Добрый день, Коллеги. Важное сообщение, просьба принять участие. Музей Ферсмана ищет помощь для реставрационных работ в помещении. Подробности по ссылке

Автор(ы):Dondov Tomurhuue, Dunyi Liua, Krönera A., Laicheng Miaod, Ping Jian, Windley B.F., Yurao Shia, Zhanga W., Zhangd F.
Издание:Elsevier, 2010 г., 19 стр.
Язык(и)Английский
Zircon ages of the Bayankhongor ophiolite mélange and associated rocks: Time constraints on Neoproterozoic to Cambrian accretionary and collisional orogenesis in Central Mongolia

Central Mongolia is geologically characterized by close juxtaposition of an accreted oceanic terrane with an arc-microcontinent collision zone. We present new U–Pb zircon ages and geochemical data for the Bayankhongor ophiolite mélange from the oceanic terrane and for a syenite porphyry pluton from the arc-microcontinent zone, providing critical constraints on the regional evolution in late Neoproterozoic to early Cambrian times. An anorthosite (655±4 Ma) associated with layered gabbro, a rodingite (metasomatized layered gabbro) (647±6 Ma), and a high-level isotropic amphibole gabbro (647±7 Ma) yielded the oldest zircon ages for the plutonic part of the ophiolite. A plagiogranite dike in the amphibole gabbro yielded an age of 636±6 Ma, which is the youngest date obtained for the ophiolitic rocks. We suggest that the long duration (ca. 20 Ma) for formation of this plutonic sequence characterizes the sea-floor spreading evolution, and the Nd–Sr isotopic composition (εNd(t) = +7.6 to +4.7; initial 87Sr/86Sr ratio = 0.70279–0.70327) points to a mid-ocean-ridge origin. The syenite porphyry, dated at 523±2 Ma, records the terminal or post-collisional phase of orogeny. The Bayankhongor oceanic lithosphere experienced at least 92Ma of drift between its formation and accretion.

ТематикаРегиональная геология
Выпуск 192
Автор(ы):Brewer T.S., Buchan C., Cunningham D., Krönera A., Pfander J., Tomurhuu D., Tomurtogoo O., Windley B.F.
Издание:Elsevier, 2002 г., 23 стр.
Язык(и)Английский
Timing of accretion and collisional deformation in the Central Asian Orogenic Belt: implications of granite geochronology in the Bayankhongor Ophiolite Zone

Growing evidence suggests that the mechanism of Palaeozoic continental growth in Central Asia was by subduction– accretion with punctuated collisions that produced ophiolitic sutures between accreted blocks. The Bayankhongor ophiolite is the largest ophiolite in Mongolia and possibly all of Central Asia, and is interpreted to mark the collisional suture between the Baidrag and Hangai continental blocks. New 207Pb/206Pb zircon evaporation ages for granite plutons and dykes that intrude the ophiolite and its neighbouring lithotectonic units suggest that the ophiolite was obducted at c. 540 Ma at the beginning of a collisional event that lasted until c. 450 Ma. The new data, combined with that of previous studies, indicate regional correlation of isotopic ages north-westward from Bayankhongor to southern Tuva. These data record oceanic crust formation at c. 570 Ma, followed by approximately 30 million years of subduction–accretion that culminated in obduction of ophiolites, collision related metamorphism, and magmatism in the period c. 540–450 Ma. Correlation of isotopic-age data for the ophiolites of western Mongolia and southern Tuva suggests that the ophiolites define a major collisional suture in the Central Asian Orogenic Belt (CAOB) that defines the southern and western margins of the Hangai continental block.

Выпуск 158
Автор(ы):Buchan C., Cunningham D., Tomurhuu D., Windley B.F.
Издание:Journal of the Geological Society, London, 2001 г., 16 стр.
Язык(и)Английский
Structural and lithological characteristics of the Bayankhongor Ophiolite Zone, Central Mongolia

The mechanism of continental growth of Central Asia is currently debated between models invoking continuous subduction–accretion, or punctuated accretion due to closure of multiple ocean basins. Ophiolites in Central Asia may represent offscraped fragments in an accretionary complex or true collisional sutures. The Bayankhongor ophiolite, a NW–SE-striking sublinear belt 300 km long and 20 km wide, is the largest ophiolite in Mongolia and possibly Central Asia. We present results of the first detailed structural and lithological study of the ophiolite. The study area is divided into four zones: Baidrag complex, Burd Gol, Bayankhongor, and Dzag zones. The Archaean Baidrag complex comprises tonalitic granulites and metasediments. The Burd Gol zone is a metamorphosed sedimentary and igneous me´lange. The Bayankhongor zone contains the dismembered ophiolite forming a serpentinite me´lange. The Dzag zone consists of asymmetrically folded chlorite–mica schists resembling meta-turbidites. The structure is dominated by steeply dipping, NE directed thrusts and NE-vergent folds. We suggest the Bayankhongor ophiolite marks the closure of an ocean separating two microcontinents: the Baidrag complex with the Burd Gol accretionary complex to the south, and a northern continent that forms the basement for the Hangai region. Subduction was towards the SW with NE-directed ophiolite obduction onto a passive margin represented by the Dzag zone.

Ленты новостей
2187.76