Добрый день, Коллеги. Важное сообщение, просьба принять участие. Музей Ферсмана ищет помощь для реставрационных работ в помещении. Подробности по ссылке
Although it is generally understood that the Antarctic Ice Sheet plays a critical role in the changing global system, there is to date still a lack of generally available information on the subject. Climatic change and the role of the polar areas are often discussed in the media.
For the analysis of spatially distributed data, a fundamental aspect is first considered: can the data be interpolated, or are they of such a type that an interpolation between two values measured at different locations makes no sense?
An introduction to the description, analysis, and modeling of geospatial data and of the resulting uncertainty in the models. Theory and its correct application will be integrated with the use of various software tools (including GIS) and appropriate examples to emphasize the crossdisciplinary applicability of geostatistical analysis and modeling.
Since publication of the first volume of Stochastic Modeling and Geostatistics in 1994, there has been an explosion of interest and activity in geostatistical methods and spatial stochastic modeling techniques. Many of the computational algorithms and methodological approaches that were available then have greatly matured, and new, even better ones have come to the forefront. Advances in computing and increased focus on software commercialization have resulted in improved access to, and usability of, the available tools and techniques. Against this backdrop, Stochastic Modeling and Geostatistics Volume II provides a much-needed update on this important technology. As in the case of the first volume, it largely focuses on applications and case studies from the petroleum and related fields, but it also contains an appropriate mix of the theory and methods developed throughout the past decade. Geologists, petroleum engineers, and other individuals working in the earth and environmental sciences will find Stochastic Modeling and Geostatistics Volume II to be an important addition to their technical information resources.
It is often useful to estimate obscured or missing remotely sensed data. Traditional interpolation methods, such as nearest-neighbor or bilinear resampling, do not take full advantage of the spatial information in the image. An alternative method, a geostatistical technique known as indicator krigingo is described and demonstrated using a Landsat Thematic Mapper image in southern Chiapas, Mexico. The image was first classified into pasture and nonpasture land cover. For each pixel that was obscured by cloud or cloud shadow, the probability that it was pasture was assigned by the algorithm. An exponential omnidirectional variogram model was used to characterize the spatial continuity of the image for use in the kriging algorithm. Assuming a cutoff probability level of 50%, the error was shown to be 17% with no obvious spatial bias but with some tendency to categorize nonpasture as pasture (overestimation). While this is a promising result, the method's practical application in other missing data problems for remotely sensed images will depend on the amount and spatial pattern of the unobscured pixels and missing pixels and the success of the spatial continuity model used. <...>
Geostatistics (also known as kriging) was developed for the mining industry during the 1960s and 1970s to estimate changes in ore grade. The principles of geostatistics are now applied to many applications that require statistically based interpolation techniques. Geostatistics provides a data value estimate for locations that cannot be sampled directly by examining data taken at locations that can be sampled.
Various branches of physics and earth sciences have been studied from the point of view of mathematical morphology and its applications, but for the first time a whole book is devoted to a morphological approach to structural geology. In this sense, it fits in with a long tradition since the two founders of mathematical morphology were both mining engineers.
The Second European Conference on Geostatistics for Environmental Applications took place in Valencia, November 18-20, 1998. Two years have past from the first meeting in Lisbon and the geostatistical community has kept active in the environmental field. In these days of congress inflation, we feel that continuity can only be achieved by ensuring quality in the papers. For this reason, all papers in the book have been reviewed by, at least, two referees, and care has been taken to ensure that the reviewer comments have been incorporated in the final version of the manuscript. We are thankful to the members of the scientific committee for their timely review of the scripts. All in all, there are three keynote papers from experts in soil science, climatology and ecology and 43 contributed papers providing a good indication of the status of geostatistics as applied in the environmental field all over the world. We feel now confident that the geoENV conference series, seeded around a coffee table almost six years ago, will march firmly into the next century. <...>