Добрый день, Коллеги. Важное сообщение, просьба принять участие. Музей Ферсмана ищет помощь для реставрационных работ в помещении. Подробности по ссылке

Автор(ы):Groves D.I., Noreen M.Vielreicher, Vielreicher R.M.
Издание:PGS Publishing, Linden Park, 2002 г., 9 стр.
Язык(и)Английский
The Phalaborwa (Palabora) deposit and its potential connections to iron-oxide copper-gold depositsof Olympic Dam type

Phalaborwa is the second largest copper mine in the world and the largest in Africa. The orebody is hosted by the Loolekop pipe within the Phalaborwa Complex, and is also mined for magnetite, apatite, vermiculite with a large array of by-products including gold, silver, phosphate, rare earth elements and uranium. The Phalaborwa Complex intruded Archaean basement at the edge of the Kaapvaal Craton in early Proterozoic times (2060±lMa) and consists of concentrically zoned, multiple intrusions which decrease in age from the margin to the core. The outer parts are predominantly clinopyroxenites, which have been variably metasomatised. Younger pegmatoidal pyroxenites intruded at three centres, including Loolekop, where foskcritc and a banded carbonatite were also emplaced, followed by a transgressive carbonatite that intruded as the last magmatic phase along fracture and shear zones. Economic copper mineralisation is hosted predominantly within the transgressive carbonatite as disseminated grains and veinlets of chalcopyrite, with lesser bornite and cubanite. Magnetite is a primary igneous phase in all rocks and is paragenetically earlier than the copper sulphides. The quality and quantity of magnetite is zoned and its distribution is antithetic to that of copper. Ore fluids are high temperature, highly saline, CO,-rich, magmatic-water dominated brines. The Complex and the mineralisation are interpreted to be products of the interaction of multiple pyroxenitic to carbonatitic magmas and their volatiles, which were ultimately derived from decompression melting of metasomatised mantle during extension at a transition from thick Archaean to thinner post-Archaean lithosphere. The orebody at Loolekop has many features including its age, giant size, pipe-like form, low ore grade, minor and major element associations and ore-fluid properties that are consistent with it being a proximal endmember of the widely recognised iron-oxide copper-gold deposit group. As such it helps explain characteristics such as the pipe-like brecciation as well as the common siting of these deposits at craton edges or other lithospheric boundaries.

ТематикаПолезные ископаемые
Автор(ы):Lachlan J.Reynolds
Издание:PGS Publishing, Linden Park, 2002 г., 12 стр.
Язык(и)Английский
Geology of the Olympic Dam Cu-U-Au-Ag-REE deposit

The -1590 Ma Olympic Dam Cu-U-Au-Ag-REE deposit is located in the Stuart Shelf geological province of South Australia, on the eastern margin of the Gawler Craton. The deposit is hosted by the Olympic Dam Breccia Complex, a large hydrothermal breccia system wholly contained within the Roxby Downs Granite, a Proterozoic age granitoid inteipreted to be part of the Hiltaba Suite. Initial hydrothermal activity within the Olympic Dam Breccia Complex was probably localised by structures in a dextral fault jog environment. Subsequent development of the complex involved repetitive and overprinting physical, chemical and volcanic brecciation mechanisms, resulting in a highly variable array of irregularly shaped and distributed breccia zones with widely differing and gradational lithologies. A complex pattern of hydrothermal alteration dominated by hematite and sericite, with lesser chlorite, siderite and quartz is associated with the breccia zones. Mineralisation within the deposit is intimately associated with iron-oxide alteration of the granitoid, which dominantly occurs as hematite, with lesser magnetite at depth and on the periphery of the breccia complex. The principal copper minerals within the deposit show a broad lateral and vertical, hypogene zonation pattern grading from chalcopyrite on the margins to bornite, then chalcocite adjacent to a central barren core. Gold and silver are mainly associated with the copper sulfides, while uranium dominantly occurs in pitchblende disseminated throughout the hematitic breccia zones. Overall, mineralisation grade generally correlates with the degree of hematite alteration and is largely dependent on copper sulfide tenor. Minor brittle faulting post-dates breccia development and appears to have exploited existing anisotropies within the complex. Late-stage fault movements are associated with barite-fluorite vein arrays which overprint the orebody. The deposit formed in a high level volcanic environment, venting to the surface and possibly forming a composite phreatomagmatic eruption crater, which has subsequently been completely eroded. Mafic and felsic dykes intruded the breccia complex, locally producing diatreme structures. Tectonism, hydrothermal activity, dyke intrusion, brecciation, alteration and mineralisation within the system were broadly concurrent and interdependent. Hydrothermal fluids and metals have a dominantly magmatic source, probably associated with the Middle Proterozoic volcano-plutonic event correlated with the Gawler Range Volcanics and Hiltaba Suite intrusives.

ТематикаПолезные ископаемые
МеткиCopper, Gold, Olympic Dam, REE, Stuart Shelf, Uranium
Автор(ы):T.Michael Porter
Издание:PGS Publishing, Linden Park, 2002 г., 3 стр.
Язык(и)Английский
Hydrothermal iron-oxidecopper-gold and related ore deposits / Гидротермальные железо-окисленномедно-золоторудные и связанные с ними месторождения

 

Abstract: Following the discovery of the giant Olympic Dam ore deposit in 1975, a realisation developed that there was an important class of mineral deposits not previously appreciated. It became apparent that this class, the Iron Oxide Copper-Gold deposits, included not only Olympic Dam, but also a number of other known deposits. It also became apparent that this was a class that could produce large, high grade prizes, of the order of 0.25 to 1 billion tonnes of around +1% Cu and 0.5 g/t Au. As a consequence this class has been one of the major targets of the exploration industry over the last decade, resulting in the discovery of further giant orebodies in Australia such as Ernest Henry, and Candelaria, Salobo, Sossego and others in South America.

This class of deposit however, does not represent a single style or a common genetic model, but rather a family of loosely related ores that share a pool of common characteristics. The principal feature they have in common is the abundance of iron oxides that accompany the ore and the intensity of the associated alteration, particularly albitisation and Fe metasomatism. The iron oxides are present as either magnetite or hematite and almost invariably precede the emplacement of the other economic minerals. These deposits are found throughout geologic time, around the globe and in settings from intra-cratonic, to continental margins above subduction zones.

There is a differences of opinion both on the processes involved in their formation, matched by the diversity in styles of mineralisation within the class, as well as which deposits should be included within the family.

The aim of this volume is to bring together a wide range of knowledge, experience and opinion from around the globe to assist in understanding this economically and geologically important family of deposits.

ТематикаПолезные ископаемые
Издание 2, Выпуск 2
Издание:PGS Publishing, Linden Park, 2002 г., 339 стр.
Язык(и)Английский
Hydrothermal iron oxide copper-gold and related deposits. Volume 2 / Медно-золотые месторождения в железистых кварцитах. Часть 2

This preface presents the background to this book, the second volume of the "Hydrothermal Iron Oxide Copper-Gold & Related Deposits - A Global Perspective" series, and briefly discusses the rationale for inviting the papers it contains, their format and what it is hoped the volume will achieve. It also offers some observations on the unifying characteristics of the iron oxide copper-gold family of deposits and what they may represent in a broader context.

The "hydrothermal iron-oxide copper-gold" (IOCG) family and related deposits continue to attract keen interest, both as the subject of academic research and as arguably the most sought after mineral exploration target in the world today.

ТематикаПолезные ископаемые
Издание 2
Издание:PGS Publishing, Linden Park, 2002 г., 321 стр., ISBN: 0-9580574-0-0
Язык(и)Английский
Hydrothermal iron oxide copper-gold and related deposits. Volume 1 / Медно-золотые месторождения в железистых кварцитах

Following the discovery of the giant Olympic Dam ore deposit in 1975, a realisation developed that there was an important class of mineral deposits not previously appreciated. It became apparent that this class, the Iron Oxide Copper-Gold deposits, included not only Olympic Dam, but also a number of other known deposits. It also became apparent that this was a class that could produce large, high grade prizes, of the order of 0.25 to 1 billion tonnes of around +1% Cu and 0.5 g/t Au. As a consequence this class has been one of the major targets of the exploration industry over the last decade, resulting in the discovery of further giant orebodies in Australia such as Ernest Henry, and Candelaria, Salobo, Sossego and others in South America.

ТематикаПолезные ископаемые
Ленты новостей
3591.06