Добрый день, Коллеги. Важное сообщение, просьба принять участие. Музей Ферсмана ищет помощь для реставрационных работ в помещении. Подробности по ссылке

Поиск по книгам
Автор(ы):Fang X., Lu H., Song Y., Wei S., Yang C., Yang H.
Издание:2018 г., 65 стр.
Язык(и)Английский
Tectonic control, reconstruction and preservation of the Tiegelongnan porphyry and epithermal overprinting Cu (Au) deposit, Central Tibet, China / Тектонический контроль, реконструкция и консервация Тигелонгнанского месторождения порфиров и эпитермальных

Тектонический контроль, реконструкция и консервация тигелонгнанского месторождения порфиров и эпитермальных отложений меди (Au), Центральный Тибет, Китай

 

The newly discovered Tiegelongnan Cu (Au) deposit is a giant porphyry deposit overprinted by a high-sulfidation epithermal deposit in the western part of the Bangong–Nujiang metallogenic belt, Duolong district, central Tibet. It is mainly controlled by the tectonic movement of the Bangong–Nujiang Oceanic Plate (post-subduction extension). After the closure of the Bangong–Nujiang Ocean, porphyry intrusions emplaced at around 121 Ma in the Tiegelongnan area, which might be the result of continental crust thickening and the collision of Qiangtang and Lhasa terranes, based on the crustal radiogenic isotopic signature.

Автор(ы):Hole M.J., LeMasurier W.E.
Издание:Springer-Verlag, 1994 г., 16 стр.
Язык(и)Английский
Tectonic controls on the geochemical composition of Cenozoic, mafic alkaline volcanic rocks from West Antarctica / Тектонический контроль за геохимическим составом кайнозойских щелочных вулканических пород основного состава Западной Антарктиды

Cenozoic, mafic alkaline volcanic rocks throughout West Antarctica (WA) occupy diverse tectonic environments. On the Antarctic Peninsula (AP), late Miocene Pleistocene (7 to < 1 Ma) alkaline basaltic rocks were erupted < 1 to 45 million years after subduction ceased along the Pacific margin of the AP. In Marie Byrd Land (MBL), by contrast, alkaline basaltic volcanism has been semi-continuous from 25-30 Ma to the present, and occurs in the West Antarctic rift system. Together, these Antarctic tectono-magmatic associations are analogous to the Basin and Range, Sierran, and Coast Range batholith provinces.

Автор(ы):Frankel K.L.
Издание:Elsevier, 2013 г., 392 стр.
Язык(и)Английский
Tectonic Geomorphology:A perspective / Тектоническая геоморфология. Перспективы

Tectonic geomorphology is a relatively young subdiscipline of geomorphology. During the past decades, tectonic geo- morphology has developed into several main areas of emphasis including: landscape evolution of active plate margins; mountain building; development of active fault and fold systems; the evolution of passive margins, continental interiors and plateau uplift; volcanic geomorphology; paleoseismology and seismic hazard assessment; and interaction of tectonics, climate change, erosion, and polygenetic landscapes and hazard mitigation. These areas of focus reflect the growth of new studies in tectonics, climate and, Earth surfaces processes, and technological advances such as remote sensing, global positioning systems (GPSs), computers, geochronology, shallow geophysics and geochemistry.

Выпуск 45
Издание:Journal of Asian Earth Sciences, 2012 г., 13 стр.
Язык(и)Английский
Tectonic history of the Irtysh shear zone (NE Kazakhstan): New constraints from zircon U/Pb dating, apatite fission track dating and palaeostress analysis / Тектоническая история Иртышской зоны сдвига (Северо-Восточный Казахстан)

The Irtysh shear zone (ISZ) is an important structure in the framework of the Central Asian Orogenic Belt (CAOB). It represents the site of final collision of Kazakhstan with Siberia during Hercynian times and records up to 1000 km of lateral displacement during subsequent reorganization in the CAOB edifice. We present new zircon U/Pb, apatite fission track and fault kinematic data along the ISZ and consequently derived its tectonic history with emphasis on its formation and reactivation episodes. Carboniferous (340–320 Ma) zircon U/Pb ages were obtained for the syn- and post-collisional Kalba–Narym intrusives, dating their emplacement in the framework of the Siberia–Kazakhstan collision. During this period, the ISZ experienced an ‘early brittle’ left-lateral, mainly transtensional stress regime. Late Carboniferous–Early Permian post-collisional intrusives were emplaced and the stress regime changed to a ‘late brittle regime, characterized by more compressional conditions, indicating rheological strengthening as a response to cessation of ductile shearing and cooling of the ISZ crust. Apatite fission track data and thermal history modeling reveal Late Cretaceous (100–70 Ma) cooling of the ISZ basement rocks as a response to denudation of a bordering Late Mesozoic Altai orogen. After this denudation event, the tectonic activity ceased during the Late Mesozoic–Early Cenozoic. A final step of cooling (from 25 Ma), exhibited by some of the thermal history models, may reflect reactivation of the ISZ and initiation of Cenozoic Altai mountain building. The Late Plio-Pleistocene phase of mountain building coincides with a new change in the Palaeostress field, characterized by minor transpressional, right-lateral shear conditions.

Выпуск 52
Автор(ы):Buslov M.M.
Издание:Russian Geology and Geophysics, 2011 г., 20 стр.
Язык(и)Английский
Tectonics and geodynamics of the Central Asian Foldbelt: the role of Late Paleozoic large-amplitude strike-slip faults

The following structural elements have been recognized to constitute the tectonic demarcation of Central Asian Foldbelt: (1) The Kazakhstan–Baikal composite continent, its basement formed in Vendian–Cambrian as a result of Paleoasian oceanic crust, along with Precambrian microcontinents and Gondwana-type terranes, subduction beneath the southeastern margin of the Siberian continent (western margin in present-day coordinates). The subduction and subsequent collision of microcontinents and terranes with the Kazakhstan–Tuva–Mongolia island arc led to crustal consolidation and formation of the composite-continent basement. In Late Cambrian and Early Ordovician, this continent was separated from Siberia by the Ob’–Zaisan ocean basin. (2) The Vendian and Paleozoic Siberian continental margin complexes comprising the Vendian–Cambrian Kuznetsk–Altai island arc and the rock complexes of Ordovician–Early Devonian passive margin and Devonian to Early Carboniferous active margin. Fragments of Vendian–Early Cambrian oceanic crust represented by ophiolite and paleo-oceanic mounds dominate in the accretionary wedges of island arc. The Gondwana-type continental blocks are absent in western Siberian continental margin complexes and supposedly formed at the convergent boundary of a different ocean, probably, Paleopacific. (3) The Middle–Late Paleozoic Charysh–Terekta–Ulagan–Sayan suture-shear zone separating the continental margin complexes of Siberia and Kazakhstan–Baikal. It is composed of fragments of Cambrian and Early Ordovician oceanic crust of the Ob’–Zaisan basin, Ordovician blueschists and Cambrian–Ordovician turbidites, and Middle Paleozoic metamorphic rocks of shear zones. In the suture zone, the Kazakhstan–Baikal continental masses moved westward along the southeastern margin of Siberia. In Late Devonian and Early Carboniferous, the continents amalgamated to form the North Asian continent. (4) The Late Paleozoic strike-slip faults forming an orogenic collage of terranes, which resulted from Late Devonian to Early Carboniferous collision between Kazakhstan–Baikal and Siberian continents and Late Carboniferous to Permian and Late Permian to Early Triassic collisions between East European Craton and North Asian continent. As a result, the Vendian to Middle Paleozoic accretion-collisional continental margins of Siberia and the entire Kazakhstan–Baikal composite continent became fragmented by large-amplitude (up to a few thousand kilometers) strike-slip faults and conjugate thrusts into several strike-slip terranes, which mixed with each other and thus disrupted the original geodynamic, tectonic, and paleogeographic demarcation.

Редактор(ы):Gao D.
Издание:American Association of Petroleum Geologists, 2022 г., 422 стр., ISBN: 978-0-89181-381-1
Язык(и)Английский
Tectonics and sedimentation  Implications for petroleum systems / Тектоника и седиментация:  Последствия для нефтяных систем

In the past few decades, the petroleum industry has seen great exploration successes in petroliferous sedimentary basins worldwide; however, the net volume of hydrocarbons discovered each year has been declining since the late 1970s, and the number of new field discoveries per year has dropped since the early 1990s. We are finding hydrocarbons in more difficult places and in more subtle traps. Although geophysical and engineering technologies are crucial to much of the exploration success, fundamentally, the success is dependent on innovative play concepts associated with spatial and temporal relationships among deformation, deposition, and hydrocarbon accumulation. <...>

Автор(ы):Clifford T.N.
Издание:Earth and planetary science letters, Amsterdam, 1966 г., 14 стр.
Язык(и)Английский
Tectono-metallogenic units and metallogenic provinces of Africa

When the major mineral deposits of Africa are studied in relation to the structure of the continent, two tectono-metallogenic units emerge, as follows: (a) younger orogens consisting of zones which have suffered orogenesis from time to time during the past ca. 1200 m.y. - characterised by major deposits of Cu, Pb, Zn, Co. Sn, W, Be and Nb-Ta; and (b) older cratons, with a record of older orogenesis but which have remained stable throughout the younger periods of tectonism - characterised by important deposits of Au, Fe, Cr, asbestos and diamond. The more localised metallogenic provinces of ore con­centration within these major units are briefly discussed.

Автор(ы):Zen E-an
Издание:American Geophysical Union, 1989 г., 77 стр., ISBN: 0-87590-560-9
Язык(и)Английский
Tectonostratigraphic terranes in the Northern Appalachians: Their distribution, origin, and age; Evidence for their existence. Guid / Тектоностратиграфия террейнов в Северных Аппалачах: расположение, происхождение и возраст. Свидетельства существования

Evolution of the Appalachian orogen spanned the Paleozoic and Mesozoic Eras. Within the confines of the northern Appalachians of the United States (the New England States - Maine, New Hampshire, Vermont, Massachusetts, Connecticut and Rhode Island - and New York), the sequence of known major Appalachian tectonic events is late Proterozoic rifting of the protoNorth American craton; Ordovician subduction accompanied by destruction of the Iapetus Ocean and by obduction of tectonostratigraphic sequences; Devonian deformation, accretion, plutonism, and metamorphism, of uncertain plate tectonic context but likely related to a continent continentcollision; formation of late Carboniferous transtensive (oblique strikeslip) basins in which coal formed; and late Carboniferous to Permian thermal, plutonic, and metamorphic events. During the Mesozoic, the New England Appalachians underwent crustal extension associated with both alkalic and tholeiitic magmatism. These extensional processes (11-7, V-l)~/ reflect the opening of the North Atlantic Ocean and the creation of a passive margin, which remains today.<...>

Редактор(ы):Leat P.T., Pankhurst R.J., Vaughan A.P.M.
Издание:The Geological Society of London, 2005 г., 454 стр., ISBN: 1-86239-179-3
Язык(и)Английский
Terrane processes at the margins of Gondwana / Террейновые процессы на окраинах Гондваны

The process of terrane accretion is vital to the understanding of the formation of continental crust. Accretionary orogens affect over half of the globe and have a distinctively different evolution to Wilson-type orogens. It is increasingly evident that accretionary orogenesis has played a significant role in the formation of the continents.

Издание 2
Автор(ы):Marchak S.
Издание:De Boeck, 2012 г., 991 стр., ISBN: 978-2-8041-8809-2
Язык(и)Французский
Terre, portrait d'une planete / Земля, портрет планеты
1561.12