Добрый день, Коллеги. Важное сообщение, просьба принять участие. Музей Ферсмана ищет помощь для реставрационных работ в помещении. Подробности по ссылке
В книге изложены следующие основные вопросы: земной эллипсоид как координатная поверхность, свойства геодезической линии и нормального сечения, решение малых геодезических треугольников, способы решения главных геодезических задач и различных засечек с помощью геодезической линии, нормального и центрального сечений, способы решения геодезических задач между точками в пространстве, дифференциальные формулы для различных систем геодезических координат, теория и практика применения плоских конформных координат в проекциях Гаусса – Крюгера, стереографической и конической. Решения всех задач иллюстрируются примерами. Для решения основных геодезических задач приведены алгоритмы для вычислений на счетных машинах. Книга предназначена в качестве учебника для студентов вузов, обучающихся по астрономо-геодезической специальности. Она может быть использована также научными и инженерно-техническими работниками, занимающимися математической обработкой геодезических сетей и применением геодезических методов в специальных инженерно-технических работах. По сравнению с первым изданием «Курса сфероидической геодезии» (1969 г.) во втором издании содержание учебника подверглось значительной переработке, вызванной, во-первых, требованием -отражения новых вопросов, необходимых для решения современных задач сфероидической геодезии, и, во-вторых, требованием более детального освещения практической стороны решения геодезических задач с учетом использования современной вычислительной техники. В книгу включены следующие новые вопросы: 1) решение «хордового» треугольника и прямолинейного треугольника в пространстве, 2) решение главных геодезических задач вдоль нормального и центрального сечений, 3) угловая, линейная и гиперболическая засечки «а шаре и на эллипсоиде, 4) неитеративный способ вычисления широты по пространственным координатам, 5) дифференциальные формулы для прямолинейного отрезка в пространстве и 6) теория и практика применения конической и стереографической проекций в инженерно-геодезических работах. С целью сохранения прежнего объема книги исключена чисто математическая часть учебника (элементы дифференциальной геометрии и приложение, состоящее из элементарных математических формул), а также опущено изложение ряда теоретических вопросов, не имеющих практического значения или же устаревших, наконец, сокращено изложение теоретических основ конформного изображения эллипсоида на плоскости. Существенная методическая переработка теоретического обоснования почти всех вопросов курса позволила изложить выводы формул в достаточно лаконичной и вместе с тем более доступной для студентов форме без ущерба строгости изложения. В отличие от первого издания, в котором были помещены лишь единичные примеры, во втором издании решение почти всех задач иллюстрируется числовыми .примерами, а для решения наиболее крупных задач приведены алгоритмы, -которые могут быть использованы при вычислениях на современных вычислительных машинах.
Приведены общие сведения о лабораторных и расчетно-графических работах, дано описание микрокалькуляторов и работы с ними. Изложены материалы по изучению топографических карт, измерению расстояний, углов, превышений и указания по работе с геодезическими приборами. Даны примеры составления профилей линейных сооружений и геодезических расчетов при проектировании планировки и застройки, обработки результатов измерений при создании обоснования, съемке и составлении плана строительного участка, а также редуцирования осей при реконструкции зданий. В конце каждой главы помещены вопросы для самоконтроля и задания для самостоятельной работы. Лабораторные и расчетно-графические работы предназначены для закрепления теоретических знаний, углубленного изучения практической стороны изучаемого материала, приобретения навыков в обращении с геодезическими приборами и в обработке геодезической документации. Основная цель лабораторных и расчетно-графических работ заключается в выработке у студентов умения активно применять полученные знания и самостоятельно выполнять изучаемые виды геодезических работ. В начале изучения курса целесообразно самостоятельно изучить § 2, 3 практикума. Это даст возможность студенту пополнить необходимые знания для выполнения вычислений и применения вычислительной техники. К каждому лабораторному занятию необходимо готовиться. Подготовку начинают с изучения соответствующего раздела по учебнику или по конспекту лекций. При этом особое внимание следует обратить на существо вопроса. Далее следует внимательно ознакомиться с вводной частью задания в практикуме, где кратко излагается практическая сущность задания. К дню занятий необходимо заранее приготовить все пособия и принадлежности, которые перечислены в практикуме перед описанием задания. Начиная выполнять лабораторные задания, необходимо четко представлять конечный результат и методы его достижения, что требует внимательного и вдумчивого отношения к объяснениям преподавателя. Полностью выполненное и оформленное задание представляется на проверку преподавателю и, после соответствующей подписи, подлежит приемке. При приемке задания выявляются практические знания студентов.
Допущено Главным управлением высшего и среднего сельскохозяйственного образования Министерства сельского хозяйства СССР в качестве учебного пособия для агрономических специальностей сельскохозяйственных вузов. «Практикум по геодезии» рекомендуется как учебное пособие по курсу «Геодезия» для агрономических специальностей сельскохозяйственных вузов очного и заочного обучения и имеет целью ознакомить студентов с устройством геодезических инструментов и приборов, с их поверками и производством измерений, с камеральной обработкой полевых материалов и их графическим оформлением в виде планов и профилей. В настоящее, третье издание пособия внесены значительные изменения и дополнения. В частности, переработаны главы I, II, V, VI и XI. К главам I и XI даны новые примеры и упражнения. Написана новая глава «Разбивка плодового сада». Уточнены некоторые формулировки. одимо хорошо знать условные знаки, которыми изображают подробности местности, называемые ситуацией. Условные знаки бывают контурные, внемасштабные, линейные и пояснительные. Контурные, или масштабные, условные знаки применяют для изображения довольно крупных объектов местности, ограниченных ясно выраженными контурами, размеры которых значительно превышают точность масштаба. Контурными условными знаками изображают сельскохозяйственные угодья (лес, луг, выгон и др.). В немасштабными условными знаками изображают мелкие предметы местности, которые ввиду их малых размеров нельзя показать в масштабе плана (например, геодезические пункты, мельницы, колодцы и др.). Л и н е й и ы м и условными знаками изображают объекты, длина которых может быть дана в масштабе, а ширина значительно меньше точности масштаба, поэтому ее на плане или карте показывают с преувеличением (автомобильные и железные дороги, телефонные и телеграфные линии и т. д.). Пояснительные условные знаки представляют собой различные надписи и цифровые данные, которые дают возможность установить по карте число домов в населенном пункте, породу леса, размер деревьев, длину моста и пр. Условные знаки различных объектов, с которыми наиболее часто приходится встречаться работникам сельского хозяйства, даны в приложении.
Приведены сведения о спутниковых навигационных системах и их использовании в геодезии. Изложена технология теодолитной, тахеометрической и мензульной съемок местности, описаны фототеодолитная и сканерная съемки. Изложены методы расчетов и измерений при вынесении проектов на местность. Рассмотрены геодезические работы при изысканиях и строительстве железных дорог, при текущем содержании пути, основные методы геодезических работ при строительстве мостов, зданий, при строительстве и съемке подземных коммуникаций. Предназначено для студентов, обучающихся по железнодорожным и строительным специальностям. Геодезия – наука, изучающая фигуру и внешнее гравитационное поле Земли и разрабатывающая методы создания систем координат, определения положения точек на Земле и околоземном пространстве, изображения земной поверхности на картах. Научными задачами геодезии являются:
- установление систем координат;
- определение формы и размеров Земли и ее внешнего гравитационного поля и их изменений во времени;
- проведение геодинамических исследований (определение горизонтальных и вертикальных деформаций земной коры, движений земных полюсов, перемещений береговых линий морей и океанов и др.).
Научно-технические задачи геодезии в обобщенном виде заключаются в следующем:
- определение положения точек в выбранной системе координат;
- составление карт и планов местности разного назначения;
- обеспечение топографо-геодезическими данными нужд обороны страны;
- выполнение геодезических измерений для целей проектирования и строительства, землепользования, кадастра, исследования природных ресурсов и др. Геодезия в процессе своего развития разделилась на ряд научных дисциплин: высшую геодезию, топографию, фотограмметрию, картографию, космическую геодезию, морскую геодезию, инженерную геодезию. Особое место в этом ряду занимает инженерная геодезия, которая разрабатывает методы геодезического обеспечения изысканий, проектирования, строительства и эксплуатации инженерных сооружений: железных и автомобильных дорог, мостов, тоннелей, трубопроводов, промышленных и гражданских зданий, систем водоснабжения и водоотведения и др.Основными задачами инженерной геодезии являются:
- топографо-геодезические изыскания, в ходе которых выполняется создание на объекте работ геодезической сети, топографическая съемка, геодезическая привязка точек геологической и геофизической разведки;
- инженерно-геодезическое проектирование, включающее разработку генеральных планов сооружений и их цифровых моделей; геодезическую подготовку проекта для вынесения его в натуру, расчеты по горизонтальной и вертикальной планировке, определению площадей, объемов земляных работ и др.;
- геодезические разбивочные работы, включающие создание на объекте геодезической разбивочной сети и последующий вынос в натуру главных осей сооружения и его детальную разбивку;
- геодезическая выверка конструкций и технологического оборудования при установке их в проектное положение;
- наблюдения за деформациями сооружений, определяющие осадки оснований и фундаментов, плановые смещения и крены сооружений.
Геодезическое обеспечение строительства и эксплуатации современных инженерных сооружений связано с необходимостью выполнения точных измерений, служащих определению координат и высот геодезических пунктов, составлению топографических карт и планов, продольных профилей трасс; наблюдению за деформациями сооружений. Для обеспечения необходимой точности измерения выполняются высокоточными геодезическими приборами: теодолитами – угловые измерения; светодальномерами – линейные измерения; электронными тахеометрами – угловые и линейные измерения с решением различных инженерно-геодезических задач; нивелирами – определение превышений. При определении положения объектов используется аппаратура, работающая по сигналам спутниковых навигационных систем, при выполнении топографической съемки местности находят применение лазерные сканеры. Обработка результатов геодезических измерений выполняется на современных компьютерах с использованием развитого программного обеспечения. К числу таких программных продуктов относятся геоинформационные системы, служащие сбору, обработке, систематизации, отображению и анализу картографической информации. Состав геодезических работ, их точность, используемые методы и приборы различаются в зависимости от особенностей объекта. Так, при выполнении изысканий железной дороги создают геодезическую сеть, опираясь на которую составляют топографические карты и планы. На картах и планах выполняют предварительное трассирование дороги, окончательное положение которой выбирают в поле. Затем делают съемку трассы и получают необходимые для проектирования дороги профиль трассы и ситуационный план полосы местности. Для обеспечения безопасного движения поездов вдоль железной дороги создают высокоточную геодезическую сеть (так называемую, реперную систему), опираясь на которую выполняют работы по реконструкции и ремонту пути, по оперативному контролю его геометрических параметров, по наблюдениям за деформациями пути, земляного полотна и искусственных сооружений.
Геодезия – наука, изучающая фигуру и внешнее гравитационное поле Земли и разрабатывающая методы создания систем координат, определения положения точек на Земле и околоземном пространстве, изображения земной поверхности на картах. Научными задачами геодезии являются:
- установление систем координат;
- определение формы и размеров Земли и ее внешнего гравитационного поля и их изменений во времени;
- проведение геодинамических исследований (определение горизонтальных и вертикальных деформаций земной коры, движений земных полюсов, перемещений береговых линий морей и океанов и др.).
Научно-технические задачи геодезии в обобщенном виде заключаются в следующем:
- определение положения точек в выбранной системе координат;
- составление карт и планов местности разного назначения;
- обеспечение топографо-геодезическими данными нужд обороны страны;
- выполнение геодезических измерений для целей проектирования и строительства, землепользования, кадастра, исследования природных ресурсов и др. Геодезия в процессе своего развития разделилась на ряд научных дисциплин: высшую геодезию, топографию, фотограмметрию, картографию, космическую геодезию, морскую геодезию, инженерную геодезию. Особое место в этом ряду занимает инженерная геодезия, которая разрабатывает методы геодезического обеспечения изысканий, проектирования, строительства и эксплуатации инженерных сооружений: железных и автомобильных дорог, мостов, тоннелей, трубопроводов, промышленных и гражданских зданий, систем водоснабжения и водоотведения и др.Основными задачами инженерной геодезии являются:
-топографо-геодезические изыскания, в ходе которых выполняется создание на объекте работ геодезической сети, топографическая съемка, геодезическая привязка точек геологической и геофизической разведки;
-инженерно-геодезическое проектирование, включающее разработку генеральных планов сооружений и их цифровых моделей; геодезическую подготовку проекта для вынесения его в натуру, расчеты по горизонтальной и вертикальной планировке, определению площадей, объемов земляных работ и др.;
- геодезические разбивочные работы, включающие создание на объекте геодезической разбивочной сети и последующий вынос в натуру главных осей сооружения и его детальную разбивку;
-геодезическая выверка конструкций и технологического оборудования при установке их в проектное положение;
- наблюдения за деформациями сооружений, определяющие осадки оснований и фундаментов, плановые смещения и крены сооружений.
Геодезическое обеспечение строительства и эксплуатации современных инженерных сооружений связано с необходимостью выполнения точных измерений, служащих определению координат и высот геодезических пунктов, составлению топографических карт и планов, продольных профилей трасс; наблюдению за деформациями сооружений. Для обеспечения необходимой точности измерения выполняются высокоточными геодезическими приборами: теодолитами – угловые измерения; светодальномерами – линейные измерения; электронными тахеометрами – угловые и линейные измерения с решением различных инженерно-геодезических задач; нивелирами – определение превышений. При определении положения объектов используется аппаратура, работающая по сигналам спутниковых навигационных систем, при выполнении топографической съемки местности находят применение лазерные сканеры. Обработка результатов геодезических измерений выполняется на современных компьютерах с использованием развитого программного обеспечения. К числу таких программных продуктов относятся геоинформационные системы, служащие сбору, обработке, систематизации, отображению и анализу картографической информации. Состав геодезических работ, их точность, используемые методы и приборы различаются в зависимости от особенностей объекта. Так, при выполнении изысканий железной дороги создают геодезическую сеть, опираясь на которую составляют топографические карты и планы. На картах и планах выполняют предварительное трассирование дороги, окончательное положение которой выбирают в поле. Затем делают съемку трассы и получают необходимые для проектирования дороги профиль трассы и ситуационный план полосы местности. Для обеспечения безопасного движения поездов вдоль железной дороги создают высокоточную геодезическую сеть (так называемую, реперную систему), опираясь на которую выполняют работы по реконструкции и ремонту пути, по оперативному контролю его геометрических параметров, по наблюдениям за деформациями пути, земляного полотна и искусственных сооружений.
Изложены общие сведения по геодезии. Топографии» теории ошибок измерений, вопросы использования инженерно-геодезических работ в строительстве. Описаны методы разбивочных работ, геодезического обеспечения строительства гражданских и промышленных зданий, линейных сооружений, вопросы наблюдения за деформациями сооружений, геодезического обеспечения кадастра. Дан раздел геодезического использования спутниковых технологий. Для студентов строительных специальностей вузов. Геодезия - наука об измерениях, средствах измерений и математической обработке результатов этих измерений, выполняемых для решения различных научных, производственных и оборонных задач: для определения формы, размеров и гравитационного поля Земли, планет и спутников Солнечной системы, для определения координат точек на поверхности Земли и в околоземном пространстве, для создания планов, карт, профилей и математических моделей местности, для выполнения инженерно-геодезических работ при изысканиях, проектировании, строительстве и эксплуатации инженерных сооружений. Геодезия имеет широкое применение в различных областях науки, производства и в военном деле. Топографические карты используют при планировании и размещении производительных сил государства, при разведке и эксплуатации природных ресурсов, в архитектуре и градостроительстве, при мелиорации земель, землеустройстве, лесоустройстве, земельном и городском кадастре. Геодезия используется при строительстве зданий, мостов, тоннелей, метрополитенов, шахт, гидротехнических сооружений, железных и автомобильных дорог, трубопроводов, аэродромов, линий электропередач, при определении деформаций зданий и инженерных сооружений, при строительстве плотин, при решении задач оборонного характера. Геодезия - греческое слово, означающее «землеразделение», является одной из древнейших наук о Земле, имеет многовековую историю. В процессе своего развития содержание предмета обогатилось, расширилось и в связи с этим возникло несколько научных и научно-технических дисциплин.
В четвертом томе избранных сочинений Ф. Н. Красовского публикуется вторая часть «Руководства по высшей геодезии» и статья «Главная геодезическая основа СССР (общая оценка постановки и программ работ; вопросы правильной обработки астрономо-геодезической сети)». «Руководство по высшей геодезии», часть II, было написано в 1939-1940 гг. и издано в начале 1942 г. как учебник для геодезических вузов и факультетов. Феодосий Николаевич Красовский (14(26) сентября 1878 г., Галич, ныне Костромской области - 1 октября 1948 г, Москва) - российский астроном-геодезист, член-корреспондент Академии наук по Отделению математических и естественных наук (геодезия) с 29 января 1939. Под его руководством в 1940 г. были определены размеры земного эллипсоида (эллипсоид Красовского).Краткая биографическая справкаФеодосий Красовский закончил в 1900 г. Константиновский межевой институт (теперь МИИГАиК) в Москве, с 1907 г. он стал там преподавать. Возглавлял астрономо-геодезические работы в СССР с 1924 г. по 1930 г. В 1928 г. основал ЦНИИГАиК (Центральный НИИ Геодезии, Аэрофотосъёмки и Картографии) и был его директором по 1930 г., а потом по 1937 г. - директором по науке.В 1928 г. Красовский разработал перспективную программу астрономо-геодезических работ, которая предусматривала построение на территории СССР астрономо-геодезической сети в целях обоснования топографических съёмок и решения научных проблем геодезии, связанных с определением фигуры и размеров Земли. К середине 1970-х этой сетью была покрыта вся территория СССР, а на значительной её части созданы сплошные сети государственной триангуляции, служащей непосредственной основой топографических съёмок и инженерно-геодезических работ. В 1940 г. Красовский и Александр Александрович Изотов определили по результатам измерений эллипсоид, который стал стандартным для геодезических работ в СССР и других странах.
В третьем томе избранных сочинений Ф. Н. Красовского публикуется «Руководство по высшей геодезии», часть I, изданное в 1938 - 1939 гг. в двух выпусках. Комиссия по изданию трудов Ф. Н. Красовского сочла целесообразным объединить эти два выпуска в одной книге для удобства пользования. Феодосий Николаевич Красовский (14(26) сентября 1878 г., Галич, ныне Костромской области - 1 октября 1948 г, Москва) - российский астроном-геодезист, член-корреспондент Академии наук по Отделению математических и естественных наук (геодезия) с 29 января 1939. Под его руководством в 1940 г. были определены размеры земного эллипсоида (эллипсоид Красовского).Краткая биографическая справкаФеодосий Красовский закончил в 1900 г. Константиновский межевой институт (теперь МИИГАиК) в Москве, с 1907 г. он стал там преподавать. Возглавлял астрономо-геодезические работы в СССР с 1924 г. по 1930 г. В 1928 г. основал ЦНИИГАиК (Центральный НИИ Геодезии, Аэрофотосъёмки и Картографии) и был его директором по 1930 г., а потом по 1937 г. - директором по науке.В 1928 г. Красовский разработал перспективную программу астрономо-геодезических работ, которая предусматривала построение на территории СССР астрономо-геодезической сети в целях обоснования топографических съёмок и решения научных проблем геодезии, связанных с определением фигуры и размеров Земли. К середине 1970-х этой сетью была покрыта вся территория СССР, а на значительной её части созданы сплошные сети государственной триангуляции, служащей непосредственной основой топографических съёмок и инженерно-геодезических работ.В 1940 г. Красовский и Александр Александрович Изотов определили по результатам измерений эллипсоид, который стал стандартным для геодезических работ в СССР и других странах.
В настоящем томе избранных сочинений Ф. Н. Красовского помещены труды, посвященные вопросам геодезии, математической картографии, астрономии и картографо-геодезическому образованию, в своем большинстве представляющие статьи, напечатанные в геодезических журналах и сборниках, а также в виде отдельных брошюр. Публикуемые работы подобраны по указанным выше вопросам и расположены в хронологическом порядке. По своему существу и характеру эти работы имеют два направления: первое, - к которому относятся труды, рассматривающие теоретические вопросы, второе, - труды, содержащие соображения о программах и постановке картографо-геодезических работ в нашей стране с соответствующими теоретическими и практическими обоснованиями. Феодосий Николаевич Красовский (14(26) сентября 1878 г., Галич, ныне Костромской области - 1 октября 1948 г, Москва) - российский астроном-геодезист, член-корреспондент Академии наук по Отделению математических и естественных наук (геодезия) с 29 января 1939. Под его руководством в 1940 г. были определены размеры земного эллипсоида (эллипсоид Красовского).Краткая биографическая справкаФеодосий Красовский закончил в 1900 г. Константиновский межевой институт (теперь МИИГАиК) в Москве, с 1907 г. он стал там преподавать. Возглавлял астрономо-геодезические работы в СССР с 1924 г. по 1930 г. В 1928 г. основал ЦНИИГАиК (Центральный НИИ Геодезии, Аэрофотосъёмки и Картографии) и был его директором по 1930 г., а потом по 1937 г. - директором по науке.В 1928 г. Красовский разработал перспективную программу астрономо-геодезических работ, которая предусматривала построение на территории СССР астрономо-геодезической сети в целях обоснования топографических съёмок и решения научных проблем геодезии, связанных с определением фигуры и размеров Земли. К середине 1970-х этой сетью была покрыта вся территория СССР, а на значительной её части созданы сплошные сети государственной триангуляции, служащей непосредственной основой топографических съёмок и инженерно-геодезических работ.В 1940 г. Красовский и Александр Александрович Изотов определили по результатам измерений эллипсоид, который стал стандартным для геодезических работ в СССР и других странах.
Феодосий Николаевич Красовский (14(26) сентября 1878 г., Галич, ныне Костромской области - 1 октября 1948 г, Москва) - российский астроном-геодезист, член-корреспондент Академии наук по Отделению математических и естественных наук (геодезия) с 29 января 1939. Под его руководством в 1940 г. были определены размеры земного эллипсоида (эллипсоид Красовского).Краткая биографическая справкаФеодосий Красовский закончил в 1900 г. Константиновский межевой институт (теперь МИИГАиК) в Москве, с 1907 г. он стал там преподавать. Возглавлял астрономо-геодезические работы в СССР с 1924 г. по 1930 г. В 1928 г. основал ЦНИИГАиК (Центральный НИИ Геодезии, Аэрофотосъёмки и Картографии) и был его директором по 1930 г., а потом по 1937 г. - директором по науке.В 1928 г. Красовский разработал перспективную программу астрономо-геодезических работ, которая предусматривала построение на территории СССР астрономо-геодезической сети в целях обоснования топографических съёмок и решения научных проблем геодезии, связанных с определением фигуры и размеров Земли. К середине 1970-х этой сетью была покрыта вся территория СССР, а на значительной её части созданы сплошные сети государственной триангуляции, служащей непосредственной основой топографических съёмок и инженерно-геодезических работ.В 1940 г. Красовский и Александр Александрович Изотов определили по результатам измерений эллипсоид, который стал стандартным для геодезических работ в СССР и других странах.