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Grade control and ore/waste delineation in open pit mining operations was traditionally based on

the comparison of estimated grades with an economic cutoff. In the 1990s, an alternative

approach to ore selection was applied and established, taking into account financial indicators

through the so-called economic classification functions in combination with grade uncertainty

assessment. Grade uncertainty is assessed using multiple grade realisations from geostatistical

or stochastic simulations. Ore/waste selection integrates and is supported by the evaluation of

economic consequences of sending a block of mined material to a processing facility or to the

waste dump, and the related asymmetric financial implications.

The benefits and practical implications of this efficient alternative framework are best illustrated by

comparing the performance of three economic functions when combined with three commonly

used stochastic simulation methods under different conditions. The latter conditions include a

sparse and a dense blasthole sampling patterns and three cutoff grades. A general observation is

that the minimum loss classification function combined with the indicator sequential simulation

presents the most consistently better performing combination. This observation is reinforced in an

application at a gold mine where the above combination outperforms the already well reconciling

conventional grade control approach of the mine. The extension of the framework of economic

functions to account for geometallurgical properties follows. This extension shows the integration

of ore and waste grindability, a key aspect of ore comminution. Finding shows the improvements

that could be made over current best practice when grindability is considered, and suggests how

other geometallurgical attributes may be further integrated into grade control, as long as

economic classification functions and orebody uncertainty models are considered.
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Introduction
Grade control or ore control is an operation where
blasted material is flagged as either ore- or waste-based
on blasthole samples and geological information. The
procedure usually includes sampling, geological map-
ping, grade estimation, ore/waste selection, which may
include several categories, blasting and dispatching
of truckloads. The efficiency of the grade control is
subject to various factors such as sampling errors,
conditional bias introduced by grade estimators, and

blast movements. In this scenario, the major concern is
the misclassification of material. The misclassification of
truckloads always results in a net loss, and is largely
attributable to the lack of perfect knowledge about real
grade distribution. As a result, different modelling
frameworks have been developed to address the short-
comings of traditional methods.

The traditional approach to grade control in open pit
operations is based on estimation methods. In its
simplest form, grade control consists of manually
delineating boundaries between ore and waste, or ore
blocks, on a map of blasthole grade values. The map
produced is equivalent to a map of polygonal estimates.
Typically, blocks of an orebody are flagged as ore or
waste by comparing the economic cutoff grade of ore
with the estimated block grades. Ordinary kriging and
inverse square distance are traditional methods of
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estimating grades (Journel and Huijbregts, 1978; David,
1977, 1988). Improvements from kriging come through
minimising errors in the estimated grades which mini-
misation, however, still does not account for the
financial implications of material misclassification as
discussed next. Figure 1 shows true grades versus
estimated grades for a certain number of blocks in an
example based on Krige’s work in the 1950s in the South
African Rand gold mines (Krige, 1951). The application
of the cutoff grade divides the plot into four quadrants,
and traditional estimation methods like kriging mini-
mise the misclassification in the upper left and lower
right quadrants through the minimisation of estimation
variances. Unfortunately, the traditional methods do
not take into account (a) the asymmetry in the financial
cost, that is, the economic consequences of misclassifica-
tion, or (b) consider the uncertainty in the grade
estimation. It is important to stress that the relationships
between dollar losses and the classification error are
asymmetric, as the economic loss resulting from sending
ore to the waste dump is not the same as the loss from

sending waste to the processing plant. Optimal selection
criteria may be used to account for the asymmetric
economics of misclassification through the so-called
‘loss functions’ adapted to the geostatistical context in a
study by Journel (1984) and further developed by
Srivastava (1987). Several studies have explored this
idea and shown its practice, including Isaaks (1990),
Srivastava et al. (1994), Douglas et al. (1994), Glacken
(1997), Schofield and Rolley (1997), Shaw and
Khosrowshahi (1997), Godoy et al. (2001), Collett and
Corley (1999), Deutsch et al. (2000), Richmond (2004),
Verly (2005); and others, leading to making the use of
‘loss’ or, in a broader context, ‘economic’ functions an
established approach since the 1990s. The application of
economic classification functions for grade control
requires, by definition, to account for grade uncertainty,
thus the concept and methods described as geostatistical
or conditional or stochastic simulations (Goovaerts,
1997).

For new approaches based on simulation, the block
grades are no longer seen as single values, but as possible
distributions of grades, as shown in Fig. 2. Given these
distributions, the expected loss or profit associated with
each economic scenario of classification can be assessed
and used to derive an ‘economically-optimal’ ore
selection or ore selection indicator. In dealing with an
unknown distribution of ore grades in a bench of an
open pit mine, several models of the bench can be
generated using the same data (usually obtained from
blasthole samples) and their statistical characteristics.
These models are all constrained to reproduce all
available information and to represent equally probable
models of the actual spatial distribution of grades. A
series of conditionally simulated models allow the
assessment of the uncertainty in the actual distribution
of grades, as discussed for example, Journel (1994),
Dimitrakopoulos and Luo (2004), Benndorf and Dimi-
trakopoulos (2007), and Boucher and Dimitrakopoulos
(2012). Several issues may be raised in the implementa-
tion of economic functions and stochastic simulations in
grade control. Simply put, how different economic
functions such as minimum loss or maximum profit or
either of those with ‘risk coefficients’ will perform, and
particularly when combined with different and readily
available simulation algorithms such as Gaussian or
indicator or probability field simulation (P-field). In all
above cases, methods and algorithmic implementations
are different, and so is their specific use in practice and
input parameters needed; thus, is worthwhile to explore

1 Plot of a classification scattergram between true

grades versus estimated grades, where grade Zc (0?3)

is the ore/waste cutoff; top right and lower left quad-

rants represent correct classification (from Krige, 1951)

2 Simulated models of block grades in a deposit (left) and a typical estimated model of block grades in a deposit (right)
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the options generated by the different possible combina-
tions and assess performance. It should be noted that, in
practice, ore selection approaches compared herein while
integrating specific financial considerations, are assessed
with additional considerations to their ‘profit indicator’,
including the proportion of ore selected, metal produced
and so on, as one does in practice through reconciliations.

Economic functions are but a way to integrate more
information in the ore\waste selection decision processes
and become of particular importance as one attempts to
deal with the non-linearity in various additional aspects,
such as geometallurgical attributes (from recoveries,
multiple elements, to grindability and so on). The
framework of economic functions for ore\waste selection
facilitates the integration of rock grindability attributes
to grade control and is presented herein, given that it is a
well appreciated component of delivering ore from a
mine to a mill and relates to improving performance of
grinding circuits, costs and time efficiencies, and power
consumption, among other aspects. The non-linear
metal recoveries or any other geometallurgical attribute
of interest can be facilitated through adopting the
economic functions discussed herein. In addition and
for reasons of completeness, notes that the effect of blast
movement needs to be in practice incorporated as well,
and is a topic presented by Dowd and Dare-Bryan
(2007).

All conditional simulation methods return a range of
possible values from a conditional cumulative distribu-
tion function (cdf) of the type

F x; zj nð Þð Þ~ProbfZ xð Þƒzj nð Þg

where Z(x) represents a way to look at modelling the
uncertainty in the unknown true value, and (n)
represents local conditioning data within the specific
neighbourhood of location (x). The steps needed to
obtain a sample of the cdf for point or block grades are
to: (a) generate a change of support, i.e. obtain the
average of point grades over the volume of any block
(Peattie and Dimitrakopoulos, 2013), although the most
practice is to work with point support models and draw
dig-lines based on them; and (b) obtain the conditional
distribution of the grades Z(x).

In the following sections, first, economic classification
functions for grade control are presented in detail.
Subsequently, the comparative performance of the three
different economic classification functions when com-
bined with three different commonly used simulation
methods is presented for a different blasthole drilling
patterns (densities) and cutoff grades; all are bench-
marked against the traditional estimation based grade
control, as well as compared to the ‘completely known’
deposit. Third, an application and comparison to the
conventional approach at a gold mine follows and
benefits are presented. Next, the issue of adding other
critical grade control parameters such as grindability in
the economic classification functions previously exam-
ined is presented and elucidated using an example.
Lastly, summary and conclusions follow.

Economic classification functions
In this section, the formal mathematical expressions for
the economic classification functions discussed in the
previous section are presented. Mining may involve the

removal of two categories of material, ore and waste. In
more complex situations, the materials mined may be
divided into several categories. In both cases, economic
classification functions can be used to optimise the ore
selection process in economic terms (Godoy, 1998).
Once the conditional grade distribution function has
been generated, the classification that optimises a
specific economic classification function can be used.
Specifically, two basic formulations are available in the
technical literature: ‘loss function’ introduced in Isaaks
(1990) and ‘profit function’ also with the additional
concept of ‘risk coefficients’ introduced in Glacken
(1996). These are detailed next.

Loss functions
The loss associated with each type of misclassification
error can be expressed as a loss function L of the actual,
but unknown, grade. This loss is the potential revenue of
the block less the actual recovered revenue

L $ð Þ~potential revenue{recovered revenue

In the scenario of misclassifying a block of ore as waste,
the potential revenue corresponds to the metal left
unrecovered minus the mining and processing costs

potential revenue~prz{ct{cm

where p is the unit metal price, r is the metal recovery
fraction, z is the metal grade and ct and cm correspond to
the processing and mining unit costs. Assuming that the
cost of mining ore and waste is the same, the recovered
revenue is given by

recovered revenue~{cm

Through the conditional distribution function, the
probability threshold for the block to be ore Po and
the average grade above the cutoff mz can be
determined and used to calculate the expected loss
resulting from misclassifying this block as waste E(Lw)

E Lwð Þ~Po| prmz{ct½ �

Similarly, the expected loss for the case of a block of
waste misclassified as ore E(Lo) is

E Loð Þ~(1{Po)|½ct{prm{�

where m2 is the average grade below the cutoff. The
block will be selected as ore if the expected loss for
selecting the block as ore is less than the expected loss
for selecting the block as waste E(Lw), i.e.

E Loð ÞvE Lwð Þ

Profit functions
Profit functions involve specifying the expected profit
E(Pr) associated with each classification scenario. The
expected profit of classifying a block of ore as waste
E(Prw) is given by

E Prwð Þ~{Po|½prmz{ct�

where (prmz2ct) corresponds to the lost opportunity
cost resulting from the misclassification. The expected
profit resulting from sending the block to the processing
plant E(Pro) is
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E Proð Þ~Po|½prmz{ct�z 1{Poð Þ|½prm{{ct�

Considering that negative profit is equivalent to loss, the
only difference between the profit and loss functions is that
the former includes the profit corresponding to the correct
classification of ore blocks (prmz2ct). Note that this
definition of profit function does not explicitly include the
costs of mining. The block will be selected as ore if the
expected profit for selecting this block as ore is greater than
the expected profit for selecting the block as waste, i.e.

E Proð ÞwE Prwð Þ

Risk coefficients
Risk coefficients are positive multipliers quantifying the
impact of the loss. These coefficients can be applied to
both profit and loss functions. They may reflect the
mining requirements in terms of production targets by
increasing the chance of rejecting ore blocks or sending
waste blocks to the processing plant. The real impact of
these coefficients is yet to be explained. It has been
suggested that calibration studies should be carried out
through batch treatment, which would provide true
tonnage and grade results (Glacken, 1997). It is not
guaranteed that these coefficients will be the same from
bench to bench or for different parts of the deposit. In
fact, the calibration may be a difficult and expensive
process and therefore the use of risk coefficients should
be avoided unless their real impact on the production
targets is well understood.

The profit–loss approach using risk coefficients as
suggested by Glacken (1997) ignores the mining cost cm

and uses only one cutoff grade. This leaves room for
interpretation when formulating the profit in a more
general case. The following interpretation may not be
unique but it handles several cutoff grades and is
consistent with Glacken’s examples

Profit ~ recovered revenue{(weight|penalty)

Penalty ~ potential revenue{recovered revenue

For a block called ore, the recovered revenue value is
(prz2cm2cp). If the grade is higher than the cutoff grade
(correct acceptance)

Penalty ~ 0

Profit ~ prz{cm{cp

If the grade is lower than the cutoff grade (false
acceptance)

Potential value~{cm

Penalty~ {cmð Þ{ prz{cm{cp

� �
~{ prz{cp

� �
Profit~ prz{cm{cp

� �
{v01 { prz{cp

� �� �
~{cmz(1zv01) prz{cp

� �
where v91 is the weight applied to the penalty. The
formulation used by Glacken (1997) is (1zv91)5v1

where he considers v1 as a ‘coefficient quantifying the
impact of loss … related to the risk aversion profile of
the company’. The risk coefficient v1 is referred to as a
risk aversion factor.

For a block called waste, the recovered revenue value
is (2cm). If the grade is lower than the cutoff grade
(correct rejection)

Penalty ~ 0

Profit ~ {cm

If the grade is higher than the cutoff grade (false
rejection)

Potential value ~ prz{cm{cp

� �
Penalty ~ prz{cm{cp

� �
{ {cmð Þ~ prz{cp

� �
Profit ~ {cm{v2 prz{cp

� �
where v2 is the weight applied to the penalty. v2 may be
interpreted as a coefficient that quantifies ‘the will-
ingness of the company to accept wasting resource
through false rejection of ore blocks’. The risk coeffi-
cient v2 is referred to as a loss of opportunity cost factor

The profit–loss function g(z) of a block called ore and
its expectation PLORE are

g zð Þ~
{cmzv1(prz{cp), zƒzc

prz{cm{cp, zwzc

�

PLORE~E g zð Þ½ �~

E i z, zcð Þ|v1 prz{cp

� �� �
zE 1{i z, zcð Þð Þ½

|v1 prz{cp

� �
�{cm

�
The profit–loss function g(z) of a block called waste and
its expectation PL1

WST are

g zð Þ~
{cm, zƒzc

{cm{v2(prz{cp), zwzc

�

PLORE~E g zð Þ½ �~

E i z, zcð Þ|v1 prz{cp

� �� �
zE 1{i z, zcð Þð Þ½

|v1 prz{cp

� �
�{cm

�
The block is selected as ore if PLORE.PLWST, and waste
otherwise. Glacken (1996) presents an approach in
which he sets the values for the risk aversion and loss
of opportunity cost factors to be v151, v250. In this
case, the profit function g(z) of a block called ore and its
expectation PL1

ORE are

g zð Þ~prz{cm{cp

PL1
ORE~E g zð Þ½ �~E prz½ �{cp{cm

The profit–loss function g(z) of a block called waste and
its expectation PL1

WST are

g zð Þ~{cm

PL1
WST~E g zð Þ½ �~{cm

The block is selected as ore if PL1
ORE.PL1

WST, and
waste otherwise.

Deutsch et al. (2000) suggest a simplification of
Glacken’s profit–loss approach that amounts to setting
both risk aversion and loss of opportunity cost factors to
1 (v15v251). This is equivalent to applying a penalty
for underestimation (false rejection), but no penalty for
overestimation (false acceptance). Indeed, the false
acceptance penalty weight is v91 such that
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(1zv’1)~v1uv’1~0, if v1~1

The argument to penalise underestimation is that ‘it
does cost money to mistakenly put high grade ore on the
waste dump’ (Deutsch et al., 2000). The profit function
g(z) of a block called ore and its expectation PL2

ORE are

g zð Þ~prz{cm{cp

PL2
ORE~E g zð Þ½ �~E prz{cp

� �
{cm

The profit function g(z) of a block called waste and its
expectation PL2

WST are

g zð Þ~
{cm, zƒzc

{cm{(prz{cp), zwzc

�

PL2
WST~E g zð Þ½ �~E½ 1{i z, zcð Þð Þ| { prz{cp

� �� �
{cm

The block is selected as ore if PL2
ORE.PL2

WST, and
waste otherwise.

Another simplification consists of penalising both
underestimation and overestimation, which could make
sense since money is lost in both cases. This simplifica-
tion amounts to setting the weights to be v915v251, or
v152 and v251. The profit–loss function g(z) of a block
called ore and its expectation PL3

ORE are

g zð Þ~
{cmz2(prz{cp), zƒzc

prz{cm{cp, zwzc

�

PL3
ORE~E g zð Þ½ �~

E i z, zcð Þ|2 prz{cp

� �� �
z

E 1{i z, zcð Þð Þ| prz{cp

� �� �
{cm

The profit–loss function g(z) of a block called waste and
its expectation PL3

WST are

g zð Þ~
{cm, zƒzc

{cm{(prz{cp), zwzc

�

PL3
WST~E g zð Þ½ �~E½ 1{i z, zcð Þð Þ|{ prz{cp

� �
�{cm

The block is selected as ore if PL3
ORE.PL3

WST, and
waste otherwise.

Comparative performance and
benchmarking
This section uses an exhaustive dataset representing a
bench to be mined and combinations of different grade
control sampling patterns, three different economic
classification functions and three simulation methods
to select mining blocks as either ore or waste. The profit
returned and the quantity of ore selected are compared
for each combination and this is then compared with a
benchmark kriging estimate representing the traditional
grade control practices, as well as the results from
knowing the original exhaustive dataset and applying
ore and waste classification.

Case study procedure
The following case study compares and contrasts
simulation algorithms for grade control and illustrates

the use of economic classification functions for grade
control. This case study uses the exhaustively sampled
public domain Walker Lake data set (Isaaks and
Srivastava, 1989) consisting of 78 000 values on a
regular 2606300 grid, as shown in Fig. 3a, modified
to represent a bench in a typical gold mine.

The procedure followed for the case study is
summarised by the following steps:

1. Sample the deposit (bench) on a 666 m grid to
mimic a typical blasthole grade control pattern,
collecting 195 samples for the bench (Fig. 3b).

2. Re-block (average) the known deposit data set to
mining selection blocks of 10610 m, representing
the case for perfect ore selection.

3. Conditionally simulate the bench from the 195
samples using three conditional simulation techni-
ques, and generating 100 realisations for each
technique.

4. Re-block the conditionally simulated nodes to
mining selection blocks of 10610 m, and classify
each block using each of the economic classification
functions.

5. Compare the value and quantity of selected ore
with the case for perfect selection from the known
data set.

6. Repeat steps 3–5 using 725 data points on a 363 m
grid (Fig. 3c).

Grade simulation using SGS, SIS and P-field
algorithms
Three commonly used conditional simulation algo-
rithms, sequential Gaussian simulation (SGS), sequen-
tial indicator simulation (SIS) and P-field (Goovaerts,
1997), are compared with each other and with a
benchmark kriging approach. Two different sampling
patterns, 363 and 666 m, are used. To facilitate the
comparison of results, mining blocks are assumed to be
10610 m and it is also assumed that free access is
possible for every block.

Using the procedure in steps 1–6 above gives the
following results. For each sample data subset, and for
each conditional simulation algorithm, a single realisa-
tion is shown as a pixel plot in Fig. 5, with a plot of the
actual known data for Walker Lake in Fig. 4d. From
Fig. 4, it can be seen that the different conditional
simulations all reproduce the general spatial distribution
of grades for Walker Lake. The 725 sample data set
appears to reproduce the true grade patterns better than
the 195 sample data set, as may be expected. The SGS,
shown in Fig. 4a for 195 data points and Fig. 4e for 725
data points, display greater disorder than the other
simulation methods, with less similarity between adja-
cent pixels.

The conditional simulations are then re-blocked
(averaged) into minable blocks. For comparison with
the conditional simulation methods using economic
classification functions, an ordinary kriged block grade
estimate has also been developed with the data set for
Walker Lake re-blocked to 10610 m. The selectivity of
ore is based upon a mining block of 10610 m, and the
cost of mining ore and waste is assumed to be the same.
Three cutoff grades are considered, to highlight differ-
ences in performance between simulation methods and
economic classification functions for different prevailing
economic conditions. Gold recovery is assumed to be
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constant and independent of ore grade. No allowance is
made for mining dilution and free access is assumed to
all mining blocks. Mining and processing costs, metal
price, recovery, and cutoff grade for three different cost–
price scenarios are summarised in Table 1.

Results and analysis for the sparser blasthole
spacing

Figures 6–8 present the results of classifying the Walker
Lake deposit for the case where a 666 m sampling

4 Pixel plots of a realisation for each conditional simulation method, and for both the 195 data set and the 725 data set

3 A bench of grade control data from the Walker Lake ‘deposit’, please see explanations in the text. The histograms for

each of datasets (a), (b) and (c) are shown below each plot of data values
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pattern is used. Each combination of deposit/sample
pattern/cutoff grade is presented as one scenario, with a
value for profit and a value for ore tonnage in the case of
perfect selection for selection based on deterministic
ordinary kriging estimates. Additionally, for each rea-
lisation, the median of 100 SGS realisations has been

re-blocked. Selection for this m-type model was based
on the single median grade estimate for each block. This
case removes conditional simulation as a factor, and
allows a comparison of the results of either using or not
using economic classification functions for selection.
Each summary figure also shows the histogram of
sample data, with the mean and median grades
indicated, for comparison with the cutoff grade.

The results presented in Figs. 6–8 may be further
summarised as an aid to drawing conclusions, as shown
in Fig. 8. As none of the combinations achieved exact
perfect selection, all scenarios return less revenue than
the perfect case. The performance generally decreases as
the cutoff grade increases. While no single method is
best in all cases, SGS with either a minimum loss or a
maximum profit plus mining costs function performs

Table 1 Three different cost/price scenarios are
considered, each having a different cutoff grade

Scenario A Scenario B Scenario C

Processing cost/$/t 8.00 8.64 8.85
Mining cost/$/t 2.00 2.00 2.00
Recovery/% 80 95 80
Cutoff grade/g/t 0.65 0.74 0.86
Gold price/$/oz $480 $380 $400

5 Summary of outcomes from classifying the Walker Lake deposit sampled on a 666 m pattern for a low cutoff grade

relative to the sample mean
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best for the two lower cutoffs. For the highest cutoff,
SIS performs best. The P-field method combined with
any economic classification function performs poorly in
all cases for the 666 m sample spacing. Ore selection
from estimation or simulation yields between 10% and
approximately 65% of the possible revenue when using
666 m sampling.

Results and analysis for the dense blasthole
spacing
Figures 9–11 present the results of classifying the
Walker Lake deposit according to three economic
classification functions applied to models from three
conditional simulation methods, for the case where a
363 m sampling pattern is used.

Figure 12 shows the relative performance in terms of
revenue for each combination of conditional simulation

method and economic classification function, based on
a sample spacing of 363 m. Overall, the range of
outcomes is between 55 and 90% of the possible revenue.
This smaller range of outcomes and generally better
performance compared with the 666 m sample pattern
illustrates the economic value of increased drilling.
However, while four times more drilling has doubled
the relative profit, the benefit from this needs to be offset
against the cost of additional drilling. The cost of
drilling a 363 m pattern compared to a 666 m pattern
has not been included in this study.

For the Walker Lake deposit and a 363 m drilling
pattern, the P-field method performs very poorly, while
the other simulation methods with any economic
classification function are quite similar in performance
in terms of relative profit. In general, profit does not
appear to be particularly sensitive to the method

6 Summary of outcomes from classifying the Walker Lake deposit sampled on a 666 m pattern for a cutoff approxi-

mately equal to the sample mean
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employed for selecting mining blocks of 10610 m as ore
when sufficient data are available, as is the case using the
363 m sampling pattern. This is not to say some
improvement may not be possible. The actual example
and comparison from a gold mine presented in the next
section shows that while the requirement for closely
spaced blastholes (y363 m) stems from rock breakage
characteristics, the implementation of conditional simu-
lation and economic classification functions still con-
tributes to an increase in profit.

The 666 m drilling case shown in Fig. 12 exhibits
large variations in tons of material sent for processing.
For the Walker Lake deposit, the range of variation is
approximately 20% relative to the case for perfect
selection. As a measure of accuracy, the tonnage of
material selected as ore should be considered in

conjunction with the relative economic performance.
In Fig. 8, SGS with a minimum loss function selects
approximately 50% more material as ore, than the
perfect selection case. At best, if the SGS ore tonnage
includes all perfect selection ore, then the SGS plus
minimum loss approach misclassifies half as much ore
again. However, Fig. 8 shows that in terms of relative
economic performance, the SGS plus minimum loss
approach outperforms most other methods. Clearly, the
selection of a conditional simulation plus economic
classification function combination for grade control
needs to consider not only the accuracy of the method
but also the precision. In contrast, the sequential
Gaussian m-type estimate from 666 m sampling selects
only 5–20% more tons as ore compared with the perfect
selection case (Fig. 12), and has nearly the same

7 Summary of outcomes from classifying the Walker Lake deposit sampled on a 666 m pattern for a high cutoff relative

to the sample mean
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economic performance as the SGS plus minimum loss
(Fig. 8) but with at least 40% less ore tonnage. The P-
field method generally selects more material as ore than
other methods, with a notable exception being the SGS
case discussed in the last paragraph. In particular, the
probability field approach performs poorly in terms of
ore tonnage compared to other methods using a 363 m
sampling pattern for the Walker Lake deposit, as shown
in Fig. 12. Table 2 summarises results, showing the best
and worst performing combinations of economic classi-
fication functions and conditional simulation methods
for example presented. If there is a generalisation to be
made, then the prevailing better performing combina-
tion, particularly when relatively high cutoffs are used,
seems to be that of SIS with the minimum loss economic
function. This is not surprising and is largely due to the
fact that for high ore/waste cutoffs Gaussian methods
and their maximum entropy aspect destroy the spatial
connectivity of the high grade values, no matter what the
mineralisation is. On the other hand, indicator simula-
tions cater to the spatial connectivity of high and very
high grade/metal values. This is why the present trends
on simulation focus on advancing the so-called multiple-
point or high-order simulations (e.g. Straubhaar et al.,
2013; Jones et al., 2013; Mustapha and Dimitrako-
poulos, 2010).

Finally, this comparative study is designed to contrast
different economic classification functions and condi-
tional simulation methods, and the considerable addi-
tional costs expected when blasthole drilling is increased
from 666 to 363 m have not been included.

Applications of grade control using
economic indicators
This section presents a comparison of traditional grade
control as practices in a gold mine and the mine’s
comparison and production reconciliation of the mini-
mum loss classification function based on the SIS
method.

Traditional, well-performing grade control at a
gold mine
The example of a well-performing grade control process
at an operating gold mine is presented here, the mine
uses blasthole patterns of about 363 m, as required to
facilitate blasting and rock fragmentation. The mine’s
grade control is based on a combination of grade control
classification based on ordinary kriging and polygons
based on drilling data. The results of these two methods
are superimposed and dig-lines are drawn. Reconci-
liations of grade control forecasts and production are
excellent and an example of that is shown in Fig. 13. The
figure shows the reconciliation of mill grade and grade
control grade over 3 years and represents one of the
various reconciliation graphs that document the well
performing traditional grade control approach at the
mine. The question to be addressed here is, whether the
application of grade control based on economic
classification functions and simulations would further
improve performance, and is addressed next.

The improvement from minimum loss
classification and indicator sequential
simulation
The application of the minimum loss economic classi-
fication function and indicator sequential simulation
shows improvement in the mines grade control perfor-
mance. Figure 14 shows the comparison between the
mine’s grade control dig-lines (top) and the local
classification from the minimum loss approach (bottom)
so as to demonstrate differences, while the metal content
between the two approaches is also compared (middle).

The question ‘how do we know we are any better off?’
from the use of the minimum loss based classification is
addressed with the results reported in Table 3. The table
summarises one of the mine’s 2-month long reconcilia-
tions which conclude with the value of the new grade
control approach valued at an additional 12 226 tonnes
at 1?02 (400?9 oz of gold) or an additional $102 755
PBIT increase. This is not an insignificant increase for a

8 Revenue earned by each combination of simulation method and economic classification function for each cutoff grade

relative to perfect selection for the 666 m 195 data points sampling pattern
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mine where the traditional grade control practice
already performs very well (Collett and Corley, 1999).

Integrating ‘grindability’ to improve
grade control and economic performance

Ore comminution, grindability, costs, time and
definition of ore in grade control
The performance of economic classification functions
can be further improved if issues related to enhancing
the efficiency of ore comminution are integrated into the
corresponding grade control process. This improvement
is in a way complementary, in the sense that conven-
tional grade control methods cannot integrate in a

unified way attributes affecting ore comminution.
Improved grinding circuit performance translates to
reducing costs and time, including energy consumption.
The power consumption of a grinding machine is
determined by the ‘grindability’ of the feed material
and considerable research has been carried out into the
characterisation of rock grinding characteristics and
grinding circuit design (e.g. Deniz, 2003). Blast frag-
mentation also contributes to the grinding character-
istics of a rock mass, and research has successfully
integrated simulation models for blast fragmentation
and grindability.

Ore/waste classification through grade control directly
relates to grindability; different grinding characteristics

9 Summary of outcomes from classifying the Walker Lake deposit sampled on a 363 m pattern for a low cutoff relative

to the sample mean
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have different processing costs, for example, harder ores
have increased comminution time and large recycling
loads within comminution circuits. Changes in proces-
sing costs affect the economic definition of ore (Lane,
1988; Asad and Dimitrakopoulos, 2012, 2013; Rendu,
2014) and directly impact ore/waste definition. Grade
control can utilises grindability at a smaller scale than
the scale of blast domains to directly impact ore block
classification, using the full variability of the distribution
of grindability. Such an approach draws on a correlation
between point load value and semi-autogenous grind
(SAG) throughput, and is shown to be plausible,
achievable, and effective in improving the optimisation

and efficiency of ore mining operations. This leads to
economic improvements through reducing costs by
avoiding processing of uneconomic material misclassi-
fied and processed as ore; reducing financial losses due
to ore being sent to waste even though it is easy to grind;
and potentially improved milling efficiency through
better management of SAG feed.

Minimum loss classification accounting for
grindability: an example
The minimum loss classification described in Section 2 is
used here to include a model of grindability, which
changes according to local ore variations within mining

10 Summary of outcomes from classifying the Walker Lake deposit sampled on a 363 m pattern for a middle cutoff rela-

tive to the sample mean
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blocks (smu’s) for part of a bench in a gold mine. To the
extent that grindability affects the cost of processing, it
also impacts on the cutoff grade between ore and waste.
When the grindability of each block is considered, the
effect of the cost of processing on the classification as
ore or waste may (a) upgrade a block from waste to ore;
or (b) downgrade a block from ore to waste; or (c) leave
the classification unchanged, when compared with the
base-case scenario.

In the example part of a bench at a gold mine
presented herein, for each 565 m minable block (or
smu), the classification according to a grindability model
is compared with that of the base case, and a map of
differences between these two models is shown in
Fig. 15, along with original minimum loss classification
(Fig. 15a) and a model of the grinding throughput used

to update the parameters of the minimum loss
classification function. Differences between the two
ore classifications arise from the inclusion of grind-
ability data, and the classification of 41 blocks change
from ore in the base case to waste after considering
grindability (red blocks in Fig. 15c) and 15 blocks
changed from waste in the base case to ore after
considering grindability (cyan blocks in Fig. 15c). This
represents misclassification of 6% of smus classified as
ore without considering variable grindability, incor-
rectly classified, representing an avoidable cost (loss) to
the operation. Two per cent of ore blocks were
incorrectly classified as waste and also represent an
avoidable loss to the operation. In total, the blocks that
would be classified differently with knowledge of
grindability represent 8% of the smus.

11 Summary of outcomes from classifying the Walker Lake deposit sampled on a 363 m pattern for a high cutoff rela-

tive to the sample mean
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It seems interesting to note that the smu blocks that
are most likely to change classification are those that
have grades marginal to the cutoff grade. In the example
presented herein, three times as many blocks are
downgraded to waste as are upgraded to ore, indicating
it is more frequently the case that rock has a grindability
lower than the SAG throughput budget. This is to be
expected given the typical skewness of the grindability
distribution, and highlights the sensitivity of the
approach to the distribution of grindability. Given the
high cost associated with ore treatment compared with
waste disposal, the reduction of ‘waste sent to proces-
sing’ errors is a direct and tangible cost saving for a

12 Revenue earned by each combination of simulation method and economic classification function for each cutoff

grade relative to perfect selection for the 363 m 725 data points sampling pattern

13 Reconciliations (mill grades) of the mine’s traditional

grade control (Collett and Corley, 1999)

Table 2 Summary ‘best’ and ‘worse’ performing combina-
tions of economic classification functions and
conditional simulation methods for example
presented

Spacing/no. samples Cutoff Best Worst

666 m/195 Low SGS profz PFS prof2
Medium SGS prof2 PFS prof2
High SIS min loss PFS profz

363 m/725 Low SIS min loss PFS profz
Medium SGS min loss PFS profz
High SIS min loss PFS prof2

SGS: sequential Gaussian simulation; SIS: sequential indicator
simulation; PFS: P-field.

14 Six blasts and dig-lines from the mine’s traditional

grade control classification (top); the same blasts and

grade control classification based on minimum loss

and SIS (bottom); and comparison of expected gold

content from the two grade control classification, per

blast (middle)
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mining operation, which also leads to increased avail-
ability of the plant to treat ‘true’ ore. Reducing the
instances of ‘ore sent to waste’ errors promotes mine life
and sustainability.

These findings present an example of improvements
that could be made over current best practice when
grindability is considered. The impact of ore misclassifi-
cation will be more significant in regions of marginal
grade ore, particularly where such ore also tends to have
longer grind circuit residence. In addition, other geome-
tallurgical attributes may be further integrated into grade
control, as long as economic classification functions and
orebody uncertainty models are considered.

Summary and conclusions
Ore/waste classification in grade control based on
economic classification functions as an indicator of the
economic impact of different classification decisions was

presented in this paper. Two basic approaches, mini-
mising loss or maximising profit were presented along
with the classification process involving the combination
of conditional simulation of the orebody and calculation
of the economic classification function for each orebody
block or smu. An advantage of these functions is that
the asymmetric relationship between monetary loss and
misclassification can be taken into account. However, it
is noted that these functions are only indicators of the
monetary implications of different classification deci-
sions, and do not represent actual loss or profit figures
(for example, discounting is not considered, and there is
no link to a mining sequence).

A comparative study using an exhaustive dataset
representing the actual grades of a bench to be mined is
presented to elucidate the potential performance of three
economic functions, namely minimum loss, maximum
profit with mining costs and maximum profit excluding
mining costs, with three commonly used stochastic
simulation methods, namely, SGS, SIS, and P-field.
Related combinations are compared for two different
blasthole sampling patterns, a sparse one (666 m
spacing) and a dense one (363 m spacing), and three
cutoff grades, one below the data mean, one about the
mean and one above the mean.

At larger sample spacing, the SIS approach appears
more dependable for a range of cutoff scenarios and
deposits. Although other methods perform better for
some cases, by and large the sequential indicator
approach combined with a minimum loss economic
classification function returns the highest profit for this
case study. By comparison, the probability field method
for conditional simulation generally performs poorly,
and shows a loss of possible revenue in comparison with
other simulation methods. Even more noteworthy is the
poor performance of the probability field approach

Table 3 Example of a comparison of performance
between the traditional grade control of a gold
mine and the performance of grade control
classification with minimum loss with sequential
indicator simulation (SIS) over a 2-month period

A 2 month long comparison

Ounces
Reserves 380 812 at 1.73 21 180
Traditional grade control 385 220 at 1.67 20 682
Min loss/simulation (reconciled) 397 446 at 1.65 21 083
Result from min loss and SIS:
Additional 12 226 tonnes at 1.02 (400.9 oz)5$102 755 PBIT
increase or 2.8%

SIS: sequential indicator simulation.

15 a Ore/waste classification from minimum loss classification without accounting for grindability; b map of grinding

throughput; and c blocks changing from ore to waste (red) and from waste to ore (cyan)
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compared to ordinary kriging when few samples are
available and the cutoff grade is high.

The comparative example presented in Section 3
includes several assumptions, to be kept in mind when
considering the results. First, the use of a fixed size block
of 10610 m for selectivity is convenient but unrealistic
in practice. In addition, the assumption of free access is
not generally the case. In practice, an economic
classification function would be used in combination
with geological mapping, grade control data from
previous benches and reconciliation data, and the
economic classification function selections would pro-
vide a basis for drafting smoothed ore selection outlines.
Such smoothed ore selection outlines introduce further
misclassification. Ore selection polygons need not be,
and usually are not, squares or rectangles of constant
size. Finally, this study is designed to contrast different
economic classification functions and conditional simu-
lation methods, and the considerable additional costs
expected when blasthole frequency is increased from
666 to 363 m have not been included.

Comparisons of various combinations of economic
classification function and simulation algorithm show that
SIS with a minimum loss economic classification function
is the most dependable in terms of returning the highest
profit, particularly when relatively high cutoffs are used.
To follow this observation further, an example is presented
at a gold mine where there is a history of excellent
reconciliations between the mine’s traditional grade
control practices and production. Despite this, the loss
function approach shows additional improvements in ore
production as economic value that stress the contribution
of the grade control approaches presented herein.

Last but not least, the present paper presents how the
economic classification function approach can uniquely
be adapted to further reflect operational complexities
such as aspects of ore comminution in the grade control
process, thus improving the performance of grinding
circuits, reducing costs and time as well as power
consumption, in addition advancing the performance of
the ore classification process. Significant changes in ore
classification have been shown, in the context of the
following additive effects of: (1) reducing costs by
avoiding processing of uneconomical material as ore;
(2) reducing financial losses from ore lost to waste that is
easy to grind; and (3) potentially improved milling
efficiency through better management of SAG feed.
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