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...geology contents in geological text books
for compulsory education is not regularly
updated, so new paradigms are included
belatedly (as happened, e.g., with plate
tectonics), and this is one of the reasons why
younger students lag behind in Geosciences.
—Brusi et al. (2016)

Brusi D, Calonge A, Souza E (2016)
Textbooks: A tool to support geosciences
learning. In: Vasconcelos C (ed) Geoscience
education: Indoor and outdoor. Springer,

pp 173-206. ISBN: 978-3-319-43318-0.
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Introduction to Tectonics and Structural m)
Geology: Indian Context e

Soumyajit Mukherjee

1 Summary of Different Chapters

Tectonics and structural geology of Indian terrain is of great interest to the
Government and a number of private exploration agencies that are working pre-
sently. This edited volume aims to meet this requirement. In addition, B.Sc. and M.
Sc. geoscience students undergoing geohistory and/or tectonic courses would
benefit using this book.

This edited volume brings 16 research papers (Chaps. 2—17) from both academia
and industry.

Mukherjee et al. (2019) in Chap. 2 present an exhaustive review on the geology
and the geochronology and of the Chotanagpur Granite Gneissic Complex (CGGC).
They classify the CGGC into three domains, and also comment on the
India-Antarctica reconstruction.

Padmalal et al. (2019) in Chap. 3 perform morphologic dating of the seismo-
genic Allah Bund Fault scarp as 208, 200, and 193 yrs B.P. These dates establish
reliably that those scarps were produced by the 1819 earthquake.

Patil Pillai and Kale (2019) in Chap. 4 detail the sedimentation and the tectonic
histories of the Kaladgi Purana (Proterozoic) basin. The basin in the first stage
underwent sagging. A nested continental sag basin formed afterward.

Babar et al. (2019) in Chap. 5 describe with several field photographs the
deformation features near the basement granites around Degloor (Maharashtra).
They work out the stress regime and the stress axes orientations. One can compare
these findings with the Deccan tectonics as well by going through Misra et al.
(2014, 2015), Misra and Mukherjee (2015, 2017), etc.

S. Mukherjee (<))

Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai
400076, Maharashtra, India

e-mail: smukherjee @iitb.ac.in; soumyajitm@ gmail.com
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In their very detailed review on the Bengal basin, Hossain et al. (2019) in
Chap. 6 present the basic division of this basin, fault distribution, and how these
divisions evolved temporally with or without volcanism.

Goswami and Upadhyay (2019) in Chap. 7 study the structural geology and
geochemistry of the Kadiri schist belt (Cuddapah) and decipher an ocean-continent
subduction tectonics and a volcanic arc setting of the terrain.

Detailed field investigation of the structural geology of the Nallamalai Fold Belt
(Cuddapah) by Tripathy et al. (2019) in Chap. 8 reveals a Pan-African thin-skinned
tectonics, which link with the tectonics of the East Gondwana fragments.

Multi disciplinary geoscientific studies by Mazumder et al. (2019) in Chap. 9
reveal that a number of E trending steeply dipping shear zones pass through the
northern part of the Cauvery Basin that was later reactivated.

Dasgupta (2019) in Chap. 10 reviews the Cauvery basin’s tectonics. Half gra-
bens in its all the three sub basins signify a rift origin of the basin. This article
analyzes the transfer zone geometries from the Cauvery basin that are crucial in
developing hydrocarbon trap conditions.

Misra et al. (2019) in Chap. 11 study the field structural geology of the Ramgarh
impact structure (SE Rajasthan), and especially its fracture patterns. They conclude
that impacting happened at the palaco-channel of the river Parvati.

Dinkar et al. (2019) in Chap. 12 describe in detail field structural geology from
the Lalitpur district (Uttar Pradesh). The notable information are E/ENE trending
axial traces and Proterozoic to Neoproterozoic reactivation plausible in the southern
part of the study area.

Singh and Awasthi (2019) in Chap. 13 discuss the tectonics of the Kangra region
(Himachal Pradesh), which is presumably devoid of any weak layer below itself.
Overpressure condition at depth possibly due to fluid activity had helped to
propagate this crustal wedge towards the foreland side.

Kumar et al. (2019a) in Chap. 14 describe from the field along with attractive
photographs the damage zone associated with the Munsiari Thrust, a strand of the
Main Central Thrust, from the Mandakini river section, Higher Himalaya. The
authors document more landslides from the damage zone and perform engineering
geological studies from such zones.

Mahato et al. (2019) in Chap. 15 perform detailed field studies from the
Mussoorie syncline and the nearby regions from the Uttarakhand Lesser Himalaya.
Top-to-N/NE back shear and Himalayan arc-parallel shears (such as top-to-NW) are
the new meso scale findings in this work.

Banerjee et al. (2019) in Chap. 16 too document orogen-parallel shear from the
Darjeeling Group of rocks from the Sikkim Lesser Himalaya. A more detail work
from the same research group has been submitted in a journal where such defor-
mation is reported from the Siwalik Himalaya (Dutta et al. submitted).

Kumar et al. (2019b) in Chap. 17 discuss the database of lead (Pb) content in the
Indian Gondwana coal (*°’Pb/*°® Pb = 0.7150-0.8845; 2°5Pb/*°® Pb = 1.9484—
2.2231; Pb concentration = 3.2-566 mg kg~ '). This study will have a far-reaching
implication in India-Antarctica plate reconstruction.
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Readers without any instructors, especially students (in some unfortunate cases),
are requested to go through few recent books on structural geological and tectonic
principles and Indian case studies (e.g., Sharma 2010; Mukherjee 2013a, b, 2014,
2015a, b; Mukherjee et al. 2017; Mukherjee and Mulchrone 2015; Mukherjee et al.
2015, 2017; Valdiya 2016; Bose and Mukherjee 2017; Dasgupta and Mukherjee
2017; Chetty 2018; Misra and Mukherjee 2018; Roy and Purohit 2018; Acharyya,
in press) before going through this book.

Refer this book as follows:

e Mukherjee S (2019) Tectonics and Structural Geology: Indian Context.
Springer International Publishing AG, Cham. ISBN 978-3-319-99340-9.
pp. 1-455.

Refer individual chapters of this book as follows:

e Banerjee S, Bose N, Mukherjee S (2019) Field structural geological studies
around Kurseong, Darjeeling-Sikkim Himalaya, India. In: Mukherjee S
(ed) Tectonics and Structural Geology: Indian context. Springer International
Publishing AG, Cham. ISBN 978-3-319-99340-9. pp. 425-440.
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Proterozoic Crustal Evolution ®)
of the Chotanagpur Granite Gneissic Shmes
Complex, Jharkhand-Bihar-West

Bengal, India: Current Status

and Future Prospect

Subham Mukherjee, Anindita Dey, Sanjoy Sanyal and Pulak Sengupta

1 Introduction

We presently believe that the continental crust grew episodically and that smaller
continents were united and disintegrated several times in the past ~4000 Ma
(Hoffmann 1989; Rogers 1996). This process of plate jostling and its subsequent
destruction, commonly termed as ‘supercontinental cycle’, eventually controls the
harmonic interactions among lithosphere, hydrosphere and atmosphere over geo-
logical time (Worsley et al. 1985, 1986; Piper 2013). The antiquity and the
petrological diversity of the rocks in the Indian shield offer unique opportunity to
configure the supercontinents that existed in the geological past (Acharyya 2003;
Meert et al. 2010). One of the outstanding and hotly debated problems is the
position of the Indian shield in the proposed Precambrian supercontinents in general
and timing of suturing of India and east Antarctica in particular (Torsvik et al. 2001;
Dasgupta and Sengupta 2003; Pisarevsky et al. 2003; Bhowmik et al. 2012). With
regard to the latter, two competing views exist. One view is India and Antarctica
were united at least from ~ 1000 Ma (Hoffmann 1989; Dalziel 1991; Li et al.
2008). The disclaimers of this view propose that the two continents got juxtaposed
not earlier than ~900 Ma (Bhowmik et al. 2012) if not after ~750 Ma (Merdith
et al. 2017; Torsvik et al. 2001). In the reconstructed Rodinia, a Proterozoic
supercontinent, the CGGC and the Eastern Ghats Mobile Belt juxtaposed against
the east Antarctic Precambrian basement (Dasgupta and Sengupta 2003; Chatterjee
et al. 2010; Mukherjee et al. 2017a). Therefore, rocks of these two areas of the
Indian shield are likely to provide the clinching evidence about the timing of
Indo-Antarctic suturing.

Till the end of twentieth century, limited petrological information and rudi-
mentary geochronological data were available from the CGGC that is positioned

S. Mukherjee - A. Dey - S. Sanyal - P. Sengupta (D<)
Department of Geological Sciences, Jadavpur University, Kolkata 700032, India
e-mail: pulaksg@gmail.com
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against the Precambrian Vestfold block of east Antarctica in the reconstructed
Rodinia (Fig. 1). In the past one decade several studies in the light of modern
petrology and robust geochronology have been published. In this work we have
reviewed the published information on the CGGC with the following aims:

(1) To establish an event stratigraphy showing the magmatic and tectonic pulses
that shaped the rocks of the CGGC during the Precambrian Era

(2) Comparisons of the thermo-tectonic pulses that are recorded in the CGGC with
the adjoining crustal domains in the Indian shield

(3) Influence of the Precambrian supercontinental cycles on the CGGC

(4) Timing of amalgamation of the Indo-Antarctic landmasses

(5) To delineate the gaps in knowledge and scope of future study.

2 Extent and the Boundary Relations

The CGGC is an east-west trending mobile belt that belongs to the east Indian
Shield and is exposed across the states of Jharkhand, Bihar, West Bengal and
Chhattisgarh covering an area of over 100,000 km? (reviewed in Mahadevan 2002;
Acharyya 2003). The northern margin of the CGGC is covered by quaternary
sediments of Gangetic alluvium (Fig. 2a). Sediments of the Bengal Basin mark the
eastern boundary of the terrain and Mesozoic volcanics of Rajmahal Trap covers
the northeastern fringe of the terrain. The western margin of CGGC is dominantly
covered by Gondwana deposits of Permian to mid-Cretaceous age (Mahadevan
2002). However, in the northwestern part Vindhyan sediments and the Mahakoshal
group of rocks are in contact with the Proterozoic rocks of the CGGC. Towards the
south the contact between CGGC and Proterozoic rocks of the North Singhbhum
Fold Belt (NSFB) is marked by the east-west trending crustal scale shear zone
called the South Purulia Shear Zone (SPSZ) or the Tamar-Porapahar-Khatra Shear
zone.

3 Classification of the CGGC on the Basis of Extant
Petrological and Geochronological Data

Scarcity of detail petrological, lithological and geochronological data is the major
hindrance for a reasonable classification of the CGGC. Scattered distribution of
exposures, owing to tropical weathering and urbanization, further complicate the
problem. In earlier studies (Mahadevan 2002; Sanyal and Sengupta 2012), the CGGC
were divided into five N-S blocks (Fig. 2b). They considered the Chotanagpur pla-
teau and the Gondwana deposits (Permian-mid Cretaceous) as the basis of classifi-
cation. The authors of this communication are of the view that Precambrian CGGC
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«Fig. 2 a Geological map of the Chotanagpur Granite Gneiss Complex (CGGC) and the showing
major domains (modified after Acharyya 2003). EITZ: Eastern Indian Tectonic Zone, NPSZ:
North Purulia Shear Zone, SPSZ: South Purulia Shear Zone, RT: Rajmahal Trap. b Geological
map of the Chotanagpur Granite Gneiss Complex (CGGC) showing five subdivisions proposed by
Mahadevan (2002) and Sanyal and Sengupta (2012), modified after Sanyal and Sengupta (2012)

should not be divided using geomorphic feature of younger sedimentary rocks of
Gondwana.

In the past few years, a large amount of petrological and geochronological
information has been published on the rocks of the CGGC. Integrating all these
information the CGGC has been divided into three roughly east-west domains each
with characteristics lithology, metamorphic history and geochronological infor-
mation. Each of the domains has broadly E-W trend and their disposition from
south to north, are Domain I, Domain II and Domain III (Fig. 2a). The CGGC is
dissected by three major lineaments (Fig. 2a). The South Purulia Shear Zone
(SPSZ) and Monghyr-Saharsa Ridge Fault roughly coincide with the southern and
northern boundaries of the CGGC respectively. The lineament, that bound the
exposure of Gondwana deposits of Damudar valley run through the Domain I of the
CGGC (Mandal 2016) and hereafter termed as Gondwana Boundary Faults (GBF;
Fig. 2a). Using the GBF as a marker, Domain I is further divided into two geo-
graphic sub-domains viz. Domain IA (south) and IB (north). No major lithological/
geochronological break has been noted across the GBF. The subdivision of
Domain I only help synthesize the published geological and geochronological data.
No tectonic lineament separate Domain II from the adjoining Domain III and
Domain I. Preponderance of mica-bearing pegmatite intrusive (the Bihar Mica Belt;
BMB) make Domain II a distinct lithounit (Fig. 2a).

It may be mentioned here that intra- and inter-domain correlation of the meta-
morphic and structural events are fraught with following problems:

(a) The areas from where the geological information is available are not continuous
and scattered over large areas of the CGGC. Practically no information is
available from a vast expanse of the CGGC.

(b) Lack of precise geochronological data renders correlation of geological events
reported from different parts of the CGGC difficult.

Nevertheless, the salient lithological, structural, petrological and geochrono-
logical features as reported in the published work from the three domains are
presented.

3.1 Domain IA

This domain covers rocks exposed in the southernmost part of the CGGC and is bounded
by GBF and the SPSZ (Fig. 2a). The geological information albeit sparse, clusters
around the Bankura-Saltora-Bero area in the east, the Raghunathpur-Adra-Ranchi areas
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in the central part and Raikera-Kunkuri region in the western part of the domain (Fig. 2a).
Petrology and geochronology of the rocks exposed around Bankura-Saltora-Bero—have
been extensively studied by several workers (Manna and Sen 1974; Roy 1977,
Bhattacharyya and Mukherjee 1987; Sen and Bhattacharya 1993; Mukherjee et al. 2005;
Chatterjee et al. 2008; Maji et al. 2008), which reveals that variably deformed migmatitic
felsic orthogneisses, holding dismembered rafts of mafic granulite and calc-silicate
gneisses is the dominant rocktype intruded by massif type anorthositic rocks (Bengal
anorthosite). Metamorphic grade varies from amphibolite to granulite grade conditions.
Documentation of granulite and amphibolite facies rocks mostly coming from the eastern
and the western part of the domain respectively (Karmaker et al. 2011; Goswami and
Bhattacharya 2010, 2013; Maji et al. 2008; Chatterjee et al. 2008; Sanyal and Sengupta
2012). However the published information does not support any systemic variation in the
estimated metamorphic conditions along any geographic direction. The rocks in this
region are folded to east-west closing folds and an E-W trending axial planar fabric
dipping steeply towards north (Maji et al. 2008).

In the easternmost parts, near Bero-Saltora-Santuri, high grade metapelitic rocks
and migmatitic quartzofeldspathic rocks are exposed. Three deformation (D,_3)
phases accompanied by four metamorphic events (M;_4) have been inferred from
the area by Maji et al. (2008). Earliest tectonothermal event (M), considered to be
of granulite grade (minimum P-T estimates of 5-6 kbar and 750-850 °C), pro-
duced the migmatitic banding of the orthogneisses (S;) (Sen and Bhattacharya
1993; Maji et al. 2008) and occurred at ca. 1.70 Ga, inferred from chemical dating
of monazite (Chatterjee et al. 2010). Both the subsequent deformations (D,_3)
occurred under amphibolite facies (M,_3) between 1.3 and 1.1 Ga and replaces the
older granulite mineralogy to variable extant (Maji et al. 2008). Towards the eastern
fringe of the domain, near Saltora (West Bengal) (Fig. 2a) intrusion of massif
anorthosite, called the Bengal anorthosite, occurred at ca. 1.55 Ga between the D,
and D, (Bhattacharyya and Mukherjee 1987; Chatterjee et al. 2008; Maji et al.
2008). The most pervasive metamorphic event is inferred to have occurred between
1.0 and 0.95 Ga, that has been designated as M4 by Maji et al. (2008). However the
P-T conditions of the event is debated. Maji et al.(2008) inferred that the meta-
moprhism culminated at 650 £ 50 °C at 4-5 kbar whereas Chatterjee et al. (2008)
recovered a high grade conditions (850-900 °C and 8.5-11 kbar) from gabbro
anorthositic rocks. Near Kankarkiari (West Bengal), migmatitic felsic orthogneisses
has been intruded by nepheline-bearing syenite and subsequently got deformed and
metamorphosed (Das et al. 2016; Goswami and Bhattacharyya 2010). No
geochronological data is available to constrain this tectonothermal event experi-
enced by the syenitic rocks. However, field observations suggest that they have
intruded after the Grenvillian metamorphic event and subsequently got deformed
and metamorphosed under amphibolite grade yielding a P-T condition of
700-750 °C and ~ 10 kbar, associated with development of foliation and folding
(Das et al. 2016). Younger Neoproterozoic ages (ca. 900-820 Ma) recovered from
the overgrowths on older monazite grains have been documented by several
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workers (Maji et al. 2008; Chatterjee et al. 2010), which further attest for the Late
Tonian—Early Cryogenian tectonothermal event. One of the source of heating could
be deformation itself (Mukherjee and Mulchrone 2013; Mulchrone and Mukherjee
2015, 2016; Mukherjee 2017).

The area around Raghunathpur (West Bengal), west of Bero, reveals an
ensemble of different generations of felsic orthogneisses (porphyritic and deformed
granitoids), metapelitic and calcareous enclaves (Dunn 1929; Baidya et al. 1987,
1989; Ray Barman and Bishui 1994; Goswami and Bhattacharyya 2010, 2013;
Karmakar et al. 2011). Three major deformational events (D;-D3) have been
identified from the area associated with two major metamorphic phases (M;-M,).
Non-porphyritic granite intrusion occurred at 1178 £ 61 Ma (Rb—Sr whole rock
isochron, Ray Barman and Bishui 1994) and is synchronous with development of
S; during D; (Goswami and Bhattacharyya 2010). A porphyritic charnockite that
was emplaced prior to D, shows a Rb—Sr whole rock age of 1071 £ 64 Ma (Ray
Barman and Bishui 1994; Goswami and Bhattacharya 2010). These porphyritic
granites have been geochemically classified as Shoshonitic to high K-calc alkalic
intrusives that were formed via mixing of mantle-derived mafic magma and crustal
melts followed by fractional crystallization in continent-continent collisional set-
tings (Goswami and Bhattacharyya 2013). Towards the southeast of Raghunathpur,
near Adra (West Bengal), migmatitic quartzofeldspathic gneiss contains enclave of
Mg—Al granulite and mafic granulites. Chemical ages of monazite from these Mg—
Al pelite and migmatitic gneiss indicate that the most pervasive and prominent
tectonothermal event of the area occurred between ca. 990-940 Ma that culminated
at ~870 °C and 11 kbar pressure followed by a steeply decompressive path
(Karmakar et al. 2011). Goswami and Bhattacharyya (2010) determined a similar
temperature (~ 800 °C) but lower pressure (6.5-7.5 kbar) and argued that M,
spanned over during both D; and D,. Youngest monazite age population of ca.
850-775 Ma recovered by Karmakar et al. (2011) are consistent with the
Neoproterozoic dates (870 + 40 Ma: K—Ar biotite of porphyritic granite and
810 + 40 Ma: K—Ar muscovite of leucogranite) reported by Baidya et al. (1987)
from the western part of the area near Jaipur, West Bengal. Although petrological
manifestations are lacking, the youngest age clusters presumably constrains the
third tectonothermal event (Dj).

Litho-package exposed in the south-central of the terrain, south of Ranchi,
resembles rocktypes of the eastern part, containing garnetiferous migmatitic felsic
gneiss, pelitic schist and minor calc-silicate bodies that have been intruded by
porphyritic granite (Sarkar and Jha 1985; Rekha et al. 2011). Zircon and monazite
geochronological studies of both the older migmatitic gneiss and metapelite reveals
Neoproterozoic ages (944 + 9 and 921 £ 18 Ma), inferred to be metamorphic,
whereas younger granites yield an emplacement age of 928 + 23 Ma with older
inherited components of 1072 £ 17 and 1239 £+ 66 Ma (Rekha et al. 2011).

At the south-western part of the terrain, near Raikera—Kunkuri region
(Chhattisgarh), different generation of granite bodies are associated with pelitic
schist (with chlorite, biotite and hornblende schist), quartzite and dolerite
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dykes/sills (Singh and Krishna 2009). Two-mica bearing grey granites, derived
from juvenile crustal sources (StI ~ 0.7047 and low high field strength elements),
intruded the crust at 1005 £ 51 Ma (Singh and Krishna 2009). On the other hand,
younger Rb—Sr isochron age of 815 4 47 Ma and high Srl (0.7539) determined
from the pink granite are inferred to be the late metasomatic event associated with
the Y-mineralization in the area (Singh and Krishna 2009).

3.2 Domain IB

The E-W trending Domain IB is sandwiched between GBF and Domain II
(Fig. 2a). From east to west, the geological information from this domain in con-
centrated around the cities named Masanjor, Dumka, Deoghar, Jasidih, and
Daltonganj. Amongst them, most of the granulite grade enclave rocks are exposed
around Masanjor, Dumka and Deoghar in Jharkhand (Mahadevan 2002). The
general lithology of the domain is felsic gneiss of varied mineralogy and compo-
sition which suffered granulite grade metamorphism and anatexis. Variably meta-
morphosed gneisses and schists of supracrustals and basic rocks occur as enclaves
within the felsic gneiss. The general strike of the domain is E-W to NW-SE except
its northeastern part where the strike becomes N-S. At least three stages of folding
has been identified by different workers (Ghosh and Sengupta 1999; Sanyal and
Sengupta 2012; Mukherjee et al. 2017a; Dey et al. under review a; Dey et al. under
review b) throughout the domain.

The eastern extremity of this domain (in and around Masanjor and Dumka) exposes
gneisses of variable composition. Migmatitic felsic gneiss constitutes the dominant rock
type of this area. Compositionally it varies from migmatitic charnockite (orthopyrox-
ene + K-feldspar + plagioclase + quartz + garnet + ilmenite) to amphibole-biotite
gneiss (amphibole + biotite + K-feldspar + plagioclase + quartz + garnet + ilmenite).
Based on the on-going study of the authors it is presumed that the latter is the retro-
gressed counterpart of the former. Using unpublished U-Pb zircon dates of Ray
Barman, Acharyya (2003) constrained the protolith ages of the migmatitic
charnockite to be 1624 £ 5 Ma. The host migmatitic felsic gneiss contains rafts/
enclaves of khondalite (quartz + K-feldspar + plagioclase + sillimanite + garnet +
ilmenite), Mg—Al granulite (orthopyroxene + sapphirine + spinel + sillimanite +
quartz + perthite + plagioclase + garnet + ilmenite + biotite + cordierite),  calc-
silicates  (clinopyroxene + garnet + quartz + sphene + K-feldspar + plagioclase)
and mafic granulite (plagioclase + clinopyroxene + garnet + hornblende + il-
menite + titanite). A large body of porphyritic charnockite (quartz + K-feldspar +
plagioclase + orthopyroxene + clinopyroxene + garnet + hornblende + ilmenite +
biotite + magnetite) intruded the host felsic gneiss and contains enclaves of the rocks
it intruded. From mutual field relations between the litho-units, three stages of
deformation have been established for the country rock (Mukherjee et al. 2017a;
Dey et al. under review a; Sanyal and Sengupta 2012). The enclave rocks developed a
gneissic banding that predates the foliation of the migmatitic felsic gneiss, formed
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during D,. The foliation in the host gneiss represents the dominant foliation of the
area and strikes E-W. They refolded during subsequent D, and D3 deformation
(Sanyal and Sengupta 2012). Protolith of porphyritic charnockite emplaced in
between D; and D, at 1515 4+ 5 Ma (Acharyya 2003). A swarm of mafic dykes
(plagioclase + amphibole + clinopyroxene + chlorite + epidote + calcite + quartz
+ ilmenite) cut across the foliation of host gneiss but is folded by open D5 folds. The
Mg—Al granulitic enclave rocks develop a mineral assemblage of aluminous (7 wt%
Al,0O;) orthopyroxene + magnetite-hercynite + sillimanite +quartz + garnet + melt
which is a good indicator of ultrahigh-temperature metamorphism (>900 °C) at a
pressure in excess of ~8 kbar (Sanyal and Sengupta 2012). From conventional
geothermobarometry of the mafic enclaves, Sanyal and Sengupta (2012) has obtained
distinctly lower temperatures 825-850 °C at 8-9 kbar indicating subsequent cooling
followed by the UHT metamorphism. Geothermobarometry of the porphyritic
charnockite constrain the conditions of M; metamorphism synchronous to Dj, at
700 £+ 50 °C and 6.5 + 1 kbar (Sanyal and Sengupta 2012).

Maximum petrological and geochronological information is available from
further north-west, in between Dumka and Deoghar town (Jharkhand); especially
from northern part of Dumka. The country rock of felsic orthogneiss hosts km to cm
scale rafts of pelitic rocks (garnet-sillimanite-biotite-K-feldspar-plagioclase-
quartz £ spinel), mafic rocks (plagioclase + clinopyroxene + orthopyrox-
ene + garnet + hornblende + ilmenite + rutile), calc silicates (clinopyroxene +
plagioclase + titanite &+ garnet £ amphibole =+ scapolite + calcite), granulites
and augen gneisses (K-feldspar + plagioclase + quartz + biotite + hornblende
+ apatite). Mineralogically the host gneiss varies from charnockitic
(orthopyroxene + clinopyroxene + garnet + plagioclase + K-feldspar + quartz +
hornblende + biotite + ilmenite) to biotite-hornblende gneiss to hornblende-biotite
gneiss  (garnet + plagioclase + K-feldspar + quartz +hornblende + biotite + il-
menite) (Mukherjee et al. 2017a). Geochemical and isotopic studies of the host
felsic gneiss confirm that they have a ferroan (A type) character (Mukherjee et al.
2017a, 2018). The ortho-gneisses show a prominent N-S trending migmatitic
banding and this regional fabric locally swerves around the enclaves. The pelitic
enclaves contain voluminous (>30%) leucosomal segregations (S;; Fig. 3a). The S,
which are discordant to and are dragged to parallelism with the pervasive foliation
(S,) of the host felsic gneiss (Fig. 3a). Numerical modelling with appropriate bulk
for the metapelites constrain an early high grade event M; occurred at 7 &= 1 kbar
and 1000 £ 50 °C i.e. at MP (medium pressure)-UHT condition which generated
voluminous S; leucosomal foliation (Dey et al. under review, a). This event was
followed by another metamorphism whereby the felsic orthogneisses and the
meta-sedimentary gneisses developed a prominent migmatitic foliation that are
currently ~N-S trending. Numerical modelling combined with conventional
geo-thermobarometry of the host gneiss as well as the pelitic enclaves constrain the
peak of this metamorphism at 770 £ 50 °C and 9 &£ 1 kbar (Dey et al. under
review, a; Chatterjee et al. 2008; Mukherjee et al. 2017a). However, petrological
study of a suite of mafic enclave reveals much higher pressure (12 £ 1 kbar and
800 % 50 °C) for the same (Dey et al. under review, b). In all these studies
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Fig. 3 a Internal foliation (S;) of metapelitic enclaves and external foliation (S,) within host felsic
gneisses; b folding of S,, designated by coarse leucosomes, and development of axial planar S
within felsic orthogneiss; ¢ folding of the mafic dyke during D, and d development of S5 along the
axial planes of folded mafic dyke

this HP-MT metamorphism was followed by a steep decompressive path indicating
that the peak condition was attained through a continent-continent collisional event.
Towards the western part of this domain, in a stretch from Dumka to Jasidihi
(Jharkhand) (Fig. 2a), a swarm of mafic dykes (now amphibolites with orthopy-
roxene + clinopyroxene + hornblende + biotite + plagioclase + titanite + quartz)

occur within the felsic orthogneiss (Fig. 3¢). The mafic dykes cut the S, fabric of
the host felsic orthogneiss. Along with S,, the mafic dykes are folded by two sets of
co-axial folds with N-S closure (D3; Ghosh and Sengupta 1999; Ray et al. 2011a, b;
Mukherjee et al. 2017a; Dey et al. under review a; Dey et al. under review b).
A prominent N-S trending planar fabric (S;3) that is defined by hornblende devel-
oped along the axial plane of the earliest fold (Ghosh and Sengupta 1999; Sanyal
and Sengupta 2012; Mukherjee et al. 2017a). Locally S; is folded by an open fold
with nearly vertical axial plane (Ghosh and Sengupta 1999; Sanyal and Sengupta
2012; Mukherjee et al. 2017a). Deformation and metamorphism of the mafic dykes
and their host felsic gneiss (M3-D3) mark the latest major tectonothermal event of
Domain I. The host felsic gneiss and the metapelitic granulite enclave recorded a



Proterozoic Crustal Evolution of the Chotanagpur Granite ... 17

P-T of 7.3 £ 0.1 kbar, 615 + 15 °C and 4.3 £ 0.7 kbar, 600 + 60 °C, respec-
tively for this metamorphism (Dey et al. under review, a). Bhattacharjee et al.
(2012) reported a gabbro-anorthosite body (Hizla anorthosite) near Dumka area,
Jharkhand. This anorthosite body intruded the charnockitic country rock and is
deformed and metamorphosed along with the latter rock. These rocks that are likely
to be the product of D,-M, tectonothermal event recorded an unusually wide range
of pressure and temperature of (511-915 °C and 5.0-7.5 kbar) for the metamor-
phism of the anorthosite (Bhattacharjee et al. 2012). The published petrological
information is not robust enough for draw any conclusion about this wide range of
metamorphic P-T values. Multiple generations of pegmatitic veins criss-cross all
the lithounits. No structural data on the orientation of these veins are available.
Eastern margin of the Domain I is marked by a highly tectonized N- to NNE-zone
shear deformation. Shear driven non-cylindrical folds (D,-Dj; fold interference) has
been described by Chatterjee et al. (2010). This tectonic zone is termed as the
Eastern Indian Tectonic Zone (EITZ; Chatterjee et al. 2010). A linear gravity high
follows the trend of EITZ over a length of approximately 400 km (Singh et al.
2004). From a quartzo-feldspathic gneiss from northern part of Dumka, Chatterjee
et al. (2010) has quantified the peak conditions of the shearing and anatexis along
EITZ at ~ 11 kbar and <800 °C followed by isothermal decompression.

U-Pb zircon and monazite age of the metapelitic enclaves attests the age of M;
metamorphism at 1630 &= 50 Ma (Dey et al. under review, a). Similar
Paleoproterozoic metamorphic ages has also been obtained by Rekha et al. (2011)
and by Chatterjee et al. (2010) from metapelites and anatectic quartzofeldspathic
gneiss near Dumka. From detrital zircon study of the metapelitic enclaves, Dey
et al. (2017) has constrained the age of deposition of the sedimentary protoliths of
these enclaves within 1700-1680 Ma and has ascribed that the sediments were
derived from Archean and Paleoproterozoic sources (Rekha et al. 2011; Dey et al.
2017). The protolith of the felsic orthogneiss was derived via high temperature
partial melting of Paleoproterozoic crustal source (~ 1800-1600 Ma) with limited
mantle input (Lu—Hf model age: Mukherjee et al. 2018) and was presumably
emplaced in a continental rift setting at ~ 1450 Ma (U-Pb zircon dating;
Mukherjee et al. 2017a, 2018). Mesoproterozoic dates have also been reported from
U-Pb dating of zircon from metapelites and anatectic quartzofeldspathic gneiss in
this domain (Rekha et al. 2011; Dey et al. under review, a). Rb—Sr whole-rock date
the emplacement of a syenitic rock (1457 + 63 Ma) and a charnockite
(1331 £+ 125 Ma) in Dumka-Jamua, Jharkhand area of Jharkhand (Ray Barman
et al. 1994). U-Pb zircon and Th—U-Pb monazite age constrained the age of the
granulite grade metamorphism at ~ 1000-930 Ma (Dey et al. under review, a;
Chatterjee et al. 2008, 2010; Rekha et al. 2011; Mukherjee et al. 2017a). Chatterjee
et al. (2010) has retrieved a younger age population of ~870-650 Ma from the
monazite dates, which they linked with the tectonothermal activity and sinistral
shearing along the EITZ. Zircon and monazite from metapelite and felsic gneiss
yield ages for D3 and M3, ranging within 900-800 Ma (Chatterjee et al. 2010;
Dey et al. under review, a; Mukherjee et al. 2017a) with very few ages as low
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as ~650 Ma (Chatterjee et al. 2010). These age of the D; deformation of the area
have been correlated with the age duration of shearing along the EITZ.

Not much geological and geochronological information are available from fur-
ther west of Jasidih, in and around Dhanbadand and Hazaribag (Jharkhand). It is
noteworthy that the strike of the schists and gneisses of these areas varies between
E-W to NW-SE. Parts of the Dhanbad district (Jharkhand) exposes banded gneisses
of amphibolite facies (Roy Chowdhury 1979) with enclaves of hornblende schists
and gneisses, olivine-orthopyroxene bearing metanorites and quartzites. The rocks
folded thrice with development of E-W to NW-SE trending foliation axial planar to
the second generation folding (Sarangi and Mohanty 1998).

Further west, near Hazaribagh (Jharkhand), amphibolites, pelitic and calcareous
rocks dominate with a persistent E-W trending schistosity. The rocks have also
been folded thrice with first two folds being tight and coaxial, and the last one being
open warp (Roy Chowdhury 1979; Mahadevan 2002). The whole rock Rb-Sr
isochron date of biotite-K-feldspar from a migmatite record one of the youngest
ages (481 + 18 Ma; Pandey et al. 1986b).

The area around Daltonganj (Jharkhand) exposes granite gneisses and migma-
tites interbanded with Graphite-bearing pelitic schists, limestones, quartzites and
intruded by mafic-ultramafic, anorthositic-komatiitic rocks (Bhattacharya et al.
2010). These ultramafic rocks host magnetite (Ghose 1983; Sinha and Bhattacharya
1995), fluorite (Soni et al. 1991) and base metal mineralization (Ghose 1992;
Bhattacharya et al. 2010). Thermometry of granite gneiss confirms that the gneissic
foliation formed under high grade condition (850-800 °C; Chatterjee and Ghosh
2011). The granite gneisses are intruded by non-foliated granitic to granodioritic
rocks (Rode, 1948; Ghose 1983; Mazumdar 1988). Anatexis of granulite to form
leucogranite, and partial melting of metapelite forming these non-foliated granitoids
probably occurred at 650-800 °C and 2-6 kbar (Srivastava and Ghose 1992).
Whole-rock Rb—Sr dating of the granite gneiss suggests an event of granitic
magmatism at 1741 + 65 Ma (Ray Barman and Bishui 1994) followed by high
grade metamorphism and anatexis. Chatterjee and Ghosh (2011) has dated this high
grade metamorphism from xenotime at 975 + 67 Ma. The granite gneiss and
metapelitic sequence deformed thrice (D,-D3) (Lahiri and Das 1984; Patel 2007).
Interference of D; and D, produced NW-SE trending domal structure with devel-
opment of prominent axial planar schistosity. Post-D3 pegmatite veins and mafic
dykes are common in the area. In the Tatapani area, the calc-silicate rocks develop
the rare assemblage vesuvianite + grossular garnet + diopside + wollastonite +
quartz. Patel (2007) estimated the conditions of vesuvianite formation at <4 kbar
and 590-650 °C in presence of a highly aqueous fluid.

3.3 Domain II

Sandwiched between Domain III (in the north) and GBF (in the south), this domain
is the ENE-WSW trending the Bihar Mica belt (BMB) exposes a distinct
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lithological ensemble in the CGGC (Fig. 2a). The geological formation in this belt
include meta-sedimentary sequence dominantly constituting muscovite-biotite
schist interbedded with micaceous quartzites, conglomerates, calc-silicate rocks
and hornblende schists. The carbonate metasediments are occasionally found
associated with economic grade base-metal mineralization (Ghose 1992). These
metasedimentary rocks of BMB rest on the high grade rocks of CGGC with an
erosional conglomerate base (Ghose and Mukherjee 2000). The Pb/Pb age of galena
from base-metal deposits brackets the sedimentation age in the BMB within the
time span of 1700-1650 Ma (Singh et al. 2001). Rb—Sr whole rock dating of a
migmatitic granite gneissic basement from south of BMB yields an age of
1717 £ 102 Ma (Mallik et al. 1991). The meta-sedimentary package recorded three
phases of folding (D, D, and Dj3), where first two folds are most dominant and
produce E-W trending axial planar foliation while the third fold is weak and less
pervasive. The whole litho-unit is extensively intruded by large bodies of granitoid
rocks, dolerite dykes, gabbro anorthosite and mica pegmatites (sometimes REE and
rare metal rich). Granitoids were emplaced syn- to post-D, folding with ages of
most of the granite intrusives clustering within 1300-1100 Ma and age of oldest
granite intrusion around 1600 Ma (Whole-rock and Rb—Sr mineral isochron ages;
Pandey et al. 1986a; Misra and Dey 2002). K—Ar dating of granitoids yields lower
ages (1080-850 Ma) (Sarkar 1980). The BMB plutons characteristically show very
high SrlI ratio which suggests their derivation from sialic crustal sources (Misra and
Dey, 2002). Different generations of mica-bearing granite—pegmatites emplaced
pre-D, to post-Dj folding (Mahadevan 2002). The conditions of emplacement as
well as formation of the BMB granite plutons is estimated ~35 kbar and slightly
>1000 °C in a relatively anhydrous condition within a possible post-orogenic set-
ting (Misra and Dey 2002). The age of emplacement of the oldest REE-rare
metal-bearing mica pegmatites of the BMB has been restricted within
960 £ 50 Ma (Pb/Pb age; Vinogradov et al. 1964) and 910 + 20 Ma (U-Pb and
Pb/Pb ages of the Columbite—Tantalite minerals; Krishna et al. 2003). Fission-track
ages of garnet (830 Ma), muscovite (760 Ma), biotite (590 Ma) and apatite
(590 Ma) date the final exhumation of the mica pegmatites of this region (Lal et al.
1976). It suggests that the rocks of this area had not received any significant thermal
pulse, which by implication means cratonization, since 590 Ma (Lal et al. 1976). In
summary, this domain bears history of Paleoproterozoic and Mesoproterozoic
granitic activities. Evidence of Paleoproterozoic sedimentation is noteworthy. The
abundant intrusion of pegmatites took place in Neoproterozoic which cooled
gradually.

3.4 Domain III

The northern fringe of CGGC, north of the Bihar mica Belt, exposes an ensemble of
migmatitic quartzofeldspathic gneisses and supracrustals. Sedimentary rocks of the
Munger Group and the Rajgir Group showing basement—cover relationship with the
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CGGC gneisses demarcated by a conglomerate horizon (Ghose and Mukherjee
2000). Supracrustals are dominated by quartzite and phyllite, metamorphosed under
low-grade in association with mafic-ultramafic and felsic intrusives.

The basement of these sedimentary units is marked by the porphyritic granite
(K-feldspar + plagioclase + biotite + quartz) near Gaya (Bihar) and biotite granite
in the Bhagalpur area (Bihar) (Chatterjee and Ghose 2011). The intrusion age of
the granitoids are constrained at ca. 1697 & 17 Ma from U-Th-Pb monazite
(Chatterjee and Ghose 2011). U-Pb xenotime age of 1583 £ 50 Ma is inferred to
be the cooling age of the porphyritic granitoids (Chatterjee and Ghose 2011).
Detailed geochemical study of the porphyritic granites reveal an A-type character
and suggest that they have been derived from predominant crustal source in an
extensional (Yadav et al. 2014). In and around Bathani village, near Gaya (Bihar) a
volcanic and volcano sedimentary sequence comprises of banded iron formation
(BIF), garnet-mica schist, chert bands and mafic-intermediate volcanics (Saikia
et al. 2014). Detailed geochemical studies suggest that the intrusion of bimodal
volcanics, tholeiitic affinity of the basalt and calc-alkaline trend of the
intermediate-felsic magmatism corroborate well with an island-arc setting (Saikia
et al. 2014, 2017). U-Pb zircon geochronology constrains the intrusion of the felsic
magmatism between ca. 1750-1660 Ma. Subsequently the lithounit got metamor-
phosed at ca. 930 Ma and at 768 Ma. Earlier metamorphism occurred under
granulite grade whereas the younger age associates with a shearing linked with the
Eastern Indian tectonic Zone (Chatterjee et al. 2010).

4 Discussions

4.1 Tectonothermal Events at CGGC

This section collates the geological and geochronological information (Table 1) and
reconstructs a plausible event stratigraphy that shaped the CGGC.

4.1.1 Sedimentation History of the Supracrustal Enclaves

Timing of sedimentation and provenance of the precursor sediments of metasedi-
mentary rocks provide critical information about the tectonic history of a terrane
(Sengupta et al. 2015; Dey et al. 2017). In CGGC, the supracrustal enclave rocks
with quartzite, metapelite sand metacarbonate are likely to correspond to of sand-
stone, shale and limestone found in a stable continental shelf (Malone et al. 2008;
Basu et al. 2008, 2014; Sengupta et al. 2015; Dey et al. 2017). Strong structural and
metamorphic overprints virtually obliterate the sedimentary features of these
supracrustal rocks. This renders reconstruction of sedimentary process in high grade
rocks difficult. However, using the dates obtained from detrital zircon or other
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Table 1 Available geochronological data from different domains of CGGC; ages are in Ma
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Age Method Type of age References

Domain IA

595 U-Pb monazite Alteration Chatterjee et al. (2010)
784 U-Pb monazite Metamorphism Chatterjee et al. (2010)
810 £ 40 K-Ar muscovite Magmatism Baidya et al. (1987)

815 + 47 Rb-Sr whole rock | Metasomatism Singh and Krishna (2009)
825-818 U-Pb monazite Metamorphism Maji et al. (2008)
850-775 U-Pb monazite Deformation event Karmakar et al. (2011)
859 U-Pb monazite Metamorphism Chatterjee et al. (2010)
860-830 U-Pb monazite Metamorphism Chatterjee et al. (2010)
870 £ 40 K-Ar biotite Magmatism Baidya et al. (1987)

921 U-Pb monazite Metamorphism Rekha et al. (2011)

921 U-Pb monazite Metamorphism Rekha et al. (2011)

923 U-Pb zircon Metamorphism Rekha et al. (2011)

928 U-Pb zircon Metamorphism Rekha et al. (2011)

937 U-Pb monazite Metamorphism Chatterjee et al. (2010)
944 U-Pb monazite Metamorphism Rekha et al. (2011)

946 U-Pb monazite Metamorphism Chatterjee et al. (2010)
947 + 27 U-Pb zircon Metamorphism Chatterjee et al. (2008)
965 U-Pb monazite Metamorphism Chatterjee et al. (2010)
990-940 U-Pb monazite Metamorphism Karmakar et al. (2011)
1005 £ 51 Rb-Sr whole rock | Magmatism Singh and Krishna (2009)
1021-967 U-Pb monazite Metamorphic/magmatic | Maji et al. (2008)

1025 U-Pb zircon Metamorphism Rekha et al. (2011)

1059 + 104 | Rb-Sr whole rock | Magmatism Krishna et al. (1996)
1065 + 74 | Rb-Sr whole rock | Magmatism Krishna et al. (1996)
1071 & 64 | Rb-Sr whole rock | Retrogression Ray Barman et al. (1994)
1072 U-Pb zircon Metamorphism Rekha et al. (2011)

1138 &+ 193 | Rb-Sr whole rock | Magmatism Krishna et al. (1996)
1176 U-Pb monazite Metamorphism Maji et al. (2008)

1178 & 61 | Rb-Sr whole rock | Retrogression Ray Barman et al. (1994)
1200-1100 | U-Pb monazite Older thermal events Karmakar et al. (2011)
1239 U-Pb zircon Metamorphism Rekha et al. (2011)

1331 & 42 | Rb-Sr whole rock Krishna et al. (1996)
1422-1305 | U-Pb monazite Older thermal events Chatterjee et al. (2010)
1550 &+ 12 | U-Pb zircon Magmatism Chatterjee et al. (2008)
1717-1446 | U-Pb monazite Older thermal event?? Chatterjee et al. (2010)
1800 U-Pb monazite Inherited Karmakar et al. (2011)
1870-1691 | U-Pb monazite Older thermal event?? | Chatterjee et al. (2010)

(continued)
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Table 1 (continued)
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Age | Method Type of age References

Domain IB

481 + 18 Rb-Sr Bt, Kfs ? Pandey et al. (1986a)
649 U-Pb monazite Metamorphism Chatterjee et al. (2010)
850-750 U-Pb monazite Metamorphism Sanyal et al. (2007)
872-838 U-Pb monazite Metamorphism Chatterjee et al. (2010)
876 U-Pb monazite Metamorphism Chatterjee et al. (2010)
902 U-Pb zircon Metamorphism Mukherjee et al. (2017a)
907 £ 49 U-Pb zircon Metamorphism Mukherjee et al. (2018)
910 U-Pb monazite Metamorphism Rekha et al. (2011)

937 U-Pb monazite Metamorphism Chatterjee et al. (2010)
943 U-Pb zircon Metamorphism Mukherjee et al. (2017a)
945 U-Pb monazite Metamorphism Rekha et al. (2011)

948 + 22 U-Pb zircon Metamorphism Mukherjee et al. (2018)
950 + 20 U-Pb monazite Retrogression Chatterjee et al. (2008)
954 U-Pb monazite Metamorphism Chatterjee et al. (2010)
965-930 U-Pb monazite Metamorphism Chatterjee et al. (2010)
975 £+ 67 U-Pb monazite Metamorphism Chatterjee and Ghose (2011)
995 + 24 U-Pb monazite Metamorphism Chatterjee et al. (2008)
1009 U-Pb zircon Metamorphism Rekha et al. (2011)
1100-930 U-Pb monazite Metamorphism Sanyal et al. (2007)
1119 Rb-Sr whole rock | ? Sarkar et al. (1986)

1183 U-Pb monazite Older thermal events Chatterjee et al. (2010)
1190 &+ 26 | U-Pb monazite Metamorphism Chatterjee et al. (2008)
1270 U-Pb zircon ? Rekha et al. (2011)
1272 U-Pb monazite Older thermal events Chatterjee et al. (2010)
1278 U-Pb monazite Older thermal events Chatterjee et al. (2010)
1331 &+ 125 | Rb-Sr whole rock | Cooling age Ray Barman et al. (1994)
1333 U-Pb zircon ? Rekha et al. (2011)

1377 U-Pb zircon ? Rekha et al. (2011)

1435 U-Pb zircon ? Rekha et al. (2011)

1446 = 7 U-Pb zircon Magmatism Mukherjee et al. (2018)
1447 U-Pb zircon Magmatism Mukherjee et al. (2017a)
1457 4+ 63 Rb-Sr whole rock | Older thermal events Ray Barman et al. (1994)
1462 U-Pb zircon ? Rekha et al. (2011)

1470 £ 2 U-Pb zircon Magmatism Mukherjee et al. (2018)
1480 U-Pb monazite ? Rekha et al. (2011)

1515 £ 5 U-Pb zircon Magmatism Acharyya (2003)

(continued)



Proterozoic Crustal Evolution of the Chotanagpur Granite ...

Table 1 (continued)
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Age Method Type of age References

1522 £ 71 Rb-Sr whole rock | Magmatism Mallik et al. (1991)

1580 + 33 | Rb-Sr whole rock | Magmatism Mallik et al. (1991)

1599 + 33 | Rb-Sr whole rock | Magmatism Mallik et al. (1991)

1624 + 5 U-Pb zircon Magmatism Acharyya (2003)

1649 U-Pb zircon Metamorphism Rekha et al. (2011)
1660-1270 | U-Pb monazite Metamorphism Sanyal et al. (2007)

1720 U-Pb monazite Older thermal event Chatterjee et al. (2010)

1741 £ 65 | Rb-Sr whole rock | ? Ray Barman and Bishui (1994)
1824-1659 | U-Pb monazite Older thermal event Chatterjee et al. (2010)
1870-1720 | U-Pb monazite UHT metamorpism Sanyal et al. (2007)
2600-1900 | U-Pb zircon Detrital grains Rekha et al. (2011)

Domain I1

590 Apt Fission Track | Cooling age Lal et al. (1976)

595 Bt Fission Track Cooling age Lal et al. (1976)

760 mus Fission Track | Cooling age Lal et al. (1976)

830 grt Fission Track | Cooling age Lal et al. (1976)

855 £ 25 Mica Rb-Sr Magmatism Pandey et al. (1986b)

910 £ 19 U-Pb, Pb-Pb Magmatism Krishna et al. (2003)

960 + 50 Pb-Pb Magmatism Vinogradov et al. (1964)
1086-850 K-Ar ? Sarkar (1980)

1020 £ 46 Rb-Sr whole rock | Magmatism Mallik (1993)

1100-700 Fission track mica | Cooling age Lal et al. (1976)

1242 + 34 | Rb-Sr whole rock | ? Pandey et al. (1986a)

1238 + 33 Rb-Sr whole rock | Magmatism Mallik (1993)

1285 + 108 | Rb-Sr whole rock | Magmatism Mallik (1993)

1300-1100 | Rb-Sr whole rock |? Pandey et al. (19864, b)
1590 £ 30 | Rb—Sr whole rock | Magmatism Pandey et al. (1986b)
Domain II1

557 £ 99 U-Pb xenotime ? Chatterjee and Ghose (2011)
768 £ 11 U-Pb uraninite Metamorphism Chatterjee and Ghose (2011)
929 U-Pb xenotime Metamorphism Chatterjee and Ghose (2011)
1044 £+ 35 U-Pb zircon Magmatism Wanjari et al. (2012)

1337 £ 26 | Rb-Sr whole rock | Magmatism Wanjari et al. (2012)

1583 + 50 | U-Pb xenotime Cooling age Chatterjee and Ghose (2011)
1697 &£ 17 | U-Pb Monazite Magmatism Chatterjee and Ghose (2011)
1737-1664 | U-Pb zircon Magmatism Saikia et al. (2017)
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(a Basin formation & Sedimentation (d) HP-HT metamorphism (M2-D2)
~1700-1650 Ma ~1000-950 Ma
Unknown basement of CGGC :
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(b) UHT metamorphism (M1-D1)
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Fig. 4 a Basin formation and sedimentation over an unknown basement of CGGC
during ~1700-1650 Ma. b Moderate pressure ultra-high temperature metamorphism and
deformation (M;-D;) induced by continent-continent collision, lithospheric delamination and
mantle upwelling during ~ 1650-1550 Ma and intrusion of syn- to post-collisional granitoids and
anorthosites. ¢ Intrusion of ferroan granites in an extensional setting at ~ 1450 Ma. d High
pressure-granulite grade metamorphism and deformation (M,-D,) in continent-continent colli-
sional setting at 1000-950 Ma. e Intrusion of syenite and mafic dykes within the granulitised crust
of CGGC. f Deformation and shear related folding accompanied by metamorphism (M3-Ds) in
CGGC

authigenic datable minerals, few studies from northern part of CGGC (domain IB &
I) have attempted to constrain the timing of sedimentation of the protolith of
meta-sedimentary rocks. From the Pb—Pb dating of galena Singh et al. (2001) has
inferred a sedimentation age of 1700-1650 Ma in parts of BMB. Dey et al. (2017)
has analysed and studied 2°’Pb/*°°Pb apparent dates of the detrital zircons from
UHT pelitic granulite from Dumka and Deoghar (Jharkhand) (Fig. 2a). The ages of
the youngest analysed detrital zircon cores and the oldest metamorphic overgrowth
constrain the age of sedimentation of the precursor of metapelites within a narrow
age bracket of ~1700-1680 Ma. From the detrital zircon dates, the authors sug-
gested that protoliths of these sediments were sourced from the ~2700-1700 Ma
old domains in the adjoining cratonic areas and also from the rocks of similar age
now occurring in the Lesser Himalayan region. Both the studies are consistent with
the interpretation that during ~ 1700—1650 Ma the (unknown) basement of CGGC
experienced a phase of basin formation and sedimentation (Fig. 4a). A part of these
sediments got subsequently metamorphosed by later tectonothermal events.
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4.1.2 Magmatic History

The oldest tectonothermal event reported so far from northern and central CGGC
occurred in the late Paleoproterozoic (ca. 1750-1640 Ma) (Mallik et al. 1991; Ray
Barman and Bishui 1994; Chatterjee and Ghose 2011; Saikia et al. 2017). U-Pb
zircon ages distinctly indicates the intrusion of arc-related bimodal volcanics in the
northern part (Saikia et al. 2017). However, contemporaneous (1697 Ma; Chatterjee
and Ghose 2011) porphyritic granites from the northern domain are inferred to be of
anorogenic affinity (Yadav et al. 2014). In the eastern fringe of the terrain, intrusion
of massif anorthosite body, occurred at 1550 Ma and inferred to be the manifes-
tation of post-orogenic magmatism (Fig. 4b) (Chatterjee et al. 2008). Subsequently
in the eastern part of the domain Mesoproterozoic (ca. 1450 Ma) ferroan granites
have intruded the Paleoproterozoic crust in an extensional setting (Fig. 4c)
(Mukherjee et al. 2017a, 2018). A body of syenite near Dumka (Jharkhand) yields a
Rb-Sr whole rock age of 1457 + 63 Ma (Ray Barman and Bishui 1994). Early
Neoproterozoic felsic magmatism so far has been reported only from southern part
of the CGGC (Singh and Krishna 2009). However, post-Grenvillian (<950 Ma)
magmatic pulses, including granite, syenite, mafic dykes and pegmatite intrusions
have been documented from different parts the terrain (Fig. 4e). Biotite bearing
granites have considered to intrude the early crust ~870-810 Ma (Baidya et al.
1987). Although no geochronological dates are available, a body of syenite intruded
the granulitised crust in the southwestern part of the terrain, associated with NPSZ
(Das et al. 2016, 2017c¢). A set of mafic dykes also intruded the granulitised crust in
the northeastern part of the CGGC (Sanyal and Sengupta 2012; Mukherjee et al.
2017a). Numerous mica-bearing pegmatites with intrusion age of 960-855 Ma
have been reported from the northern part of the terrain (Pandey et al. 1986b;
Krishna et al. 2003; Vinogradov et al. 1964).

4.1.3 Metamorphism and Deformation: Summary of the Events

The oldest metamorphic event recorded in the CGGC is characterised by an ultra-high
temperature metamorphism (M) at ~ 1640 Ma (Dey et al. 2017). Similar ages (ca.
1850-1600 Ma; U-Pb zircon and Th-U—Pb monazite dates) have been recorded by
several workers and inferred to be the manifestation of high grade thermal event
(Chatterjee et al. 2010; Rekha et al. 2011). Peak metamorphic conditions recovered
from the metapelitic rocks yield a P-T condition of 1000950 °C at 7-5 kbar pressure
(Sanyal and Sengupta 2012; Dey et al. under review, a). Moderate pressure ultra-high
temperature metamorphism and a clockwise P-T—¢ path, inferred from the mineral
phase equilibria of the metapelite, presumably reflect continent-continent collision
followed by lithospheric delamination and mantle upwelling (Fig. 4b) (Dey et al.
under review, a). Mesoproterozoic (ca. 1450-1300 Ma) ages, recovered by several
workers, are inferred to be the manifestation of thermal imprint (Maji et al. 2008;
Chatterjee et al. 2010; Karmakar et al. 2011; Rekha et al. 2011). The most pervasive
tectonothermal event recorded from different parts of the CGGC occurred at
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1000-950 Ma (M,). From the northeastern margin of the terrain, several workers
(Mukherjee et al. 2017a, Dey et al. under review, a, Dey et al. under review, b) have
inferred that the metamorphism culminated at 770-800 °C and 9-12 kbar pressure,
followed by a steep decompressive path. Similar P-T path has been recorded from the
southern part of the terrain where the peak culminated at 870 °C and 11 kbar followed
by decompression (Karmakar et al. 2011). Such high pressure event associated with
clockwise path is inferred to be the manifestation of continent-continent collision
(Fig. 4d). Post-Grenvillian metamorphic event (M3) has been reported from north-
eastern margin of the terrain where U-Th—Pb monazite constrains the age of the event
between 900 and 780 Ma (Chatterjee et al. 2010; Mukherjee et al. 2017a, Dey et al.
under review, a). Chatterjee et al. (2010) estimated a high-pressure peak for Mj;
culminating at 820 °C and 11 kbar which correlates with the development of Eastern
Indian tectonic Zone (Fig. 4f).

Structural analyses from different parts of the terrane reveal that the CGGC has
experienced multiple deformational events (Mahadevan 2002; Maji et al. 2008;
Goswami and Bhattacharyya 2010; Karmakar et al. 2011; Sanyal and Sengupta
2012; Mukherjee et al. 2017a). However, structural data from scattered places and
scarcity of detailed geochronological information are some of the major hindrance
for correlating the different deformational and metamorphic events reported by
different workers over the entire CGGC. Unfortunately, sizable amount of structural
and geochronological information are available only from the rocks of Domain I. In
the following section an attempt has been made to develop a structural history of the
CGGC using the structural, metamorphic and geochronological information from
Domain I. Three major deformational phases seem to have affected the rocks of
Domain I. The earliest deformational event (D;) is preserved in the metasedi-
mentary enclaves within the felsic orthogneiss. This event is marked by a mig-
matitic banding (S;) which is inferred to be associated with M; metamorphic event
that is dated to be ~ 1650 Ma (Fig. 4a) (Sanyal and Sengupta 2012; Mukherjee
et al. 2017a; Dey et al. under review a; Dey et al. under review, b). The next major
deformational event (D) is manifested by the development of S, foliations within
the felsic orthogneisses and transposition of S; within the metasedimentary
enclaves. The D, is associated with ~1000-950 Ma old granulite facies meta-
morphism (M,) (Fig. 4c), especially from the eastern margin of the terrane (Maji
et al. 2008; Karmakar et al. 2011; Mukherjee et al. 2017a; Dey et al. under review a;
Dey et al. under review, b). Folding of the late intrusives (mafic dykes in the
northeastern part and nepheline syenite in the southern part), along with the S, of
the host felsic orthogneisses, depicts the third major deformational event (Dj).
There is no detail information on the age of emplacement of the mafic dykes and
subsequent D5 deformation. The EITZ and with its characteristic asymmetrical
folds, N-NNE trending planar fabric and high pressure metamorphism appear to be
coeval with the D;-M; tectonothermal event (Fig. 4f). Similar shear-related folds
also reported by Mukherjee et al. (2015b) and Mukherjee (submitted manuscript).
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4.2 Evaluation of Shear Zones

Several prominent crustal-scale shear zones cross through the CGGC. The
‘Tamar-Porapahar-Khatra’ shear zone is the southernmost lineament affecting the
Proterozoic gneissic rocks of CGGC and separating it from the low grade meta-
morphites of North Singhbhum Fold Belt (NSFB). This ENE-WSW trending
150 km long shear zone passes through the south of the Purulia town (West Bengal)
and also known as ‘South Purulia Shear Zone’ (SPSZ). ~ 150 km long, the ‘North
Purulia Shear Zone (NPSZ) is another prominent E-W to NE-SW trending linea-
ment that affects the CGGC rocks occurring north of Purulia.

Approximately 150 km long arcuate shear zone which is referred to as the South
Purulia Shear Zone (SPSZ: Mazumdar 1988), or Northern Shear Zone (NSZ: Kumar
et al. 1978), or Tamar-Porapahar-Khatra Fault Zone (TPKF: Mahadevan 2002), is a
crustal-scale ENE-WSW trending brittle-ductile shear zone that marks the southern
margin of the CGGC and separates the terrain from the low to medium grade
meta-sedimentary and meta-igneous rocks of the North Singhbhum Fold Belt
(Fig. 2a; Mahadevan 1992; Acharyya et al. 2006; Mahato et al. 2008; Sanyal and
Sengupta 2012). This shear zone has been extensively deformed during several
tectonothermal events (Bhattacharyyaetal. 1992; Sengupta et al. 2005) and represents
an ensemble of a nepheline-bearing syenite, tuffaceous rocks, tourmalinite, carbon-
atite, apatite bearing rocks and granitoids altered hydrothermally (Banerji 1985; Basu
1993; Acharyya et al. 2006; Chattopadhyay et al. 2015a). Abundance of carbonatite
and alkaline connotes crustal rifting (Acharyya et al. 2006; Chakrabarty and Sen
2010). Intrusion of the alkaline rocks at ca. 922 Ma, evident from the U-Pb zircon
geochronology (Reddy et al. 2009), constrains the timing of the extensional event,
which was followed by another tectonothermal event that deformed the
carbonatite-alkaline rocks forming DARCs (Deformed Alkaline Carbonatite Rocks)
(Chattopadhyay et al. 2015a). Economically viable apatite deposit, tuffaceous rocks
and Fe-ore are reported from the area (Banerji 1985).

The NPSZ is an E-W to ENE-WSW trending crustal-scale shear zone with a
prominent steep northerly dip traversing the metamorphites of CGGC. This lineament
passes through Jhalda-Jaypur in the west through Raghunathpur in the central part and
can be traced up to north of Murlu near Saltora (West Bengal) in the east (Baidya et al.
1989; Mahadevan 1992; Dasgupta et al. 2000; Som et al. 2007; Maji et al. 2008;
Goswami and Bhattacharyya 2010). The shear zone is best developed in the granitoids
where an early mylonitic fabric has developed in deep structural level in amphibolite
facies condition. The crystal plastic deformation of quartz and feldspar indicates the
temperature ~ 650-700 °C during this early ductile deformation (Vernon 2004).
The NPSZ has the signatures of protracted period of ductile deformation where the
early shear foliation folded. Later stage of brittle deformation has affected the early
mylonitic fabric of the NPSZ. Discrete bodies of nepheline syenite is found to be
emplaced along this crustal lineament near Kankarkiari-Kusumda area near Saltora
(West Bengal) cross-cutting the gneissic fabric of felsic gneiss and khondalite and get
metamorphosed and deformed when NPSZ formed (Goswami and Bhattacharyya
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2010; Das et al. 2017b). Das et al. (2017a) has also reported carbonatite in the central
part of NPSZ where apatite-Fe-oxide/hydroxide-silica bearing veins coexist with
alkali metasomatised granitoids. In the western part of NPSZ late stage pegmatite
veins within granite and calc-silicate rocks have been explored for Cs, Li and other
rare elements (Som et al. 2007).

The Eastern Indian Tectonic Zone (EITZ), roughly N- to NNW trending
crustal-scale shear zone, is observed towards the eastern margin of the CGGC
(Fig. 2a) (Chatterjee et al. 2010). The shear fabric, manifested by asymmetric folds,
developed over the older lithounits and is traceable along CGGC, North Singhbhum
Fold Belt and Singhbhum Craton. Detailed petrological studies by Chatterjee et al.
(2010) have shown that the metamorphism associated with the development of the
shear zone culminated at ~11-12 kbar and 800 °C. Monazite geochronology
constrains the timing of the of the tectonothermal event at ca. §70—780 Ma, which
agrees with the field observations that EITZ developed after the major tectonic
event at CGGC i.e. granulite grade metamorphism dated ~ 950 Ma.

4.3 Extension of the CGGC

4.3.1 Northern Boundary of CGGC

Quaternary sediments of Gangetic alluvium cover the northern margin of the CGGC.
Further north, the Late Paleoproterozoic rocks of the Lower Lesser Himalaya occurs
interleaved with the Phanerozoic rocks (Mukherjee et al. 2013, 2015a; Mukherjee
2013, 2015). These units expose metamorphosed and unmetamorphosed sedimen-
tary sequence and granitic plutons of age ~1900-1700 Ma (Fig. 5). Geochemical
signatures of the granitoids point towards their emplacement in a continental arc
setting (Kohn et al. 2010) existing along the northern boundary of India at that time.
Detrital zircon populations of the sedimentary units are characterized by
Paleoproterozoic—Late Archean ages (2.6—1.8 Ga), with no younger population
(Richards et al. 2005). According to Richards et al.(2005) “Detrital zircon ages are
younger than their respective Hf-isotope derived crustal formation ages by 0.7—
2.1 Ga, indicating that the source regions of the detrital zircons consisted of older
terranes with considerable amounts of reworking and renewed magmatism”. Many
workers have suggested that these Proterozoic rocks of the Lesser Himalaya con-
stitute the remnants of the Greater Indian Landmass, subducted below the
Himalayan orogenic belt (DeCelles 2000). Petrological and limited geochronolog-
ical studies suggest that the Paleoproterozoic felsic orthogneisses exposed within the
quaternary alluvium towards the north of the CGGC resembles the basement
orthogneisses of the CGGC. Felsic magmatism in the northern part of the CGGC,
near Bathani, shows enrichment of Th, U, and Pb over Nb, Ta and Ti which cor-
roborates with the geochemical characters of the Paleoproterozoic granitoids of the
lower Lesser Himalaya. Elevated magmatic temperature, derived from the zircon
saturation thermometry and predominance of crustal source also poses the possibility
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that the Paleoproterozoic basement orthogneisses presumably continued beneath the
Gangetic alluvium to the lower Lesser Himalaya.

4.3.2 Western Boundary of CGGC

The Mohakoshal Belt (MB) and the Sausar Mobile Belt (SMB) occur to the NW
and SW of CGGC respectively (Fig. 2a) and constitute the northern and the
southern structural blocks of Central Indian Tectonic Zone (CITZ) that sutures two
Achaean blocks: Bundelkhand at the north and Bastar at the south (Acharyya 2003;
Jain et al. 1991; Mishra et al. 2000; Radhakrishna and Naqvi 1986; Yedekar et al.
1990).

The Mahakoshal belt is composed of intercalated riftogenic volcano-sedimentary
successions (Roy and Prasad 2003 and the references therein), metamorphosed and
intruded with post-orogenic granitoids aging 1800—1700 Ma (Rb/Sr whole rock age
and U/Pb zircon age; Bora et al. 2013; Pandey et al. 1998; Sarkar 1998; Srivastava
et al. 2000). The sedimentary sequence was metamorphosed in low pressure—
medium temperature conditions in a possible back arc setting (Roy and Prasad
2003; Wani and Mondal 2016). On contrary, a recent study proposed that the
sediments were metamorphosed in moderate pressure—low temperature conditions
in a collisional setting followed by rapid exhumation (Deshmukh et al. 2017).

The Sausar Mobile Belt occurs at the southern margin of CITZ and is a collage
of different litho-tectonic components. The southern Bhandara-Balaghat granulite
(BBG) domain exposes enclaves of supracrustal and meta-igneous granulites
occurring within felsic gneisses. They have been metamorphosed under lower
crustal, ultra-high temperature (UHT) granulite facies conditions along a
counter-clockwise P-T path (Bhowmik 2006; Bhowmik et al. 2005) in a possible
back arc setting associated with emplacement of arc magma (Bhowmik et al. 2011).
Although early workers predicted an Archean—Early Paleoproterozoic age
(Bhowmik 2006; Bhowmik et al. 2005; Roy et al. 2006), precise U-Pb zircon and
texturally controlled monazite dating constrains the timing of this metamorphism
and magmatism at ~ 1600 Ma (Bhandari et al. 2011; Bhowmik et al. 2011, 2014).
This event was followed by several events of granulite-amphibolite grade over-
printing (BasuSarbadhikari and Bhowmik 2008; Bhowmik et al. 2014) with a
terminal phase of metamorphism at ~ 1400 Ma (Bhandari et al. 2011; Bhowmik
et al. 2011). The central Sausar Group of rocks deformed multiply and metamor-
phosed in greenschist to amphibolite facies during ~ 1060-950 Ma in a collisional
orogeny (Bhowmik et al. 1999, 2011, 2012; Bhowmik and Roy 2003;
Chattopadhyay et al. 2015b; Pal and Bhowmik 1998) accompanied by felsic
magmatism (Chattopadhyay et al. 2015b; Pal and Bhowmik 1998). The northern
Ramakona-Katangi granulite (RKG) domain contains mafic, felsic and pelitic rocks
as rafts, which are metamorphosed in high pressure upper amphibolite to granulite
facies along a clockwise P-T path indicating a continent-continent collision
(Bhowmik and Roy 2003; Bhowmik and Spiering 2004) at 1040-950 Ma
(Bhowmik et al. 2012). This was followed by emplacement of post-orogenic
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Fig. 5 Timing of magmatic and metamorphic events in different Proterozoic mobile belts of India, P
Lower Lesser Himalaya and east Antarctica. Age scale changes at 1000 Ma. References: CITZ
(Central Indian Tectonic Zone): Bhandari et al. (2011), Bora et al. (2013), Bhowmik et al.
(2005), Roy et al. (2006), Panigrahi et al. (2004), Deshmukh et al. (2017), Pandey et al. (1986b),
Bhowmik et al. (2011); Aravalli-Delhi Fold Belt: Kaur et al. (2009), (2011), (2017a, b); Buick
et al. (2006), Chatterjee et al. (2017), Deb et al. (2002), Biju-Sekhar et al. (2003), Pandit et al.
(2003), Bhowmik et al. (2010), Wiedenbeck et al. (1996), Dharma Rao et al. (2011, 2013),
Mukhopadhyay et al. (2000), Gupta et al. (1998), Sivaraman and Raval (1995); North
Singhbhum Fold Belt: Bhattacharya et al. (2015), Mahato et al. (2008), Rekha et al. (2011),
Ramakrishnan and Vaidyanadhan (2008), Roy et al. (2002); CGGC: Chatterjee et al. (2008),
Chatterjee and Ghose (2011), Karmakar et al. (2011), Rekha et al. (2011), Chatterjee et al. (2010),
Mallik et al. (1991), Ray Barman and Bishui (1994), Dey et al. (2017), Mukherjee et al. (2017a,
2018), Saikia et al. (2017), Sanyal et al. (2007); Lower Lesser Himalaya: Kohn et al. (2010),
Sakai et al. (2013), Larson et al. (2016), Chambers et al. (2008), Treloar and Rex (1990), Richards
et al. (2005), Miller et al. (2000), Célérier et al. (2009), DiPietro and Isachsen (2001), Yin et al.
(2010), Liao et al. (2008), Upreti et al. (2003), Decelles et al. (2000), Long et al. (2008), Daniel
et al. (2003); EGMB (Eastern Ghats Mobile Belt): Dobmeier and Simmat (2002), Simmat and
Raith (2008), Bose et al. (2011), Das et al. (2011), Upadhyay et al. (2006), Upadhyay and Raith
(2006), Sarkar and Schenk (2016), Das et al. (2017a, b, ¢), Rickers et al. (2001), Korhonen et al.
(2013), Krause et al. (2001), Dharma Rao et al. (2012), Mezger and Cosca (1999), Dobmeier and
Raith (2003), Henderson et al. (2014); SMGC (Shillong-Meghalaya Gneissic Complex): Kumar
et al. (2017), Chatterjee et al. (2007); East Antarctica: Kelly et al. (2002), Corvino et al. (2008),
Liu et al. (2013, 2017, 2009), Morrissey et al. (2015), Tsunogae et al. (2014, 2016), Owada et al.
(2003), Zhang et al. (2012b), Asami et al. (2002), Elburg et al. (2015), Goodge et al. (2008)

granites at ~940 Ma derived from a Paleo-Proterozoic crustal source (Bhowmik
et al. 2012). Two suites of intrusive granite from Betul metamorphic belt, adjacent
to Sausar Mobile Belt, yield Rb—Sr whole rock-mineral ages of ~ 1550 Ma and
~850 Ma (Roy and Prasad 2003).

Based on all these study (summarised in Fig. 4), the workers have concluded
that the CITZ indicates amalgamation of northern and southern Indian blocks and
formation of a proto-greater-Indian landmass since Paleo-Mesoproterozoic. The
Mahakoshal belt is a product of northward subduction or subduction to collisional
event prevailing in Early Paleoproterozoic along southern margin of Bundelkhand
craton (Deshmukh et al. 2017; Roy and Prasad 2003; Wani and Mondal 2016). The
southern Sausar Mobile Belt bears signature of arc setting resulting from probable
subduction of north Indian blocks under the Bastar craton in the Late
Paleoproterozoic (Bhandari et al. 2011; Bhowmik 2006; Bhowmik et al. 2005). It is
noteworthy that evidence of Neoproterozoic (~ 1050-950 Ma) collision, which is
widespread in the Sausar belt is yet to be recorded from the Mahakoshal belt. Based
on meagre data base Mesoproterozoic to Early Neoproterozoic tectonothermal
events that is recorded in the CGGC (D,-M,) has been correlated with the
tectonothermal events recorded in the Sausar mobile belt and the gneissic complex
of Shillong Meghalaya. (Acharyya 2003; Bhandari et al. 2011; Bhowmik et al.
2005, 2012). More detail studies are required to support (or reject) this proposition.
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4.3.3 Eastern Margin

In the eastern margin, the CGGC is bordered by the Cenozoic sediments of Bengal basin
that ranges more than 200,000 km? comprising the largest alluvium delta in the world
covering parts of West Bengal and Tripura and Bangladesh (Hossain et al. 2019).
Sedimentation occurred in the continental passive margin (pre-Oligocene) to a remnant
ocean basin (beginning of Miocene) (Alam et al. 2003). Basement rocks below the
Phanerozoic sedimentary cover compositionally ranges from tonalite, diorite to granite
(Ameen et al. 1998, 2007; Kabir et al. 2001; Hossain et al. 2007). U-Pb zircon
geochronology of basement rocks recovered from subcrop investigations near
Maddhapara, in the northeastern Bangladesh, reveals an intrusion ages of 1722 £+ 6 Ma
from a tonalite suite (Ameen et al. 2007) and 1730 4+ 11 Ma from a diorite suite
(Hossain et al. 2007). Limited geochemical data suggest ‘pre-plate collision’ affinity for
the tonalite and ‘syn-collisional’ affinity for granitic basements (Ameen et al. 2007)
whereas contemporaneous diorite are inferred to have a calc-alkaline origin associated
with a subduction zone settings (Hossain and Tsunogae 2014).

Towards the northeastern part of the Bengal basin, the Shillong-Meghalaya
Gneissic Complex (SMGC) comprises an ensemble of basement gneisses, meta-
morphosed to amphibolite-granulite grade, overlain by the Shillong Group of
sediments (Ahmed 1983; Nandy 2001). Different generations metamorphosed
granite and garnodiorites and porphyritic granitoids (Fig. 4), having a wide range of
isotopic age (ca. 1700-550 Ma), are reported from the terrane (Mazumdar 1976;
Ghosh et al. 1994; Bhattacharya and Ray Barman 2000; Ghosh et al. 2005; Kumar
et al. 2017). Lal et al. (1978) calculated P-T conditions of 750 °C and 5 kbar from
the metapelitic rocks near Sonapahar, eastern SMGC, whereas Chatterjee et al.
(2007) determined a higher P-T of 850 °C and 7.5 kbar associated with a
counter-clockwise P-T—¢ path. Chemical monazite dating constrains the age of
the metamorphism at ~1596 + 15 Ma whereas in the western part near
Garo-Goalpara, the dominant metamorphism is dated to be 500 £ 14 Ma
(Chatterjee et al. 2007). Mitra (1998) determined Pb—Pb ages of 1550-1530 Ma
from the detrital zircons from the supracrustals. In a recent publication Kumar et al.
(2017) documented that granitoids from Rongjeng and Guwahati (Assam) intruded
the Neo-Archean crust at 1778 £ 37 and 1630 &+ 16 Ma respectively. Detailed
geochemical studies reveal dominant crustal source and intrusion of the granitoids
during syn-collisional settings.

Lithological and geochronological similarities indicate that the SMGC has been
a part of the Indian Shield (Evans 1964; Crawford 1974) or extension of CGGC
(Desikachar 1974; Chatterjee et al. 2007). Considering the distinct geochronolog-
ical similarity, it is also suggested that basement of the Bengal basin is the
extension of the Paleoproterozoic crust of CGGC and CITZ (Hossain et al. 2007;
Hossain and Tsunogae 2014). All these inferences further confirms the idea of
Paleoproterozoic crust o CGGC being extended up to SMGC as the Garo-Rajmahal
gap represents a shallow basement ridge (Desikachar 1974).
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4.4 Southern Margin: North Singhbhum Fold Belt &
Singhbhum Craton

The contact between the Paleoproterozoic CGGC and Archean Singhbhum craton is
demarcated by the North Singhbhum Fold belt (NSFB), a 200 km long and 50 km
wide curvilinear orogenic belt. Extant geological information suggest that the NSFB
represents Proterozoic rift-related sedimentation along major suture zones (Sarkar
1982; Sarkar and Saha 1983; Gupta and Basu 2000; Sarkar 2000; Bhattacharya and
Mahapatra 2008; Bhattacharya et al. 2015). The Dalma Ophiolite Belt (DOB), an
ensemble of dominantly mafic- ultramafic rocks with minor felsic components
representing bimodal mafic-felsic volcanics, forms the most conspicuous part of
the NSFB. Geochemical evidences suggest that the magmatism occurred at
1619 £ 38 Ma (Rb-Sr whole rocks isochron age: Roy et al. 2002) under an exten-
sional regime, presumably in a back-arc like settings (Chakrabarti 1985; Bose et al.
1989). Metasedimentary rocks of the NSFB have been deformed-metamorphosed in
at least three tectonothermal events (Mahato et al. 2008) representing a greenschist
facies that grades into amphibolite facies at the contact of the CGGC (Bose 1954; Ray
and Gangopadhyay 1971; Mahato et al. 2008). Available geochronological study
from the southern part of the NSFB (S-NSFB) reveals that the metamorphism
occurred between 1.72 and 1.55 Ga in the southern part of the Dalma Volcanics
(Mahato et al. 2008; Chatterjee et al. 2010; Rekha et al. 2011). In the northern part
(N-NSFB) geochronological data are scarce and reveals an Early Neoproterozoic
tectonothermal event (~0.95 Ga; Rekha et al. 2011).

Discordant structural analyses, mismatching metamorphic grade and distinctly
different geochronological records suggest that Singhbhum Craton and CGGC
evolved separately in distant geological time and got amalgamated afterwards. The
contact between the Singhbhum Craton and the CGGC has been severely debated
and scarcity of geochronological and petrological data further blurs the nature and
the timing of the amalgamation and in this perspective the NSFB plays an important
role in the formation of the East Indian Shield (EIS). Several tectonic models have
been proposed to construct the evolutionary history of the EIS (Mahadevan 2002),
which mostly revolves around two major ideas: (1) subduction of the Singhbhum
Craton beneath the CGGC followed by collision between two continents (Sarkar
and Saha 1962, 1977; Sarkar 1982; Mahato et al. 2008; Rekha et al. 2011). and
(2) plume-driven basin formation accompanied by mafic magmatism and crustal
shortening (Mukhopadhyay 1990; Gupta and Basu 2000). Former model (Sarkar
and Saha 1962, 1977; Sarkar 1982; Mahato et al. 2008; Rekha et al. 2011) con-
siders the Singhbhum Craton and the CGGC as separate blocks that collided
together and the NSFB represented a milieu of arc magmatism, sedimentation and
obducted oceanic crust. Latter model indicates the presence of a unified crustal
section suggesting a prolonged connection between the Singhbhum Craton and the
CGGC where NSFB represented basin formed via incipient rifting. In a recent
publication Bhattacharya et al. (2015) argued that different sedimentary basins and
magmatic bodies in the NSFB did not evolve synchronously suggesting that the
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juxtaposition of the CGGC and the Singhbhum Craton is not straight forwards and
warrants further geochronological and petrological investigations.

4.5 CGGC and the Proterozoic Supercontinental Cycles

4.5.1 Columbia Supercontinent

Late Paleoproterozoic history of the Earth has been largely influenced by the
presence of Columbia Supercontinent that was inferred to be amalgamated between
2.1 and 1.8 Ga (Rogers and Santosh 2009). However, several recent publications
argued for more prolonged amalgamation and placed the timing of final packing at
ca. 1450 Ma (Sarkar and Schenk 2016; Meert and Santosh 2017). The configuration
of the supercontinent is also debated owing to the scarcity of adequate petrological,
geochronological and paleomagnetic data. Abundance of Late Paleoproterozoic
magmatism and metamorphism (Figs. 5 and 6) and available paleomagnetic data
indicate that Indian plate played an important role during the formation of
Columbia supercontinent (Rogers and Santosh 2002; Zhao et al. 2002; Zhang et al.
2012a). Apart from its position in the supercontinent assembly, the configuration of
Greater Indian Landmass raised considerable debate as the timing of the CITZ,
through which different Archean-Early Paleoproterozoic cratons of India (Yedekar
et al. 1990; Acharyya 2003; Roy and Prasad 2003) amalgamated remained unclear.
Initial notion of a Late Paleoproterozoic-Mesoproterozoic (~ 1.8-1.5 Ga) suturing
(Acharyya 2003; Roy and Prasad 2003; Bhandari et al. 2011) has been challenged
by the proposition of Neoproterozoic (1.0-0.95 Ga) assembly of the CITZ
(Chattopadhyay and Khasdeo 2011; Bhowmik et al. 2012). However, high-grade
metamorphic events at ca. 1800-1600 Ma reported from the northern and southern
part of CITZ (Bhandari et al. 2011; Deshmukh et al. 2017) and arc magmatism at
ca. 1750 Ma (Bora et al. 2013) points towards an accretion orogen.

In the Ongle domain (Andhra Pradesh) of Eastern Ghats Mobile Belt (EGMB)
arc magmatism occurred at 17501710 Ma, followed by an UHT metamorphism at

Fig. 6 Regional diagram summarizing Paleoproterozoic magmatic and metamorphic events in P
India and Antarctica. The schematic configuration is drawn after Dasgupta and Sengupta (2003).
The pressure—temperature trajectories of different domains are presented with their geochrono-
logical data using the following references: a. Bhowmik et al. (2005, 2014); b. Bhandari et al.
(2011); c. Chatterjee et al. (2007); d. Mahato et al. (2008); e. Dey et al. under review a; f. Sarkar
et al. (2014); g. Sengupta et al. (1999); h. Roy et al. (2005); i. Kelly et al. (2002); j. Halpin et al.
(2013); k. Halpin et al. (2013). Data for the magmatic events are collected from: Saikia et al.
(2017), Chatterjee and Ghose (2011), Treloar and Rex (1990), DiPietro and Isachsen (2001),
Zeitler et al. (1989), Miller et al. (2000), Singh et al. (1994), Richards et al. (2005), Chambers et al.
(2008), Célérier et al. (2009), Decelles et al. (2000), Kohn et al. (2010), Daniel et al. (2003), Long
et al. (2008), Yin et al. (2010), Mandal et al. (2016), Ameen et al. (2007), Hossain et al. (2007),
Bora et al. (2013), Bhowmik et al. (2011), Sarkar et al. (2015), Henderson et al. (2014), Kovach
et al. (2001), Kumar et al. (2017), Kaur et al. (2009, 2017a), Bhattacharya et al. (2015)
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~ 1610 Ma (Sarkar and Schenk 2014; Sarkar et al. 2015). Calc-alkaline magmatism
of arc-affinity with intrusion age of 1791-1771 Ma is also reported from Vinjamuru
domain of the EGMB (Vadlamani et al. 2013). Paleoproterozoic (~ 1860—
1810 Ma) arc magmatism is also reported from Aravalli-Delhi Mobile Belt (Kaur
et al. 2009, 2017a).

Although geochronological data are scarce from the vast terrain of the CGGC,
Paleoproterozoic dates, corresponding to tectonothermal and magmatic events, are
reported from different parts of the terrain (Fig. 6). Dey et al. (2017) and Dey et al.
(under review, a) reported Late Paleoproterozoic (~ 1650 Ma) UHT metamorphism
from the northeastern part of the terrane and the inferred P-T path corroborate
with convergent margin settings. Saikia et al. (2017) reported Paleoproterozoic
volcano-sedimentary sequence from the northern part of the terrain and the asso-
ciated felsic magmatism (ca. 1750-1660 Ma) resembles an arc settings. Evidences
of such tectonothermal events from parts of CGGC indicate its involvement in the
formation of the Greater Indian landmass during the assembly of Columbia
supercontinent.

The Mesoproterozoic extensional events throughout the world, manifested by
rift-related magmatism, deemed to be linked with the breakdown of the super-
continent (Rogers and Santosh 2002). Contemporaneous rift-related magmatism,
manifested by several ferroan granite and alkaline batholiths (Vinukonda granite:
1589 Ma: Dobmeier et al. 2006; Elchuru alkaline rocks: 1442 £+ 30 Ma; Upadhyay
et al. 2006; Errakonda and Uppalapadu alkaline rocks: 1352 + 2 Ma; Vijaya
Kumar et al. 2007) has been widely reported from western margin of the Eastern
Ghats belt which reflect the extensional events. Despite their restricted occurrence,
extension-related Mesoproterozoic (ca. 1450 Ma) anorogenic granites have intru-
ded the Paleoproterozoic crust in the northeastern part of CGGC (Mukherjee et al.
2017a, 2018). The multiple tectonothermal events (~ 1.75-1.3 Ga) that are recor-
ded in the EGMB and CGGC are also recorded from the fragments of the erstwhile
Columbia Supercontinents (Australia: Hand et al. 2007; Cutts et al. 2013; East
Antarctica: Kelly et al. 2002; Halpin et al. 2007b; Namibia: Kroner et al. 2010;
Scotland : Friend and Kinny 2001). This observation points to the fact that the
Indian shield was a part of the Columbia supercontinent.

4.5.2 Rodinia Supercontinent

Configuration and position of the Greater Indian landmass during the formation of
Rodinia supercontinent remained highly debatable (e.g. Bhowmik et al. 2012).
Widely inferred notion places the Greater Indian landmass adjacent to Australia and
East Antarctica along the marginal part of the Rodinia supercontinent (Dalziel
1991; Hoffman 1991; Torsvik et al. 1996; Weil et al. 1998; Dasgupta and Sengupta
2003; Li et al. 2008). However, the view has been opposed by several workers
(Fitzsimons 2000; Powell et al. 2001; Torsvik et al. 2001; Powell and Pisarevsky
2002; Merdith et al. 2017) based on available Paleomagnetic data. Numerous
studies have shown that Early Neoproterozoic (ca. 1000900 Ma) tectonothermal
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events experienced by the EGMB and the Rayner Complex of East Antarctica are
very much similar, which lends the idea of the Greater Indian landmass being
connected to Antarctica (Dasgupta and Sengupta 2003). Neoproterozoic
tectonothermal events presented in this review is consistent with evolution of the
CGGC in a continent-continent collision zone (Chatterjee and Ghose 2011;
Karmakar et al. 2011; Sanyal and Sengupta 2012). The NSFB that is located to the
south of the CGGC does not record strong impress of ~ 1000-950 Ma
tectonothermal event (reviewed in Chatterjee et al. 2010). The pervasive planar
fabric in most part of the CGGC is E-W (Mahadevan 2002). This feature and the
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Fig. 7 Regional diagram summarizing pressure—temperature trajectories and the geochronolog-
ical data of different Neoproterozoic metamorphic events in India and Antarctica. The schematic
configuration is drawn after Dasgupta and Sengupta (2003). The other abbreviations are NC:
Napier complex, RC: Rayner Complex, ADFB: Aravalli Delhi Fld belt, BnC: Bundelkhand
Craton, CGGC: Chotanagpur Granite Gneissic Complex, SMGC: Shillong Meghalaya Gneissic
Complex, SC: Singhbhum Craton, NSFB: North Singhbhum Fold Belt, EGMB: Eastern Ghats
Mobile Belt, BC: Bastar Craton, SGT: Southern Granulite Terrain, CITZ: Central Indian Tectonic
Zone. The references are as follows: a. Dey et al. (under review; b). Mukherjee et al. (2017a); c.
Chatterjee et al. (2010); d. Karmakar et al. (2011); e. Bhowmik and Spiering (2004); Bhowmik
et al. (2012); f. Pal and Bhowmik (1998); Bhowmik et al. (2012); g. Bhowmik et al. (2010); h.
Bhowmik et al. (2009); i. Saha et al. (2008); j. Bose et al. (2017); k. Das et al. (2011), Das et al.
(2017c¢); 1. Bose et al. (2016); m. Chattopadhyay et al. (2015a); n. Halpin et al. (2005, 2007b,
2013); Kelly et al. (2002); Kelly and Harley (2004); o. Halpin et al. (2007b); p. Halpin et al.
(2007a)
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structural attributes supporting that the NSFB is overridden by the CGGC (re-
viewed in Mahadevan 2002). This deduction by implication points to the fact that
the overthrusted unit possibly came from the north. The CGGC is surrounded by
Phanerozoic sedimentary cover on its three sides (Fig. 2a). For this reason the
nature of northern continent could not be studied.

Grenvillian tectonothermal events similar to CGGC are also recorded from the
EGMB and the entire Rayner Complex of east Antarctica (reviewed in Mukherjee
et al. 2017a; Li et al. 2008). Neoproterozoic clockwise P-T paths recovered from
different parts of the CITZ further corroborates the reworking of the
Paleoproterozoic mobile belts of India and amalgamation of the Greater Indian
landmass (Fig. 7). However, geochronological studies have shown that although
most of the cratons were amalgamated by ~ 1000 Ma, India was not attached to the
supercontinent assembly until ~ 950 to 900 Ma (Li et al. 2008).

Timing of the break-up of Rodinia supercontinent has been controversial and
mostly placed at ca. 825 Ma, as manifested by widespread plume-related mag-
matism throughout the world (reviewed in Li et al. 2008). However, late
Tonian-Cryogenian (ca. 900-800 Ma) subduction-related magmatic activity has
been reported from different peripheral parts of Rodinia (reviewed in Cawood et al.
2016). Post Grenvillian (<950 Ma) tectonothermal activity, reported from different
parts of the CGGC, EGMB and East Antarctica suggest that the final assembly and
breakup of the Rodinia was prolonged in these parts. Contemporaneous (ca. 870—
780 Ma) high grade metamorphism event and shearing associated with the devel-
opment of EITZ further poses the possibility that fragmentation of amalgamated
East Antarctica and Greater Indian landmass did not initiate until ca. 780 Ma
(Chatterjee et al. 2010).

5 The CGGC: Future Prospects

(A) Intra- and inter domain correlation of the magmatic, metamorphic and tectonic
history is of paramount importance to understand the evolution of the CGGC.
As mentioned above, the present data base are meagre (and imprecise too) to do
this correlation. Strain patterns can change with space and metamorphic
intensity may vary from place to place. Consequently, geometry of structure
and estimated P-T values may vary from place to place. This may lead to a
wrong interpretation about the tectonic evolution of the CGGC. It is not clear if
the contrasting metamorphic and structural information that are reported from
different parts of the CGGC reflects imprecision of the data base or they are
indicative of special/temporal variation of strain pattern and metamorphic
intensity. This problem can be approached by the following ways:
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(B)

©)

D)

B

(F)

(i) combined petrological and structural studied along continuous segments
of the CGGC

(i1) Precise dating of metamorphic and structural events. This can also help
correlate the geological events over a large area.

Studies in the light of modern petrology and geochronology are published
mostly from the Domain I of the CGGC. The other two domains viz. Domain II
and III are least studied. ~ 1700 to 1650 Ma old supracrustal rocks (in the
jacket of low grade metamorphism) of the Domain II and III cannot be traced
south of the BMB. Though similar sedimentation age (1700-1680 Ma) has
been reported for some metapelitic enclaves from Domain I, it is not clear if the
sedimentary protoliths of the metapelites (Domain I) are temporally and spa-
tially linked to the supracrustal rocks of the Domain II and IIT of the CGGC.
Basement of the low grade supracrustal rocks of Domain II and III are also not
well studied. It is also not clear if the basement of the low-grade supracrustal
rocks continued further south. The ~ 1000-850 Ma metamorphic events that
are preponderant in Domain I are absent in Domain II-III. These contrasts in
geology and geochronology raise the following questions:

(i) Do Domain II and III constitute a different crustal block that was sutured
to Domain I after 850 Ma?

@ii) Is the oldest basement of all the three domains are same and that the
Grenvillian front runs south of the BMB?

Several workers (Chatterjee and Ghose 2011; Saikia et al. 2017) argued that the
litho ensemble that are now exposed in Domains II and III form eastward
extension of the Paleoproterozoic Mahakoshal Group of Central Indian
Tectonic Zone (CITZ) where such rocks are abundantly found. If this be the
case then only the Domain I should represent the CGGC. Detail petrological
and geochronological information including delineation of the oldest compo-
nents from the basement rocks of Domains II and III are likely to validate (or
discard) the proposition.

Studies have shown that nepheline syenite and carbonatite signifies crustal
extension that are related to breakdown of supercontinental cycle (Upadhyay
and Raith 2006). These rocks are present in NPSZ and SPSZ. It has been
mentioned before in Sects. 3.1 and 4.2 that the alkaline rocks and carbonatite
rocks are deformed and metamorphosed (DARC, Burke et al. 2003). Several
studies have shown that DARCs represent opening and closing stage of the
Wilson cycle of plate tectonics. Detail petrogenesis and geochronology of the
DARCs may provide valuable information on the evolution of the CGGC.
The extent of the ~ 1650 Ma old UHT metamorphism as has been documented
from the NW part of the Domain I should be evaluated through rigorous studies
in other parts of Domain L.

A few reports (cf. Misra and Dey 2002) show intrusion of voluminous hot
granitic magma (~ 1000 °C) within low grade supracrustal rocks in the BMB.
Though heat rendering capacity of felsic magmas are certainly lower than those
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of basaltic compositions, yet some contact effects are expected in view of the
large volume of the felsic magma in the BMB.

(G) Felsic orthogneisses constitute the major component of the Domain I. Existing
petrological and geochronological information is available from a few scattered
areas. It is not clear if the magmatic protoliths of the entire felsic orthogneisses
were emplaced within a short time during crustal extension (Mukherjee et al.
2018). Or else, different pulses of felsic magmatism were emplaced in diverse
tectonic setting over a protracted period of time.

(H) The relation between the CGGC (Domain I) and the NSFB require to be studied
in great detail. In view of the last high grade event at 1000-950 Ma in Domain I
and its absence in NSFB, suturing of the two unit during Paleo-
Mesoproterozoic time seems implausible. Timing and mechanism of juxtapo-
sition between CGGC and NSFB are to be studied.
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1 Introduction

The 16 June 1819 Allah Bund earthquake is the largest known earthquake in
western India that produced spectacular geomorphological changes in its epicentral
area in the Great Rann of Kachchh (Lyell 1855). The earthquake though not
instrumentally recorded, is described in several historical accounts (MacMurdo
1824; Baker 1846; Wynne 1872; Oldham 1926). The earthquake produced
~90 km long E-W trending and south facing low fault scarp to its north, blocking
the distributary of the Indus river that flowed through the Kori creek into the
Arabian sea and caused subsidence of the area around Sindri, which was submerged
by a local tsunami. The scarp is located in the logistically challenging and largely
inaccessible saline terrain of Great Rann, which shows peculiar geomorphic char-
acters (Roy and Merh 1982; Merh 2005). This is the most likely reason for the fact
that very few field-based studies have been carried out on the Allah Bund Fault
scarp (Rajendran and Rajendran 2001; Thakkar et al. 2012). The Great Rann is a
tectonically formed basin bounded by the Kachchh Mainland Fault (KMF) in the
south and the Nagar Parkar Fault (NPF) in the north (Biswas 1987). Towards the
west the basin opens up to the Arabian Sea and the Indus delta region. The basin
formed a major sink for sediments during Pleistocene-Holocene that are dominantly
fine-grained (clayey silt to silty clay) and presumably sourced from the Himalaya
through the now extinct Vedic Saraswati river and the Indus delta and deposited in
shallow marine marginal gulf environment (Valdiya 2002; Maurya et al. 2013;
Khonde et al. 2017a, b). In this article, we describe the geomorphological char-
acteristics along the Allah Bund Fault scarp in detail and demonstrate the appli-
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cation of morphological dating technique to determine the age of the scarp. We
begin with a detailed description of the enigmatic landscape characteristics of the
Great Rann to understand the geomorphic setting and evolution of the Allah Bund
Fault scarp.

2 Great Rann of Kachchh

The major geomorphic components of the Great Rann are the almost flat and
hyper-saline surface, hereafter described as the Rann surface, several islands
(locally called ‘bet’) of different shapes and sizes and the ~ E-W Allah Bund scarp
(Fig. 2). Part of the extensive Rann surface is salt-encrusted while the remainder is
free of salt crust though the sediments are inherently saline. The most overbearing
part of the Rann is the flatness of the Rann surface that lies 2-6 m amsl. The Rann
surface consists of several large to small islands that remain above the submergence
level. There are several smaller islands rising up to 1-10 m above the Rann surface,
especially in the northern part of the Great Rann and consist of sediments resem-
bling the Rann surface raised to a higher level (Khonde et al. 2013). The top cover
of these islands is usually made up of 1-2 m thick aeolian sediment blown from the
wind-swept Rann surface.

The major factor responsible for the unique present day environmental condi-
tions of the Rann surface is its periodic submergence by sea water and annual
monsoon precipitation. The flat Rann surface and the negligible westward gradient
allows extensive inundation by sea water from the Arabian sea in the west and by
river waters from the northeast and south during the monsoon season (Glennie and
Evans 1976; Roy and Merh 1982). The submergence pattern of the Rann surface is
however not uniform as it shows very small variations in elevation which has
resulted in variable geomorphic characteristics. The Great Rann is therefore geo-
morphologically divisible into four geomorphic units (Fig. 2 and 3) the Banni plain,
Supra tidal salt flat, Inland saline flat and the Bet zone. Owing to imperceptible
gradient, the boundaries between the various geomorphic units are gradational.

2.1 The Banni Plain

The Banni plain is a vast flat terrain, highly vegetated with thorny shrubs and
grasses, and extending from the mainland Kachchh in the south and the Pachham
island in the north (Fig. 1a). It is a distinct geomorphic surface of the Great Rann
that occurs at the highest elevation and is consequently completely free of present
day marine influence (Figs. 2, 3 and 4a). The entire terrain of the Banni plain is
regarded as a vast raised mudflat (Kar 1995) that coincides with the subsurface
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Fig. 1 a Digital elevation model (DEM) of Kachchh region prepared from SRTM data (http:/
srtm.csi.cgiar.org). DEM prepared by Patidar (2010). Inset-Location map. b Digital Elevation
Model (DEM) of Allah Bund Fault Scarp prepared from SRTM data (http://srtm.csi.cgiar.org)
showing the various geomorphological characteristics. Profile location indicated is for profiles
given in Fig. 8

Median High. Based on variations in elevation, Kar (1995) has divided the Banni
plain into three sub-units-high level mudfiat, an undifferentiated and sloping low
level mudflat and a residual depression.

2.2 Supra Tidal Salt Flat

This is a vast but linear and narrow E-W trending low lying zone with several
centimeters thick salt crust between the Banni plain in the south and the Bet zone to
the north (Fig. 2 and 4b—d). This zone occurs at the lowest elevation (~2 m) in the
west and gradually rises to ~4 m towards east. Being at the lowest elevation, this
zone forms the main pathway through which the saline waters of the Arabian sea in
the west enter and spread out (Roy and Merh 1982) submerging about two-thirds of
the Rann surface to varying degrees depending upon the volume/magnitude of the
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Fig. 2 Satellite image of Great Rann of Kachchh basin showing the variations in surface
morphology. The image shows the completely dry Rann surface as it appeared in the extreme arid
season in May, 2003. Source www.earthobservatory.nasa.gov. The geomorphological divisions of
the Great Rann (1-4) are also indicated. 1-Banni plain, 2-Supra tidal salt flat, 3-Inland saline flats
and 4-Bet zone. (Pa-Pachham island, Kh-Khadir island, Be-Bela island, Ch-Chorar island)

N S
200 Great Rann Basin
1 —_—
4 Bet Zone Supratidal — Banni Plain K Sow
80 D Fie Bhirandiyala High
T 20 Allah Bund Scarp unmlm
m 6
4 Kachchh .
2 -—Nagar Parkar Fault Mainland Fault
0 T T T T T T T T T T T
10 20 30 40 50 60 70 80 90 100 110
Km——ee

Fig. 3 N-S topographic profile across the Great Rann basin showing the geomorphic divisions.
Vertical scale is highly exaggerated. The elevation data is based on the SOI topographical maps
(survey years-1960-66)

Fig. 4 a Photograph showing the typical nature of the surface of the Banni plain. Sand storms as P
seen in the picture are a common sight during the peak summers. b Photograph showing the
typical extensive flat surface of the supra tidal salt flat. The salt crust is the result of regular marine
inundation of the surface. ¢ Close view of the large polygonal cracks in the salt crust. d Photograph
showing the thickness (~ 10 cm) of the salt crust. e View of the Inland saline flat to the north of
Bela island. The scarp in the background marks the geomorphic expression of the Island Belt Fault
(IBF). f View of the typical salt crust free surface of the Bet zone. g Northward view of the
developing gullies in the northern most part of the Bet zone. The northward upslope nature of the
surface is also clearly visible. h Surface of the Bet zone covered with numerous bivalve shells
which thrive during periods of submergence
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ingression resulting in a thick salt crust (Fig. 4d). Evaporation to dryness results in
several centimeteres thick, residual salt crusts, which characterize the surface of the
supra tidal salt flats (Fig. 4b—d).

2.3 Inland Saline Flat

This zone comprises the easternmost part of the Great Rann (Fig. 2 and 4e) that is
not influenced by marine submergence, but is inundated by monsoon precipitation
and by the rivers from the east and north. The elevation rises towards the margins of
the zone, giving it a shallow bowl like morphology and comprise inherently saline
Rann sediments (Roy and Merh 1982).

2.4 The Bet Zone

It comprises the flat Rann surface in the northwestern part of the Great Rann shows
several bets occurring few metres above the Rann surface (Fig. 4f-h). The Bet zone
is delimited by the Kuar and Bedia bets in the east and the supra tidal salt flat in the
south (Fig. 2). In addition to the bets with well defined margins, several elevated
parts within the Rann surface also exist which gradually rise above the Rann
surface. Many of these are comparable to the bets in terms of their size. Their
surfaces comprise aeolian sediments and generally support small vegetation like
scrubs and grasses of various size. Morphologically, the shapes of all bets and
almost all elevated tracts described above are elongated in N-S direction, which, on
a map gives the misleading impression of wide N-S trending channels separated by
bets. However, these are not ‘channels’ in any sense as they are basically flat Rann
surfaces several tens of kilometers wide comprising the inter-bet regions (Khonde
et al. 2013). The surface of the Bet zone shows a very gradual northward slope
away from the Allah Bund scarp which testifies to the uplift along the ABF (Fig. 3).

The western part of the Bet zone i.e. the area around Vigukot and further west
shows submergence characteristics which is slightly different from the rest of the
Bet zone and the Great Rann (Khonde et al. 2013). The 1819 Allah Bund earth-
quake caused drastic geomorphological changes along with subsequent flooding
events of the now defunct distributary of Indus River (Burnes 1835; Oldham 1926;
Bilham 1998). The now disconnected distributary of Indus—the Nara river/Pooran
flowed into this region and joined Arabian sea through the Kori creek in the south
before the earthquake. This part therefore formed the eastern margin of the Indus
Delta till the 1819 earthquake changed the morphology of the area. Presently also,
the region to the west and SW of Vigukot is prone to flooding frequently by river
floods from the north and relatively less frequently by sea water influx from the
south. In addition numerous small shallow (~0.5 m deep) channels of uncertain
affinity also exist. Overall, the role of rivers is evidently more pronounced in the
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western most part than the rest of the Bet zone. Contrary to the rest of the Great
Rann, the Bet zone shows wide variation in elevation due to the presence of bets
and is characterized by several seasonal short distance channels, pools i.e. local
depressions and elevated surfaces (Khonde et al. 2013).

The E-W trending intrabasinal structural features within the Great Rann like the
Island Belt Fault (IBF), the Allah Bund Fault (ABF) and the subsurface Banni faults
correlate remarkably with the geomorphic divisions described above. A critical
evaluation of the elevation differences of the various geomorphic divisions of the
Great Rann shows a strong correlation with the above mentioned regional structural
elements worked out by Biswas (1987, 1993). All geomorphological units of the
Great Rann show prominent structural control (Maurya et al. 2013). The Banni
plain astrides the subsurface Median High, while the supra tidal salt flat and the
inner saline flats occupy a structural depression to the north of the subsurface
Bhirandiyala high and the Island Belt Fault (IBF). The supra tidal flats extends into
a depression to the south of the island belt between the Pachchh and Khadir islands,
the Wagad highland to the east and the mainland in the south. The Bet zone occurs
on the upthrown northern block of the roughly E-W trending Allah Bund Fault.

Based on the distinct geomorphic divisions attributed to variable submergence
pattern and their correlation with structural elements, it is inferred that the emer-
gence of the Rann surface may have occurred gradually due to differential tectonic
activity along the various subsurface intrabsinal faults in the recent past, which
formed the morphologic units viz. the Banni plain, the Bet zone and the supra tidal
salt flat (Maurya et al. 2013, 2016). The Banni plain astrides the subsurface Median
high and is separated from the remainder of the Rann basin by the Banni Fault to
the north (Biswas 1974). Similarly, the Bet zone is delimited by the Allah Bund
Fault to its south (Roy and Merh 1982). The close association of these units with
faults suggest differential tectonic activity along subsurface faults within the Great
Rann basin may have played a major role in the emergence of various morphologic
units at different times (Maurya et al. 2013). Based on elevation and present day
submergence characteristics, the Banni plain appears to be the first to emerge
followed by the Bet zone, the inner saline flat and the supra tidal salt flat, which still
gets submerged by marine waters regularly.

3 The 1819 Allah Bund Earthquake

The 16 June, 1819 Allah Bund earthquake is considered as a major intraplate
earthquake event (Johnston 1989) which produced remarkable surface deformation
in the Great Rann of Kachchh. The shocks were felt almost all over the Indian
subcontinent (MacMurdo 1824). The event is specifically well known for the
extensive destruction and ground deformation. The event that killed 1543 inhabitant
was estimated to be of intensity of XI (Oldham 1926). Intense damage was reported
from all over Kachchh including Bhuj and Anjar towns. Far away cities such as
Ahmadabad also suffered damage to buildings and monuments. Based on the



62 A. Padmalal et al.

intensity report, Gutenberg and Richer (1954) assigned a magnitude of 8.4 to the
event. Later on Chandra (1977) and Johnston and Kanter (1990) estimated the
magnitude to be 7.8 and epicenter on 23.6° N and 69.6° E, while Quittmeyer and
Jacob (1979) estimated the epicenter at 24° N and 69° E. According to Bilham
(1998), the 1819 event was a near the surface (0—10 km depth) reverse-slip rupture
on a 90-km-long, 50° to 70° N-dipping fault plane which matches the measured
elevation changes from the event. To et al. (2004) estimated a 50-km-long rupture
dipping 45 to the north with 3-8 m slip.

Prior to the 1819 earthquake, the region was a flourishing trade route extending
northward into Sind through Kori creek and the distributary of the Indus (Grindlay
1808). The Sindri fort was a major halting point and a revenue collection centre
along this route. Extensive surface effects resulting due to the 1819 earthquake have
been documented in several historical records (MacMurdo 1824; Baker 1846;
Wynne 1872; Oldham 1926; Frere 1870. A detailed review of historical accounts
for this earthquake is available in Bilham (1998). The earthquake produced an
astonishing variety of surface effects that includes vertical movements of the
ground, flooding of regions near sea level, widespread liquefaction, and a local
tsunami and the complete damming of a distributary of the Indus river. Two sig-
nificant changes occurred in the region around Sindri fort at the western part of
Great Rann. The foundation of fort and surrounding Rann surface subsided by more
than 1 m and the region 7 km north of fort got elevated to 3—6 m, shutting out
northward navigation into the Sind province due to blocking of the distributary of
Indus river. The northern region (the present Bet zone) was uplifted forming a
10-15 ft high south facing scarp which caused the complete damming of the river.
The natural dam so formed was named by local people as the Allah Bund (dam of
God). The scarp presently marks the sharp boundary between the Bet zone in the
north and the active tidal flats of Kori creek and the Bet zone Notably all the above
surface changes documented in the available historical records are from the western
part of the Great Rann of Kachchh. However, it is also mentioned that several
temporarily active rivers with subsequent sand venting caused transient flooding of
major part of Rann surface (Baker 1846; Oldham 1926).

4 Nature and Morphology of Allah Bund Fault Scarp

The Allah Bund Fault scarp is an elongated steeply dipping south facing scarp
bordered on the south by the salt encrusted surface of Rann. The Bet zone com-
prises the flat Rann surface in the northwestern part of the Great Rann shows
several bets occurring few metres above the Rann surface. The Bet zone is
delimited by the Kuar and Bedia bets in the east and the supra tidal salt flat in the
south. To the north lie the sand ridges of Sind (Pakistan). Towards the west, the Bet
zone imperceptibly merges with the Indus delta. Historical documents suggest that
the south facing fault scarp was produced during the 1819 earthquake, causing
uplift of the northern part of the Great Rann (Burnes 1835; Oldham 1926),
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Fig. 5 Topographic cross sections drawn across the E-W trending Allah Bund scarp. The top
profile is from the western extremity while the bottom one is from the eastern extremity of the
scarp. Vertical scale is highly exaggerated. The elevation data is based on the SOI topographical
maps (survey years-1960-66)

which corresponds with the present day Bet zone. The scarp trends E-W and
laterally extends for ~90 kms (Oldham 1926). However, presently the scarp is
visibly identifiable for about ~ 60 kms length in the western and central part of the
extension as per Oldham (1926). In the westernmost part, the scarp rises gently
northward rise of the ground above the intertidal flats of the Kori creek (Figs. 5 and
6). Further east, the scarp gains elevation and therefore is more distinctly identi-
fiable (Fig. 5). The scarp height continues to increase eastward with the highest
elevation recorded ~4-5 m from the supra tidal salt flat in the central part (Figs. 5
and 6). Beyond this the scarp again gradually reduces in height and finally disap-
pears in the flatness of the Rann surface to the southeast of Shakti bet. As per
Oldham (1926), the scarp continued eastward where it is presumably represented by
the southern cliffy margins of the Gainda bet, Mori bet and the Kuar bet. Sediments
of the bund consist of thinly laminated alternate layers of dark brown silt and clays
encrusted with salt and ferruginous tubules; these differ from the land-derived
fluvial bet sediments that impinge against the bund in the north (Rajendran and
Rajendran 2001).

At places, the height of the scarp is accentuated by the deposition of 1-2 m thick
wind-blown saline silty sediments. This especially observed in the central part
where the scarp attains highest elevation. A major significant characteristic that
defines the scarp as an erosional scarp is its deeply gullied nature (Thakkar et al.
2012). The gullies are 1-3 m deep and usually form a dendritic pattern over the
crest of the scarp. Another significant characteristic feature of the scarp is the
subvertical northward face of the scarp surface, which finally merges with the flat
Rann surface. The northward slope developed over the scarp is attributed to the
back tilting of the Rann surface due to upliftment along the scarp. The backtilting
being subtle is not recognisable in the field at many places as the elevation drop is
marginal (1-2 m) that occurs over the distance of few kilometers (Fig. 6). The back
tilted surface over the scarp suggests that the scarp is tectonically formed and is in
sharp contrast to the flat surface of the Great Rann.
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Fig. 6 N-S topographic profile across the Great Rann basin showing the geomorphic divisions.
Vertical scale is highly exaggerated. The elevation data is based on the SOI topographical maps
(survey years-1960-66)

5 Morphological Dating of the Allah Bund Fault Scarp

Numerical dating methods have opened a way for estimation of age of geomor-
phological features such as fault scarps and river terraces (Wallace 1977). This
method has been successfully used in determining the age of the fault scarps in
Southern Arava, Israel (Enzel et al. 1994), West Yellowstone, Montana (Nash
1984), Lost River fault in Custer County, Idaho (Hank and Schwartz 1987),
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and terrace risers in Rhine Graben (Niviere and Marquis 2000). In tectonically
active areas, this method characterizes the degradation of a geomorphic marker
based on rate of vertical movement and erosion (Carretier et al. 2002). The evo-
Iution of a cohesionless slope through time can be evaluated quantitatively by
assuming that sediment transport is a diffusion process (Colman and Watson 1983).
Generally, the word diffusion describes how chemicals in solution move from areas
of high concentration to areas of low concentration, and how heat moves from areas
of high temperature to areas of low temperature. The sediment diffusion indicates
the gravity transport of sediment from an area of high elevation (the top of the
slope) toward an area of low elevation (the base of the slope). Without fresh uplift
or down cutting, diffusion tends to make slopes smoother and less steep temporally.
Scarp evolution is controlled by climate and several other geological factors.
Measure of age dependent parameters such as maximum scarp slope or the cur-
vature of crest will point towards the age (Wallace 1977). Under conditions in
which the transport efficiency is uniform and the flux is dictated linearly by the local
slope, the combination of the mass flux and mass conservation equations results in
the diffusion equation (Colman and Watson 1983).

d? 1

K=
47 (tan 0 — tan o),

(Colman and Watson 1983) (1)

This solution and model (Eq. 1) is applied as discussed in Colman and Watson
(1983) is applied to determine the morphological age of the Allah Bund Fault
scarp. The parameters applied (Fig. 7) in the equation are given in Table 1.

Over a time, the morphology of a scarp is altered by gravitational and slope
processes (Enzel et al. 1994). For the most part of this time, it follows geomorphic
process of slope modification i.e. mass wasting and wash processes (Summerfield
1991). Fault scarps that cut unconsolidated sediment or soil are very promising for

maximum slope of modern scarp
average far-field slope (=(a,+a;)/2)
surface offset

[eljeRer]

a;

Fig. 7 Schematic model of a fault scarp showing the various input parameters to be measured for
the solving the diffusion equation (after Colman and Watson 1983)
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Table 1 Details of

-~ . . Parameter Explanation Unit
parameters utilized in solving Diffusivi %
diffusion equation (after l ustvity m /year
Colman and Watson 1983) t Time Years

d Vertical displacement on a scarp Meters
II Pi = 3.14159 None

0 Maximum scarp slope angle Degree
o Average far field slope Degree

diffusion modeling as they form instantly and then systematically degrade. In
practice, several criteria must be met for a solution to be possible (Colman and
Watson 1983):

(A) The scarp must be transport-limited.

(B) After the formation of scarp, it must degrade under constant conditions.

(C) Overall landscape level and constant scarp base level should be maintained.
(D) The scarp must have formed in a single rupture event.

Therefore, it is apparent that selecting an ideal value for the diffusivity constant
or rate constant (k) is the key aspect of morphologic dating of fault scarp. Several
studies of morphologic dating in arid regions have implied lower values of k and
vice versa (Begin 1992). Altogether x value should be a constant, which satisfies
these slope degradation parameters.

5.1 Morphological Dating Parameters and Site Selection

For applying morphologic dating technique to the Allah Bund Fault scarp, it is
essential to appreciate its peculiar climato-geomorphic setting. The Kachchh basin
is located in the hyper-arid zone of western India that includes the Thar desert to its
north. The region consequently receives very little rainfall during the monsoon
season. This is testified by the rocky topography of other parts of Kachchh that are
literally free of any vegetation except the thorny bushes. The rivers too are strongly
ephemeral with water flow during monsoon seldom lasting more than a few days.
We therefore consider negligible role of rain splash, slope wash and mass wasting
in the degradation of the Allah Bund Fault scarp.

Apart from the extremely dry climatic regime, the location of Allah Bund Fault
scarp in the Great Rann with peculiar geomorphologic characteristics is also sig-
nificant as far scarp degradation is concerned. In the western part, the scarp marks
the high tide line to the north of the Kori creek. The tidal water flushes against the
scarp, which can lead to erosion especially during extreme tides. However, this
process is limited to the western part only that is also the zone of the maximum
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recorded surface effects during 1819 earthquake. As a result, the scarp suffered
maximum degradation in this part as evidenced by its very low height. The highly
gullied nature of the scarp in this part also testifies to the relatively higher mag-
nitude of scarp degradation.

The scarp in the central and eastern parts is located above the high tide line.
Here, the scarp witnesses periodic submergence of the vast supratidal salt flat in
front of it. The submergence however is generally < a meter and rarely reaches the
base of the scarp. We therefore rule out erosion by the submerging waters of the
scarp in this part. The Bet zone also gets submerged by thin sheet of rain water that
flows along the general southward slope. These waters are responsible for the
formation of gullies on top of the scarp. However, as mentioned above, the scarp is
highly gullied in the western part, whereas the gullies are significantly less in the
central and eastern part. This is due to the presence of rivers from the north
dissecting through the scarp to drain into the intertidal flats of the Kori creek.
However, there are no such drainages in the central and eastern parts resulting in
significantly less number of gullies, which are also shallower and wide spaced.

Also, the height of the Allah Bund Fault scarp is the maximum in the central
part. In the eastern part, the scarp height gradually reduces before finally disap-
pearing in the flat Rann surface. Evidently therefore that the scarp has undergone
least degradation in the central part.

Taking into account the climatic and geomorphologic factors as discussed above,
~2 km length in the central part of the Allah Bund Fault scarp is most suitable for
morphologic dating. Moreover, the scarp in this part can be included in the transport
limited category of slope classification i.e. transportation process occurs much
slower than the weathering. For the same reasons, we assume negligible sediment
transportation rate and diffusion constant for calculating the age of the Allah Bund
Fault scarp. Previous studies show that faults that cut unconsolidated sediment are
the most promising ones for diffusion modeling because it forms instantaneously
and will systematically degrade (Colman and Watson 1983). This criterion is met in
the case of Allah Bund scarp, which makes it relatively easier to quantify. Further,
the scarp is not affected by any anthropogenic influences as the Great Rann is an
inhospitable terrain due to its difficult environmental conditions.

Three sites were selected from the central part of the Allah Bund Fault scarp that
shows maximum elevation, is sub-vertical and has clear-cut morphological
expression. The general shape of the scarp is determinable by a single profile
without the need of large sample sizes. The selected scarp face is away from the
vicinity of notches, gullies and local channels. The base of the selected scarp
locations are devoid of colluvium or small fan deposits, which can create irregu-
larities in the scarp profile. The thickness of post-Allah Bund aeolian deposit is
removed from the profile to get the original scarp height. The age of the scarp was
calculated for these three sites as outlined by Colman and Watson (1983) and Nash
(1987).
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6 Dating Results

In this study the application of diffusion equation is used to estimate the age of
Allah Bund scarp. Topographic profiles were prepared using the Survey of India
topographical maps (Nos. 40 H/4, 40 H/8) and the SRTM Digital Elevation Model
data (Fig. 8). The study site is located near the north of Rann, an area with extreme
arid condition. The climate of the region is consistent since last ~2000 years after
the marked withdrawal of high sea (Merh and Patel 1988). The salt encrusted
sediment deposits are consistent with such conditions. The Late Holocene sedi-
ments, which make the scarp, consist of fine alluvial (silty clay and clayey silt).
Maximum slope angles measured along the free face at all three places were above
80°. This is consistent with the almost vertical nature of the Allah Bund Fault
scarp. Steeper slope angles further suggest a much younger age for the scarp
(Wallace 1977; Bucknam and Anderson 1979). Average far field (o) is calculated
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Fig. 8 Topographic profiles drawn at three sites across the Allah Bund Fault in the central
part. Location of the profiles is marked in Fig. 1b. Vertical scale highly exaggerated. Profiles were
drawn from SRTM data (http://srtm.csi.cgiar.org). The thickness of aeolian deposit capping the
scarp is as measured in the field
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by averaging the base and crest far field angles. Since there are no previous studies
available on the rates of sediment deposition, transportation and erosion, we used a
estimated regional diffusion constant generally applied to regions of high aridity
(e.g. Northern Negev, Israel, Begin 1992). The minimum diffusion constant value
of 1 x 10~*m’year~! matches with the geomorphological scenario of the scarp as
described above. The morphologic ages were calculated using Eq. 1.

Site 1

The topographic profile drawn over the Allah Bund Fault scarp along 24° 5’ 29"N,
69° 19" 42"E to 24° 3' 37.6"N, 69° 17' 20.5"E is shown in Fig. 8. The 2.4 km long
N-S transect shows a near vertical (80°) scarp with measured height of 2.9 m above
the ground level. The thickness of the aeolian sediment cover is subtracted to get
the actual height of the scarp. As described previously the average far field value is
negligible (o0 = 0°). The scarp marks the abrupt change in the topography from the
supra-tidal flat to the elevated surface of the Bet zone. The morphologic age of the
scarp is determined using Eq. 1 as below.

o841
4 x3.14159 (tan 80)?

t = 208 years.

Ix107™* x1¢t

Site 2

Figure 8 shows the topographic profile across the Allah Bund scarp at this site
(24° 5" 40.7"N, 69° 19’ 31.7"E to 24° 3’ 9.94"N, 69° 17’ 3.2"E). The near vertical
scarp (80.5°) here gave a measured height of 3 m above the supra-tidal salt flat. The
thickness of the aeolian sediment cover was substracted to get the correct scarp
height. Taking the average far field value as negligible (a0 = 0°), the morphologic
age is determined using Eq. 1 as below.

9 1

1x107* x 1=
T EN314159 ” (1an80.5)°
t = 200 years.

Site 3

The topographic profile was drawn along a N-S transect along 24° 5" 38.5"N, 69°
19" 8.60"E to 24° 3’ 22.95"N, 69° 17’ 22.69"E. The profile shows a 2.5 km long
transect with well demarcated sharp contrast in the topography marked by the Allah
Bund Fault scarp (Fig. 8). The scarp marks the abrupt change in elevation of Bet
zone in the upthrown block and the flat monotonous supra-tidal salt flat in the
downthrown block to the south. The total height of the scarp is 4 m, however, the
correct scarp height is determined as 2.8 m after subtracting the thickness of
the aeolian sediment cover. The near vertical scarp (80°) and the negligible average
far field value is used to determine the morphological age using Eq. 1 as below.
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Ix104xre— 134 1
4 x 3.14159 (tan 8())2
t = 193 years.

Here values of t obtained represent the morphological age i.e. the time since the
fault scarp was formed. The morphological ages of the Allah Bund Fault scarp
obtained at the above three sites are 208, 200 and 193 years before present. These
ages indicate that the scarp was formed in 1809, 1817 and 1824 A.D. respectively.
The results unequivocally suggest that the scarp was produced during the 1819
earthquake event.

7 Concluding Discussion

The landscape of the Great Rann of Kachchh shows unique geomorphological
characteristics (Roy and Merh 1982). The high intensity earthquakes during historic
and prehistoric times together with marine processes from the west have governed
the geomorphic evolution of the Great Rann (Roy and Merh 1982; Glennie and
Evans 1976). Looking to the several devastating earthquake that have occurred
along the various faults in Kachchh during last 200 yrs viz. in 1819, 1845, 1956 and
2001 (Wynne 1872). It is apparent that the region may have been affected previ-
ously by several other high-magnitude earthquakes though there is no paleoseismic
record nor historical accounts (MacMurdo 1824, Baker 1846, Oldham 1926). The
available historical accounts suggest the 1819 earthquake formed a 10-15 ft high
scarp that blocked the drainages from the north and simultaneously the area around
Sindri subsided and was submerged by a local tsunami (Macmurdo 1824; Baker
1846). However; all contemporary accounts that describe the spectacular landscape
changes are from the western part only, which formed the trade route from Lakhpat
to Sind via Sindri and a part of the eastern fringe of Indus delta. According to
Oldham (1926), the Allah Bund scarp extended for ~90 km, however presently the
scarp is identifiable for ~60 km length only. Our investigations show the Allah
Bund scarp is highly eroded in the western parts due to the tide from the Kori creek
in the south and the river water from the north during monsoon. The eastern part of
the scarp is also low and disappears completely in the Rann surface. The scarp
shows the maximum height in the central part where it is locally covered by aeolian
deposits. Modern investigations have indicated that the height of the fault scarp is a
reflection of cumulative uplift during 1819 and previous earthquakes (Rajendran
and Rajendran 1999). However, there is no such indication from the available
historical accounts. In the present study morphologic dating was carried out to
determine the age of the Allah Bund scarp.

The Allah Bund scarp though having low height and laterally extensive, is found
suitable for morphologic dating in its central part. The scarp here fulfills the nec-
essary geomorphic conditions for carrying out morphologic dating (Colman and
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Watson 1983; Nash 1987). The basic parameters where measured in the field.
Topographic profiles across the scarp at the selected sites were prepared from
topographical map and SRTM data. The present geomorphological environment
along scarp summarized earlier in the article suggests that the central part is a zone
of minimum erosion and subsequently least amount of scarp degradation. The hyper
arid climate and the non influence of anthropogenic activity means the diffusion
constant for arid region can be applied to the Allah Bund scarp for determining its
morphologic ages. We therefore selected the value of diffusion constant as
1 x 107" m? year !, which has been applied successfully in the morphologic
dating of fault scarps located in the arid regions (Begin 1992). The morphological
ages of the Allah Bund scarp can be calculated as per Colman and Watson (1983).

The morphological ages of the Allah Bund fault scarp at the three selected sites
yielded an age of 208, 200 and 193 years B. P. Effectively these ages means that the
scarp was produced during the 1819 Allah Bund earthquake, since no other major
earthquake occurred in the Great Rann during the period indicated by the ages i.e.
between 1809 and 1825.

Our studies substantiate the description in the historical accounts regarding the
Allah Bund fault scarp. We therefore rule out the possibility of the scarp being a
product of multiple earthquake events. Our study also suggests that the 1819 Allah
Bund earthquake was the largest earthquake that occurred in the Great Rann after its
emergence from the shallow marginal sea. This is evident from the large-scale
landscape changes, that includes the formation of a ~90 km long E-W trending
south facing scarp and also that no other comparable scarp occurs in the vast extent
of the Great Rann. Other earthquake that may have occurred during the time
possibly did not rupture the surface. However, the possibility of earthquakes of
comparable magnitude in prehistoric times in Holocene cannot be ruled out. It is
likely that some of them may have produced surface rupture, however these may be
buried under thick sediments, as the Great Rann was a shallow marginal gulf during
the Late Pleistocene to Holocene (Maurya et al. 2013; Khonde et al. 2017a, b).

It is pertinent to mention here that several large earthquakes have occurred in the
Kachchh rift basin, including the 1819 Allah bund earthquake and 2001 Bhuj
earthquake. The heightened level of seismicity is anomalous in view of the low
level seismic activity witnessed in the surrounding regions viz. Saurashtra in south,
Gujarat alluvial plain in the east and Barmer-Jaisalmer basins in the northeast
(Maurya et al. 2017). It has been suggested that the stress changes related to large
earthquakes in the Kachchh region affect the subsequent pattern of earthquakes. To
et al. (2004) demonstrated that the 1819 Allah Bund earthquake induced stress
changes which led to several moderate magnitude earthquake in the Great Rann.
Post-seismic relaxation following the 1819 earthquake resulted in the loading of
2001 Bhuj earthquake to a significant amount (To et al. 2004). The 2001 event was
followed by long aftershock activity and increased seismic activity along the South
Wagad Fault (SWF), Gedi Fault (GF) and the Island Belt Fault (IBF) (Mandal
2009). Earthquake swarm activity in different part of Saurashtra since 2001 has
been attributed to stress perturbation caused by 2001 Bhuj earthquake (Rastogi
et al. 2013). Low magnitude shocks are repeated from the Gujarat alluvial plain in
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the last 200 years (Maurya et al. 2000). Reactivation of pre-existing lineaments and
faults have resulted in moderate to low seismic activity in Barmer basin also in
recent times (Dasgupta and Mukherjee in press). However, none of the known
historical earthquakes are known to have produced surface rupture apart from the
1819 Allah Bund earthquake. Moreover, the co-seismic and post-seismic stress
changes due to pre-instrumental events still remain a topic of debate (Rajendran and
Rajendran 2001). Detailed palaeoseismic studies are necessary to unravel the
seismic history of the Great Rann for which the Allah Bund fault scarp can serve as
an analog.
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Interplay Between Tectonics & Eustacy M)
in a Proterozoic Epicratonic, Polyhistory Sines
Basin, North Dharwar Craton

Shilpa Patil Pillai and Vivek S. Kale

1 Introduction

Modern developments in sedimentary basin analysis (e.g. Einsele 2000; Miall 2000;
Allen and Allen 2013) have accepted the role of Wilson cycle in the formation,
growth and termination of sedimentary basins. The tectonic classifications of sed-
imentary basins (Dickinson 1974; Kingston et al. 1983; Allen et al. 2015) reflect
this perception. The sediment fill of a basin manifests the interplay of sediment
supply, eustacy and subsidence. Climate, topography and petrographic constitution
of the source region control the sediment supply. The geometry and volume of the
fill depends upon the available accommodation space, moderated by tectonics and
eustacy. In Precambrian basins, their deformation and metamorphism hampers the
elucidation of the contents, distribution patterns and sequences of the basin fills.
Sparse age controls in Precambrian sediments when compared to fossiliferous
Phanerozoic sediments further hampers their accurate elaboration (Eriksson et al.
2001). The Indian Peninsular Shield amalgamated into a singular continental block
towards the end of the Archean (2700-2500 Ma) with a series of K-rich granitic
batholiths representing the terminal events of this unification (Naqvi and Rogers
1987; Ramakrishnan and Vaidyanadhan 2010; Meert et al. 2010). Two contrasting
regimes punctuate its ensuing history (Kale 1995). The narrow, linear metamor-
phosed Early and Middle Proterozoic Mobile Belts with compressive tectonic
history (Radhakrishna and Naqvi, 1986; Ramakrishnan and Vaidyanadhan 2010)
are juxtaposed against the wide, extensional epicratonic platform basins that display
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a paucity of pervasive metamorphism and/or deformation (Fig. 1). The latter are
known as the ‘Purana’ basins (Radhakrishna 1987; Kale and Phansalkar 1991).
They contain thick sequences of shallow marine sediments deposited in discrete
basins which are in tectonic contacts with the mobile belts on one side (Kale 2016).
The Kaladgi and Bhima basins on the northern exposed edge of the Dharwar craton
are the exceptional Purana basins that do not have any Proterozoic mobile belts
adjoining them. The Kaladgi basin is additionally unique amongst the Purana
basins in that it has suffered stronger deformation along the median sectors of the
basin, unlike all others which have deformation restricted to their margins (Kale
1991).

The three Purana basins surrounding the Dharwar craton (Fig. 1) display diverse
modes of evolution (see Kale and Phansalkar 1991; Kale 1991, 2016; Meert et al.
2010; Allen et al. 2015). The Cuddapah basin has a record of its early growth as an
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Fig. 1 Precambrian terrains of Peninsular India (modified after Kale 1995; Sharma 2009;
Ramakrishnan and Vaidyanadhan 2010)
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extensional basin attended by basic volcanism; that eventually gave way to a
retro-arc basin with overthrusting of the Eastern Ghats Mobile Belt (including the
Nellore belt) from the east (Matin 2015 and citations therein). The Bhima basin in
the north is a pull-apart basin (Kale and Peshwa 1995). The Kaladgi basin on the
north-west shows events of initial extension (with minor transtensional component),
compressive deformation and late extension (Dey 2015; Patil Pillai et al. 2018). The
different margins of the Dharwar craton have obviously suffered diverse tectonics
and basin growth histories during the Proterozoic.

The Kaladgi basin hosts commercially exploited limestone reserves and asbestos
mines located in its basement (Jayaprakash 2007). It is a “Category IV” petrolif-
erous basin (Pratap et al. 1999; Biswas 2008; Kalpana et al. 2010). Uranium
mineralization has been recorded from various locations within it (Dey et al. 2008;
Sridhar et al. 2014). Our group has conducted extensive field studies of these
sediments across the last couple of decades; supplemented by petrographic labo-
ratory studies. We enumerate the contents and architecture of this unique Purana
basin: and demonstrate signatures of the tectono-eustatic interplay during its
evolution.

2 Regional Geology

2.1 Location

The Kaladgi basin extends between the 73°E and 76°E longitudes and 15° 30'N to
17°N latitudes, from the Konkan coastal tract in Sindhudurg district; across the
Western Ghats and the Deccan Plateau in Kolhapur district of Maharashtra state
into the Belgaum, Bagalkot and Bijapur districts of northern Karnataka state.
Isolated outliers of these sediments are scattered south of the main basin around
Saundatti and Gajendragad. Inliers within Deccan Traps occur near Kallamavadi
and near Jamkhandi to the north of the main basin. The westernmost exposures are
found as patchy inliers (within the Deccan Traps) in the Konkan coastal strip,
around Phonda and Malvan. They are collectively referred to as the Konkan
Kaladgis (Sarkar and Soman 1985; Deshpande and Pitale 2014). These discon-
nected outcrops show that the main basin extended far beyond its currently exposed
limits. The present exposures of about 8000 km? represent only a fraction of the
span of the basin, that can be interpreted to occupy more than 30,000 km?.

The sediments in this basin are subdivided into the Bagalkot and Badami Groups
(Viswanathiah 1979) separated by an angular and erosional unconformity. The
Bagalkot Group occupies an irregular ovoid shaped basin in the eastern parts (Inset
Fig. 2). The Badami Group covers more than 300 km in an E-W direction.

It is significant that while the Konkan Kaladgis are exposed at elevations of less
than 200 m above mean sea level, none of the remaining exposures (east of
Kallamavadi) occur at elevations below 550 m. This elevation difference may the
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Table 1 Lithostratigraphy of the Kaladgi basin (after Kale et al. 1999; Kale and Patil Pillai 2011)

Late Cretaceous to Paleogene
Deccan Traps (Trappean basalts, infra- & inter-Trappean beds)

Unconformity

e Konkankoppa Limestone Formation

e Halkurki Shale Formation

e Cave Temple Arenite Formation
Angular Unconformity

(x) Mallapur Intrusives

o Lakshanhatti Dolomite Formation

Neoproterozoic
Badami Group

Kaladgi Simikeri o Niralkeri Chertbreccia Formation
Supergrou . | Subgrou o Arlikatti Argillite Formation
pergroup geso,?lr(otterozwc oroup ° Muchkundnguartzite Formation
G?g:p o Disconformity
Lokapur e Petlur Carbonate Fo_rmation _
Subgroup e Mahakut Chertbreccia Formation
e Yadhalli Argillite Formation
e Saundatti Quartzite Formation
Nonconformity
Paleoproterozoic
Mafic dykes
Archaean

Closepet Granite, Dharwar Supergroup & Peninsular Gneisses

The Mallapur Intrusive (sensu: Jayaprakash et al. 1987) should be separated from the Simikeri
Subgroup as the intrusive bodies post-date the Simikeri sedimentation and early deformation (Patil
Pillai et al. 2018) and is hence shown with an asterisk before it

result of the downfaulting of the coastal strip prior to the Late Cretaceous—Early
Paleogene eruption of the Deccan Traps since the trappean basalts do not display
any evidence of faulting of this magnitude. It is likely that this elevation difference
is an artifact of the pre-Trappean downfaulting related to the rifting and separation
of the Indian plate from Madagascar—Syechellis in the Late Cretaceous, but it
could also be a much earlier event. The significance of this is that the Kaladgi
sediments have been subjected to Phanerozoic upheavals along with the rest of the
Dharwar craton. Its local implications could be several, when trying to correlate the
terrain evolution of this basin.

Archaean cratonisation, Proterozoic sedimentation, and the Cretaceous-Tertiary
Deccan volcanism have contributed to the overall geology in this region that was
eventually subjected to emergent erosion, fluvio-colluvial sedimentation and loca-
lised lateritization during Quaternary times. Table 1 summarises the sequence of
strata exposed in the Kaladgi basin and its surroundings.
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2.2 Basement

The basement for the Kaladgi Supegroup consists of Archean to Early
Paleoproterozoic rocks of the Dharwar craton (Radhakrishna and Ramakrishnan
1988; Ramakrishnan and Vaidyanadhan 2010; Valdiya 2016). They are collectively
termed as the “basement” or “Archean basement” in the ensuing text. These
sequences not only served as the basement for the Kaladgi sediments, but also have
acted as the source for their detrital sediments (Sambasiva Rao et al. 1999; Dey
et al. 2008, 2009).

This basement consists of a typical cratonic assemblage of gneisses, schist belts
and intrusive granitic batholiths (Fig. 2). The Peninsular Gneissic Complex is
composed of amphibolite  facies  tonalitic-trodndhjemitic-granodioritic
(TTG) gneisses. The NNW-SSE Shimoga Schist belt exposed southwest of the
basin is composed of genisses, meta-conglomerates, phyllites and banded iron
formations (BIFs). The Hundgund-Kushtagi Schist Belt forms the basement in the
eastern parts of the Kaladgi basin. It is composed of BIFs, basalt, minor ultramafic
and metasediments engulfed by the Peninsular Gneisses and intruded by the
Clospet Granites. The 2600 Ma old potassic granites of Closepet Granites and
equivalent rocks constitutea NW-SE trending belt. Towards the northern parts of
the Dharwar craton (in and around the Kaladgi basin), the basement trends swirl
from NW-SE to almost E-W. Basic dykes intrude this mixed basement
(Ramakrishnan and Vaidyanadhan 2010). Some of the dykes in it may be as young
as 1800 Ma (French et al. 2008; Meert et al. 2011).

2.3 Kaladgi—Basement Unconformity

The pre-Kaladgi basement profile was essentially a peneplained one with local
undulations, such as one below the Chitrabhanukot Dome, that emerge from the
geophysical data (Ramakrishna and Chayanulu 1988; Mallick et al. 2012). Deeply
weathered basement (sometimes with a paleosol horizon on top) is exposed
immediately below the sedimentary cover, at several locations along the northern
and southern rims of the basin.

Linear ridges of quartzites present on the eastern, northern and southern rims of
the main basin host the basal terrigenous clastics of the Bagalkot Group resting on
the basement. This contact between the basement and the capping sediments is an
angular and erosional non-conformity (Fig. 3a). Shear zones and faults that affect
both the Kaladgi sediments and their basement are exposed at places where the
contact between them is a structural one (see: Fig. 8). The exposures east of Bilgi,
between Idgal and Suriban, southeast of Ramdurg (Fig. 3b) and near Saundatti are
excellent examples of such structural contacts.

The subhorizontal Badami sediments rest on the dipping Bagalkot Group sedi-
ments with an angular and erosional unconformity in the eastern parts of the
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Fig. 3 a Exposure of the Badami Group (on the top with subhorizontal disposition) resting
unconformably upon the steeply dipping Bagalkot Group sediments (appearing as barren linear
ridges) with a nonconformable contact with the basement at B. N. Jalihal looking eastwards. The
location is about 3 km NE of Badami. b Steeply dipping Saundatti Quartzite exposing the sheared
contact with the basement (on the right hand side—not in the picture). The photo is looking
northeastwards at a location about 4 km east of Ramdurg. Author standing is 1.7 m tall.
¢ Erosional and angular unconformity between the northwards dipping Manoli Argillite (Bagalkot
Group) and the capping Cave Temple Arenite (Badami Group) at Torgal Tanda located about
3 km south of Ramdurg. The conglomerate is 7 m thick. d Thin cap of subhorizontal Cave Temple
Arenites resting directly on the Archaecan Basement at the Gokak hill forming flat-topped mesas

Kaladgi basin (Fig. 3a, c¢). This was first recorded at B. N. Jalihal (northeast of
Badami) and Torgal Tanda (south of Ramdurg) by Viswanathiah (1968). In the
western parts, the Badami sediments are exposed resting directly upon the basement
without the intervening Bagalkot Group sediments, forming flat topped mesas and
buttes (Fig. 3d).

2.4 Phanerozoic Cover

Sediments in the Kaladgi basin are capped by the Deccan Trap basalts, which
conceal large tracts of the basin, making it difficult to establish their lateral conti-
nuity particularly in the western parts of the basin (Fig. 2). The Deccan Trap basalts
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were erupted close to the Cretaceous—Tertiary Boundary and manifest one of the
largest continental flood basalt provinces in the world (Renne et al. 2015). At places
near Badami, Belgaum (where it is quarried) and along the western Konkan coastal
tract Late Tertiary—Quaternary lateritic caps are developed on top of the older
strata (Fig. 2). In some of the river valleys Quaternary fluvial sedimentary deposits
are developed capping the Kaladgi sediments. All of them contribute to masking of
the exposures of the Kaladgi rocks and making the lateral correlation difficult.

3 Kaladgi Supergroup

3.1 Stratigraphy

The early description of the geological successions in this region by Captain
Newbold in the mid nineteenth century were compiled with additional inputs by
Foote (1876). He classified this sedimentary sequence into six subunits ascribed to
the “Upper and Lower Kaladgi Series” that remained unquestioned for almost a
century. Recognition of the unconformity separating the undeformed succession of
sandstones, shales and limestones (‘Unit 3* of Foote 1876) and the deformed lower
sediments around B. N. Jalihal and Torgal Tanda by Viswanthiah (1968) led to the
recognition of the two Groups (Badami and Bagalkot) from this basin. Jayaprakash
et al. (1987) identified three cycles of sedimentation within the basin and further
refined the stratigraphy by dividing the deformed Bagalkot Group into two sub-
groups, namely the Lokapur and Simikeri separated by a basin-wide disconformity.
This was further elaborated upon by Jayaprakash (2007).

The spread of the exposures of the two constituent Groups (after discounting the
younger cover) shows that they were deposited in slightly different geographical
realms (Fig. 4). They are recognised as subbasins of the Kaladgi basin, and can be
justified to be sedimentologically, structurally and temporaly different from each
other. They overlap in the eastern part of this basin, but the older Bagalkot Group
does not extend in the western areas that host the Badami Group (Fig. 2 Inset).

Jayaprakash et al. (1987) recognised 21 members assigned to 8 formations in the
Bagalkot Group and 6 members from 2 formations in the Badami Group. The

Fig. 4 a Map of the Bagalkot subbasin depicting the exposures of various stratigraphic units. P
Chitrabhanukot Dolomite and Chikshellikeri Limestones are Members of the Petlur Carbonate
Formation. The locations of the stratigraphic logs (Fig. 6a) are given. Note the outline of this basin
marked in this map is traced by connecting the outermost exposures of the Bagalkot Group as
exposed today. The detached exposures south of Manoli are separated from the others by structural
contacts and hence shown separately. They comprise of Saundatti Quartzite. They indicate a larger
southward expanse of this subbasin, which is detached by structural disruptions or has been
disconnected due to subsequent erosion. b Map of the Badami subbasin depicting the distribution
of various stratigraphic units. Locations of the measured logs (Fig. 6b) are given for reference.
West of the limits of the Bagalkot subbasin, the Badami sediments rest directly on the Archean
basement complex
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Lokapur and Simikeri Subgroups are characterised by basal quartzitic sandstones
with minor rudaceous component. Similarly, the Badami Group is floored by
sandstone—conglomerate beds. Lithological boundaries between horizons are
generally gradational and interfingered in nature. Upward fining arenites pass into
the argillites. The siliceous and ferruginous argillites grade into calcareous argillites

and eventually into the carbonates.



84 S. Patil Pillai and V. S. Kale

These horizons display a lateral facies change into the adjoining lithology. This
lateral facies changes have been eatlier elaborated for a part of the basin by Kale
et al. (1996) and Patil Pillai (2004). Consequently there is a repetition of the argillite
—carbonate horizons encountered along several traverses across the basin.
Jayaprakash et al. (1987) and Jayaprakash (2007) recorded these as a number of
‘members’ that they clubbed into ‘formations’. This is not valid within the
framework of standard stratigraphic practices and Walther’s Law of facies suc-
cession (Brenner and McHargue 1988; Catuneanu 2006). A process responsive
lithostratigraphy (Table 1) of simplified, lithology-based, mappable formations was
erected for the Kaladgi basin (Kale et al. 1996, 1999; Patil Pillai 2004; Kale and
Patil Pillai 2011).

Direct onlap of the quartzitic sandstones of the Bagalkot Group without the
intervening conglomerates is seen at numerous locations located along the structural
contact with the basement. This indicates landward transgressive flooding beyond
the structural boundaries of the basin. While the Lokapur Subgroup is spread all
across the Bagalkot subbasin, the Simikeri Subgroup is restricted to the cores of the
synclines (Figs. 2 and 4). The Badami Group does not show any structural contacts
with its basement. In the western exposures of this subbasin, the Bagalkot Group is
not present at all between the Badami sediments and the Archean basement (see
Fig. 2). At no place does the Badami Group rest upon the Simikeri Subgroup. This
could be an indication of the limited development of the Simikeri Subroup, which
has no representatives south of the Badami subbasin.

3.2 Constitutents

Foote (1876) described the Kaladgi sediments within the framework of the con-
temporary formats. Since then, more than a century of research has been invested in
the understanding of the sediments of this basin. Viswanathiah (1979) recognized
four major lithofacies from this basin, namely the sandstones (/quartizites), shales (/
phyllites), carbonates (limestones and dolomites) and chertbreccias. The discovery
of stromatolites from the older carbonates (Viswanathiah and Chandrasekhara
Gowda 1970; Viswanathiah and Sreedhara Murthy 1979) was interpreted as
additional evidence of shallow marine environments.

Jayaprakash et al. (1987) showed that there were three cycles of shallow marine
epicratonic sedimentation within the basin, yielding three successions separated
from each other by unconformable contacts. Kale et al. (1996) further refined this
view using lithofacies classification to the southern parts of the basin (see: Figs. 7
and 8 of Kale et al. 1996) and later to the basin as a whole (Kale et al. 1999; Kale
and Patil Pillai 2011). A summary of the petrological characters of these facies
based on our studies is given below.

The Bagalkot Group is characterized by two sequences comprising of four
lithofacies, namely (a) detrital siliciclastic arenites and rudites (sandstones and
conglomerates), (b) argillites (siltstones, shales, mudstones and phyllites),
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(c) chertbreccias and (d) carbonates (limestones and dolomites/dolostones). They
occur as concentric stripes with an essentially E-W to ESE-WNW trend, swirling
parallel to the rim of the basin. The clastics occur closer to the basin margin and
others successively inwards towards the basin axis. In the Badami Group, the
arenaceous lithofacies dominates significantly, and the argillites and carbonates are
restricted to a narrow linear patch in the northern part of the eastern sector of this
subbasin (Fig. 4b). Chertbreccia is absent in the Badami succession.

3.2.1 Detrital Siliciclastics

Cap the basal unconformities. In case of the Lokapur Subgroup (=Saundatti
Quartzite), they rest on the weathered basement; while those from the Simikeri
Subgroup (=Muchkundi Quartzite) rest on the deformed sediments of the Lokapur
Subgroup. They occur as ridges that stand out in the low-lying terrain surrounding
them. This facies from the Badami Group (=Cave Temple Arenite) rests either on
the basement or on the deformed sediments of the Bagalkot Group, as gently
undulating table-lands.

Conglomerates occuring immediately above the basement are several meters
thick. Thin, sandy cross-stratified interbeds are common in them. Further upwards
in the sequence, they are present as thin sheets or thicker lensoid beds with poor
internal stratification (Fig. 2c) interbedded within the sandstones/quartzites.

The conglomerates are generally polymictic, matrix supported, poorly sorted
rudites. The clasts in the Bagalkot conglomerates are dominantly composed of
quartzitic, vein quartz, granitoid, schists and gneissic fragments embedded in a
clastic matrix which is often silicified (Fig. 5a). The Badami conglomerates contain
clasts derived from the Bagalkot sediments as well.

The Bagalkot sandstones display planar bedding (Fig. 5b) separated by thin mud
or silt partings, with low angle internal trough cross-stratification. Low angle
cross-laminations, climbing ripple laminations and widespread wave ripple marks
on bedding planes (Fig. 5c¢) suggest a coastal shoreface regime of deposition in a
variety of marginal to shallow marine environments such as strandplains, beaches,
deltas, estuaries, off-shore sand bars, and beaches that occasionally were influenced
by tidal currents (Kale et al. 1996; Jayaprakash 2007). Some of these beds, notably
from the exposures around Bilgi and Jamkhindi on the northern parts of the basin
are interpreted to be deposited under fluvial influence in deltaic/esturine environ-
ments (Bose et al. 2008). Some of the coarser detritus (rudites) may be lag deposits
or gravelly shoreline rim deposits on the landward side of the basin, representing
inception of the transgression in it. Their provenance is the Dharwarian basement
from where they were transported in a fluvial medium (Dey et al. 2009;
Mukhopadhyay et al. 2014). Palacocurrent studies (Jayaprakash et al. 1987,
Stephen George 1999) have indicated a centripetal pattern. The northern exposures
display southward directed palacocurrents and the southern exposures in the
Ramdurg—Saundatti tract have northerly palaeocurrent directions. Change in the
orientations of the current ripples in successive beds (Fig. 5c) suggest limited tidal
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«Fig. 5 a Thickly bedded conglomerates with parallel stratified interlayers of sandstones occurring
at the base of the Badami Group (at Gokak falls). They grade upward into the sandstone beds. The
photographed section is about 5 m high. b Parallel bedded quartzitic sandstones of the Saundatti
Quartzite exposed in a quarry face near Bilgi. Beds dip gently towards the south (right of photo).
The quarry face is about 10 m high. ¢ Current ripple marks on the bedding plane of Muchkundi
Quartzite exposed near the Muchkundi reservoir. Note the change in ripple axis orientations in
successive beds. d Trough cross bedded sandstones of Badami Group (exposed around Badami
town). The geometry of troughs, indicate small shifting channels similar to those in braided
channels of mature river systems close to their mouth (in estuaries/deltas). e Lenticular beds of
Yadhalli Argillite exposed near Manoli. Note the gently wavy nature of the bedding in the upper
part of the photograph. f Thin parallel bedding with alternations of grey (siliceous) and purple
(ferruginous) shales of Halkurki Formation exposed near Halkurki. They are extremely friable and
weather easily. Hammer for scale is 34 cm long. g Alternate laminations of calcareous (buff
colored) and pure crystalline limestones (dark grey colored) from the Chikshellikeri Limestone
exposed near Gaddankeri. Note the climbing ripple laminated beds interspersed within the parallel
laminated bedding. They indicate reworking of the lime-mud under influence of currents. Pinching
and swelling of the lamina thicknesses is due to uneven compaction. h Variegated parallel
stratified Kokankoppa Limestone with an interbedded limestone breccia horizon. The clasts of the
breccia are embedded in an impure calcareous muddy matrix. Such intraformational breccia
horizons testify to intermittent emergence (shallowing) or may manifest synsedimentary
deformation

influence during their deposition. The sandstones from the Bagalkot Group have
been altered to glassy orthoquartzites due to diagentic recrystallisation and further
during deformation.

The Badami sandstones are dominantly trough cross-bedded (Fig. 5d) with
occassional birectional and parallel stratification. This suggests their deposition in
braided fluvial to transitional marine environments with minor tidal influence.
Slope-base conglomerates and the sandbars, over-bank mud drapes on hummocky
sand beds and upward fining beds that are interrupted by gravel beds or local
erosional surfaces (overlain by coarser sands) are often seen. These characters and
the stratal patterns of dominantly wide amplitude trough-cross bedded channels
suggest the deposition in braided channels. They are therefore attributed to a wide,
mature braided river system that drained into a shore-face environment. Few of
these sandstones (e.g. those exposed north of Ramdurg and northwest of Badami)
display tidal silty interlayers. Their stratification with low amplitude shallow and
wide troughs stacked one above the other (Fig. 5d) is also suggestive of their being
estuarine or deltaic channel deposits.

3.2.2 Argillites

Siltstones, shales and mudstones represent this facies. The Bagalkot Group also
contains horizons of phyllitic shales (with chlorite neocrystallisation) having
well-developed slaty cleavages. This is the result of the localised, low grade
metamorphism in the strongly deformed northern sector of the Bagalkot subbasin.
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The argillites shows basinward progressive compostional gradation from silic-
eous near the basin margins to ferruginous to calcareous in the centre of the basin.
The argillites occur as flat and laterally extensive facies that occupy vast tracts
within the basin, with subparallel to parallel stratification. They display a variety of
primary sedimentary structures such as flaser and lenticular bedding (Fig. Se),
discontinuous or lensoid bedding, mud cracks, clay gals, rip up clasts, raindrop
impressions etc. These features testify to their deposition in a tidal regime which
was intermittently flooded. The occurrence of manganese nodules within the
Arlikatti Argillite near Niralkeri village reported by Patil Pillai et al. (1999) indi-
cates the possibility of a locally developed condensed sequences within the basin.
The argillaceous sediments from the Bagalkot Group (Yadhalli Argillite and
Arlikatti Argillite) are products of shallow intertidal off-shore flats, that suffered
phases of emergent and submergent conditions.

The shales of Badami subbasin are dominantly thinly stratified (Fig. 5f) and are
ocassionally glauconitic. This indicates their deposition in transitional marine set-
tings. The calcareous shales (generally occurring at the top of the argillite beds)
progressively grade into the impure limestones of the carbonate facies. Distribution
and sedimentological characters suggest that they (Halkurki Shale) were deposited
in a lagoonal environment.

3.2.3 Chertbreccias

They occur only in the Bagalkot Group but are not present in the Badami
Group. Two separate horizons are present in the Lokapur and Simikeri Subgroups
(Mahakut and Niralkeri Chertbreccia Formations respectively). In field exposures
they can be easily misidentified as fault breccias, but are unequivocally interbedded
horizons within the rest of the Bagalkot sediments. They have been deformed
coherently with the other enveloping sediments of this Group. They are interpreted
as washed fault-generated debris produced during the synsedimentary tectonic
movements along the basinal faults and subsequently silicified (Kale and Patil Pillai
2011).

The chertbreccia and argillaceous beds display a mutually exclusive develop-
ment in the Bagalkot sequence. In the sectors of the basin that suffered synsedi-
mentary tectonism, where chertbreccia deposits developed, the extent of the
mudflats was curtailed. This led to accumulation of thinner deposits of the
argillaceous sediments. In other sectors such as in the southern sector around
Manoli and west of Badami, where the basin floor subsided in a more gentle
continuum, wide tidal mudflats yielded thicker argillaceous deposits (see: Kale et al.
1996).
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3.2.4 Carbonates

This facies is represented by limestones and dolomites, with the latter being
restricted to the Bagalkot Group. The limestones display a variety of colours (pink,
white, green and grey) attributed to the impurities in them. The limestones of
Bagalkot Group display flat, parallel-laminated alternations of impure lime muds
and pure crystalline limestone. Occurrence of climbing ripple laminations and
cross-stratified lenses (Fig. 5g) indicate that they were deposited in a very shallow
shelf affected by currents. The dolomites or dolostones of the Bagalkot Group
display tabular parallel-laminated stratification. They are often diagenetically sili-
cified. They contain wavy algal-laminated dolomites with stromatolitic colonies
(Viswanathiah and Sreedhara Murthy 1979; Sharma et al. 1998) indicating water
depths of less than 20 m and a warm equitable climate. These carbonates are
interpreted to be deposited in a carbonate flat regime with occasional interruptions
of storm surges manifested as thin sandy lenses. Occurrence of intraformational
limestone breccia horizons (Kale et al. 1998) in them is indicative of their episodic
emergence or the manifestation of synsedimentary deformational events during
their accumulation.

The flaggy limestones of Badami Group are varigated (Fig. 5h) and contain thin
lensoid intercalations of siliciclastics. They display wave ripples, clay galls, rip up
clasts, tidal couplet laminae suggesting a tidally influenced depositional setting.
Presence of glauconites in the sandy lenses suggests locally developed reducing
environments during their deposition.

3.2.5 Mafic Bodies

Basic dykes and quartz veins intruding discordantly into the sediments have been
recorded from the northern folded sector of the Bagalkot subbasin (Foote 1876;
Jayaprakash et al. 1987; Jayaprakash 2007). They are collectively named as
Mallapur Intrusives Formation of the Simikeri Subgroup. Their occurrence along
the axial planes of folds in the Simikeri Subgroup indicates that they were emplaced
after the cessation of sedimentation. Therefore they are separated as an independent
formation post-dating the Simikeri Subgroup as listed in Table 1 (Patil Pillai et al.
2018).

3.3 Lithologs

Besides the detailed lithological mapping (Fig. 4), logs of stratigraphic sections
were reconstructed based on sections measured during field studies (Fig. 6). They
include the sedimentary structures, stratal patterns and thicknesses of the various
lithotypes.
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Fig. 6 (continued)
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«Fig. 6 a Measured stratigraphic lithologs reconstructed from vertical sections/traverses across
different exposures of the Bagalkot Group. The locations of the logs are shown in Fig. 4a. The
lithofacies encountered are colored as per the lithological map of the Bagalkot subbasin given in
the inset, with significant sedimentary structures and bedding patterns superimposed on them. The
logs are broadly arranged west to east (left to right successively) in a north-up sequence, with
reference to their base. Indicative correlations of the stratigraphic boundaries are shown with
dashed red lines. These logs show (a) the interfingering nature of the lithofacies leading to
recurrence of the same lithofacies in the same sequence; and (b) paucity of chertbreccias in
sections where the argillites are prolific and vice versa as discussed in the text. b Measured
stratigraphic lithologs reconstructed from vertical sections/traverses across different exposures of
the Badami Group. Locations of the logs are given in Fig. 4b. The logs are arranged west to east
(left to right successively) and plotted against the elevations above msl rather than in terms of
absolute thickness as in case of the Bagalkot logs (a). This is enabled by the fact that barring low
(<5°) rolling dips, the Badami sediments occur in a subhorizontal disposition indicating that they
have not suffered any post-depositional deformation

Petrological studies of the strata from these sections, to establish their textural
and composition are embedded in these logs. These logs provide a synoptic view of
the various lithotypes occuring in different sections. In conjunction with the geo-
logical map they provide a clear understanding of the vertical and lateral distri-
bution of various horizons from the Kaladgi basin.

3.4 Subsidence Analysis

A combination of supply (types and rates) and accommodation space (as a function
of relative subsidence, driven by eustacy and tectonics) defines the sedimentation
patterns and contents in a sedimentary basin (Catuneanu et al. 2005; Allen and
Allen 2013). The motifs of the sediment piles that accumulate at different locations
within a basin manifest the patterns of relative subsidence in those parts. The
reconstruction of successive stages of sediment accumulation within a basin plotted
against time enables understand the relative subsidence of the basin floor at different
stages of its evolution (Gallagher and Lambeck 1989).

This analysis requires primary data of (a) the lithotypes and their compaction and
diagenetic history, (b) estimated paleobathymetry of the different types of sedi-
ments, (c) stratigraphic (plotted as vertical) succession of the constituent sediments,
(d) the ages of the different strata within the stratigraphic succession; and
(e) backstripping that enables quantify the removal or loss of sediments that were
accumulated but are not preserved (Sclater and Christie 1980; Bond and Kominz
1984).

In case of the Phanerozoic successions, in which accurate ages of the strata are
provided by their fossil assemblages, such subsidence analysis has led to the
development of a robust global eustatic sea-level curve (e.g. Vail—EXXON curve
—Vail et al. 1977; Haq et al. 1987; Miller et al. 2005). However, this is not possible
in the unfossiliferrous Precambrian sequences where age data is sparse
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(Catuneanu et al. 2005). In such cases, accurate determination of the net rate of
subsidence of the basin floor cannot be plotted and needs to be estimated using
other proxies. Kale (1991) used these principles to plot the ‘sediment accumulation
curves’ (‘SAC’s) of the Purana basins, using the total accumulated stratigraphic
thickness in the basin as a proxy of 100% time of the basin evolution. The maxi-
mum stratigraphic thickness of each stratigraphic unit computed as a percentile
value of the total thickness represents the relative time taken by it in the basin. This
yields a relative (rather than absolute—as in case of the Phanerozoic) scale for the
basin. We have used our observations (as enumerated in Figs. 4 and 6) and the
maximum thicknesses of strata as defined by Jayaprakash (2007) in these compu-
tations. The cumulative uncompacted maximum stratigraphic thickness for the
Bagalkot Group is 13,717 m and for the Badami Group is 1846 m. These values
match well with the geophysically determined maximum depth to basement (e.g.
Ramakrishna and Chayanulu 1988; Kale 1991) of the Kaladgi basin.

3.4.1 Sediment Accumulation Curves

This analysis uses Cant’s (1989) equation that derives a relationship between
eustacy (E), subsidence (Sub), sediment accumulation (Sed) and the depth of the
depositional interface (D). It is postulated that the change in water depth (AD)
during the deposition of a single uninterrupted stratum with thickness (ASed), in a
basin where space is created due to subsidence (tectonic or gravity driven) of the
basin floor (ASub) and eustatic sea-level change (AE) will be as follows:

ASub + AE — ASed = AD (1)

If the combined effects of subsidence and eustacy are clubbed together into a
single parameter (ADI), this equation can be simplified into the following form:

ADI — ASed = AD (2)

In other words, the sum of sediment thickness and its depositional depth of each
strata gives the net change in the depth of the depositional interface due to subsi-
dence and eustacy:

ADI = ASed + AD 3)

It is assumed that during the deposition of a single lithotype, the sediment
accumulation (ASed) kept pace with the net subsidence (ADI) and that the change
in this resulted in the succeeding lithotype to be deposited in succession. The
uncompacted thickness of each stratum in a single stratigraphic section is computed
to generate the progressive accumulation, computed as the ‘cumulative ADI’.
Plotting the successive values of ADI against time (as determined by the age of the
sediments in a sequence) provides a glimpse of the nature of changes in the
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Table 2 Listing of compaction factors and depositional depths used in the subsidence analysis of
the Kaladgi sediments

Lithology Value
Compaction factor

1. Highly compacted and recrystallized sandstones (quartzites) 0.76
2. Well-indurated, cemented sandstones 0.86
3. Siltstones 0.53
4. Mudstones and shales 0.41
5. Carbonates (without significant recrystallisation) 0.75
6. Carbonates (recrystallized) 0.69
Depositional depth in meters

1. Carbonates (unaffected by influence of surface waves) -7
2. Carbonates (deposited within wave-influence depths) -5
3. Tidal muds and silts (=shales) -3
4. Supratidal and beach sandstones +3
5. Conglomerates +7
6. Chertbreccias (reworked tectonically generated debris) 0

progressive changes in the accommodation space available in a basin. Such plots
are called Sediment accumulation curves (SACs).

For ancient sediments, the stratigraphic thickness represents the compacted
thickness of the preserved sediments. The compaction curves by Sclater and
Christie (1980) provide ranges of 0.76-0.86 (sandstones), 0.41-0.53 (siltstones and
shales) and 0.69-0.75 (carbonates) for different overburden depths. Subsequent
studies of sediment compaction (Baldwin and Butler 1985; Audet and Fowler 1992;
Bjerlykke 2014) have also shown that authigenic recrystallisation, cementation and
diagenetic changes can affect the compacted thicknesses of sediments. Taking these
factors into account, we have used the estimated values of compaction factors for
the different lithotypes occurring in the Kaladgi basin as given in Table 2.

The optimum depositional depths for these lithotypes estimated assuming the
value of zero for the contemporary mean sea level are also listed in Table 2.
Positive values indicate deposition above the mean sea-level while negative values
indicate submergent accumulation of the sediments.

The uncompacted thickness of each stratum in a single stratigraphic section is
successively added to generate the progressive accumulation, computed as the
‘cumulative ADI’. The percentile ratio of the uncompacted stratal thickness with the
maximum Group-wise thicknesses gives a proxy of the time taken by that sequence
to accumulate. The locations of the SACs for the two constituent Groups (Fig. 7)
are the same (in numbers) as the stratigraphic sections (Figs. 4 and 6) that were
used to plot them.

The overall flatness of the Badami SACs in comparison to those of the Bagalkot
Group indicates a relatively slower accumulation in a gradually subsiding basin
floor of the former. This indicates a paucity of tectonic influence in the subsidence
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Fig. 7 SACs of the Kaladgi Supergroup. The curves are numbered as per the stratigraphic section
(Fig. 6a, b) used to plot them. For the Bagalkot Group rows are arranged from east to west (right to
left) respectively to give a perception of the along-strike changes in subsidence patterns. The rows

are arranged north to south (top-bottom) respectively. For the Badami Group only two
representative SACs are given

history of the Badami Group. The steeper Bagalkot SACs suggest a faster subsi-
dence, which must have been enabled by tectonic deepening besides the eustatic
changes in the sea-level through its evolutionary history.

The SACs of the section numbers 2, 7, 9, 14, 15, 16 displays a consistent
gradient with little or no deflection; pointing to a rapid subsidence with a fairly
consistent rate. These sections are not located close to any of the basement shears.
On the other hand, the SACs of section numbers 1, 3, 6, 10, 11 that are located near
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the basement shears display intervening deflections. These deflections reflect
modifications in the relative subsidence rates due to synsedimentary tectonic events.
Kale et al. (1998) showed the record of increasing frequency of the intraformational
limestone breccia horizons in the Gaddankeri sector indicating enhanced tectonic
modifications of the basin floor. Similar observations recorded by us in the other
sectors in the form of SSDs in the measured sections (Fig. 6) reinforce this
interpretation.

3.5 Depositional System

The broad picture that emerges is of a continent-margin shallow platform complex
with segments of continental deposits. The geographic spread of the basin, with the
basement exposed on all sides shows that it was in all probability a land-locked
basin with sediments supplied from all sides and deposited in it. Our data supports
the interpretation (Kale et al. 1996; Jayaprakash 2007) of the Kaladgi sediments
being deposited in transitional to shallow-marine regimes with local gentle depo-
sitional dips of 2°-5°. The detrital siliciclastics (quartzitic sandstones and con-
glomerates) were deposited in near-shore environments. Carbonate mudflats that
yielded the limestones and dolomites were further away from the shoreline, on a
shelf with shallow depths within the wave-base. The intervening mudflats yielded
the silicious and ferrugenous argillites on the landward side and calcarous mud-
stones on the open sea-side. The bedding plane markings, mud cracks, rip up clasts
and thin lensoid bedding evidence their accumulation under tidal influence with
alternate pulses of flooding and subaerial emergence.

Intricate sediment patterns in some sectors of the Bagalkot subbasin (particularly
the parts between Mudhol-Lokapur—Bagalkot) as depicted in the map (Fig. 4a) and
evident in the stratigraphic logs (Fig. 6a) suggest that the gently sloping profile of
the basin floor in these sectors was subjected to deviations, leading to uneven
relative subsidence. Pulses of temporary (and localised) shallowing or deepening in
excess of that expected during a normal trangressive sequence are reflected by the
alternations of shales and carbonates in these sectors. Some of these deviations
could be artifacts of the original basin floor geometry, such as basement highs and
lows. Deviations in the sediment supply rates may also have contributed to the
diversity in the dispersal (and consequently depositional) patterns of the sediments.
Some of these variations are interpreted to be consequences of synsedimentary
instability of the basin floor, created by tectonic events. The distribution of the
intraformational breccias in Petlur Carbonate, chertbreccias and seismites in other
horizons (Kale et al. 1998; Kale and Patil Pillai 2011; Patil Pillai and Kale 2011)
reinforce this possibility.
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4 Structural Configuration

For understanding the evolution of the basin, it is necessary to try and separate the
diverse influences (basement undulations, supply rate variations, sea-level changes
and tectonics) and their imprints in the sedimentary record. The primary require-
ment for enabling this was to establish the three-dimensional geometry of various
horizons. This is relatively straight forward in case of the subhorizontal Badami
Group. However, the tightly folded sequence of the Bagalkot Group does not
permit the lateral continuity of the lithostratigraphic units to be established without
deciphering the structural patterns and ‘unfolding’ the strata.

The deformation patterns in the basin were earlier documented by Awati and
Kalaswad (1978), Nair and Raju (1987), Jayaprakash et al. (1987), Gokhale and
Pujar (1989), Jayaprakash (2007), Mukherjee et al. (2016), Jadhav and Kshirsagar
(2017) amongst others. Traverse mapping to validate earlier observations and field
observations on the orientations of the bedding planes, fractures and phyllitic
cleavage (in case of the argillites) have been used to understand the sense of
movement in different folds and faults in the basin.

Figure 8 compiles these observations in the Bagalkot subbasin that has under-
gone significant tectonic deformation. It is apparently divided into the northern and
southern sectors (Figs. 4a and 8) that are structurally different from each other,
separated by younger cover. The northern sector hosts tight eastwards or westwards
plunging folds. The southern sector exposes monoclinal, northward dipping strata
from the Lokapur Subgroup (Fig. 8). This stronger deformation of the Bagalkot
Group in the central parts than that along its fringes is akin to mobile belts. This
contrasts to that recorded from the other Purana basins, which display deformed
margins and relatively undeformed mid-basinal sectors.

The narrow linear Badami subbasin (Inset Figs. 2 and 4b) is almost undeformed.
The Badami Group is characterized by subhorizontal dips and small local faults
showing dragging along them. No other structural deformation is recorded from this
Group.

4.1 Regional Faults/Shears

The Kaladgi basin displays several sets of inherent as well as superimposed faults
(with evidence of brittle deformation and displacement) and shears (zones of
quasi-ductile to ductile deformation). The sense of slip along them is recorded
based on slickenside surfaces, drag of the bedding and joint patterns along them.
They dominantly trend E-W to ESE-WNW with gentle swirls along their lengths
and occur close to the margins of the basin.

The Sirur Shear zone extends for >100 km across the central part of the basin
and further eastwards into the basement terrain. It displays a minor right-lateral
sense of movement and a larger dip-slip component with downthrows towards
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Fig. 8 Structural map of the Bagalkot subbasin showing the major folds and faults. The dotted
outline marks the boundary of this subbasin that is surrounded on all sides by basement rocks.
Regional shear zones such as the Kolchi and Anagwadi Shears have been recorded in geophysical
studies as crustal scale lineaments. The Sirur Shear separates the northern folded sector and the
southern monoclinal (northward dipping) sector of this subbasin

north. This shear zone (Fig. 8) is largely concealed below younger cover (of the
Badami Group and Deccan Traps). It occurs along the boundary between the
northern and southern sectors of the Bagalkot subbasin. It also marks the northern
edge of the Badami subbasin in the eastern sector (Fig. 4b). This suggests that it
may have suffered a reversal of sense of movement, yielding southward down-
throws during the Badami sedimentation. Most of the other E-W trending faults
display dominantly dip-slip displacements with basin-ward downthrows, and neg-
ligible to no strike-slip components.

The NW-SE trending sinistral Anagvadi and Kolchi Shears extend into the
basement. The imprints of the former are exposed across the Bagalkot subbasin.
The northward continuity of the Kolchi Shear is concealed below younger cover
and is hence shown with a thinner line in Fig. 8. Both correspond to megascale
geophysical lineaments of Peninsular India (Sridhar et al. 2017; Rajaram et al.
2016) that extend far beyond the bounds of the Kaladgi basin.

Minor faults have been mapped in several parts of the basin with NNE-SSW,
N-S, NNW-SSE trends (Fig. 8). They appear related to folding as sympathetic
fractures that show brittle deformation when transecting the quartzitic and
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conglomeratic horizons, while the argillites and carbonates suffered ductile drag-
ging coherent with the sense of movement (see Mukherjee 2014).

The synsedimentary deformation from the Bagalkot Group is oriented parallel to
the adjoining shears and faults (Kale et al. 1998; Kale and Patil Pillai 2011; Patil
Pillai and Kale 2011). This indicates that they may be inherited structures from the
basement that were reactivated during and after the sedimentation in the Kaladgi
basin. Faulted contact of the basement and cover sediments when traced laterally,
assumes the nature of an unconformable relation, with the trace of the fault con-
cealed below the sedimentary cover. This suggests that although faulting played an
active role in the basin subsidence, transgressive onlap of sediments beyond the
faults did take place. The combination of the NW-SE trending regional shears and
the E-W trending Sirur Shear suggest that basinal growth took place in a
transtensional regime.

Several cross-faults that display quasi-ductile deformation in the argillaceous
and carbonate sediments cross the quarzitic ridges as brittle faults lined with fault
breccia. This aspect of competency contrast provides a better understanding of the
stress distribution during deformation and provides clues to the sense of slip along
them.

4.2 Folds

Folds in the Bagalkot subbasin are easily mappable from aerial photographs and
satellite imageries (Awati and Kalaswad 1978; Nair and Raju 1987) due to the rims
of the quartzite ridges along them (Fig. 9). These folds are large amplitude, small
wavelength ‘close folds’ with inter-limb angles of less than 30°. They display
plunging fold axes and curviplanar axial planes (as shown in Figs. 8 and 9).

This has been interpreted as a weaker event of cross folding (Mukherjee et al.
2016; Jadhav and Kshirsagar 2017). Alternatively, the fold geometry may have also
been influenced by inherited structures such as the basement shears and paleoto-
pographic undulations, yielding a perception of a second phase of coaxial folding.

Incipient greenschist facies metamorphism is manifested as development of
chlorite, sericite, albite (Govinda Rajulu and Chandrasekhar Gowda 1972) and
phyllitic cleavages in argillaceous sediments; and uralitization of pyroxenes and
albitisation of plagioclase in the Mallapur Intrusives (Patil Pillai et al. 2018). It is
pronounced at locations where the secondary faults cut across them and along fold
axes, but becomes indistinct away from the faults and on the fold limbs.

4.3 Synthesis

Three N-S geological cross-sections are reconstructed to depict the complex nature
of deformation and the stratigraphic relationships between various horizons in the
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Fig. 9 Sketch maps of major folds in the Bagalkot subbasin. The fold axes are shown with their
plunge direction and anticlinal/synclinal symbol. Faults are shown with thin dotted red lines.
Strike-slip faults are depicted with the sense of slip along them. Faults with dominant dip-slip
component are shown without any marking of sense of movement along them

Kaladgi basin (Fig. 10). Besides enabling understanding of the lateral facies
changes, they also show the relationships between various folds and faults in the
deformed sector of the Bagalkot subbasin.

The E-W and NW-SE trending regional shears in the basement continue as faults
affecting the sediments. The parallel orientations of the synsedimentary deforma-
tional structures to them (Patil Pillai and Kale 2011) indicate that they were active
during the sedimentation in the basin (D) and have influenced the basin geometry.
The sediment distribution patterns as lithofacies stripes parallel to these basement
structures reinforces this interpretation. They controlled its deepening by subsi-
dence of the continent-margin shallow marine platform.

The pattern of the SACs (Fig. 7), the shore-line—shelf depositional regimes of
the sediments and their stripping patterns collectively indicate that extensional
subsidence was responsible for the growth of the basin. Presence of synsedimentary
extensional faults as documented by Patil Pillai and Kale (2011; Fig. 5) in the lower
sequences of the Kaladgi basin and the onlap of sediments across bounding faults
are additional evidences in support of multiple transgressions that occurred in a
progressively deepening basin. In absence of systematic geophysical or drilling
data, it is difficult to validate the depth penetration of the structures recognized
during surface mapping as depicted in the cross-sections (Fig. 10).
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and of the fault/shear zones have limited validation from field observation

These features suggest a dominantly extensional regime during the growth of
this basin, with minor but significant strike-slip component. We therefore conclude
that the inception and growth of the Bagalkot subbasin occurred in a transtensional

tectonic regime.

The parallel orientation of fold axes with these basement structures suggests their
control on the deformational history of the sediments at a later date (D;). Jadhav
(1987) and Jadhav and Phadke (1989) interpreted the large amplitude, WNW-ESE
trending sinusoidal folds in the multilayered succession of Bagalkot Group to form
by buckling under relatively homogenous stress conditions. Based on the fold
orientations and field data, we infer that the initial buckling was caused by trans-
pressional stresses active in NE-SW and NW-SE directions during the D; event. As
the strain gradually increased, sinistral as well as dextral verging cross-folds
developed along the limbs of these folds, accompanied by transverse fractures and
faults during a later event (D,). This interpretation of reactivated basement shears
governing the deformation history is more plausible than the gravity gliding model

proposed by Mukherjee et al. (2016).
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The Badami sediments were deposited on the eroded surface of the deformed
Bagalkot Group (D3). These younger sediments do not display significant defor-
mation except for some local faults. Its depositional characters dominated by
continental deposition suggest that the younger Badami subbasin was nested in the
uplifted and eroded fold-mountains of the Bagalkot Group in the north and the
ridges of the Saundatti Quartzites in the south.

5 Basin Analysis

This basin had developed on the continental crust of the Dharwar craton (Kale
1991; Basu and Bickford 2015; Allen et al. 2015). The Dharwarian basement
served as the source of its sediments. The geometric relationship between the
regional basement shears that were active during the sedimentation and the sedi-
mentation patterns of the Bagalkot Group indicates that movements along them
facilitated the inception and growth of the basin. The tectonic influence on the
evolutionary history of this basin therefore precludes the possibility of this being an
intracratonic sag as suggested earlier (Jayaprakash et al. 1987; Jayaprakash 2007;
Dey et al. 2009; Dey 2015). A different model of the evolution of the Kaladgi basin
emerges based on the evidence and analyses documented above.

5.1 Phases of Basin Evolution

While integrating these observations, the ages of different events (Table 3) inferred
by Patil Pillai et al. (2018) are used. It is necessary to recognize that the ranges of
the ages inferred in the Table 3 are not the durations of the sedimentation. An
average sediment accumulation rate of 0.1 mm/year yields a duration of ~ 130
million years to the Bagalkot Group and ~19 million years for the Badami
Group. Modern accumulation rates in deltas range between 1 mm/year (=1 m/
k year) and 10 cm/year (=0.1 km/k year). They are slightly different, but in the
same magnitude range for shelf seas (Saddler 1999; Sommerfield 2006). Using
analogs of Phanerozoic sediments from the near-shore systems, the actual durations
of sedimentation in the Kaladgi basin are more likely to be a fraction of the
estimates based on average sedimentation rates (Kale 2015, 2016). This adds to
certain uncertainties when tagging the ages of the events in this basin.

5.1.1 Early History

Given the ages of the Mesoproterozoic dyke swarms, occurring in the adjoining
areas (Kumar et al. 2015), it is evident that the Kaladgi sedimentation cannot be
older than 1800 Ma (see also Basu and Bickford 2015). This cratonic block of the
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Table 3 Chronology of events in the Kaladgi basin modified after Patil Pillai et al. (2018)

Subbasin Sedimentological events Tectono-thermal events Estimated age
range/measured
age (Ma)

Badami Continental sedimentation Extension (D3) ~900-800

with localised marine

transgression

Emergence and erosion of Hiatal break 1100-900
folded strata (+basement)

Bagalkot Post depositional events Low grade 1150-1100

metamorphism and
deformation (D5)
Mafic intrusion 1154 + 4
Folding and faulting
D2)
Basin deepening with Extension ~ 1200
synsedimentary intra-basinal
tectonics
Local intra-basinal Intra-basinal tectonics >1200
reorganisation (?) with co-axial
deformation (Dy)
Peak transgression Extension and <1300 + 50
Basin inception subsidence (Dy) ~ 1400 + 50

Basement | Emergence and Continental regime >1600 Ma

peneplanation

northern Dhawar craton was subjected to an emergent period of continental
weathering and erosion leading to a peneplained topography with gentle gradients
following the event of dyke intrusion. This is consistent with the period of stability
of supercontinental assembly (between 1800 and 1500 Ma) predicted by Condie
et al. (2015).

The reorganization of continental blocks and assembly of Rodinia after the
breakup of Nuna started around 1400 Ma (Cawood and Hawkesworth 2014;
Condie et al. 2015). Similar coeval extensional regimes and cratonic rifting are
recorded from the other Purana basins of Peninsular India (Kale 2016). It is
speculated that the primary inception of this basin on the northern edge of the
Dharwar craton may be a part of this global tectono-thermal event. Transtensional
reactivation of some of the basement shears, like the Sirur Shear, enabled tecton-
ically driven subsidence in the Bagalkot subbasin. It is generally accepted that
during the existence of the Mesoproterozoic supercontinents, due to their low
topographic gradient, even small sea-level increase could lead to flooding of large
areas creating wide-spread platform basins (Eriksson et al. 2006; Bradley 2011),
similar to the Kaladgi basin.
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5.1.2 Growth

The growth of the Kaladgi basin between 1400-1300 Ma is consistent in the global
context of marginal break-up of the supercontinents. The upper crustal regime
would normally be expected to fail (under extensional stress) along brittle fault
planes. The brittle upper crustal levels of the continental crust would essentially
display failure during extension with fault complexes analogous to those found in
present day continent margin rifts (Gibbs 1984; Allen and Allen 2013) as postulated
in the model in Fig. 11a. The cross-sections across the Kaladgi basin (Fig. 10), and
fault-plane orientations, can be modeled into an analogous listric system.

A postulated listric geometry of the main faults/shear zones that governed the
growth of this basin is endorsed by the fact that at several locations, mesoscopic
listric and antithetic fault complexes of meter-scale dimensions are seen (Fig. 11b—
e). The field exposures not only endorse the basin-scale listric geometry of the
growth fault complex, but also show it’s replicability at smaller scales. The max-
imum recorded vertical thickness of sediments (of ~5000-6500 m) suggests that
the depth of the detachment plane was located at those depths.

Given the element of horizontal movements recorded from various associated
faults (see Figs. 8 and 10); the extension was associated with a degree of horizontal
shear. It is therefore interpreted that the early growth of the Kaladgi basin was in a
transtensional regime rather than purely extension driven by gravity as previously
modeled by Mukherjee et al. (2016). The essentially extensional, fault-driven
subsidence (=Dg) of the floor of the Bagalkot subbasin enabled accumulation of
thick sediments in it.

A minor, localized event of basin floor reorganization led to the intrabasinal
unconformity between the Lokapur and Simikeri Subgroups in the northern sector
of this subbasin (Kale et al. 1998; Jayaprakash 2007). The Simikeri sediments are
confined within the doubly plunging synclinorial areas. These areas are closely
aligned with the Anagvadi, Sirur and Gaddankeri Shears (see Fig. 8). We infer that
the localized restructuring of the basin floor in these narrow parts of the Bagalkot
subbasin may be linked to reactivation of these shears (D;). The incremental
occurrence of intraformational limestone breccia horizons towards the Gaddankeri
Shear (Kale et al. 1998) endorses it.

Sedimentation in other parts of the basin appears to be uninterrupted by this
localized event (D). It may have also produced the first generation folds in the
central parts of this subbasin, leading to the exposure of some of the strata to
weathering and erosion. The emergent strata of the Lokapur Subgroup have con-
tributed sediments to the Simikeri Subgroup as evident in basal conglomerates from
the Muchkundi Quartzites. This event reflects as kinks in the SACs that cover both
the subgroups from the central parts of the basin (e.g. nos. 6 and 10 in Fig. 7).
Extension, consequent relative deepening of the basin and sedimentation continued
after that for a relatively shorter duration, during which the thinner Simikeri
Subgroup was deposited. Based on the chronological data available (Patil Pillai
et al. 2018) and the assumption of sedimentation rates ranging between ~0.1 to
1.0 mm/year; the event D1 is estimated to have occurred slightly before 1200 Ma.
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Fig. 11 a Schematic N-S model of the fault/shear framework of the Bagalkot subbasin based on
models of continental rifting with a listric geometry predicted by Bott and Mithen Bott and Mithen
1983; Dula 1991). The inferred listric geometry is based on field evidence of movement along
various faults. The postulated northward verging listric geometry is endorsed by the occurrence of
similar mesoscopic arrays of faults, whose examples are given below (b and d). b Field photograph
of subvertical dipping Chikshellikeri Limestone near Gaddankeri. Uneven compaction of the
alternating impure and pure limestone strata have produced several synsedimentary deformation
features such as compaction lobes, flame structures and pinching and swelling of the parallel
bedded strata. Note the small-scale fault system transecting it, which has not affected the overlying
(top of the photo) strata indicating its intraformational nature. ¢ Sketch of the photograph in
b. Note two sets of small listric faults and antithetic faults terminating against the substrate of
undisturbed strata can be marked in this exposure. The lack of penetration into the underlying
strata and termination against the overlying bed confirms their intraformational status. d Field
photograph of subhorizontal Kokankoppa Limestone at Chandargi village (see Fig. 4b). Weakly
stylolitic parallel bedded limestones are interspersed with thin muddy impure beds resulting in a
flaggy appearance to them. A small fault system has affected only the strata in between; that shows
a ‘saucer-like geometry’ analogous to listric fault systems. e Sketch of the photograph in d. Their
intraformational nature of the listric array of faults is established by the lack of penetration into the
underlying strata and termination against the overlying bed. Typical antithetic faults and roll-over
anticline is observed on the northern (right) side of the picture as marked
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5.1.3 Deformation

The Bagalkot sediments were folded and faulted during the event recognized as D,.
The sub-parallel alignment of the fold-axes with the NW-SE to WNW-ESE regional
shear zones indicates that this event was related to another pulse of activity along
them or that these zones channelized N-S oriented compressive stress systems. The
D, event did not affect the southern sector of the Bagalkot subbasin as much as it
did the northern sector.

The deformation of the Bagalkot Group was interspersed with the intrusion of
dykes (=Mallapur Intrusives) along the D, fold axes. The dykes are dated at
1154 + 4 Ma by *°Ar/*°Ar method (Patil Pillai et al. 2018). The estimated age
(~ 1200 Ma: based on the dating of a dyke (Mallapur Intrusives) that is emplaced
along the D2 fold axes) of this event corresponds well with the period of super-
continental reassembly leading to the development of Rodinia (Condie and Kroner
2013; Condie et al. 2015).

Further deformation and low grade greenschist facies metamorphism of the
sediments along with the intrusives is recognized as the event D,’, since there is
insufficient evidence to say whether it represents the peak of the deformation event
(D) or is a separate episode altogether. Cross faulting of the earlier folds and
co-axial second generation shear folds observed here are likely to have evolved at a
later stage than the main folding. Jadhav and Phadke (1989) recognize two separate
events of folding while Jayaprakash (2007) records only a single deformational
event for the Bagalkot Group. The sedimentation in this subbasin ceased following
the deformation and low grade metamorphism.

5.1.4 Hiatal Break and Younger Cycle

The subsequent period of quiescence coincides with the period of stability of the
Rodinia supercontinent estimated between ~ 1100 and 900 Ma. This period was
marked by the emergence and erosion of the folded hills of the Bagalkot Group
along with its basement. The deposition in the Badami subbasin is essentially a
continental sedimentation with very little component of the marine interface. The
presence of ichnofossils from the Badami sediments (Kulkarni and Borkar 1997)
confirm their Neoproterozoic age. Given that some parts of the Badami Group rest
directly upon the basement, suggests a significant removal of the preceding
Bagalkot sediments prior to the inception of these younger sediments. We therefore
project the age of the extensional growth (D3) of the Badami subbasin to be
between 800 and 900 Ma corresponding to the age of the early breakup of Rodinia
before its reorganization into the Gondwanaland assembly (Cawood and
Hawkesworth 2014).

The thickly-bedded, poorly-sorted conglomerates at the base of the Badami
Group are analogous to debris-wash deposits commonly found at the base of slopes
in a continental regime. Fluvial influence in the form of braided channel sands is
overprinted on the sandstones of the Badami Group. Taken together with the
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narrow linear expanse of the Badami subbasin, a bulk of these sediments are
interpreted as continental fluvial deposits derived from the flanking hill ranges of
the folded Bagalkot Group and its basement. They are eventually overlain on the
eastern side by the mudfiat siltstones and flaggy impure limestones. This indicates
that a transgressive event on a shallow shelf occurred during this sequence of
sedimentation. The adjoining sandstones in this tract between Yargatti-Chandargi
(on the west) and Badami (in the east) show evidence of deposition in a near-shore
environment. It is concluded that the Badami sedimentation occurred in a nested
basin, attended by limited extension and subsidence. The subsidence curves
(Fig. 7b) indicate this to be a very slow subsidence that was overtaken by a marine
transgression during its terminal phase.

5.2 Relative Sea-Level

All configurations of the assembly of Proterozoic supercontinents (Rogers and
Santosh 2004; Piper 2013, 2018) show the Indian peninsula to be located close to
the edges of the successive supercontinents. The Proterozoic eustacy is primarily
driven by gradually reducing crustal growth rates, large continental assemblies (that
depress the sea-level) and consequent evolution of large continental freeboards,
enabling flooding of large areas of craton-margins (Eriksson et al. 2001, 2006;
Bradley 2011). This led to platforms that promoted the spread of cynobacterial mats
(stromatolites and microbial mat deposits) along with mudflats where argillaceous
and carbonate sediments accumulated in thick sequences. The proximity to the
oceanic waters (due to its position on the edge of supercontinental assemblies)
enabled flooding in the Purana basins as also in the Kaladgi basin.

Taking the depositional environments and geographical interrelations into
account, the relative sea-level curve (Fig. 12) indicates that eustatic fluctuations
contributed to the evolution of the basin. There have been at least two major
flooding events in the history of the Kaladgi basin, one during the Mesoproterozoic
and the second during the Neoproterozoic.

The transgressive events were closely interlinked with the tectonic subsidence in
the Bagalkot subbasin. The tectonic influence on evolution of the younger Badami
subbasin appears to be milder. The tectonic subsidence has left its imprints in the
form of growth faults, seismites, synsedimentary deformational structures and
fining upwards sequence. The tectonic subsidence, as discussed above, was
essentially extensional with minor strike-slip component for the Bagalkot subbasin.
It was purely extensional during the Badami sedimentation.

This compiled data of sedimentary environments, subsidence, deformation and
stratigraphic succession of the Kaladgi Supergroup enables a more robust analysis
of its basinal history. It is evident that this interpretation matches well with recent
understanding of Proterozoic systems (e.g. Condie and Kroner 2008, 2013; Cawood
and Hawkesworth 2014) and the supercontinental and climatic cycles (Evans 2013;
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Fig. 12 Depositional environments of the successive lithostratigraphic units from the Kaladgi
Supergroup. The relative sea-level curve plotted is based on the depth of deposition of
corresponding lithologies and their mutual interrelations (adjoining/overlapping) across different
parts of the basin. The tectonic events interpreted in this work are depicted in the next column to
demonstrate the relative temporal relation between the tectonic events and sea-level fluctuations as
inferred by us

Piper 2013; Rooney et al. 2015; Condie et al. 2015) that controlled Proterozoic
sedimentary basin evolution (Eriksson et al. 2006; Allen et al. 2015).

5.3 Basin Classification

The Kaladgi basin was described as an intracratonic sag/rift basin by earlier workers
(Jayaprakash 2007; Dey 2015). Using the classification parameters of sedimentary
basins (see Allen et al. 2015), the Kaladgi basin qualifies as an intracratonic/
continent interior basin, bounded on all sides by the basement rocks of the Dharwar
craton. Miall et al. (2015) consider this to be a ‘fault-bounded basin related to far
field tectonism’, given that there is no contemporary tectonic zone in its vicinity.
Our work shows that the two constituent Groups in this basin display different
tectonic styles. A unified classification of this basin is therefore not appropriate. It
must therefore be recognized as a polyhistory basin (sensu Kingston et al. 1983).
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Although reactivation of pre-existing shear zones appear to have played an
important role in its evolution, the fault-bounded Bagalkot subbasin shows typical
geometry of a rifted continental crust with listric faults, suggesting an extensional
origin. Its overall geometry and sediment distribution is consistent with typical
Precambrian intracratonic fault-bounded sag basins (Gibbs 1984; Pirajno and
Santosh 2015; Roberts et al. 2015). On the other hand, the Badami subbasin is best
ascribed to a ‘successor basin’ (post-tectonic intermontane basin: sensu Allen et al.
2015) that ensued after the tectonic deformation of the Bagalkot Group.

Its tectonic history bears a close temporal relationship with the break-up and
reassembly of the Proterozoic supercontinental cycles; but lacks any tectonic pro-
vince or oceanic crustal interface in its proximity. It is therefore concluded that the
Kaladgi basin is an intracratonic polyhistory basin and its origin and growth was
driven by reactivation of basement shear zones.

6 Conclusions

The Kaladgi Supergroup is comparable to the large platform sediments accumulated
in the Purana basins of Peninsular India, but differs from them in the nature and
intensity of its deformation. Its position on the northern edge of the Dharwar craton,
lack of proximity to any orogenic belt or large intrusive complex; pose difficulties
in ascertaining its origin and growth.

Our studies conclude that the Bagalkot Group was deposited during a eustatic
sea-level rise and transgressive incursions on the cratonic platform, in close asso-
ciation with basement tectonics resulting from reactivation of the basement struc-
tures. Activity along synsedimentary growth faults modified the geometry and
geography of the depositional interface in different sectors of the Bagalkot subbasin
(Fig. 11). We recognize cycles of extensional subsidence interspersed with folding
and faulting during the history of this basin (Fig. 12). Our work shows that there
have been at least two clear transgressive events (and a possible third one that was
either a part of the first or an independent one) during the Mesoproterozoic and
Neoproterozoic times. Whether they are contemporaneous with the transgressive
events in the Cuddapah and Bhima basins surrounding the Dharwar craton (Kale
2016) and how this compares in the global framework of the supercontinental
assemblies and breakups during the Proterozoic remains in the realm of future
studies.

We conclude that the Kaladgi basin provides a rare glimpse of how eustacy and
tectonics closely worked in generating this Proterozoic polyhistory basin. The ages
of the constituent sediments are as yet poorly constrained and remain an area
requiring focused attention. Similarly, a detailed isotopic profiling of the sediments
in the basin may not only help understand its provenance character, but actually
may enable decipher the unroofing history of the emergent landmass of the Dharwar
craton during its evolution.
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