), and the forecasts are made by Tangborn et al. (2021).
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strong, and the simulated SV is too weak. These significant
differences show that geodynamo simulations cannot pro-
vide accurate estimates of the core state on their own.

Aiming at improving core state estimates, one may attempt
to constrain geodynamo simulations with observations, and
data assimilation is an optimal choice. The observational
constraints can be made through connections between the
Gauss coefficients defined in (21.1), and the poloidal field
spectral coefficients defined in (21.3). In MoSST, an electric-
ally conducting D″-layer at the base of the mantle is imple-
mented in the model. With this feature, the connection is
made at the top of the D″-layer r ¼ rd :

bml ¼ bmðoÞl ≡
ð�1Þm

lB
a
rd

� �lþ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð1þ δm0Þ

2l þ 1

r
ðgml � ihml Þ

ð21:6Þ

for l ≤Lobs. In (21.6), δm0 is the Kronecker delta (δm0 = 1 if
m ¼ 0, and 0 otherwise), and B is a magnetic scaling factor
used to match the dimensional Gauss coefficients (from
geomagnetic field models) and the non-dimensional pol-
oidal spectral coefficients (from geodynamo models). The
matching condition (21.6) shows also that only part of the
poloidal magnetic field can be observed, leaving the rest of
the core state unobserved. It also defines the projection of x
onto the observational subspace:

y ¼ Hx; ð21:7Þ

where y [of the dimensionNy = Lobs(Lobs + 2)] is the observed
part of the core state, andH is an Ny × Nx matrix, called the
observation operator in data assimilation (see Section 21.3).
Since the observation y is defined only at rd (the top of theD″-
layer),H is very simple: each row ofH contains a single non-
zero entry of 1 corresponding to the observed bmðoÞl . The
relations (21.6) and (21.7) are needed for GDA. It should be
noted that the methodology is applicable to other geody-
namo models, though the state vector x and therefore the
relation (21.6) may need to be modified accordingly.

21.3 Mathematics of Data Assimilation

In this section, we provide a brief review of data assimilation
(DA) while highlighting details relevant to geomagnetism.
We begin with a short introduction to the fundamental
framework ofDA. Specificmethods ofDA are then outlined
and the computational limitations they are subject to in
practice are briefly discussed.

21.3.1 The Basic Framework of Data Assimilation
Data assimilationmerges a computationalmodel of a process
with observations, in order to produce an improved estimate
of the state of a system. Methods of DA are typically

constructed within a Bayesian framework as follows. Let xt

be a vector of Nx elements representing the true state of
a system at a particular time (the geodynamo in GDA).
Knowledge of the system state is recorded in y, a vector of
Ny observations which is related to xt according to

y ¼ Hxt þ ε; ð21:8Þ

whereH is the observation operator and ε is the observation
noise which is frequently assumed to beGaussian with mean
zero and covariance R. In GDA, xt and y may consist of
spherical harmonic coefficients defining the state of the
geodynamo and knowledge of the poloidal magnetic field
near the CMB, respectively (see Section 21.2), in which case
the observation operator is theNy × Nx matrixH. Equation
(21.8) defines the likelihood pðyjxtÞ, that is, the probability
distribution of the observations given a system state. In
sequential DA systems, numerical simulations can be used
to define a prior distribution p0ðxtÞ(see Section 21.3.2 for
details) and by Bayes’ rule, a posterior distribution

pðxtjyÞ∝ p0ðxtÞpðyjxtÞ; ð21:9Þ

is defined by the product of the likelihood and the prior. The
ultimate objective of various approaches to DA is the
approximation of this posterior distribution.

21.3.2 The Ensemble Kalman Filter
The ensemble Kalman filter (EnKF), is a widely used method
that has been employed in multiple GDA systems (see, e.g.,
Fournier et al., 2013; Sun and Kuang, 2015; Sanchez et al.,
2020; Tangborn et al., 2021). It approximates the posterior
distribution of (21.9) by combining a Monte Carlo approach
with the Kalman filter (see, e.g., Evensen, 2006). Specifically,
the distributions in Section 21.3.1 are estimated by sampling
them through multiple, simultaneous runs of a numerical
model. In an EnKF, a forecast ensemble of Ne unique fore-
castsXf ¼ fx f

1;…; x f
Ne
g is produced at a time when observa-

tions are to be assimilated. This ensemble is taken to be
a sample of the prior distribution p0ðxtÞ. The purpose of the
EnKF is to adjust these forecasts by merging them with
information contained in the observations y. This collection
of ‘adjusted’ forecasts forms an analysis ensemble which is
taken to be the desired sampling of the posterior distribution
pðxtjyÞ. Typically, the mean of the analysis ensemble is used
as an estimate of the true state of the system, with the ensem-
ble variance indicating the estimate’s uncertainty.

An EnKF can be implemented in the following way.
The initial collection of forecasts are used to determine
the forecast covariance

Pf ¼ 1

Ne � 1

XNe

i¼1
ðx f

i � xÞðx f
i � xÞT ; ð21:10Þ

where x ¼ ð1=NeÞΣNe
i¼1x

f
i . An analysis ensemble can then be

determined by
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xai ¼ x f
i þK½y� ðHx f

i þ εiÞ�; ð21:11Þ

for i = 1, . . . Ne, where εi ∼Nð0;RÞ, and

K ¼ PfHTðHPfHT þ RÞ�1 ð21:12Þ

is the estimate of the Kalman gain. Under appropriate
conditions, the analysis ensemble is a sampling of the pos-
terior and thus provides the desired approximation of
(21.9). The analysis ensemble members can then be propa-
gated forward in time by the numerical model, to the next
instance when observations are available for assimilation
and the process is repeated. The particular EnKF algorithm
outlined here is known as the stochastic EnKF. Other imple-
mentations exist (see, e.g., Tippett et al., 2003; Hunt et al.,
2007; Buehner et al., 2017) and differ in their details; how-
ever, all rely on a Monte Carlo approximation of the
Kalman gain and are designed such that, under certain
conditions, the analysis ensemble they produce is distrib-
uted according to the posterior.

21.3.3 Variational and Hybrid Methods
Variational methods produce an estimate of the system state
by seeking themaximumof the posterior distribution of (21.9).
This approach effectively transforms the assimilation of obser-
vations to an optimisation problem. Assume that m is the
numerical model for advancing the state vector in time

xðtkÞ ¼ m½xðtk�1Þ�; ð21:13Þ

where xðtkÞ is the state vector of a numerical simulation at
time tk. Assume also that at tk, the observations yðtkÞ are
made with error covariance R. For simplicity, we denote
xk ¼ xðtkÞ and yk ¼ yðtkÞ in the rest of the discussion. With
this notation, the posterior distribution of the true initial
state xt0 at time t0, given observations y1 at time t1 is

pðxt0jy1Þ∝ pðxt0Þpðy1jxt0Þ: ð21:14Þ

Under the assumption that the prior and likelihood are
Gaussian, maximising (21.14) is equivalent to minimising

Jðx0Þ ¼ ðx0 � μÞTB�1ðx0 � μÞ þ ½Hmðx0Þ � y1�
TR�1

½Hmðx0Þ � y1�; ð21:15Þ

where μ and B are the mean and background covariance of
the prior distribution, respectively. This particular
approach to variational DA is referred to as 4D-Var (see,
e.g., Courtier, 1997). Determining the minimiser of the cost
function Jðx0Þ is an iterative process that can be computa-
tionally challenging, in part because optimization requires
computation of the gradient of the cost function. Note the
dependence of Eq. (21.15) on mðx0Þ, indicating that evalu-
ations of Jðx0Þ require runs of the numerical model.
Methods for improving the efficiency of the optimisation
process are known, however, many require code for

a tangent linear model M of the full numerical
model m (see, e.g., Talagrand and Courtier, 1987), that is,
approximating x1 as Mx0. But constructing M for large,
non-linear, numerical models can be a significant challenge.

Hybrid techniques have been developed which combine
variational and ensemble-based approaches to DA. For
example, one may run an ensemble of 4D-Var systems
(Bonavita et al., 2012) or couple an EnKF to a 4D-Var
setup (Zhang and Zhang, 2012), and use the ensemble
mean and covariance to define μ and B, the statistics of the
prior distribution appearing in Eq. (21.15). Recently, for the
first time, a hybrid method (4DEnVar) was employed in
GDA to propose an SV candidate model for IGRF-13
(Minami et al., 2020).

21.3.4 The Role of Ensemble Size
Under appropriate conditions, approximations of the pos-
terior distribution produced by EnKF implementations or
hybrid methods will converge as Ne ! ∞. But in practice,
one aims to use sufficiently large, but finite ensemble sizes.
However, what constitutes a ‘sufficiently large’ ensemble
depends on individual models. It depends, among other
things, on the dimension Nx of the state space x, and the
quality and extent of the observations y (Chorin and
Morzfeld, 2013). Typically, the larger the state space and
the sparser the observations, the larger the ensemble
size required. In GDA, a typical 3-D geodynamo model
with modest numerical resolutions has a dimension
Nx ∼ 106, while observations are limited to Ny ∼ 102 on
a 2-D spherical surface (e.g. the outer boundary of
a geodynamo model). In many DA applications, the com-
putational expense of the numerical model limits the ensem-
ble size with which it is practical to implement EnKF/hybrid
methods. This is the case in GDA where the computational
demands of numerical geodynamos have typically restricted
ensemble sizes to the hundreds. Efforts towards making
GDA with ensembles of limited size more effective are
discussed in Sections 21.4.3 and 21.5.

21.4 Geomagnetic Data Assimilation: Current
Results

The geomagnetic field varies on timescales ranging from
sub-annual to geological time scales, as found from paleo-
magnetic data (e.g. Panovska et al., 2019), historical mag-
netic navigation data (e.g. Jackson et al., 2000), and ground
observatory and satellite magnetic measurements (e.g.
Finlay et al., 2020; Huder et al., 2020; Sabaka et al., 2020).
Over the past century, details of small-scale (high spherical
harmonic degree) changes in the geomagnetic field morph-
ology have been discovered with observatory and satellite
magnetic measurements, such as persistent localised
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magnetic fluxes (e.g. Jackson, 2003; Finlay and Jackson,
2003); geomagnetic acceleration and geomagnetic jerks
(e.g. Mandea et al., 2010; Chulliat and Maus, 2014); high-
degree geomagnetic variations (e.g. Hulot et al., 2002; Olsen
and Mandea, 2008; Kloss and Finlay, 2019); and the South
Atlantic Anomaly (SAA), a localised region of extra low
magnetic field intensity at the Earth’s mean surface (e.g.
Finlay et al., 2020). Historical, archaeo- and paleomagnetic
data can provide information on large-scale (low spherical
harmonic degree) geomagnetic field variations, such as the
strong decay of the axial dipole moment in the past century
(e.g. Brown et al., 2018; Jackson et al., 2000), persistent
westward drift in the northern hemisphere over millennial
time scales (e.g. Nilsson et al., 2020), and the well-known
polarity reversals of the geomagnetic field over the last 150
Myr (Cande and Kent, 1995; Lowrie and Kent, 2004; Ogg,
2012).

These observations provide the data used in GDA and
highlight the primary purposes of GDA: forecasting, hind-
casting, and interpreting geomagnetic SV. The GDA-based
SV studies provide one of the few windows we have into the
dynamics of Earth’s deep interior. Additionally, geomag-
netic forecasts have broad scientific and societal applica-
tions, such as their contributions to time-varying global
geomagnetic models which are widely used in various scien-
tific communities (e.g. Doglioni et al., 2016), for navigation
and survey applications (e.g. Kaji et al., 2019), and for space
exploration (e.g. Heirtzler et al., 2002).

In this section, we provide a brief overview of some of
the current results in using GDA to understand and predict
SV. The discussion is organised according to the types of
the dynamic models used in the assimilation system. We
begin with a review of GDA relying on self-consistent
3-D dynamomodels, followed by a discussion of alternative
physical and statistical models, and finally, simplified models
used in, for example, GDA algorithm development and the
prediction of very long-term geomagnetic variations.

21.4.1 GDA with Self-consistent Dynamo Models
The first attempt to predict SV through GDA was carried
out a little more than a decade ago (Kuang et al., 2010)
and made use of a 3-D numerical geodynamo model. The
resulting forecast contributed as a candidate SV model to
the 11th generation International Geomagnetic Reference
Field (IGRF-11, Finlay et al., 2010). While this demon-
strated clearly the value of GDA using Gauss coefficients
from geomagnetic field models (not direct geomagnetic
measurements) and geodynamo models (with non ‘Earth-
like’ dynamo parameters, see Section 21.5), it was also
limited in estimating model uncertainties and biases. For
example, the forecast errors in the study by Kuang et al.
(2010) are approximated by a simple, time-invariant
mathematical description (analogous to the Optimal
Interpolation scheme in data assimilation), not by the

covariance matrix of a forecast ensemble (as in an
EnKF scheme). Fournier et al. (2015) continued the effort
to make GDA-based SV forecasts as a candidate model
for IGRF-12, with a major improvement in utilising the
dynamo solution covariances for the model error statis-
tics. However, the covariances in their assimilation were
based only on free-running models, not updates from
assimilations (Aubert, 2014).

In the most recent IGRF release (IGRF-13, Alken
et al., 2021a), of the fourteen candidate SV models
included, four are products of GDA systems using
3-D numerical geodynamos (Minami et al., 2020;
Sanchez et al., 2020; Fournier et al., 2021b; Tangborn
et al., 2021). Each of these systems make use of an ensem-
ble-based method for assimilation, including the first-ever
use of a hybrid variational method (Minami et al., 2020).
In addition, observations over the past decades (Minami
et al., 2020) and longer (Sanchez et al., 2020; Tangborn
et al., 2021) were assimilated. These help produce assimi-
lation solutions which are dynamically consistent over
time, as suggested by earlier work with sequential GDA
systems (Tangborn and Kuang, 2018; Sanchez et al.,
2019). For a more recent description of SV forecasts
made by GDA using full dynamo models, we refer the
reader to, for example, Fournier et al. (2021a).

The quality of geomagnetic data decreases rapidly when
looking back in time, and thus may present the ultimate
limitation to the forecast accuracy and dynamic consistency
of assimilation solutions from sequential data assimilation
systems. But the variational approach by Minami et al.
(2020) has the potential to reduce such limitations, as it
provides an opportunity to improve earlier geomagnetic
data with much more accurate satellite magnetic measure-
ments. All GDA systems face astronomical computational
expense if they are to assimilate all available geomagnetic
and paleomagnetic data (see Section 21.5 for further
discussion).

GDA with self-consistent geodynamo models presents an
opportunity to predict the future geomagnetic field over
several decades – much longer than the five-year IGRF
period. For example, Aubert (2015) showed that forecasts
using the dynamic models of GDA systems can outperform
linear extrapolations on decadal time scales. This is possible
because the estimated ‘unobserved’ part of the core state is
utilised by the dynamic models to predict the future mag-
netic field. Such forecasts currently predict a continuation of
the weakening of the axial dipole, and the expansion and
weakening of the SAA over the coming 50–100 years
(Aubert, 2015; Sanchez et al., 2020). In particular, as
shown in Fig. 21.2, the forecasts predict that a second min-
imum will grow to split the SAA region in 2025. This high-
lights a significant contribution of GDA besides simply
forecasting the magnetic field: GDA systems are powerful
tools for obtaining insight into Earth’s deep interior and the
origins of SV.
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21.4.2 GDA with Alternative Dynamic Models
While the use of full numerical dynamo models in GDA has
grown over the last decade, approaches employing alterna-
tive models based on various physical, mathematical, and
statistical descriptions of the magnetic field continue to be
successfully developed and employed. These models are, in
general, much simpler than the full dynamo models in both
mathematical formulation and numerical simulation.
However, they have unique advantages in, for example,
allowing for assimilation runs on million-year time scales
that would be prohibitively expensive with GDA systems
using a full dynamo model. Alternative models can also be
useful in testing and validating specific physical and/or
mathematical approximations which are applicable to geo-
dynamo models. Such models can be particularly useful as
testbeds for advancing GDA methods.

The first such approach to GDA with an alternative
model is the geomagnetic forecasts made with magnetic
induction via core surface flows (e.g. Maus et al., 2008;
Beggan and Whaler, 2009, 2010). The flows used for the
induction are also derived from geomagnetic observa-
tions. It has been shown that a steady core flow model
is capable of producing accurate SV forecasts over five-
year periods, and are, in principle, improved ‘linear
extrapolations’ of the SV from current and past geomag-
netic observations. These results agree also with studies of
Aubert (2015).

Improvement could be made if time-varying core flows
are considered, such as the quasi-geostrophic flows in the
studies of Pais and Jault (2008), Canet et al. (2009) and
Aubert (2015), and the ‘inertia-free’ core flow of Li et al.
(2014). In the former approach, the full dynamo model is
replaced by a quasi-geostrophic flow which can be deter-
mined without the Lorentz force (i.e. the magnetic field in
the outer core). In the latter, the momentum equation
becomes ‘diagnostic’, making it equally numerically stable
for both forecast and hindcast, a welcome simplification in,
for example, a variational data assimilation approach. In
summary, these models allow one to avoid solving the full
dynamo equations for GDA, greatly reducing computa-
tional demands.

Another approach relies on purely statistical models, such
as those of Barrois et al. (2018) and Bärenzung et al. (2020).
While these models may not capture the detailed physics of
a numerical dynamo, it makes the consideration of multiple
magnetic sources outside of the core (e.g. the lithosphere
and magnetosphere), computationally tractable, which, in
turn, allows for the direct assimilation of geomagnetic meas-
urements (as opposed to geomagnetic field models).
Computationally less demanding dynamic models can also
make ensemble sizes attainable which would otherwise be
impractical with numerical dynamos, resulting in more reli-
able uncertainty estimates. For example, the statistical
model of Bärenzung et al. (2018) permits an EnKF with an
ensemble size of Ne = 40,000, nearly two orders of

magnitude larger than those used in EnKFs with numerical
dynamos.

From long-term archeo- and paleomagnetic data, one can
find some persistent global scale magnetic features over very
long time periods (e.g. Amit et al., 2011; Constable et al.,
2016). Thus, an interesting approach is to use low-
dimensional models based on either stochastic PDEs (see,
e.g., Morzfeld and Buffett, 2019; Pétrélis et al., 2009) or
deterministic ODEs (Gissinger, 2012) for long-term SV,
such as the behaviour of the axial dipole component of
Earth’s magnetic field, and for the occurrence of reversals.
These models have been used to investigate the predictabil-
ity of reversals (see, e.g., Gwirtz et al., 2020) including an
effort involving the assimilation of paleomagnetic data
(Morzfeld et al., 2017). Results from the latter work indicate
that assimilations with simplified models of the axial dipole
may be useful for anticipating reversals within a window
of a few millennia. Limited paleomagnetic data however,
makes the validation of reversal prediction strategies
a challenge. But it is expected that, as more paleomagnetic
data and better low-degree models become available, GDA
will also become a powerful tool for predicting very slow
secular variations and geomagnetic reversals.

21.4.3 Proxy Models for GDA Development
Simplified models have also played a role in the develop-
ment of GDA outside of directly being used to make predic-
tions about the Earth. The earliest works concerning GDA
involved demonstrating its viability through observing sys-
tem simulation experiments (OSSEs) with simplified MHD
systems (Fournier et al., 2007; Sun et al., 2007;Morzfeld and
Chorin, 2012). The dynamic models of those works con-
sisted of 1-D scalar fields intended to represent the magnetic
field and fluid velocity of the outer core. While these ‘proxy
models’ were significantly simpler than the geodynamo,
they enabled extensive numerical studies of some of the
challenges of GDA. This approach of using proxy models
has been widely used in the successful development of
DA in other applications, such as numerical weather predic-
tion and oceanography. Surprisingly, the pursuit of proxy
models for GDA was discontinued until a two-dimensional
geomagnetic proxy system (TGPS) recently developed by
Gwirtz et al. (2021) was used to study assimilation strategies
for use with numerical dynamos.

The TGPS is a magnetoconvection system consisting of
2-D magnetic and velocity fields, on either a plane or spher-
ical surface, which are non-linearly coupled. The right side
of Fig. 21.3 shows a snapshot of a solution to the TGPS in
a spherical geometry.

The magnetic field and the velocity field are defined by the
scalar fields A and ω, respectively (shading in the image of the
fields), permitting a complete description of the system state
in spherical harmonics, similar to geodynamo models such as
MoSST (see Section 21.2). The TGPS was designed to mimic
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the scenario where spherical harmonics, determined from
geomagnetic field models, are assimilated into numerical geo-
dynamos. This is accomplished through OSSEs in which only
noisy ‘observations’ of the large length-scale spectral coeffi-
cients of A, which defines the magnetic field of the TGPS, are
assimilated. As with proxy models for other DA applications,
a major advantage of the TGPS is that its computational
simplicity allows for a large number of OSSEs which would
otherwise be impractical with numerical geodynamos.

Extensive OSSEs with the TGPS have been used to
explore and propose assimilation strategies for improving
accuracy and reducing the computational demands of oper-
ational GDA systems. The left panel of Fig. 21.3 shows the
average forecast errors with the TGPS during various
OSSEs, as a fraction of the average forecast error of a free-
running model using no assimilations. The OSSEs differ
only in the particular details of the EnKFs (labelled 1–4)
and the size of the ensemble (horizontal axis). The curve
determined by the black circles (EnKF-1) relies on the
standard stochastic EnKF described in Section 21.3.2,
while the others (EnKF 2–4) use various modifications gen-
erally known as localisation and inflation (see, e.g., Kotsuki
et al., 2017; Shlyaeva et al., 2019). It can be seen that while
the unmodified EnKF-1 requires an ensemble of Ne ¼ 500
to reduce forecast errors, similar results can be achieved at
reduced ensemble sizes when the modified EnKFs (2–4) are
used. These findings support the recent implementation of
‘localised’ EnKFs in GDA (Sanchez et al., 2019, 2020) and
suggest additional EnKFmodifications which might be use-
ful in reducing the necessary ensemble size, and therefore
computational demands, of GDA systems.

21.5 Geomagnetic Data Assimilation: Challenges
and Developments

GDA has advanced greatly in the past decade by utilising
knowledge accumulated in other Earth sciences, in particu-
lar in numerical weather prediction (NWP), and has been

recognised as a unique tool for geomagnetic forecasting and
core-state estimation. But many challenges still remain in
areas ranging from observations and physics to mathemat-
ical and computational techniques. Future progress inGDA
will rely on overcoming these hurdles. Some could be
addressed by leveraging knowledge from, for example,
NWP; but many others are unique to geomagnetism, the
geodynamo, and core dynamics. Among these challenges
are GDA system spin-up given the limited availability of
high resolution geomagnetic observations from the past; the
astronomical computational requirements of GDA systems;
and the systematic errors (model biases) arising from large
gaps between the dynamo parameter values used in numer-
ical dynamo simulations and those appropriate to the
Earth’s core.

A major challenge in GDA is the differences between the
observed geomagnetic field and the magnetic field from
dynamo simulations. EnKF-type assimilation algorithms
such as (21.11) assume that forecast errors are random
with the zero mean, that is, no systematic error (bias). It
also requires that the observations y and the forecasts x f in
(21.11) are defined in the same units. But both are difficult to
implement in current GDA systems. First, model biases
exist because of the large parameter gaps between the par-
ameter values used in numerical dynamo simulation and
those appropriate for the Earth’s outer core. The dynamo
parameters described in Section 21.2, such as the magnetic
Rossby number Ro, the Ekman number E, and the modified
Prandtl number qκ, are very small: Ro ∼ 10�9, E∼ 10�15,
and qκ ∼ 10�6 in the outer core if the molecular fluid viscos-
ity, magnetic diffusivity and thermal conductivity are used
(e.g. Braginsky and Roberts, 1995). In numerical simula-
tions, they are at least two orders of magnitude larger (e.g.
Wicht and Sanchez, 2019), simply due to computational
limitations. Numerical dynamo solutions with such large
parameter gaps certainly differ from the (unknown) true
core dynamic state. This is particularly significant in dynam-
ical processes that are directly related to these small param-
eters, such as torsional oscillations (waves) in the outer
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Figure 21.3 A 2-D proxy model for studying GDA.On
the left are average forecast errors during OSSEs as
a function of ensemble size, for the TGPS in a square
geometry when using EnKFs with various
modifications (labelled 1–4). The errors are scaled by
the average forecast error of a free-running model
assimilating no data. On the top right is a snapshot of
the 2-D velocity field (vectors) and the normal
component of vorticity (ω, shading) for the TGPS on
a sphere. On the bottom right is a snapshot of the
2-Dmagnetic field (vectors) and the magnetic scalar (A,
shading) for the TGPS on a sphere.
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core. These waves are excited to leading order by the balance
between the fluid inertia and the Lorentz force (e.g.
Braginsky, 1970; Wicht and Christensen, 2010). Thus their
typical frequencies are ∼OðR�1=2o Þ, implying that two
orders of magnitude differences in Ro result in one order
of magnitude differences in the wave frequencies (and thus
the time scales). Since these waves are conjectured to play
a major role in explaining the observed sub-decadal geo-
magnetic SV (e.g. Bloxham et al., 2002; Cox et al., 2016;
Aubert and Finlay, 2019), the impacts of the large param-
eter gaps must be properly addressed for accurate geomag-
netic forecasts. Although continuous efforts are made to
narrow the parameter gap (Aubert et al., 2017; Aubert and
Gillet, 2021), numerical dynamos which are practical for
GDA will continue to use parameters which differ signifi-
cantly from those representative of the Earth in near future.

Model biases also arise from uncertainties in the thermo-
chemical properties of the deep Earth, such as the adiabatic
and the total heat fluxes across the CMB (e.g. Nimmo, 2007;
Nakagawa, 2020), and the heterogeneity in the inner core
and the lower mantle (e.g. Garnero, 2000; Deuss, 2014). The
former directly affects the Rayleigh numbers Rth, and the
latter affects the boundary conditions at the CMB and
the inner core boundary (ICB) for numerical dynamo
models. It is expected that the parameter gaps will be nar-
rowed and the thermo-chemical uncertainties will be
reduced in the coming decades, but will not vanish. The
model biases in GDA systems will therefore remain in the
foreseeable future.

One possible approach is to estimate the model biases
with the asymptotic limits (scaling laws) derived from sys-
tematic numerical dynamo simulations with wide ranges of
parameter values (e.g. Christensen, 2010; Yadav et al., 2013;
Kuang et al., 2017; Petitdemange, 2018). But this could be
very difficult, since the numerical asymptotes may not agree
with the core state, and since the computational needs for
acquiring such asymptotes could be comparable or even
higher than those for GDA runs with large ensembles.

Another approach is to rescale y (or equivalently x f)
based on the properties of the observed field and of the
dynamo model used in GDA (e.g. Kuang et al., 2010;
Aubert, 2014; Fournier et al., 2015, 2021b; Tangborn
et al., 2021). This is perhaps more pragmatic since such
rescaling is needed if non-dimensional numerical dynamo
models are used in GDA, and since the canonical scaling
rules employed in dynamo modelling are inappropriate due
to non-‘Earth-like’ dynamo parameters in simulation. In the
approach of Kuang et al. (2010) and Tangborn et al. (2021),
the numerical and the observed axial dipole moments are
used for the magnetic field rescaling, but the time rescaling
remains the same as the canonical time scale of the numer-
ical dynamo model. In the approach of Aubert (2014) and
Fournier et al. (2015), the typical time scales of the numer-
ical dynamo solutions and of the observed SV are used for
the time rescaling, but the magnetic rescaling relies on the

asymptotic properties derived from independent numerical
dynamo simulations. As such, both approaches may lead to
inconsistencies between the magnetic rescaling and the time
rescaling since, as shown in Fig. 21.4, the typical time scales
and the typical intensities of the numerical magnetic fields
vary with the dynamo parameters. An immediate develop-
ment could be to select both the magnetic rescaling and the
time rescaling to match the observed and the modelled field
intensities and time scales. Consistencies of the scalings and
their potential improvements may be tested and validated
with various OSSEs.

The GDA forecast spin-up has always been a concern
because, as discussed in Section 21.2, the geomagnetic
observations are very sparse (the dimension of y is more
than four orders of magnitudes less than that of x f ), and are
not ‘in-situ’ as in many other Earth systems (y is determined
by downward continuing the surface observations to the
outer boundary of the dynamo system). The spin-up can
be measured by the time evolution of the forecast accuracy
ð O-F ÞB ≡ y−Hx f : for an EnKF GDA system, it is expected
to decrease in time as more data are assimilated, until it
reaches some minimum level (thus the system is fully spun-
up). Reaching the minimum level is critical for minimising
the SV forecast error which, by definition, can be deter-
mined by the field forecast errors at different times:
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Figure 21.4 The typical intensity (x-axis) and the typical time
scale (y-axis) of the ensembles of numerical poloidal magnetic
fields with (1) Rth ¼ 1811, Ro ¼ E ¼ 1:25� 10�6 (squares);
(2) Rth ¼ 1811, Ro ¼ E ¼ 6:25� 10�7 (stars); (3) Rth ¼ 905,
Ro ¼ E ¼ 6:25� 10�7 (triangles). The dark bold-face symbols are
the ensemble mean values. The intensities are for the poloidal
magnetic field at the top ofD″-layer for spherical harmonic degrees
l ≤ 13. Each of the three ensembles consist of 512 snapshots of
numerical dynamos selected from large pools of well-developed
free-running dynamo solutions obtained with the MoSST core
dynamics model (e.g. Jiang and Kuang, 2008).

21 Understanding and Predicting Variation 335

https://doi.org/10.1017/9781009180412.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009180412.022


ð O-F ÞSV ≡ _y �H _xf ¼ 1

Δt
½ð O-F ÞBtþΔ t � ð O-F Þ

B
t �: ð21:16Þ

However, previous studies suggest that ð O-F ÞB may not
always decay monotonically in time (e.g. Tangborn and
Kuang, 2015, 2018). Though SV forecasts can be
improved by some additional calibration of ð O-F ÞB
(Kuang et al., 2010; Tangborn et al., 2021), or by careful
selection of the initial ensembles of the inverse dynamo
solutions matching earlier geomagnetic observations
(Aubert, 2014; Fournier et al., 2015), better solutions
could be found by improved assimilation algorithms,
such as the rescaling approach discussed in the previous
paragraph, and by assimilating other geodynamic obser-
vables, such as the length of day variation on decadal time
scales which is likely due to angular momentum exchange
between the solid Earth and the fluid core (e.g. Jault et al.,
1988). It should be noted that the angular momentum Moc

of the outer core (relative to the solid mantle) is the
volume integral Moc ¼

Ð
ρocr� vdV (where ρoc is the core

fluid density).
Development and validation of new assimilation algo-

rithms needed to address the issues outlined here will add
to the already very challenging computational needs of
GDA. Take a Boussinesq dynamo model for an illustra-
tion. As shown in Section 21.2, there are five independent
scalar fields in the state vector x of the dimension 5N1N2N3

(where N1;2;3 are the numerical resolutions in
a 3-D dynamo domain). In the MoSST core dynamics
model (e.g. Kuang and Bloxham, 1999; Jiang and Kuang,
2008), for example, the resolution is defined by the radial
grid points Nx and the truncation order Lx of the spherical
harmonic expansions. Thus, in one time step, there are
∼Oð50NxL3

x ln LxÞ floating point operations (with spher-
ical harmonic transforms). For a modest resolution
Nx ¼ Lx ¼ Oð102Þ and time step Δ t∼ 10�6(typical for
dynamo simulations with Ro;E∼ 10�6) a total of ∼1016

floating point operations are needed for a dynamo simula-
tion over a magnetic free-decay time. This amounts to∼3 h
on a tera floating point operations per second (teraflops)
computing system (excluding the communication time
across computing nodes). The computing needs will be Ne -
fold more for GDA runs using ensembles of size Ne.
Therefore, there is a need for more efficient assimilation
algorithms to make the GDA computing needs bearable,
such as those aiming at reducing the necessary ensemble size
for EnKF based GDA systems (e.g. Sanchez et al., 2019;
Gwirtz et al., 2021). Development of proxy models, such as
those of Canet et al. (2009) and Gwirtz et al. (2021), are
of particular importance for advancing GDA, as they
can provide dynamically complex, but computationally
economical platforms for at least early stage proof-of-
concept studies of assimilation algorithms and physical
approximations.

21.6 Discussion

In this chapter, we have provided an overview of geomag-
netic data assimilation (GDA), including some basics of
geomagnetic observations, geodynamo models, and assimi-
lation methodologies. We have also presented a wide range
of GDA results in understanding core dynamical processes,
interpreting observed SV, and geomagnetic forecasting. In
addition, we have elaborated on some of the challenges in
GDA and possible pathways to move forward. As such, this
chapter serves as a quick and comprehensive introduction
for those who wish to learn GDA and/or work on GDA-
related research and applications.

We would like to point out a particular useful application
of the proxy models described in Section 21.4. Since these
models are mathematically simple and computationally
affordable, they are very handy for teaching/learning
GDA. Compared to any full geodynamo model, these
models are easy to analyse. In particular, simulation and
assimilation (with these models) can be completed quickly
on desktops and laptops, thus making them ideal in, for
example, student projects.

While we have made an effort to include representative
GDA results and developments, this chapter does not cover
all GDAactivities, in part due to the page limit and the rapid
development of GDA in recent years. For example, the
description of variational geomagnetic data assimilation is
very brief in this chapter, and we refer the reader to relevant
references for more details. Regardless, this should not
affect the main purpose of this chapter, which is to provide
a comprehensive understanding of geomagnetic data
assimilation.
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22
Pointwise and Spectral Observations
in Geomagnetic Data Assimilation:
The Importance of Localization

Sabrina Sanchez

Abstract: Geomagnetic data assimilation aims at con-
straining the state of the geodynamo working at the
Earth’s deep interior by sparse magnetic observations at
and above the Earth’s surface. Due to difficulty separat-
ing the different magnetic field sources in the observa-
tions, spectral models of the geomagnetic field are
generally used as inputs for data assimilation. However,
the assimilation of raw pointwise observations can be
relevant within certain configurations, specifically with
paleomagnetic and historical geomagnetic data.
Covariance localisation, which is a key ingredient to the
assimilation performance in an ensemble framework, is
relatively unexplored, and differs with respect to spectral
and pointwise observations. This chapter introduces the
main characteristics of geomagnetic data and magnetic
field models, and explores the role of model and observa-
tion covariances and localisation in typical assimilation
set-ups, focusing on the use of 3D dynamo simulations as
the background model.

22.1 Introduction

The Earth’s magnetic field has displayed many intriguing
features throughout its past. During the last decade, the
North magnetic pole has rapidly migrated towards Siberia
(Livermore et al., 2020), unmatched by its Southern coun-
terpart. The South Atlantic Anomaly (SAA, a region
where the surface magnetic field is abnormally weak) has
been drifting westwards, deepening and increasing in
complexity (Amit et al., 2021). Moreover, the axial dipole
(the largest scale of the magnetic field) has been continu-
ously decreasing though the past century (Finlay, 2008) –
from –32 µT in year 1850 to about –29 µT in 2020. The
understanding of these variations can be greatly improved
by geomagnetic data assimilation (GDA), which has been
thriving during the past decade. Not only can GDA pro-
vide reanalyses of shallow and deep processes in the
Earth’s interior, it also offers the potential to increase
the quality of predictions of the magnetic field. An

overview of GDA can be found in Kuang et al. (this
volume), as well as in Fournier et al. (2010).

Unlike many other applications of DA in geosciences, in
geomagnetism, observations are only available at a great
distance from its main source, the Earth’s core. The core is
located beneath the Earth’s mantle, at 2,886 km below the
surface, as shown in Fig. 22.1. In its outer part, among
a liquid alloy of iron and nickel at extremely high temperat-
ures and pressures, the geomagnetic field is induced by the
interaction with the electrically conducting flow, via a self-
sustained dynamo process. The geodynamo’s magnetic field
evolves within a variety of timescales: rapid magnetic vari-
ations with interannual frequencies connected to wave
dynamics atop the core (Gillet et al., 2021), decadal variations
associated to flow convection (like the changes in the North
pole and SAA mentioned before), polarity reversals within
many thousand years, and variations in this frequency
through the Earth’s history (Amit et al., 2010; Valet and
Fournier, 2016). Such rich temporal behaviour can be wit-
nessed through different observations of the magnetic field.

The geomagnetic field is currently observed at a high level of
accuracy by satellite missions (notably by Swarm, Friis-
Christensen et al., 2006), with a high spatial and frequency
coverage. In addition, ground observatories provide close to
continuous time series of the magnetic field, some reaching
back 150 years. Previous to that, only historical records are
available, beginning around1450s.Beyond the historical period
is the domain of archeo- and paleomagnetism, which consider
the measuring of the magnetic field locked in rocks and arte-
facts from the time of their formation. The observations, of
course, get sparse in space and time through the past, and the
errors and uncertainties affecting them grow accordingly.
Given the heterogeneity of the data sets, often inverse spectral
models are used to compare field characteristics through time;
for instance, the CHAOS model (Finlay et al., 2020) is used as
reference for the satellite epoch, and theCALS family ofmodels
(Korte et al., 2011) provides a reference for the paleomagnetic
era. The drastic changes in magnetic data have prevented the
construction of global magnetic field models bridging different
epochs (with a few exceptions, e.g. Arneitz et al., 2017).

https://doi.org/10.1017/9781009180412.023 Published online by Cambridge University Press

https://doi.org/10.1017/9781009180412.023


Although the natural path for GDA would be to
employ 3D magneto-hydrodynamic (MHD) dynamo
simulations as background models, many successful
attempts have instead used reduced stochastic models of
induction at the core–mantle boundary (CMB). This
choice allows for a more portable set-up and simplifica-
tion of the model dynamics. For instance, Barrois et al.
(2018), Baerenzung et al. (2020), and Ropp et al. (2020)
have used ensemble Kalman filters (EnKF) to assimilate
pointwise observatory and satellite data with stochastic
models. The main goal has been to provide a reanalysis of
field and/or flow at the CMB, as well as short-term field
forecasts. On the other side of the spectrum, simpler sto-
chastic models have also been used in paleomagnetism.
Morzfeld et al. (2017) employed particle filters to assimi-
late virtual axial dipole moment (reconstruction of the
first harmonic degree of the magnetic field by paleomag-
netic data) models in order to attempt predicting field
reversals and excursions.

Nonetheless, 3D dynamo simulations might be
advantageous within the gap between the data-sparse
paleomagnetic period and the data-dense satellite era.
In this case, data availability might be enough to prop-
erly propagate information from the surface observa-
tions to the deep core interior, at least to the larger
scales of the system. Although efforts have been made
in this direction (e.g. Kuang et al., 2009; Minami et al.,
2020), most studies are related to testing and therefore
working with synthetic set-ups (e.g. Liu et al., 2007;
Fournier et al., 2013). Moreover, in most cases of
data assimilation with dynamo simulations spectral
field models are conveniently employed instead of

pointwise observations. However, field models only
show a smooth picture of the geomagnetic field, and
might also bear potential biases, which the assimilation
algorithm should account for (Tangborn and Kuang,
2015). The possibility of assimilating pointwise obser-
vations with a dynamo model background has been
scarcely explored, but showed promising results
(Sanchez, 2016).

In this chapter, we describe the main characteristics
of the magnetic field observations through the past
millennium (Section 22.2), dynamo simulations and
their relevant aspects for DA (Section 22.3), and pre-
sent a synthetic GDA exercise using an EnKF
(Section 22.4). In the latter, particular attention is
given to the difference in assimilating spectral and
pointwise observations, as well as the importance of
covariance localisation.

22.2 Geomagnetic Data

Observations of the magnetic field are either given in terms
of a complete set or individual components of the magnetic
field. As shown in Fig. 22.2a, the North, East and down-
wards components are traditionally known asX ,Y , andZ,
respectively. The field is also often given in terms of the
following nonlinear components: F the total field intensity,
H the horizontal field intensity,D the declination, and I the
inclination. In the rest of this section, we list and describe
the main subcategories of magnetic field data, but the
interested reader can find more in-depth discussions in
Matzka et al. (2010).

Figure 22.1 Basic structure of the Earth’s interior superimposed with the magnetic field lines originating from the geodynamo in the outer
core.
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22.2.1 Modern Era
The geomagnetic field has been monitored from space as
early as 1957 by Sputnik, and since then, five main
satellite missions have undertaken the task: POGO
(1965–71), Magsat (1979–80), Øersted (1999–2005),
CHAMP (2000–10), SAC-C (2001–4). Figure 22.2b
shows the temporal distribution of these data. Since the
end of 2013, the Swarm mission uses three satellites to

cover the low orbit of the Earth, measuring the geomag-
netic field at a 1 Hz frequency with an unprecedented
accuracy of 2 nT for vector components and 45 pT for
field intensity (Fratter et al., 2016). Although satellite
data are the most precise and have the best spatial
coverage among the available geomagnetic data cata-
logs, as seen in Fig. 22.2c, they are also the most sub-
jected to space weather. Space weather refers to external
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Figure 22.2 (a) Vector components of the observed magnetic field. (b) Histogram of the different magnetic field data sets for the past
millennium separated in bins of ten years (observatory and satellite data from hourly-means). (c) Coverage of the Swarm Alpha satellite
over the period of one day. (d) Network of geomagnetic observatories from INTERMAGNET. (e) Distribution of historical data between
1450 AD and 1800 AD fromHISTMAG (Arneitz et al., 2017). (f) Geographical distribution of the paleo- and archeomagnetic data sets for
the period 1000 AD to 2000 AD from Geomagia (Brown et al., 2015). (c)–(f) are shown in Hammer-Aitoff projection.
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phenomena linked to the interaction of the solar activity
and the Earth’s magnetic field creating geomagnetic
disturbances.

The external field is mainly generated by electric cur-
rents flowing through and in between the magnetosphere
and ionosphere. ‘Quiet’ days can show disturbances of
a few nT, depending on local time and latitude, while
geomagnetic ‘storms’ can easily reach variations of sev-
eral hundreds, sometimes thousands, of nT (Mandea and
Chambodut, 2020). These fields can also induce electric
currents at and under the Earth’s surface, generating
internal fields of external origin. The separation of the
magnetic field sources contributing to the observed signal
becomes extremely important, even more so due to the
orbital emplacement of the satellites between the iono-
sphere and magnetosphere.

At the Earth’s surface, an extensive network of mag-
netic observatories is responsible for constantly recording
the geomagnetic field. Some observatories reach very
long time series, with durations of about a few centuries.
The INTERMAGNET database offers past and real time
data of high standard geomagnetic observatories.1 The
observatories provide fair coverage of the Earth’s sur-
face, despite a clustering over Europe and obvious
lower density at the oceans, as shown in Fig. 22.2d.
Currently, observatory data are given every second,
with a typical precision level of about 5 nT (Reda et al.,
2011). To compensate for the uneven distribution of
observatories, the database is extended by ‘repeat sta-
tions’, where every few years the field at a given location
is measured under similar conditions. Finally, regional
data from land and sea magnetic surveys are also avail-
able, but are mostly used to study the smaller scale
crustal magnetic field.

Although less subjected to space-weather phenomena,
ground-based observations are also strongly affected by the
external field. When interested in decreasing external field
sources, core field modellers often perform strict data selec-
tions, like discarding day-time data (very affected by the iono-
spheric signal), data at times of high geomagnetic indexes
(related to magnetic storms), and data from above a certain
latitude (to decrease the influence of aurora-related interfer-
ence). Such a strong data exclusion could be potentially
avoided by developing better external field models, notably
through space-weather DA. Shprits et al. (this volume),
explores, for instance, DA in the near-Earth space
environment.

22.2.2 Historical Period
Scattered measurements of the geomagnetic field already
existed previous to the sixteenth century, but the Age of
Discovery was a turning point (Jonkers, 2003). During

the Great Navigations, the magnetic field was of utter
importance for geolocalization, hence the number of
observations increased exponentially until the nineteenth
century, as seen in Fig. 22.2b. The boom in data coin-
cided with diverse mathematical breakthroughs, when
science quickly shifted from qualitative to more quantita-
tive. However, magnetic field data was often recorded
incomplete, and mostly in term of its directional compo-
nents. At the beginning, only the magnetic declination (D)
provided by the compass was recorded, followed then by
the dip of the magnetic field (inclination, I) within the
early seventeenth century. It was only in 1832 that
a method for measuring the magnetic field absolute inten-
sity (F) was first developed.

Although land surveys were also recorded, most of the
historical measurements were performed by mariners, so
the data distribution is highly concentrated at sea, mostly
over popular routes around the Atlantic and Indian
oceans, as seen in Fig. 22.2e. The database HISTMAG
provides an easily accessible compilation of the magnetic
data from the historical era (Arneitz et al., 2017).2

Uncertainties are rarely provided within the historical
data, but estimates suggest that they can reach reasonably
high measurement precision, of about 1.0° for the angles
D and I and 0.2 µT for F (Arneitz et al., 2017). A major
source of uncertainties within the navigational data cor-
responds to the position. Although latitudes were accur-
ately calculated astronomically, the longitude was
calculated through ‘dead reckoning’, which could accu-
mulate to substantial errors on the course of the enter-
prise (Jackson et al., 2000; Arneitz et al., 2017).

22.2.3 Paleomagnetism
Going further back into the past greatly limits the observa-
bility of the geodynamo. However, valuable information
can be gained by indirect observations of the ancient mag-
netic field. Certain rocks and human artefacts with rich iron
content, such as lava flows and bricks, can record, to some
extent, the ambient magnetic field at the time of their for-
mation/fabrication. The process through which these
objects can lock in a magnetic field is known as thermal
remnant magnetisation (TRM). Thermal remnant magnet-
isation can be achieved as the magnetic moments of
a sample, which are scattered at high temperatures, align
with the ambient field when lowered beneath a critical point,
the Curie temperature (Merril et al., 1996). If the sample
position at the time of cooling down is known, the field
directions can be retrieved. Otherwise only the intensity
can be estimated. Observations of TRM are examples of
paleomagnetic (or archeomagnetic when only artefacts are
considered) data, and can be very useful to geomagnetic
field modelling when accompanied by reliable dating of the

1 https://intermagnet.github.io/. 2 https://cobs.zamg.ac.at/data/index.php/en/models-and-databases/histmag.
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samples. Other rocks can also bear magnetisation, like sedi-
ments and stalagmites, although through a different process
known as detrital remnant magnetisation.

Paleomagnetic data distribution in space and time is very
uneven and sparse, respectively. As shown in Fig. 22.2f, for
observations from volcanic rocks and artefacts, there is
a strong clustering around Europe, and in general very little
data is available in the Southern Hemisphere. Also, as seen
in Fig. 22.2b, the availability of data from the mentioned
data set reaches about 6 observations per year on average
through the past millennium. Previous to that, data count
decreases to about 4 data per year from 0 AD to 1000 AD
and to roughly 1 datum every 15 years from 1000 BC to
0 AD. However, there is a continuous effort of the paleo-
magnetic community to increase the database (Panovska
et al., 2019).

Typical paleomagnetic data uncertainties fall to about
2.5°, 2°, and 4 μT for declination, inclination, and intensity,
respectively. Although many data are provided with their
respective uncertainty, disagreement between protocols and
mismatch with neighbouring data often make modellers
suspect the uncertainties to be untrustworthy. In that case,
data with small uncertainties are often penalised during the
modelling strategy (Korte et al., 2009; Licht et al., 2013),
which can in some cases mean the loss of valuable accurate
data. Lastly, one of the greatest sources of uncertainties in
paleomagnetic data is their timing. Age estimations through
dating methods (archaeological, radiocarbon, among
others) can easily bear uncertainties of many decades, even
centuries in some cases.

Although all geomagnetic data are subjected to external
and internal field contributions which are not originated
from the geodynamo, the relatively large error budget of
paleomagnetic data easily accommodates these potential
signals. Separating external field sources is therefore, in
principle, dispensable, though not impossible.

22.2.4 Spectral Field Models
The Earth’s magnetic field can be expressed as the gradient
of potential fields of external and internal origins,

Bðr; θ; ϕ; tÞ ¼ �r½Vintðro; θ; ϕ; tÞ þ Vextðro; θ; ϕ; tÞ�; ð22:1Þ

where the subscripts refer to the potential V components.
Within a region free of field sources, the potentials satisfy
Laplace’s equation, and can be written in terms of
a spherical harmonic (SH) basis. For the internal potential,

Vintðr; θ; ϕ; tÞ ¼ ro
X∞
ℓ¼1

Xℓ
m¼0

ro
r

� �ℓþ1
½gmℓ ðtÞ cos mϕ

þ hmℓ ðtÞ sin mϕ�Pm
ℓ ðcosθÞ; ð22:2Þ

where ℓ and m are, respectively, the degree and order of the
SH expansion, g and h are the so-called Gauss coefficients,
and Pm

l are the Schmidt quasi-normalised associated

Legendre functions. A similar equation can be derived for
the external field, but with a different radial dependency. In
order to model the magnetic field potential, a certain trun-
cation L must be sought. There exist a number of models
spanning different epochs, of which the most representative
and well-established are the CHAOS models (Finlay et al.,
2020) for the satellite era, the COV-OBS models (Huder
et al., 2020) for satellite and observatory, the gufm1 model
(Jackson et al., 2000) based on historical and observatory
data, and the CALS models (Korte et al., 2011) based on
paleomagnetic data. These models share the same under-
lying characteristics, and mostly differ in their temporal
regularisation.

Depending on the data set used, the models reach differ-
ent resolutions. The temporal resolution of field models
ranges from a few decades to yearly variations (Korte and
Constable, 2008). In space, paleomagnetic field models’
resolution can range from SH degree ℓ = 3 to 5 through
the past three millennia (Sanchez et al., 2016). In themodern
era, core field models are usually considered to be resolved
up until SH degree 14. In fact, ℓ = 14 is often taken as the
upper bound in geomagnetic field model resolution, not due
to the data accuracy and sampling, but to the masking of
smaller length scales by the crustal magnetic field, which is
also of internal origin. However, recent models currently
employing DA have managed to better separate core and
crustal field sources, so that the core field truncation can be
expanded. For instance, the Kalmag model (Baerenzung
et al., 2020) achieves a theoretical resolution of ℓ = 20. The
separation can be better visualised by the field’s power
spectrum, given by

WintðℓÞ ¼ ðℓ þ 1Þ ro
r

� �2ℓþ4Xℓ
m¼0
½ðgmℓ Þ

2 þ ðhmℓ Þ
2�; ð22:3Þ

and shown in Fig. 22.3a. The spectrum of the internal field
at the surface decreases linearly at the same time that the
crustal field increases up until SH degree 15. Beyond these
length scales, the crustal field dominates, and the uncertain-
ties in the core field reach the same magnitude as the signal.
Assuming the mantle is electrically insulating, the potential
field can be downward continued up until its source region,
the CMB. When extrapolated at the CMB, the core spec-
trum is close to ‘white’, and the crustal field diverges, as
shown in Fig. 22.3b.

The core field morphology is therefore very different at
the Earth’s surface and at the CMB. As shown in
Fig. 22.3c, the radial surface field is smooth, and the most
prominent features are the wavy magnetic equator, the
high latitude flux lobes, and the region of low intensity
underneath the SAA. As seen in Fig. 22.3d, the core field
at the CMB is much more complex, particularly regarding
the reverse magnetic flux patches underneath the SAA
region.
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As previously mentioned, spectral field models are often
used as input data inGDAfor simplicity, since the background
models are often built on a spectral set up. Also, in such case
there is no need to deal with separation of magnetic field
sources or potential inconsistencies between data and their
errors. However, although field models are nowadays usually
provided with uncertainties, many popularly used field models
are not (e.g. Jackson et al., 2000; Finlay et al., 2020). Since data
uncertainties are key in DA, this can become a major draw-
back, and hinder the interpretation of results. Moreover, spec-
tral fieldmodels can also bear biases issued from regularisation
and data selection, but these issues remain relatively unex-
plored (Johnson and Constable, 1997; Tangborn and Kuang,
2018, to cite a couple of paleomagnetic examples). In principle,
assimilating pointwise data with dynamo simulations is feas-
ible, at least within a synthetic framework (Sanchez, 2016).
Application to real data remains to be seen.

22.3 Dynamo Simulations

Simulations of the geodynamo solve for the interaction
between the magnetic field ~B and flow ~V within
a convecting spherical shell of thickness D rotating

with angular velocity Ω around a ẑ axis. Convection is
driven by gravity acting on density ρ variations, and is
described as disturbances around an adiabatic hydrostatic
background state. Both temperature and composition are
coupled in a single variable C, the codensity (Braginsky and
Roberts, 1995). The Boussinesq approximation is generally
applied, where variations in density are only considered
through the buoyancy force. The equations being solved
are then the induction equation

d~B
dt
¼ r� ð~V �~BÞ þ  E 

 Pm 
r2~B; ð22:4Þ

the Navier-Stokes equation

d~V
dt
þ ~V � r~V þ 2ẑ � ~V ¼ �rp

þRa 
~r
rc
C þ ðr �~BÞ �~B þ  E r2~V ; ð22:5Þ

the codensity equation

dC
dt
þ V � rC ¼  E 

 Pr 
r2C þ S; ð22:6Þ

and the continuity equations for magnetic and flow fields
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Figure 22.3 (a) Power spectra of the field at the surface from the Kalmag geomagnetic field model (Baerenzung et al., 2020), showing core
and litospheric components, as well as the average spectra of a dynamo simulation described in Section 22.3. (b) The same power spectra as
in (a), but evaluated at the CMB. (c) Radial component of the core magnetic field from Kalmag at the Earth’s surface in 2020. (d)
Downward continuation of (c) to the CMB.
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r �~B ¼ 0; r � ~V ¼ 0; ð22:7Þ

where rc is the outer shell boundary, p is the non-hydrostatic
pressure, and S is a source/sink term representing the slow
secular cooling and/or accommodation of light elements
emanated from the growing inner core. The equations here
have been non-dimensionalised, resulting in the following
non-dimensional control parameters: the Ekman number
E  ¼ ν=ðΩD2Þ, the Prandtl number Pr  ¼ ν=κ, the magnetic
Prandtl number Pm  ¼ ν=λ, and the modified Rayleigh
number Ra  ¼ gcF=4πρΩ3D4 (Aubert et al., 2009). Further,
gc is the gravity at the CMB, F the mass anomaly flux, and ν,
κ, and λ the kinetic, thermal, and magnetic diffusivities,
respectively. Boundary conditions can differ depending on
the set-up sought, and the interested reader can find more
details about dynamo simulations in Roberts and King
(2013) and Christensen and Wicht (2015).

Due to the solenoidal nature of flow and field,
dynamo simulations usually employ the poloidal-
toroidal composition. For the magnetic field this writes

~B ¼ r�r� ½PðrÞ~r� þ r � ½T ðrÞ~r�; ð22:8Þ

where P and T are, respectively, the poloidal and toroidal
scalar potentials. Further, the potentials are expanded in
fully normalised SH basis, which, for the poloidal scalar, is
given as

PðrÞ ¼
XLmax

ℓ¼1

Xℓ
m¼0
Pm

ℓ ðrÞYm
ℓ ðθ; ϕÞ þ c:c:; ð22:9Þ

whereYm
ℓ ðθ; ϕÞ are the complex-valued, fully normalised SH

functions and c.c. refers to the complex conjugate. As previ-
ously mentioned, only the surface field can be directly
observed, and a downward continuation of the field to the
top of the core is possible considering that the mantle is
insulating. Here PðrcÞ is, therefore, the sole observable of
the system. A transformation from fully normalised Eq.
(22.9) to Schmidt normalised coefficients in Eq. (22.2) can
be found in Sanchez et al. (2016).

22.3.1 Earth’s Core Conditions
The parameters mentioned previously can be written in
terms of the typical time scales of the system, most import-
antly the magnetic diffusion time scale τλ, the viscous diffu-
sion time scale τν, the flow advection time τV , and the
rotation time τΩ. The Ekman number can be written as
E ¼ τΩ=τν and is extremely small under Earth’s core condi-
tions, E  ∼Oð10�15Þ, due to the rapid rotation and nearly
inviscid fluid. The magnetic Prandtl number,
Pr  ¼ τλ=τν ∼Oð10�6Þ, exposes the dominance of ohmic dis-
sipation in the system, and therefore the scale separation
between a small-scale flow and a large-scale magnetic field.
This is also reflected in diagnostic parameters, such as the

hydrodynamic andmagnetic Reynolds number, respectively
Re  ¼ VD=ν and Rm  ¼ VD=λ. Flow inversions close to the
CMB suggest V ≈ 14 km/yr, which results in Re  ∼ Oð109Þ,
revealing a high level of turbulence in the core. However,
Rm  ∼ Oð103Þ showing a more moderate level of magnetic
turbulence.

22.3.2 ‘Down-to-Earth’ Conditions
The core-like conditions mentioned in the previous sec-
tion are unreachable in simulations, despite the great
computational advances through the past decade.
Affordable dynamo simulations tend to work within
E  > 10�5; Pr  ∼ 0:1� 1, Pm  > 0:1. However, many of
them surprisingly manage to reproduce some of the
main characteristics of the geomagnetic field, mostly in
terms of its morphology. In fact, simulations with
Rm > 102 are seen to be ‘Earth-like’, provided that
E =Pm < 10�4 (Christensen et al., 2010). So to promote
a more Earth-like magnetic field, the considerably large
E in the simulations can be compensated by increasing
Pm. Figure 22.3a,b shows the field mean spectrum from
a rescaled dynamo simulation of moderate complexity, con-
sidering E = 3×10−4, Pr = 1 and Pm = 5 and Ra = 5×10−6

(more details can be found in Sanchez et al., 2019). The
spectrum follows the general tendency displayed by the
data-based models over the observable scales.

Reproducing the observed dynamics of the geomag-
netic field is much more challenging. The secular vari-
ation (SV) time scale, τSV ¼ B= _B, is generally used for the
comparison between data and simulations. Although dec-
adal time-scale variations in the simulations are in line with
observations (Lhuillier et al., 2011), some specific features
and interannual variations are still unmatched. As an
example, dynamo simulations do not present, in general,
the westward drift suggested by the observed SV during
the past century (a notable exception can be found in
Aubert et al., 2013). Recently, high-end simulations have
shown that faster, interannual dynamics start to manifest
when control parameters sufficiently approach core condi-
tions (Schaeffer et al., 2017). The crucial requirement for
reaching such conditions seems to be a sufficient energetic
separation between the first-order force balance between
ageostrophic Coriolis, Lorentz, and buoyancy forces
(known as the MAC balance), and viscous and inertial
forces (Aubert et al., 2017). Under such configuration,
hydromagnetic waves seem to manifest in appropriate time
scales, sometimes imprinting jerk-like signals in the mag-
netic field at the surface (Aubert and Finlay, 2019).

22.4 Geomagnetic Data Assimilation

The dynamo models discussed in the previous section are
complex, highly non-linear systems of high
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dimensionality. Because of this, ensemble sequential
methods have been prioritised in dynamo-based GDA. In
particular, the EnKF (Evensen, 1994) has been used in
a number of studies (Fournier et al., 2013; Sanchez et al.,
2019; Tangborn et al., 2021, to cite a few). An example of
an EnKF with synthetic data will be given in this section.

22.4.1 Observations
For the simulation mentioned in Section 22.3, the state
vector x comprising all the simulation fields has a size of
Nx ≈ 2.6 × 106. Observations, however, are much smaller –
typical observation size for spectral field models consist of
Ny ≈ 100. With pointwise data this can change drastically
depending on the data type involved (Fig. 22.2b). In a DA
formulation, the observations y at a given time i can be
written as

yi ¼ HiðxtiÞ þ ϵi; ð22:10Þ

where H is an observation functional and ϵ is a vector of
observation errors. The observation error covariance is
given by Ri.

As mentioned in Section 22.2, only the large-scale core
magnetic field can be observed at the surface, due to
concealment by the crustal magnetic field. For spectral
observations, the observation operator is linear, H, and
simply screens out the poloidal field P(rc) truncated to a
certain observable degree Lo (with attention to SH nor-
malisation if conversion is needed for Gauss coeffi-
cients). The observed radial field can be expressed in
the spatial domain as

Bo
r ðrc; θ; ϕÞ ¼

XLo

ℓ¼1

Xℓ
m¼0

ℓðℓ þ 1Þ
rc

Pm
ℓ ðrcÞYm

ℓ ðθ; ϕÞ: ð22:11Þ

Figure 22.4a shows BoðrcÞ
r from a snapshot of the chosen

dynamo simulation truncated to SH degree Lo = 10.
Pointwise measurements of the magnetic field at the

Earth’s surface can be linked to the full field at the CMB
Br(rc) through a data kernel. For instance, theZ component
can be written as

Zðro; θo; ϕoÞ ¼
ð
S
GZðro; θo; ϕojrc; θ; ϕÞBrðrc; θ; ϕÞdS;

ð22:12Þ

WhereGZ is theGreen function corresponding to aZ observa-
tion, and similarly toX andYmeasurements (Constable et al.,
1993).Directional and intensity data are nonlinear functions of
themagnetic field vector, that can be either calculated using the
X, Y, andZ field components or by linearised kernels (Sanchez
et al., 2016). Figure 22.4b shows the Z component of the field
from Fig. 22.4a at the Earth’s surface. Superposed is an obser-
vation grid withNo = (Lo + 1)2 – 1 points, which corresponds
to theLo resolution, nearly equally distributed over the sphere.

22.4.2 Ensemble Kalman Filter
The EnKF works with the common forecast-and-analysis
steps of the Kalman filter (Kalman, 1960), but within an
ensemble framework (Evensen, 1994; Burgers et al., 1998).
After a given initialisation, a forecast by the model M is
performed by an ensemble of size Ne, so that for every
ensemble member e,

x f
i;e ¼Mðx f

i�1;eÞ; ð22:13Þ

where the superscript denotes the forecast. Whenever obser-
vations are available (Eq. 22.10), an update is performed:

xai;e ¼ x f
i;e þKiðyi;e �Hix

f
i;eÞ; ð22:14Þ

where the superscript denotes the analysis,

Ki ¼ P f
i H

†
i ðHiP

f
i H

†
i þ RiÞ�1 ð22:15Þ

is the Kalman gain, and P f is the forecast error covariance.
Due to the ensemble, P can be approximated by the sample
covariance. Moreover, instead of calculating the error
covariance, the EnKF allows the direct calculation of
P f
i H

†
i and HiP

f
i H

†
i in Eq. (22.15), which are much more

portable (e.g. Fournier et al., 2013).
Due to the computational cost of dynamo simulations,

it is of course of interest to lower the ensemble size to
a minimum while maintaining the filter performance.
However, the EnKF is known to underperform when
the ensemble size is too small in comparison with the
model size. In particular, a too-small ensemble tends to
introduce spurious correlations, while at the same time
underestimating the variances. The former problem
greatly impacts the analysis step, since the observable
information is carried to the hidden state through the
covariance. For instance, if a given correlation between
observed and hidden variable is overestimated, the update
of the hidden variable will also be overestimated, which
will be accompanied by a decrease in the variance of the
variable. Apart from degrading the quality of the assimi-
lation, this issue can lead in some situations to
a catastrophic filter divergence (Gottwald and Majda,
2013).

22.4.3 Covariances
Given a sequence of well-spaced snapshots, one can easily
compute the sample covariance for the observed magnetic
field in spectral space. Figure 22.4c shows the absolute
normalised covariance (therefore the correlation matrix) of
the large-scale poloidal magnetic field at the upper bound-
ary Pm

ℓ ðrcÞ for an ensemble of size Ne ¼ 512. The matrix is
organised by sections of the same order m, within which
follow the different degrees ℓ. The correlations from the
magnetic field are clustered around the diagonal, in blocks
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Figure 22.4 (a) Radial magnetic field at the top of the coreBr(rc) from the dynamomodel mentioned in Section 22.3 truncated to SH degree
L0 = 10. (b) Vertical component of themagnetic field at the surfaceZ(ro) from the same dynamomodel, with a uniformly distributed grid of
Z observations shown by circles. (c) Spectral correlation matrix, showing the cross-correlations of the poloidal magnetic field atop the core
Pm
ℓ ðrcÞ truncated at L0 = 10, where the axes are organised through consecutive blocks of the same wave number m. In the insert, them = 3

block is zoomed in showing correlations between SH degrees ℓ = 3 to 10. (d) Correlations between the Z magnetic field component of the
grid shown in (b), where the axes labels correspond to the grid latitudes. (e) Correlations between the Z pointwise observations and the
spectral coefficients Pm

ℓ ðrcÞ.
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of the same wave number m. Within these blocks, there is
a clear checkerboard pattern, as highlighted in the inset of
the m ¼ m

0 ¼ 3 block. Similar configurations appear in the
cross-covariance between field, flow, or codensity.

The likely reason behind them-block clustering is that the
correlations reflect the interaction between flow and field
around an axi-symmetric background magnetic field (cor-
responding to the average field state around which the
covariance is calculated). The nonlinear coupling between
flow and field via the induction Eq. (22.4) transfers energy
between modes following certain selection rules (Bullard
and Gellman, 1954). For instance, when a background axi-
symmetric field is considered (m ¼ 0), a flow with
a certain m wave number would induce field within the
same m. The checkerboard pattern in Fig. 22.4c stem from
symmetry constraints. Equations (22.4) and (22.5) feature
‘curl’ and ‘cross’ products, operations that when combined
leave the equatorial symmetry unchanged. It follows, for
instance, that an equatorially symmetric flow acting on
equatorially antisymmetric magnetic field produces more
equatorially antisymmetric field (Gubbins and Zhang,
1993). Symmetries can be generalised in terms of ℓ þm,
even or odd contributions from poloidal and toroidal flow
and field formalism (Sanchez et al., 2019, 2020).

The correlations in the spatial domain are considerably
different. Figure 22.4d shows the correlation matrix of
a grid of Z observations at the surface (Fig. 22.4b), from
the same previously described ensemble. The pattern reveals
strong local correlations between neighbouring sites, but also
weaker, large-scale negative correlations elsewhere (not
shown). The patterns look considerably different for the X
and Y field components. Figure 22.4e shows the correlation
between theZ observations and the poloidal field at the CMB
Pm
ℓ ðrcÞ. It is clear that, near the poles, Z data are quite

sensitive to the axisymmetric modes, while, closer to the
equator, modes with m = 1 and higher play a bigger role.
Figure 22.4c,d corresponds to representations of HP f H†,
while Fig. 22.4e shows a subset of HP f corresponding to
correlations of the observations solely with the large scale
Pm
ℓ ðrcÞ. As we can see through Eq. (22.15),HP f is crucial for

propagating observational information to the hidden state.

22.4.4 Localisation
One way to mitigate the effects of ensemble size is to apply
covariance localisation. As the name suggests, this tech-
nique aims at reducing the effects of long-range spurious
correlations beyond a certain distance to the observation
site (Hamill et al., 2001). Covariance localisation is typically
described by

P f 0 ¼ C ∘P f ; ð22:16Þ

whereC is a ‘mask’ containing elements from 0 to 1 and ◦ is the
element-wise matrix product. As mentioned in Section 22.4.2,
the forecast covariance is not directly computed, so, instead, it
is practical to apply localisation in the form

K0 ¼ ½C ∘ ðP fH†Þ�½C ∘ ðHP fH†Þ þ R��1: ð22:17Þ

The application of such localization is reasonably straight-
forward in thin-shell systems, but is problematic for the
Earth’s core. Due to the thickness of the domain and
the strong rotation of the Earth, core flows are expected to
be nearly geostrophic (show small departures along the
rotation axis, as sketched in Fig. 22.1). This, summed with
the spectral nature of the simulations and the observations
(in the case of spectral field models), motivates to consider
covariance localisation in the spectral domain. In the case of
spectral observations, one can take advantage of
the m-block clustering and checkerboard pattern described
in the previous section and shown in Fig. 22.4c. As shown in
Sanchez et al. (2020), a suitable spectral localisation matrix
can be described through the following relationship between
SH degree and order

Cðℓ; m; k; ℓ
0
; m

0
; k

0Þ ¼ δm
0

m δ mod ðm0þℓ0 ;2Þ
 mod ðmþℓ;2Þ ; ð22:18Þ

where mod is an operator defining the remainder of the
division of the two arguments. Its application for HPf H†

andPfH† in Eq. (22.17) is straightforward, due to the spectral
nature of both observation and state vector. Throughout this
chapter, Eq. (22.18) is coined ML- localisation.

For pointwise observations no localisation formalism has
been proposed yet. Although a localisation based on the
distance between observations would be of easy application
to HPfH† (Fig.22.4d), the connection between pointwise
observations and spectral field in PfH† (Fig.22.4e) is not
straightforward, and different for each field component.

22.4.5 Synthetic Experiments
In order to closely assess the impact of the magnetic obser-
vations and the previously discussed localisation, we resort
to observing system simulation experiments (OSSEs), in
particular to twin experiments. An ensemble of Ne snap-
shots of a long run from the dynamo model discussed in
Section 22.3.2 is used as the initial condition for the assimi-
lating ensemble. The observations are constructed from
a nature run of the same dynamo model, but from a time
interval different than the initial ensemble. In order to build
up a synthetic test which serves as a compromise between
paleomagnetic and historical periods described in
Section 22.2, we prepare observations of the field with a
Δt ¼ 10-yr frequency with a spatial resolution correspond-
ing to SH degree Lo ¼ 10.
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The observations are given either in spectral form or as the
three vector field components within a grid of uniformly dis-
tributed sites over the surface sphere. A spatial representation
of the field observations at the CMB truncated to Lo ¼ 10 is
shown in Fig. 22.4a and the Z surface grid data are shown in
Fig. 22.4b. The observation window spans a period of 1,000
years. The observation uncertainties are obtained from the
standard deviation of the field over twice as long a period,
and multiplied by an arbitrary factor to correspond to, on
average, 10% of the observed field.

22.4.6 Results
The impact of the assimilation strategies in the OSSEs
is accessible by comparing their normalised error. The
error ε is calculated as the RMS difference between the
analysis and the true state, from which the observations
were created, and the normalisation consists of the
RMS value of the true state. Figure 22.5a,b shows
the normalised error of the radial magnetic field at the
CMB, separated into the large scales (filtered to L ¼ 10)
and the fully resolved field, respectively. Also shown are
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the standard deviation σ of the estimates, which work as
proxy for the uncertainties. The tests are compared to an
error upper bound, corresponding to the free-run case,
where no observations are assimilated. The results of the
DA test with a large ensemble using spectral observations is
shown by the black curve (‘Speco, Ne ¼ 512, no loc’). The
larger-scale errors remain relatively small, but the full field
shows they increase while the uncertainties decrease. This
behaviour is known as filter divergence, in this case diag-
nosed by insufficient ensemble size, creating spurious cor-
relation in the covariance.

The employment of a covariance localisation brings
a substantial improvement, as seen by the dark grey
curve in Fig. 22.5a,b. In this case, the assimilation uses
the ML covariance localisation introduced in
Section 22.4.4. Not only is the ensemble reduced to Ne =
128, but the error is decreased, roughly matching the
uncertainty level. However, the improvement is not per-
fect and towards the end of the assimilation both begin to
slightly diverge. The divergence between error and uncer-
tainty is better seen in hidden variables (such as the flow
underneath the CMB, not shown). Although there cer-
tainly is still room for improvement, the results are
reassuring, as suggested by Fig. 22.5c–f. They compare
the estimated flow and field beneath and at the CMB
with the true state for the last analysis of the assimilation
case ’Speco, Ne ¼ 128, (ML-loc)’, for which the corres-
ponding observation is shown in Fig. 22.4a. Both field
and flow are well reconstructed, and most differences
rely on the smaller length scales. Although observations
are large scale (Fig. 22.4a), the analysis displays small-
scale field and flow features, which is possible due to the
model statistics (covariance between large and small
scales) and dynamics.

The assimilation of pointwise observation is shown
in Fig. 22.5a,b through the light grey curve, for an
ensemble of Ne ¼ 512. Since no localisation is used,
the case suffers from similar filter divergence issues as
the corresponding case with spectral observations.
However, a big difference between the two cases is
seen with respect to the large-scale field error and
uncertainty levels. The difference owns to the fact
that the spectral observations perform a direct mapping
of the model, and instead, the pointwise observations
indirectly map the whole set of spectral coefficients at
the CMB (Eqs. 22.11 and 22.12). The pointwise data
assimilation updates, in a more distributed way, the
length scales relative to the spectral observation case.
This points to a great advantage of assimilating point-
wise observations in comparison to spectral field
models, but also shows how it is more challenging to
localise. Unfortunately, no localisation strategy has
been developed yet for the assimilation of pointwise
observations.

22.5 Discussion

The results shown in the previous section raise the question
of whether it is worthwhile to assimilate pointwise observa-
tions, when spectral models seem to be simpler to implement
and yield better results in synthetic tests (Fig. 22.5).
Although there is no definitive answer yet, it is important
to point out that spectral observations come with certain
disadvantages. The field proposed by the spectral models is
usually too smooth in space and time, mostly concerning the
paleomagnetic and historical periods (Korte and Constable,
2008), and often not provided with uncertainties which are
crucial for a reliable DA scheme. Also, different data selec-
tion criteria are employed in the construction of the field
models, such as the assignment of lower bounds in the
paleomagnetic data uncertainties (e.g. Licht et al., 2013)
that might not be required in GDA. Finally, GDA using
pointwise observations offers a good opportunity to incorp-
orate data from both paleomagnetic and historical periods,
which are rarely combined in the usual inverse framework
due to their very different spatial and temporal distribution
(one exception is the BIGMUDI model by Arneitz et al.,
2017).

As seen in Fig. 22.5a,b, the assimilation of pointwise obser-
vations shows signs of filter divergence, associatedwith insuf-
ficient ensemble size. Although this problem can be strongly
mitigated by covariance localisation, this venue remains yet
unexplored within the pointwise GDA set-up. Though local-
isation in grid space in HPfH† might be simple and based on
the distance between observations (Fig. 22.4d), the localisa-
tion of the spectral-pointwise covariance PfH† (Fig. 22.4e)
remains elusive. Strategies such as ‘shrinkage’ proposed by
Gwirtz et al. (2021) might provide a practical solution,
whereby every non-diagonal covariance matrix is damped
by a certain factor. Yet, this abrupt localisation might lead
to a loss of useful covariance information.

Covariance localisation is indeed essential in ensemble-
basedDA, asmentioned in Sections 22.4.3 and 22.4.4. In the
spectral DA tests, the ensemble size could be decreased by
four while diminishing errors andmending, to a large extent,
the filter divergence. However, as seen in Fig. 22.5b, error
and uncertainty tend to slightly diverge still showing the
extra need to deal with ensemble size problems. Further
localisation (over depth, for instance) and ‘inflation’ are
therefore needed to address this issue. The latter consists
of increasing the ensemble variances by a certain factor,
which allows to counterbalance variance underestimation
typical of small ensemble sizes (Anderson and Anderson,
1999). However, in typical implementations, the inflation
factor has to be tuned depending on each assimilation set-
up, as it depends on model and ensemble size and observa-
tion type and uncertainties. So a systematic parameter
search has to be performed in order to find an efficient
inflation for every assimilation set-up (Gwirtz et al., 2021).
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22.6 Conclusions

Magnetic field observations provide an invaluable window
through which to study the Earth’s core dynamics. Covering
the past millennium, the very heterogeneous catalog of
observations is composed of direct measurements, such as
satellite, magnetic observatory data, and early records from
the historical period. Indirect observations are also available
in the form of paleomagnetic data. Geomagnetic DA offers
great potential to model the Earth’s magnetic field through
this diverse data set. In particular, using dynamo simulations
as background models can, in principle, allow the reanalysis
of the core state deep beneath the CMB over decadal time
scales (Fournier et al., 2013; Sanchez et al., 2019). Most
efforts have favoured spectral field models instead of point-
wise data as observation input for the DA algorithms, since
the simulations themselves inhabit a spectral domain
(Kuang et al., 2010; Aubert, 2015; Tangborn et al., 2021).

The spectral covariance shows signatures reminiscent of
selection rules between SH degrees and modes, as well as
symmetry pairing, from the magnetic induction process.
The spectral ML localisation not only improves the GDA
performance, but also allows an important decrease in
ensemble size since it eliminates many spurious correlations
in the covariance (Sanchez et al., 2020). However, further
localisation or inflation should still be considered in order to
eliminate remaining divergences between error and uncer-
tainties, mostly in the unobserved state.

Despite the simplicity, the assimilation of spectral models
might over-smooth field signals due to strong regularisation
and biases, mostly over the paleomagnetic period (Korte
and Constable, 2008). Assimilating pointwise observations
can be particularly fitting to bridge the late paleomagnetic
and historical period, evenmore so since the time window of
a few millennia is ideal to investigate decadal to centennial
scale convection dynamics. Within such a period, the data
error budget surpasses external field variations, making field
source separation in principle unnecessary. However, no
localisation strategy has been considered as yet for point-
wise geomagnetic observations, so that large ensembles have
to be used. Toy models such as the one presented in Gwirtz
et al. (2021) can provide an excellent test-bed for assimilat-
ing pointwise observations into spectral models.
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