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Preface to the fourth edition

Anyone who compares the present thoroughly revised and enlarged edition
of this book with the three previous ones, the first of which was published in
1962, may well ask whether the principles of applied geophysics have become
more numerous during the last 25 years or so. Such is not the case and the
much larger size of the present edition is due to the principles’ having been
explained in greater detail than heretofore. There are major and minor
alterations, additions and emendations, too numerous to be listed here,
throughout the book but I would like to draw attention specifically to some
of them.

The chapter on seismic methods is now far more extensive than before and
so are also the chapters on electric and electromagnetic methods. There is also
a separate chapter on well logging in oil fields giving the essential ideas.
Considering the virtual plethora of available books on seismic methods and
on well logging I have not thought it necessary to extend these chapters
further. This has enabled me to keep the book to a reasonable length and at the
same time retain its fairly comprehensive character. Other features of the
present edition are solved examples in the text and the problems at the end of
all principal chapters. Answers and hints to the latter are given at the end of the
book. References (denoted in the text by numbers in square brackets) have
been brought up to date but most of the older ones have been purposely
retained in the belief that a true understanding of a subject is aided by a glance
at its history.

The emphasis is throughout on physical explanations and practical
geological applications. Algebraic details have been kept to a minimum in the
main text and even these may be skipped for the most part without loss of
continuity by readers interested mainly in the qualitative aspects of the various
methods. Those who may like to delve deeper into the underlying mathematics
will naturally turn to the appendices at the end of the book. However,
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whatever the level of mathematical sophistication resorted to in geophysical
interpretation, the caution dealt in the preface to the first edition, that ‘the
success of a geophysical survey depends almost entirely upon an intelligent
combination of physics and geology’, applies as much today as it did 25 years
ago, notwithstanding (or rather because of) the progress in automatic
computer processing of geophysical data.

Like all the previous editions the present one contains many topics not to be
found in current texts in English devoted to the subject as a whole. Among
these may be mentioned a rigorous but simple, logical scheme (hitherto
unpublished as far as I know) for the complete determination of the
parameters of a thick sheet from its magnetic anomaly, rapid practical
procedures for calculating VES curves, Orellana’s method of estimating the
longitudinal conductance of a stratified earth underlain by a finitely resistive
substratum, Lee’s method for dipping discontinuities, design principles of
electromagnetic sensors, radioactive density determinations, statistical con-
siderations in optimum line spacing and a number of others.

SI units are strictly adhered to except in nine figures reproduced from older
literature and left intact.

The chapter on seismic methods owes much to the notes of lectures
delivered at my department a few years ago by Dr Roy E. White of British
Petroleum, London. I am most grateful to him for allowing me to make liberal
use of these. Finally, my thanks are due to Irene Lundmark, Department of
Applied Geophysics, University of Luled, for her very efficient help in the
intricate task of preparing the manuscript of this edition.

D.S. Parasnis
Luled, Sweden
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Introduction

Geophysics is the application of the principles of physics to the study of
the earth. The subject includes, strictly speaking, meteorology, atmospheric
electricity, or ionosphere physics, but it is in the more restricted sense, namely
the physics of the body of the earth, that the word geophysics will be used in
this monograph. The aim of pure geophysics is to deduce the physical
properties of the earth and its internal constitution from the physical
phenomena associated with it, for instance the geomagnetic field, the heat flow,
the propagation of seismic waves, the force of gravity, etc. On the other hand,
the object of applied geophysics with which this monograph is concerned is to
investigate specific, relatively small-scale and shallow features which are
presumed to exist within the earth’s crust. Among such features may be
mentioned synclines and anticlines, geological faults, salt domes, undulations
of the crystalline bedrock under a cover of moraine, ore bodies, clay deposits
and so on. It is now common knowledge that the investigation of such features
very often has a bearing on practical problems of oil prospecting, the location
of water-bearing strata, mineral exploration, highways construction and civil
engineering. Often, the application of physics, in combination with geological
information, is the only satisfactory way towards a solution of these problems.

The geophysical methods used in investigating the shallow features of the
earth’s crust vary in accordance with the physical properties of the rocks — the
last word is used in the widest sense — of which these features are composed,
but broadly speaking they fall into four classes. On the one hand are the static
methods in which the distortions of a static physical field are detected and
measured accurately in order to delineate the features producing them. The
static field may be a natural field like the geomagnetic, the gravitational or the
thermal gradient field, or it may be an artificially applied field like an electric
potential gradient. On the other hand, we have the dynamic methods in which
signals are sent in the ground, the returning signals are detected and their
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strengths and times of arrival are measured at suitable points. In the dynamic
methods the dimension of time always appears, in the appropriate field
equations, directly as the time of wave arrival as in the seismic method, or
indirectly as the frequency or phase difference as in the electromagnetic
method. There is a further, now considerably important, class of methods
which lie in between the two just mentioned. These will be called relaxation
methods. Their feature is that the dimension of time appears in them as the time
needed for a disturbed medium to return to its normal state. This class includes
the overvoltage or induced polarization methods. Finally there are what we
may call integrated effect methods, in which the detected signals are statistical
averages over a given area or within a given volume. The methods using
radioactivity fall in this class.

The classification of geophysical methods into ground, airborne or borehole
methods refers only to the operational procedure. It has no physical
significance. Many ground methods can be used in the air, under water or in
boreholes as well.

The magnetic, electromagnetic and radioactive methods have been adapted
to geophysical measurements from the air. Airborne work has certain
advantages. First, on account of the high speed of operations an aerial survey
is many times cheaper than an equivalent ground survey provided the area
surveyed is sufficiently large and secondly, measurements can be made over
mountains, jungles, swamps, lakes, glaciers and other terrains which may be
inaccessible or difficult for ground surveying parties.

Compared with ground work, airborne measurements imply a decrease in
resolution which means that adjacent geophysical indications tend to merge
into one another giving the impression of only one indication. Besides, there is
often considerable uncertainty about the position of airborne indications so
that they must be confirmed on the ground before undertaking further work
like drilling.

In a sense, applied geophysics, excepting the seismic methods, is predomi-
nantly a science suited to flat or gently undulating terrain where the
overburden is relatively thin. The reason is that whenever the relief is violent,
the data of geophysical methods need corrections which are frequently such as
to render their interpretation uncertain. On the other hand, when the
overburden is too thick the effects produced by the features concealed under it
generally lie within the errors of measurement and are difficult ascertain. There
is, however, no general rule as to the suitability of any terrain to geophysical
methods and every case must be considered carefully on its own merits.

The various methods of applied geophysics will be dealt with in turn in the
following chapters.
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Magnetic methods

2.1 SHORT HISTORY

It was in the year 1600 when William Gilbert, Physician to Queen Elizabeth I,
published his book De Magnete (abbreviated title), that the concept arose of a
general geomagnetic field with a definite orientation at each point on the
surface of the earth. In its wake, observations of the local anomalies in the
orientation of the geomagnetic field were used in Sweden for iron-ore
prospecting, for the first time probably as early as 1640 and regularly by the
end of that century. They constitute the first systematic utilization of a physical
property for locating specific, small-scale features within the earth’s crust. Two
centuries later, in 1870, Thalén constructed his magnetometer for compara-
tively rapid and accurate determinations of the horizontal force, the vertical
force and the declination, by the familiar sine and tangent methods used in
elementary physics courses. This and its somewhat simplified modification
due to Tiberg were in widespread use, especially in Sweden, as a tool for
prospecting surveys for more than the following half century.

The large-scale use of magnetic measurements for investigations of
geological structures, other than those associated with magnetic ore, did not
however begin seriously until 1915, when Adolf Schmidt constructed his
precision vertical field balance using a magnetic needle swinging on an agate
knife edge. Since then magnetic observations have been successfully employed,
not only in the search for magnetite ore, but also in locating buried hills,
geological faults, intrusions of igneous rocks, salt domes associated with oil
fields, concealed meteorites and buried magnetic objects such as pipe-lines.

2.2 BASIC CONCEPTS AND UNITS
2.2.1 Magnetic field strength, flux density and permeability

A magnetic field strength gives rise to a magnetic flux, just as an electric field
strength can give rise to an electric charge flux (current). The magnetic flux
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density, that is the flux per unit area, also called magnetic induction, is denoted
by B. If H is the field strength then

B=uH 2.1)

where u is known as the absolute permeability of the medium. In the
International System of Units (SI) H is measured in ampere per metre (A m ™).
A convenient way to familiarize oneself with this unit is to note that one Am ™ *
is the magnetic field strength that exists at the centre of a one-turn circular coil
of diameter 1 metre, placed in air and carrying a current of 1 ampere.

The unit of magnetic flux in SI is volt-second (V s), also named weber (Wb),
so that the unit of flux density B is Vsm ™2 (or Wb m ~?2) which is also called
tesla (T). The magnetic fields that we measure in practice are flux densities. For
most geophysical purposes the tesla is too large as a unit and flux densities are
more conveniently expressed in nanotesla (nT = 10~° T). One nT happens to
be numerically exactly equal to the older unit of B, namely gamma (y).

The distinction between H and B should be carefully noted, particularly
because B is often called magnetic field in common parlance. Associated with a
B-field in a medium is its (postulated) cause, the H-field strength, equal to B/u.

The absolute permeability p, being equal to B/H, is easily seen to have the
dimensions ohm-second per metre (Qsm™!). The absolute permeability of
vacuum is a very important quantity and is denoted by y,. Thus, a field
strength H will create in vacuum a flux density B, = uoH. For most practical
purposes in geophysics the absolute permeability of air, and even most rocks,
may be taken to be u,. In the system that we shall adopt in this book, u, has the
value 47 x 1077 Qsm™*. Thus if at any point in vacuum (or for practical
purposes air) we have a flux density B, the corresponding field strength is
Bo/uo-

2.2.2 Relative permeability, susceptibility and magnetization
If for a medium other than vacuum we write u = pu u, we get from (2.1)
B=uH
= tloH

= poH + po(pu, — HH
= oH + poxkH (2.2)

where we have put x=pyu —1, that is, y,=1+x.y is a ratio of two
permeabilities and therefore a pure number. It is called the relative permea-
bility of the medium. Similarly «, called the susceptibility, is a pure number.
Obviously, for vacuum g, =1 and k=0.

From the last line of (2.2) we see that to obtain in vacuum a flux density
equal to the density pH in the medium under consideration, we would need an
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additional magnetic field strength xH. This additional field strength that may
be said to be present at points of space occupied by a medium subject to a field
strength H, is called the intensity of magnetization M induced by H. Obviously,

M =xH (2.2a)

Since k is a pure number M is also measured in Am ™. Since B and H are
vectors we write Eq. (2.2) more generally as

B=yu,H+M) (2.3)

Then, for the x, y, z components of B in an orthogonal coordinate system, we
have

Bx = .u'O(Hx + Mx)9 etc (24)

2.2.3 Magnetic moment, magnetic dipole and remanence

If a body of volume Vis uniformly magnetized with intensity M then VM =m
(Am?) is called its magnetic moment. This is also a vector. If we imagine a
particle of infinitesimally small volume but with a very high intensity of
magnetization, so that the product VM is nevertheless a finite quantity, we
have a magnetic point dipole. The direction of the magnetic moment of a
dipole is the dipole axis. The importance of the concept of a point dipole is that
a body with non-uniform magnetization can be considered, for the purpose of
calculating the field strength as well as the flux density due to it, to be an
aggregate of an infinite number of point dipoles, each of moment proportional
to the local magnetization intensity at the point in question. Since M = kH we
have, for a uniformly magnetized body,

m=VM=VkH (2.5)

An intensity of magnetization can exist in certain bodies (e.g. ordinary
magnets) even in the absence of an external field strength. Such magnetization,
called permanent or remanent magnetization or simply remanence, is
sustained by an internal field strength present at each point within the body. If
subjected to an external H-field the body will, in addition, acquire an induced
intensity of magnetization.

2.2.4 Hysteresis

If uin Eq. (2.1) is independent of H the medium is said to be a linear medium.
The graph of B against H for such a medium is a straight line as shown in Fig.
2.1 In many substances (e.g. magnetite or pyrrhotite) this is not the case. For
example, in an originally non-magnetized sample of, say magnetite, the in-
duction (flux density) B increases with the external field strength H according
to the curve (a), which is not a straight line. B does not increase indefinitely but
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Fig. 2.1 Hysteresis loop.

reaches a saturation value B, for a certain field strength H,. On decreasing H
from H,, the flux density follows the left-hand curve (b) and even when H =0
the sample retains a flux density and is seen to possess a remanence. It takes an
external field strength H_ in the opposite direction to completely demagnetize
the sample. On increasing H further in this direction the sample acquires a
saturation flux density — B,, and on reducing | H| again, B follows the right-
hand curve (b). So long as H, is not altered the sample will then continue to
follow the loop formed by the curves (b) on repeated increases or decreases of
H and will never retrace the curve (a). This loop is called the hysteresis loop of
the sample.

A sample that follows a non-linear B—H relation as in Fig. 2.1 cannot be
assigned a unique susceptibility value. The x values quoted for such substances
are usually based on the nearly linear initial part of the curve (a), where the
sample is in a virgin state and the external field strength H is weak.

23 MAGNETIC PROPERTIES OF ROCKS

The magnetic method of applied geophysics depends upon measuring
accurately the anomalies of the local geomagnetic field produced by the
variations in the intensity of magnetization in rock formations. The magnetiz-
ation of rocks is partly due to induction by the magnetizing force associated
with the earth’s field and partly to their remanent magnetization. The induced
intensity depends primarily upon the magnetic susceptibility as well as the
magnetizing force, and the remanent intensity upon the geological history of
the rock. Research in the remanent intensity of rocks, especially since 1950, has
given rise to the subject of palacomagnetism.

2.3.1 Induced magnetism

In accordance with the general classification used in modern physics, rocks
(like all substances) fall into three categories, namely diamagnetic, paramagne-
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tic and ferromagnetic. The last named category is further subdivided into the
truly ferromagnetic, the antiferromagnetic and the ferrimagnetic substances.
These terms are briefly explained below.

2.3.1.1 Diamagnetism

In a diamagnetic substance x in Eq. (2.2) is negative so that the induced
intensity in the substance is in a direction opposite to the magnetic field
strength and the flux density in such a substance is less than would exist if the
corresponding space were vacuum. The origin of diamagnetism lies in the
motion of an electron round a nucleus. This motion constitutes a miniature
plane current circuit and is characterized by a magnetic moment vector as well
as an angular momentum vector, both perpendicular to the plane of the
electron’s motion. In addition, an electron has an intrinsic magnetic moment,
the so-called spin magnetic moment, whose significance will appear later.

Animpressed field strength will tend to turn the magnetic moment in its own
direction and a mechanical torque will act on the orbital plane. The orbit
reacts in a way known, sufficiently well for our purpose, from the behaviour of
a top subject to a torque tending to turn its spinning axis. The result, as in the
case of the top, is that the angular momentum vector and hence also the
magnetic moment vector begin to precess round the magnetizing force. This is
known as Larmor precession. The additional periodic motion of the electron
due to Larmor precession is such as to produce a magnetic moment opposite
in direction to the applied field.

It will be realized that there is a diamagnetic effect in all substances
including the ‘typical’ ferromagnetics like iron, cobalt and nickel. But net
diamagnetism only appears if the magnetic moments of atoms are zero in the
absence of an external magnetizing force, as is the case for atoms or ions
having closed electronic shells, because these contain an even number of
electrons, half with the spin magnetic moment in one direction and half in the
opposite direction. There are many rocks and minerals which show net
diamagnetism. Chief among them are quartz, marble, graphite, rock salt, and
anhydrite (gypsum).

2.3.1.2 Paramagnetism and the Curie—Weiss law

The susceptibility of paramagnetic substances is positive and decreases
inversely as the absolute temperature (Curie—Weiss law). Paramagnetism
makes its appearance when the atoms or molecules of a substance have a
magnetic moment in the absence of a field and the magnetic interaction
between the atoms is weak. Normally the moments are distributed randomly,
but on the application of the field they tend to align themselves in the direction
of the field, the tendency being resisted by thermal agitation. The paramagne-
tism of elements is mainly due to the unbalanced spin magnetic moments of the
electrons in unfilled shells, like the 3d shells of the elements from Sc to Mn.
Many rocks are reported to be paramagnetic, for instance gneisses,
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pegmatites, dolomites, syenites, etc. However, it seems certain that their
paramagnetism is not intrinsic but is a manifestation of weak ferrimagnetism
due to varying amounts of magnetite or ilmenite, or an antiferromagnetism
due to minerals like haematite, manganese dioxide, etc.

2.3.1.3 Ferromagnetism

In ferromagnetic materials the atoms have a magnetic moment and the
interaction between neighbouring atoms is so strong that the moments of all
atoms within a region, called a domain, align themselves in the same direction
even in the absence of an external field. In Fe, Co and Ni this interaction takes
place between the uncompensated spins in the unfilled 3d shells of the atoms. A
state of spontaneous magnetization can therefore exist consisting of an orderly
arrangement of the magnetic moments of all atoms. Typical of the ferromagne-
tics are their hysteresis loops and their large susceptibilities which depend
upon the magnetizing force. Ferromagnetism disappears above a temperature
known as the Curie temperature. There are no truly ferromagnetic rocks or
rock materials.

2.3.1.4 Antiferromagnetism

There exist substances in which the susceptibility has an order of magnitude
characteristic of a paramagnetic (10~ ) but is not inversely proportional to the
temperature. Instead it first increases with temperature, reaches a maximum at
a certain temperature, also called the Curie point or the 4 point, and decreases
thereafter according to the Curie—Weiss law. In these substances the low
magnetic susceptibility below the A point can be explained by assuming an
ordered state of atoms such that the magnetic moments of neighbouring atoms
are equal but directed antiparallel to each other. Thus the two ordered sub-
lattices, each reminiscent of the state in a ferromagnetic, cancel each other and
their net magnetic moment is zero. This state is called antiferromagnetism and
can be confirmed by neutron diffraction studies. Of the rock-forming minerals,
haematite (Fe,O;) is the most important antiferromagnetic (4 point 675° C).

2.3.1.5 Ferrimagnetism

Among the antiferromagnetic substances there is a class in which, to put it
simply, two sub-lattices with metallic ions having magnetic moments are
ordered antiparallel as above, but in which the moments of the lattices are
unequal, giving rise to a net magnetic moment in the absence of a field. Such
substances are called ferrimagnetic. Practically all the constituents giving a
high magnetization to rocks are ferrimagnetic, chief among them being
magnetite (Fe;O,), titanomagnetite (FeO(Fe, Ti),0;) and ilmenite (FeTiOs).
Spontaneous magnetization and a relatively high susceptibility can also exist
in an antiferromagnetic if statistically systematic defects are present, as is
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believed to be the case for pyrrhotite (FeS). The temperature dependence of
ferrimagnetics is complex, there being theoretically several possibilities.

2.3.2 Susceptibility of rocks

The susceptibility of rocks is almost entirely controlled by the amount of
ferrimagnetic minerals in them, their grain size, mode of distribution, etc. and
is extremely variable. The values listed in Table 2.1 should nevertheless serve
to give a rough idea. Various attempts have been made to represent the
dependence of susceptibility on the content of ferrimagnetics, but no simple
universally valid relation exists. For particular groups of rocks or for
particular ranges of susceptibility a statistically significant correlation can
generally be found between the amount of Fe;O,, and the susceptibility
(Fig. 2.2). However, the scatter is usually such that a prediction based on such
correlations must be used with caution.

It will be seen that generally speaking only small susceptibility differences
(Ak) will be encountered between rock formations. The maximum Ax (when a
deposit of high grade magnetite ore is present) is of the order of ten. As we shall
see later, if two very extensive and thick homogeneous formations are
separated along a plane vertical contact the peak-to-peak change in the
vertical magnetic field in traversing the contact is given by*

AB,=31AkB, (2.6)
if B, tesla (T) is the vertical magnetic field (flux density) of the earth. The

Table 2.1 Susceptibilities x 10° (Rationalized SI)

Graphite — 100 Gabbro 380090000
Quartz —151 Dolomite

Anhydrite — 141 (impure) 20000

Rock salt —103 Pyrite

Marble —94 (pure) 35-60

Dolomite Pyrite

(pure) —12.5— 4+ 44 (ore) 100-5000
Granite Pyrrhotite 103-10°

(without magnetite) 10—65 Haematite (ore) 420-10000
Granite Ilmenite (ore) 3x10°—4 x 10°
(with magnetite) 25-50000 Magnetite (ore) 7 x 10* — 14 x 10°
Basalt 1500-25000 Magnetite (pure) 1.5 x 107
Pegmatite 300075000

To convert the above values to the unrationalized system divide by 4n

*This situation is exceptional. In general AB depends on Ak as well as the individual x values of the
media concerned.
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Fig. 2.2 Variation of susceptibility x (rationalized SI) with magnetite content. After
Balsley and Buddington (Economic Geology, 1958).

practical limit of determining AB, in most field surveys is about 1 nanotesla
(nT) and if B, = 50000 nT, substitution in the above equation shows that the
practical limit of detecting a susceptibility difference between rock formations
will be Ak ~ 4 x 107°. However, the lack of homogeneity in rocks and their
impregnation by ferrimagnetic minerals produce random magnetic anomalies,
the ‘geologic noise’ owing to which the limit in reality is some 10-100 times
larger.

2.3.3 Remanent magnetism

2.3.3.1 Types of remanence

Researches all over the world have confirmed that both igneous and
sedimentary rocks possess remanent magnetization in varying degrees and the
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phenomenon is a widespread one. Well-documented examples of rocks,
igneous as well as sedimentary, occur in all parts of the world and of all
geological ages, in which the remanent intensity is not only strong but has a
direction completely different from, at times opposite to, the present direction
of the geomagnetic field. Various types of permanent magnetization of rocks
are now recognized. One principal type, especially for igneous rocks, is
thermoremanent magnetization (TRM) acquired in cooling from high temper-
atures. Its orientation reflects the orientation of the geomagnetic field
prevalent at the time and place of formation. The predominant mechanism in
the acquisition of TRM is the alignment of the domains in the ferrimagnetic
constituents of the rocks. It is in this respect significant that the TRM of rocks
disappears when they are heated above 600° C, which is approximately the
Curie point of magnetite [1]. Other principal types of natural remanent
magnetization (NRM) of rocks are: isothermal remanent magnetization (IRM)
acquired at constant temperature on exposure to a magnetizing force for a
short time; viscous (VRM) acquired as a cumulative effect after along exposure
in an ambient field, not necessarily at one and the same temperature;
depositional or detrital (DRM) acquired by sediments as the constituent
magnetic grains settle in water under the influence of the earth’s field; chemical
(CRM) acquired during growth or recrystallization of magnetite grains at
temperatures far below Curie temperatures.

2.3.3.2 Importance in interpretation

If T is the field strength associated with the earth’s flux density the induced
magnetization in a rock will be ¥T. In Table 2.2 are given the values of the
Koenigsberger ratio Q, = M, /«T where M|, is the natural remanent intensity

Table 2.2 Q,, for some rock specimens

Specimen Locality 0.
Basalt Mihare volcano, Japan 99-118
Gabbro Cuillin Hills, Scotland 29
Gabbro Smaland, Sweden 9.5
Andesite Taga, Japan 49
Granite Madagascar 0.3-10
Quartz dolerite Whin sill, England 2-2.9
Diabase Astano Ticino, Switzerland 1.5
Tholeiite dikes England 0.6-1.6
Dolerite Sutherland, Scotland 0.48-0.51
Magnetite ore Sweden 1-10
Manganese ore India 1-5

Sediments generally low.

11
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for some rock specimens. From this we see that in most igneous rocks like
gabbro and basalts, M, completely dominates the intensity induced by the
earth’s field strength.

From a study of the magnetic anomalies it is possible to obtain an estimate
of the effective magnetic moment m of a rock mass of postulated geometry.
This is the vector sum of the moments due to induced and remanent
magnetism. Thus, if V is the volume of the mass

m=V«T + VM, 2.7)

which is a more general form of Eq. (2.5). In the simplest case when Tand M,
are parallel we can put

m=VkT+ VQkT (2.8)
from which we obtain
m
V= 29
k(1+Q)T 29)

If remanence is neglected (Q = 0) we shall get the volume estimate m/«x T which
is larger than the true volume given by (2.9). Similarly, if T and M, are
antiparallel the volume estimate obtained by neglecting remanence will be
smaller than the true volume m/k(1 — Q)T. In the general case, also, the dips of
formations may be incorrectly estimated if the vector M, in (2.7) is disregarded.
A discrepancy between observed dips and those obtained by magnetic
interpretation, especially in areas where igneous rocks occur, can be very
frequently traced to the existence of a remanent intensity [2].

Methods for determining susceptibility and remanence of rocks are
discussed briefly in Appendix 4.

24 THE GEOMAGNETIC FIELD

2.4.1 Main or regular field

In order to identify the anomalies in the earth’s field it is clearly essential to
know its undisturbed character. To a very close approximation the regular
geomagnetic field can be represented formally as the field of a point dipole
situated almost at the centre of the earth with its magnetic moment pointing
towards the earth’s geographical south. Physically, the origin of the field seems
to be a system of electric currents within the earth. The total geomagnetic flux
density B, at points on the surface varies between about 0.2 x 10™*T and
about 0.6 x 107*T. A flux density of, say, 0.6 x 10~*T is the result of a
magnetic field strength of magnitude 0.6 x 10~ */(4n x 107 7) =47.8 Am™ ! (cf.
Section 2.2.1).

At any point on the earth’s surface the magnetic flux density vector (or the
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Table 2.3 Values of By, B,, D (1975)

Long. B, B, D

Place Lat. East nT nT East
Chelyskin +71.7° 104.3° 3510 59130 16.9°
Sodankyld +674 26.6 11950 50530 6.2
Hartland +51.0 355.5 19210 43730 —85
San Miguel +37.8 3344 25540 38030 —133
Hyderabad +174 78.6 39870 14920 —1.6
Tangerang —-62 106.6 37190 —23810 0.8
Apia —13.8 188.2 34450 —20120 123
Mauritius (*) —204 57.7 21720 —29030 —16.9
Gnangara —31.8 116.0 23610 — 53500 —32
Macquarie Is. —54.5 159.0 12850 —63930 27.7
Scott Base —77.8 166.8 10510 — 67840 156.4

*Values of By, B., D for 1976.

magnetic field, as we shall often call the flux density) is completely specified by
its horizontal (B,) and vertical (B,) components and the declination D, west or
east of true north, of B,. The direction of By, is the local magnetic meridian. B,
is reckoned positive if it points downwards as in the northern hemisphere
generally, and negative if it points upwards as in the southern hemisphere.
The earth’s field is not constant at any point on its surface but undergoes
variations of different periods. From the standpoint of applied geophysics
the most important are the diurnal variations and magnetic storms. Their
disturbing effect must be suitably eliminated from magnetic survey observ-
ations. Values of By, B, and D for the epoch 1975 at some selected places are
given in Table 2.3. The total flux density is given by B, = (B2 + B2)!/2.

2.4.2 Poles and equators

The inclination (I) of B, from the horizontal, which is of importance in
the interpretation of magnetic anomalies, can be found from the equation
(cf. Fig. 2.4)

tanl = B,/B, (2.10)

The points on the earth at which B, vanishes and hence I = + 90° are called
the magnetic north and south dip poles respectively. There may be any number
of such points due to local disturbances, but apart from them there are two
main north and south dip poles situated approximately at 72° N, 102° W and
68°S, 146° E. On account of the irregular part of the earth’s field they do not
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correspond to the intersections of the axis of the imaginary dipole at the earth’s
centre with the surface which are at 79° N, 70° W and 79° S, 110° E. The latter
are called the geomagnetic poles or axis poles. The imaginary line on the
earth’s surface passing through the point I = 0 is called the magnetic equator.
North of it B, is positive; south of it B, is negative. The great circle on the
earth’s surface passing through the imaginary dipole and at right angles to the
dipole axis is the geomagnetic equator.

25 INSTRUMENTS OF MAGNETIC SURVEYING

A variety of instruments suitable for magnetic surveying have been construc-
ted and used in the past. The principal types are described below. It should be
noted, however, that two of these, the fluxgate and the proton free-precession
magnetometer, have more or less completely replaced the other types in
modern work.

2.5.1 Older instruments

2.5.1.1 Pivoted needle instruments

The sensitive element in these is a magnetic needle arranged to swing on pivots.
Probably the oldest known instrument of this type is the Swedish mine compass
in which a compass needle can rotate in the horizontal as well as the vertical
plane and take a position along the total intensity vector. In the Hotchkiss
superdip the total intensity is determined from the deflection of a system
consisting of a magnetic needle to which is fastened a counterarm carrying a
small weight and making an adjustable angle with the needle. The system is
suspended on a horizontal axle in the magnetic meridian. In the Thalén—
Tiberg magnetometer, a magnetic needle with an adjustable counterweight is
suspended on hardened steel bearings in a small glass-covered case which can
be swung on a horizontal axle and held in the vertical or the horizontal plane.
The case is first clamped in the horizontal position so that the needle swings on
a vertical axis. The direction of the local B, having been noted from the
equilibrium position of the free needle, its magnitude is determined by means
of an auxiliary magnet of known moment with the Lamont sine method. The
procedure in this method consists essentially in swinging the arm on which the
magnet is placed (in a horizontal plane) until the needle and the magnet are at
right angles to each other. If the needle has then deflected through an angle 6
from its free position, B, = B, /sinf where B,, is the known field of the
magnet at the centre of the needle. The glass case is then held in a plane
perpendicular to the magnetic meridian and the inclination of the needle,
which is not vertical owing to the counterweight, is used in combination with
the calibration constant to calculate B,.
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2.5.1.2 Variometers

These generally measure variations in B,. In the Schmidt variometer a magnetic
system is free to swing on an agate knife edge in a vertical plane like the beam of
a weighing machine. Its equilibrium position at the reference station is
adjusted (by altering the centre of gravity) to be horizontal and the deflections
from this position at other stations are read by means of an auto-collimating
telescope. The instrument can be calibrated by placing it in the field of a pair of
Helmholtz coils. In order to eliminate the effect of B,, the magnetic system is
always oriented at right angles to the magnetic meridian when taking
observations.

2.5.1.3 Compensation variometers

These instruments are similar to the Schmidt variometers, but instead of
measuring the tilt of the magnetic system from the horizontal they measure the
force needed to restore it to that position. The magnetic needle generally hangs
on thin wires instead of being balanced on knife edges, and the restoring force
is obtained by turning or moving compensating magnets or by means of
varying the torsion in the suspension wire. Since the deflection moment due to
B, is zero when the needle is horizontal, the azimuthal orientation of
compensation-type variometers is not critical. In variometers designed to
measure B, the magnetic system is initially vertical and restored to this
position. The plane of rotation in this case is in the magnetic meridian.

2.5.2 Modern magnetometers

2.5.2.1 Fluxgate instruments

In these instruments use is made of the fact that the magnetic flux density B
induced in certain materials depends non-linearly on the magnetizing force H
as shown by the curve (a) in Fig. 2.1. Strictly speaking the B~H relation is
represented by the hysteresis curve (b) in Fig. 2.1 but it will be sufficient for us
to consider the curve (a) in Fig. 2.1. Within the range | H| < H, the B—H curve
can be quite accurately described by an equation of the type

B = uy,H(a — bH? 2.11)

where a and b are constants which depend on how quickly the material is
magnetically saturated. Now, consider a pick-up coil of effective area A wound
tightly around, say, a long thin rod of the material. If the magnetic flux in the
rod varies as a result of variations in H, the magnitude of the voltage induced
in the coil will be given by the law of electromagnetic induction as

dB
V=A—
< (2.12)
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If H= H, + psin wt where H, is a steady ambient magnetic field and p sin wt is
an alternating field produced by an aiternating current flowing through an
exciting coil wound round the rod, we have from (2.13) and (2.14)

V = poA[(a — 3bH3 — 2bp*)pw cos wt — 3bH op*w sin 2wt
+ 3bp3w cos 3wt] (2.13)

It will be seen that the output voltage contains the second and third harmonics
in addition to the first but that while the first and third harmonics are always
present, the second harmonic appears only if H, # 0. Moreover the amplitude
of the second harmonic is directly proportional to H,. By filtering out the
second harmonic in the output voltage and measuring its amplitude, the
ambient steady flux density B, = uoH, in the direction of the rod (‘the fluxgate
element’) can be determined. In contrast to most of the instruments in the
previous sections, fluxgate instruments can be made to read absolute flux
densities in the element and not just relative ones.

The fluxgate instruments used in practice differ considerably from each other
in construction details but the principle of a very common construction is as
follows. The element consists of two juxtaposed, identical cores of a highly
permeable magnetic material like mumetal or permalloy, with the windings of
the exciting coil in opposite senses around the two cores. A pick-up coil is
wound round the entire assembly. Since the signs of the amplitudes p of the
two exciting fields are then opposite to each other, the first and third
harmonics will be absent in the output voltage from the pick-up coil, as can be
seen from Eq. (2.13), and a pre-filtered signal is thus obtained. The amplitude
of the exciting field is greater than H  and the frequency is normally a few kHz.
Much higher frequencies have, however, been used in some fluxgate instru-
ments. Construction details of some types of fluxgate instruments are available
in several papers [3-6].

2.5.2.2 Proton free-precession magnetometer

Often called ‘proton magnetometer’ for short, the correct name of this type of
instrument is as above and the principle on which it works is as follows. A
proton has a magnetic moment m as well as an angular momentum J (joule
second), the relation between the two vectors being

m=7J (2.14)

where y = 2.67520 x 108 T~ *s~! is an accurately known constant of atomic
physics called the gyromagnetic ratio of a proton. The magnetic moment
vectors of the protons in, say, a bottle of water in the earth’s magnetic field (B)
align themselves parallel and antiparallel to the field. An excess number, in the
proportion exp(2mB/kT) where k is Boltzmann’s constant and T is the
absolute temperature, will point parallel to the field (the state of lower energy).
If a strong magnetic field differing in direction from the earth’s field is applied
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Fig. 2.3 Precession of protons.

to the water bottle the magnetic vectors gradually align in the direction of the
resultant of the two fields. In water it takes approximately five seconds for all
the moments to align themselves.

If the additional field is removed rapidly (within about 30 us), the magnetic
moments cannot follow the instantaneous resultant during the removal, and
are left in the direction of the original resultant. They are now under the
influence of the prevalent earth’s field which exerts a torque mB sin 8 on each
proton where 6 is the angle between m and B (Fig. 2.3). On account of its
angular momentum the proton, however, reacts to this torque as would a
spinning top, that is, by precessing round the vector B. The component of J
perpendicular to B is J sin 0 and the angular velocity of precession is obtained
from the theory of gyroscopes as

mBsin 0
— 3 .1
@ Jsin6 7B 2.15)

An alternating voltage will be induced in a coil wound round the water bottle,
the frequency v of which can be measured, and it follows from (2.15) that

v
B=———=234868vnT 2.16
o2 (216)

The signal voltage decays exponentially as the precession is damped out and
the protons spiral back to their original distribution.
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It should be observed that the precession frequency does not depend on the
angle between m and B and hence the direction of the exciting field is
immaterial except that it must not coincide with the direction of B. If it does no
precession will take place and the signal voltage will be zero, but this unlikely
situation is easily remedied in practice by simply holding the water bottle in
another orientation and taking a new reading. It should also be noted that the
quantity measured is essentially the frequency of the signal voltage and not its
amplitude, so that the orientation of the pick-up coil is also immaterial.

One great advantage of the proton magnetometer is that it requires no
levelling. Consequently it is admirably suited to airborne and shipborne
measurements. Its disadvantage is that it measures the magnitude of the total
ambient field and not its direction. We shall see later that the interpretation of
such measurements is inherently more approximate than that of, say, vertical
field measurements. For the details of the construction of a proton free-
precession magnetometer reference may be made to papers by Waters and
Philips [7] and Gupta Sarma and Biswas [8].

2.5.2.3 High-sensitively alkali vapour magnetometers

Like the proton magnetometer these instruments, which are also known as
optical-pump or absorption-cell magnetometers, exploit the phenomenon of
magnetic resonance. Although, for example, helium gas has also been
employed in such magnetometers, it is the alkali metal vapours that yield the
highest sensitivities and among these rubidium and caesium are the most
widely used elements. The atoms of alkali metals possess a magnetic moment
mainly due to the spin of the single peripheral electron but also due to the spin
of the nucleus. Each atoem is normally in a ground state of energy and there are
also (discrete) energy states to which the atom may be excited. When the atom
is placed in a magnetic field each energy state is split into several discrete sub-
levels (the so-called Zeeman effect) corresponding to the possible discrete
orientations that the magnetic moment may take with respect to the magnetic
field. The projections of some of the magnetic moments on the magnetic field
are parallel to the field while others are antiparallel.

If a cell with alkali atoms in a magnetic field is illuminated appropriately
with circularly polarized light it is possible to ‘pump’ all the ground state
atoms with parallel moment-projections into energy states where the projec-
tions are antiparallel to the field. As long as this ‘optical pumping’ is going on
the intensity of the light transmitted through the cell is low but once the
ground states are empty there is no further absorption of energy and the
intensity is maximum.

Suppose now that an electromagnetic field of adjustable frequency is
applied to the cell in a direction different from that of the static field B. If the
frequency is such that hv = AE where h is Planck’s constant and AE is the
energy difference between the ground state levels with parallel and antiparallel
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moment-projections, some atoms absorb energy from the field and go back to
ground states with parallel moment-projections, the ‘pump’ restarts and the
intensity of the light transmitted through the cell drops sharply. It can be
shown that

m,

2ny =
a

or
B=——o 2.17
= 2n(m/T) 10
where m, is the atomic moment and J, the atomic spin (angular momentum).
The factor 2n(m,/J,) is known accurately for many atoms. For the naturally
occurring isotopes 3. Rb and 33 Cs the values are 4.67 and 3.498 HznT !,
Like proton magnetometers the vapour magnetometers measure only the
magnitude of the ambient field. Also they do not need any levelling. Since v can
be determined very accurately on account of the sharpness of the resonance,
sensitivities of the order of 0.01 nT can be obtained with alkali vapour
magnetometers. The construction of a caesium magnetometer has been
described in some detail by Giret and Malnar [9]. They used an absorption
cell of 100ml volume containing free atoms of Cs in equilibrium with the
metal, at a presssure of about 267 uPa (2 nmHg).

2.5.3 Comparison of magnetometer features

The accuracy of pivoted needle instruments is scarcely better than + 100nT
and they are now seldom used. The Schmidt- and compensation-type
variometers are precision instruments having accuracies better than + 5nT,
although the accuracy of some instruments of this type, intended for rough
reconnaissance surveys, is not better than +20-50nT. These instruments
have also largely fallen out of use now but it is worth noting that in some
situations, e.g. areas with high power-line or other electric noise, the fluxgate
or proton instruments may fail to operate and recourse must be had to
mechanical magnetometers.

The fluxgate, proton free-precession and alkali vapour magnetometers have
the advantage that their sensitive elements and the measuring or the recording
system can be widely separated by cables. They can, therefore, be conveniently
used under certain circumstances (e.g. in boreholes, under water, in airborne
work, etc.) where the design of older instruments would be highly complicated.
Their other characteristic is the speed of measurement, some 10s, in contrast
to the older instruments which may need a minute or so for one measurement.

The accuracy of fluxgate and proton magnetometers is of the order of 1 nT
although the requirement of levelling for fluxgate instruments leads in practice
to accuracies more like 4+ 5-10nT and much less in borehole and airborne
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work. Proton magnetometers of special construction give accuracies of the
order of 0.1 nT, while alkali vapour instruments are superior in accuracy by a
factor of ten as has already been seen. Fluxgate instruments have the
advantage over both these that they can measure components of the flux
density. It is also worth noting that if the external magnetic field is strongly
inhomogeneous the decay of proton precession is so fast that no signal is
obtained. The limit of admissible gradient in the best designs appears to be
about 500 nT m ™~ !. The high sensitivity of alkali vapour magnetometers can be
useful for surveys in areas (e.g. sedimentary basins) where magnetic field
variations are small from point to point, provided uncertainties in measure-
ments due to other causes can be avoided.

26 SURVEY LAYOUT AND FIELD PROCEDURE

2.6.1 Absolute and relative measurements

Magnetic measurements in applied geophysics have often been carried out as
relative determinations in which the values of one or more elements of the
magnetic field at any point are measured as differences from the values at a
suitably chosen base point. As seen above, however, many modern instru-
ments read directly the values of, for example, the total field or the vertical
field. When such absolute measurements are made, which is practically always
the case nowadays, the normal field value in the area is usually subtracted from
the observations and only the resulting anomalies are used for interpretation.
If the area of investigation is relatively small, say a few square kilometres, the
normal geomagnetic field may be considered to be substantially constant
within it and its value determined by an inspection of the observations. In very
large areas, say more than a hundred square kilometres, the variation of the
normal field may be significant and should be allowed for. This may be
advisable in a large-scale aerial survey or in connecting surveys in several small
areas.

2.6.2 Ground surveys

2.6.2.1 Area staking and precautions

When the area for magnetic investigations has been selected a base line is
staked parallel to the geological strike (the trace of the rock strata on the plane
represented by the surface of the earth) and measurements are made at regular
intervals (say 20 m or 40 m) along lines perpendicular to the base. In detailed
surveys the station separation may even be as close as 1-2 m. If no geological
strike is discernible the base line may be initially laid in some convenient
direction. In reconnaissance surveys measurements are often made along lines
not belonging to any grid system but detailed and systematic surveys need a
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well-staked grid of measurement stations. If relative measurements are
resorted to, a reference point far from artificial disturbances such as those due
to power lines, railways etc. is chosen and the magnetic field values at all other
points are measured as positive or negative differences from the field at this
point.

Certain precautions must be taken in magnetic measurements. Magnetic
materials in the wearing apparel of the observer, like keys, penknives, wrist
watches (also, or rather especially, ‘non-magnetic’ ones!) etc. can totally vitiate
the observations and ought to be entirely removed, although this may not be
so critical in measurements with the proton magnetometer if the measuring
element is relatively far from the observer.

2.6.2.2 Corrections to observations

The principal correction that must be applied to a set of magnetometer
observations is for the diurnal variation of the earth’s field. An auxiliary
instrument may be kept at some convenient station within the area and read at
intervals or the readings may be continuously recorded. The algebraic
difference between the readings of this instrument at any time, ¢, and the
reference time, ¢ = 0 (corrected, if necessary for the temperature coefficient) is
subtracted from the reading at the field station, which was also measured at
time ¢. If great accuracy is not desired, it is sufficient to repeat at 1-2 hours’
interval the reading at a previously occupied station and distribute
the difference over the stations measured during this interval. The correction
thus obtained includes both the diurnal variation and the drift of the
instrument.

Modern instruments are either temperature compensated or are inherently
indifferent to temperature variations (e.g. proton magnetometer) so that
temperature corrections are not usually needed in modern work.

The influence of topographic relief on magnetic observations is usually
negligible, but if the terrain is rough and appreciable height differences are
present it may be necessary to allow for the variation of the earth’s normal field
with height (cf. Table 2.4) to reduce the observations to some standard level.

An interesting approach to reducing the measured magnetic anomalies to a
single horizontal plane, above or through the highest point of the topography,
to overcome topographic effects has been indicated by Roy [10]. But it

‘Table 2.4 Variation of B,, B,, B, at geomagnetic latitude of 50°

Bh Bz B!

With height —0.96nT/100m —2.27nT/100m —2.47nT/100 m
With latitude —3.79nT/km 6.35nT/kin 4.40nT/km
towards N
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requires a Fourier transformation of the field and is probably not practical to
use for routine processing.

2.6.3 Airborne surveys

Modern aeromagnetic surveys are nearly always measurements of the total-
intensity amplitude by means of proton magnetometers. The data are very
often digitally recorded for automatic production of contoured maps. The
principles of interpretation are exactly the same as those described later for
ground surveys. One point worth noting in this connection is that aeromagne-
tic profiles often tend to give an impression of a single anomaly where actually
there are more than one anomalies. This lack of resolution increases with
increasing altitude at which the survey is carried out. Most aeromagnetic
surveys are flown at a height between about 70m and 200 m but much lower
altitudes (30-35m) are standard in Finland and Sweden. The anomaly
resolution in the latter is vastly superior to that of higher—altitude surveys.

A consequence of the decreased resolution in high-altitude aeromagnetic
surveys is that if the causative feature is actually composed of several geologic
bodies at shallow depth, the interpretation gives consistently too large depths
to the bodies. The difference can be quite considerable and this danger should
be constantly borne in mind in interpreting high-altitude aeromagnetic data.

2.7 RELATIVE MERITS OF HORIZONTAL, VERTICAL
AND TOTAL-FIELD MEASUREMENTS

Among the magnetic elements the direction of the field is the element least
sensitive to changes in the dimensions and magnetic properties of a sub-
surface body. It is therefore never used by itself in accurate work. Of the
remaining, namely B;, B, and B,, any one or more can be chosen for measuring
the respective anomalies AB;, AB, and AB,. Since AB,, and AB, are associated
with a change in direction as well, the interpretation of these anomalies
becomes somewhat complicated. The anomalous vector in the total field is
AB, =B, —B,, where B, is the normal flux density in the area and the
magnitude of this vector is

AB, = |B,— B,| = (AB? + AB2)'/2 (2.18)

However, since proton or alkali vapour magnetometers measure only the
magnitudes B, and B,,, the anomaly magnitude obtained from measurements
with them is not (2.18) but

AB,=|B,| —|Bo,| = B,— By, = (B} + B})"/* — (B3, + B3)''*  (2.19)

The distinction between the two magnitudes AB; and AB, will be evident from
Fig. 2.4(a).
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Fig. 24(a) Anomalous vectors of the geomagnetic field. (b) Azimuth of AB,,.

If o is the angle that AB, makes with B, (Fig. 2.4(b)) the cosine theorem of
elementary geometry gives

B2 = B3, + 2By, AB,, cos o + AB?
Also,
B2 =(B,, + AB.)* = B, + 2B,,AB, + AB

Hence, from-(2.19)
AB, = (B3, + 2By, AB, cos a + 2B, AB, + AB? + AB})'?> — B,, (2.20)
Provided AB, < B,, and AB,, « By, this can be simplified to

B By,
AB, =—B‘;~’:AB,, cosa + B° AB,

Ot

=ABycosacosI + AB,sin I (2.21)

where I is the normal geomagnetic inclination in the area.

From the theoretical standpoint measurements of AB, are to be preferred to
those of AB,, or AB, since the sub-surface picture can be visualized much more
readily from AB, but the present practice in geophysical surveys, even on
ground, is strongly towards using proton magnetometers for determining AB,,
owing no doubt to the great convenience that levelling or orientation is not
necessary and the speed of surveys is higher than for AB, measurements of
comparable accuracy. Sometimes both AB, and AB, are measured (for
example, by suitable fluxgate instruments). In a survey over an area which may
be considered to be virtually an infinite plane, such a procedure offers no
additional information if observations of only AB, are made sufficiently
densely, and is therefore superfluous because both AB, and AB, can then be
calculated. This rather surprising result, the converse of which is not true
(except for the case when AB, is determined), follows from Green’s theorem in
potential theory and will be proved in the chapter on gravitational methods.
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However, in certain special cases (e.g. in underground work) where the
measurements cannot be carried out over a plane (or a closed surface) or where
a sufficiently dense network of points is not available, the knowledge of both
AB, and AB, can be of some additional help.

Another surprising result of practical importance is that the total change in
AB, across geological features such as thin dikes or spherically shaped masses
is always (that is, even in low magnetic latitudes) greater than or equal to that
in ABy, (cf. Figs 2.6 and 2.15). Thus, from this point of view too, measurements
of AB, are to be preferred to those of AB;, all over the world.

2.8 QUALITATIVE INTERPRETATION OF MAGNETIC
ANOMALIES

2.8.1 Initial preparation

A first step towards interpretation is the preparation of a ‘magnetic map’ on
which the intensity values at different stations are plotted and on which the
contours of equal AB,,AB, or AB, (isoanomalies) are drawn at suitable
intervals. The interpolation necessary in contour drawing is particularly easy
if the observation points form a square network. In such cases, the most
accurate contours are obtained if the interpolation is carried out mainly along
the approximate direction of the isoanomalies, since this is the direction in
which the gradients are low. A trial isoanomalous line is first sketched to
obtain the trend and is subsequently corrected by more exact interpolation.
Contouring of geophysical maps, especially of large-scale surveys like airborne
surveys, is nowadays often done on automatic plotters using computer
programs for interpolation.

Most geophysical anomaly maps are coloured using suitable colour
schemes and colour gradations for the areas enclosed between successive
contours. Colouring is a very valuable aid in the qualitative interpretation of a
geophysical map in general and should not be underestimated. Many a feature
of geological interest is first discernible when a map is suitably coloured.

An important point in considering the anomalies in an area is the zero level,
that is the readings of the instrument at points where the field is the normal
undisturbed geomagnetic field. If the readings remain constant, or vary
randomly so as to suggest a geologic noise only, over a sufficient length of a
measuring profile, say 100-500 m, the reading at any point on this stretch may
be taken to be the zero reading and the anomalies at all other pointsin the area
referred toit. If distinct magnetically anomalous masses are evident in the area,
the zero level can be determined from the flanks of an anomaly curve, since
they approach it asymptotically at great distances from the mass. Regional
anomaly gradients, terrain characteristics, or contacts between rock form-
ations of differing magnetizations sometimes make it impossible to use the
same zero level throughout the area.
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2.8.2 Some basic magnetic anomaly patterns

Certain qualitative conclusions are readily drawn from a magnetic map.
Anomalous conditions in the sub-surface are indicated, for instance, by
successive closed contours with the anomaly values increasing or decreasing
towards a ‘centre’, while the direction of elongation of the closed curves may be
identified with the strike of the anomalous body. Another indication is given
by high horizontal anomaly gradients. They are often associated with contacts
between rocks of different susceptibilities or unequal total intensities of
magnetization, the contact lying shallower the steeper the gradient.

A considerable amount of qualitative interpretation of magnetic maps
consists in recognizing and delineating anomaly patterns. These can be
classified, especially on the so-called regional maps covering comparatively
large areas, into some basic shapes and their modifications. The following list
is not exhaustive but will be found to be adequate in the first analysis of most
regional magnetic maps.

(1) Circular features or features of roughly the same extent in all horizontal
directions.

(2) Long, narrow anomaly features.

(3) Dislocations when one part of an anomaly patiern is displaced with
respect to the other part.

(4) Extensive high-intensity areas (‘sheets’) with no regular pattern of
contours but considerable relief in the field values.

(5) ‘Quiet’ areas with little relief in the field values showing no distinctive
pattern of contours.

Naturally, the various patterns do not necessarily occur isolated from each
other but may be found superimposed. Experience shows that each pattern has
its distinctive geological counterpart although the exact nature of this may
differ from area to area. For instance, circular patterns are often associated
with granitic as well as basic intrusions or with ore bodies, while long, narrow
patterns are very frequently due to dikes, tectonic shear zones, isoclinally
folded strata with magnetic impregnation or long ore bodies. Dislocations are
indicative of geological faults while basaltic flows, large gabbro intrusives,
greenstone belts etc. will typically given rise to ‘sheets’ of anomalies. In many
instances quartzitic rock formations, monzonite, limestones etc. can be
delineated by typical ‘quiet’ areas with low field values but this is not
invariably the case since, for example, many limestones with skarn minerals or
quartzites with magnetite impregations as well as monozonites can be
associated with fairly high magnetic anomalies. The interpretation of the
various anomaly patterns on a magnetic map in terms of rocks must be made
in conjunction with available field geological observations. Conversely, the
availability of a magnetic map is of the greatest use in constructing the geology
in areas with sparse rock outcrops.
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Figure 2.5(a) shows an example of an aeromagnetic map on which most of
the above mentioned patterns can be observed. Figure 2.5(b) shows the
corresponding geological picture constructed from a combination of field
geological observations and aeromagnetics.

2.8.3 Caution concerning strike direction

It was mentioned above that the directions of the elongation of closed
isoanomaly contours suggests the strike direction of the corresponding
geological feature. However, a caution is in place in this respect because in low
magnetic latitudes bodies of finite length, striking north—south, produce
anomaly patterns which indicate an apparent east—west strike. The effect is
easily understood by considering the field created by the longitudinal
magnetization of the body by the horizontal component of the earth’s
magnetizing force. In fact, the anomaly pattern in this case closely resembles
thatin Fig. 2.6 discussed later. For strike directions of the body deviating from
the north too, the anomaly patterns in low magnetic latitudes indicate
apparent strikes significantly different from true ones [11]. In high magnetic
latitudes the effect of a strong, almost horizontal remanent magnetization may
similarly cause the anomaly patterns to deviate from the true strike.

29 QUANTITATIVE INTERPRETATION

2.9.1 Basic limitations of theory

The usual procedure in interpreting magnetic anomalies quantitatively is to
guess a body of suitable form, calculate its field at the points of observation
and compare it with the measured values. It is then possible to adjust the depth
and dimensional parameters of the body by trial and error or by automatic
optimizing methods until a satisfactory agreement is achieved between the
calculated and observed values. In nearly all quantitative interpretation this
agreement is only secured in practice along one or more selected profiles and
not over the entire area. It is important to bear this in mind because the
structure must be altered (or even discarded in favour of another) if a
satisfactory agreement is not found to exist along other profiles than the
initially selected ones. Any such model is moreover one of an infinity of
possible models. Despite this non-uniqueness the interpretation of magnetic
anomalies is not so seriously hampered in practice as might be imagined. The
reason is that on the basis of geological information, which is usually available,
or on grounds of plausibility, it is normally possible to reduce the number of
alternatives to a moderate one from which only a few need to be selected
initially as working hypotheses.

The calculation of the magnetic effect of a body of arbitrary shape and
susceptibility, magnetized by an external field, is a very complicated problem,
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as will be evident from its outline in Appendix 1. To bring the calculation
within reasonable analytical or numerical effort, it is very often assumed that
the body is homogeneously magnetized and is situated in a non-magnetic
medium. Homogeneous magnetization is, however, only possible in a
homogeneous, isolated body bounded by a second-degree surface, namely a
sphere, an ellipsoid, an infinitely long cylinder of elliptic cross-section, a non-
truncated paraboloid, a non-truncated hyperboloid and a non-truncated
cone. Geologic structures do not conform to these shapes (or to the
prerequisite of homogeneity) except in very rare instances and even then only
approximately. At points inside a geologic body far from its bounding surface,
the assumption of homogeneous magnetization may be more or less true, but
at the edges and corners it definitely fails. Consequently, all calculations of the
magnetic field of a geological structure based on the postulate of homogeneous
magnetization are approximations of varying degree and conform better to
the true field the greater the distance from the structure.

2.9.2 Anomalies of a sphere

Although a sphere as a geologic body is rare, it is useful to study its magnetic
anomalies as they incorporate many important features of the anomalies of
bodies of complex but roughly isometric shape. A detailed mathematical
analysis will be found in Appendix 3 and, based on this, Fig. 2.6 shows the AB,
and AB, maps that will be obtained in three different magnetic latitudes
above an inductively magnetized sphere of susceptibility 0.01, just touching
the ground surface. The centre of the sphere is vertically below the origin of
coordinates.

It will be seen that in high magnetic latitudes the AB, and AB, strongly
resemble each other and in all cases the line through the most positive and the
most negative anomaly coincides with the south—north direction which is also
the direction of the horizontal component of the sphere’s (induced) magnetic
moment. If the sphere has a remanent magnetization besides that induced by
the earth’s field, this line on an anomaly map will deviate from north-south
and indicate the direction of the horizontal component of the net magnetic
moment of the sphere instead.

A study of Fig. 2.6 also reveals that in high magnetic latitudes the centre of
the sphere is more or less exactly below the point of most positive anomaly if I
is positive (or below the most negative anomaly if I is negative). Note also that
the dominating feature in the low-latitude AB, maps has an east—west strike
although the causative body is perfectly isometric!

2.9.3 Anomalies of thin, sheet-like bodies

Thin and thick sheets are very useful shapes for approximating many
geological features. A thin sheet can often satisfactorily model ore veins or
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Plan Section along OPin (a)
(a) (b)

Fig. 2.7 Thin, magnetized sheet in plan (a) and section (b). (Note that in the final
formulae x is used to denote the distance OP and not a coordinate with respect to the x,
z axes shown.)

dikes while a thick sheet may approximate to a broad magnetically
impregnated zone or a thick dike. We shall consider first a thin sheet of infinite
length as well as depth extent, and assume that it is uniformly magnetized
although such magnetization is, in fact, not possible for a body of this shape.
We must now consider its various geometrical relations rather carefully.

If the magnetization vector M makes with the horizontal an angle i (not
necessarily equal to the inclination I of the earth’s field at the place) the
horizontal component of M is M cosi and the vertical component is M sini.
Fig. 2.7(a) shows the trace of the upper edge of a dipping thin sheet of thickness
b, with the horizontal component of magnetization making an angle 6 with the
strike direction of the sheet and an angle ¢ with the north direction.

The component M cosi can be resolved in its turn into a component
M cosicosé in the strike direction and M cosisind perpendicular thereto.
The component M cos i cos d is of no interest if the strike length is infinite since
it does not give rise to any anomaly. If now we take a vertical section at right
angles to the strike, the situation will look as in Fig. 2.7(b) where M’ denotes
the resultant of the component M cosisind and the vertical component
M sini, and i’ denotes the inclination of M’ with the horizontal. Obviously

Msini tani
tani' = = 222
ant Mcosisind siné 222
or
i’ = tan~ !(tani/sin §) (2.23)
Further,

M'? = M?(cos?isin? 6 + sin? i)
or, putting sin? § = 1 — cos? § and simplifying,

M’ = M(1 — cos? icos? §)'/? (2.24)
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It is convenient to introduce the magnetization intensities M| and M’, along
the dip of the sheet and perpendicular to the sheet respectlvely From
Fig. 2.7(b) we see that

M| = M'cos (6 —1) (2.25a)
M’ =M'sin(0 —1) (2.25b)

The anomalies of a thin sheet can now be calculated by integrating the effect of
elementary strips of cross-sectional area b d{. The details of the calculation are
given in Appendix 5 and the final result for the horizontal-field and vertical-
field anomalies is

xM' +aM’
AB,=—"22p"""1 " " 1 :
b 47: e (2.26)
U aM| — xM’
AB, = b 2.27)

where x is the distance of a point P on a profile perpendicular to the strike from
the point O vertically above the edge of the sheet and is positive in the direction
from which i and the dip 6 are measured. It should be noted that while i’ may
have any value between — 90° and + 90°, 6 is to be measured from 0° to 180°.
AB, is directed parallel to OP since, by symmetry, there cannot be a horizontal
flux density in the strike direction. The azimuth o of AB, with respect to the
magnetic north is evidently 90° — 6 + ¢.

If the magnetization of the sheet is due purely to induction in the earth’s field
M will be in the magnetic meridian (¢=0) and we shall have i=1,
i'=tan"!(tanI/sind) =TI (say) and a=90°—4. Then, for the total-field
anomaly we get from Eq. (2.21)

AB,= AB,sindcosI + AB,sin | (2.28)

Since in this case M’ = kT, where T, is the component of the earth’s total
magnetic field strength in the plane of Fig. 2.7(b), we have

M| =«xTycos(0—1T) (2.29a)
M| =«kTysin(0—1TI) (2.29b)

Equations (2.26) and (2.27) can then be written, after replacing p, T, by B, and
taking out cos(6 — I'), as
bkBysin(0 —I') a+ xcot(0 —1I')
2n a* + x?
AB,= bkBycos(@—I')a—xtan(6 —TI')
2n a*+x?

AB, = — (2.30)

(2.31)
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AB

AB(2)

Xq 1

Fig. 2.8 General magnetic anomaly profile across a thin sheet.

where By = By(1 — cos? I cos? 8)'/2 is the component of the earth’s normal flux
density B, in the plane of Fig. 2.7(b), just as M’ (and T'y) are the components in
this plane of M (and Tj).

The total-field anomaly can be expressed in the present case using (2.26),
(2.27) and (2.28) by

_ bkBysin(2I' — 0) sinl a— xcot(2I' — 0)

AB, 2n sinl’ a®+ x?

(2.32)

It will be seen that all the three equations (2.30-2.32) are special cases of the
equation
a—kx

AB=F 2.33
a® + x? (233)

Thus, irrespective of whether AB,, AB, or AB, is measured, an anomaly profile
across a thin sheet looks, in general, like that in Fig. 2.8.

2.9.3.1 Parameter determination with solved example

Next, we shall see how the parameters of a thin sheet of infinite depth extent
and length can be determined from a measured magnetic anomaly profile. It
should be realized, however, that in practice the values obtained are only
estimates and must be further adjusted somewhat to secure a best possible
agreement with the calculated and observed anomalies at all the measurement
points. The estimates are obtained from a profile at right angles to the strike by
means of the following exact scheme.

Let AB(1) and AB(2) denote the extreme values of AB (cf. Fig. 2.8) where
AB(2) is numerically the greater of the two.

(1) Lateral position of top edge. Seek the point on the profile (between the
extreme values) at which AB = AB(1) + AB(2). The top edge will be exactly
below the corresponding observation point which will be the origin of
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coordinates (cf. Fig. 2.7). The positive direction of x is already defined, this
being the direction from which I’ (minus or plus) is measured.

(2) Depth a of the edge. Let x,,x, denote the x coordinates of AB(1) and
AB(2) respectively. Of these x, will always be numerically the greater if
|AB(2)| > |AB(1)|. Then a = (— x,x,)*% (Either x, or x, is negative so that
— x,x, will always be positive.)

For a nearly symmetric profile x; will be numerically very large while x, ~ 0
so that this formula fails. In this case we proceed by finding the two points on
the profile at which AB is half the central maximum (or minimum) anomaly.
The distance between these points is exactly 2a.

(3) k and dip 6. For k we simply have k = 2a/(x, + x,). Then, depending on
whether AB;,AB, or AB, is the measured anomaly, we obtain 6 from
0—TI=cot™!(—k),0 —I'=tan" (k) or 2I' — 0 = cot (k) respectively. On
account of the properties of trigonometric functions, a value of 6 outside the
range 0 < 6 < 180° may be obtained. In such a case the simple expedient of
adding (or subtracting) an appropriate multiple of 180 to the angle found will
immediately give the correct 8 in the range 0—180°. It is this 8 that is to be used
in subsequent calculations.

(4) F can now be calculated from either of the two expression below provided
the profile is not near-symmetric (| x,| very large, k = 0):

AB(1)= ——f—————lcz——— (2.34)
© 2aJ(k*+1)+1 '
F k?
ABQ2)=——F5—— .
B = e v =1 235)
For a symmetric profile
AB(1) ~0; AB(2)= F/a (2.36)

AB(2) is, this case, the central anomaly.
For an almost antisymmetric profile* (x, & — x,; AB(1) ~ — AB(2); k = o0)
the two expressions reduce, on the other hand, to

AB(1) = — F/2a; AB(2) = F/2a (2.37)

(5) Estimate of bx. Except when a profile is almost perfectly antisymmetric
(k ~ o0) the product bk can be calculated from the relevant expression for F in
Egs (2.30)—(2.32) since its value is now known.

For a nearly antisymmetric profile, however, the factor sin(6—I’),
cos (0@ —I') or sin(2I' — ) in Eqs (2.30)—(2.32), as the case may be, approaches

*This is a profile whose one half can be obtained by reflection of the other half, first in the x axis
and then once more in the y axis.
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zero and bk becomes indeterminate if we attempt to use the expression for F in
question. It can be rigorously shown that in this case all that we have to do to
determine bx is simply to omit the factor sin (6 — I'), cos (8 — I') or sin 2I' — 0),
and equate the remaining factor to the value of F calculated from (2.37).

The validity of the entire scheme above is easily verified if we note that on
putting the derivative of AB in Eq. (2.33) with respect to x equal to zero we
obtain the equation

kx* —2ax—k?=0 (2.38)
The two roots of this equation (x,, x,) are
1+ 2
Xy, Xq = _;ﬂkI_Jan (2.39)
from which it follows that
X, +x,=2a/k  and XX, = —a° (2.40)

It is also easy to prove that AB(1) + AB(2) = AB(0), the anomaly at x =0.

We shall illustrate the above procedure by reference to Fig. 2.9 which shows
the total-field anomaly profile across a dike striking at 52° W from the north
(0 = +52°), at a place where I = — 33° and B, =44 160nT. Here we have
, _tan(—33°%)
tan ' == 5
cosI =0.8387, cosd=0.6157, By, =37817nT
sin] = —0.5446, sinl' = —0.7934

= —0.7930, I'=tan"!(—0.7930)= — 52.5°

From Fig. 2.9 we obtain the following measured values:
AB(1) = +238nT, AB(2) = — 543 nT, AB(1)+ AB(2)= —305nT

(The numerically greater value is — 543 nT and is denoted by AB(2).)

There are two measuring points on the profile at which AB = — 305nT but
only one of them, marked 0, lies between the extreme values. The axis of x is
positive to the right in this figure as I’ has been measured from this direction.
With 0 determined as the origin we then get

Xy = +28m, X,=—12m, a=./(28 x 12)=183m

k=36.6/(28 — 12)=2.29, F=—5680nT
Since the profile is for AB, we have, from (2.32) and (2.33),

k=cot(2I' —0)
2I' — @ =cot™ ! (k) (2.41)
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Fig. 2.9 Magnetic profile across a thin sheet (6 = + 52°, I' = — 33°, B, =44160nT).

and
Fo bkBysin(2I' — 6) sin I
Bl 2n sin /'

(2.42)

From Eq. (2.41),
2I' — 0 =cot™1(2.29) = 23.6°
0= —105°—23.6
= —128.6° (2.43)

As this value lies outside the range 0 < 6 < 180° we add 180° to the right-hand
side and obtain 51.4° as the dip 6. It is this value of 0 that is to be introduced in
Eq. (2.42), or the corresponding expression when AB, or AB, is the field in
question. In other words, the value of 2I' — 6 as obtained from Eq. (2.41) is not
to be used in (2.42) except, of course, when # obtained at the stage represented
by Eq.(2.43) is already in the range 0 <8< 180°. In the present case we
therefore put sin (2I' — 8) = sin(— 105° — 51.4°) = sin(— 156.4°) = — 0.400 in
Eq. (2.42) and get

bk =3.55m
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2.9.3.2 Vertical field of thin sheet with no transverse magnetization

It is of considerable interest to study this case which implies a dip parallel to
the effective magnetic field (9 = I'). It arises typically in high magnetic latitudes
over steeply dipping magnetite ores and is one instance in which the strike
length of the sheet can also be estimated in case the thin sheet is not infinitely
long.

For a thin sheet with 8 = I’ and in which, moreover, there is no remanent
magnetization, (2.31) can be written as

_bkB, 1
T 2ma 1+ x2

AB, (2.44)

where x, = x/a. It is obvious that in this case AB, is maximum at x =0 and

Bl
AB,(max) = bzx o

(2.45a)
a

and
xl/Z =da (2.45b)

where x,, is the distance at which AB, = AB,(max)/2. Eqs (2.45a) and (2.45b)
give the depth and the product bx.

If the sheet is not infinitely long but has a strike length Lits anomaly AB,(L)
can be shown to be (exactly)

AB/(L)=3AB(0)[f(d1a) + f(d2,)] (2.46)

whered,, = d,/aand d,, = d,/a are the horizontal distances of the profile from
the two ends of the sheet in terms of the depth a and

dﬂ
(xZ+d2+1)1? 247
AB_(o0) is, of course, the anomaly given by Eq.(2.44). The distance x,,,
referred to below is defined as above but for the central profile.

If, on the other hand, y,, is the distance at which the anomaly falls to half
the maximum value along a line parallel to and directly above the sheet, the
ratio x,,,:y;,, depends on L/a and has the limiting values 1.000 (L= 0, the
sheet dwindling down to a thin vertical ‘wire’) and 0 (L = o). Similarly a/x, ,
will be a function of L/a and has the limiting values 1.305 and 1.000
respectively.

In Fig. 2.10 are plotted x,,,:y;,2,4/Xy;, and the parameter

bk By
4nx,,,AB,(max)

fld)=

against L/a. The last mentioned parameter is equal to $ for an infinitely long
sheet as can be seen from Eqs (2.45a) and (2.45b). If x ,: y, ,, can be determined

37



38

Principles of applied geophysics

a/%y,

bk Bg
4Txy, AB (max)

Xz Y

Fig. 2.10 Parameters of a thin sheet having no transverse magnetization, as a function
of sheet length.

from a map of AB,, the depth a to the upper edge, the length L and the product
bk for a body that can be approximated by a thin sheet of very large depth
extent and no transverse magnetization may be estimated from Fig. 2.10. How
this diagram is to be used in pertinent cases will be shown later.

Ifit is desired to take into account the effect of a finite depth extent, AB, may
be calculated from Eqs (2.44) and (2.46) by subtracting from their right-hand
sides expressions of identical forms but with a’, the depth of the lower edge of
the sheet, replacing a. In this case the lower edge must, of course, be shifted
sideways to an appropriate extent to take account of the dip (Fig. 2.11). It is
easy to see that the shift required is (a' — a)/tan 6. Some examples of anomaly
curves of such magnetic ‘double lines’ are shown in Fig. 2.12 for the case of
vertical dip. The ratio a/x,,, depends in this case upon L as well as a’
(Table 2.5) so that the depth of the upper edge cannot be estimated without a
reasonable assumption about the depth of the lower one.

As seen from Fig. 2.12 an effect of the lower edge is that there is a negative
side-extremum in AB, (if the principal anomaly is positive, and vice versa). The
ratio AB,(min)/AB,(max) depends on the ratio a’/a and can be used to estimate



Fig. 2.11 Dipping thin sheet of finite depth extent.

0.8

0.6
4B,
AB,(max)

0.4

0.2

Fig. 2.12 AB, across some thin vertical sheets of various depth extents and lengths.

Table 2.5 a/x,;, for magnetic thin plates with no
transverse magnetization

d'ja
Lja 1 2 4 o0
0 1.99* 1.54 1.37 1.305
2 191} 1.45 1.26 1.18
4 188} 1.43 1.21 1.08
8 2,02 1.48 1.20 1.03
© 2.06! 1.53 1.26 1.00

*Point dipole *Linear dipoles
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it. A diagram for the purpose pertaining to a vertically dipping sheet is given in
Fig. 2.13.

2.9.4 Anomalies of sheets of arbitrary thickness

A long sheet of arbitrary thickness and infinite depth extent may be considered
to be built up of an infinite number of thin sheets and the anomaly found by
integration. Fig. 2.14 shows the geometry of the case, the notation being
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Fig. 2.13 Relation between side-extremum and depth extent for a thin, dipping sheet
with no transverse magnetization. '
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Fig. 2.14 Sheet of arbitrary thickness in plan and section.
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similar to that in Fig. 2.7, but to begin with we shall consider the slightly more
general situation in which the magnetization of the sheet is at an angle i
different from the inclination of the earth’s at the place so that i # I and
i’ # I'. This means that the sheet has a remanent magnetization as well. As with
a thin sheet all the three anomalies can be expressed by a single equation with
appropriate values for the parameters involved, namely,

AB= <§—;>M’Csin O[ (o, — o5) — kIn(ry/ry)] (2.482)

The derivation of this equation will be found in Appendix 5.3.
For computational purposes Eq. (2.48a) can be written as

2, .2 12
AB= (%)M’C sin e[cos- t <M) —kln (rl/rz):l (2.48b)

2ryr,

where
ri=[(x+ b/2)? + a*]"/?
r,=[(x—b/2)* +a*]'/?

The angle yielded by the cos ™! term will lie between 0 and =.

The values of C and k for AB,, AB, and AB, are given in Table 2.6. The
cos ! term in the above equation corresponds to the term a/(a* + x?) in
Eq. (2.33). Both terms are symmetrical in x, that is, they retain their sign and
magnitude if we change the sign of x. The logarithm in Eq. (2.48) corresponds
to the term x/(a? + x2) in Eq. (2.33). These two terms are antisymmetric in x,
that is, they change in sign but not in magnitude when x changes sign.

If the sheet is purely inductively magnetized, so that i’ = I', the k values in
Table 2.6 are obviously exactly the same as those in Egs (2.30)—(2.32).
Conversely, if the thin sheet has a remanent magnetization, so that i’ differs
from I, the relevant k factors in Eqs (2.30)—(2.32) will be simply replaced by the
corresponding general ones in Table 2.6.

Figs 2.15(a) and 2.15(b) show AB, and AB, curves across a sheet
(b = 2a) dipping at various angles. These are quite general as far as strike angle

Table 2.6

Anomaly C k

AB, —sin (@ — i) —cot(f—1)
AB, cos(f—1) tan (6 — i)

i S.“(I’ + i — 0) t(]’ i — 6)
AB 1 1 CcO +1
! Sinl’
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Fig. 2.16 Principal features of a magnetic profile across a thick sheet.

J and magnetization direction in the sheet are concerned so long as the
equation ' = tan~* (tan i/sin d) is satisfied. Thus, for example, if the direction
of remanence coincides with the earth’s field (or if there is no remanence), i = I
and =TI, and each of the curves is then valid for any strike angle
d=sin"! (tanl/tanl') measured from the magnetic meridian (positive
anticlockwise in plan). The curves labelled AB, show the total-field anomaly
for east—west strike of the sheet and no remanence.

The curves in Figs 2.15(a) and 2.15(b) resemble the anomaly curve for a thin
sheet (Fig. 2.8) because the thickness is only twice the depth to the upper
surface. For a substantially thicker sheet, however, the curves can be
significantly different as the illustration in Fig. 2.16 shows.

2.94.1 Parameter determination for thick sheet

As in the case of a thin sheet a single exact and logical scheme can be devised to
obtain estimates of the thick-sheet parameters from an anomaly profile, be it
AB,,AB, or AB,, at right angles to the strike of the sheet. This scheme will be
described below. The proof of its validity is somewhat involved and is given in
Appendix AS5.4. The notations below are the same as for the thin-sheet scheme
and it is assumed that i=1] and i/ = I".

(1) Position of centre of sheet. Seek a point on the profile, lying between the two
extreme anomalies, at which AB = AB(1) + AB(2). The numerically greater
extreme value is denoted by AB(2). The centre of the sheet is exactly below the
observation point corresponding to AB. This point is our origin 0. The
positive direction of x is already known as this is the direction from which I’ is
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measured. The coordinates x;,x, for AB(1) and AB(2) respectively are thus
now known. The numerically greater one is x;.

(2) Width b and depth a of the sheet. To find these, form first the ratios

X, +x AB(2) + AB(1
d="1-2 and Q=—() ()
X, — X, AB(2) — AB(1)
and then enter the diagram in Fig. 2.17 to determine
b
b=—"— (2.49)
[x1 — X,
g X1t X2
- X1= X2
10 —
[AB(1)] 10
09 09
0.8 -
AB(2) o 08
’<‘>l/
07 \J_‘ﬂ 07
06—
05—
0.4
03—
0.2
01
O:IIIIIIIHI I I | I I ] I l 0
0 01 02 03 04 05 06 07 08 09 10
0-.AB(2)+ AB(1)
AB(2)- ABI(2)

Fig. 2.17 Exact diagram for determining the thickness of a sheet from anomaly features
in Fig. 2.16.
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Fig. 2.17 is based on an exact transcendental equation derived in Ap-
pendix 5.4. Eq. (2.49) immediately gives b. Note that b here is the width in the
horizontal plane.

With the knowledge of b, the depth a is calculated from

a=(—x,x,—b?/4)!/? (2.50)

Either x, or x, is necessarily negative and x, numerically sufficiently large so
that the bracketed quantity in Eq. (2.50) is always positive.

The above procedure fails when the profile is nearly symmetric since in this
case, although the origin may be placed at the central maximum (or minimum)
without much error, it may not be possible to locate the other extreme value on
the profile and its coordinate. Therefore, we must proceed in some other way
to determine b. One method is as follows.

Let |x,,,| and |x,,4| denote the absolute values of the coordinates of the
points at which AB falls to one half and one fourth of the central value. (There
will be one point of each category on either side of the origin. Since a profile is
rarely perfectly symmetrical in practice, we should take the mean |x,,| and the
mean |x,,4].) Let

g=2us 2.51)
X1/2
Then it can be shown that
2
-1
a= (3—% Symmetric profile (2.52)
and
b=2(x%,—a®)"? Symmetric profile (2.53)

Fig. 2.17 is also of no avail for a nearly antisymmetric profile (x; & — x,,
AB(1) ~ — AB(2)) because in this case d’ and Q tend to be nearly zero so that b’
is indeterminate, as can be seen from the figure. For a nearly antisymmetric
profile we locate the coordinate x, , of a point at which the anomaly is one half
of one of the two extreme values. There will be four such points, two for each of
the two extreme values (Fig. 2.18). Let us, for the sake of concreteness, consider
that half of the antisymmetric profile in which AB is positive in Fig. 2.18.
Denote by # the ratio x,/x,,. (Theoretically it does not matter which one of
the two x,,,’s is used!!) Then the following exact equation (Problem 2.6) gives
the width b:

Antisymmetric

2=1 2 4n—1-— 2),2
b* = (1+n%)(4n n)x1,2 profile

(2.54)

The depth a is then obtained from Eg. (2.50).
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Fig. 2.18 Features to be used for a nearly antisymmetric profile.

(3) k and 0: As in the case of a thin sheet we get k from the formula

k=28 2.55)
X4 + X3

after which 8 —I' or 2I' — 0 can be obtained by using the appropriate
expression for kin Table 2.6. (We are assuming that i’ = I', as already stated.) If
the value of 6 thus found lies outside the range 0 < 6 < 180° a suitable multiple
of 180° is simply added to or subtracted from the value and this will then give
the correct 6, as in the case of a thin sheet. It is this 0 that is to be used in
subsequent calculations. (0 may be modified by a correction for the so-called
demagnetization effects, but these will be considered in a later section.)

For a near-symmetric profile, k = 0.

(4) Magnetization intensity M’ of the sheet: Except when a profile is almost
perfectly antisymmetric (k & 00), M’ can now be calculated from the formula:

Bo \rgo o AB(1)+AB(2) 1
(E)M Csinf = 5 tan~1 (b/29) (2.56)

where the left-hand side is the common factor in Eq. (2.48) and C is the
appropriate expression in Table 2.6 depending upon the anomaly field
in question. As we have already seen AB(1) + AB(2) is the anomaly AB(0) at
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x = 0. This may be difficult to ascertain with sufficient accuracy for nearly
antisymmetric profiles.

For a nearly antisymmetric profile, C in (2.48) becomes zero too, and the
attempt to find M’ by means of an equation like (2.56) fails. It can be rigorously
shown that for this case M’ can be determined from the equation

Moy o —AB()
(E)M S 6= %, T b)2x; —B)] 2:57)

Alternatively — AB(1) may be replaced by AB(2) in which case we replace x; by
X, on the right-hand side.

Note that it is not necessary to know the normal geomagnetic field B, to
obtain M'. However, if it is known we can go one step further and find the
effective susceptibility from the definition of M’, namely

M’ =xTo = k(Bo/o) (2.58)

We have called « in (2.58) the effective susceptibility to allow for the possibility
that M’ may contain a remanent component parallel to T; besides that
induced by T and that the body itself may not have uniform susceptibility.

It was mentioned in Section 2.9.3.1 that b and x cannot be separately
determined for a thin sheet. On the other hand, they can be determined
separately for a thick sheet! Although this might appear paradoxical, since
there is no sharp boundary between a ‘thick’ sheet and a ‘thin’ one, the scheme
in section 2.9.3.1 and the scheme for a thick sheet are not contradictory in this
respect (Problem 2.4).

It should be noted that, in practice, the values of the various parameters
obtained will only give us estimates and it may be necessary to adjust these
further to secure the best possible agreement between the measured and the
calculated anomalies along the entire profile.

Throughout this and the previous section we have assumed that the upper
surface of the sheet is horizontal in the strike direction and not plunging.
Likewise the measurement profile is assumed to be horizontal. If these
conditions are not postulated the algebra becomes very complicated. This
general case has been treated very thoroughly by Werner [12], although in
parts with a somewhat different notation from that adopted here.

Finally, one fact of notation that should be kept in mind is that whereas b in
Fig. 2.7 for a thin sheet is the width perpendicular to the plane of the sheet, b in
Fig. 2.14 is the horizontal width. The width as measured perpendicular to the
sides of the thick sheet is bsinf. This is why the factor sin@ appears in
Eq. (2.48) on the right-hand side but not in Egs (2.30)-(2.32).
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2.9.4.2 Solved example of thick sheet anomaly

AB, profile at Vallenar, Chile. Fig. 2.19 shows an aeromagnetic profile
originally cited by Gay [13]. At Vallenar we have I = —25° and the strike
angle of the linear anomaly in question is § = + 23°. Assuming that there is no
remanence, Eq. (2.23) yields I' = — 50°.

Denoting by AB(2) the numerically greater extremum in AB, we deduce the
following parameters from the figure:

AB(2) = —1566nT, AB(1)= + 133nT, AB(2) + AB(1)= — 1433nT
x,=47.8m, x; = —373.0m, Xy +Xx,=—13252m,
Xy —X,=—420.8m
— 1433

Hence
b'=046 (Fig.2.17), b=|—4208| x 0.46 =193.6m (Eq.229)
a=92m (Eq.2.50), k= —0.566 (Eq.2.56), b/2a =1.052

600S 4005 200 100S T 100N 200N 400 N

Fig. 2.19 AB_ profile at Vallenar, Chile (§ = 23°, I = —25°). (For interpretation, see
text.) After [13].
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(The actual depth found by drilling, as cited by Gay, is 97 m.)
Since the profile is a AB, profile, Table 2.6 shows that

0—I=tan"'(—0.566) = —29.5°
Hence,
0=1—-29.5°= —50°—29.5°= —79.5°

This value of 8 is outside the range 0 < 6 < 180°. Therefore we add a suitable
multiple of 180°, in this case only one multiple, and get the dip as

0= —79.5° +180° = 100.5° (2.59)
In subsequent calculations we must use this 8 so that
0 —I'=100.5° — (— 50°) = 150.5° (2.60)

Table 2.6 shows that C = cos (8 — I') in the present case so that using Eq. (2.56)
we obtain (with gy =4n x 1077 Qsm™?, as usual):

_ —1433x107° 1 1
B 2 cos (150.5%) sin (100.5°) tan " (1.052)

The angle tan™!(1.052) = 46.45° must, of course, be expressed in radians,
namely 0.813 rad. Further

cos(150.5°) = — 0.8704, sin (100.5°) = + 0.9833

2M' x 1077

Thus,
M =5145Am™! (2.61)

At Vallenar B,~28000nT, ie. B,=15400nT and T,=B,/u,=
15000 x 107°/(4n x 10~ 7) = 12.25A m ™. Eq. (2.61) then yields the effective
susceptibility

k=042 (2.62)

2.9.5 Finite depth extent and strike length

Equation (2.48) is valid for sheets extending to infinity in either direction
perpendicular to the plane of Fig. 2.14 and with the lower face at infinite depth.
If the depth extent is finite we obtain an infinitely long two-dimensional prism.
Its magnetic anomaly can be calculated by subtracting from the right-hand
side of (2.48) the corresponding expression for a second sheet of infinite depth
extent and identical thickness and dip but with the upper surface at a depth
equal to the depth of the lower face of the prism.

Fig. 2.20 shows an example of such an interpretation. The surface magnetic
map of AB, in this case showed a long magnetic feature with a strike angle
0 = 20°. Various combinations of k and the depth of the lower face were
tried, with k = — 1.564 and the depth extent shown in the figure giving the
most satisfactory fit between the observed and calculated AB, anomalies.
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Fig. 2.20 Observed and calculated AB, across an inclined prism-like body (k=
—1.564).

Assuming only induced magnetization (I = 75° in the area) we find I’ = tan ™'

(tan 75°/sin 21°) &~ 85°. From Table 2.6,0 — I' = tan ™' ( — 1.564) = — 57°. This
gives 6 = 28°, as shown in the figure. Two holes were drilled on the basis of this
‘interpretation, the deeper one specifically to verify the inference about the
depth extent. The shallower hole encountered migmatite with pyrrhotite at the
expected depth while the deeper hole was barren and confirmed the
interpreted depth extent.

By combining a number of different sheets we can simulate more
complicated cross-sections and calculate the anomalies of very long geologic
bodies of uniform cross-section. However, it must be mentioned in passing
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that the procedure is not theoretically correct and is acceptable only if the
susceptibilities of the individual prisms are low (< 1).

The magnetic anomalies of prisms of uniform cross-section whose length
and depth extent are finite have been studied in some detail by Hjelt [14]. It is
evident from this study that the effect of finite strike length is very complex and
no simple description of it can be given.

2.9.6 Sloping step simulating fault, flexure, lava flow etc.

It is interesting to note that the anomalies over this feature are again given by
Eq. (2.48a), but not by Eq. (2.48b), with the symbols as in Fig. 2.21. However,
the scheme of Section 2.9.4.1 is not applicable here. This figure also shows two
of the many possible shapes of AB, curves across a step. The shapes of AB, and
AB, curves can likewise take a very wide variety of forms and general rules for
determining the parameters of the sloping step are very difficult to formulate.
Although 6 can be estimated from the value of k that gives the best fit with the
observed data, it is not possible to estimate b by any simple rule, contrary to
the case for the thick sheet, so that adjustments in interpretation are much
more difficult to make for the sloping step.

6 =150° a=b
i/ = 60°
ok . R

T

Fig. 2.21 Sloping step.
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Fig. 2.22 Arbitrarily shaped body approximated by prisms.

2.9.7 Bodies of arbitrary shape

The calculation of magnetic field due to bodies of arbitrary shape leads to
formulae which are generally unmanageable, even for numerical comput-
ation on high-speed computers, unless simplifying assumptions are made. One
such approach is to subdivide the body into a number of rectangular prisms
(Fig. 2.22) and sum the effect of each prism at a point of observation. Again, the
procedure of simply summing up the effects of individual prisms is not
theoretically correct, but is acceptable in practice if the susceptibilities of the
prisms are low. The expressions for the magnetic anomalies of a single
rectangular prism can be derived exactly if we assume homogeneous
magnetization [15].

Another approach is to approximate the body by a polyhedron whose faces
are plane polygons. This method has been treated by Coggon [34] who
extends it to gravity calculations as well.

2.10 EFFECT OF DEMAGNETIZATION

It is implicit in the defining equation (2.2a) that H is the actual magnetic field
strength at the point under consideration. Within a finite body the local field
strength is not equal to the strength of the inducing field at that point. For
instance, within a sphere of susceptibility x on which is acting a homogeneous
external magnetic strength H,, the internal H is everywhere H; = H/(1 + x/3),
< Hyif k¥ > 0(Appendix 2). The reduction in the internal H field is tantamount
to a ‘demagnetizing force’ within the sphere equal to

H, kH,
Ho'_ ==
1+k/3 3+«

acting opposite to H,.

By analogy with the sphere, the internal field strength in a direction & within

a body of arbitrary shape may be written as

H,

H,=-—2— 2.63
¥ 14 Ny, (2.63)
where N, is a demagnetizing ‘factor’ in the direction «. It should be noted that
only for bodies bounded by a second-degree surface are H and N constant
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within the body, e.g. for a sphere N = in all directions. For all other shapes
H;, N and the intensity of magnetization (xH;) vary from point to point. If,
therefore, we understand by H,, in Eq. (2.63) the average internal magnetizing
force in the direction « we get an ‘average demagnetization factor’

1 (H,
— 1 Tox_ 4 2.64
Ne K(H ) (264)

N depends on k, but the dependence is not so simple as would appear from
Eq. (2.63) because H;is also a function . H;, needed for estimating N, has to be
calculated by solving the appropriate integral equations numerically. This is a
very difficult problem and apart from bodies bounded by second-degree
surfaces (for which the integral equations can be solved exactly), H; and N have
only been evaluated for very simple shapes like prisms and sheets.

If, in solving the integral equations, it is assumed (contrary to fact) that H, is
uniform within a body, the corresponding N turns out to be independent of k
(although not of position) and for rectangular prisms it is then expressible
exactly in terms of elementary functions. Eskola [224] has shown that this
assumption is acceptable only if k 2 1. Nevertheless it is commonly resorted to
in geophysical work for all x because the detailed calculation of H,, which
incidentally requires a knowledge of x (), is a formidable numerical problem
even for simple shapes like prisms.

Demagnetization effects influence the magnetic interpretation in the
following way. The value of k obtained in the adjustment described in Sections
2.9.3 and 2.9.5 yields 8 — i', the angle between the dip and the inclination of M".
If M’ has a remanent as well as an induced component, i’ is unknown and
hence also 8. However, even if there is no remanence (i’ = I'), when M’ will be
expected to be in the direction of I, it will deviate from this direction. This can
be understood by reference to Fig. 2.23. The magnetization M| of the prism of
infinite strike length in the cross-sectional plane will not be kT, cos (0 — I')
according to Eq. (2.29a) but instead

L _r
M"_1+N"x ocos(@—1T) (2.65)

“RUsin(e-1)
kT, cos(6-T')

\

— K teinaT
TN R Tosin(6-I')

Fig. 2.23 Effect of demagnetization.
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in view of Eq. (2.63), where N is the demagnetization factor in the direction of
the depth extent. Similarly the transverse magnetization will not be as in
Eq. (2.29b) but

i

K . ,
1= m 2)5111 (9 -1 ) (266)
L

Strictly speaking even the «’s in these equations should be replaced by , and
k, but we shall not make this refinement.
It should be observed that the demagnetization effect tends to deflect M’ so
as to make it less inclined to the sloping sides of the sheet.
For infinite depth extent, as in Fig. 2.14, it can be shown that N, =0 and
N, =1 (Appendix 6) so that (2.65) and (2.66) give
M| tan(6-1T)
= 2.67
) M, 1+x (2.67)
Now, for a AB, profile, for example, M’ /M= k(p. 32) and hence, from (2.67),
for a AB, profile

tan(0—-I')=(1+x)k

or
0=TI+tan ' [(1 + x)k] (2.68)
For a prism of finite depth extent we get from (2.65) and (2.66)
_[k(1+ N k)
=T = 17 2.69
=TI +tan (1+N“x> (2.69)

(Egs (2.68) and (2.69) are also valid for a thin sheet.)

We now revert to the AB, profile in Section 2.9.4.2 and estimate 6 by taking
account of demagnetization. We assume that the susceptibility of the sheet in
question is 0.42 as given by Eq. (2.62). Then from (2.68) we have

6= —50°+tan"!(1.42 x —0.566)
= —50° —38.8°
= —88.8°
that is —88.8° + 180° = 91.2° as the true dip, instead of 100.5° (Eq. 2.59). In
this case the difference is about 10° and may be inconsequential but if x is

appreciable we may be led to grossly erroneous conclusions about the dip if
demagnetization effects are disregarded.

211 SOME EXAMPLES OF MAGNETIC INVESTIGATIONS

The examples below are chosen to illustrate some geologic points in magnetic
interpretation. A general method of attack on any problem is hard to find
especially when igneous rocks or chromite and manganese ore bodies, all of
which are notorious for the capricious character of their remanent magnetiz-
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ation, are the objects of investigation. Every case of magnetic investigation
needs a careful study of the geology and the topography of the area.

2.11.1 Magnetite ore in Central Sweden

The map in Fig. 2.24 shows the results of a survey in Central Sweden. The
choice of the area was dictated by general geological considerations; the exact
location of the magnetic disturbance is the outcome of the geophysical work.
The magnetic anomaly shows an approximately east—west strike. From
profiles going over points in the immediate vicinity of the anomaly centre the
mean x,,,:y;, (Section 2.9.3.2) was found to be about 0-55 which gave L/a ~ 3
and a/x;;; ~ 1.1 (Fig. 2.10). The mean value of x,,, over the central profiles
was 58 m, hence a = 65 m. The observed and calculated anomalies using this
depth and a magnetic width (bx) = 86 also estimated from Fig. 2.10 are shown
in Fig. 2.24(b). A slight effect of the transverse magnetization was also taken
into consideration in these calculations. A drill-hole placed as shown
encountered rich magnetite ore of total horizontal width of 10 m. This would
indicate an average apparent susceptibility of about 8.6 for the ore (cf.
Table 2.1). A hole parallel to the one shown was drilled initially along a line
through the anomaly centre but encountered pegmatite at the expected ore
depth and, owing to the peculiar disposition of the pegmatite dike, continued
to be in it without giving any ore. This illustrates well the uncertainties that
lurk in geophysical work even when the anomaly is a ‘textbook example’ and
the agreement between observations and calculations is almost as good as

might be desired.

oA
\ PN

0 S0 100 Metres

@ (S

Fig. 2.24(a) A magnetic survey (AB,) in Central Sweden.
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e Observed anomaly
A Calculated anomaly
Inferred width

I_I of ore zone
BH Borehole
Mo Moraine
S  Sandstone
LeG Leptite and granite
M Magnetite ore
GP Granite and pegmatite
SkL Skarn and limestone

1000 nTI

A

300 400 500
Distance from A
(metres)

(b)
(b) Profile AA’ in Fig. 2.24(a).

2.11.2 Chromite deposits

Magnetic anomalies over two chromite masses (one known before the work) in
the Guleman concession area in Turkey (approximately 39°50'E and
30°30" N) are shown in Fig. 2.25 [16]. According to Yiingiil, the susceptibility
of the ore masses is, on the average, 2—18 times smaller than the surrounding
ultrabasic or basic rocks (serpentines, peridotites, norites) so that negative
anomalies should be expected over the ores. This is at variance with the
observations the positive values of which must, therefore, be attributed to
permanent magnetization pointing downwards. Now both Cr,O; and
FeCr,0, occurring in chromite ores are antiferromagnetic, the former with a
weak susceptibility. It is, however, conceivable that the latter compound has
ferrimagnetic properties so that spontaneous magnetization of the mass may
therefore be possible.
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Discovery outcrop

Vertical intensity (nT)

Vertical intensity (nT)

~_~ Serpentine and peridotite
Chromite

Fig. 2.25 AB, profiles across chromite masses. After [16].

2.11.3 Sulphide body near Lam (Bavarian Forest)

The country rock in this area consists mainly of quartzitic shales and evinces a
typical layered structure. The dip of the layers is about 70-80° towards the
north. The ore occurs in an impregnation zone as veins concordant with the
shales. It contains pyrite, chalcopyrite, pyrrhotite and galena carrying values
in silver. Some magnetite is also present.

Two magnetic profiles over the ore are shown in Fig. 2.26 after Zachos [17].
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Fig. 2.26 Magnetic profiles across sulphide veins. After [17]. Arrows emanating from
open rings in the lower part denote anomalous total field in magnitude and direction.

Maxima in AB, and inflection points in ABy, corresponding to each of the two
parallel veins are readily evident. The arrows in the lower profile represent
anomalous total intensity vectors.

In the upper profile are also plotted (1) the susceptibility (x) of the rock
samples at different places along an underground gallery leading to the ore
and (2) the estimated proportion of the total magnetic constituent in the
samples. The susceptibility and B, curves run roughly parallel to each other
but the maxima in the former are displaced about 10 m to the north. Zachos
attributes this difference to the northerly dip of the veins.

The weight per thousand curve departs from the susceptibility curve at
several points. This apparent discrepancy has been attributed to variations in
the magnetite: pyrrhotite proportion in the samples.
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PROBLEMS

2.1

2.2(a)

23

24

25

2.6

(b)

A deep-seated long, thin magnetic ore vein strikes 23° west of north in
an area where I =27.4°. From a shaft to the north—east of this body
two adits at 200m and 250m depth are driven towards the ore
perpendicular to the strike. The total-field anomaly was found to be
zero at a distance of 567 m from the shaft in the upper adit and 617 m in
the lower adit. The vertical-field anomaly was zero at a distance of
28 m from the shaft in the upper adit.
Calculate the dip and depth of the ore vein.

Determine the parameters of the thick sheet that gives the following
near-symmetric vertical-field anomaly along a profile perpendicular
to the strike, given that I = 54°, 5 = 30°. The coordinates are in metres,
the ‘E’ coordinate being in the direction of the horizontal component
of the geomagnetic field along the profile.

X 40W 20 0 20E 40 60 80 100 120E
AB,(nT) 180 255 365 525 775 1195 1960 3490 6515

x 140E 160 180 200 220 240 260 280E
AB,(nT) 10295 12745 13970 14485 14465 13755 11805 8265
x 300E 320 340 360 380 400 420 440E
AB,(nT) 5105 3340 2380 1805 1435 1180 995 885

What dip would be indicated if the above anomalies were in the total
field?
A long magnetic dike striking north—south has a rectangular cross-
section and a width of 40 m. The depth to the upper surface is 20 m.
The component of By, in a plane at right angles to the strike is
45000 nT. Exactly above the centre of the dike AB, = 260 nT. The dike
has a susceptibility of 0.0112 and a remanent intensity 0.6 Am ™! in the
same direction as the induced one.

Calculate the depth to the lower face of the dike, neglecting
demagnetization effects.
Verify from Eq. (2.56) that as b— 0 it is only possible to determine the
product bM’ but not b and M’ separately.
Verify that if, with the convention in Section 2.9.4, |x,| > |x,| for the
extreme points in AB, then |B, then |AB(2)| > |AB(1)|.
Prove the result stated in Eq. (2.54).
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31 INTRODUCTION

3.1.1 Newton’s law and gravitational potential

Newton’s law of gravitation states that the force (in newtons) between two
point masses m,, m, is equal to Gm m,/r? where r is the distance between the
masses and G =6.67 x 107! [~ (20/3) x 10~ *Tm3kg~'s~ 2 The force is
one of attraction and acts along the line joining the two point masses. We say
that the point mass m, is in a field of force (the gravitational field) due to m, and
vice versa. Since ‘Force = Mass x Acceleration’, the acceleration of m, will be
Gm,/r*. Indeed, it is evident that the acceleration of any point mass due to m,
will be Gm, /r? towards m,.

A point mass placed in the vicinity of any body will be in the gravitational
field of the body and experience an acceleration if free to move. The total force
on the mass due to the body (and hence the acceleration) in any desired
direction can be calculated by applying Newton’s law to infinitesimal,
point mass elements of the body and integrating over the entire volume.

We shall define the gravitational potential due to a point mass m at a
distance r from itself as

y="0" (3.1)
With this definition* the acceleration (ms~2) of any point mass towards m,
*This is the same definition as that adopted by Kellogg in his classic book on potential theory [18]
and (implicitly) by Jeffreys [19], among others. As defined in this manner, ¥ has the dimensions of

[m?s~ 2] and represents the work done by the field per kilogram of a point mass m, when m, moves
from infinity to a distance r from m.
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namely Gm/r?, is given by —dV/dr, while
v Gm
dr
represents the acceleration in the direction of . To be more general, with this
definition the derivative of V in any direction gives the acceleration of a point
mass in that direction. If we are using, say, rectangular coordinates the total
acceleration will be the vector sum of the accelerations in the x,y and z
directions. This resultant is the gradient of V and is denoted by grad V.

The gravitational potential of an arbitrarily shaped body at a point P,
whether inside or outside the body, is

V= J Gpdv (3.3)

r

(3.2)

where p dv is the mass of an infinitesimal volume element dv situated at the
point Q of the body, p is the density at Q, r is the distance PQ and the integral is
taken over the entire volume of the body. The acceleration of a point mass in
the vicinity of the body will be grad V as said above.

3.1.2 Potential of a homogeneous spherical shell

To illustrate the application of Eq.(3.3) let us consider a very thin spherical
shell of density p, radius R and thickness t, and a point P at a distance r from its
centre (Fig. 3.1). Since each infinitesimal mass element of the ring AB is at the
same distance x from P, the potential dV at P due to the ring is obtained from
Eq.(3.1) simply by replacing r by x and m by the mass of the ring, which is
2nR*sin6dé x pt. Thus

B G27'ER2 sin 0dO x pt
x

dv (34

However, with the notation as in Fig. 3.1
x2=R?*+r>—2Rrcosf
xdx = Rrsinfdf

VB

Fig. 3.1 Spherical shell.
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Inserting this in Eq. (3.4) and integrating with respect to x, we get the potential
V due to the whole shell:

Vv dx

_ 2nGRpt j’“‘

r r—R

_GM,
N r

if P is outside the shell and M, = 4nR?pt is the mass of the shell. Thus the
potential outside the shell is as if the entire mass of the shell were concentrated
into a point mass at the centre.

If P is inside the shell the lower limit of the integral above becomes R — r so
that

(3.5)

V =4nGptR

GM
=213 3.
= (36)
The potential at a point inside the shell does not depend on the point’s distance
from the centre but is constant and equal, in view of (3.5), to the value on the
surface of the shell.

3.1.3 Gravitational acceleration due to a homogeneous sphere

A sphere can be considered to be built up of an infinite number of thin shells.
For a point outside the sphere we sum the potentials of all these shells as given
by (3.5) but since r is the same for all shells the summation simply involves
adding the masses of all the shells and this gives the potential of the sphere as

_oM
_r

vV (3.7
where M is the mass of the sphere. The gravitational acceleration at the
external point is

il = — 9_]_2‘_’{ (3.8)
dr r
in the direction of r or +GM/r? towards the centre of the sphere. The
acceleration at a point outside the sphere is as if the whole mass of the sphere
were concentrated into a point mass at the centre. If the radius of the sphere is
R, the acceleration on the surface towards the centre is GM/R? = (4n/3)GpR if
p is the density of the sphere.

The situation at a point P inside the sphere is different. If r is P’s distance
from the centre, P is on the surface of a sphere of radius r and the acceleration
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due to this inner sphere will be (4%/3)Gpr towards the centre. The remaining
solid shell between the radius r and the surface of the big sphere can be
considered to be built up of an infinite number of thin shells. As the potential of
every such shell at P is independent of r, its derivative with respect to r is zero
so that the outer solid shell as a whole will not produce any acceleration at P.
Thus the gravitational acceleration at a point inside the sphere is (47/3)Gpr
towards the centre, that is, —(4n/3)Gpr in the direction of r, and is
proportional to r in contrast to the acceleration outside the sphere which
varies as the inverse square of r.

32 GRAVITATIONAL FIELD OF THE EARTH

3.2.1 Geopotential and geoid

Besides the acceleration produced by the earth’s gravitational potential V, any
body attached to the earth experiences a centrifugal acceleration due to the
rotation of the earth equal to w?d if w is the angular velocity of the earth’s
rotation and d is the perpendicular distance of the body from the rotation axis.

Let, now, &,1,{ be the coordinates of the body with respect to non-rotating,
rectangular axes at the earth’s centre, the { axis being along the rotation axis.
Then the components of the centrifugal acceleration in the three directions are
w?¢, w?n,0 since &,1,0 are the respective perpendicular distances of the body
from the rotation axis. These three components can be seen to be the &,#,{
derivatives of a ‘centrifugal potential’ 1w?(£2 + n?), and the total potential at
the body can therefore be written as

W(En,0)=V(En ) +30*E + 1) (3.9)

W is called the geopotential. A surface on which W has the same value
everywhere is called an equipotential surface. The acceleration of a freely
falling body on the earth, commonly called the gravity g at the place, is the
gradient of W and, as such, is perpendicular to the surface of constant W. A
spirit level at a place indicates the horizontal plane and is tangent to an
equipotential surface through the place. Hence g is, by definition, in the
vertical direction. If we now take an arbitrary point (not lying in the plane of
the spirit level) as origin, and define a local x, y, z coordinate system with the
x, y plane parallel to the plane of the spirit level, then the gravity at the place of
the spirit level is

_dw

i (3.10)

9
where the derivative is to be evaluated at the spirit level. If the earth were a
non-rotating homogeneous sphere the z axis (the vertical) would coincide with
the radius of the earth but this is not so for the real earth.



Gravitational methods

The undisturbed surface of the ocean is part of an equipotential surface, the
value of W on which is denoted by W,. This surface and its imagined
continuation under the continents, which of course is not accessible, together
constitute the geoid. On account of its complicated shape the geoid is not a
convenient surface of reference to describe the figure of the earth. Instead, in
modern descriptions, the earth is approximated by an ellipsoid of revolution
containing a mass equal to the earth’s actual mass and having an ellipticity
(equatorial minus polar radius divided by equatorial radius) = 1/298.25. The
surface of this reference ellipsoid is an equipotential surface W= U, and it
follows very closely the mean surface of the ocean for which W= W,,.

3.2.2 International gravity formula

On account of the centrifugal acceleration, which varies with latitude, being
greatest at the equator and zero at the poles, and to a lesser extent because the
earth is not a perfect sphere but flattened at the poles, the value of gravity
varies systematically with the latitude ¢. The variation of g on the reference
ellipsoid is defined by the following formula adopted by the International
Union of Geodesy and Geophysics in 1967 after a critical evaluation of the
available absolute g values on the earth [20]:

g=9.780318(1 + 0.005 3024 sin* ¢ — 0.000 0059 sin? 2¢)ms~2 (3.11)

This formula reproduces the actual values on the earth at sea level within
1 um s~ 2. The formula previously adopted by the IUGG in 1930 is still in use
for calculating ‘normal gravity’ at sea level. The difference between the g values
calculated from these two formulae is given to the accuracy quoted above by

91967 — J1930 = (—172 + 136sin’¢) um s ~2

33 MEASUREMENT OF GRAVITY:
ABSOLUTE AND RELATIVE MEASUREMENTS

Some of the most accurate absolute determinations of gravity were made in the
19th century by Kater with his reversible pendulums. The method consists in
principle of adjusting the moments of inertia of a bar pendulum such that its
periods of oscillation (t) about two knife edges located on either side of the
centre of gravity are equal. The distance between the knife edges [ is then the
length of an ideal simple pendulum of the same period so that g = 4n2l/t2.
Other methods of absolute determination have also been devised, e.g. the free-
fall of a mass or the determination of the paraboloid of revolution obtained by
revolving a vessel containing mercury around a vertical axis. The free-fall
method has now superseded the accuracy of any other method [21].

In applied geophysics, a knowledge of the absolute gravity is not of
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immediate interest. We are concerned, as in the magnetic methods, with
relative measurements. These give the gravity difference Ag between an
observation point and a base point. Appropriate corrections (Section 3.6)
must be applied to the differences measured within any region to take account
of any known causes of the difference. The corrected Ag values, called the
anomalies, yield information about the changes of density within the earth as
well as about the surfaces that bound regions of differing density. The
information is, however, always subject to certain fundamental ambiguities
inherent in the theory of the Newtonian potential (Section 3.9).

Gravity anomalies, being differences in acceleration, can be expressed
fundamentally in the SI unit ms~2 but more conveniently in the sub-unit
ums~2 One ums~?2 is also called a gravity unit (g.u.). In most current
geophysical literature before the adoption of SI the unit gal (cms™~2), named
after Galileo, and its sub-multiple, the milligal, are used (1 mgal =10g.u.).
Since the value of g given by Eq.(3.11) varies between the relatively narrow
limits 0f9.780 318 and 9.832 177 m s~ 2 from the equator to the poles, one g.u. is
roughly one ten-millionth (10~7) of the normal gravity at any place on the
earth. The maximum gravity anomalies (on the surface) due to concealed
features such as salt domes, oil bearing structures, ore bodies, undulations of
rock strata etc. are of the order of a few tens to a few hundreds of g.u. and, in
fact, for small-scale or deeply buried structures, they may be only a few g.u.
Away from such maxima, the distortions in the normal gravity field of the
earth may be even smaller, say, 1 —10 parts in 10®. Apart from the geologic
structures just mentioned, large cavities and fracture zones in rocks can also
produce significant gravity anomalies that can be used to locate these features.

34 GRAVIMETERS

It is clear from the above that relative gravity measurements, if they are to have
any wide application, must be made with an accuracy better than a few parts in
107 and, preferably, with an accuracy approaching 1-5 parts in 108, This aim is
achieved in instruments known as gravimeters. A number of ingenious
gravimeter designs have been proposed during the last fifty years but
fundamentally they fall into only two categories, the stable and the unstable
types. To this may be added a third type, namely the dynamic, but this has
seldom been used for geophysical purposes.

The stable gravimeter can be described briefly as a highly sensitive balance.
It contains a responsive element, usually a spring carrying a weight, which is
displaced from the equilibrium position when the force of gravity changes. The
displacements are always extremely small (of the order of a few tenths of a
nanometre) and must be magnified optically, mechanically or electrically. The
unstable gravimeter is designed so that when its sensitive element is displaced
due to a change in the gravity, other forces tending to increase the
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displacement come into play. The gravity change can be measured by the force
necessary to return the element to its equilibrium position. Brief descriptions
of some gravimeter designs are given below to illustrate the principles.

3.4.1 Stable types
34.1.1 Askania

In this instrument (Fig. 3.2(a)) a beam carrying a mass at one end is held
horizontally by means of a main spring (S). A mirror placed on the mass
reflects a light beam into a double photoelectric cell. The movement of the
mass due to a change in the gravity is indicated by the deflection of a
galvanometer through which the differential current from the photoelectric
cell is Jed. The mass is restored to the equilibrium position by varying the
tension in the auxiliary spring (S’). Calibration can be effected by means of
small known weights brought on the beam by tilting the instrument.

3.4.1.2 Gulf (Hoyt)

This gravimeter utilizes a helical spring formed from a ribbon (Fig. 3.2(b)). One
end of the spring is rigidly clamped while the free end carries a mass with a
mirror. An elongation of a helical ribbon spring is always accompanied by a
rotation of the free end. In the Gulf gravimeter the rotation is much greater
(and therefore can be read more accurately) than the elongation (or the
contraction) of the spring caused by a change in the gravity. The range of the
instrument is only about 300 g.u. so that a readjustment of the tension in the

Fig. 3.2 Stable gravimeters.
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helix is necessary if gravity differences larger than this amount are to be
measured. The accuracy is of the order of 0.2-0.5g.u.

3.4.1.3 Norgaard

This is one of the gravimeters (Fig. 3.2(c)) combining a wide range (about
20000 g.u.) with a relatively high accuracy (about 1 g.u.). A small quartz beam
carrying a mirror A4 is supported horizontally from a quartz thread, the torsion
in the latter counteracting the force of gravity. The mirror A is initially parallel
to the fixed mirror B as is indicated by the coincidence of two index lines in the
field of a telescope. When the beam deflects due to a change in the gravity,
coincidence can be achieved again by tilting the entire frame through an angle
0. There are two such positions of the frame, one on each side of the initial
position. At coincidence the torsion moment of the thread must always be the
same (mg,l) so that if g and g, are the gravity values at two stations then
gcosf=g,.
The instrument can be calibrated by tilting it at small known angles.

3.4.2 Unstable types

3.4.2.1 LaCoste—Romberg

This gravimeter is essentially an adaptation of the long-period LaCoste
seismograph [22,23] which uses a ‘zero-length’ spring. Such a spring is
wound so that its extension is equal to the distance between the points at which
its ends are fastened. Thus, the length defined as the actual physical length
minus the extension is zero. The zero length spring S (Fig. 3.3(a)) is attached
rigidly to the frame at C and balances the mass M at the end of a beam. With
the geometry as in the figure, it is easy to show that the net torque on the mass
is (Mg x AM — k x AB?)sin 6 where k is the spring constant. If Mg x AM =
k x AB? the torque becomes zero, the period infinite and the equilibrium
unstable. The instrument is then very sensitive to variations in g.

Readings are taken by restoring M to the original position by raising or
lowering C by means of a screw with a calibrated dial. The accuracy is of the
order of 0.2 g.u.

3.4.2.2 Worden

The principle of this instrument is very similar to that of the LaCoste—
Romberg gravimeter. The mass, M (Fig. 3.3(b)), is kept in unstable equilibrium
by the zero length quartz spring, BC, whose one end is attached to an arm AB
inclined at a fixed angle a to AM. Both AM and AB are hinged at A to a torsion
thread. If 8 is the deflection of AM from the horizontal the net torque on the
beam system is easily seen (on applying the elementary sine theorem to the
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Fig. 3.3 Unstable gravimeters.

triangle ABC) to be mgAM cosf — (0 + 0,) —kAC x AB cos(a+ 6 —¢)
where 0, is the permanent torsion in the quartz thread and r is the torsion
constant.

By suitable choice of the different constants and the position of C (¢ = 0), the
equilibrium can be made unstable and the system becomes very sensitive to
variations in g. The equilibrium is restored by means of auxiliary springs
arranged as shown in Fig. 3.3(c), one of which determines the range of g
measurable by the instrument and the other compensates for the variations in
g for a particular setting of the range spring. The instrument is temperature
compensated by auxiliary quartz springs and, moreover, the entire system,
except for the reading dials, levels, etc. is kept in a small sealed thermos flask.
The total weight of the instrument including the case is about 5 kg but the mass
M (made out of fused quartz) weighs only a few milligrams. The accuracy is
0