Добрый день, Коллеги. Важное сообщение, просьба принять участие. Музей Ферсмана ищет помощь для реставрационных работ в помещении. Подробности по ссылке

Выпуск 51
Автор(ы):Buslov M.M., Druzyaka N.V., Korsakov A.V., Poltaranina M.A., Travin A.V., Zhimulev F.I.
Издание:Russian Geology and Geophysics, 2010 г., 15 стр.
Язык(и)Английский
Eclogites of the Late Cambrian–Early Ordovician North Kokchetav tectonic zone (northern Kazakhstan): structural position and petrology

We consider the structural position and petrology of eclogites in the North Kokchetav accretion-collision zone located north of the Kokchetav metamorphic belt formed by high- and ultrahigh-pressure rocks. In the Early Ordovician North Kokchetav tectonic zone, thin sheets of mylonite and diaphthoric gneisses with eclogites are tectonically conjugate with the volcanic and sedimentary rocks of the Stepnyak paleoisland-arc zone. Eclogites have been revealed at two sites of the North Kokchetav tectonic zone—Chaikino and Borovoe. The Chaikino eclogites formed at 800–850 °C and 18–20 kbar, and the Borovoe eclogites, at 750–800 °C and 17–18 kbar. Study of pyroxene-plagioclase symplectite replacing omphacite of the eclogites at both sites has recognized three stages of regressive magmatism: (1) formation of coarse-grained clinopyroxene-plagioclase symplectite at 760–790 °C and 11–12 kbar, (2) formation of fine-grained clinopyroxene-plagioclase symplectite at 700–730 °C and 7–8 kbar, and (3) amphibolization of pyroxene at 570–600 °C and 5–6 kbar. The Ar-Ar age of muscovite from the Borovoe mica schists hosting eclogites is 493 ± 5 Ma, which corresponds to the time of cooling of metamorphic rocks to <370 °C. Hence, the peak of high-pressure metamorphism and all recognized stages of retrograde changes are dated to the Cambrian. The geological data evidence that eclogite-schist-gneiss sheets were localized in the accretion-collision zone and became conjugate with sedimentary and volcanic rocks no later than in the Middle Ordovician

Том 47, Выпуск 4
Автор(ы):Buslov M.M., Dobretsov N.L., Travin A.V., Zayachkovsky A.A., Zhimulev F.I.
Издание:Russian Geology and Geophysics, 2006 г., 17 стр., УДК: 551.24:552.48 (574)
Язык(и)Английский
Vendian-early ordovican geodynamic evolution and model for exhumation of ultrahigh- and high-pressure rocks from the Kokchetav subduction-collision zone (northern Kazakhstan)

The Kokchetav subduction-collision zone (KSCZ) hosting ultrahigh- and high-pressure (UHP-HP) rocks underwent the multistage Vendian-Early Ordovician geodynamic evolution. The subduction of the Paleoasian oceanic lithosphere bearing blocks of continental crust and the collision of the Kokchetav microcontinent with the Vendian-Cambrian island-arc system ultimately led to the formation and exhumation of UHP-HP rocks. In the Vendian-Early Cambrian the margin of the Kokchetav microcontinent deeply subsided into the subduction zone (150–200 km), which led to UHP-HP metamorphism (the maximum at about 535 Ma) and to partial melting of its rocks. In next stage (535–528 Ma), the generated acidic melts including blocks of UHP-HP rocks quickly, at a rate of 1 m/year, ascended to depths of 90 km for 1 Myr. During subsequent 5 Myr, the UHP-HP rocks ascending at a rate of 0.6–1 cm/year reached the base of the accretionary prism (depths of 60–30 km). Then, in the period from 528 to 500 Ma, the UHP-HP rocks ascended along the faulting structures of the lower crust as a result of jamming the subduction zone by the Kokchetav microcontinent. During the period from 500 to 480 Ma, the UHP-HP rocks became part of the upper crust. This process led to the KSCZ, which comprises terranes of the Vendian-Early Arenigian subduction zone occurring at different depths, separated by zones of garnet-mica and mica schists, blastomylonites and mylonites. In the same period there was a jump of subduction zone, which led to the formation of the Ordovician Stepnyak island arc. As a result of the Late Arenigian-Early Caradocian microcontinent-island arc collisions (480–460 Ma), the KSCZ overrided upon the fore-arc trough of the Stepnyak island arc to form a thick accretion-collision orogen, which having experienced anatectic melting was intruded by collisional granites of the Zerenda complex 460–440 Ma in age.

ТематикаГеотектоника
МеткиCollision, Diamond-coesite gneisses, Eclogites, Exhumation, Kokchetav microcontinent, Olistostromes, Over-thrusts, Subduction, Tectonic nappes, Кокчетав, Кокчетавский массив, Коллизия, Олистостромы, Эклогиты
Ленты новостей
1887.79