Добрый день, Коллеги. Важное сообщение, просьба принять участие. Музей Ферсмана ищет помощь для реставрационных работ в помещении. Подробности по ссылке

Environmental data mining and modeling based on machine learning algorithms and geostatistics / Интеллектуальный анализ и моделирование экологических данных на основе алгоритмов машинного обучения и геостатистики

Автор(ы):Canu S., Maignan M., Parkin R., Pozdnukhov A., Демьянов В.В., Каневский М.Ф., Тимонин В.А.
Издание:2003 г., 11 стр.
Язык(и)Английский
Environmental data mining and modeling based on machine learning algorithms and geostatistics / Интеллектуальный анализ и моделирование экологических данных на основе алгоритмов машинного обучения и геостатистики

The paper presents some contemporary approaches to spatial environmental data analysis. The main topics are concentrated on the decision-oriented problems of environmental spatial data mining and modeling: valorization and representativity of data with the help of exploratory data analysis, spatial predictions, probabilistic and risk mapping, development and application of conditional stochastic simulation models. The innovative part of the paper presents integrated/hybrid model—machine learning (ML) residuals sequential simulations—MLRSS. The models are based on multilayer perceptron and support vector regression ML algorithms used for modeling long-range spatial trends and sequential simulations of the residuals. ML algorithms deliver non-linear solution for the spatial non-stationary problems, which are difficult for geostatistical approach. Geostatistical tools (variography) are used to characterize performance of ML algorithms, by analyzing quality and quantity of the spatially structured information extracted from data with ML algorithms. Sequential simulations provide efficient assessment of uncertainty and spatial variability. Case study from the Chernobyl fallouts illustrates the performance of the proposed model. It is shown that probability mapping, provided by the combination of ML data driven and geostatistical model based approaches, can be efficiently used in decision-making process.. 2003 Elsevier Ltd. All rights reserved <...>

ТематикаГеостатистика, Экология
Скачать
Внимание! Если Вы хотите поделиться с кем-то материалом c этой страницы, используйте вот эту ссылку:
https://www.geokniga.org/books/37418
Прямые ссылки на файлы работать не будут!
1537.39