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Preface

The “Information Age” promises infinite transparency, unlimited productivity,
and true access to knowledge. Knowledge, quite distinct and apart from “know-
how,” requires a process of thinking, or imagination—the attribute that sets
human beings apart. Imagination is necessary for anyone wishing to make
decisions based on science. Imagination always begins with visualization—
actually, another term for simulation. Of course, subjective imagination has
no meaning unless backed with objective facts. In fact, subjective knowledge
of the truth has nothing to do with objective facts, but everything to do with
the theory used by the subject to cognize. No other discipline has contributed
to collecting objective facts (data) than the petroleum industry, so the onus is on
modelers who must bring their perception or imagination as close to objective
reality as possible. This is where this book makes a big contribution. By elim-
inating steps that are redundant, convoluted, and potentially misleading, the
book makes it easier to keep the big picture transparent.

Under normal conditions, we simulate a situation prior to making any
decision; that is, we abstract absence and start to fill in the gaps. Reservoir
simulation is no exception. The two most important points that must not be
overlooked in simulation are science and the multiplicity of solutions. Science
is the essence of knowledge, and acceptance of the multiplicity of solutions is
the essence of science. It is so because today’s mathematics is not capable of
producing a single solution to a nonlinear equation. Science, on the other hand,
is limited to governing “laws” that are often a collection of simplistic assump-
tions. Science, not restricted by the notion of a single solution to every problem,
must follow knowledge-based perception. Multiplicity of solutions has been
promoted as an expression of uncertainty. This leads not to science or to
new authentic knowledge, but rather to creating numerous models that generate
“unique” solutions that fit a predetermined agenda of the decision-makers. This
book re-establishes the essential features’ real phenomena in their original form
and applies them to reservoir engineering problems. This approach, which
reconnects with the old—or in other words, time-tested—concept of knowl-
edge, is refreshing and novel in the Information Age.

The petroleum industry is known as the biggest user of computer models.
Even though space research and weather prediction models are robust and are
often tagged as “the mother of all simulation,” the fact that a space probe
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device or a weather balloon can be launched—while a vehicle capable of mov-
ing around in a petroleum reservoir cannot—makes modeling more vital for
tackling problems in the petroleum reservoir than in any other discipline.
Indeed, from the advent of computer technology, the petroleum industry pio-
neered the use of computer simulations in virtually all aspects of decision-
making. This revolutionary approach required significant investment in
long-term research and advancement of science. That time, when the petro-
leum industry was the energy provider of the world, was synonymous with
its reputation as the most aggressive investor in engineering and science. More
recently however, as the petroleum industry transited into its “middle age” in a
business sense, the industry could not keep up its reputation as the biggest
sponsor of engineering and long-term research. A recent survey by the US
Department of Energy showed that none of the top ten breakthrough petro-
leum technologies in the last decade could be attributed to operating compa-
nies. If this trend continues, major breakthroughs in the petroleum industry
over the next two decades are expected to be in the areas of information tech-
nology and materials science. When it comes to reservoir simulators, this lat-
est trend in the petroleum industry has produced an excessive emphasis on the
tangible aspects of modeling, namely, the number of blocks used in a simu-
lator, graphics, computer speed, etc. For instance, the number of blocks used
in a reservoir model has gone from thousands to millions in just a few years.
Other examples can be cited, including graphics in which flow visualization
has leapt from 2-D, to 3-D, to 4-D and computer processing speeds that make it
practically possible to simulate reservoir activities in real time. While these
developments outwardly appear very impressive, the lack of science and, in
essence, true engineering render the computer revolution irrelevant and quite
possibly dangerous. In the last decade, most investments have been made in
software dedicated to visualization and computer graphics with little being
invested in physics or mathematics. Engineers today have little appreciation
of what physics and mathematics provide for the very framework of all the
fascinating graphics that are generated by commercial reservoir simulators.
As companies struggle to deal with scandals triggered by Enron’s collapse,
few have paid attention to the lack of any discussion in engineering education
regarding what could be characterized as scientific fundamentals. Because of
this lack, little has been done to promote innovation in reservoir simulation,
particularly in the areas of physics and mathematics, the central topical con-
tent of reservoir engineering.

This book provides a means of understanding the underlying principles of
petroleum reservoir simulation. The focus is on basic principles because under-
standing these principles is a prerequisite to developing more accurate advanced
models. Once the fundamentals are understood, further development of more
useful simulators is only a matter of time. The book takes a truly engineering
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approach and elucidates the principles behind formulating the governing equa-
tions. In contrast to cookbook-type recipes of step-by-step procedures for
manipulating a black box, this approach is full of insights. To paraphrase the
caveat about computing proposed by R.W. Hamming, the inventor of the Ham-
ming code, the purpose of simulation must be insight, not just numbers. The
conventional approach is more focused on packaging than on insight, making
the simulation process more opaque than transparent. The formulation of gov-
erning equations is followed by elaborate treatment of boundary conditions.
This is one aspect that is usually left to the engineers to “figure out” by them-
selves, unfortunately creating an expanding niche for the select few who own
existing commercial simulators. As anyone who has ever engaged in developing
a reservoir simulator well knows, this process of figuring out by oneself is
utterly confusing. In keeping up with the same rigor of treatment, this book pre-
sents the discretization scheme for both block-centered and point-distributed
grids. The difference between a well and a boundary condition is elucidated.
In the same breadth, we present an elaborate treatment of radial grid for
single-well simulation. This particular application has become very important
due to the increased usage of reservoir simulators to analyze well test results and
the use of well pseudofunctions. This aspect is extremely important for any res-
ervoir engineering study. The book continues to give insight into other areas of
reservoir simulation. For instance, we discuss the effect of boundary conditions
on material-balance-check equations and other topics with unparalleled
lucidity.

This is a basic book and is time honored. As such, it can hardly be altered
or updated. So, why come up with a second edition? It turns out that none of
the existing books on the topic covers several crucial aspects of modeling.
Ever since the publication of the first edition in 2006, a number of research
articles have been published praising the engineering approach that we
introduced. After 13 years of the first publication, it was high time for us
to introduce a comprehensive comparison between the conventional mathe-
matical approach and the engineering approach that we introduced. This
will enable the readership to appreciate the fact that the engineering
approach is much easier to implement, bolstered with a number of advan-
tages over the mathematical approach, without the scarifying accuracy of
the solutions. Finally, a glossary was added to help the readership with a
quick lookup of terms, which might not be familiar or which might have
been misunderstood.

Even though the book is written principally for reservoir simulation devel-
opers, it takes an engineering approach that has not been taken before. Topics
are discussed in terms of science and mathematics, rather than with graphical
representation in the backdrop. This makes the book suitable and in fact essen-
tial for every engineer and scientist engaged in modeling and simulation. Even
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those engineers and scientists who wish to limit their activities to field applica-
tions will benefit greatly from this book, which is bound to prepare them better
for the Information Age. The additions made in the second editions are both
timely and comprehensive.

J.H. Abou-Kassem
M.R. Islam
S.M. Farouq Ali



Introduction

In this book the basics of reservoir simulation are presented through the
modeling of single-phase fluid flow and multiphase flow in petroleum reser-
voirs using the engineering approach. This text is written for senior-level BSc
students and first-year MSc students studying petroleum engineering. The aim
of this book is to restore engineering and physics sense to the subject. In this
way the misleading impact of excess mathematical glitter, which has domi-
nated reservoir simulation books in the past, is challenged. The engineering
approach, used in this book, uses mathematics extensively, but it injects engi-
neering meaning to differential equations and to boundary conditions used in
reservoir simulation. It does not need to deal with differential equations as a
means for modeling, and it interprets boundary conditions as fictitious wells
that transfer fluids across reservoir boundaries. The contents of the book can
be taught in two consecutive courses. The first undergraduate senior-level
course includes the use of block-centered grid in rectangular coordinates in
single-phase flow simulation. The material is mainly included in Chapters 2, 3,
4,6,7,and 9. The second graduate-level course deals with block-centered grid
in radial-cylindrical coordinates, point-distributed grid in both rectangular
and radial-cylindrical coordinates, and the simulation of multiphase flow in
petroleum reservoirs. The material is covered in Chapters 5, 8, 10, and 11
in addition to specific sections in Chapters 2, 4, 5, 6, and 7 (Sections 2.7,
4.5,5.5,6.2.2,7.3.2, and 7.3.3).

Chapter 1 provides an overview of reservoir simulation and the relationship
between the mathematical approach presented in simulation books and the engi-
neering approach presented in this book. In Chapter 2, we present the derivation
of single-phase, multidimensional flow equations in rectangular and radial-
cylindrical coordinate systems. In Chapter 3, we introduce the control volume
finite difference (CVFD) terminology as a means to writing the flow equations
in multidimensions in compact form. Then, we write the general flow equation
that incorporates both (real) wells and boundary conditions, using the block-
centered grid (in Chapter 4) and the point-distributed grid (in Chapter 5),
and present the corresponding treatments of boundary conditions as fictitious
wells and the exploitation of symmetry in practical reservoir simulation

Chapter 6 deals with wells completed in a single layer and in multilayers and
presents fluid flow rate equations for different well operating conditions.
Chapter 7 presents the explicit, implicit, and Crank-Nicolson formulations of
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single-phase, slightly compressible, and compressible flow equations and intro-
duces the incremental and cumulative material balance equations as internal
checks to monitor the accuracy of generated solutions. In Chapter 8, we
introduce the space and time treatments of nonlinear terms encountered in
single-phase flow problems. Chapter 9 presents the basic direct and iterative
solution methods of linear algebraic equations used in reservoir simulation.
Chapter 10 presents differences between the engineering approach and the
mathematical approach in derivation, treatment of wells and boundary condi-
tions, and linearization. Chapter 11 is entirely devoted to multiphase flow in
petroleum reservoirs and its simulation. The book concludes with Appendix
A that presents a user’s manual for a single-phase simulator. The folder
available at www.emertec.ca includes a single-phase simulator written in
FORTRAN 95, a compiled version, and data and output files for four solved
problems. The single-phase simulator provides users with intermediate
results and solutions to single-phase flow problems so that a user’s solution
can be checked and errors are identified and corrected. Educators may use
the simulator to make up new problems and obtain their solutions.
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Nomenclature

an

A

[A]

Ax

Ax |x

Ax |x+Ax
Ax |x,$ 1/2

b
b
by

coefficient of unknown X, » defined by Eq. (9.46f)
parameter, defined by Eq. (9.28) in Tang’s algorithm
square coefficient matrix

cross-sectional area normal to x-direction, ft*[m?]
cross-sectional area normal to x-direction at x, ftz[mz]
cross-sectional area normal to x-direction at x+ Ax, ftz[mz]
cross-sectional area normal to x-direction at block boundary
Xi1/25 ft*[m?]

reservoir boundary

reservoir east boundary

reservoir lower boundary

reservoir north boundary

reservoir south boundary

reservoir upper boundary

reservoir west boundary

coefficient of unknown x,,_, , , defined by Eq. (9.46a)
parameter, defined by Eq. (9.29) in Tang’s algorithm

fluid formation volume factor, RB/STB [m?/stdm?]

average fluid formation volume factor in wellbore, RB/STB
[m3/std m’ ]

gas formation volume factor, RB/scf [m3/std m3]

fluid formation volume factor for block i, RB/STB [m3 /std m3]
oil formation volume factor, RB/STB [m>/stdm?]

oil formation volume factor at bubble-point pressure, RB/STB
[m3/std m’ ]

formation volume factor of phase p in block i

water formation volume factor, RB/B [m3/std m> 1

fluid formation volume factor at reference pressure p° and
reservoir temperature, RB/STB [m3/std m3]

fluid compressibility, psi~' [kPa ']

coefficient of unknown of block i in Thomas’ algorithm
coefficient of unknown x,, defined by Eq. (9.46g)
coefficient of unknown xy in Thomas’ or Tang’s algorithm
oil-phase compressibility, psi~' [kPa™']

porosity compressibility, psi~' [kPa ']
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rate of fractional viscosity change with pressure change,
psfl [kPafl]

parameter, defined by Eq. (9.30) in Tang’s algorithm
cumulative material balance check, dimensionless

coefficient of pressure change over time step in expansion of oil
accumulation term, STB/D-psi [std m3/(d.kPa)]

coefficient of water saturation change over time step in expansion
of oil accumulation term, STB/D [stdm3/d]

coefficient of pressure change over time step in expansion of
water accumulation term, B/D-psi [std m>/(dkPa)]

coefficient of water saturation change over time step in expansion
of water accumulation term, B/D [std m3/d]

vector of known values

parameter, defined by Eq. (9.31) in Tang’s algorithm

known RHS of equation for block i in Thomas’ algorithm
maximum absolute difference between two successive iterations
RHS of equation for gridblock n, defined by Eq. (9.46h)
coefficient of unknown of block i+ 1 in Thomas’ algorithm
coefficient of unknown x,., defined by Eq. (9.46d)

coefficient of unknown x; in Tang’s algorithm

function of

the pressure-dependent term in transmissibility

nonlinearity, defined by Eq. (8.17)

argument of an integral at time ¢

ratio of wellblock 7 area to theoretical area from which well with-
draws its fluid (in Chapter 6), fraction

argument of an integral evaluated at time /™

argument of an integral evaluated at time "

argument of an integral evaluated at time ¢"

argument of an integral evaluated at time "

argument of an integral evaluated at time 7"*'

argument of an integral evaluated at time ¢
argument of an integral evaluated at time ¢
argument of an integral evaluated at time ¢
gravitational acceleration, ft/s> [m/sz]

n+1
n+1/2
n+1/2

element i of a temporary vector (g) generated in Thomas’
algorithm

geometric factor

well geometric factor, RB-cp/D-psi [m® mPas/(dkPa)]

well geometric factor for wellblock i, defined by Eq. (6.32),
RB-cp/D-psi [m>®mPas/(dkPa)]

well geometric factor of the theoretical well for wellblock i,
RB-cp/D-psi [m’> mPas/(dkPa)]
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interblock geometric factor between block i and block i F 1 along
the x-direction, defined by Eq. (8.4)

interblock geometric factor between blocks 1 and 2 along the
x-direction

interblock geometric factor between blocks 2 and 6 along the
y-direction

interblock geometric factor between block (i, 7, k) and block

(iF 1,j,k) along the r-direction in radial-cylindrical coordinates,
defined in Table 4.2, 4.3, 5.2, and 5.3

interblock geometric factor between block (i, 7, k) and block
(iF1,j,k) along the x-direction in rectangular coordinates,
defined in Tables 4.1 and 5.1

interblock geometric factor between block (i,j,k) and block
(ij F 1, k) along the y-direction in rectangular coordinates, defined
in Tables 4.1 and 5.1

interblock geometric factor between block (i,j, k) and block
(i,j,kF1) along the z-direction in rectangular coordinates,
defined in Tables 4.1 and 5.1

interblock geometric factor between block (i,j, k) and block
(i,j,kF 1) along the z-direction in radial—cylindrical coordinates,
defined in Tables 4.2, 4.3, 5.2, and 5.3

interblock geometric factor between block (i,}, k) and block

(i,j F 1,k) along the #-direction in radial-cylindrical coordinates,
defined in Tables 4.2, 4.3, 5.2, and 5.3

thickness, ft[m]

thickness of wellblock i, ft [m]

thickness of wellblock /, ft [m]

incremental material balance check, dimensionless

horizontal permeability, md [pm?]

horizontal permeability of wellblock i, md [pm?]

permeability along the r-direction in radial flow, md [pm?]
relative permeability to gas phase, dimensionless

relative permeability to oil phase, dimensionless

relative permeability to oil phase at irreducible water saturation,
dimensionless

relative permeability to oil phase in gas/oil/irreducible water
system, dimensionless

relative permeability to oil phase in oil/water system,
dimensionless

relative permeability to phase p, dimensionless

relative permeability phase p between point i and point i 1 along
the x-axis, dimensionless

relative permeability to water phase, dimensionless

vertical permeability, md [pm?]



xxii Nomenclature

ky
kx |i$1/2

Meq,
me;

Me; |Xi—l/2

m

co ‘Xm/z

m cxX

mfg‘,

Miex

m (228

My |x+Ax

permeability along the x-axis, md [pm?]

permeability between point i and point i F 1 along the x-axis,
md [pmz]

permeability along the y-axis, md [pm?]

permeability along the z-axis, md [pm?]

permeability along the #-direction, md [pmz]

natural logarithm

reservoir length along the x-axis, ft [m]

lower triangular matrix

reservoir length along the x-axis, ft [m]

mass accumulation, Ibm [kg]

mass accumulation in block i, Ibm [kg]

mass accumulation of component ¢ in block 7, Ibm [kg]

mass of component ¢ entering reservoir from other parts of
reservoir, Ibm [kg]

mass of component ¢ entering block i across block boundary
Xi—12, Ibm [kg]

mass of component ¢ leaving block i across block boundary x;1,2,
Ibm [kg]

mass of component ¢ entering (or leaving) block i through a well,
Ibm [kg]

mass of component ¢ per unit volume of block i at time #*, 1bm/
ft’ [kg/m’]

mass of component ¢ per unit volume of block i at time 7"*!, 1bm/
ft’ [kg/m’]

x-component of mass flux of component ¢, 1bm/D-ft*[kg/(dm?)]
mass of free-gas component per unit volume of reservoir rock,

1bm/ft>[kg/m’]

x-component of mass flux of free-gas component, 1bm/D-ft*
[ke/(dm?)]

mass of fluid entering reservoir from other parts of reservoir,
Ibm [kg]

mass of fluid entering control volume boundary at x, Ibm [kg]
mass of fluid entering control volume boundary at r, Ibm [kg]
mass of fluid entering block i across block boundary x; i,
Ibm [kg]

mass of fluid entering control volume boundary at 8, Ibm [kg]
mass of fluid leaving reservoir to other parts of reservoir, Ibm [kg]
mass of fluid leaving control volume boundary at r+ Ar, Ibm [kg]
mass of oil component per unit volume of reservoir rock,
1bm/ft? [kg/m’]

x-component of mass flux of oil component, Ibm/D-ft [kg/(dm?)]
mass of fluid leaving control volume boundary at x+ Ax, Ibm [kg]
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Nomenclature  xxiii

mass of fluid leaving block i across block boundary x;,i/,
Ibm [kg]

mass of fluid leaving control volume boundary at 8+ A@, Ibm [kg]
mass of fluid entering (or leaving) reservoir through a well,
Ibm [kg]

mass of solution-gas component per unit volume of reservoir
rock, 1bm/ft® [kg/m’]

x-component of mass flux of solution-gas component, Ibm/D-ft*
[kg/(dm?)]

mass of fluid entering (or leaving) block i through a well, Ibm [kg]
mass of fluid per unit volume of reservoir rock, lbm/ft [kg/m3]
mass of fluid per unit volume of block i at time ¢", bm/ft? [kg/m3]
mass of fluid per unit volume of block 7 at time Il s lbm/ft3 [kg/m3]
mass of water component per unit volume of reservoir rock,
Ibm/ft? [kg/m?]

x-component of mass flux of water component, lbm/D-ft*
[kg/(dm?)]

x-component of mass flux, 1bm/D-ft [kg/(d mz)]

x-component of mass flux across control volume boundary at x,
1bm/D-ft* [kg/(dm?)]

x-component of mass flux across control volume boundary at
x+Ax, Ibm/D-ft* [kg/(dm?)]

x-component of mass flux across block boundary x;+,, 1bm/D-ft>
[kg/(dm?)]

gas molecular weight, Ibm/Ib mole [kg/kmole]

mobility of phase p in wellblock 7, defined in Table 11.4
coefficient of unknown x,,., , defined by Eq. (9.46¢)

number of reservoir gridblocks (or gridpoints) along the
r-direction

number of vertical planes of symmetry

number of reservoir gridblocks (or gridpoints) along the x-axis
number of reservoir gridblocks (or gridpoints) along the y-axis
number of reservoir gridblocks (or gridpoints) along the z-axis
number of reservoir gridblocks (or gridpoints) in the §-direction
number of blocks in reservoir

pressure, psia [kPa]

reference pressure, psia [kPa]

average value pressure, defined by Eq. (8.21), psia [kPa]

oil bubble-point pressure, psia [kPa]

gas-phase pressure, psia [kPa]

pressure of gridblock (gridpoint) or wellblock i, psia [kPa]
pressure of gridblock (gridpoint) i at time 7", psia [kPa]
pressure of gridblock (gridpoint) i 1 at time 7", psia [kPa]
pressure of gridblock (gridpoint) (i,/,k) at time ¢”, psia [kPa]
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ch 1j.k
p ?:11 1.k
p:‘:]i,k¥ 1
pi
!

(v+1)
n+1

Pi

)

n
(v+1)

pﬂ

p]’i
pPi-rl

p ref
Dsc
Pw
Pwr
D,

Dwf,

p Wfet
Py,
P cgo
Pgw

pressure of gridblock (gridpoint) (i 1,/,k) at time ", psia [kPa]
pressure of gridblock (gridpoint) (i,j F 1,k) at time ", psia [kPa]
pressure of gridblock (gridpoint) (i,j,kF 1) at time ", psia [kPa]
pressure of gridblock (gridpoint) i at time ¢*, psia [kPa]
pressure of gridblock (gridpoint) i at time #*', psia [kPa]
pressure of gridblock (gridpoint) i at time level #**! and iteration
v+1, psia [kPa]

change in pressure of gridblock (gridpoint) i over an iteration at
time level n+1 and iteration v+ 1, psi [kPa]

pressure of gridblock (gridpoint) i — 1, psia [kPa]

pressure of gridblock (gridpoint) i+ 1, psia [kPa]

pressure of gridblock (gridpoint) i+ 1 at time #”, psia [kPa]
pressure of gridblock (gridpoint) i+ 1 at time #™*', psia [kPa]
pressure of gridblock (gridpoint) i F 1 at time #*', psia [kPa]
pressure of gridblock (gridpoint) or wellblock (i, ], k), psia [kPa]
pressure of neighboring gridblock (gridpoint) /, psia [kPa]
pressure of gridblock (gridpoint) or wellblock 7, psia [kPa]
initial pressure of gridblock (gridpoint) n, psia [kPa]

pressure of gridblock (gridpoint) or wellblock n at time level #n,
psia [kPa]

pressure of gridblock (gridpoint) i at time level 7"*' and iteration v,
psia [kPa]

pressure of gridblock (gridpoint) or wellblock 7 at time level n+ 1,
psia [kPa]

pressure of gridblock (gridpoint) n at old iteration v, psia [kPa]
pressure of gridblock (gridpoint) n at new iteration v+1,
psia [kPa]

pressure of phase p in gridblock (gridpoint) i, psia [kPa]
pressure of phase p in gridblock (gridpoint) i F 1, psia [kPa]

oil pressure, psia [kPa]

pressure at reference datum, psia [kPa]

standard pressure, psia [kPa]

water-phase pressure, psia [kPa]

well flowing bottom-hole pressure, psia [kPa]

estimated well flowing bottom-hole pressure at reference depth,
psia [kPa]

well flowing bottom-hole pressure opposite wellblock i,
psia [kPa]

well flowing bottom-hole pressure at reference depth, psia [kPa]
specified well flowing bottom-hole pressure at reference depth,
psia [kPa]

gas/oil capillary pressure, psi [kPa]

gas/water capillary pressure, psi [kPa]
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Nomenclature xxv

oil/water capillary pressure, psi [kPa]

well production rate at reservoir conditions, RB/D [m3/d]

mass rate of component ¢ entering block i through a well, Ibm/D
[ke/d]

production rate of free-gas component at reservoir conditions,
RB/D [stdm’/d]

mass production rate of free-gas component, Ibm/D [kg/d]
production rate of free-gas component at standard conditions,
scf/D [stdm>/d]

mass rate entering control volume through a well, 1bm/D [kg/d]
mass rate entering block i through a well, 1bm/D [kg/d]
production rate of oil phase at reservoir conditions, RB/D [std m3/d]
mass production rate of oil component, Ibm/D [kg/d]

production rate of oil phase at standard conditions, STB/D
[stdm’/d]

well production rate at standard conditions, STB/D or scf/D
[stdm’/d]

production rate at standard conditions from wellblock i, STB/D or
scf/D [stdm?*/d]

production rate at standard conditions from wellblock i at time
", STB/D or scf/D [stdm?/d]

production rate at standard conditions from wellblock » at time
", STB/D or scf/D [stdm?/d]

production rate at standard conditions from wellblock (i,j,k) at
time 7", STB/D or scf/D [stdm>/d]

production rate at standard conditions from wellblock i at time
level n+1, STB/D or scf/D[stdm’/d]

production rate at standard conditions from wellblock i at time
/" and iteration v, STB/D or scf/D [stdm?/d]

volumetric rate of fluid at standard conditions crossing reservoir
boundary [ to block (i,, k) at time ", STB/D or scf/D [std m3/d]
volumetric rate of fluid at standard conditions crossing reservoir
boundary / to block n, STB/D or scf/D [stdm3/d]

volumetric rate of fluid at standard conditions crossing reservoir
boundary [ to block n at time ", STB/D or scf/D [std m3/d]
production rate at standard conditions from wellblock n, STB/D
or scf/D [stdm3/d]

interblock volumetric flow rate at standard conditions between
gridblock (gridpoint) i and gridblock (gridpoint) i1, STB/D
or scf/D [stdm?/d]

volumetric flow rate at standard conditions across reservoir
boundary to boundary gridblock bB, STB/D or scf/D [std m>/d]
volumetric flow rate at standard conditions across reservoir
boundary to boundary gridpoint bP, STB/D or scf/D [stdm’/d]
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volumetric flow rate at standard conditions across reservoir west
boundary to boundary gridblock (gridpoint) 1, STB/D or scf/D
[stdm*/d]

volumetric flow rate at standard conditions across reservoir east
boundary to boundary gridblock (gridpoint) n,, STB/D or scf/D
[stdm?/d]

mass production rate of solution-gas component, Ibm/D[kg/d]
specified well rate at standard conditions, STB/D or scf/D
[stdm*/d]

mass production rate of water component, lbm/D[kg/d]
production rate of water phase at standard conditions, B/D
[stdm?/d]

volumetric rate at reservoir conditions along the x-axis, RB/D
[m’/d]

distance in the r-direction in the radial-cylindrical coordinate sys-
tem, ft [m]

extemal radius in Darcy’s law for radial flow, ft [m]

equivalent wellblock radius, ft [m]

equivalent radius of the area from which the theoretical well for
block n withdraws its fluid, ft [m]

r-direction coordinate of point i 1, ft [m]

radii for transmissibility calculations, defined by Egs. (4.82b) and
(4.83b) (or Egs. 5.75b and 5.76b), ft [m]

radii squared for bulk volume calculations, defined by
Eqs. (4.84b) and (4.85b) (or Eqgs. 5.77b and 5.78b), ft*[m?]
residual for block 7, defined by Eq. (9.61)

well radius, ft [m]

size of block (i, j, k) along the r-direction, ft [m]

solution GOR, scf/STB [stdm®/stdm?]

skin factor, dimensionless

fluid saturation, fraction

gas-phase saturation, fraction

irreducible water saturation, fraction

coefficient of unknown x,,_, , defined by Eq. (9.46b)

oil-phase saturation, fraction

water-phase saturation, fraction

time, day

reservoir temperature, °R[K]

time step, day

time at which the argument F of integral is evaluated at,
Eq. (2.30), day

m'™ time step, day

old time level, day
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old time step, day

new or current time level, day

current (or new) time step, day

transmissibility between reservoir boundary and boundary grid-
block at time 1™

transmissibility between reservoir boundary and boundary grid-
point at time "

transmissibility between reservoir boundary and gridpoint imme-
diately inside reservoir boundary at time 7"

gas-phase transmissibility along the x-direction, scf/D-psi [std m>/
(dkPa)]

transmissibility between gridblocks (gridpoints) [ and (i,j,k) at
time "

transmissibility between gridblocks (gridpoints) / and # at time 7"
oil-phase transmissibility along the x-direction, STB/D-psi
[stdm’/(dkPa)]

transmissibility between point (i,j,k) and point (i 1,/,k) along
the r-direction, STB/D-psi or scf/D-psi [stdm3/(dkPa)]
transmissibility between point (i,j,k) and point (i F1,j,k) along
the r-direction at time 7, STB/D-psi or scf/D-psi [stdm*/(dkPa)]
standard temperature, °R[K]

water-phase transmissibility along the x-direction, B/D-psi
[stdm’/(dkPa)]

transmissibility between point i and point i F 1 along the x-axis,
STB/D-psi or scf/D-psi[stdm’/(dkPa)]

transmissibility between point i and point i F 1 along the x-axis at
time ¢!, STB/D-psi or scf/D-psi [stdm®/(dkPa)]
transmissibility between point i and point i F 1 along the x-axis at
time "*! and iteration v, STB/D-psi or scf/D-psi [stdm3/(d kPa)]
transmissibility between point (i,j,k) and point (i F 1,j,k) along
the x-axis, STB/D-psi or scf/D-psi[stdm>/(dkPa)]
transmissibility between point (i,j,k) and point (i 1,j,k) along
the x-axis at time 7, STB/D-psi or scf/D-psi [stdm>/(dkPa)]
transmissibility between point (i,j,k) and point (i,jF 1,k) along
the y-axis, STB/D-psi or scf/D-psi [std m*/(dkPa)]
transmissibility between point (i,j,k) and point (i,jF 1,k) along
the y-axis at time 7", STB/D-psi or scf/D-psi [stdm>/(dkPa)]
transmissibility between point (i,j,k) and point (i,j,kF 1) along
the z-axis, STB/D-psi or scf/D-psi[std m’ /(dkPa)]
transmissibility between point (i,j,k) and point (i,j,kF 1) along
the z-axis at time ", STB/D-psi or scf/D-psi[stdm’/(dkPa)]
transmissibility between point (i,j,k) and point (i,jF 1,k) along
the @-direction, STB/D-psi or scf/D-psi [stdm®/(dkPa)]
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X
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transmissibility between point (i,j, k) and point (i,jF 1,k) along
the H-direction at time " STB/D-psi or scf/D-psi [stdm®/(dkPa)]
upper triangular matrix

x-component of volumetric velocity of gas phase at reservoir con-
ditions, RB/D-ft* [m*/(dm?)]

element i of a temporary vector (ﬁ) generated in Thomas’
algorithm

x-component of volumetric velocity of oil phase at reservoir con-
ditions, RB/D-ft>[m*/(dm?)]

x-component of volumetric velocity of phase p at reservoir con-
ditions between point i and point i F 1, RB/D-ft>[m*/(dm?)]
x-component of volumetric velocity of water phase at reservoir
conditions, RB/D-ft*[m>/(d m?)]

x-component of volumetric velocity at reservoir conditions,
RB/D-ft>[m*/(dm?)]

bulk volume, ft’ [m?]

bulk volume of block i, ft*[m?]

bulk volume of block (i, ], k), ft* [m’]

bulk volume of block n, ft> [m3]

mass rate of component ¢ entering block i across block boundary
Xi—1/25 lbm/D [kg/d]

mass rate of component ¢ leaving block i across block boundary
Xir172, 1bm/D [kg/d]

x-component of mass rate of component ¢, lbm/D [kg/d]
coefficient of unknown of block i — 1 in Thomas’ algorithm
coefficient of unknown x,_, defined by Eq. (9.46c)

coefficient of unknown x,_; in Thomas’ or Tang’s algorithm
x-component of mass rate, Ibm/D [kg/d]

x-component of mass rate entering control volume boundary at x,
Ibm/D [kg/d]

x-component of mass rate leaving control volume boundary at
x+Ax, 1bm/D [kg/d]

x-component of mass rate entering (or leaving) block i across
block boundary x;+1/, Ibm/D [kg/d]

distance in the x-direction in the Cartesian coordinate system,
ft [m]

size of block or control volume along the x-axis, ft [m]

vector of unknowns (in Chapter 9)

x-direction coordinate of point i, ft [m]

unknown for block 7 in Thomas’ algorithm

size of block i along the x-axis, ft [m]

distance between gridblock (gridpoint) i and block boundary in
the direction of decreasing i along the x-axis, ft [m]
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distance between gridblock (gridpoint) i and block boundary in
the direction of increasing i along the x-axis, ft [m]

x-direction coordinate of point i F 1, ft [m]

unknown for block i 1 in Thomas’ algorithm (in Chapter 9)
size of block i1 along the x-axis, ft [m]

x-direction coordinate of block boundary x; /., ft [m]

distance between point i and point i F 1 along the x-axis, ft [m]
unknown for block n (in Chapter 9)

unknown for block 7 at old iteration v (in Chapter 9)

unknown for block n at new iteration v+1 (in Chapter 9)
x-direction coordinate of gridblock (gridpoint) n,, ft [m]
distance in the y-direction in the Cartesian coordinate system,
ft [m]

size of block or control volume along the y-axis, ft [m]

size of block j along the y-axis, ft [m]

gas compressibility factor, dimensionless

distance in the z-direction in the Cartesian coordinate system,
ft [m]

size of block or control volume along the z-axis, ft [m]

size of block k along the z-axis, ft [m]

size of block (i,j,k) along the z-axis, ft [m]

elevation below datum, ft [m]

elevation of center of reservoir boundary below datum, ft [m]
elevation of center of boundary gridblock bB below datum, ft [m]
elevation of boundary gridpoint bP below datum, ft [m]
elevation of gridblock (gridpoint) i or wellblock i, ft [m]
elevation of gridblock (gridpoint) i F 1, ft [m]

elevation of gridblock (gridpoint) (i,j,k), ft [m]

elevation of gridblock (gridpoint) /, ft [m]

elevation of gridblock (gridpoint) #n, ft [m]

elevation of reference depth in a well, ft [m]

pressure gradient in the x-direction, psi/ft[kPa/m]

pressure gradient in the x-direction evaluated at reservoir bound-
ary, psi/ft [kPa/m]

pressure gradient in the x-direction evaluated at block boundary
Xiz172, psi/ft[kPa/m]

pressure gradient in the r,, r-direction evaluated at well radius,
psi/ft [kPa/m]

potential gradient in the x-direction, psi/ft [kPa/m]

elevation gradient in the x-direction, dimensionless



xxx Nomenclature

oz
ox|,
a.
a g
Pe
i

14
Vi

Ve

Vg
ViF1/2

}’?l; 1/2,j.k

14 z"'f;:F 12,k

7?}/’,k$ 12
m

Viij.k)

Yin

ViGijiko

Vi N

Yo

}/PiT 12

ypl,n

Yw

Vwb

Ninj

”prd

A0
A9j$ 12

elevation gradient in the x-direction evaluated at reservoir bound-
ary, dimensionless

volume conversion factor whose numerical value is given in
Table 2.1

logarithmic spacing constant, defined by Eq. (4.86) (or Eq. 5.79),
dimensionless

transmissibility conversion factor whose numerical value is given
in Table 2.1 .

element i of a temporary vector (ﬂ) generated in Tang’s algo-
rithm (in Chapter 9)

fluid gravity, psi/ft[kPa/m]

element i of a temporary vector (7) generated in Tang’s algo-
rithm (in Chapter 9)

gravity conversion factor whose numerical value is given in
Table 2.1

gravity of gas phase at reservoir conditions, psi/ft[kPa/m]

fluid gravity between point i and point i F 1 along the x-axis, psi/ft
[kPa/m]

fluid gravity between point (i, ], k) and neighboring point (i F 1,7, k)
along the x-axis at time 7, psi/ft[kPa/m]

fluid gravity between point (i, j, k) and neighboring point (i,j F 1,k)
along the y-axis at time #”, psi/ft[kPa/m]

fluid gravity between point (i, j, k) and neighboring point (7,j,kF 1)
along the z-axis at time ¢, psi/ft[kPa/m]

fluid gravity between point (i,j, k) and neighboring point / at time
", psi/ft [kPa/m]

fluid gravity between point # and neighboring point / at time ",
psi/ft [kPa/m]

fluid gravity between point (i,/, k) and neighboring point /, psi/ft
[kPa/m]

fluid gravity between point n and neighboring point /, psi/ft [kPa/m]
gravity of oil phase at reservoir conditions, psi/ft[kPa/m]
gravity of phase p between point i and point i F 1 along the x-axis,
psi/ft [kPa/m]

gravity of phase p between point / and point 7, psi/ft [kPa/m]
gravity of water phase at reservoir conditions, psi/ft [kPa/m]
average fluid gravity in wellbore, psi/ft [kPa/m]

convergence tolerance

set of phases in determining mobility of injected fluid ={o,w, g}
set of phases in determining mobility of produced fluids, defined
in Table 10.4

angle in the @-direction, rad

size of block (i,},k) along the #-direction, rad

angle between point (i,j,k) and point (i, jF1,k) along the
0-direction, rad
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porosity, fraction

porosity of gridblock (gridpoint) (i,], k), fraction

porosity of gridblock (gridpoint) n, fraction

porosity at reference pressure p°, fraction

potential, psia [kPa]

potential of gas phase, psia [kPa]

potential of gridblock (gridpoint) i, psia [kPa]

potential of gridblock (gridpoint) i at time 7", psia [kPa]
potential of gridblock (gridpoint) i at time ”, psia [kPa]
potential of gridblock (gridpoint) i at time #**', psia [kPa]
potential of gridblock (gridpoint) i 1, psia [kPa]

potential of gridblock (gridpoint) i 1 at time ", psia [kPa]
potential of gridblock (gridpoint) i F 1 at time ¢", psia [kPa]
potential of gridblock (gridpoint) i 1 at time ¢**', psia [kPa]
potential of gridblock (gridpoint) (i,j, k) at time 7", psia [kPa]
potential of gridblock (gridpoint) / at time 7", psia [kPa]
potential of oil phase, psia [kPa]

potential of phase p in gridblock (gridpoint) i, psia [kPa]
potential at reference depth, psia [kPa]

potential of water phase, psia [kPa]

fluid viscosity, cP [mPas]

viscosity of fluid in gridblock (gridpoint) i, cP[mPas]

fluid viscosity at reference pressure p°, cP[mPas]

gas-phase viscosity, cP[mPas]

viscosity of phase p between point i and point i1 along the
x-axis, cP[mPas]

oil-phase viscosity, cP[mPas]

oil-phase viscosity at bubble-point pressure, cP[mPas]
water-phase viscosity, cP[mPas]

fluid viscosity between point i and point i = 1 along the x-axis,
cP[mPas]

a set containing gridblock (or gridpoint) numbers

the set of gridblocks (or gridpoints) sharing the same reservoir
boundary b

the set of existing gridblocks (or gridpoints) that are neighbors
to gridblock (gridpoint) (i,], k)

the set of existing gridblocks (or gridpoints) that are neighbors
to gridblock (gridpoint) n

the set of existing gridblocks (or gridpoints) that are neighbors
to gridblock (gridpoint) » along the r-direction

the set of existing gridblocks (or gridpoints) that are neighbors
to gridblock (gridpoint) n along the x-axis

the set of existing gridblocks (or gridpoints) that are neighbors
to gridblock (gridpoint) n along the y-axis

the set of existing gridblocks (or gridpoints) that are neighbors
to gridblock (gridpoint) n along the z-axis
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the set of existing gridblocks (or gridpoints) that are neighbors
to gridblock (gridpoint) n along the §-direction

the set that contains all wellblocks penetrated by a well

fluid density at reservoir conditions, Ibm/ft’[kg/m?]

fluid density at reference pressure p° and reservoir temperature,
Ibm/ft’[kg/m?]

gas-phase density at reservoir conditions, Ibm/ft’[kg/m?]
Gauss-Seidel spectral radius

gas-phase density at standard conditions, Ibm/ft’[kg/m"]
oil-phase density at reservoir conditions, 1bm/ft*[kg/m>]
oil-phase density at standard conditions, Ibm/ft’[kg/m’]

fluid density at standard conditions, bm/ft> [kg/m3]

water-phase density at reservoir conditions, Ibm/ft*[kg/m"]
water-phase density at standard conditions, Ibm/ft*[kg/m?]
average fluid density in wellbore, Ibm/ft*[kg/m?]

summation over all members of set y

summation over all members of set v, ;
summation over all members of set y,,
summation over all members of set y,,
summation over all members of set y,,

summation over all members of set &,

& element i of a temporary vector (Z) generated in Tang’s
algorithm

Eijk set of all reservoir boundaries that are shared with gridblock
(gridpoint) (i,j,k)

& set of all reservoir boundaries that are shared with gridblock
(gridpoint) n

0] overrelaxation parameter

Dopy optimum overrelaxation parameter

{} empty set or a set that contains no elements

U union operator

Subscripts

1,2 between gridpoints 1 and 2

b bulk, boundary, or bubble point

bB boundary gridblock

bB™" gridblock next to reservoir boundary but falls outside the reservoir

bP boundary gridpoint
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gridpoint next to reservoir boundary but falls inside the reservoir
gridpoint next to reservoir boundary but falls outside the reservoir
component ¢, ¢ =o, w, fg, sg; conversion; or capillary
accumulation for component ¢

entering (in) for component ¢

mass for component ¢

leaving (out) for component ¢

per unit bulk volume for component ¢

east

estimated

free-gas component

gas phase

index for gridblock, gridpoint, or point along the x- or r-direction
index for neighboring gridblock, gridpoint, or point along the x- or
r-direction

between i and i F 1

between block (or point) i and block boundary i 1/2 along the
x-direction

index for gridblock, gridpoint, or point in x-y-z (or r-6-z) space
irreducible water

index for gridblock, gridpoint, or point along the y- or #-direction
index for neighboring gridblock, gridpoint, or point along the y- or
O-direction

between j and jF 1

between block (or point) j and block boundary jF 1/2 along the
y-direction

index for gridblock, gridpoint, or point along the z-direction
index for neighboring gridblock, gridpoint, or point along the
z-direction

between k and kF 1

between block (or point) k£ and block boundary k= 1/2 along the
z-direction

index for neighboring gridblock, gridpoint, or point

lower

logarithmic

between gridblocks (or gridpoints) / and n

mass

index for gridblock (or gridpoint) for which a flow equation is
written

north

last gridblock (or gridpoint) in the x-direction for a parallelepiped
reservoir

last gridblock (or gridpoint) in the y-direction for a parallelepiped
reservoir
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n, last gridblock (or gridpoint) in the z-direction for a parallelepiped
reservoir

o oil phase or oil component

opt optimum

p phase p, p=o,w,g

r r-direction

ref reference

Tiz12 between i and i F 1 along the r-direction

s solution

S south

sc standard conditions

sg solution-gas

sp specified

U upper

v per unit volume of reservoir rock

w water phase or water component

w west

wb wellbore

wf flowing well

X x-direction

Xix1/2 between i and i F 1 along the x-direction

y y-direction

Yiri2 between j and jF 1 along the y-direction

z z-direction

ZkE1/2 between k and k¥ 1 along the z-direction

0 O-direction

Oi=1 between j and jF 1 along the #-direction

Superscripts

m time level m

n time level n (old time level)

n+1 time level n+1 (new time level, current time level)

n<_vi_>1 time level n+1 and old iteration v

gili time level n+1 and current iteration v+ 1

) old iteration v

v+1) current iteration v+ 1

* intermediate value before SOR acceleration

° reference

- average

derivative with respect to pressure
— vector
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1.5 Exercises

1.1 Background

Reservoir simulation in the oil industry has become the standard for solving res-
ervoir engineering problems. Simulators for various recovery processes have
been developed and continue to be developed for new oil recovery processes.
Reservoir simulation is the art of combining physics, mathematics, reservoir
engineering, and computer programming to develop a tool for predicting hydro-
carbon reservoir performance under various operating strategies. Fig. 1.1
depicts the major steps involved in the development of a reservoir simulator:
formulation, discretization, well representation, linearization, solution, and val-
idation (Odeh, 1982). In this figure, formulation outlines the basic assumptions
inherent to the simulator, states these assumptions in precise mathematical
terms, and applies them to a control volume in the reservoir. The result of this
step is a set of coupled, nonlinear partial differential equations (PDEs) that
describes fluid flow through porous media.

The PDEs derived during the formulation step, if solved analytically, would
give reservoir pressure, fluid saturations, and well flow rates as continuous func-
tions of space and time. Because of the highly nonlinear nature of the PDEs, how-
ever, analytical techniques cannot be used, and solutions must be obtained with
numerical methods. In contrast to analytical solutions, numerical solutions give
the values of pressure and fluid saturations only at discrete points in the reservoir
and at discrete times. Discretization is the process of converting PDEs into alge-
braic equations. Several numerical methods can be used to discretize the PDEs;
however, the most common approach in the oil industry today is the finite-
difference method. The most commonly used finite-difference approach essen-
tially builds on Taylor series expansion and neglects terms that are considered to
be small when small difference in space parameters is considered. This expanded
form is a set of algebraic equations. Finite element method, on the other hand,

Petroleum Reservoir Simulation. https://doi.org/10.1016/B978-0-12-819150-7.00001-3
© 2020 Elsevier Inc. All rights reserved. 1
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2 Petroleum reservoir simulation

Formulation Discretization Linearization Solution Validation and
application
) ) _ _ Pressure and Reservoir
Rer%t::\éesrsy Nonlinear PDE'S Nonlinear a_lgebram E» Linear algebralc saturation simulation
P equations equations distributions process
Well representation

and well rates
FIG. 1.1 Major steps used to develop reservoir simulators. (Modified from Odeh,A.S., 1982. An over-
view of mathematical modeling of the behavior of hydrocarbon reservoirs. SIAM Rev. 24(3), 263.)

uses various functions to express variables in the governing equation. These func-
tions lead to the development of an error function that is minimized in order to
generate solutions to the governing equation. To carry out discretization, a PDE is
written for a given point in space at a given time level. The choice of time level
(old time level, current time level, or intermediate time level) leads to the explicit,
implicit, or Crank-Nicolson formulation method. The discretization process
results in a system of nonlinear algebraic equations. These equations generally
cannot be solved with linear equation solvers, and the linearization of such equa-
tions becomes a necessary step before solutions can be obtained. Well represen-
tation is used to incorporate fluid production and injection into the nonlinear
algebraic equations. Linearization involves approximating nonlinear terms
(transmissibilities, production and injection, and coefficients of unknowns in
the accumulation terms) in both space and time. Linearization results in a set
of linear algebraic equations. Any one of several linear equation solvers can then
be used to obtain the solution, which comprises pressure and fluid saturation dis-
tributions in the reservoir and well flow rates. Validation of areservoir simulator
is the last step in developing a simulator, after which the simulator can be used for
practical field applications. The validation step is necessary to make sure that no
errors were introduced in the various steps of development or in computer pro-
gramming. This validation is distinct from the concept of conducting experi-
ments in support of a mathematical model. Validation of a reservoir simulator
merely involves testing the numerical code.

There are three methods available for the discretization of any PDE: the
Taylor series method, the integral method, and the variational method (Aziz
and Settari, 1979). The first two methods result in the finite-difference method,
whereas the third results in the variational method. The “mathematical
approach” refers to the methods that obtain the nonlinear algebraic equations
through deriving and discretizing the PDEs. Developers of simulators relied
heavily on mathematics in the mathematical approach to obtain the nonlinear
algebraic equations or the finite-difference equations. However, Abou-
Kassem (2006) recently has presented a new approach that derives the finite-
difference equations without going through the rigor of PDEs and discretization
and that uses fictitious wells to represent boundary conditions. This new tactic is
termed the “engineering approach” because it is closer to the engineer’s think-
ing and to the physical meaning of the terms in the flow equations. The engi-
neering approach is simple and yet general and rigorous, and both the
engineering and mathematical approaches treat boundary conditions with the
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same accuracy if the mathematical approach uses second-order approximations.
In addition, the engineering approach results in the same finite-difference equa-
tions for any hydrocarbon recovery process. Because the engineering approach
is independent of the mathematical approach, it reconfirms the use of central
differencing in space discretization and highlights the assumptions involved
in choosing a time level in the mathematical approach.

1.2 Milestones for the engineering approach

The foundations for the engineering approach have been overlooked all these
years. Traditionally, reservoir simulators were developed by first using a con-
trol volume (or elementary volume), such as that shown in Fig. 1.2 for 1-D flow
or in Fig. 1.3 for 3-D flow that was visualized by mathematicians to develop
fluid flow equations. Note that point x in 1-D and point (x, y, z) in 3-D fall
on the edge of control volumes. The resulting flow equations are in the form
of PDEs. Once the PDEs are derived, early pioneers of simulation looked to
mathematicians to provide solution methods. These methods started with the
description of the reservoir as a collection of gridblocks, represented by points
that fall within them (or gridpoints representing blocks that surround them), fol-
lowed by the replacement of the PDEs and boundary conditions by algebraic
equations, and finally the solution of the resulting algebraic equations. Devel-
opers of simulators were all the time occupied by finding the solution and, per-
haps, forgot that they were solving an engineering problem. The engineering
approach can be realized should one try to relate the terms in the discretized
flow equations for any block to the block itself and to all its neighboring blocks.

Flow in :: X ' N Flow out
—>| Ax |<—
X X+tAX
FIG. 1.2 Control volume used by mathematicians for 1-D flow.
(x,y,z+Az) (x,y+Ay,z+Az)
1
1
(x*+Ax,y,z+A2) 1 (X+AX,y+Ay,z+AZ)
1

z
I b(_x,)iz)_ --4---3) (X,y+Ay,2)
Y Az ,, /

x _l— /, /Ax
’

(X+AX,y,2) Ay

(x+Ax,y+Ay,z)

FIG. 1.3 Control volume used by mathematicians for 3-D flow. (Modified from Bear, J., 1988.
Dynamics of Fluids in Porous Media. Dover Publications, New York.)
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A close inspection of the flow terms in a discretized flow equation of a given
fluid (oil, water, or gas) in a black-oil model for a given block reveals that these
terms are nothing but Darcy’s law describing volumetric flow rates of the fluid
at standard conditions between the block and its neighboring blocks. The accu-
mulation term is the change in the volume at standard conditions of the fluid
contained in the block itself at two different times.

Farouq Ali (1986) observed that the flow terms in the discretized form of
governing equations were nothing but Darcy’s law describing volumetric flow
rate between any two neighboring blocks. Making use of this observation
coupled with an assumption related to the time level at which flow terms are
evaluated, he developed the forward-central-difference equation and the
backward-central-difference equation without going through the rigor of the
mathematical approach in teaching reservoir simulation to undergraduate stu-
dents. Ertekin et al. (2001) were the first to use a control volume represented
by a point at its center in the mathematical approach as shown in Fig. 1.4 for
1-D flow and Fig. 1.5 for 3-D flow. This control volume is closer to engineer’s
thinking of representing blocks in reservoirs. The observation by Farouq Ali in
the early 1970s and the introduction of the new control volume by Ertekin et al.
have been the two milestones that contributed significantly to the recent devel-
opment of the engineering approach.

Overlooking the engineering approach has kept reservoir simulation closely
tied with PDEs. From a mathematician’s point of view, this is a blessing because
researchers in reservoir simulation have devised advanced methods for solving

|l am /|

X > | [
X—Ax/2 © x+Ax/2

FIG. 1.4 Control volume for 1-D flow.

(X—Ax12,y-Ayl2,z+Az/2) (Xx—=AXI2,y+Ayl2,z+Az[2)

(X+AXI2,y-Ayl2,z+Az/2) (X+AXI2,y+AyI2,z+Az[2)

z (x..2)
I P _’_ = 4 - = = ) (x-AXI2,y+AyI2,2-AzI2)
Az | (AXI2,y=AyI2,2-Az/2) |
v e 7
_L . X
7/
Ay /
(x+Ax/2,y-Ayl2,z-Az|2) (X+AX/2,y+Ayl2,2-Az/2)

FIG. 1.5 Control volume for 3-D flow.
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highly nonlinear PDEs, and this enriched the literature in mathematics in this
important area. Contributions of reservoir simulation to solving PDEs in multi-
phase flow include the following:

e Treating nonlinear terms in space and time (Settari and Aziz, 1975; Coats
et al., 1977; Saad, 1989; Gupta, 1990)

e Devising methods of solving systems of nonlinear PDEs, such as the IMPES
(Breitenbach et al., 1969), SEQ (Spillette et al., 1973; Coats, 1978), fully
implicit SS (Sheffield, 1969), and adaptive implicit (Thomas and
Thurnau, 1983) methods

e Devising advanced iterative methods for solving systems of linear algebraic
equations, such as the Block Iterative (Behie and Vinsome, 1982), Nested
Factorization (Appleyard and Cheshire, 1983), and Orthomin (Vinsome,
1976) methods

1.3 Importance of the engineering and mathematical
approaches

The importance of the engineering approach lies in being close to the engineer’s
mindset and in its capacity to derive the algebraic flow equations easily and
without going through the rigor of PDEs and discretization. In reality, the devel-
opment of a reservoir simulator can do away with the mathematical approach
because the objective of this approach is to obtain the algebraic flow equations
for the process being simulated. In addition, the engineering approach recon-
firms the use of central-difference approximation of the second-order space
derivative and provides interpretation of the approximations involved in the
forward-, backward-, and central-difference of the first-order time derivative
that are used in the mathematical approach.

The majority, if not all, of available commercial reservoir simulators were
developed without even looking at an analysis of truncation errors, consistency,
convergence, or stability. The importance of the mathematical approach, how-
ever, lies within its capacity to provide analysis of such items. Only in this case
do the two approaches complement each other and both become equally impor-
tant in reservoir simulation.

1.4 Summary

The traditional steps involved in the development of a reservoir simulator
include formulation, discretization, well representation, linearization, solution,
and validation. The mathematical approach involves formulation to obtain a dif-
ferential equation, followed by reservoir discretization to describe the reservoir,
and finally the discretization of the differential equation to obtain the flow equa-
tion in algebraic form. In contrast, the engineering approach involves reservoir
discretization to describe the reservoir, followed by formulation to obtain the
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flow equations in integral form, which, when approximated, produce the flow
equations in algebraic form. The mathematical approach and engineering
approach produce the same flow equations in algebraic form but use two unre-
lated routes. The seeds for the engineering approach existed long time ago but
were overlooked by pioneers in reservoir simulation because modeling petro-
leum reservoirs has been considered a mathematical problem rather than an
engineering problem. The engineering approach is both easy and robust. It does
not involve differential equations, discretization of differential equations, or
discretization of boundary conditions.

1.5 Exercises

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Name the major steps used in the development of a reservoir simulator
using the mathematical approach.

Indicate the input and the expected output for each major step in Exercise 1.1.

How does the engineering approach differ from the mathematical
approach in developing a reservoir simulator?

Name the major steps used in the development of a reservoir simulator
using the engineering approach.

Indicate the input and the expected output for each major step in Exercise 1.4.

Draw a sketch, similar to Fig. 1.1, for the development of a reservoir sim-
ulator using the engineering approach.

Using your own words, state the importance of the engineering approach in
reservoir simulation.
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2.1 Introduction

The development of flow equations requires an understanding of the physics of
the flow of fluids in porous media; the knowledge of fluid properties, rock prop-
erties, fluid-rock properties, and reservoir discretization into blocks; and the use
of basic engineering concepts. We have seen in the previous chapter that the
description of the process within the engineering approach is simplified because
casting of equations into partial differential equations is avoided. In practical
term, it means savings of many man months of company time. In this chapter,
single-phase flow is used to show the effectiveness of the engineering approach.
Discussions of fluid-rock properties are postponed until Chapter 11, which
deals with the simulation of multiphase flow. The engineering approach is used
to derive a fluid flow equation. This approach involves three consecutive steps:
(1) discretization of the reservoir into blocks; (2) derivation of the algebraic

Petroleum Reservoir Simulation. https://doi.org/10.1016/B978-0-12-819150-7.00002-5
© 2020 Elsevier Inc. All rights reserved. 7
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flow equation for a general block in the reservoir using basic engineering con-
cepts such as material balance, formation volume factor (FVF), and Darcy’s
law; and (3) approximation of time integrals in the algebraic flow equation
derived in the second step. Even though petroleum reservoirs are geometrically
three dimensional, fluids may flow in one direction (1-D flow), two directions
(2-D flow), or three directions (3-D flow). This chapter presents the flow equa-
tion for single phase in 1-D reservoir. Then, it extends the formulation to 2-D
and 3-D in Cartesian coordinates. In addition, this chapter presents the deriva-
tion of the single-phase flow equation in 3-D radial-cylindrical coordinates for
single-well simulation.

2.2 Properties of single-phase fluid

Fluid properties that are needed to model single-phase fluid flow include those
that appear in the flow equations, namely, density (p), formation volume factor
(B), and viscosity (). Fluid density is needed for the estimation of fluid gravity
(y) using:

Y=7cP8 2.1

where y.= the gravity conversion factor and g = acceleration due to gravity. In
general, fluid properties are a function of pressure. Mathematically, the pressure
dependence of fluid properties is expressed as:

p=1f(p) 2.2)

B=f(p) (2.3)
and

u=1(p) 2.4

The derivation of the general flow equation in this chapter does not require
more than the general dependence of fluid properties on pressure as expressed
by Egs. (2.2) through (2.4). In Chapter 7, the specific pressure dependence of
fluid properties is required for the derivation of the flow equation for each type
of fluid.

2.3 Properties of porous media

Modeling single-phase fluid flow in reservoirs requires the knowledge of basic
rock properties such as porosity and permeability or, more precisely, effective
porosity and absolute permeability. Other rock properties include reservoir
thickness and elevation below sea level. Effective porosity is the ratio of inter-
connected pore spaces to bulk volume of a rock sample. Petroleum reservoirs
usually have heterogeneous porosity distribution; that is, porosity changes with
location. A reservoir is described as homogeneous if porosity is constant
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independent of location. Porosity depends on reservoir pressure because of solid
and pore compressibilities. It increases as reservoir pressure (pressure of the
fluid contained in the pores) increases and vice versa. This relationship can
be expressed as

¢:¢°[1 +c¢,(p—p°)] (2.5)

where ¢°= porosity at reference pressure (p°) and ¢, = porosity compressibil-
ity. Permeability is the capacity of the rock to transmit fluid through its con-
nected pores when the same fluid fills all the interconnected pores.
Permeability is a directional rock property. If the reservoir coordinates coincide
with the principal directions of permeability, then permeability can be repre-
sented by k,, ky, and k.. The reservoir is described as having isotropic perme-
ability distribution if k,=k,=k.; otherwise, the reservoir is anisotropic if
permeability shows directional bias. Usually, k,=k,=ky, and k.,=ky, with
ky <k because of depositional environments.

2.4 Reservoir discretization

Reservoir discretization means that the reservoir is described by a set of grid-
blocks (or gridpoints) whose properties, dimensions, boundaries, and locations
in the reservoir are well defined. Chapter 4 deals with reservoirs discretized
using a block-centered grid, and Chapter 5 discusses reservoirs discretized
using a point-distributed grid. Fig. 2.1 shows reservoir discretization in the
x-direction as one focuses on block i.

The figure shows how the blocks are related to each other—block i and its neigh-
boring blocks (blocks i —1 and i+ 1)—block dimensions (Ax;, Ax;_q, Axyq),

AX; AX:
i—-1/2 i+1/2
< >l >
Q-1 @ @i+1
Xj_1 Xi Xj+1
AX;_4 - AX; | AXjy 1 .
( L )‘ I
Xi-1/2 Xj+1/2

FIG. 2.1 Relationships between block i and its neighboring blocks in 1-D flow.
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y o, °
(ijk+1)
° / °
E—— S T S (RSP
° ° ° ° ° ° ° ° °
i—1 i i+1 (i-1) | G | Gi+1p) (i—1.K) | Gjik) [(i+14.k)
° °
(ij=1) ° (ij—"1.k)
(i.j,k—1)
(a) (b) (c)

FIG. 2.2 A block and its neighboring blocks in (a) 1-D, (b) 2-D, and (c) 3-D flow using engineer-
ing notation.

block boundaries (x;_y., X;+1/2), distances between the point that represents the
block and block boundaries (6x;-,0x;+), and distances between the points represent-
ing the blocks (Ax; 1., Ax;1). The terminology presented in Fig. 2.1 is applicable
to both block-centered and point-distributed grid systems in 1-D flow in the direc-
tion of the x-axis. Reservoir discretization in the y- and z-directions uses similar
terminology. In addition, each gridblock (or gridpoint) is assigned elevation and
rock properties such as porosity and permeabilities in the x-, y-, and z-directions.
The transfer of fluids from one block to the rest of reservoir takes place through
the immediate neighboring blocks. When the whole reservoir is discretized, each
block is surrounded by a set (group) of neighboring blocks. Fig. 2.2a shows that there
are two neighboring blocks in 1-D flow along the x-axis, Fig. 2.2b shows that there
are four neighboring blocks in 2-D flow in the x-y plane, and Fig. 2.2c shows that
there are six neighboring blocks in 3-D flow in x-y-z space.

It must be made clear that once the reservoir is discretized and rock prop-
erties are assigned to gridblocks (or gridpoints), space is no longer a variable
and functions that depend on space, such as interblock properties, become well
defined. In other words, reservoir discretization removes space from being a
variable in the formulation of the problem. More elaboration follows in
Section 2.6.2.

2.5 Basic engineering concepts

The basic engineering concepts include mass conservation, equation of state,
and constitutive equation. The principle of mass conservation states that the
total mass of fluid entering minus the fluid leaving a volume element of the res-
ervoir, shown in Fig. 2.3 as block i, must equal the net increase in the mass of the
fluid in the reservoir volume element, that is,

m; —m, +mg =my (2.6)
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FIG. 2.3 Block i as a reservoir volume element in 1-D flow.

where m,; = the mass of fluid entering the reservoir volume element from other
parts of the reservoir, m,= the mass of fluid leaving the reservoir volume ele-
ment to other parts of the reservoir, m,= the mass of fluid entering or leaving the
reservoir volume element externally through wells, and m, = the mass of excess
fluid stored in or depleted from the reservoir volume element over a time
interval.

An equation of state describes the density of fluid as a function of pressure
and temperature. For single-phase fluid,

B=p,/p (2.7a)
for oil or water,
B, = Lesc. (2.7b)
a(‘pg

for gas, where p and p,= fluid densities at reservoir conditions, p,. and
Pesc= fluid densities at standard conditions, and a.= the volume
conversion factor.

A constitutive equation describes the rate of fluid movement into (or out of)
the reservoir volume element. In reservoir simulation, Darcy’s law is used to
relate fluid flow rate to potential gradient. The differential form of Darcy’s
law in a 1-D inclined reservoir is

k0D
=gy /A =—f.—— 2.8
we= /A= 8)
where .= the transmissibility conversion factor, k, = absolute permeability of
rock in the direction of the x-axis, y = fluid viscosity, ® = potential, and u,=
volumetric (or superficial) velocity of fluid defined as fluid flow rate (g,) per
unit cross-sectional area (A,) normal to flow direction x. The potential is related

to pressure through the following relationship:

DD, = (P _pref) - Y(Z - Zref) (2.9)

where Z=elevation from datum, with positive values downward.



12 Petroleum reservoir simulation
Therefore,

0P op 0Z
o (E = 2.10
ox <6x 4 6x) 2.10)
and the potential differences between block i and its neighbors, block i — 1 and
block i+ 1, are

@ —®; = (pi1 —pi) — Vi1 p(Zic1 — Zi) (2.11a)
and

Qi1 — D= (piv1 —Di) ~Vis12(Ziv1 —Zi) (2.11b)

2.6 Multidimensional flow in Cartesian coordinates
2.6.1 Block identification and block ordering

Before writing the flow equation fora 1-D, 2-D, or 3-D reservoir, the blocks in the
discretized reservoir must be identified and ordered. Any block in the reservoir
can be identified either by engineering notation or by the number the block holds
inagiven ordering scheme. Engineering notation uses the order of the block in the
X-, y-, and z-directions, that is, it identifies a block as (i,j, k), where i, j, and k are
the orders of the block in the three directions x, y, and z, respectively. The engi-
neering notation for block identification is the most convenient for entering
reservoir description (input) and for printing simulation results (output).
Fig. 2.4 shows the engineering notation for block identification in a 2-D reservoir
consisting of 4 x 5 blocks. Block ordering not only serves to identify blocks in
the reservoir but also minimizes matrix computations in obtaining the solution
of linear equations.

There are many block-ordering schemes, including natural ordering, zebra
ordering, diagonal (D2) ordering, alternating diagonal (D4) ordering, cyclic
ordering, and cyclic-2 ordering. If the reservoir has inactive blocks within its
external boundaries, such blocks will be skipped, and ordering of active blocks
will continue (Abou-Kassem and Ertekin, 1992). For multidimensional

(1,5) (2,5) (3,5) (4,5)

(1.,4) (2,4) (3.4) (4,4)

(1,3) (2,3) (3,3) (4,3)

(1,2) (2,2) (3,2) (4,2)

(1,1) (2,1) (3,1) (4,1)

FIG. 2.4 Engineering notation for block identification.
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reservoirs, natural ordering is the simplest to program but is the least efficient in
solving linear equations, whereas D4 ordering requires complicated program-
ming but is the most efficient in obtaining the solution when the number of
blocks is large. If the number of blocks is very large, however, the zebra order-
ing scheme becomes twice as efficient as D4 ordering in obtaining the solution
(McDonald and Trimble, 1977). Fig. 2.5 shows the various block-ordering
schemes for the 2-D reservoir shown in Fig. 2.4. Given the engineering notation
for block identification, block ordering is generated internally in a simulator.
Any ordering scheme becomes even more efficient computationally if the
ordering is performed along the shortest direction, followed by the intermediate
direction, and finally the longest direction (Abou-Kassem and Ertekin, 1992).

17 18 19 | 20
13 14 15 16
9 10 1 12
5 6 7 8
1 2 3 4
(a)
14 17 19 | 20
10 13 16 18
6 9 12 15
3 5 8 1
1 2 4 7
(c)
11 10 9 8
12 19 18 | 7
13 20 17 | 6
14 15 16 | 5
1 2 3 4
(e)

FIG. 2.5 Block-ordering schemes used in reservoir simulation. (a) Natural ordering, (b) zebra
ordering, (c) diagonal (D2) ordering, (d) alternating diagonal (D4) ordering, (e) cyclic ordering,
and (f) cyclic-2 ordering.
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Details related to various ordering schemes and computational efficiency in
solving linear equations are not discussed further in this book but can be found
elsewhere (Woo et al., 1973; Price and Coats, 1974; McDonald and Trimble,
1977). The natural ordering scheme is used throughout this book because it pro-
duces equations that are readily solvable with handheld calculators and easily
programmable for computer usage. The following three examples demonstrate
the use of engineering notation and natural ordering to identify blocks in
multidimensions.

Example 2.1 Consider the 1-D reservoir shown in Fig. 2.6a. This reservoir is
discretized using four blocks in the x-direction as shown in the figure. Order
the blocks in this reservoir using natural ordering.

Solution

We first choose one of the corner blocks (say the left corner block), identify
it as block 1, and then move along a given direction to the other blocks, one
block at a time. The order of the next block is obtained by incrementing the
order of the previous block by one. The process of block ordering (or number-
ing) continues until the last block in that direction is numbered. The final order-
ing of blocks in this reservoir is shown in Fig. 2.6b.

Example 2.2 Consider the 2-D reservoir shown in Fig. 2.7a. This reservoir is
discretized using 4 x 3 blocks as shown in the figure. Identify the blocks in this
reservoir using the following:

1. Engineering notation
2. Natural ordering

1 2 3 4

(a) (b)
FIG. 2.6 1-D reservoir representation in Example 2.1. (a) Reservoir representation and (b) natural
ordering of blocks.

FIG. 2.7 2-D reservoir representation in Example 2.2. (a) Reservoir representation, (b) engineer-
ing notation, and (c) natural ordering of blocks.
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FIG. 2.8 3-D reservoir representation in Example 2.3. (a) Reservoir representation, (b) engineer-
ing notation, and (c) natural ordering of blocks.

Solution

1. The engineering notation for block identification is shown in Fig. 2.7b.

2. We start by choosing one of the corner blocks in the reservoir. In this example,
we arbitrarily choose the lower-left corner block, block (1,1), and identify it
as block 1. In addition, we choose to order blocks along rows. The rest of the
blocks in the first row (j=1) are numbered as explained in Example 2.1.
Block (1,2) in the first column (i = 1) and second row (j=2) is numbered next
as block 5, and block numbering along this row continues as in Example 2.1.
Block numbering continues row by row until all the blocks are numbered.
The final ordering of blocks in this reservoir is shown in Fig. 2.7c.

Example 2.3 Consider the 3-D reservoir shown in Fig. 2.8a. This reservoir is
discretized into 4 x 3 x 3 blocks as shown in the figure. Identify the blocks
in this reservoir using the following:

1. Engineering notation
2. Natural ordering.

Solution

1. The engineering notation for block identification in this reservoir is shown
in Fig. 2.8b.

2. We arbitrarily choose the bottom-lower-left corner block, block (1,1,1), and
identify it as block 1. In addition, we choose to order blocks layer by layer
and along rows. The blocks in the first (bottom) layer (k=1) are ordered as
shown in Example 2.2. Next, block (1,1,2) is numbered as block 13, and the
ordering of blocks in this second layer is carried out as in the first layer.
Finally, block (1,1,3) is numbered as block 25, and the ordering of blocks



16  Petroleum reservoir simulation

in this third layer (k=3) is carried out as before. Fig. 2.8c shows the result-
ing natural ordering of blocks in this reservoir.

2.6.2 Derivation of the one-dimensional flow equation in Cartesian
coordinates

Fig. 2.3 shows block i and its neighboring blocks (block i — 1 and block i+ 1) in
the x-direction. At any instant in time, fluid enters block i, coming from block
i—1 across its x;_;,; face at a mass rate of wx|,\.’,7”2, and leaves to block i+1
across its x;,1, face at a mass rate of WX|,\.H”2. The fluid also enters block i
through a well at a mass rate of g,,,. The mass of fluid contained in a unit volume
of rock in block i is m, . Therefore, the material balance equation for block i
written over a time step Ar=7""' —¢' can be rewritten as

+my, =my, (2.12)

mi|xi—l/2 - m0|xi+l/2

Terms like w, \XH/Z, Wy |X,+U2 and g,,, are functions of time only because space
is not a variable for an already discretized reservoir as discussed in Section 2.4.
Further justification is presented later in this section. Therefore,

,n+1

mily_,, = J wil,, ,df (2.13)
"
tn+1
Mol n = J wx|xi+l/2dt (2.14)
b
and
tn+]
%:J%m (2.15)

t”
Using Egs. (2.13) through (2.15), Eq. (2.12) can be rewritten as
i+l Vil 1 /m+ 1
J Wx|xkl/2dt— J WX\X’+]/2dz‘+ J Gm,dt =m,, (2.16)
t/l [I’ I/I

The mass accumulation is defined as

%;AWWQ:WQWHWQ @.17)

Vi Vi
Note that mass rate and mass flux are related through

Wy = rityAy (2.18)
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Mass flux (71,) can be expressed in terms of fluid density and volumetric
velocity:

mx = QcPUyx (2 19)

mass of fluid per unit volume of rock (m,) can be expressed in terms of fluid
density and porosity:

my = ¢p (2.20)

and mass of injected or produced fluid (g,,) can be expressed in terms of well
volumetric rate (¢) and fluid density:

qm=acpq (221
Substitution of Egs. (2.17) and (2.18) into Eq. (2.16) yields:

fn+l [Jy+l tn+1
J (mxAx)|xl_71/2dtf J (mxAx)|xM/2dt+ J Gmdt =V}, (mg’fl B mii) (2.22)
i i n

Substitution of Egs. (2.19) through (2.21) into Eq. (2.22) yields:

tu+l t’“’l tn+l

1
J (a(-puxAx)\xH/zdt— J (a(‘puxAx)\xl_+l/2dt+ J (acepq)dt =V, [(gbp);” _(45/’);"}
A A P

(2.23)

Substitution of Eq. (2.7a) into Eq. (2.23), dividing by a.p,. and noting that
q/B=qy., yields

tr1+l tn+l tn+|

Ay Ay Vi, n "
Uxfle di— | (% d+ | quar=2e(2) (2

B . B /|, ' a. |\B/. B).
n Xi-1/2 b Xiv1/2 o i i

(2.24)

Fluid volumetric velocity (flow rate per unit cross-sectional area) from

block i—1 to block i (u, |XH/2) at any time instant 7 is given by the algebraic ana-
log of Eq. (2.8):

(2.252)

Uy =p.
Xxiz12 ¢

kx|xi—l/2 |:((Di1 _q)i):|

Hlg o L Bxicap

where k.|, ,» s rock permeability between blocks i — 1 and 7 that are separated
by a distance Ax;_1,, ®;_1, and ®; are the potentials of blocks i — 1 and 7, and
u |XH/2 is viscosity of the fluid between blocks i — 1 and i.

Likewise, fluid flow rate per unit cross-sectional area from block i to block
i+1is:

kX|X,+1/2 [((Di — (Di+1)] (2.25b)

ul, =p.
Xir1/2 ¢ ML‘_M/2 Axi+1/2
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Substitution of Eq. (2.25) into Eq. (2.24) and grouping terms results in

1+ 1 rn+l
O, | —;)|dt— D, — P, dt
J [( CﬂBAX) ) ( i—1 1) J ( (MBAX) ( 1+l)
m Xi-1/2 m Xit1/2
[n+l )
Vb‘ ¢ n+ ¢ n
sc'-dt:_, — — | = 2.26
* J B Xe l(B>i (B i ( )
[ﬂ
or
,u+l tn+| tn+]
J |:TX,>|/2 (q)l'*l _q)i):| dr+ J |:T’Ci+]/2 ((I)H'l - (Dl)] dr+ J qsc,‘dt
f" f" [/I
Vb- ¢ n+l1 ¢ n
_Yul(e _ (¢ 2.27
e [<B>f B/, @20
where

(2.28)

Ym/z < ‘,uBA >

is transmissibility in the x-direction between block i and the neighboring block
iF1. The derivation of Eq. (2.27) is rigorous and involves no assumptions other
than the validity of Darcy’s law (Eq. 2.25) to estimate fluid volumetric velocity
between block i and its neighboring block i 1. The validity of Darcy’s law is
well accepted. Note that similar derivation can be made even if Darcy’s law is
replaced by another flow equation, such as Brinkman’s equation, etc. (Islam,
1992; Mustafiz et al., 2005a, b). For heterogeneous block permeability distri-
bution and irregular grid blocks (neither constant nor equal Ax, Ay, and Az),
the part <ﬂc kX)‘;) of transmissibility T, is derived in Chapter 4 for a
Xix1/2
block-centered grid and in Chapter 5 for a point-distributed grid. Note that
for a discretized reservoir, blocks have defined dimensions and permeabilities;

()
C
Ax Xix1/2

dent of space and time. In addition, the pressure-dependent term (uB)| xp OF
transmissibility uses some average viscosity and formation volume factor
(FVF) of the fluid contained in block i and the neighboring block i F1 or some
weight (upstream weighting and average weighting) at any instant of time ¢. In
other words, the term (,uB)|X,+”2is not a function of space but a function of time as
block pressures change with time. Hence, transmissibility 7, between block i
and its neighboring block i F1 is a function of time only; it does not depend on

space at any instant of time.

Xix1/2

therefore, interblock geometric factor

] is constant, indepen-
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Again, the accumulation term in Eq. (2.27) can be expressed in terms of the
change in the pressure of block i as shown in Eq. (2.29a):

[n+l tn+l tn+1

J |:Txi,1/2(¢)i—l_¢)i):|dt+ J |:Tx,‘+1/2(q)i+1_q>i):|dt+ J%C;dt

" " I
Vi, d (¢ ‘1

_ru e (¥ n+l_n 2.29
ac dp <B>i[pl a 22

or after substituting Eq. (2.11) for potential,

t"”

J (T =p) =71 pZir = 2)| e

i+ 1

+ J {Tmm [(Pm —=pi) = Yis12(Zis —Zi)} }df (2.29b)

Vh. d ¢
+ edt=—2—(Z) [prtt—pn
J sei a. dp (B)i[p’ p,]

d
where — ¢ = the chord slope of ¢ between p/*! and p!.
dp\B/,; B)/.

1

2.6.3 Approximation of time integrals

If the argument of an integral is an explicit function of time, the integral can be
evaluated analytically. This is not the case for the integrals appearing on the
left-hand side (LHS) of either Eq. (2.27) or Eq. (2.29). If Eq. (2.29b) is written
for every block i = 1, 2, 3...n,, then the solution can be obtained by one of
the ODE methods (Euler’s method, the modified Euler method, the explicit
Runge-Kutta method, or the implicit Runge-Kutta method) reviewed by Aziz
and Settari (1979). ODE methods, however, are not efficient for solving reser-
voir simulation problems. Therefore, performing these integrations necessitates

making certain assumptionls.
tl7+
Consider the integral [ F(r)dr shown in Fig. 2.9. This integral is equal to the

14 . . .
area under the curve F(f) in the interval /' <t < £"*!. This area is also equal to the

t

n 1

FIG. 2.9 Representation of the integral function as the area under the curve.
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t

" tm 1

FIG. 2.10 Representation of the integral of a function as F(¢™") X At.

area of a rectangle with the dimensions of F(#"), where F is evaluated at time ¢”,
where ' <" < "' and Ar, where Ar= (/""" — "), as shown in Fig. 2.10. Therefore,

i+l [n+l i+l +1
J F(t)dr= J F(f")dt= J F'dt=F" J dt=F"xt
" " 4

=F"x (1 = ") =F" x At

ln+]
m

(2.30)

The value of this integral can be calculated using the previous equation pro-

vided that the value of F™ or F(¢"") is known. In reality, however, F" is not
known, and therefore, it needs to be approximated. The area under the curve
in Fig. 2.9 can be approximated by one of the following four methods:
(1) F(r")x At as shown in Fig. 2.11a, (2) F("*')x At as shown in
Fig. 2.11b, 3) ' /5[F(t") + F("*')] x At as shown in Fig. 2.11c, or (4) numer-
ical integration. The argument F' in Eq. (2.30) stands for [T,  (®; 1 —®))],
[TX,+1/z(q)i+1 —®;)], or g, that appears on the LHS of Eq. (2.27), and F"=
value of F at time ¢".

Therefore, Eq. (2.27) after this approximation becomes:

(@ — ) [ ace T2 (@, — o) are g ar

Xi-1/2 Xiv1/2

V| (#\" (B @30
l6), -6

") == = = = = = —
112 [F(t") +| F(t™ )]

n 1 tn 12 g+

(b) (c)

FIG. 2.11 Approximations of the time integral of function.
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Dividing the previous equation by Atz gives:

—(I);”) +qm — Vi,

Ty (q)?il - (D:n) +T (q)m sc; m

Xi-1/2 Xi+1/2 i+l

f n+1_ ? n
B), B),
(2.32)

Substituting Eq. (2.11) into Eq. (2.32), we obtain the flow equation for
block i:

T (0 =) =7 o Z =2 |+ T (o =) = i1~ 22)]
¢ n+1 ¢ n
<B i B i
(2.33)

The right-hand side (RHS) of the flow equation expressed as Eq. (2.33),
known as the fluid accumulation term, vanishes in problems involving the flow
of incompressible fluid (¢ =0) in an incompressible porous medium (c;=0).
This is the case where both B and ¢ are constant independent of pressure. Res-
ervoir pressure in this type of flow problems is independent of time. Example
2.4 demonstrates the application of Eq. (2.33) for an interior block in a 1-D res-
ervoir using a regular grid. In Chapter 7, the explicit, implicit, and Crank-
Nicolson formulations are derived from Eq. (2.33) by specifying the approxi-
mation of time #” as ¢, ', or #"*/?, which are equivalent to using the first,
second, and third integral approximation methods mentioned previously. The
fourth integration method mentioned previously leads to the Runge-Kutta solu-
tion methods of ordinary differential equations. Table 2.1 presents the units of
all the quantities that appear in flow equations.

m Vi

S alAt

Example 2.4 Consider single-phase fluid flow in a 1-D horizontal reservoir.
The reservoir is discretized using four blocks in the x-direction, as shown in
Fig. 2.12. A well located in block 3 produces at a rate of 400 STB/D. All grid
blocks have Ax=250ft, w=900ft, h=100ft, and k,=270md. The FVF and
the viscosity of the flowing fluid are 1.0RB/STB and 2 cP, respectively. Identify
the interior and boundary blocks in this reservoir. Write the flow equation for
block 3 and give the physical meaning of each term in the equation.

Solution

Blocks 2 and 3 are interior blocks, whereas blocks 1 and 4 are boundary
blocks. The flow equation for block 3 can be obtained from Eq. (2.33) for
i=3, that is,

Ty, {(PE" —py) =75 (2 —23)} +T7 [(pT —P5) =131 (2 —Z3)}

(l) n+1 (b n
(5), ‘(E)j e

mo_ Vb3
G a At




TABLE 2.1 Quantities used in flow equations in different systems of units.

Quantity
Length

Area
Permeability
Phase viscosity
Gas FVF
Liquid FVF
Solution GOR
Phase pressure
Phase potential
Phase gravity
Gas flow rate
Oil flow rate

Water flow rate

Volumetric velocity

Phase density

Block bulk volume

Symbol
Xy zrZ

A/ AX/ Ay/ AZ/ Ar/ AO
k/ kX/ ky/ kZ/ kr/ kH

H, Hor Hw, Hg
B, Bg

B, B,, B,

Rs

P Por Pw, Pg
o, @, O, P,
ViVorYw Vg
Gscr Ggsc

Gscr Gosc

Gscr Qwsc

u

P Por Pw: Pg
Vi

Customary units
ft

ft*

md

cP
RB/scf
RB/STB
scf/STB
psia

psia
psi/ft
scf/D
STB/D
B/D
RB/D-ft?
Ibmy/ft®

ft®

System of units
SPE metric units
m

m2

pm?
mPa.s
m?/std m?
m?/std m*
std m?/std m?
kPa

kPa
kPa/m

std m*/d
std m*/d
std m*/d
m/d
kg/m?

m3

Lab units
cm

cm?

darcy

cP

cm?/std cm?
cm?/std cm?
std cm®/std cm?
atm

atm

atm/cm

std cm?/s
std cm®/s
std cm®/s
cm/s

g/cm?

cm3
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Compressibility
Compressibility factor
Temperature

Porosity

Phase saturation

Relative permeability
Gravitational acceleration
Time

Angle

Transmissibility conversion factor
Gravity conversion factor

Volume conversion factor

G, Cor Cp

z

-

®

S, S0 Sws Sg
kior krw, Kig
8

t, At

[/

Pe

Ye

Ac

psi”'
Dimensionless
°R

Fraction
Fraction
Fraction
32.174fts
day

rad

0.001127
0.21584x 10~°

5.614583

kPa'
Dimensionless
K

Fraction
Fraction
Fraction
9.806635m/s”
day

rad

0.0864

0.001

atm™

Dimensionless

K

Fraction

Fraction

Fraction
980.6635 cm/s”
sec

rad

1

0.986923 x 107°

1

€¢ 7 | 191dey) urewop [euoisuswipinw ui suonenbs aseyd-s|8uig
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400 STB/D
y i 100 ft
z o | 1| 2| 30} 4
<
2507 |25

FIG. 2.12 1-D reservoir representation in Example 2.4.

For block 3, Z,=7Z5;=Z7, for horizontal reservoir and q:ﬁ.S: —400STB/D.
Because Axs41,,=Ax and because y and B are constant,

_— kA, 270 x (900 x 100)
TX3—1/2 - ‘3+1/2 =P BM70'001127 x 2 x1x250
=54. 7722STB/D psi (2.35)

Substitution of Eq. (2.35) into Eq. (2.34) gives

v n+1 n
(54.7722) (p5 — py) + (54.7722) (p — p) — 400 = aK[Zt l(/@ - @) ]

3 3
(2.36)

The LHS of Eq. (2.36) comprises three terms. The first term represents the rate
of fluid flow from block 2 to block 3, the second term represents the rate of fluid
flow from block 4 to block 3, and the third term represents the rate of fluid pro-
duction from the well in block 3. The RHS of Eq. (2.36) represents the rate of
fluid accumulation in block 3. All terms have the units of STB/D.

2.6.4 Flow equations in multidimensions using engineering notation

A close inspection of the flow equation expressed as Eq. (2.33) reveals that this
equation involves three different groups: the interblock flow terms between
block i and its two neighboring blocks in the x-direction {T%_ [(pi"1—pi")

vitipZioi—2)] and T [(piti—pi") —vitip(Zic —Z)]), the source term

due to injection or production (q“/), and the accumulation term
Vi, 1 . .
{ % [(Q)"Jr — (ﬁ)n} } Any block in the reservoir has one source term and

a.At | \B/ i BJ/i
one accumulation term, but the number of interblock flow terms equals the
number of its neighboring blocks. Specifically, any block has a maximum of
two neighboring blocks in 1-D flow (Fig. 2.2a), four neighboring blocks in
2-D flow (Fig. 2.2b), and six neighboring blocks in 3-D flow (Fig. 2.2c). There-
fore, for 2-D flow, the flow equation for block (i,j) in the x-y plane is:
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;7,/‘—1/2 [(p;nl 1 pl/) lj 1/2( i, = l*Zi».i)]
+ T.:-',?,I/Lf KPH,;‘P; J) Vie 1/2; Zi lsj_Zi,j)}
T [(Pﬁl,j—p, > rivi/2. t+1..i_Zi,j)] (2.37)
T [(PTJH —Pi 1) i Ziger = Zi))

mo Vhi,j
SCi, (XCAI

<¢) n+1 <¢> n ‘|
B/, BJ,
For 3-D flow, the flow equation for block (i,j,k) in the x-y-z space is:

{(Pz,k 1 P;"jk)_ﬂn/k 1/2( i jok— I_Zivjk)}

m

Ziyjyk—1/2
[P (pljlk pz/k) ,,1/21< Zij-1.k— t/k}
;?—I/Z,jk (pl Lj.k pl/ ) Vie 1/2/I< Zi-1.jk — ”k:|
K <p1+l/k Pijik ) 1+1/2/k Ziv1jk = k)} (2.38)
W | (2 <,J+1/< Puk) l,+1/2k Zijrrk—Zijk)
Z-I’j,ﬂl/z (pz/k+l =i, ) 1;k+1/2 Zijk+1— k)
. Vhi,_,-,k ¢ n+1 ¢ n
SCijok 7@ <E> i,j.k - (E) i,j.k

where,
kxAx 1 1
Ty, k= ( c ) = (ﬁc ) (-) =Gxizip <_>
e ”BAX Xix1/2,),k Ax Xix1/2,)j,k uB Xig1/2,),k T HB Xix1/2,),k
(2.39a)
kyA kyAy 1 1
o282, 02, LB, (3
Vi, 2,k c c Vi, jF1/2,k
s uBAy Vi, jF1/2,k Ay Vi, jF1/2,k uB Vi jF1/2.k = B Vi, jF1/2,k
(2.39b)
and
ZijkE1/2 ¢ = ¢ ) Ve p
! uBAz ZijkF1/2 Az Zi, j,kF1/2 B ZijkF1/2 ' 1B Zi,jkF1/2
(2.39¢)

Expressions for the geometric factors G for irregular grids in heterogeneous res-
ervoirs are presented in Chapters 4 and 5. It should be mentioned that the inter-
block flow terms in the flow equations for 1-D (Eq. 2.33), 2-D (Eq. 2.37), or 3-D
(Eq. 2.38) problems appear in the sequence shown in Fig. 2.13 for neighboring
blocks. As will be shown in Chapter 9, the sequencing of neighboring blocks as
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[ ]
7
[ ]
6
y
z
[ J [ ] [ ]
TL,X 3 4 5
°
° 2

1

FIG. 2.13 The sequence of neighboring blocks in the set y; ; « or .

in Fig. 2.13 produces flow equations with unknowns already ordered as they
appear in the vector of unknowns for the whole reservoir.

The following two examples demonstrate the application of Egs. (2.37) and
(2.38) for interior blocks in multidimensional anisotropic reservoirs using reg-
ular grids.

Example 2.5 Consider single-phase fluid flow in a 2-D horizontal reservoir.
The reservoir is discretized using 4 x 3 blocks as shown in Fig. 2.14. A well that
is located in block (3,2) produces at a rate of 400 STB/D. All gridblocks have
Ax=250ft, Ay=300ft, h=100ft, k,=270md, and k, =220md. The FVF and
the viscosity of the flowing fluid are 1.0RB/STB and 2 cP, respectively. Identify
the interior and boundary blocks in this reservoir. Write the flow equation for
block (3,2) and give the physical meaning of each term in the flow equation.
Write the flow equation for block (2,2).

Solution

Interior blocks in this reservoir include reservoir blocks that are located in
the second and third columns in the second row. Other reservoir blocks are
boundary blocks. In explicit terms, blocks (2,2) and (3,2) are interior blocks,
whereas blocks (1,1), (2,1), (3,1), (4,1), (1,2), (4,2), (1,3), (2,3), (3,3), and
(4,3) are boundary blocks.

The flow equation for block (3,2) can be obtained from Eq. (2.37) for i=3
and j=2, that is,

T§'§ 212 [(Pgnl —Pia) =751 p(Za —Z3,2)}
T . | (P53 —pih) 7’2"_1/2,2(22,2—23,2)}

xm/, ) [ Pis— D5 2 — 73 1/2,2(24,2 _Z3,2)} (2.40)
y; 2412 [ P53 —D5 2 —7530 1/2(2353 _Z3,2)}

+q" Vb | (4 nH— A%
2 g At | \B 3.2 LYEY:
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Z 400 STB/D
y L2501t /
/13)/(23)ﬂ33 /43)
/(1 2)/22 /\.3742) j=3
00f / /1y S2 S@B S6) j=2
100 ft =1

i=1 i=2 i=3 i=4

FIG. 2.14 2-D reservoir representation in Example 2.5.

For block (3,2), Z31=2,,=2Z3,=Z4,=27Z35 for a horizontal reservoir and
qﬁﬂ = —400STB/D. Because Axzgip2=Ax=2501t, Ay3s5+1p=Ay=3001t,
and y and B are constant,

270 % (300 x 100)

m _
X371/22_TV3+1/22 ‘H‘ BA - =0.001127 x 2x1x250
=18. 2574STB/D -psi (2.41a)
and
220 x (250 x 100)
m _ ) y
TyB,Z—I/Z yz 1 ﬂC =0.001127 x 2% 1x300
=10.3308 STB/D-pSl (2.41b)

Substitution into Eq. (2.40) gives
(10.3308) (p%, —p4,) +(18.2574) (p3, — p',) + (18.2574) (p, — P¥,)

<?>n+1_(?)n
B 3,2 B 3,2

The LHS of Eq. (2.42) comprises five terms. The first term represents the rate of
fluid flow from block (3,1) to block (3,2), the second term from block (2,2) to
block (3,2), the third from block (4,2) to block (3,2), and the fourth from block
(3,3) to block (3,2). Finally, the fifth term represents the rate of fluid production
from the well in block (3,2). The RHS of Eq. (2.42) represents the rate of fluid
accumulation in block (3,2). All terms have the units STB/D.

The flow equation for block (2,2) can be obtained from Eq. (2.37) for i=2
and j=2; that is,

Vb3,z
a.At

+(10.3308) (pg'f3 —pg"’z) —400=

(2.42)
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Ty"; 1 [(”’znl *Prznz) —V3a- 1/2(22:1 *ZM)}
e l/zz[Pl 2 P22 73171/2,2(21,2_22’2)}
x2+,/2 ) % P53a =D 2 75”+1/2,2(Z3s2 _22’2)] (2.43)

LS (P33 =p52) 7572+1/2(Zz’3_22’2)

+q :V”“ ? n+1_ f !
22" gq.Ar|\B/),, \B),,

For block (2,2), 22’2:Z2’[ :Z1,2 :Zz’z :Z3,2:Z2,3 for a horizontal
reservoir, q?ﬁ.“:OSTB/D because block (2,2) does not host a well, T =

Xo1p2
T%..,,=18.2574STB/D-psi, and Ty, | =Ty, =10.3308 STB/D-psi.

Substitution into Eq. (2.43) gives:

(10.3308) (p | — p,) + (18.2574) (pf, — i) + (18.2574) (pt, — p)

Vv n+1 n

b | (BN (O (2.44)
acAt | \B/,, B/,
Example 2.6 Consider single-phase fluid flow in a 3-D horizontal reservoir.
The reservoir is discretized using 4 x 3 x 3 blocks as shown in Fig. 2.15a. A well

+(10.3308) (p4's — p,) =

(13.3)233)|(3.33)| @3.3)| /=3

1}
N

k=3 [(1.23)(2,23)]|(3.2.3)| (4,2,3) J

I
-

11,3213 31.3)|@13)| J

y
i (132)](232)[(332)|@32)| /=3
X —> 133.3 STB/D

k=2 |(1.22)|@22 22| j=2
j= 3,2,2
k=3 ‘ j=3 322
k=2 j=2 1.1.2[@21.2]6.12)| @12 j=1
k=1 j=1
i=1 i=2 =3 i=4 Gl
(a) 300 ft| |(1.3.1)]@231)|@33.1)]@31)]j=3

I
N

k=1 |020|@2n|E20|@2n|]
X aanleinn|ein|ery) j=1
i=1 =2 =3 i=4

(b)

FIG. 2.15 3-D reservoir representation in Example 2.6. (a) Reservoir representation and (b) engi-
neering notation.
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that is located in block (3,2,2) produces at a rate of 133.3 STB/D. All grid blocks
have Ax=250ft, Ay=300ft, Az=33.333ft, k,=270md, k,=220md, and
k,=50md. The FVF, density, and viscosity of the flowing fluid are 1.0RB/
STB, 551bm/ft’, and 2cP, respectively. Identify the interior and boundary
blocks in this reservoir. Write the flow equation for block (3,2,2).

Solution

As can be seen in Fig. 2.15b, interior blocks include reservoir blocks that are
located in the second and third columns in the second row in the second layer, that
is, blocks (2,2,2) and (3,2,2). All other reservoir blocks are boundary blocks.

The flow equation for block (3,2,2) can be obtained from Eq. (2.38) fori =3,
j=2, and k=2, that is,

m

TZs 22-102 {(pgnz 1 _pgnz,Z) —73a, 271/2(23 2,1 _Z3,2»2)}
+ 17, 12,2 z(P 51,230

m m
+ T~\‘371/2,2 2 (p 2,227 P322

Y32 1p2(Z302— 2300

)
)

Y3120 (Z222 =232

(2.45)

m ua
+ TY3,2+1/22 (p3 327 P32,2

m

) -
) -
T inan (p422 Pian) =131 j000Zan2— 2300
)~
)~

S T T E——)

)
3241022332 —2322)
)

m
sz,zﬂ/z ( D523 P300) — V5, 241/2 (Z323 =232

+
+q" Voo | (¢ " _(?Y
S22 g At | \B 3.2.2 B 3,2,2

For block (3,2,2), Z310=2052=7332=7Z422=7332, Z3p1—Z3p2=
33.333ft, Z3n3—2Z3nn= —33.3331t, and dsc,,,= — 133.3STB/D.
Because A.X'3:F1/2’2’2 =Ax=250 ft, Ay3,2:’;1/2’2 = Ay = 300 ft, AZ3’2’2;F1/2 =
Az=33.333ft and because U, p, and B are constant, y325_ 1p=y302+1p=
Yepg=0.21584 x 107> x 55 x 32.174=0.3819 psi/ft,

n . kA 270 x (300 x 33.333) .
Txmp 22 =p. uBAx =0.001127 x 7% 1 %250 =6.0857 STB/D-psi
(2.46a)
n o kA 220 x (250 x 33.333) ,
Vansisn = Pe LuBA =0.001127 x S T 300~ 3:4436STB/D-psi
(2.46b)
and
50 x (250 x 300
T, s g A 001127 % 020X 300) 63 3044 STB/D-psi

BA 2x1x33.333
(2.46¢)
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Substitution into Eq. (2.45) gives:
(63.3944) [(pf;’,z,] - pg’fm) - 12.7287] +(3.4436) (pg'f]a —p, 2)
+(6.0857) (5152 —Rla2) +(6.0857) (o — P45 5 ) +(3.4436) (P, — P )

(f)}“—l - (é)n
B/320 \B/322

(2.47)

Vb3,2,2

+(63.3944) [ (P05 — 1Y) +12.7287] — 133.3 = vy

2.7 Multidimensional flow in radial-cylindrical coordinates
2.7.1 Reservoir discretization for single-well simulation

Single-well simulation uses radial-cylindrical coordinates. A point in space in
radial-cylindrical coordinates is identified as point (r, 6, z) as shown in
Fig. 2.16. A cylinder with the well coinciding with its longitudinal axis repre-
sents the reservoir in single-well simulation. Reservoir discretization involves
dividing the cylinder into n, concentric radial segments with the well passing
through the center. Rays from the center divide the radial segments into 7y
cake-like slices. Planes normal to the longitudinal axis divide the cake-like
slices into n, segments.

A reservoir block in a discretized reservoir is identified as block (i,],k),
where i, j, and k are, respectively, the orders of the block in r-, 6-, and z-
directions with 1 <i<n,, 1 <j<ny, 1 <k <n,. This block has the shape shown
in Fig. 2.17.

Fig. 2.18a shows that block (i,], k) is surrounded by blocks (i —1,j,k) and
(i+ 1,j,k) in the r-direction and by blocks (i,j — 1,k) and (i,j+ 1, k) in the € direc-
tion. In addition, the figure shows the boundaries between block (i, ], k) and its
neighboring blocks: block boundaries (i — /2, j, k), (i +'/2,j, k), (i,j— /2, k),
and (i,j+'/2, k). Fig. 2.18b shows that block (i,j,k) is surrounded by blocks

X

FIG. 2.16 Graphing a point in Cartesian and radial coordinates.
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FIG. 2.18 Block (i,j, k) and its neighboring blocks in single-well simulation. (a) Block (i,j, k) and its
neighboring blocks in horizontal plane and (b) block (i, ], k) and its neighboring blocks in the z-direction.

(i,j, k—1) and (i,j,k+ 1) in the z-direction. The figure also shows block bound-
aries (i,j,k—"'/2) and (i,j, k+'/2). We will demonstrate block identification
and ordering in single-well simulation in the following two examples. In the
absence of fluid flow in the #-direction, block ordering and identification in
radial and rectangular coordinates are identical.

Example 2.7 In single-well simulation, a reservoir is discretized in the
r-direction into four concentric cylindrical blocks as shown in Fig. 2.19a. Order
blocks in this reservoir using natural ordering.
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(a) (b)

FIG. 2.19 1-D radial-cylindrical reservoir representation in Example 2.7. (a) Reservoir represen-
tation and (b) natural ordering of blocks.

Solution

We identify the innermost block enclosing the well as block 1. Then we
move to other blocks, one block at a time, in the direction of increasing radius.
The order of the next block is obtained by incrementing the order of the previous
block by one. We continue the process of block ordering (or numbering) until
the outermost block is numbered. The final ordering of blocks in this reservoir is
shown in Fig. 2.19b.

Example 2.8 Let the reservoir in Example 2.7 consists of three layers as shown
in Fig. 2.20a.
Identify the blocks in this reservoir using the following:

1. The engineering notation

2. Natural ordering
Solution

1. The engineering notation for block identification in this reservoir is shown
in Fig. 2.20b.

2. We arbitrarily choose to order blocks in each layer along rows. Blocks in the
first layer (k= 1) are numbered as explained in Example 2.7. Block (1,2) in
first column (i=1) and second plane (k=2) is numbered next as block 35,
and block numbering continues as in Example 2.7. Block numbering con-
tinues (layer by layer) until all blocks are numbered. The final ordering of
blocks in this reservoir is shown in Fig. 2.20c.

2.7.2 Derivation of the multidimensional flow equation
in radial-cylindrical coordinates

To write the material balance for block (i,j,k) in Fig. 2.18 over a time step
Ar=r"""— ", we assume that the fluid coming from neighboring blocks enters
block (i,j,k) through block boundaries (i—'/2,j,k), (i,j—"'/2,k), and
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FIG. 2.20 2-D radial-cylindrical reservoir representation in Example 2.8. (a) Reservoir represen-
tation, (b) engineering notation, and (c) natural ordering of blocks.

(i,j,k—"'/3) leaves through block boundaries (i+!/5,j,k), (i,j+'/2,k), and
(i,j,k+'/2). The application of Eq. (2.6) results in

(m;

me

Ticija ik m0|"i+1/2,,,k) + (mi|9i,j—]/2,k B m"|91,/+1/2,k) + (mi Zi,/,k+l/2)

Ziyjyk=1/2

+my,,, =M, (2.48)

sJsk

Terms hke mass rates’ Wr |ri—l/2, N Wo |9i, -1, © w; |Zi, Js k—172° Wy |’i+1/z‘ . k,Wg |9, . ©
Wz, ., and well mass rate, g,,, _ ,, are functions of time only (see justification
in Section 2.6.2); therefore,

A

ml»|,,i71/2,i,k = J w,.|,,i71/2,/,kdt (2.492)

m
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rn+l
Milg, = Wg|9i’j7]/2,kdl‘ (2.49b)
n
t’“’l
Milz i = Welzi i (2.49¢)
A
tn+l
ny Tiv1/2, )k = W"|7'1+1/2,,‘,k (2.50a)
tn
tu+l
Mo Oijr1/2,k = 0 Oijv1/2,k (250b)
m
tn+1
Mo kel e Ziyjk+1/2 (2.50¢)
t”
and
tn+1
ms,.,M = J qm,ﬂ’M dt (251)
[11
In addition, mass accumulation is defined as:
_ _ n+1 n
Ma ;= A’(me")i,j,k - Vbivj5k (mvi,j,A o m"/,/,k) (252)
Mass rates and mass fluxes are related through
wy|, =n,A, (2.53a)
Wolg = HipAg (2.53b)
and
w;|, =n.A; (2.53¢)

mass fluxes can be expressed in terms of fluid density and volumetric velocities:
My = AcPuly (2.54a)
Mg = a:plly (2.54b)
and

M, = AcpU; (2.54¢)
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and m, can be expressed in terms of fluid density and porosity:

m"u/,l« - (

f/’ﬂ)i,j,k

(2.55)

Also, the well mass rate can be expressed in terms of well volumetric rate and

fluid density:

mij = (ac-PCI)i,j,k

Substitution of Eq. (2.54) into Eq. (2.53) yields:

Wr|, = acpu, Ay

Wolg = acpusAo

and

Wy |z = acp”zAz

Substitution of Eq. (2.57) into Egs. (2.49) and (2.50) yields:

[n+l
mi'“—l/z,j,k = | alpuay) Tic1/2,).k
tn
In+l
Milg,j1pp = a“(pu9A9)|3f,/ e 9t
n
rn+l
iz iy = a"(puZAz) Zi,/',k—l/Zdt
n
tn+]
Mo Tis1/2,),k = ac(purAr)L'Hl/z,/,kdt
m
rn+l
o O jeror a”(pueAg)bi,]n/z,kdt
tn
and
tn+l

m =
Olzijk+1/2
fn

— J a(,(puZAz)L[’/_’“l/zdt

(2.56)

(2.57a)

(2.57b)

(2.57¢)

(2.58a)

(2.58b)

(2.58c)

(2.592)

(2.59b)

(2.59¢)
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Substitution of Eq. (2.56) into Eq. (2.51) yields:

tn+l

m,,, = J (acpq); ; 4dt (2.60)

m

Substitution of Eq. (2.55) into Eq. (2.52) yields:

Ma; ;= Vb:,j,k {(gﬁp)lnji - (d)p)zn,/k:| (2.61)

Substitution of Egs. (2.58) through (2.61) into Eq. (2.48) results in:

Ml i+l i
J ac(pu A, di— J a(,(pu,.A,.)|r/_+1/2!j’kdt+ J aC(p“HAGHG,-,,,I/Z,kd’
15 m o
i M+l Ml
- J ac(P”0A0)|gi,M/2,kdf+ J ac(puA;) BTN L J ac(pu-A;) ke
" " "
Ml
1
o | @t =i ()3 - @01
tn

(2.62)

Substitution of Eq. (2.7a) into Eq. (2.62), dividing by a.p,. and noting that
qsc=q/B, yields:

n+1 n+1 1+ 1

0] o e e
i B Tio1/2,),k i B Tis1/2,j,k i B 0i,i-1/2,k
[n+l tn+l tn+1
MgAg) J <MZAZ> J (uZAZ>
— — dr+ — dr— —_— dr
l ( B Oi,j+1/2,k in B Zi,jk—1/2 pt B Zijk+1/2
tlH—l
V. n+1 n
gV [yt oy
[0 B i)k B i,j,k
m
(2.63)

Fluid volumetric velocities in the r, 6, and z-directions are given by the alge-
braic analogs of Eq. (2.8); i.e.,

- kelr, e T(@it j— @i k) 2 64
Urly o =Pe A (2.64a)
’jy ’u|"i—l/2,j,k o ’i—l/2,j,k
and
B kr|r,+1/2,,,k (@ — i1, jk) 2 64b
Urlrisi o, =P A @. )
oh Bl L Fis1/2,j,k
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Likewise,
kz Ziyjyk—1/2 ((Di,j,kfl - (Di,j,k)
Uelsisaonn = Pe A (2.652)
ﬂ|zi,/,k—l/2 Zi,jk—1/2
and
k| ®if—Diirer)]
zlz; ik k1
| :ﬂ. 5ok +1/2 ( L] i,j,k+ ) (265b)
Ziyjk+1/2 c A
' /‘|z;,,-,k+1/2 Zijk+1/2
Similarly,
k9|9“/71/2,k -(q)i.jfl,k_q)i,jyk)-
Ugp 0, j—1/2,k :ﬂc , AD (2.66a)
’ ' ”'91',]—1/2,/; L 7ijk i,j—1/2,k |
and
k0|6,v,,'+1/2,,( -((Di,j,k — (I),-,j+ l,k)
M6|9i/+l/2 =P ' A6 (2.66b)
, ! |‘91,j+1/2,k L Tijk BV j+1/2,k

Substitution of Egs. (2.64) through (2.66) into Eq. (2.63) and grouping terms
results in:

tn+l
kA,

J K "'yBAr) o (@1, jk — @i i) | dr
m Ti-1/2,j,k
trwl _

kA,
+ : @ik — Diji) [dr
( (/,lBAr) N ) ( +1v]vk !]’k)
m L Tiv1/2,j,k
fn+l _
1 k,gAg)

+ B. D1 — D ji)|de
b -ri’j'k( HBAO ai,.f—l/z,k( ! j)
tu+l _

1 kgAg)
+ B. D1k — D jx) |de (2.67)
ri,j,k( /lBAe 9[]+1/2k( Jt J)
m L L1/,
tn+l _ k
AL
+ —_— (I)l‘ P —(I)i i dr
(ﬂcﬂBAZ) o ( JJk—1 »Jvk)
n L Ziyjyk—1/2
fr1+l _
kA,

+ < cm) (@i jke1 — @i jk) | dr
m L Ziyjk+1/2
tn+| wa ¢ nel ¢ "

ot [ ()7 (8

Ac B ijk B ijk



38 Petroleum reservoir simulation

Eq. (2.67) can be rewritten as:

rn+l tn+1
{Tz,»,,,kfl/z (@it —‘I’i,_/,k)}df + J [Te,',,lfl/z,k (@i j-1.x —‘I’i,./,k)}df
tn t!l
’n+1 tu+|
+ [T,LUZ’M (cbifl,j,k —q)i,j,k)]dl+ J |:Tr1+|/2y,-,k ((Di+1,j,k —q)i,j,k)}dt
[I! tﬂ
tn+l tn+l
+ [Te,-,,-ﬂ/z,k (®ijo1.k —q’i,_/,k)}df + J [Tzl-,,»,m/z (@i ks —‘Di._i,k)}df
n it
! Vb ¢ n+1 ¢ n
o=t 09
b Ac B/ B/
(2.68)
where
~(rmne)|, = (05), Ga)
Tiz1/2,j,k - c -
e Tig1/2,j,k Ar TiF1/2,j,k ,uB Tiz1/2, ),k
=Gri ( ) (2.69a)
Tix1/2,j,k
I 1 ( kgAg) :<ﬁ kgAg) (L)
i, jF1/2,k r[,j,k L’uBAG Hi’jq:l/z’k Cr[,j,kAg ei,i;I/z’k ﬂB 0

PEEE(2,69b)

=G0, 1o <E
i, j%1/2,k

— =G, . —
c Zi,j,kF1/2
Zi,j,kF1/2 ( AZ ) ZijkF1/2 <”B Zi,j,k¥1/2 a ”B Zi,j,kF1/2

(2.69c¢)

and

TZi,_f,k;]/z < C,MBAZ)

Expressions for geometric factors G for irregular grids in heterogeneous res-
ervoirs are presented in Chapters 4 and 5.

2.7.3 Approximation of time integrals

Using Eq. (2.30) to approximate integrals in Eq. (2.68) and dividing by At, the
flow equation in radial-cylindrical coordinates becomes:
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L [(q’z"?i,k—l *q’TJ,k)} TG s [(q’z -1k~ P ;k)}
T"Zl—l/z,/,k {(q)yil»j,k o q)lr{lj,k>:| + T;)iln/z,,‘,k [(q)f"'lsj k (Dl 2Js k)]
2.
o1y (o) s (0 —en,) ] GT0

. ) - th’k ? n+1 B f n
qsc,',,,k - oAt B ijk B i,j.k

Using the definition of potential difference, Eq. (2.70) becomes:

m mn n m L. _ L.
TZ,_,I_,,(?]/2 {(P,’,J’,kq _Pi,j,k) “Vijk—1/2 (Zz,_;,k—l Zz,_/,k)}

Tgr?,,,./z,k (p,’-"j lk—l?,mj k) - ,"’, 1/2, k(Zi i1k —Zijk }

Z:/QJJ (, 1Ljk pz/k) Vie 1/2/k Zi-1,jk— 1/1»}

Zlu/z.u (pl+ljk i, ) z+1/2/k Ziv1jk = k)} @271
g:,m/zk (p:j+1k p’fk) ”“/2]( Zuei k)

ke 12 ( Pijk+1 p’/k) ”k+1/2 Zrike = ”I‘)}

m Vi | ()" (#)"
Asci i = a.At (B) ijk B (B> ij.k

Eq. (2.38), the flow equation in Cartesian coordinates (x-y-z), is used for field
simulation, whereas Eq. (2.71), the flow equation in radial-cylindrical coordi-
nates (r-6-z), is used for single-well simulation. These two equations are similar
in form. The RHS of both equations represents fluid accumulation in block
(i,J, k). On the LHS, both equations have a source term represented by well pro-
duction or injection and six flow terms representing interblock flow between
block (i,j,k) and its six neighboring blocks: blocks (i — 1,j,k) and (i+1,j,k) in
the x-direction (or r-direction), blocks (i,j — 1, k) and (i,j+ 1, k) in the y-direction
(or @-direction), and blocks (7,j,k — 1) and (i, k+ 1) in the z-direction. The coef-
ficients of potential differences are transmissibilities T, Ty, and T in the x-y-z
space and T,, Ty, and T, in the r-0-z space. Egs. (2.39) and (2.69) define these
transmissibilities. The geometric factors in these equations are presented in
Chapters 4 and 5.

2.8 Summary

In this chapter, we reviewed various engineering steps involved in rendering
governing equations into algebraic equations. Governing equations, involving
both the rock and fluid properties are discretized without conventional finite-
difference or finite element approximation of PDEs. Fluid properties such as
density, FVF, and viscosity are, in general, functions of pressure. Reservoir
porosity depends on pressure and has heterogeneous distribution, and reservoir
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permeability is usually anisotropic. The basic knowledge of material balance,
FVF, potential difference, and Darcy’s law are necessary for deriving flow
equations in petroleum reservoirs. Rectangular coordinates and radial coordi-
nates are two ways of describing reservoirs in space. Although it is common
to study reservoirs using rectangular coordinates, there are a few applications
that require using radial-cylindrical coordinates. Using the engineering
approach, the single-phase flow equation can be derived in any coordinate
system. In this approach, the reservoir first is discretized into blocks, which
are identified using the engineering notation or any block-ordering scheme.
The second step involves writing the fluid material balance for a general reser-
voir block in a multidimensional reservoir over the time interval " < ¢ < ™! and
combining it with Darcy’s law and the formation volume factor. The third
step provides for an evaluation method of the time integrals in the flow
equation that was obtained in the second step. The result is a flow equation
in algebraic form with all functions evaluated at time 7", where " <7" <r™".
In Chapter 7, we demonstrate how the choice of time #” as old time level 7",
new time level #* *', or intermediate time level #"*'/* gives rise to the explicit
formulation, implicit formulation, or the Crank-Nicolson formulation of the
flow equation.

2.9 Exercises

2.1 Listthe physical properties of rock and fluid necessary for the derivation of
single-phase flow equation.

2.2 Enumerate the three basic engineering concepts or equations used in the
derivation of a flow equation.

2.3 Eq. (2.33) has four major terms, three on the LHS and one on the RHS.
What is the physical meaning of each major term? What are units of each
major term in the three systems of units? Using customary units, state the
units of each variable or function that appears in Eq. (2.33).

2.4 Compare Eq. (2.33) with Eq. (2.37), that is, identify the similar major
terms and the extra major terms in Eq. (2.37). What is the physical mean-
ing of each of these extra terms and to which direction do they belong?

2.5 Compare Eq. (2.33) with Eq. (2.38), that is, identify the similar major
terms and the extra major terms in Eq. (2.38). What is the physical mean-
ing of each of these extra terms? Group the extra terms according to the
direction they belong.

2.6 Compare the 3-D flow equation in rectangular coordinates (x-y-z) in
Eq. (2.38) with the 3-D flow equation in radial-cylindrical coordinates
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(r-6-z) in Eq. (2.71). Elaborate on the similarities and differences in these
two equations. Note the differences in the definition of geometric factors.

2.7 Consider the 2-D reservoir shown in Fig. 2.21. This reservoir is discretized

using 5 x 5 blocks but it has irregular boundaries, as shown in the figure.

Use the following schemes to identify and order the blocks in this
IeServoir:

a. Engineering notation
b. Natural ordering by rows
c. Natural ordering by columns
d. Diagonal (D2) ordering
e. Alternating diagonal (D4) ordering
f. Zebra ordering
g. Cyclic ordering
h. Cyclic-2 ordering
e
h
Active block j=8 &Y
j=4
Inactive block
j=3
j=2
z Y 1 j=1

FIG. 2.21 2-D reservoir representation in Exercise 2.7.

2.8 Consider single-phase flow in a 1-D inclined reservoir. The flow equation

for block i in this reservoir is expressed as Eq. (2.33).

a. Write Eq. (2.33) for block i assuming 7" =t". The resulting equation is
the explicit formulation of the flow equation for block i.

b. Write Eq. (2.33) for block i assuming 7" =¢"*'. The resulting equation
is the implicit formulation of the flow equation for block i.

c. Write Eq. (2.33) for block i assuming /" = 7"*"?. The resulting equation
is the Crank-Nicolson formulation of the flow equation for block i.

2.9 Consider single-phase flow of oil in a 1-D horizontal reservoir. The reser-
voir is discretized using six blocks as shown in Fig. 2.22. A well that is
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located in block 4 produces at a rate of 600STB/D. All blocks have

Ax=220ft, Ay=1000ft, h=90ft, and k,=120md. The oil FVF, viscos-

ity, and compressibility are 1.0RB/STB, 3.5¢cP, and 1.5x 1077 psi ',

respectively.

a. Identify the interior and boundary blocks in this reservoir.

b. Write the flow equation for every interior block. Leave the RHS of flow
equation without substitution of values.

c. Write the flow equation for every interior block assuming incompress-
ible fluid and porous medium.

600 STB/D
&
z : 90 ft

y 1| 2 | 3| 4if 5| s
X < )\Q@“

220 ft

FIG. 2.22 1-D reservoir representation in Exercise 2.9.

2.10 Consider single-phase flow of water in a 2-D horizontal reservoir. The
reservoir is discretized using 4 x 4 blocks as shown in Fig. 2.23. Two
wells are located in blocks (2,2) and (3,3), and each produces at a rate
of 200STB/D. All blocks have Ax=200ft, Ay=200ft, h=50ft, and
ky,=k,=180md. The oil FVF, viscosity, and compressibility are
1.0RB/STB, 0.5¢P, and 1 x 107° psi~', respectively.

a. Identify the interior and boundary blocks in this reservoir.

b. Write the flow equation for every interior block. Leave the RHS of
flow equation without substitution of values.

c. Write the flow equation for every interior block assuming incom-
pressible fluid and porous medium.

Y /13/144;?/16
LT T
////

‘ 200 ft

FIG. 2.23 2-D reservoir representation in Exercise 2.10.
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Consider the 2-D horizontal reservoir presented in Fig. 2.21. All blocks
have same dimensions (Ax=300ft, Ay=300ft, and #=20ft) and rock
properties (k,=140md, k,=140md, and ¢)=0.13). The oil FVF and vis-
cosity are 1.0RB/STB and 3cP, respectively. Write the flow equations
for the interior blocks in this reservoir assuming incompressible fluid
flow in incompressible porous medium. Order the blocks using natural
ordering along the rows.

Consider the 1-D radial reservoir presented in Fig. 2.19. Write the flow
equations for the interior blocks in this reservoir. Do not estimate inter-
block radial transmissibility. Leave the RHS of flow equations without
substitution.

Consider the 2-D radial reservoir presented in Fig. 2.20b. Write the flow
equations for the interior blocks in this reservoir. Do not estimate inter-
block radial or vertical transmissibilities. Leave the RHS of flow equa-
tions without substitution.

A single-phase oil reservoir is described by five equal blocks as shown in
Fig. 2.24. The reservoir is horizontal and has homogeneous and isotropic
rock properties, k=210md and ¢=0.21. Block dimensions are
Ax=375ft, Ay=450ft, and h=55ft. Oil properties are B=1RB/STB
and y=1.5cP. The pressure of blocks 1 and 5 is 3725 and 1200 psia,
respectively. Block 4 hosts a well that produces oil at a rate of
600 STB/D. Find the pressure distribution in the reservoir assuming that
the reservoir rock and oil are incompressible. Estimate the rates of oil loss
or gain across the right boundary of block 5 and that across the left bound-
ary of block 1.

600 STB/D

1 )

&,
z

3725 psia | 11200 psia
y 1| 2| 3| ails
X <l AE)““

375 ft

55 ft

FIG. 2.24 1-D reservoir representation in Exercise 2.14.

2.15

A single-phase water reservoir is described by five equal blocks as shown
in Fig. 2.25. The reservoir is horizontal and has k=178 md and ¢ =0.17.
Block dimensions are Ax=275ft, Ay=650ft, and 7 =30ft. Water prop-
erties are B=1RB/B and y=0.7cP. The pressure of blocks 1 and 5 is
maintained at 3000 and 1000 psia, respectively. Block 3 hosts a well that
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240 B/D
&
z T 30t

3000 psia ' ' 1000 psia
y 1 2 3 i 4 5
X oy

A\
50
275 1t y

FIG. 2.25 1-D reservoir representation in Exercise 2.15.

2.16

217

produces water at a rate of 240B/D. Find the pressure distribution in the
reservoir assuming that the reservoir water and rock are incompressible.
Consider the reservoir presented in Fig. 2.14 and the flow problem described
in Example 2.5. Assuming that both the reservoir fluid and rock are incom-
pressible and given that a strong aquifer keeps the pressure of all boundary
blocks at 3200 psia, estimate the pressure of blocks (2,2) and (3,2).

Consider single-phase flow of water in a 2-D horizontal reservoir. The
reservoir is discretized using 4 x 4 equal blocks as shown in Fig. 2.26.
Block 7 hosts a well that produces 500 B/D of water. All blocks have
Ax=Ay=2301t, h=_380ft, and k,=k,=65md. The water FVF and vis-
cosity are 1.0RB/B and 0.5cP, respectively. The pressure of reservoir
boundary blocks is specified as py=p3=ps=ps=p1>=2500,
P1=ps=po=p13=4000, and p14=p15=p16=23500psia. Assuming that
the reservoir water and rock are incompressible, calculate the pressure of
blocks 6, 7, 10, and 11.

y 4000 psia / 3500 psia / 3500 psia /3500 psia,
13 14 15 16
4000 psia 2500 psia
9 10 / 11 / 12
"/

4000 psia 5$ B/ID 2500 psia
5 6 7

L
£ 4000 psia /2500 psia /2500 psig 4 2500 psia
S 1 2 3 4

230 ft

FIG. 2.26 2-D reservoir representation in Exercise 2.17.
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3.1 Introduction

The importance of the control volume finite difference (CVFD) method lies in
its capacity to use the same form of flow equation for 1-D, 2-D, and 3-D flow
problems regardless of the ordering scheme of blocks. The same theme applies
to energy balance equations for solutions to nonisothermal problems (Liu et al.,
2013). The only difference among 1-D, 2-D, and 3-D flow equations is the def-
inition of the elements for the set of neighboring blocks. The CVFD method is
mainly used to write flow equations in a compact form, which is independent of
the dimensionality of flow, the coordinate system used, or the block ordering
scheme. This chapter introduces the terminology used in the CVFD method
and the relationship between this method and the traditional way of writing
finite-difference equations presented in Chapter 2.

3.2 Flow equations using CVFD terminology

In petroleum engineering, Aziz (1993) was the first author to refer to the CVFD
method. However, the method had been developed and used by others without
giving it a name (Abou-Kassem, 1981; Lutchmansingh, 1987; Abou-Kassem
and Farouq Ali, 1987). The terminology presented in this section is based on
a 2001 work published by Ertekin, Abou-Kassem, and King. With this

Petroleum Reservoir Simulation. https://doi.org/10.1016/B978-0-12-819150-7.00003-7
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terminology, we can write the equations for 1-D, 2-D, and 3-D flow in compact
form, using Cartesian or radial—cylindrical coordinates. For the flow equation in
Cartesian space, we define y, , v, , and . as the sets whose members are the
neighboring blocks of block # in the directions of the x-axis, y-axis, and z-axis,
respectively. Then, we define y,, as the set that contains the neighboring blocks
in all flow directions as its members; that is,

v, =y, Uy, Uy, (3.1a)

If there is no flow in a given direction, then the set for that direction is the
empty set, { }. For the flow equation in radial-cylindrical space, the equation that
corresponds to Eq. (3.1a) is

W=, Uy, Uy, (3.1b)

where ;. , wy , and . are the sets whose members are the neighboring blocks
of block # in the r-direction, #-direction, and z-axis, respectively.

The following sections present the flow equations for blocks identified by
engineering notation or by block ordering using the natural ordering scheme.

3.2.1 Flow equations using CVFD terminology and engineering
notation

For 1-D flow in the direction of the x-axis, block 7 is termed in engineering nota-
tion as block i (i.e., n=i) as shown in Fig. 3.1a. In this case,

v, ={({-1),([+1)} (3.22)
wy, ={} (3.2b)
and
v., ={} (3.2¢)
[ ]
(i, k+1)
L4 °
(ij+1) (i,j+1,k)
X z
ol e (e | | @ | O @ |£‘ o | o | @
-1 | i+1 (-1 | G) [+ x =100 dik i+ 14k
—_— |
X X o R
(ij—1) ° (i,j—1,k)
(ij.k=1)
(@) (b) (©)

FIG.3.1 A block and its neighboring blocks in 1-D, 2-D, and 3-D flow using engineering notation.
@ y;={G—D,(@+D)}

® yi;={0j—D,(— L, +1,),@j+ 1D}

© W= {00 k= 1),(,j = 1,0, = 1,1, ), i+ 1,),6), (0, + 1K), (0., k+ 1) }
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Substitution of Eq. (3.2) into Eq. (3.1a) results in

vy =y ={(—1), (+U{U{} ={(—1), i+ 1)} (3.3)

The flow equation for block 7 in 1-D flow reservoir is expressed as Eq. (2.33):

Ty 1/2{(191 1 P?l) _7711/2(21'—1 Z)} +TT+1/2 [(szn _an) _71""+1/2(Zi+1 _Zi)]

+m_vh, (f n+1_<£ n
T = qar |\B), B).

which can be written in CVFD form as

V. n+1 n
> T (er - (ZI—Zi)]+qZZ-,:ath[(%>_ —(%)] (3.4b)

ley; i

(3.4a)

where

Tm

=Tl =T (3.5)

LIFL = DXz
and transmissibilities T,'C',’:”2 are defined by Eq. (2.39a). In addition,
Vieri =Vim1 =Vix1) (3.6)

For 2-D flow in the x-y plane, block 7 is termed in engineering notation as
block (i,j), that is, n=(i,j), as shown in Fig. 3.1b. In this case,

w,, ={({—1.j), (i+1))} (3.7a)
wy, ={(0,j—1), (0, j+1)} (3.7b)

and
., = {} (3.7¢)

Substitution of Eq. (3.7) into Eq. (3.1a) results in
wo=wi,;={{—L)),(+ L) u{G;—1),Gj+D)}IU{}
={0j—1),(=1)), ((+1.)), @ j+1)}
Eq. (2.37) expresses the flow equation for block (i,)) as
T}r"f,,fl/z [(plmj 177, 1) z/ 1/2( i.j-1 72"’/)]
T8, [(PH,,' *Pm‘) =17 i *Zf.j)]

Y, [ (1’1""+ Lj *I’Tj> i1/ (Zis1— Ziqj)]
Vi,

+T;ni,j+]/2 [(ijH _plr{lj) _}/T]*'l/2 (Zi’jH _Zi’j)] +q§n"'¥f :(xL-AI

(3.8)

@)

(3.9a)
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which can be written in CVFD form as

m m m m m Vhi,' ¢ n+1 ¢ 8
Z T (i.)) [(Pz _pi,j) —Y1,G.j) (ZI_Zi,j)] 'y :aL.Ajt [(B) -~ \B/) .

lewy; ; L7 LJ
(3.9b)
where
Tz, 6 = Tl 1.0 = T (3.102)
and
). ) = T e =T (3.10b)
Transmissibilities T;" ey and T;,l,,;l/z have been defined by Eqs. (2.39a) and
(2.39b), respectively. In addmon,
Vi1 ) = Vi, 51,5 = Vi1 /2, (3.112)
and
Vw0, o) =Vl o) =i /2 (3.116)

For 3-D flow in the x-y-z space, block 7 is termed in engineering notation as
block (i,j,k); that is, n=(i,/, k), as shown in Fig. 3.1c. In this case,

={(i—Lj.k),(i+1,j.k)} (3.12a)
‘//y,,={(i,j—1,k),(i,j+1,k)} (3.12b)

and
w., ={(i.j,k=1), i,/ k+1)} (3.12¢)

Substitution of Eq. (3.12) into Eq. (3.1a) results in

l// llll/

=T, + 1Jo YU = 1K), i+ LY U{ (o k= 1), oo b 1)}

(k= Vs (i LR (1 1K) 1o R, (1 1K), (K 1)}
(3.13)

The flow equation for block (i,j,k) in 3-D flow reservoir is expressed as
Eq. (2.38):

m m m m
Tz,-,,v,k,l/z [(pi,j,kfl _pi,j,k) “Vijk-1/2 (Zisjqk—l —Zi,.i,k)}
m n mn m .. —_ Lo
15 s {(pi,jfl,k _Pt,j,k) — 11 i Gtk Zw:k)}
m m m m
+Tx,‘71/2,,‘,k |:(pi—l,j»k _pf»j,k) - yi—]/lj,k(z"*l»/’,k _Zi,j,k):|

m m m m . R 2
+Tx,~+1/2,j,k [(piﬂ,j,k _pi,j,k) _7i+1/2,j,k (Zl+1»1J< Zw.k)}
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m m m m
+Ty,»,,<+1/2,k [(Pi,j+ 1.k *Pi,j,k) ~Vij+1/2.k (Zi,j+ Lk — Zi,.i,k)}

m m m m
+Tz,»,,,k+1/2 [(f’i,j,kn *Pi,j,k> —Vijk+1/2 (Zi,j,k+1 *Zi,j,k)]

v, r n+1 n
v =V (d)) _ <¢’> (3.14)
s a.At | B ijk B i,k

which can be written in CVFD form as

> T | (1 =Pi) = iin (@=Zun) |+,

ey
V},. . ¢ n+1 ¢ n
Vo[ (N (¢ 3.14b
a. At l(B e B (3.14b)
where
Ts1g.0. Gogok) = TG, 51500 = e (3.15a)
TG 1.0, 00 = TG, 1.0 = T e (3.15b)
and
TG 1), ) = TGy, G ke)) = T2 i (3.15¢)
As mentioned earlier, transmissibilities TZ;UW, T;ffmm, and T’Z’Lm/z have
been defined in Eq. (2.39). Also,
3’?&1,;‘, k), (i, k) = 727,,,', &), ((F1,, k) = Y?’;’Fl/z)_iyk (3.16a)
VG518, (oo k) = V(g R, (o1, K) = Vi j1 2,k (3.16b)
and
Vligbert), o0) = Vi), Gokee) = Vigest /2 (3.16c)

Eq. (3.4b) for 1-D flow, Eq. (3.9b) for 2-D flow, and Eq. (3.14b) for 3-D
flow reduce to

\% n+1 n
ZTZIH[(IJTI):!”)7Tn(ZlZn)]+qg;nTZ{(%) (%)1 (3.17)

ley, n

where, as mentioned before, n=i for 1-D flow, n=(i,j) for 2-D flow, and
n=(i,j,k) for 3-D flow, and the elements of set v, are defined accordingly
(Eq. 3.3, 3.8, or 3.13).

Note that the elements of the sets that contain the neighboring blocks given
by Eqgs. (3.3), (3.8), and (3.13) for 1-D, 2-D, and 3-D, respectively, are ordered
as shown in Fig. 3.2. The following examples demonstrate the use of CVFD
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[ ]
7
[ ]
6
y
z
o [} [ J
Z»x 3 4 5
[}
® 2

1

FIG. 3.2 The sequence of neighboring blocks in the set y; ;; or y,,.

terminology to write the flow equations for an interior block identified by engi-
neering notation in 1-D and 2-D reservoirs.

Example 3.1 Consider the reservoir described in Example 2.4. Write the flow
equation for interior block 3 using CVFD terminology.

Solution

We make use of Fig. 2.12, which gives block representation of this reservoir.
For block 3, y,,={2,4}, y,,={}, and y_ ={}. Substitution into Eq. (3.1a)
gives w3 ={2,4}U{}U{}={2,4}. The application of Eq. (3.17) for n=3
produces

1% n+1 n
S T ) il 28] e = [(%) -(3) ] G1)

ley, 3 3

which can be expanded as

T35 [(P5 = pY) = 155(Z2 = Z3) | + T35 (P = PY) = Vi3 (Za = Z3)]

won Ve [(2\T (B (3.19)
T =aat|\B), ~\B),

For this flow problem,

270 x (900 x 100)
2x1x250

=54.7722 STB/D-psi (3.20)

Z,=173=17, for a horizontal reservoir, and ¢i.,= —400 STB/D.
Substitution into Eq. (3.19) yields

m m k‘tA
Ty, =Ty :ﬁ“;TAXx: 0.001127 x

v n+1 n
(54.7722) (py = p3) +(54.7722) (p§ — p§) —400 = aC[Z, Kg) . <g> ;

(3.21)

Eq. (3.21) is identical to Eq. (2.36), obtained in Example 2.4.
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Example 3.2 Consider the reservoir described in Example 2.5. Write the flow
equation for interior block (3,2) using CVFD terminology.

Solution

We make use of Fig. 2.14, which gives block representation of this reser-
voir. For block (3,2), w.,=1{(2,2),4,2)}, w, ,={G,1),(3,3)}, and
w.,=1{}. Substitution into Eq. (3.l1a) gives w3,={(2,2),(4,2)}U{(3.1),
3,3)}u{}=1{@3,1),2,2),(4,2),(3,3)}. The application of Eq. (3.17) for
n=(3,2) produces

Z Tzr,n(3,2) [(P;n _ngz) - 7?,1(3,2) (Z _Z3,2)] +‘IZZ-3,2

leys ,

_Vb3,z ¢ n+1 ¢ n
acAr l(§> 3.2 - (§> 3,21 422

which can be expanded as

T oy | (PR = PA) =0y (2o = 22|
152,62 [(p“ P32) = 7(2).62) 222—232)}
+T142).3.2) [(P4 2= P32) ~Van) 52)(Za2 =23 2)} (3.23)

)~
12) = 133,62 233—232)}
1

—DP3
? n+ ? n
B/s, B

For this flow problem,

) ) kA 270 x (300 x 100)
T(;Q),(S,Z) - T<ZL2)’(372) :ﬁcﬂiBAx == 0.001127 X 2 % 1 % 250
=18.2574 STB/D-pSi (3.24)
., koA, 220 % (250 x 100)
Th62) = Th.60) = ey gp, = 0001127 X =22
— 10.3308STB /D _psi (3.25)

Z31=222=23,="274,="233for ahorizontal reservoir, and g, ,=— 400 STB/D.
Substitution into Eq. (3.23) yields

(10.3308) (3. — P3,) + (18.2574) (p5, —p3,) +(18.2574) (P, — P5ln)

Q-] o

Eq. (3.26) is identical to Eq. (2.42), obtained in Example 2.5.

Vb3,2

10.3308) (p5'~ —p7,) —400 =
+( )(P3,3 P3,2) a. Al
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[ )
n+nyny
[ ] [ ]
n+ny n+nx
y
z
[ ) [} [ ] y [} [ ) [ J [} [} [ ]
n-1 n n+1 n-1 n n+1 X n-1 n n+1
X
a o °
( ) n—ny ° n—ny
n—nyny
(b)
(c)

FIG. 3.3 A block and its neighboring blocks in 1-D, 2-D, and 3-D flow using natural ordering.
@ w,={(n—1),(n+1)}

®) y,={(1—ny,(n—1),(n+1),(n+ny)}

© wp={(n—nmny),(n—ny),(n—=1,(n+1),(n+ny), (n+nny)}

3.2.2 Flow equations using CVFD terminology and the natural
ordering scheme

The flow equation in this case has one generalized form that is given by
Eq. (3.17) with the corresponding definition of y,, for 1-D, 2-D, or 3-D flow.
Blocks in natural ordering can be ordered along rows or along columns. In this
book, we adopt natural ordering along rows (with rows being parallel to the x-
axis) and refer to it, for short, as natural ordering. From this point on, all related
discussions will use only natural ordering.

Fig. 3.3a shows block n in 1-D flow in the direction of the x-axis. In this case,

v, ={(n—1),(n+1)} (3.27a)
w, =1{} (3.27b)

and
v, =1{} (3.27¢)

Substitution of Eq. (3.27) into Eq. (3.1a) results in

y, ={(n=1), (n+ 1)} U{}U{}

—{(n=1). (n+1)) 529
Fig. 3.3b shows block n in 2-D flow in the x-y plane. In this case,

w, ={(n—1),(n+1)} (3.29a)

vy, ={(n—ny), (n+n)} (3.29b)

and

w., =1} (3.29¢)
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Substitution of Eq. (3.29) into Eq. (3.1a) results in

w,={(n—1),(n+ 1)}U{(n—ny), (n+n,)}U{}
={(n—ny),(n=1),(n+1), (n+n,)}

Fig. 3.3c shows block n in 3-D flow in the x-y-z space. In this case,

(3.30)

w,, ={(n—1),(n+1)} (3.31a)
vy, ={(n—ny), (n+n)} (3.31b)

and
w., ={(n—nwmy), (n+nwny)} (3.31¢)

Substitution of Eq. (3.31) into Eq. (3.1a) results in

v,={(n=1),(n+1)}U{(n—ny), (n+nx)}U{(n—nxny), (n+nxny)}
={(n—nwmy), (n—ny), (n=1), (n+1), (n+ny), (n+nny)} (3.32)

Note that the elements of the sets containing the neighboring blocks given by
Egs. (3.28), (3.30), and (3.32) for 1-D, 2-D, and 3-D are ordered as shown in
Fig. 3.2. Now, the flow equation for block 7 in 1-D, 2-D, or 3-D can be written

in CVFD form again as Eq. (3.17),
Vb d’ n+1 ¢ n
~ = - = 1
&), )} o

a:At

STl =) v (2= 2Z)] + 4, =

ley,

where transmissibility 777, is defined as

m __m —m
Tn:Fl,n - Tn,n:Fl = TXi;l/z,/,k (333&)
m __m —m
Tn¥nx,n - T’l,n$".\~ - T)’i,ﬁl/Z,k (333]3)
and
m __m — m
Tn$nxn}.,n - Tn,nIn,\,n}, = Tz," jkE12 (333C)

In addition, fluid gravity y/}, is defined as

721,;111 = 72111,;1 = 7&1/2,;,k (3.34a)
Vnn, = Vnnon = yzl_iﬂFl/Z,k (3.34b)

and
Vnnin, = Vgnn = Vijaz1 /2 (3.34c)

We should mention here that, throughout this book, we use subscript n to
refer to block order while superscripts n and n+1 refer to old and new time
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levels, respectively. The following examples demonstrate the use of CVFD ter-
minology to write the flow equations for an interior block identified by natural
ordering in 2-D and 3-D reservoirs.

Example 3.3 As we did in Example 2.5, write the flow equations for interior
block (3,2) using CVFD terminology, but this time, use natural ordering of
blocks as shown in Fig. 3.4.

Solution

Block (3,2) in Fig. 2.14 corresponds to block 7 in Fig. 3.4. Therefore, n=17.
For n=7, y., ={6,8}, w,, ={3,11}, and y. = { }. Substitution into Eq. (3.1a)
results in y7=1{6,8} U{3,11}U{}={3,6,8,11}.

The application of Eq. (3.17) produces

Vv n+1 n
Sl —py) — v (Zi— 7)) +CIZZ-7=athK§> - (g) 1 (3.35)

ley, 7

which can be expanded as
T3 [(p3 —P7) = v39(Zs = Z3)| + Te7 [ (P —P7) —16.4(Zs = Z7)]
+T5 [ (0§ —17) = 187(Zs = Z9)] + T1 5 [ (P = P7) = 7117 (20 = Z1)]

_— Vb7 ¢ n+1 d) n
s = oo [(B>7 - <B>7] (3.36)

Here again,
kA, 270 x (300 x 100)
", =Ty, =p.——=0.001127
61 =Ts1=Pe gy T ax1x250
= 18.2574 STB/D-psi (3.37)

kA 220 x (250 x 100)
T =T =522 0001127
31 =Ty =Pe gy XX 1x300
— 103308 STB/D-psi (3.38)

z 400 STB/D
y 250 ft /

300V 1 2 3 4 j=2

100 ft i=1
i=1 i=2 i=3 i=4
FIG. 3.4 2-D reservoir described in Example 3.3.
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Z3=7c=177=23=7, for a horizontal reservoir, and ¢i., = —400 STB/D.
Substitution into Eq. (3.36) gives

(10.3308) (p — p) + (18.2574) (pi — ) + (18.2574) (p§ — p')

Vi, | (¢ (¢)" (3.39)
B 7 B 7

a.At
Eq. (3.39) corresponds to Eq. (2.42) in Example 2.5, which uses engineering
notation.

+(10.3308) (p; — i) — 400 =

Example 3.4 Consider single-phase fluid flow in the 3-D horizontal reservoir in
Example 2.6. Write the flow equation for interior block (3,2,2) using CVFD ter-
minology, but this time, use natural ordering of blocks as shown in Fig. 3.5.

Solution

Block (3,2,2) in Fig. 2.15 is block 19 in Fig. 3.5. Therefore, n=19. For
n=19, y, =1{18,20}, v, ={15,23}, and y. ={7,31}. Substitution into
Eq. (3.1a) gives w19={18,20}U{15,23}U{7,31}={7,15,18,20,23,31}.
The application of Eq. (3.17) produces

Vb ¢ n+1 ¢ n
Z Tl [(P7" = Plo) =710 (Zi— Z10)| + ql,, “a :t (E> - \B
leyro ¢ 19 19
(3.40)
33| 34| 35| 36 |j=3
k=3 | 29| 30 | 31| 32 [j=2
25| 26 | 27 | 28 |j=1
v

—> 133.3 STB/D

=3 k=2 | 17| 18 ./ 20 |j=2

k=3 ! 19

k=2 =2

P =1 13| 14 | 15| 16 | j=1
i=1 i=2 (=3 i=4 250 f

(@)

300ft| | 9 | 10| 11| 12 |j=3

I
N

k=1]| 5 6 7 8 |J

1] 2] 3| 4 |j=1

i=1 =2 i=3 i=4

(b)

FIG. 3.5 3-D reservoir described in Example 3.4. (a) Reservoir representation and (b) natural
ordering of blocks.
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This equation can be expanded as
T3 (05 =Po) =77 10(Z1 = Z10)] + T15 10 [ (s — Po) = 715.10(Z1s — Z1o)]
+T75 19 [(prlns *P%) —71s.10(Z1s *219)] +T5 19 [(p% *P%) —720,19(Z20 *219)}

+T55 19 [(Pg's _I’r1n9) —723,19(Z23 —219)] +T75) 19 [(1”3711 _P71n9) —731.19(Z31 —Zl‘))}
m

v :h f n+17 f n
0 g At [\B/ 1o B/,

For block 19, lezl52218:Z19:Z20:Z23, Z7—Z19:3333 ft,
Z31 —Zlgz —33.33 ft, and qg}'w: —133.3 STB/D Since AX18,19:AX20,19
—Ax=250ft, Ayys.10=Ay»3 10=Ay=300 ft, Az jo=Az3; jo=Az=33.33 ft,
and u, p, and B are constants, then 75 10=y31 10=y.pg=0.21584 x 10>
x55x32.174=0.3819 psi/ft,

(3.41)

keAx 270 x (300 x 33.33)
T o =T0 o= f.—t =0.00112
th0 =To0.10 =P = 000X 350
=6.0857 STB/D-psi (3.42)
kA 220 x (250 x 33.33)
T =T ,=p.—2=0.00112
15.19 = 123,19 ﬂL”BAy 0.001127 x 2% 1300
=3.4436 STB /D-psi (3.43)

and

kA, 50 x (250 x 300)
T o=T5 o=p.——=0.001127 x ————— =
7,19 = 431,19 'B‘yBAz x 2x1x33.33

=63.3944 STB /D-psi (3.44)
Substitution into Eq. (3.41) gives
(63.3944) [(p — i) — 12.7287] + (3.4436) (' — ') + (6.0857) (¢l — ')
+(6.0857) (phy — ply) + (3.4436) (phy — plly) +(63.3944) [ (p5 — plly) +12.7287]

_Vblg ¢ n+1 ¢ n
_133.3_El(1§>19 —(§>1J (3.45)

Eq. (3.45) corresponds to Eq. (2.47) in Example 2.6, which uses engineering
notation.

3.3 Flow equations in radial-cylindrical coordinates using
CVFD terminology

The equations presented in Sections 3.2.1 and 3.2.2 use Cartesian coordinates.
The same equations can be made specific to radial-cylindrical coordinates by
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TABLE 3.1 Functions in Cartesian and radial-cylindrical coordinates.

Function in Cartesian Function in radial-

coordinates cylindrical coordinates
Coordinate X r

y 6

V4 V4
Transmissibility Ty T,

T, To

. T,
Set of neighboring blocks Wx W,
along a direction

Yy Yo

Yz Yz
Number of blocks along a ny n,
direction

ny, Ny

n, n,

replacing the directions (and subscripts) x and y with the directions (and sub-
scripts) r and 0, respectively. Table 3.1 lists the corresponding functions for
the two coordinate systems. As such, we can obtain the generalized 3-D flow
equation in the r-0-z space for block n—termed block (7,j,k) in engineering
notation, meaning n = (i, j, k)—from those in the x-y-z space, Egs. (3.12) through
(3.16). Keep in mind that i, j, and k are counting indices in the r-direction,
0-direction, and z-axis, respectively. Therefore, Eq. (3.12) becomes

w,, ={(—1,j,k), (i+1,j,k)} (3.462)

wo, ={(i.j—1.k),(i,j+1,k)} (3.46b)
and

w., ={(./,k=1), (i, j,k+1)} (3.46¢)

Substitution of Eq. (3.46) into Eq. (3.1b) produces

Y WI/A
{(:—1 Jok), i+ 1,7, k) U{(i, = 1,k), (1, + LK) UL (i, j, k= 1), (i, j k+ 1)}
={(0.j,k=1), (1.j= 1L k), (i = 1,j. k), (i+1,j, k), (i, j+ 1, k), (i, j, k+1)}
(3.47)
which is identical to Eq. (3.13).
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The flow equation for block (i,j,k), represented by Eq. (3.14a), becomes
L [(p?’,- k-1 —Pz"flj,k) — 11w Ziam1 = 2, i.k)}
,,I/Zk{(l’ulk pz)k) 71,1/2/< Zij-1k—Zijk

m

it ib ( i—lj,k_Pi/k) vk Gimrin = Zij

11+|/z,A (pl +1Ljk Jk

)]
J
Vi1 ju(Zivnja— k)} (3.48a)
)
)

[
[ )1

,,H/U[(P,,nk jk) z,+1/2k Zij+1k— Zl/k}
{ )-r )

m
Piike1 —Pijk 1,k+1/2 Zijk+1—Zijk

<?)n+l_<g)n
B i)k B i)k

Eq. (3.14b), the flow equation in CVFD terminology, retains its form:

> T [ (P?" —P?f,-,k) 1 (Zi— Zi,j,k)] + s,

ley; ik

Vbl,k ¢ n+l ¢ n
T a At l(ﬁ) ik B (E) i,j,k] (3.48b)

Eq. (3.15), which defines transmissibilities, becomes

~I,A+1/2

7.0, 600 = T, 631,00 = T (3492)

TG 510, 600 = TG00, 71,0 = T8, 1o (3.49b)
and

T(nil,j, kF1), (g, k) = T(r;l,j»k)» (i) kF1) = TZI/ kF1/2 (3.490)

Transmissibilities in radial-cylindrical coordinates, T’ 12 0,0 and

T are defined by Eq. (2.69). Note that gravity terms as described by

ZijkF1/2’

Eq. (3.16), remain intact for both coordinate systems:

V17,00, (27, 0) = V@i, 1) = V12, 0k (3.502)

VG710, ) = V(R 1,0 = Vi1 2k (3.50b)
and

YGjokr1), (k) =Yook, Gk t) = Viogkl /2 (3.50c)

For 3-D flow in the 7-6-z space, if we desire to obtain the equations in CVFD
terminology for block n with the blocks being ordered using natural ordering,
we must write the equations that correspond to Egs. (3.31) through (3.34) with
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the aid of Table 3.1 and then use Eq. (3.17). The resulting equations are listed as
follows:

w,, ={(n—1),(n+1)} (3.51a)
wo, ={(n—n.), (n+n,)} (3.51b)

and
., ={(n—nng), (n+nng)} (3.51c)

Substitution of Eq. (3.51) into Eq. (3.1b) results in
v, ={(n=1), (n+ )} U{(n—n;), (n+n.)} U{(n—nyng), (n+n:ng)}
={(n—nyng), (n—n,),(n—=1), (n+1), (n+n,), (n+nmngy)} (3.52)

Now, the flow equation for block # in 3-D flow can be written again as
Eq. (3.17):

1% n+1 n
S e o | (Y (A

ley, n n

where transmissibility 77, is defined as

T =Toe =T (3.53a)
Totenn=Towen, =T (3.53b)

and
TZIJFn,ng,n = szn:Fnl.ng = T_fnl, k)2 (3530)

In addition, fluid gravity y7’, is defined as

Vool = Vngin = 7’?1;1/2,1‘,k (3.54a)
Viongn, = Vnnn = Vi jF1/2.k (3.54b)

and
y:fnin,.ng - y:tnin,,ng,n = y;ﬁj,kilﬂ (354C)

There are two distinct differences, however, between the flow equations in
Cartesian (x-y-z) coordinates and radial-cylindrical (7-0-z) coordinates. First,
while reservoir external boundaries exist along the y-axis at j=1 and j=n,,
there are no external boundaries in the @-direction because the blocks in this
direction form a ring of blocks; that is, block (i,1,k) is preceded by block
(i,ng, k), and block (i,ng, k) is followed by block (i, 1,k). Second, any block in
Cartesian coordinates is a candidate to host (or contribute to) a well, whereas
in radial-cylindrical coordinates, only one well penetrates the inner circle of
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blocks parallel to the z-direction, and only blocks (1,J,k) are candidates to con-
tribute to this well.

3.4 Flow equations using CVFD terminology in any block
ordering scheme

The flow equation using CFVD terminology for block # in any block ordering
scheme is given by Eq. (3.17), where y,, is expressed by Eq. (3.1). The elements
contained in sets y, , w, , and . are, respectively, the neighboring blocks of
block n along the x-axis, y-axis, and z-axis for Cartesian coordinates, and the
elements contained in sets ., wy , and y are, respectively, the neighboring
blocks of block # in the r-direction, #-direction, and z-axis for radial-cylindrical
coordinates. The only difference between one ordering scheme and another is
that the blocks in each scheme have different orders. Once reservoir blocks are
ordered, the neighboring blocks are defined for each block in the reservoir, and
finally, the flow equation for any reservoir block can be written. This is in rela-
tion to writing the flow equations in a given reservoir; the method of solving the
resulting set of equations is however another matter (see Chapter 9).

3.5 Summary

A flow equation in CVFD terminology has the same form regardless of the
dimensionality of the flow problem or the coordinate system; hence, the objective
of CVFD terminology is to write flow equations in compact form only. In CVFD
terminology, the flow equation for block n can be made to describe flow in 1-D,
2-D, or 3-Dreservoirs by defining the appropriate set of neighboring blocks (y,,).
In Cartesian coordinates, Egs. (3.3), (3.8), and (3.13) define the elements of y,, for
1-D, 2-D, and 3-D reservoirs, respectively. Eq. (3.17) gives the flow equation,
and transmissibilities and gravities are defined by Egs. (3.15) and (3.16). Equiv-
alent equations can be written for radial-cylindrical coordinates if subscript x is
replaced with subscript r and subscript y is replaced with subscript 6.

3.6 Exercises

3.1 Is O the same as {}? If not, how does it differ?
3.2 Write the answers for 2+3 and {2} U{3}.

3.3 Using your own words, give the physical meanings conveyed by
Egs. (3.2a) and (3.2b).

3.4 Consider the 1-D reservoir representation in Fig. 2.6b. Find v, v, y3,
and y4.
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3.5 Consider the 2-D reservoir representation in Fig. 3.4. Find y,, forn=1, 2,

3»

120

3.6 Consider the 3-D reservoir representation in Fig. 2.8c. Find y,, forn=1,
2,3,...36.

3.7 Consider the 3-D reservoir representation in Fig. 2.8b. Find w1 1),
V@21 WG22) W32y Wa13) We2s) and wa s ).

3.8 Using the definitions of vy, w., v, , and y. along with the aid of
Fig. 3.3c, prove that w,=w, Uy, Uy. .

3.9 Consider fluid flow in a 1-D horizontal reservoir along the x-axis. The
reservoir left and right boundaries are closed to fluid flow. The reservoir
consists of three blocks as shown in Fig. 3.6.

a.

b.

=

No-flow boundary

FIG. 3.6

Write the appropriate flow equation for a general block » in this
TeServoir.

Write the flow equation for block 1 by finding y; and then using it to
expand the equation in (a).

Write the flow equation for block 2 by finding y, and then using it to
expand the equation in (a).

. Write the flow equation for block 3 by finding w3 and then using it to

expand the equation in (a).

y

No-flow boundary

.

1-D reservoir for Exercise 3.9.

3.10 Consider fluid flow in a 2-D, horizontal, closed reservoir. The reservoir
consists of nine blocks as shown in Fig. 3.7.

a.

b.

Write the appropriate flow equation for a general block 7 in this
Ieservoir.

Write the flow equation for block 1 by finding y; and then using it to
expand the equation in (a).

Write the flow equation for block 2 by finding y, and then using it to
expand the equation in (a).

. Write the flow equation for block 4 by finding w4 and then using it to

expand the equation in (a).
Write the flow equation for block 5 by finding 5 and then using it to
expand the equation in (a).
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FIG. 3.7 2-D reservoir for Exercise 3.10.

3.11 A 2-D oil reservoir is discretized into 4 x 4 blocks.
a. Order the blocks in this reservoir using the natural ordering scheme,
letting block 1 be the lower left corner block.
b. Write the flow equation for each interior block in this reservoir.

3.12 A 2-D oil reservoir is discretized into 4 x 4 blocks.
a. Order the blocks in this reservoir using the D4 ordering scheme, let-
ting block 1 be the lower left corner block.
b. Write the flow equation for each interior block in this reservoir.

3.13 A single-phase oil reservoir is described by four equal blocks as shown in
Fig. 3.8. The reservoir is horizontal and has homogeneous and isotropic
rock properties, k=150md and ¢=0.21. Block dimensions are
Ax=400 ft, Ay=0600 ft, and h=25 ft. Oil properties are B=1 RB/STB
and y =5 cP. The pressures of blocks 1 and 4 are 2200 and 900 psia, respec-
tively. Block 3 hosts a well that produces oil at a rate of 100 STB/D. Find
the pressure distribution in the reservoir assuming that the reservoir rock
and oil are incompressible.

100 STB/D

1 ;

N
z

2200 psia : } 900 psia
y 1 2 3 i 4
38
X 60““

400 ft

FIG. 3.8 1-D reservoir representation in Exercise 3.13.

3.14 A single-phase oil reservoir is described by five equal blocks as shown
in Fig. 3.9. The reservoir is horizontal and has k=90 md and ¢ =0.17.
Block dimensions are Ax=500 ft, Ay=900 ft, and h=45ft. Oil
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properties are B=1 RB/STB and y =3 cP. The pressures of blocks 1 and
5 are maintained at 2700 and 1200 psia, respectively. Gridblock 4 hosts a
well that produces oil at a rate of 325 STB/D. Find the pressure distribu-
tion in the reservoir assuming that the reservoir oil and rock are

incompressible.
325 STB/D
&
z 2700 psia t | 1200 psia 451
y 1 2 3 aif s
X b ok
500 ft y

FIG. 3.9 1-D reservoir representation in Exercise 3.14.

3.15 Consider single-phase flow of oil in a 2-D horizontal reservoir. The res-
ervoir is discretized using 4 x 4 equal blocks as shown in Fig. 3.10. Block
(2,3) hosts a well that produces 500STB/D of oil. All blocks have
Ax=Ay=330ft, h=50 ft, and k,=k,=210 md. The oil FVF and vis-
cosity are 1.0RB/B and 2cP, respectively. The pressures of reservoir
boundary blocks are specified in Fig. 3.10. Assuming that the reservoir
oil and rock are incompressible, calculate the pressures of blocks (2,2),
(3,2), (2,3), and (3,3).

4000 psia /4000 psia /4000 psia /3200 psia,

y 1.4 /24 /(B4 / (44
4000 psia 5231—3/'3 2500 psia

(3) [0 /33 /43)

X /4000 psia L/ 2500 psia
/1,2)/2,2) /(3,2) (4,2)

X 3200 psia / 2500 psia /2500 psia / 2500 psia
=/ /S S@n) /6 S @)

50 ft

330 ft

FIG. 3.10 2-D reservoir representation in Exercise 3.15.

3.16 Consider single-phase flow of oil in a 2-D horizontal reservoir. The res-
ervoir is discretized using 4 x 4 equal blocks as shown in Fig. 3.11. Each
of blocks 6 and 11 hosts a well that produces oil at the rate shown in the
figure. All blocks have Ax=200 ft, Ay=250 ft, #=60 ft, k,=80 md,
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and k,=65 md. The oil FVF and viscosity are 1.0RB/STB and 2cP,
respectively. The pressures of reservoir boundary blocks are specified
in Fig. 3.11. Assuming that the reservoir oil and rock are incompressible,
calculate the pressures of blocks 6, 7, 10, and 11.

y /4000 psy 3500 psy 3500 ;73500 psia
4000 psia 40$TB/D 2500 psia
9 10 = 12
X L

/ 4ooo WSOLSTB/D /1/2500 psia

i

L

—

X 4000 psia /2500 psia 2500 psia 2500 psia
1 2

«?

60 ft

200 ft

FIG. 3.11 2-D reservoir representation in Exercise 3.16.
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4.1 Introduction

This chapter presents discretization of 1-D, 2-D, and 3-D reservoirs using block-
centered grids in Cartesian and radial-cylindrical coordinate systems. As the
name implies, the gridblock dimensions are selected first, followed by the
placement of points in central locations of the blocks. In this, the distance
between block boundaries is the defining variable in space. In contrast, the grid-
points (or nodes) are selected first in the point-distributed grid, which is dis-
cussed in Chapter 5. Chapter 2 introduced the terminology for reservoir
discretization into blocks. This chapter describes the construction of a block-
centered grid for a reservoir and the relationships between block sizes, block
boundaries, and distances between points representing blocks. The resulting
gridblocks can be classified into interior and boundary gridblocks. Chapter 2
also derived the flow equations for interior gridblocks. However, the boundary
gridblocks are subject to boundary conditions and thus require special treat-
ment. This chapter presents the treatment of various boundary conditions and
introduces a general flow equation that is applicable for interior blocks and
boundary blocks. This chapter also presents the equations for directional trans-
missibilities in both Cartesian and radial-cylindrical coordinate systems and
discusses the use of symmetry in reservoir simulation.

Petroleum Reservoir Simulation. https://doi.org/10.1016/B978-0-12-819150-7.00004-9
© 2020 Elsevier Inc. All rights reserved. 65
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4.2 Reservoir discretization

Reservoir discretization means that the reservoir is described by a set of grid-
blocks whose properties, dimensions, boundaries, and locations in the reservoir
are well defined. Fig. 4.1 shows a block-centered grid for a 1-D reservoir in the
direction of the x-axis. The grid is constructed by choosing 7, gridblocks that
span the entire reservoir length in the x-direction. The gridblocks are assigned
predetermined dimensions (Ax;, i=1, 2, 3... n,) that are not necessarily equal.
Then, the point that represents each gridblock is subsequently located at the cen-
ter of that gridblock. Fig. 4.2 focuses on gridblock i and its neighboring grid-
blocks in the x-direction. It shows how the gridblocks are related to each
other, gridblock dimensions (Ax;_;, Ax;, Ax;,,), gridblock boundaries (x;_,
Xi+12), distances between the point that represents gridblock i and gridblock
boundaries (dx;-,0x;+), and distances between the points representing these grid-
blocks (Ax,—_l/z, A.Xi+1/2).

Gridblock dimensions, boundaries, and locations satisfy the following
relationships:

Sxi- =dx+ ="' /rAx;, i=1,2,3...n,,

Axi_1 =8 +8x_1+ =" /2(Ax;i+ Axi_y), i=2,3...n,
Axi12 =08x+ + X1~ =" [2(Axi+ Axiyy), i=1,2,3..n,— 1,

Xie1 =X+ Axip1p0, i=1,23..0,— 1, x1 = l/gAxl,

Xi_1j2 =X —O0x;- =X; — l/gAxi, i=1,2,3...n,

X1 p =X+ 0 =x;+' [HAx;, i=1,2,3...n, 4.1

Fig. 4.3 shows the discretization of a 2-D reservoir into a 5 x 4 irregular grid.
An irregular grid implies that block sizes in the direction of the x-axis (Ax;) and
the y-axis (Ay,) are neither equal nor constant. Discretization using a regular
grid means that block sizes in the x- and y-directions are constants but not
necessarily equal. The discretization in the x-direction uses the procedure just
mentioned and the relationships presented in Eq. (4.1). The discretization in the
y-direction uses a procedure and relationships similar to those for the x-direc-
tion, and the same can be said for the z-direction for a 3-D reservoir. Inspection
of Figs. 4.1 and 4.3 shows that the point that represents a gridblock falls in the

. Axy . Ax, . Axy 1 Axp, \ Axp, |
I T ) 7/ ) | 1
Lo o | e[ e [eo]
|1 2 3]) ny=1 Ny |

Left boundary Right boundary

FIG. 4.1 Discretization of a 1-D reservoir using a block-centered grid.
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FIG. 4.2 Gridblock i and its neighboring gridblocks in the x-direction.
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FIG. 4.3 Discretization of a 2-D reservoir using a block-centered grid.

center of that block and that all points representing gridblocks fall inside reser-
voir boundaries.

Example 4.1 A 5000 x 1200 x 75 ft horizontal reservoir contains oil that flows
along its length. The reservoir rock porosity and permeability are 0.18 and
15 md, respectively. The oil FVF and viscosity are 1 RB/STB and 10cP, respec-
tively. The reservoir has a well located at 3500 ft. from the reservoir left bound-
ary and produces oil at a rate of 150STB/D. Discretize the reservoir into five
equal blocks using a block-centered grid and assign properties to the gridblocks
comprising this reservoir.

Solution

Using a block-centered grid, the reservoir is divided along its length into five
equal blocks. Each block is represented by a point at its center. Therefore, n, =35,
and Ax=L,/n,=5000/5= 1000 ft. Gridblocks are numbered from 1 to 5 as shown
in Fig. 4.4. Now, the reservoir is described through assigning properties to its five
gridblocks (i=1, 2, 3, 4, 5). All the gridblocks (or the points that represent them)
have the same elevation because the reservoir is horizontal. Each gridblock has the
dimensions of Ax=1000, Ay=1200, and Az=75 and properties of k,=15 md
and ¢=0.18. The points representing gridblocks are equally spaced; that is,
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150 STB/D

z -

zy 1 3 4 i s e
° » » i [ o
X i

s

on
Py
Py

1000 ft 1000 ft

FIG. 4.4 Discretized 1-D reservoir in Example 4.1.

Axiz1p=»A0x=1000 ft and A, =A,=Ayx Az=1200 x 75=90,000 ft*. Grid-
block 1 falls on the reservoir left boundary, and gridblock 5 falls on the reservoir
right boundary. Gridblocks 2, 3, and 4 are interior gridblocks. In addition, grid-
block 4 hosts a well with g, = —150 STB/D. Fluid properties are B=1 RB/STB
and y=10cP.

4.3 Flow equation for boundary gridblocks

In this section, we present a form of the flow equation that applies to interior
blocks and boundary blocks. This means that the proposed flow equation
reduces to the flow equations presented in Chapters 2 and 3 for interior blocks,
but it also includes the effects of boundary conditions for boundary blocks.
Fig. 4.1 shows a discretized 1-D reservoir in the direction of the x-axis. Grid-
blocks 2, 3, ... n,— 1 are interior blocks, whereas gridblocks 1 and n, are bound-
ary blocks that each falls on one reservoir boundary. Fig. 4.3 shows a discretized
2-D reservoir. This figure highlights an interior gridblock, gridblock (3,3); two
boundary gridblocks that each falls on one reservoir boundary, gridblocks (1,3)
and (3,1); and a gridblock that falls on two reservoir boundaries, gridblock (1,1).
In 3-D reservoirs, there are interior gridblocks and boundary gridblocks. Bound-
ary gridblocks may fall on one, two, or three reservoir boundaries. Fig. 4.5 dem-
onstrates the terminology used in this book for the reservoir boundaries in the
negative and positive directions of the x-, y-, and z-axes. Reservoir boundaries
along the x-axis are termed reservoir west boundary (by) and reservoir east
boundary (bg), and those along the y-axis are termed reservoir south boundary
(bs) and reservoir north boundary (by). Reservoir boundaries along the z-axis
are termed reservoir lower boundary (b;) and reservoir upper boundary (by).

by be

FIG. 4.5 Definition of left and right boundaries in 3-D reservoirs.
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The characteristic forms of the difference equations for interior and bound-
ary gridblocks differ in the terms of dealing with space variables; that is, the
flow terms. The production (injection) term and the accumulation term are
the same for both interior and boundary gridblocks. The engineering approach
involves replacing the boundary condition with a no-flow boundary plus a fic-
titious well having a flow rate ¢, that reflects fluid transfer between the res-
ervoir boundary itself (b) and the boundary block (bB). In other words, a
fictitious well having flow rate of ¢i.,  replaces the flow term that represents
fluid transfer across a reservoir bounddry between a boundary block and a block
exterior to the reservoir. The number of flow terms in the flow equation for an
interior gridblock equals the number of neighboring gridblocks (two, four, or six
terms for 1D-, 2-D, or 3-D reservoir, respectively). For the flow equation for a
boundary gridblock, the number of flow terms equals the number of existing
neighboring gridblocks in the reservoir and the number of fictitious wells equals
the number of reservoir boundaries adjacent to the boundary gridblock.

A general form of the flow equation that applies to boundary gridblocks and
interior gridblocks in 1-D, 2-D, or 3-D flow in both Cartesian and radial-
cylindrical coordinates can be expressed best using CVFD terminology. The
use of summation operators in CVFD terminology makes it flexible and suitable
for describing flow terms in the equation of any gridblock sharing none or any
number of boundaries with the reservoir. The general form for gridblock # can

be written as:
Z 1, n yl n quc, n qsc,,

ley, e,

Vi

n+1 n
:a.—gt[@) —@)1

or, in terms of potentials, as
n+1 n
(-] e
n B n

Vi
ZTm q)m (I)m Z qsc _ Vo
Mx Wu
= ez, acAt
where y,,= the set whose elements are the existing neighboring gridblocks in
the reservoir, £, = the set whose elements are the reservoir boundaries (b;, b,
bw, b, by, by) that are shared by gridblock n, and qsc, = = flow rate of the fic-

titious well representing fluid transfer between reservoir boundary / and grid-
block n as a result of a boundary condition. For a 3-D reservoir, ¢, is either
an empty set for interior gridblocks or a set that contains one element for grid-
blocks that fall on one reservoir boundary, two elements for gridblocks that fall
on two reservoir boundaries, or three elements for gridblocks that fall on three
reservoir boundaries. An empty set implies that the gridblock does not fall on
any reservoir boundary; that is, gridblock » is an interior gridblock and hence
qu’(‘,l," =0. In engineering notation, n=(i,j, k) and Eq. (4.2a) becomes:

I€E,
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> Tl [(P;n _Pfj,k) ~ i (@ —Zi»j-k)} ) ey i T D

ley; i I1€&; ik

n+1 n
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B i,j,k B i,j,k

o a At

It must be mentioned that reservoir blocks have a three-dimensional shape
whether fluid flow is 1-D, 2-D, or 3-D. The number of existing neighboring
gridblocks and the number of reservoir boundaries shared by a reservoir grid-
block add up to six as is the case in 3-D flow. Existing neighboring gridblocks
contribute to flow to or from the gridblock, whereas reservoir boundaries may or
may not contribute to flow depending on the dimensionality of flow and the pre-
vailing boundary conditions. The dimensionality of flow implicitly defines
those reservoir boundaries that do not contribute to flow at all. In 1-D flow prob-
lems, all reservoir gridblocks have four reservoir boundaries that do not contrib-
ute to flow. In 1-D flow in the x-direction, the reservoir south, north, lower, and
upper boundaries do not contribute to flow to any reservoir gridblock, including
boundary gridblocks. These four reservoir boundaries (b;, bs, by, by) are dis-
carded as if they did not exist. As aresult, an interior reservoir gridblock has two
neighboring gridblocks and no reservoir boundaries, whereas a boundary reser-
voir gridblock has one neighboring gridblock and one reservoir boundary. In 2-
D flow problems, all reservoir gridblocks have two reservoir boundaries that do
not contribute to flow at all. For example, in 2-D flow in the x-y plane, the res-
ervoir lower and upper boundaries do not contribute to flow to any reservoir
gridblock, including boundary gridblocks. These two reservoir boundaries
(br, by) are discarded as if they did not exist. As a result, an interior reservoir
gridblock has four neighboring gridblocks and no reservoir boundaries, a res-
ervoir gridblock that falls on one reservoir boundary has three neighboring grid-
blocks and one reservoir boundary, and a reservoir gridblock that falls on two
reservoir boundaries has two neighboring gridblocks and two reservoir bound-
aries. In 3-D flow problems, any of the six reservoir boundaries may contribute
to flow depending on the specified boundary condition. An interior gridblock
has six neighboring gridblocks. It does not share any of its boundaries with
any of the reservoir boundaries. A boundary gridblock may fall on one, two,
or three of the reservoir boundaries. Therefore, a boundary gridblock that falls
on one, two, or three reservoir boundaries has five, four, or three neighboring
gridblocks, respectively. The earlier discussion leads to a few conclusions
related to the number of elements contained in sets y and &.

iy j»k

(1) For an interior reservoir gridblock, set y contains two, four, or six elements
for a 1-D, 2-D, or 3-D flow problem, respectively, and set £ contains no
elements or, in other words, is empty.

(2) Foraboundary reservoir gridblock, sety contains less than two, four, or six
elements for a 1-D, 2-D, or 3-D flow problem, respectively, and set & is
not empty.
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(3) The sum of the number of elements in sets y and ¢ for any reservoir grid-
block is a constant that depends on the dimensionality of flow. This sum is
two, four, or six for a 1-D, 2-D, or 3-D flow problem, respectively.

For 1-D reservoirs, the flow equation for interior gridblock i is given by
Eq. (2.32) or (2.33):

Vb ¢ n+l ¢ n
T;‘:lq/z (q):'ﬂ—l _q);ﬁ) Tm+1/2 (q)ﬁl _(Dlm) +f]?;’ :a IN, |:<B> - (E) :| (4.3)

i

The above flow equation can be obtained from Eq. (4.2b) for n=1i, y;={i—1,

i+1}, and &=1}, and by observing that » _¢7 =0 for an interior gridblock
leg;

and T, =T% .

The flow equation for boundary gridblock 1, which falls on the reservoir

west boundary in Fig. 4.6, can be written as
¢ n+1 ¢ n
o))

(4.4a)

The first term on the LHS of Eq. (4.4a) represents the rate of fluid flow
across the reservoir west boundary (by). This term can be replaced with the flow
rate of a fictitious well (qvc ) that transfers fluid across the reservoir west
boundary to gridblock 1; that i 1s

Vi
T:’ll 1/2 (q)m q)m) + T?: +1/2 (q)g1 o q)rln) + qrﬁ‘}zl = aCA]t

Ty, (@ —o7) (4.5a)

qSChW,l T Txiap

Substitution of Eq. (4.5a) into Eq. (4.4a) yields
n+l n
G-
B/, B/,

The above flow equation can be obtained from Eq. (4.2b) forn=1,y;={2},
and &, = { by}, and by observing that Zq;’zl = q;'Z.hW cand 75 =T7

Vi
m m m m 1
qsr,,w 1 Txl Y (q)Z - q)l ) +qscl - (XCAf

Xiv12®
leg,
(1/2) AX4 (112) Ax,,x
......... [ / I
o Lo | | e J[[ e | o
o | 1 2 3 Il Nx | Nx+t
Left boundary Right boundary

FIG. 4.6 Boundary gridblocks at the left and right boundaries of a 1-D reservoir (dashed lines
represent fictitious reflective blocks).
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The flow equation for boundary gridblock n,, which falls on the reservoir
east boundary in Fig. 4.6, can be written as

m m m m m m m
Tanl/z (q)ﬂrfl @, ) Xy +1/2 (q)n +1 (Dn.\> * e,

n+1 n
_ Vi, (?) _ (?) ] (4.62)
8), \B),

T a At
The second term on the LHS of Eq. (4.6a) represents the rate of fluid flow
across the reservoir east boundary (bg). This term can be replaced with the flow
rate of a fictitious well (g5, ) that transfers fluid across the reservoir east
boundary to gridblock n,; that s,

qSChE,n,\‘ - Kne+1/2

—7n (@;;1 o q>;j_) (4.72)

Substitution of Eq. (4.7a) into Eq. (4.6a) yields

n+1 n
(4"~ (g)] (.60

The above flow equation can also be obtained from Eq. (4.2b) for n=n,,
Wy =1{n.—1}, and &, ={bg}, and by observing that Zqi’zl :q:,"L,hF_’n\ and
Tm Ln, = :r,'z\+1/2 1€ N

For 2-D reservoirs, the flow equation for interior gridblock (i, ) is given by

Eq. (2.37):

T)”’i’,/’—]/z (q)lj 1 CDm) Tg,l 1/2,j ((Dl Lj (I)m) Tzlu/z ((D;n*'l J (DZLJ)

m m m m Vb,,,» ¢ e ¢ !
+Tyl_”,”/2<c1> " q)""")-l-q“""f:a(.Atl(E)4 -(5) 4.8)

V.
a.At

m m m m m
Tx,u,,uz (q)n\ —1 (an) + qsch,m + qsc,,X -

i,] L]

The above flow equation can be obtained from Eq. (4.2b) for n=(i,)),
{(l’./_ 1), (l_ 19j)9(i+ l’j)s(l.sj-i_ 1)}’ and élx]: { }’ and by ObserVing
that lng” ; =0 for an interior gridblock, T(i+1) )=
€&
T‘}("l?:FlJ)-(izf):T‘zjqzl/zl/'
For a gridblock that falls on one reservoir boundary, like gridblock (3,1),
which falls on the reservoir south boundary in Fig. 4.3, the flow equation
can be written as

and

Yz"jﬂwz’

(R —@F )T (D DY)+ T (D — DY)

Y3,1-1/2 X3-1/2,1 X3+1/2,1

m m " . Vbs,l ¢ n+1 ¢ n
+Ty3v‘+1/2(¢)3’2_(b3,1)+qSC3,1_acAt E 3,1 a E 3,1

The first term on the LHS of Eq. (4.9a) represents the rate of fluid flow
across the reservoir south boundary (bg). This term can be replaced with the

(4.9a)
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flow rate of a fictitious well (g%, . 1)) that transfers fluid across the reservoir
SChg, 3,
south boundary to gridblock (3,1); that is,

=T, (P50 —P) (4.10)

qm
SChg,(3,1) Y3,1-1/2

Substitution of Eq. (4.10) into Eq. (4.9a) yields

m m mo_ gm m m o gm
qSChS,(3.1) +Tx371/2,1 ((I)2,1 ¢)3,1) +TX3+1/2,1 ((I)‘Ll ¢)3,1>

¢>n+1<¢)n 490
(B 3,1 B 3,1 (*90)

The above flow equation can be obtained from Eq. (4.2b) for n=(3,1),
w3 ={(2,1),41),3,2)}, and &,={bs}, and by  observing
that Z qzz'l,(}.l) :qﬁhs’m_l), 7‘?’5,1),(3,1):7'2,,,2_,’ T?ézt,l),(ll):]z”/z], and

SS9
TG2.6.0=T1Y, ..,

For a gridblock that falls on two reservoir boundaries, like boundary grid-

block (1,1), which falls on the reservoir south and west boundaries in Fig. 4.3,

the flow equation can be written as

- Vbs,l

+T (CD’” o ) +q" =
3,2 3,1 >
Y3,1+1/2 SC3,1 aCAt

;’:,]—1/2 (q)rlno 7(1)'1?1,1) +T)r(r1171/2,1 ((Dgll 7(1)'171,1) +T)r(rll+1/2,1 (q)gll 7(I)r1n.1)
Vb ¢ n+1 4) n
3 (P = @)+, = <E>11 “\g), | @1

The first term on the LHS of Eq. (4.11a) represents fluid flow rate across the
reservoir south boundary (by). This term can be replaced with the flow rate of a
fictitious well (qg'z,h " 1)) that transfers fluid across the reservoir south boundary

5 (1,

to gridblock (1,1); that is,

qu'hs,(],l) :T;’T,I—I/Z ((I)’{fo—(l)’{fl) (4.12)

The second term on the LHS of Eq. (4.11a) represents fluid flow rate across
the reservoir west boundary (by). This term can also be replaced with the flow
rate of another fictitious well (q’{éh " ])) that transfers fluid across the reservoir

“Tows UL

west boundary to gridblock (1,1); that is,
T, (@0, —@Ty) 4.13)

m _
qSL'hW,(l.l) X1-1/2,1

Substitution of Egs. (4.12) and (4.13) into Eq. (4.11a) yields
qu'hs,(l.l) + q?zhw,(l.l) +T (q)gfl - q)’{f 1)
n+l1 n
(f) _ <f> (4.11b)
B 1,1 B 1,1

X1+1/2,1

Vi
m m m m - _ L1
+Ty1'|+|/2 ((Dl,z (I)l,l) +qSC1,1 _aCAt
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The earlier flow equation can also be obtained from Eq. (4.2b) forn=(1, 1),
vi.1=1{2,1),(1,2)}, and & ,={bs,by}, and by observing that
Z qS(/ wy q“h (11 qzz‘hw,(l.l)’ TE%J)’(LI) :Tﬁ»«l/z.l’ and T(Wivz)’(l’l) :T’;i.m/z‘
€&y,

The following example demonstrates the use of the general equation,
Eq. (4.2a), to write the flow equations for interior gridblocks in a 1-D reservoir.

Example 4.2 For the 1-D reservoir described in Example 4.1, write the flow
equations for interior gridblocks 2, 3, and 4.

Solution

The flow equation for gridblock 7, in a 1-D horizontal reservoir, is obtained
by neglecting the gravity term in Eq. (4.2a), yielding

., Vb,, ¢ n+1 ¢ n
ZTln pn quu” qn,l_a Atl( >n B (414)

ley, leg, n

For interior gridblocks n, w,={n—1,n+1} and &,={}. Therefore,

quf.]," =0. The gridblocks in this problem are equally spaced; therefore,
e,

T7,=T: =T, where

2

kA, 15 x (1200 x 75)
—0.001127 x ~ 220X D)
aBay OO T X e 1000

TV =p, =0.1521STB/D-psi  (4.15)

For gridblock 2, n=2,y,=1{1,3}, & ={}, qu’t’“ =0, and qg'i,z:O. There-

e
¢ n+1 ¢ n
(5), ‘(E)j o

For gridblock 3, n=3, ws=1{2,4}, &={}, qumzo, and ¢y =0.
leg&

¢ n+1 ¢ n
(El ‘(E)j @17

For gridblock 4, n=4, w,=1{3,5}, &={}, Zqﬁuzo, and qi., =

3. -]

(4.18)

fore, Eq. (4.14) becomes

Vb,

(0.1521) (p' — p4') +(0.1521) (p§ — p5') = .y
.

Therefore, Eq. (4.14) becomes

Vi,
a.At

(0.1521) (py — p) +(0.1521) (py — p) =

—150 STB/D. Therefore, Eq. (4.14) becomes

Vb,

(0.1521) (P —pif) +(0.1521) (pg' —p§) — 150 =~
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4.4 Treatment of boundary conditions

A reservoir boundary can be subject to one of four conditions: (1) no-flow bound-
ary, (2) constant-flow boundary, (3) constant pressure gradient boundary, and (4)
constant pressure boundary. In fact, the first three boundary conditions reduce to
the specified pressure gradient condition (the Neumann boundary condition), and
the fourth boundary condition is the Dirichlet boundary condition (constant pres-
sure value). This section presents in detail the treatment of boundary conditions for
1-D flow in the x-direction, followed by generalizations for the treatment of bound-
ary conditions in multidimensional reservoirs. In this section, we refer to reservoir
boundaries as left and right boundaries because the lower, south, and west bound-
aries can be considered left boundaries, while the east, north, and upper boundaries
can be considered right boundaries in 3-D reservoirs. The flow rate of the fictitious
well (q?j,h’hs) reflects fluid transfer between the boundary block (bB) (e.g., grid-

block 1 for the reservoir left boundary and gridblock n, for the reservoir right
boundary in Fig. 4.1) and the reservoir boundary itself (b), or between the boundary
block and the block next to the reservoir boundary that falls outside the reservoir
(bB™") (e.g., gridblock O for the reservoir left boundary and gridblock 7+ 1 for the
reservoir right boundary in Fig. 4.6). Eq. (4.4b) expresses the flow equation for
boundary gridblock 1, which falls on the reservoir left boundary, and Eq. (4.6b)
expresses the equation for boundary gridblock n,, which falls on the reservoir right
boundary.

For boundary gridblock 1, which falls on the reservoir left boundary, the rate
of fictitious well is expressed by Eq. (4.5a), which states

g, =T (o — ) (4.50)

Since there is no geologic control for areas outside the reservoir, including
aquifers, it is not uncommon to assign reservoir rock properties to those areas in
the neighborhood of the reservoir under consideration. Therefore, we use the
reflection technique at left boundary of the reservoir, shown in Fig. 4.6, with
regard to transmissibility only (i.e., 76, =T},.1) and evaluate ¢, in terms
of the transmissibilities between gridblock 0 and reservoir west boundary by,
and between gridblock 1 and reservoir west boundary by,. The result is:

m B ﬂ kxAx m_l/ kA m 1/
L= P /,tBAx e UuBAx |, — 77| uB(Ax, )2) 2T

= 1/2T6’jbw
(4.19a)
or
Top, =Thy1 =217, , (4.19b)
Substitution of Eq. (4.19b) into Eq. (4.5a) gives
Bty =" /2T, 1 (O — @) (4.5b)
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(112) ALpg b (112) ALpg

3
ehB ——> ®bB

| Direction L
T

Boundary
FIG. 4.7 Definition of terminology used in Eq. (4.20).

Similarly, for boundary gridblock n,, which falls on the reservoir right
boundary,

q;’:'hE,n,\' = ’T“ZZYH/Z (@ZT\ +17 q):ln\) (473)
and
T = 2T (@1~ 07 (4.70)

In other words, the flow term between a boundary gridblock and the
gridblock located immediately on the other side of the reservoir boundary
can be replaced by a fictitious well having a flow rate ngw. The general form
for g, is

Bty s = Th i (P — D) (4.20a)
or
q;nt‘h,/,g = l/ler;,le (CDZTB** - ZIB) (4.20b)

where, as shown in Fig. 4.7, ¢, , =flow rate of a fictitious well representing
flow across reservoir boundary (b) between boundary block (bB) and the block
that is exterior to the reservoir and located immediately next to reservoir bound-
ary (bB™), Thp, pp++ = transmissibility between boundary gridblock »B and grid-
block bB™", and T}, =transmissibility between reservoir boundary (b) and
boundary gridblock bB.

In the following sections, we derive expressions for ¢, under various
boundary conditions for a block-centered grid in Cartesian coordinates. We
stress that this rate must produce the same effects as the specified boundary con-
dition. In Cartesian coordinates, real wells have radial flow, and fictitious wells
have linear flow, whereas in radial-cylindrical coordinates in single-well sim-
ulation both real wells and fictitious wells have radial flow. Therefore, in single-
well simulation, (1) the equations for the flow rate of real wells presented in
Sections 6.2.2 and 6.3.2 can be used to estimate the flow rate of fictitious wells
representing boundary conditions in the radial direction only, (2) the flow rate
equations of fictitious wells in the z-direction are similar to those presented next
in this section because flow in the vertical direction is linear, and (3) there are no
reservoir boundaries and hence no fictitious wells in the -direction. The flow
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dp %
dxl, Vi o
SE T e T ffTe o)
‘ 1 2 3 ]S nx=1 Ny ‘
Left boundary Right boundary

FIG. 4.8 Specified pressure gradient condition at reservoir boundaries in a block-centered grid.

rate of a fictitious well is positive for fluid gain (injection) or negative for fluid
loss (production) across a reservoir boundary.

4.4.1 Specified pressure gradient boundary condition

For boundary gridblock 1 shown in Fig. 4.8, which falls on the left boundary of
the reservoir, Eq. (4.20a) reduces to Eq. (4.5a) that can be rewritten as:

kA " kA " (q){)n_q)rln)
m —Tm (P" — P") = 2 ®" — P = )
chhW,l -’cl/z( 0 1 ) [ﬁCﬂBAX] 1/2( 0 1 ) |:ﬂc /lB :| 12 Axl/z
N [ﬂ kxAx]’" " | [ kxAxr o|" [ﬁ k. X}’”a@'"
"¢ uB 2| 0xlp, ¢ uB 120X [, “uB |, ox|,,
4.21)

Note that in arriving at the above equation, we used the reflection technique
shown in Fig. 4.6 with respect to transmissibility and used the central-difference
approximation of first-order derivative of potential.

Similarly for gridblock n,, which falls on the reservoir right boundary,
Eq. (4.20a) reduces to Eq. (4.7a) that can be rewritten as

q" —Tm (q)m lq)m)|:ﬂ.kXAX:|m (d)m ]7q)m>
SChy,ny Xng+1/2 ny+ ny c U BAx net1/2 ny+ ny

B |:ﬂ kxAx:|m < :;'»7\'4_1—(1):;’\_)g |:ﬁ kxAx:|m agm
‘ uB mrt2  BXnip B 172 | OX |p,
kA" od|" kA" o™
K ny+1/2 X b K n, X g

Here again, we used the reflection technique shown in Fig. 4.6 with respect
to transmissibility and used the central-difference approximation of first-order
derivative of potential.

In general, for specified pressure gradient at the reservoir left (lower, south,
or west) boundary,

m

" kA" 00
= _{ } = (4.23a)

or after combining with Eq. (2.10),
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qm g_ ﬁ@ " ap
SCh,bB c ,uB b5 al

and at the reservoir right (east, north, or upper) boundary,

74
bB al

] (4.23b)

ki)™ 0" (4.242)
S‘“’B e uB B al )
or after combining with Eq. (2.10),
klA/ ap OZ
o S 4.24b
qSCh bB |: IMB:|bB |:al hB ()l ( )

where [/ is the direction normal to the boundary.

4.4.2 Specified flow rate boundary condition

The specified flow rate boundary condition arises when the reservoir near the
boundary has higher or lower potential than that of a neighboring reservoir or
aquifer. In this case, fluids move across the reservoir boundary. Methods such as
water influx calculations and classical material balance in reservoir engineering
can be used to estimate fluid flow rate, which we term here as specified (g,psc)-
Therefore, Eq. (4.5a) for boundary gridblock 1 becomes

=T7 (D) — D) =qgpse (4.25)

qSC'hW 1 X172

and Eq. (4.7a) for boundary gridblock n, becomes

di =0 (O =) = e (4.26)

In general, for a specified flow rate boundary condition, Eq. (4.20a)
becomes

qzréh,,,g ={spsc (427)

In multidimensional flow with gy, specified for the whole reservoir bound-
ary, ¢, ,, for each boundary gridblock is obtained by prorating ¢, among all
boundary gridblocks that share that boundary; that is,

n_ Do 4.28
qj‘(,‘h’hB - ZTM QXpsc ( . )
b,l
ley,,

where v, is the set that contains all boundary gridblocks that share the reservoir
boundary in question; T}, ;= transmissibility between the reservoir boundary and
boundary gridblock /, which is a member of the set y, and T,p is defined as

kiA; } "

Thipp = [ B(AI/2) (4.29)

bB
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The length / and subscript / in Eq. (4.29) are replaced with x, y, or z depending on
the boundary face of boundary block. It should be mentioned that Eq. (4.28)
incorporates the assumption that the potential drops across the reservoir bound-
ary for all gridblocks sharing that boundary are equal.

4.4.3 No-flow boundary condition

The no-flow boundary condition results from vanishing permeability at a
reservoir boundary (e.g., 77, =0 for the left boundary of gridblock 1 and
;’: = =0 for the right boundary of gridblock n,) or because of symmetry about
the reservoir boundary (e.g., @y = @' for gridblock 1 and @} =®}'.; for grid-

block n,). In either case, Eq. (4.5a) for boundary gridblock 1 reduces to
=T (®f — @) =0(®) — @) =T7 (0)=0 (4.30)

qSL'hW, 1 X172 X1/2

and Eq. (4.7a) for boundary gridblock n, reduces to

G =T0 (@0 -0 ) =00~y ) =70 (0)=0 @31
In general, for a reservoir no-flow boundary, Eq. (4.20a) becomes

=0 4.32)

qSC‘h bB

For multidimensional flow, qsc , 18 set to zero, as Eq. (4.32) implies, for
each boundary gridblock that falls on a no-flow boundary in the x-, y-, or z-
direction.

4.4.4 Specified boundary pressure condition

This condition arises when the reservoir is in communication with a strong
water aquifer or when wells on the other side of the reservoir boundary operate
to maintain voidage replacement and as a result keep boundary pressure (pj)
constant. Fig. 4.9 shows this boundary condition at the reservoir left and right
boundaries.
Eq. (4.5a) for boundary gridblock 1 can be rewritten as
=Ty (CDSI - (I”ln) Ty [q)6n — Oy, + Dy, — (I)’ln]

qm
SChy,1 X1/2

X1/2
=Ty, [(DF — Dy, ) + (Pp, — @) ] = Ty, (Df — Dy, ) + Ty, (s, — @)
(4.33)
Py, /[ Py,
ST e T offTeTel
| 2 3 M=t Nx |
Left boundary Right boundary

FIG. 4.9 Specified pressure condition at reservoir boundaries in a block-centered grid.
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Combining the above equation and Eq. (4.19b) yields:
Bty = LTy, (O — @y, )+ /2T5 | (D, — D) (4.34)

To keep the potential at the left boundary of gridblock 1 constant, the fluid
leaving the reservoir boundary to one side (point 1) has to be equal to the fluid
entering the reservoir boundary from the other side (point 0); see Fig. 4.6. That is,

o, (®F — Dy, ) =T (P, — D) (4.35)

Substitution of Eq. (4.35) into Eq. (4.34) and making use of Eq. (4.19b)
yield:

Byt = Thyt (D, — DY) (4.36)

Keeping the potential at any point constant implies the pressure is kept con-

stant because potential minus pressure is constant as required by Eq. (2.11).
In general, for a specified pressure boundary, Eq. (4.20a) becomes

Teers = Thv (Dy — D}jy) (4.37a)
Eq. (4.37a) can be rewritten in terms of pressure as
Trey s = Toows [(Po —Phs) = Vi (Zo — Z1p) | (4.37b)

where 77,5 is nothing but fluid gravity in boundary block bB and T}, = trans-
missibility between the reservoir boundary and the point representing the
boundary gridblock and is given by Eq. (4.29):

k[A] :|m
)= Pe— (4.29)
PP { UB(Al/2)]
Combining Eqgs. (4.29) and (4.37b) gives
kA, 1"
v =\ —pie) =7 s(Zo—Z, 4.37
Dscy 1 [ﬂ"uB(AI/Z)LB[(pb pbB) 717,};3( b hB)] ( ©)

Substitution of Eq. (4.37¢) in the flow equation for boundary gridblock bB
maintains a second-order correct finite-difference flow equation in the mathe-
matical approach (see Exercise 4.7). Abou-Kassem et al. (2007) proved that
such a treatment of this boundary condition is second-order correct. In multi-
dimensional flow, ¢, ,for a boundary gridblock falling on a specified pressure
boundary in the x-, y—,vor z-direction is estimated using Eq. (4.37¢) with the cor-
responding x, y, or z replacing /.

4.4.5 Specified boundary block pressure

This condition arises if one makes the mathematical assumption that the bound-
ary pressure is displaced half a block to coincide with the center of the boundary



Simulation with a block-centered grid Chapter | 4 81

gridblock; that is, py = p;,  or p, =p;, . This approximation is first-order correct
and produces results that are less accurate than the treatment that uses
Eq. (4.37c¢). Currently available books on reservoir simulation use this treatment
to deal with the specified boundary pressure condition. Following this treat-
ment, the problem reduces to finding the pressure of other gridblocks in the res-
ervoir as demonstrated in Example 7.2 in Chapter 7.

The following examples demonstrate the use of the general equation,
Eq. (4.2a), and the appropriate expressions for CI?Z',,,,,B to write the flow equations
for boundary gridblocks in 1-D and 2-D reservoirs that are subject to various
boundary conditions.

Example 4.3 For the 1D reservoir described in Example 4.1, the reservoir left
boundary is kept at a constant pressure of 5000psia, and the reservoir right
boundary is a no-flow (sealed) boundary as shown in Fig. 4.10. Write the flow
equations for boundary gridblocks 1 and 5.

Solution

The flow equation for gridblock 7 in a 1-D horizontal reservoir is obtained
from Eq. (4.2a) by neglecting the gravity term, resulting in

o V : ¢ n+1 ¢ n
ZTI,H( quu qu,, _a bAt (B)n - (E) n] (414’)

ley, leg,

From Example 4.2, T, =Ty =0.1521 STB/D -psi.

For boundary gridblock 1, n=1,y={2}, & = {bw}, qu = qschw 1 and
qse,=0. leg,
Therefore, Eq. (4.14) becomes

Vb ¢ n+1 ¢ n
1521 (p0 —p) +q". = | (2} (2 n
0.15 (Pz pl)+qﬂ7hw,l aCAt[(B>1 B . ( 38)

where the rate of flow across the reservoir left boundary is given by Eq. (4.37¢):

kA, "
T = { ‘uB(Ax/z)] [Py =PT) = Vi1 (2w = 20)]

15 % (1200 x 75)

—0.001127 5000 — p") — 0] (439
X10><1><(1000/2)[( P) = 7o X0 (439)
z 150 STB/D
v 1 _
X : 5
— i 3 4 i st

P, =5000 psia
w

No-flow boundary

o 5%
7000 T 10007 A

FIG. 4.10 Discretized 1-D reservoir in Example 4.3.
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or
gy, =(0.3043)(5000—p}) (4.40)

Substitution of Eq. (4.40) into Eq. (4.38) results in the flow equation for
boundary gridblock 1:

v, NP\
(0.1521) (p' —pi') +(0.3043) (5000 — p}") :acAlt (E) 1 - <E> 1‘|
(4.41)
For boundary gridblock 5, n=35, ws={4}, &s={br}, Zqﬁ.hs = qg"chbs ,and

l€&s
¢se,=0. Therefore, Eq. (4.14) becomes

m m m _ Vbs ¢ n (»b "
(0.1521) (p =) +4%, ., Y l<§>5 - (E>5] (4.42)

where the flow rate across the reservoir right boundary (no-flow boundary) is
given by Eq. (4.32). For the reservoir right boundary, b=bg, bB=35, and

e, s =0 (4.43)
Substitution into Eq. (4.42) results in the flow equation for boundary grid-
block 5:
Vh ¢ n+l ¢ n
0.1521) (pt} — p?) =—= b —(= 4.44
( )(p4 pS) (ICAl (B)S B s ( )

Example 4.4 For the 1-D reservoir described in Example 4.1, the reservoir left
boundary is kept at a constant pressure gradient of —0.1 psi/ft and the reservoir
right boundary is supplied with fluid at a rate of 50 STB/D as shown in Fig. 4.11.
Write the flow equations for boundary gridblocks 1 and 5.

Solution

The flow equation for gridblock # in a 1-D horizontal reservoir is obtained
from Eq. (4.2a) by neglecting the gravity term, resulting in

150 STB/D

|- 0.1 psifft—
w z

dx 1,
IA{
X

FIG. 4.11 Discretized 1-D reservoir in Example 4.4.

ds,, = 50 STBID
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Vb,
ZTI’,nn( quzm qwn _a At

d)) n+1 (¢> n]
- (% (4.14)
ley, 1€, (B n B n

From Example 4.2, T}, =Ty =0.1521 STB/D-psi.

For boundary gridblock 1, n=1,y={2}, & = {bw}, E qm =4, »and
W
leg,

d’ n+1 d) n
(%) ‘(E)ll @39

where the flow rate of a fictitious well for the specified pressure gradient at the
reservoir left boundary is estimated using Eq. (4.23b):

qg’;l =0. Therefore, Eq. (4.14) becomes

Vb,

(01521 (pF =)+, = a7

w LokA o 0z
qSCbW,l - c ,blB . ox by 1 ()X -
15 x (1200 x 75

~[o.001127 x B2 U20XTS 61 61— _152.145 % (—0.1)

10x 1
(4.45)

or

g, =152145 (4.46)

Substitution of Eq. (4.46) into Eq. (4.38) results in the flow equation for

boundary gridblock 1:
¢) n+1 < ¢) n
= —| = 4.47)
), (&),

For boundary gridblock 5, n=>5, ws= {4}, &= {bc}, Y _dy,, = 4%, - and
leés

(l’) n+1 ¢ n
5), - (E)J @4

where the flow rate of a fictitious well for a specified rate boundary is estimated
using Eq. (4.27); that is,

Vi,
a At

(0.1521) (py — p') +15.2145 =

¢se,=0. Therefore, Eq. (4.14) becomes

Vs
a.At

(0.1521) (P —p§) +q3;, . =

=50STB/D (4.48)

qSC”E,S

Substitution of Eq. (4.48) into Eq. (4.42) results in the flow equation for

boundary gridblock 5:
n+1 n
s[o-) e
B/ B/

(0.1521) (pff = pf) +50 = =%
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Example 4.5 Consider single-phase fluid flow in the 2-D horizontal reservoir
shown in Fig. 4.12. A well located in gridblock 7 produces at a rate of 4000 STB/
D. All gridblocks have Ax=250 ft, Ay=300 ft, =100 ft, £, =270 md, and
ky, =220 md. The FVF and viscosity of the flowing fluid are 1.0RB/STB and
2cP, respectively. The reservoir south boundary is maintained at 3000 psia,
the reservoir west boundary is sealed off to flow, the reservoir east boundary
is kept at a constant pressure gradient of 0.1 psi/ft, and the reservoir loses fluid
across its north boundary at a rate of 500 STB/D. Write the flow equations for
boundary gridblocks 2, 5, 8, and 11.

Solution

The general flow equation for a 2-D horizontal reservoir is obtained from
Eq. (4.2a) by neglecting the gravity term, resulting in

1% n+1 n
D TPl =)+ >, + qn,(—a”m[@) —(%)] (4.14)

ley, leg, n

Note that Ax=250 ft, Ay=300 ft, k,, k,, u, and B are constant. Therefore,

kA, 270 % (300 x 100) .
" — —0.001127 x —18.2574 STB/D-psi (4.50
x ﬂ‘,uBA 2% 1x 250 /Dpsi (4.30)
and
220 % (250 x 100) .
—ﬂ( B =0.001127 x “—— 2= = 10.3308 STB/D-psi. (4.51)

For boundary gridblock 2, n=2, y,=1{1,3,6}, &={bs}, and g5 =0.
qu’,]z :qg’(f.hs ,» Where qg'i.hs , is obtained from Eq. (4.37c) after discarding

€&,
the gravity term, resulting in

250 ft

dsc, =—500 STB/D ~.

dp| _ .
9 10 11 12 ax | = 0-1psifft
° ° ° ° be
No-flow boundary — A
[ 5 6 7 43 4000 STB/D
N N o | s
300 ft
y
1 2 3 4
o ° ° o 300 ft
X
\ 250 ft
Ppy = 3000 psia

FIG. 4.12 Discretized 2-D reservoir in Examples 4.5 and 4.6.
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k}’Ay " m
T [ (ﬂB(Ay/2)]z (s =r%)

_ [0‘001 17, 220 (250 x 100)

2 x1x(300/2)

] (3000 — p5) (4.52)

or
qs, . =(20.6617)(3000 —p}) 4.53)

Substitution into Eq. (4.14) results in the flow equation for boundary grid-
block 2,

(18.2574) (p} — p') + (18.2574) (p¥ — p&') + (10.3308) (p2 — p¥)

n+1 n
+(20.6617) (3000 — p%) :aVIZz Kg) - (%)
C 2 2

For boundary gridblock 5, n=5, ws={1,6,9}, &= {by}, and ¢} =0.

qu,s =4, ,» Where qg’i.bl , is obtained from Egq. (4.32) for a no-flow
ee " .
boundary; that is, qm 5=

(4.54)

Substitution into Eq. (4.14) results in the flow equation for boundary grid-
block 5,

(10.3308) (p' — ') + (18.2574) (p — p) + (10.3308) (pi — p') +0

¢ n+1 ¢ n
(E)s ‘(E)J ()

For boundary gridblock 8, n=8, wg=1{4,7,12}, és={bg}, and q;'zgzo.

qu .= qm o Where g is estimated using Eq. (4.24b) for the reservoir
Ieg, -
east boundary,

_ Vs
T a At

op oz 270 x (300 x 100)
a— =10.001127 X ——=[[0.1 -0
qSLbEg |: ¢ :| [dx be Vg ox bE:| |: X %1 [ ]
— 4564.35 x (0.1) = 456.435 (4.56)

Substitution into Eq. (4.14) results in the flow equation for boundary grid-
block 8,

(10.3308) (pf — pg') + (18.2574) (p& — pg') + (10.3308) (p7, — P§)

B ng ¢ n+1 ¢ n
+456.435 ~ oA [(B>s - (B> J (4.57)
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For boundary gridblock 11, n=11, yw;;=1{7,10,12}, &;;={by}, and

Gse,, = 0. Z Do, =45, ,,» Where gfi  is estimated using Eq. (4.28) because
ey,

qspse= — 500 STB/D is specified for the whole reservoir north boundary. This

rate has to be prorated among all gridblocks sharing that boundary. Therefore,

mo bN 11
qyg,,N‘ 1 ™ qspsc (458)
by,1
leyy,,

where y;, ={9,10,11,12}.
Using Eq. (4.29),

kA, 1" 220 x (250 x 100)
™ 0.001127
bt = Ty 11 = [ c (Ay/Z)] [ % 2x1x(300/2)
=20.6616 (4.59)

for all values of €y, .
Substitution of Eq. (4.59) into Eq. (4.58) yields
. 20.6616
qSChN,ll :mx (—500) = _125 STB/D (460)
Substitution into Eq. (4.14) results in the flow equation for boundary grid-
block 11:

(10.3308) (pi — pTy ) + (18.2574) (py — Py ) + (18.2574) (P, — pTh)
_Vb” d’ n+1 d’ n
_125_w[(3>11 —(B>11] (4.61)

Example 4.6 Consider single-phase fluid flow in the 2-D horizontal reservoir
described in Example 4.5. Write the flow equations for gridblocks 1, 4, 9, and
12, where each gridblock falls on two reservoir boundaries.

Solution

The general flow equation for a 2-D horizontal reservoir is obtained from
Eq. (4.2a) by neglecting the gravity term, resulting in Eq. (4.14):

. . Vb,, ¢ n+1 ¢ n
IZT[’" (P =r) + D, e, = a. At l(B) “\B “.19
ey, €&, n n

The data necessary to write flow equations for any boundary gridblock were
calculated in Example 4.5. The following is a summary:

T" = 18.2574 STB/D-psi
T =10.3308 STB/D-psi
= (20.6617) (3000 — p,) STB/D for bB =1,2,3,4 (4.62)

q“b ,bB
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=0 STB/D for bB=1,5,9

-
ey, p = 456435 STB/D for bB=4,8,12
and
=—125 STB/D for bB=9,10,11,12

m
qSCbN ,bB

For boundary gridblock 1, n=1, y; ={2,5}, &, ={bs,bw}, q';;.l =0, and
2‘1?1-1,1 =du, , +dy, = (20.6617)(3000 —p') +0
€&,
=(20.6617) (3000 —p’l”) STB/D

Substitution into Eq. (4.14) results in the flow equation for boundary grid-
block 1,

(18.2574) (py — p) +(10.3308) (p — p') + (20.6617) (3000 — p")

¢ n+1 ¢ n
(E) ‘(E)I] @63

For boundary gridblock 4, n=4, y,={3,8}, &= {bs,bg}, ¢s.,=0, and

a.At

,Z G, =T+, , = (20.6617)(3000 — pf') +456.435 STB/D
€&y

Substitution into Eq. (4.14) results in the flow equation for boundary grid-
block 4,

(18.2574) (p — pi) + (10.3308) (pyf — ply) + (20.6617) (3000 — piy ) +456.435

¢ n+1 ¢ n
(3), - <B)j oy

For boundary gridblock 9, n=9, wo={5,10}, &= {bw. by}, g5, =0, and

= Vb4
a.At

>, =dy,  +dy, ,=0—125=—-125 STB/D

5Cr9 =
€&y

Substitution into Eq. (4.14) results in the flow equation for boundary grid-
block 9,

m m m m V 9 ¢ e ¢ !
(10.3308) (p2 — pl) + (18.2574) (pliy — piy') — 125 :a[,.bm [(B>9 - (B> 9]
(4.65)

For boundary gridblock 12, n=12, y»={8,11}, &2 = {bg, by}, ¢5c, =0,
and
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o=, L+, =456.435—125=331435 STB/D

scri2
leép

Substitution into Eq. (4.14) results in the flow equation for boundary grid-
block 12:

(10.3308) (py' — ply) + (18.2574) (p}} —pih) +331.435

7Vb12 ¢ n+1 ¢ n
@[(EL (Eu (00

4.5 Calculation of transmissibilities

Eq. (2.39) in Chapter 2 defines the transmissibilities in the flow equations in
Cartesian coordinates. The definitions of transmissibility in the x-, y-, and z-
directions are expressed as:

1
T\‘ﬁl/Z.j,k = GX:II/L/’J( (/A_B> o (4.67a)
1
Ty ns = Goo) <> (4.67b)
JE1/2,k JF1/2,k uB o
and
1
TZ;,/,kxl/z - GZI,/,AII/Z (_B) (467C)
H Zi, jk¥1/2

where the geometric factors G for anisotropic porous media and irregular grid-
block distribution are given in Table 4.1 (Ertekin et al., 2001). The treatment of

TABLE 4.1 Geometric factors in rectangular grids (Ertekin et al., 2001)

Direction Geometric factor
X 2B
me/z,/,k = £
AXI, j,k/ (AX,,//k er,/,k) + AXi;1,j,k/ (Axm,,/k ka,/,k>
25
4 GYr,iTw/z,k = £
Ay/,j,k/(AY,,/,k k)’r,/,k) + Ayi,I¥1,/</<AY:‘//+1,I<ky,,/+w,k)
z G . 2p.

Zi,j, kF1/2 T
Azfr/rk/(AZ',f,kaw,k) ki AZ/,;,/<;1 /(AZi,/,ku kzt,f,m)
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the pressure-dependent term (uB) in Eq. (4.67) is discussed in detail under lin-
earization in Chapter 8 (Section 8.4.1).

Example 4.7 Derive the equation for the geometric factor of transmissibility in
the x-direction between gridblocks i and i+1 in 1D flow using the following:

(1) Table 4.1
(2) Darcy’s law.

Solution
1. The geometric factor of transmissibility in the x-direction is given as

2p.
il ik = Ax; JJs k/( Xi, jk \,/k) +Axl¥1 Js k/( \/¥l,j,kkx1¥l,j,k)
For flow between gridblocks i and i+1 in a 1-D reservoir, j=1, and k=1.

Discarding these subscripts and the negative sign in Eq. (4.68) that yields the
sought geometric factor,

G (4.68)

2P,

Gy, =
e Axi/(AX[kf >+Axl+1/( X+ 1 \,+1)

(4.69)

2. Consider the steady-state flow of incompressible fluid (B=1 and
u= constant) in incompressible porous media between gridblocks i and
i+1. Gridblock i has cross-sectional area A, and permeability ., and grid-
block i+1 has cross-sectional area A,  and permeability k. . Boundary
i+Y2 between the two blocks is dx; away from point i and dx;, ;- away from
point i+1 as shown in Fig. 4.13. Fluid flows from gridblock i to block
boundary i+'2 and then from block boundary i+'2 to gridblock i+1.

Actual layer boundary Discretized block boundary

e

Qjjv172 | dir172,i+1
o —— @
i i+1

P 6Xi+ “(S‘X,'.H—‘
AXj j+1
S EEEE—

FIG. 4.13 Transmissibility between two adjacent blocks.
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The rate of fluid flow from the center of gridblock i to block boundary i +Y2
is given by Darcy’s law as

Pk A,
;g = i — Di 4.70
Gii+1/2 By (pi—pis1)2) (4.70)
Similarly, the rate of fluid flow from block boundary i+ to the center of
gridblock i+1 is given by Darcy’s law as

ﬂc'kxi+1AX,+1

Sy 471
Buox,n - (Pis1/2—Pis1) 4.71)

di+1/2,i+1 =

In this flow system, there is neither fluid accumulation nor fluid depletion.

Therefore, the rate of fluid leaving gridblock i (g, ;+1,2) has to be equal to the rate
of fluid entering gridblock i+1 (g;41/2+1); that is,

Giiv1/2=qi+1/2,i+1 =Gii+1 4.72)

The rate of fluid flow between the centers of gridblocks i and i + 1 is given by
Darcy’s law as

G

R —pisy) 4.73)

qii+1 = Bu

The pressure drop between the centers of gridblocks i and i + 1 is equal to the
sum of the pressure drops between the block centers and the block boundary
between them; that is,

(pi—piv1) = (Pi—pis12) + (Piv1/2—Pis1) (4.74)

Substituting for pressure drops in Eq. (4.74) using Egs. (4.70), (4.71), and
(4.73) yields

iv1B iiv12BuOXi+  q; i+1BuoXiy1-
Qiiv1Bp _ dii+1)pBHONi | Giv1/2iv1BHOXi+ 1 4.75)
Gx,-+ 1/2 ﬂ c kxiAxi ﬂ c k/n + IAXI +1

Combining Egs. (4.75) and (4.72) and dividing by flow rate, FVF, and vis-
cosity yields

1 5x1»+ 5)(,'4_1*

Govn Bk Boko, As, *70
Eq. (4.76) can be solved for G, . The resulting equation is
Gy = e 4.77)
Sxi+ [ (Axky,) +Oxiv1- [ (Ax,, Ky y)
Observing that &x;+ ="' /,Ax; and 6x;41- ="' /,Ax;,; for a block-centered

grid, Eq. (4.77) becomes
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G B 24,
e Axi/(Agky) + Axiv1/(Ax, ke, )

(4.78)

Egs. (4.69) and (4.78) are identical.

Eq. (2.69) in Chapter 2 defines the transmissibilities in the flow equations in
radial-cylindrical coordinates. The definitions of transmissibility in the r-, 6-,
and z-directions are expressed as

1
Toimns =G s <—B> (4.79a)
H Tix1/2,j,k
1
Tel.m/z,A = Gei,/xl/Z,A <—B> (4.79b)
H Oiiw1/2,k
and
1
Tzi,f,k¥l/2 = Gli,j,k;l/z <_B> (4.79¢)
H Zi,jyk¥1/2

where the geometric factors G for anisotropic porous media and irregular grid-
block distribution are given in Table 4.2 (Farouq Ali, 1986). Note that in this
table, 7; and r;11, depend on the value of subscript i only for j=1, 2, 3...n9
and k=1, 2, 3...n,, A6; and Af,+,,, depend on the value of subscript j only
fori=1, 2, 3...n, and k=1, 2, 3...n., and Az; Az;5;, depend on the value
of subscript k only for i=1, 2, 3...n, and j=1, 2, 3...ny. The treatment of
the pressure-dependent term (uB) in Eq. (4.79) is discussed in detail under lin-
earization in Chapter 8 (Section 8.4.1).

TABLE 4.2 Geometric factors in cylindrical grids (Farouq Ali, 1986)

Direction Geometric factor

r G 3 peAb;
Ti1/2,j,k —
Ioge(r,'/r,ﬂ]/2)/(Az,-,j,kk,,.d./k) + Ioge(riﬂvz/r,;1 )/(Azi—Lj,kkl’m,/,k)
G _ eA0;
Tit1/2,j,k —
Ioge(r,.LH/Z/r,-)/(Az,-,j,kkr,,,,J+Ioge(r,-+1 /r/L+1/2)/(Azi+1,j,kkmw,,,k)
0 2ﬁ5|°ge(’iL+1/2/’iL—1/z)
Ggum/Z,k =
Aﬂj/(Az,;j,kkg,'//k) +A9/¢1/(Azf'/ﬂ,kkghm’k)
“ _ 2ﬁc(1/2Mi>(’:‘2+1/2*’f271/2)
Zj jk¥1/2 =

Azf,j,k/kzr,j,k + AZi,j, kF1 /kzr,j,k¥1
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Table 4.2 uses gridblock dimensions and block boundaries in the z-direction
as defined in Eq. (4.1), with z replacing x. Those in the #-direction are defined in
a similar way. Specifically,

Ny

> Ag=2x
Jj=1

MOy ip="/2(00,1+A0)), j=1,2,3...ng—1
01 =0+ A0, 1/, j=1,23...ng— 1, 0, =" /5,70, (4.80)
and
010 =0,F"/200;, i=1,2,3...np

In the r-direction, however, the points representing gridblocks are spaced
such that the pressure drops between neighboring points are equal
(see Example 4.8). Block boundaries for transmissibility calculations are
spaced logarithmically in r to warrant that the radial flow rates between
neighboring points using the integrated continuous and discretized forms of
Darcy’s law are identical (see Example 4.9). Block boundaries for bulk vol-
ume calculations are spaced logarithmically in 7 to warrant that the actual and
discretized bulk volumes of gridblocks are equal. Therefore, the radii for
the pressure points (7;5), transmissibility calculations (r,LIm), and bulk
volume calculations (r;+,,) are as follows (Aziz and Settari, 1979; Ertekin
et al., 2001):

ris1=ar; fori=1,2,3...n,—1 (4.81)
L _ Tiv1 Tl .
7i+1/2—m f0rl—1,2,3...n,.71 (4823)
L lhi—rlia .
riil/z—m f0r1—2,3...n,, (4833)
2 2
2 __ ha~rh .
Tiv1)2= IOge(r,-zﬂ/r?) fori=1,2,3...n, — 1 (4.84a)
22
2 i .
. =—+t—=—_ fori=2,3...n, 4.85a
r171/2 loge(riz/i‘?,l) l n ( )
where
1/n,
ay, = (r—) (4.86)
'w
and

ri = [argloge (ayg) / (asg —1)] sy (4.87)
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Note that the reservoir internal boundary (r,,) and the reservoir external
boundary (r.) through which fluid may enter or leave the reservoir are, respec-
tively, the internal boundary of gridblock 1 and the external boundary of grid-
block n, that are used to calculate transmissibility. That is to say, r%/z =r, and
r,L, +12=T. by definition for block-centered grid (Ertekin et al., 2001).

x

The bulk volume of gridblock (i,], k) is calculated from
V= (Vi2+ 127 V?q/z) (1/2A9.i)AZi,j,k (4.88a)
fori=1,2,3...n,—1,j=1,2,3...n9, k=1, 2, 3...n,; and
Vi, o = (rg 2, /2) (1/2A0,) Az, . (4.88¢)

for j=1,2,3...n9, k=1,2,3...n,.

Example 4.8 Prove that the grid spacing in the radial direction defined by
Egs. (4.81) and (4.86) satisfies the condition of constant and equal pressure drops
between successive points in steady-state radial flow of incompressible fluid.
Solution
The steady-state flow of incompressible fluid toward a well with radius r,, in
a horizontal reservoir with an external radius 7, is expressed by Darcy’s law:

—2ap kyh

g=—LT () (4.89)
Bulog, <e>
Tw
The pressure drop across the reservoir is obtained from Eq. (4.89) as
—qBulog, ('—e)
Ty

e —Py)=—————— W 4.90
(Pe=pw) 21p Jerh (4.90)

Let the reservoir be divided into n, radial segments that are represented by
points i=1, 2, 3...n, placed at ry, 1, 3, ...Ti_1, I'i, Fis1, ...I'n . The location of
these points will be determined later (Eq. 4.81). For steady-state radial flow
between points i+ 1 and i,

—27B kyh

q=——"/—~ (Pi+1—pi) 4.91)
Ti+1
Buloge< )
Ti

The pressure drop between points i+ 1 and i is obtained from Eq. (4.91) as

—gBulog, <r"+ 1)

-

i+1—Di) = d 4.92
(Piv1—Di) 21f Jeh ( )

If the pressure drop over each of the radial distances (r;,; —r;) for i=1, 2,
3...n,—1 is chosen to be constant and equal, then
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(pis1—Di) _(pe=pu) (4.93)

ny

fori=1,2,3...n,—1.
Substituting Egs. (4.90) and (4.92) into Eq. (4.93) yields

. 1 .
log. (’”1) — " log, (’-) (4.94)
T n, T'w

Tit1 Te Wn
== 4.95
()= () @950
fori=1,2,3...n,—1.

For the convenience of manipulation, define

or

A\ L/
g = (E) (4.86)
then Eq. (4.95a) becomes
(’r* ‘) = a (4.95b)
or
Tiv1 = gl (4.81)

fori=1,2,3...n,—1.
Eq. (4.81) defines the locations of the points in the r-direction that result in
equal pressure drops between any two successive points.

Example 4.9 Show that the block boundaries defined by Eq. (4.82a) ensure that
the flow rate across a block boundary is identical to that obtained from
Darcy’s law.

Solution

From Example 4.8, for steady-state radial flow of incompressible fluid
between points i+ 1 and i,

—2rf kuh
) (91)
B,uloge<'+l)

.

1

q:

The steady-state fluid flow rate across a block boundary is also expressed by
the differential form of Darcy’s law at block boundary 7%,

—2af kihry, | ;2 dp
T Ba drla @90

Tivi
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The pressure gradient at a block boundary can be approximated, using cen-
tral differencing, as

dp ~Pi+1 —Di

et I~ 4.97
dr L Fivl1 — 7 ( )
i+1/2
Substitution of Eq. (4.97) into Eq. (4.96) results in
—2zrp .k hrf 1 — D
g = #is1/2 (P = Pi) (4.98)
s By Tiv1 —Ti

If the flow rate calculated from Darcy’s law (Eq. 4.91) is identical to the
flow rate calculated from the discretized Darcy’s law (Eq. 4.98), then

—27p kyh —27B kbt | (pi —p;
2l T i —pi) = (';“ _‘:) (4.99)
B,uloge< 1+1) )24 i+1 i

Ti
which simplifies to give
L (4.82a)

L _
Fivip= el
loge( s )
I

Egs. (4.82a), (4.83a), (4.84a), (4.85a), (4.88a), and (4.88c) can be expressed
in terms of 7; and a;, as:

riL+1/2: {(alg_l)/[IOge(alg)]}ri (4.82b)
fori=1,2,3...n,—1;
riLfl/Z = {(aig —1)/[auglog. (as)] }ri = (l/a,g>’%+1/2 (4.83b)
fori=2,3...n;
CO [N

fori=1,2,3...n,—1;
Zip={(ad~1)/[attoge ()| }2= (Ve )2y 4385D)

fori=2,3...n,

Vi, = { (e, - 1)2 NEANACA] }r,.z (/2A0)) Az ;4 (4.88b)

fori=1,2,3,...n,—1;and
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Vi, = {1 — [tog. (ae)/ (csg — 1)]2(a,2g - 1) / [a,zgloge(a,zg)} }

r2 (' /286)) Az, ik

for i=n,.

(4.88d)

Example 4.10 Prove that Egs. (4.82b), (4.83b), (4.84b), (4.85b), and (4.88b) are
equivalent to Egs. (4.82a), (4.83a), (4.84a), (4.85a), and (4.88a), respectively. In
addition, express the arguments of the log terms that appear in Table 4.2 and the

gridblock bulk volume in terms of ay,.
Solution
Using Eq. (4.81), we obtain

rivt —ri=aggri—ri=(ag —1)r;
and
Vit /Vi = Qg
Substitution of Eqgs. (4.100) and (4.101) into Eq. (4.82a) yields
et =Ti (a1 —1)r; _
log(ris1/ri)  loge(a),
Eq. (4.102) can be rearranged to give

{ (g — 1) /1og, (asg) i

"iL+1/2:

’:‘L+1/2/’i = (g — 1) /log. (ag)

from which

log. (",'L+1/2/"i) = log, [(alg - 1)/10ge(alg)]

(4.100)

(4.101)

(4.102)

(4.103)

(4.104)

Egs. (4.101) and (4.102) can be combined by eliminating r;, yielding

1
i oz (a) (s = 1) (ri 1 /eug) = { (e = 1)/ [eglogee (ag) | frivr (4.105)
e\Xg
Eq. (4.105) can be rearranged to give
r,-+1/rl»L+ 1= [alg log, (a,g)} /(a,g — 1) (4.106)
from which
toge (ris1 /11 2) = loge{ [ loge (a)] / (e, — 1)} (4.107)
Using Eq. (4.81) and replacing subscript i with i — 1 yields
ri = Qgli—| (4.108)
and
I‘,’/I‘,’,I = Qg (4109)
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Substitution of Egs. (4.108) and (4.109) into Eq. (4.83a) yields

I'i—Ti-1 ri_ri/alg_

g, /r) log (o) {(ag—1)/[agloge(a)] }ri  (4.110)

L _
Tic1p=

Eq. (4.110) can be rearranged to give

r,-/rl.{m: [algloge(alg)}/(azg—l) 4.111)
from which
log, (ri/r,-Lq/z) = log.{ [ log. (a) ]/ (ars— 1) } (4.112)
Eqgs. (4.108) and (4.110) can be combined by eliminating r;, yielding
1
riL—l/2 :W [(“lg - 1)/0‘15’} (alg"ifl) = [(a/g - 1)/10g6(alg)]”i*1
(4.113)
Eq. (4.113) can be rearranged to give
i/t = (g — 1) /log, (ayg) (4.114)
from which
log, (rffl/z/r,-,l) = log, [(a—1)/log.(a)] (4.115)
Egs. (4.102) and (4.110) are combined to get
L L { (arg—1) /loge (aug) }ri
A Wi - = 4.116
" = 1) g loge ) e
from which
log, (rl.LJr 1/2/riL71/2) =log, (alg) 4.117)

Substitution of Egs. (4.81) and (4.101) into Eq. (4.84a) yields

2 2 (a?—l)r?
S S N :Ka,zg—l)/loge(a,zg)]r? (4.118)

2
Tivi2=
12 o, (17,,/1?) logg<a,2g)

Substitution of Eqs. (4.108) and (4.109) into Eq. (4.85a) yields

2_ .2 1—1/a,)r?
2 i —Ticy ( lg) ! {( 2 2 2 2
Tiiip= 2y =\ _1)/{0” logg(a, )”r"
27 log.(r7/r2) log, (ai,) ¢ ¢ ¢

4.119)
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Subtraction of Eq. (4.119) from Eq. (4.118) yields

(@), l(a1)/a)

ri2+1/2_”5271/2: 5 r 5 T
log, (a,g> log, (a,g)

a2g—1 1_1/azg
:(’ 10;((0%) l)riz{(alzgl)z/[a[zglogg(a[zg>:|}ri2

Combining Eqgs. (4.88a) and (4.120) yields

Vi, = { (a2~ 1)2 /et 1oz (o, )] }r,? (/2A0)Az ;0 (4121)

Eq. (4.121) can be used to calculate bulk volumes of gridblocks other
than those that fall on the reservoir external boundary in the r-direction.
For blocks with i=n,, Eq. (4.88d) is used and the proof is left as an exercise
(Exercise 4.13).

Example 4.10 demonstrates that quotients r,-/i{‘_l/z, rf_l/z/rf_l, r,ﬁl/z/rf,
r,—+1/r,4+1/2, and r{-‘+1 /2/7',4_1/2 are functions of the logarithmic spacing constant
a;, only as expressed in the following equations:

(4.120)

rifriyp = langloge (@) ]/ (arg — 1) @.111)
i a/rion = (g —1) /log. (ayg) (4.114)
riei /i = (g —1) /log, (a,) (4.103)
rie1 /15410 = (g loge (o) |/ (g = 1) (4.106)
Fiena T = g (4.116)

By substituting the above five equations into the equations in Table 4.2 and
observing that

(1/286)) (2,12 = 12.112) = Vi, /Bzija using Eq. (4.882), Table 4.3 is
obtained.

Now, the calculation of geometric factors and pore volumes can be simpli-
fied using the following algorithm.

1. Define
ro 1/n,
ae=|— (4.86)

Iy
2. Let
r = [alg log, (alg)/(alg - 1)] Iy 4.87)
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TABLE 4.3 Geometric factors in cylindrical grids
Direction Geometric factor
r Gooyy = BcAb;
{ loge [ajgloge (asg) / (aig —1)]/ (Az,v,/,kk,i,/.’k>
+loge [(ag —1)/1oge (@)]/ (Azi 1k, ) |
BAY;
{|08e[(0‘/g*1)/|08e(algﬂ/(Azi f,kkrf,,,k)
+loge[ajgloge(aig)/(ag—1)]/ <Az,-+1/,-,kk,m//.,k>}

)
0 B 2B loge(ajg)
(

G

Ti+1/2,j,k =

Gﬁ': jF1/2,k —
a AG/‘/ (AZ,',/',kkgw., ) +A01;1/ AZ, JF, kkg /TW)
Z G 2ﬂc<vbi,/,k/AZi,/,k>
“BLA Azi,f,k/kll,/,k + Azi,j,kﬂ /kZ,,/,k+w
3. Set
r-—a;g ' (4.122)

where i=1, 2, 3, ...n,.
4, Forj=1,2,3,...ngand k=1, 2, 3, ...n,; set

2
Vi = { (,~1) /[t toge(a3)] }r?(l/er,») Az (488b)
fori=1,2,3,...n,—1, and

Vi = { 1= [1oge () (g = 1)) (2, ~ 1) /[ log (2] }

(4.88d)
re (1/2080) Az, ik
for i=n,.
5. Estimate the geometric factors using the equations in Table 4.3. Note that in
the calculation of G, ia? G, S G a2 OF G, . terms that describe prop-

erties of blocks that fall outside the reservoir (i=0, i=n.+1, k=0, and
k=n_.+1) are discarded.

Examples 4.11 and 4.12 show that reservoir discretization in the radial direction
can be accomplished using either the traditional equations reported in the pre-
vious literature (Eqs. 4.81, 4.82a, 4.83a, 4.84a, 4.85a, 4.86, 4.87, 4.88a, and
4.88c) or those reported in this book (Egs. 4.81, 4.82b, 4.83b, 4.84b, 4.85b,
4.86,4.87,4.88b, and 4.88d) that led to Table 4.3. The equations reported in this
book, however, are easier and less confusing because they only use r; and ay,.
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In Example 4.13, we demonstrate how to use Eq. (4.2a) and the appropriate
expressions for ¢, . along with Table 4.3, to write the flow equations for
boundary and interior gridblocks in a 2-D single-well simulation problem.

Example 4.11 Consider the simulation of a single well in 40-acre spacing. Well-
bore diameter is 0.5 ft. The reservoir thickness is 100 ft. The reservoir can be sim-
ulated using a single layer discretized into five gridblocks in the radial direction.

1. Find the gridblock spacing in the r-direction.

2. Find the gridblock boundaries in the r-direction for transmissibility
calculations.

3. Calculate the arguments of the log, terms in Table 4.2.

4. Find the gridblock boundaries in the r-direction for bulk volume calcula-
tions and calculate bulk volumes.

Solution
1. The reservoir external radius can be estimated from well spacing

re =1/43,560 x 40/x =744.73 ft, and well radius is given as r,,=0.25 ft.
First, estimate a;, using Eq. (4.86):

1/n, 1/5
re 744.73
=(Z) =(Z22) =4.9504
s (;) ( 0.25 ) 93

Second, let r;=[(4.9524)log.(4.9524)/(4.9524 —1)](0.25)=0.5012 ft
according to Eq. (4.87). Third, calculate the location of the gridblocks in the
r-direction using Eq. (4.122), r,;:a};lrl. For example, for i=2,
= (4.9524)> "1 % 0.5012 =2.4819 ft. Table 4.4 shows the location of the other
gridblocks along the r-direction.

2. Block boundaries for transmissibility calculations (1{-“_1/2, r,-L+1/2) are esti-
mated using Eqs. (4.82a) and (4.83a).

For i=2,
-y — 12.2914 —2.4819
AL 37T —6.1315ft 4.123
2412 Jog,(r3/r2)  log.(12.2914/2.4819) ( )
and
. o 2.4819 —0.5012
’ — - = 1.2381ft 4.124
"2-12 " Jog (1 /r1) _ log.(2.4819/0.5012) (129

Table 4.4 shows the boundaries for transmissibility calculations for other
gridblocks.

3. Table 4.4 Shows the calculated values for r,-/r,L-_l/z, r,-+1/r,4+1/2, rf_l/z/r,-_l,
r,-L+1/2/r,-, and rl-L+1/2/rl-L_1/2, which appear in the argument of log, terms in
Table 4.2

4. The block boundaries for bulk volume calculations (r;_1,,, ;+1,2) are esti-
mated using Eqgs. (4.84a) and (4.85a).



TABLE 4.4 r; r,4¢1/2, and log. arguments in Table 4.2 for Example 4.11

i

ri

0.5012
2.4819
12.2914
60.8715
301.457

a1 p=ry=0.25.

bl =re=744.73.

rlé—1/2

0.25°
1.2381
6.1315
30.3651

150.379

riL+1/2

1.2381

6.1315

30.3651
150.379

744.73P

i/
fix

i-1/2

2.005
2.005
2.005
2.005

2.005

o
i+1 /r‘
i+1/2

2.005
2.005
2.005
2.005

2.005

L
"H/z/
Fi

2.47
2.47
2.47
2.47

2.47

2.47
2.47
2.47
2.47

2.47

L
v
L

Ram
4.9528
4.9524
4.9524
4.9524

v | 491deyd pus paselusd-yd0|q B yum uonenwis

oL
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For i=2,
22 12.2914)% — (2.4819)*
Bop =i ( )~ ) 4520062 (4.125)
loge(13/73)  log, {(12.2914)2/(2.4819)2}
and
2,2 2.4819)% — (0.5012)>
3 apn= nor __ (24819) —(0.5012) =1.84671  (4.126)

loge(r3/r1)  1og.[(2.4819)°/(0.5012)?]
Therefore, the gridblock boundaries for bulk volume calculations are

Fa41/2 = V45.2906 = 6.7298 t

and

1‘2,1/2 =V 1.8467 = 1.35891t

The bulk volume for the gridblocks can be calculated using Eqgs.(4.88a), and
(4.88¢).
For i=2,

Vi, = (r§+1/2 _r§71/2) (I/ZAQ)AZZ

(4.127)
— [(6.7299)2 - (1.3589)2] (1/2 % 27) x 100 = 13648 .47 ft’

For i=35,

Vi, = (rg 2 /2) (1/240) Azs
- [(744.73)2 - (165.056)2] (/2 x27) x 100 = 165.68114 x 10°£’

(4.128)

Table 4.5 shows the gridblock boundaries and the bulk volumes for other
gridblocks.

Example 4.12 Solve Example 4.11 again, this time using Egs. (4.82b), (4.83b),

(4.84b), (4.85b), and (4.88d), which make use of r;, a;,, and Eq. (4.88d).
Solution

1. From Example 4.11, r,=744.73ft, r,=0.25ft, r;=0.5012ft, and
a;,=4.9524. In addition, Table 4.4 reports radii of points representing grid-
blocks (7;) calculated using Eq. (4.122).

2. Block boundaries for transmissibility calculations = 25 ke ,2) are esti-
mated using Eqgs. (4.82b) and (4.83b), yielding

i1 =1 (e — 1)/ [loge (ai)] }ri={(4.9524 — 1) /[log..(4.9524)]}r;
=2.47045r; (4.129)
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TABLE 4.5 Gridblock boundaries and bulk volumes for gridblocks in
Example 4.11

i r; ri—1,2 riv1/2 Vb,

1 0.5012 0.2744 1.3589 556.4939

2 2.4819 1.3589 6.7299 13,648.47

3 12.2914 6.7299 33.3287 334,739.9

4 60.8715 33.3287 165.056 8,209,770

5 301.4573 165.056 744.73% 165,681,140

Y I5p1p=Te=744.73.

and
’iL—l/z = {(a/g — 1)/ [alg log, (a,g)] }r,» ={(4.9524 —1)/[4.952410g ,(4.9524)] }r;
=0.49884r; (4.130)

Substitution of the values of r; into Egs. (4.129) and (4.130) produces the
results reported in Table 4.4.

3. The ratios I‘l‘/l’f‘,l/z, 7',‘+1/VIL+1/2, 7‘5;1/2/7'1*,1, r,~L+1/2/r,~, and r,~L+1/2/r,~L,1/2 as func-
tions of a;, were derived in Example 4.10 as Egs. (4.111), (4.106),
(4.114), (4.103), and (4.116), respectively. Substitution of a;,=4.9524 in
these equations, we obtain:

rifri = lagloge (aig) |/ (arg — 1) = [4.952410g,.(4.9524)] / (4.9524 — 1)

=2.005 (4.131)
ris1 /i1 p = [@gloge (aug)] /(e — 1) =2.005 (4.132)

rEp/rion = (aig— 1) /log. (ag,) = (4.9524 — 1)/ log,(4.9524) = 2.470
(4.133)
rici /i = (g — 1) /log, (i) = 2.470 (4.134)
raa /Ty = @i = 4.9524 (4.135)

Note that the values of the above ratios are the same as those reported in
Table 4.4.

4. Block boundaries for bulk volume calculations (7;_, i+1,2) are estimated
using Eqgs. (4.84b) and (4.85b):
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2= {( 1)/ [oge ()] }2 = 1((4.95247 ~1) [ (4.9524))] 12

=(7.3525)r? (4.136)

and

7= { (a,zg - 1) / [a,gloge (a,g)] } {7 3525/(4.9524) }
= (0.29978)? (4.137)
Therefore,

riv1p =1/ (7.3525)r} = (2.7116)r,; (4.138)

and
Tisij2= (O.29978)r,-2 =(0.54752)r; (4.139)

The bulk volume associated with each gridblock can be calculated using
Eqgs. (4.88b) and (4.88d).
Fori=1, 2, 3, 4;

Vi, = { (ai — 1)2/ [ai log. <a,25>} }'12 ['/2(27)] Az

- { [(4.9524)2 - 1} g [(4.9524)2 1oge(4.9524)2} }rf [!/2(27)] x 100 =2215.7r2
(4.140)
For i =35,

- {1 ~[log.(4.9524) /(4.9524 — 1)]2 x [(4.9524)2 - 1] /

[(4.9524)2 x loge ((4.9524)2)} } x (744.73)2 (1 /2 x 21) x 100
—165.681284 x 10° 4.141)

Note that the values of estimated bulk volumes slightly differ from those
reported in Table 4.5 due to roundoff errors resulting from approximations in
the various stages of calculations.

Example 4.13 A 0.5-ft diameter water well is located in 20-acre spacing. The
reservoir thickness, horizontal permeability, and porosity are 30ft, 150md, and
0.23, respectively. The (ky/ky) for this reservoir is estimated from core data as
0.30. The flowing fluid has a density, FVF, and viscosity of 62.4 Ibm/ft>,
1RB/B, and 0.5cP, respectively. The reservoir external boundary in the radial
direction is a no-flow boundary, and the well is completed in the top 20 ft only
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2000 STB/D
/_“_w<No-ﬂow boundary
\\C oo | o k=3| No-flow boundary

—
\ " 6| 7 8 /

e o ® ° k=230 ft

\// oo o k=1
7 i=1i=2i=3 i=4

y p, =4000 psia
L
.

FIG. 4.14 Discretized 2-D radial-cylindrical reservoir in Example 4.13.

and produces at a rate of 2000 B/D. The reservoir bottom boundary is subject to
influx such that the boundary is kept at 4000 psia. The reservoir top boundary is
sealed to flow. Assuming the reservoir can be simulated using three equal grid-
blocks in the vertical direction and four gridblocks in the radial direction, as
shown in Fig. 4.14, write the flow equations for gridblocks 1, 3, 5, 7, and 11.

Solution

To write the flow equations, the gridblocks are first ordered using natural
ordering (n=1, 2, 3, ...10, 11, 12) as shown in Fig. 4.14, in addition to being
identified using the engineering notation along the radial direction (i=1, 2, 3, 4)
and the vertical direction (k=1, 2, 3). This is followed by the estimation of res-
ervoir rock and fluid property data, the determination of the location of points
representing gridblocks in the radial direction, and the calculation of gridblock
sizes and elevation in the vertical direction. Next, bulk volumes and transmis-
sibilities in the r- and z-directions are calculated and the contributions of the
gridblocks to well rates and fictitious well rates resulting from reservoir bound-
ary conditions are estimated.

Reservoir rock and fluid data are restated as follows, 2=30 ft, ¢ =0.23,
k,=ky=150md, k,=ky(ky/ky)=150x0.30=45md, B=1RB/B, y=0.5cP,
y=ypg=0.21584 x 1073(62.4)(32.174) =0.4333 psi/ft, r,,=0.25 ft, and the res-
ervoir external radius is estimated from well spacing as r,= (20 x 43560/7[)1/ 2
=526.60 ft. The reservoir east (external) and upper (top) boundaries are no-
flow boundaries, the lower (bottom) boundary has p;, =4000 psia, and the reservoir
west (internal) boundary has g,,. = — 2000 B/D to reflect the effect of the produc-
tion well (i.e., the well is treated as a boundary condition).

For the block-centered grid shown in Fig. 4.14, n,=4, n,=3, and Az; =
h/n,=30/3=10 ft for k=1, 2, 3; hence, Az,=10ft for n=1, 2, 3,4, 5,6, 7,
8,9,10, 11,12, and Az, =10 ft for k=1, 2. Assuming the top of the reservoir
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as the reference level for elevation, Z,,=5 ft for n=9, 10, 11, 12; Z,,= 15 ft for
n=35,6,7,8; Z,=25ftfor n=1, 2, 3, 4; and Z;, =30 ft.

The locations of gridblocks in the radial direction are calculated using
Eqgs. (4.86), (4.87), and (4.122); that is,

a;, = (526.60/0.25)"/* = 6.7746
r1 = [(6.7746)log,.(6.7746)/(6.7746 — 1)] x 0.25 =0.56112 ft
and
ri=(6.7746)"V(0.56112)

fori=2, 3, 4 or r,=3.8014 ft, r3;=25.753 ft, and r,=174.46 ft.
Eq. (4.88b) is used to calculate bulk volume for gridblocks that have
i=1,2,3:

Vi, = { (alzg — 1)2/ [alzgloge (ai)} }i‘iz(l/er)AZi,k
- { [(6.7746)2 - 1} ) [(6.7746)210& ((6.7746)2” }r?(1 /2% 27) Az

=(36.0576)r?Az;
and Eq. (4.88d) for gridblocks that have i=n,=4,

Vi, = {1 — [1oge (e ) /(@ = 1)) ’ (e, 1) /[, 10ge (a,)] }r?(l/zAHj)Aznhk
= {1 —[log.(6.7746)/(6.7746 — 1)]*[(6.7746)* — 1]/
[(6.7746)% log, ((6.7746)%)]} x (526.60)* (1 /2 x 27) Az
= (0.846740 x 10%) Az

Eq. (4.79c¢) defines the transmissibility in the vertical direction, resulting in

1 1
TZi,k;]/z = GZi,k;]/z (/1_B> = GZi,k;l/z <m) = (2>Gz,v,k¥1/2 (4.142)

where GZMU2 is defined in Table 4.3 as

. % (Vb /Azy) (4.143)
Zi k512 Azk/kzi,k + Azg [k .

ZikF1

For this problem, gridblock spacing, thickness, and permeability in the ver-
tical direction are constants. Therefore, Eq. (4.143) reduces to

GZ[,I@I/Z - Azk
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or after substitution for values it becomes

(1.127 x 107%) (45)(36.0576 x 17)

GZz,k;1/2 = 10

=(0.182866)r  (4.144a)

fori=1,2,3and k=1, 2, 3.

(1.127 x 1077)(45) (0.846740 x 10°)
Gzi,l\;l/z = 10
fori=4 and k=1, 2, 3.
Substituting Eq. (4.144) into Eq. (4.142) results in

—4294.242  (4.144b)

T.

ZikT1/2
fori=1,2,3and k=1, 2, 3; and
T =2(4294.242) = 8588.484 (4.145b)

ZiykF1/2

=2(0.182866)r7 = (0.365732)r? (4.145a)

fori=4 and k=1, 2, 3.
Eq. (4.79a) defines the transmissibility in the r-direction, yielding

1 1
Trm/z,A = G"fxl/z,k (/4_B> = G"m/z,k <m> = (Z)Grm/z,k (4146)

where G, is defined in Table 4.3. With A@=2x and constant radial perme-
ability, the equation for the geometric factor reduces to

_ 27p ki Az
e log{ [augloge (arg) / (e — 1) ] x [ (o — 1) /loge (as) | }

2 Az 27(0.001127)(150) Az
= = = (0.5551868)Az; 4.147
log. (aq) log,.(6.7746) ( JAz )

G

Therefore, transmissibility in the radial direction can be estimated by
substituting Eq. (4.147) into Eq. (4.146):

Ty = (2)Gry oy = (2)(0.5551868) Az = (1.1103736)Az  (4.148)

Table 4.6 lists the estimated transmissibilities in the radial and vertical direc-
tions and bulk volumes. Before writing the flow equation, the well production
rate (the specified rate for the reservoir west boundary) must be prorated
between gridblocks 5 and 9 using Eq. (4.28):

m _ TZ?bB 4.28
qSCh,hB - Z Tm QSpsc ( . )
b,l

ley,

where T} ,p =transmissibility in the radial direction between reservoir bound-
ary b and gridblock bB with the well-being the reservoir internal boundary and
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TABLE 4.6 Gridblock location, bulk volume, and radial and vertical
transmissibilities for Example 4.13

Az, Z,
n i k rift (ft) (ft)
1 1 1 0.56112 10 25
2 2 1 3.8014 10 25
3 31 25.753 10 25
4 4 1 17446 10 25
5 1 2 0.56112 10 15
6 2 2 3.8014 10 15
7 302 25.753 10 15
8 4 2 17446 10 15
9 1 3 0.56112 10 5
0 2 3 3.8014 10 5
11 3 3 25.753 10 5
12 4 3 17446 10 5

Vp, ()

113.5318
5210.583
239,123.0
8,467,440
113.5318
5210.583
239,123.0
8,467,440
113.5318
5210.583
239,123.0
8,467,440

Fit1/2,k

(B/D-
psi)
11.10374
11.10374
11.10374
11.10374
11.10374
11.10374
11.10374
11.10374
11.10374
11.10374
11.10374
11.10374

T

Zik+1/2

(B/D-psi)
0.115155
5.285098

242.5426

8588.532
0.115155
5.285098

242.5426

8588.532
0.115155
5.285098

242.5426

8588.532

v, =y, = {5,9}. Note that gridblock 1 has a no-flow boundary because it is not

n=>5,9) gives

G —

penetrated by the well; that is, q;';.hw =
Applying the equation for G

Tic1/2,1k

21f ke Azi

Tim1/2,16 loge{ [azg loge(azg)/(azg - 1)] }

272(0.001127)(150) x Az

"~ log.[6.7746 x 1og6.7746/(6.7746 — 1)]
Gryin  1.3138%10

m

beST TR 0.5x
and

- Gy 13138%10

b9 yB T 0.5 x

The application of Eq. (4.28) results in

=26.276B/D-psi

=26.276B/D-psi

0.
in Table 4.3 fori=1, j=1, k=2, 3 (i.e.,

=1.3138 x Az
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26.276
mo 22D (2000) =—1000B/D
Toenys = 26276+ 26.276 <\ ) /

and

mo__ 26276
Tseny0 = 26276 +26.276

Note that the well penetrating gridblocks 5 and 9 are treated as
fictitious well.

For the reservoir lower boundary, p;,, =4000 psia. The flow rates of the fic-
titious wells in gridblocks 1, 2, 3, and 4 are estimated using Eq. (4.37¢), yielding

x (—2000) = —1000B/D

q;’;hL =T, [(4000 — p,,) — (0.4333)(30—25)] B/D (4.149)
where TZL,H is estimated using Eq. (4.29) and A; =V}, /Az,
k. A, 45 x (Vy, [ Azy)
T = ——"—-=0.001127 X ——————=
hn=Pe iz, “05% 1% (10/2)
= (0.0020286)V, (4.150)

For the reservoir east and upper (no-flow) boundaries, quh =0forn=4,8,
12andgq?. =0forn=9,10, 11, 12. Table 4.7 summarizes the contributions of
SC},U
gridblocks to well rates and fictitious well rates.
The general form of the flow equation for gridblock n is obtained from

Eq. (4.2a):
Z Tm m ]/[ n Z qvc; n qvc,,

ley, l1€g,

B Vb,, ¢ n+1 ¢ n
—@[@n ‘(E)J @2

For gridblock 1, n=1, i=1, k=1, yw={2,5}, & ={b.,bw},

and Zqﬁyl :qz’;hL 1 +q;’(’.hw ,» Where from Table 4.7, g3  =(0.23031)
leg,
[(4000 —p7') —(0.4333)(30—25)] B/D and ¢, =0 and g, =0. Therefore,

substitution into Eq. (4.2a) yields

(11.10374) [(pg —p'ln) —(0.4333)(25 — 25)]
+(0.115155) [(pg" —p']”) —(0.4333)(15— 25)]

+(0.23031)[ (4000 — ') — (0.4333)(30 ~ 25)] +0+0= 113.5318 {(@)“ L (f)"}

acAt B 1 B 1
(4.151)
For gridblock 3, n=3, i=3, k=1, w3={2,4,7}, &={b.}, and

> i, =dy, ,» where from Table 4.7, ¥  =(485.085)[(4000—p)
l€&3
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TABLE 4.7 Contribution of gridblocks to well rates and fictitious well rates

qse, 9y, Gscop  Gtny,

n ik (B/D qs,, (B/D) (B/D) (B/D) (B/D)
1 1T 1 0 (0.23031) 0

[(4000— p'") —(0.4333)

(30—25)]
2 2 1 0 (10.5702)

[(4000 — p5") — (0.4333)

(30—25)]
3 3 1 0 (485.085)

[(4000 — p5") —(0.4333)

(30—25)]
4 4 1 0 (17177.1) 0

[(4000 — pf") — (0.4333)

(30—25)]
5 1T 2 0 —1000
6 2 2 0
7 3 2 0
8 4 2 0 0
9 1 3 0 —1000 0
10 2 3 0 0
11 3 3 0 0
12 4 3 0 0 0

—(0.4333)(30—25)] B/D and qi.'ﬁ} =0 (no wells). Therefore, substitution into
Eq. (4.2a) yields
(11.10374) [(p — p7') — (0.4333)(25 —25)]

+(11.10374) [ (p4 — p%¥) — (0.4333)(25—25)]

+(242.5426) [ (p4' — p%') — (0.4333)(15—25)]

~239123.0

+(485.0852)[ (4000 — p4') — (0.4333)(30—25)] +0 Y
E o

(g)}“—l_(f)n
B/3 B/3
4.152)

For gridblock 5, n=5, i=1, k=2, yws={1,6,9}, &={by}, and
> di,, =d, ., where from Table 4.7, g% =—1000B/D and g4, =0

scrs =
l€és



Simulation with a block-centered grid Chapter | 4 111

(the well is treated as a boundary condition). Therefore, substitution into
Eq. (4.2a) yields

(0.115155) [(p'ln fpg") —(0.4333)(25— 15)}
+(11.10374) [(pg' 7pg") —(0.4333)(15— 15)]

+(0.115155) [(pg —pg") —(0.4333)(5— 15)} _1000+0= 132318 [(ﬁ)nﬂ _ <ﬂ>"}

acAt B/5 BJs
(4.153)
For gridblock 7, n=7, i=3, k=2, y,=1{3,6,8,11} (h> dn,=0

le&;
(interior gridblock), and g¢f. =0 (no wells). Therefore, substitution into
Eq. (4.2a) yields

(242.5426) [ (5 —p7') — (0.4333) (25— 15)]
+(11.10374) [ (pf — p4') — (0.4333) (15— 15)]
+(11.10374) [ (p¥' — ') — (0.4333)(15 - 15)]
+(242.5426) [ (P —p2) — (04333)(5—15)]+0+0_%[@):+1_(%):]
(4.154)
For gridblock 11, n=11, i=3, k=3, y,,=1{7,10,12}, &,=1{by},

qu’é[ . :q;';hy L q;’;bv ., =0 (no-flow boundary), and g =0 (no wells).
ey
Therefore, substitution into Eq. (4.2a) yields

(242.5426) [(p5' — ;) — (04333)(15 - 5)]
+(11.10374) [ (1 — P ) — (0.4333)(5 —5)]

. 02391230 [ 4\ ()"
+(11.10374) [ (p —p™) — (04333)(5—5)}+0+0_W[(E>” _(E)“}

(4.155)

4.6 Symmetry and its use in solving practical problems

Reservoir rock properties are heterogeneous, and reservoir fluids and fluid-rock
properties vary from one region to another within the same reservoir. In other
words, it is rare to find a petroleum reservoir that has constant properties. The
literature, however, is rich in study cases in which homogeneous reservoirs were
modeled to study flood patterns such as five-spot and nine-spot patterns. In
teaching reservoir simulation, educators and textbooks in this area make use
of homogeneous reservoirs most of the time. If reservoir properties vary spa-
tially region wise, then symmetry may exist. The use of symmetry reduces
the efforts to solve a problem by solving a modified problem for one element
of symmetry in the reservoir, usually the smallest element of symmetry
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(Abou-Kassem et al., 1991). The smallest element of symmetry is a segment of
the reservoir that is a mirror image of the rest of reservoir segments. Before
solving the modified problem for one element of symmetry, however, symme-
try must first be established. For symmetry to exist about a plane, there must be
symmetry with regard to (1) the number of gridblocks and gridblock dimen-
sions, (2) reservoir rock properties, (3) physical wells, (4) reservoir boundaries,
and (5) initial conditions. Gridblock dimensions deal with gridblock size (Ax,
Ay, and Az) and gridblock elevation (Z). Reservoir rock properties deal with
gridblock porosity (¢) and permeability in the various directions (k,, k,, and
k.). Wells deal with well location, well type (injection or production), and well
operating condition. Reservoir boundaries deal with the geometry of boundaries
and boundary conditions. Initial conditions deal with initial pressure and fluid
saturation distributions in the reservoir. Failing to satisfy symmetry with respect
to any of the items mentioned earlier means there is no symmetry about that
plane. The formulation of the modified problem for the smallest element of
symmetry involves replacing each plane of symmetry with a no-flow boundary
and determining the new interblock geometric factors, bulk volume, wellblock
rate, and wellblock geometric factor for those gridblocks that share their bound-
aries with the planes of symmetry. To elaborate on this point, we present a few
possible cases. In the following discussion, we use bold numbers to identify the
gridblocks that require determining new values for their bulk volume, wellblock
rate, wellblock geometric factor, and interblock geometric factors in the ele-
ment of symmetry.

The first two examples show planes of symmetry that coincide with the
boundaries between gridblocks. Fig. 4.15a presents a 1-D flow problem in
which the plane of symmetry A-A, which is normal to the flow direction
(x-direction) and coincides with the boundary between gridblocks 3 and 4,
and divides the reservoir into two symmetrical elements. Consequently,

A
|
1 2 3 4 5 6
° ° ° ° ° °
—_— X |
A
(a)
A
|
1 2 3 No-flow boundary
° ° o |——
—_— X 1
A
(b)

FIG. 4.15 Reservoir with even gridblocks exhibiting a vertical plane of symmetry. (a) Whole res-
ervoir and plane of symmetry and (b) Boundary conditions at the plane of symmetry.
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P1=Pe, P2=Ds, and p3=p,4. The modified problem is represented by the ele-
ment of symmetry shown in Fig. 4.15b, with the plane of symmetry being
replaced with a no-flow boundary.

Fig. 4.16a presents a 2-D horizontal reservoir with two vertical planes of
symmetry A-A and B-B. Plane of symmetry A-A is normal to the x-direction
and coincides with the boundaries between gridblocks 2, 6, 10, and 14 on
one side and gridblocks 3, 7, 11, and 15 on the other side. Plane of symmetry
B-B is normal to the y-direction and coincides with the boundaries between
gridblocks 5, 6, 7, and 8 on one side and gridblocks 9, 10, 11, and 12 on
the other side. The two planes of symmetry divide the reservoir into four
symmetrical elements. Consequently, p1=ps=p13=pP16> P2=DP3=P14=D15s
Ps=Pps=Po=p12, and pg=p7=p10=p1:- The modified problem is represented
by the smallest element of symmetry shown in Fig. 4.16b, with each plane of
symmetry being replaced with a no-flow boundary.

The second two examples show planes of symmetry that pass through the
centers of gridblocks. Fig. 4.17a presents a 1-D flow problem where the plane
of symmetry A-A, which is normal to the flow direction (x-direction) and passes
through the center of gridblock 3, and divides the reservoir into two symmet-
rical elements. Consequently, p; =ps and p,=p4. The modified problem is
represented by the element of symmetry shown in Fig. 4.17b, with the plane

A
|
|
13 14 15 16
L] L] ° °
o9 o10] 11 12
B —— - B
L] 5 L] 6 ° 7 ° 8
1 2 3 4
y L] L] o o
X 1
A
(a)
No-flow boundary A
B | _B
° 5 L] 6
No-flow boundary
1 2 [
° L]
y
L’X A
(b)

FIG.4.16 Reservoir with even gridblocks in the x- and y-directions exhibiting two vertical planes
of symmetry. (a) Whole reservoir and planes of symmetry and (b) Boundary conditions at the sym-
metry interface.
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A
|
|
1 2 13 4 5
° ° ? ° °
|
[— |
A
(a)
A
|
01 % 3 < No-flow boundary
— X 1
A
(b)

FIG. 4.17 Reservoir with odd gridblocks exhibiting a vertical plane of symmetry. (a) Whole res-
ervoir and plane of symmetry and (b) Boundary conditions at the symmetry interface.

of symmetry being replaced with a no-flow boundary. This plane of symmetry
bisects the gridblock bulk volume, wellblock rate, and wellblock geometric fac-
tor for gridblock 3 in Fig. 4.17a. Therefore, for gridblock 3 in Fig. 4.17b,
Vi, = %V},3 s Gscy = %qs(,-3 ,and G, = %Gw_;- Note that the interblock geometric fac-
tor in the direction normal to the plane of symmetry (G,, ) is not affected.
Fig. 4.18a presents a 2-D horizontal reservoir with two vertical planes of
symmetry A-A and B-B. Plane A-A is a vertical plane of symmetry that is par-
allel to the y-z plane (normal to the x-direction) and passes through the centers of
gridblocks 2, 5, and 8. Note that gridblocks 1, 4, and 7 are mirror images of
gridblocks 3, 6, and 9. Plane B-B is a vertical plane of symmetry that is parallel
to the x-z plane (normal to the y-direction) and passes through the centers of
gridblocks 4, 5, and 6. Note that gridblocks 1, 2, and 3 are mirror images of
gridblocks 7, 8, and 9. The two planes of symmetry divide the reservoir into
four symmetrical elements. Consequently, p;=ps=p;=po, ps=ps, and
p>=ps. The modified problem is represented by the smallest element of sym-
metry shown in Fig. 4.18b, with each plane of symmetry being replaced with a
no-flow boundary. Each plane of symmetry bisects the block bulk volume, well-
block rate, and wellblock geometric factor of the gridblock it passes through and
bisects the interblock geometric factors in the directions that are parallel to
the plane of symmetry. Therefore, V), :%Vbz, Gsc, :%qm, and G, =%GWZ;
Vb4 = %wa qscy = %%64’ and GW4 = %GW4; Vb5 = ivby qscs = %qscj , and
Gus =1Gys; Gy, s =3Gy, ; and G, , =1G,, . Because gridblocks 2, 4, and 5
fall on the boundaries of the element of symmetry, they can be looked at as
if they were gridpoints as in Chapter 5, and the same bulk volumes, wellblock
rates, wellblock geometric factors, and interblock geometric factors will be cal-
culated as those reported earlier. Note also that a plane of symmetry passing
through the center of a gridblock results in a factor of i, as in gridblocks 2
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and 4. Two planes of symmetry passing through the center of a gridblock result
in a factor of % X % = i, as in gridblock 5.

The third example presents two planes of symmetry, one coinciding with the
boundaries between the gridblocks and the other passing through the centers of
the gridblocks. Fig. 4.19a presents a 2-D horizontal reservoir with two vertical
planes of symmetry A-A and B-B.

Plane A-A is a vertical plane of symmetry that is parallel to the y-z plane
(normal to the x-direction) and passes through the centers of gridblocks 2, 5,
8, and 11. Note that gridblocks 1, 4, 7, and 10 are mirror images of gridblocks
3,6,9, and 12. Plane B-B is a vertical plane of symmetry that is parallel to the x-
z plane (normal to the y-direction) and coincides with the boundaries between
gridblocks 4, 5, and 6 on one side and gridblocks 7, 8, and 9 on the other side.
Note that gridblocks 1, 2, and 3 are mirror images of gridblocks 10, 11, and 12.
Additionally, gridblocks 4, 5, and 6 are mirror images of gridblocks 7, 8, and 9.
The two planes of symmetry divide the reservoir into four symmetrical ele-
ments. Consequently, p;=p3=pio=pi2, P4=Pe=pP7=P9, P2=Pp11, and
ps=ps. The modified problem is represented by the smallest element of sym-
metry shown in Fig. 4.19b, with each plane of symmetry being replaced with a
no-flow boundary. Plane of symmetry A-A bisects the block bulk volume, well-
block rate, and wellblock geometric factor of the gridblocks it passes through
and bisects the interblock geometric factors in the directions that are parallel to
the plane of symmetry (y-direction in this case). Therefore, V), = %Vbz,
qsc, = %qS('z’ and Gwz = %Gwz; Vbs = %Vhs’ qscs = %QS('5 , and Gws = %GW5;
Vbs = %Vbx’ qscy :%qscw and GWs :%GWR; Vbll :%V}’” > Gsen :%q‘vcn ’ and
GW11 :%GWH; G,Vz,s :%G)’z,s; G)’s,x :%G)’s,s; and G}’s,u :%ny,n' Because grid'
blocks 2, 5, 8, and 11 fall on the boundaries of the element of symmetry, they
can be looked at as if they were gridpoints as in Chapter 5, and the same bulk
volumes, wellblock rates, wellblock geometric factors, and interblock geomet-
ric factors will be calculated as those reported earlier. Note also that a plane of
symmetry passing through the center of a gridblock results in a factor of %, asin
gridblocks 2, 5, 8, and 11 in Fig. 4.19a.

The fourth set of examples show oblique planes of symmetry. Fig. 4.20a
shows a reservoir similar to that depicted in Fig. 4.16a, but the present reservoir
has two additional planes of symmetry C-C and D-D. The four planes of sym-
metry divide the reservoir into eight symmetrical elements, each with a trian-
gular shape as shown in Fig. 4.20b. Consequently, p;=ps=pi13=pie
P6=P7=P10=P11> and pr=p3=pi4s =p15=ps=pg=po=pi2- The modified
problem is represented by the smallest element of symmetry shown in
Fig. 4.20b, with each plane of symmetry being replaced with a no-flow
boundary.

Fig. 4.21a shows a reservoir similar to that depicted in Fig. 4.18a, but the
present reservoir has two additional planes of symmetry C-C and D-D. The four
planes of symmetry divide the reservoir into eight symmetrical elements, each
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FIG. 4.18 Reservoir with odd gridblocks in the x- and y-directions exhibiting two vertical planes
of symmetry. (a) Whole reservoir and planes of symmetry and (b) Boundary conditions at the sym-
metry interfaces.
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FIG. 4.19 Reservoir with even gridblocks in the y-direction and odd gridblocks in the x-direction
exhibiting two vertical planes of symmetry. (a) Whole reservoir and planes of symmetry and (b)
Boundary conditions at the symmetry interfaces.

with a triangular shape as shown in Fig. 4.21b. Consequently, p; =p3=p;=p9
and pys =pe=p>=ps. The modified problem is represented by the smallest ele-
ment of symmetry shown in Fig. 4.21b, with each plane of symmetry being
replaced with a no-flow boundary. A vertical plane of symmetry C-C or D-D
that passes through the center of a gridblock but is neither parallel to the x-axis
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FIG. 4.20 Reservoir with even gridblocks in the x- and y-directions exhibiting four vertical planes
of symmetry. (a) Whole reservoir and planes of symmetry and (b) Boundary conditions at the sym-
metry interfaces.

nor the y-axis (oblique plane), as shown in Figs. 4.20a and 4.21a, bisects the
gridblock bulk volume, wellblock rate, and wellblock geometric factor of the
gridblock it passes through. An oblique plane does not affect the interblock geo-
metric factors in the x-axis or the y-axis. In reference to gridblocks 1, 6, and 5 in
Figs. 4.20b and 4.21b, Vi, =3Vi,, G, =3Gse,, and Gy, =1Gyy; Viye =1V,
Gsce :%qS(‘67 and Gw6 = %Gwa; Vb5 = %be qscs = %‘[?(‘5 5 and Gws = %Gu@;
Gy, ; :%Gym? and G,, =G,, . Note that the four planes of symmetry (A-A,
B-B, C-C, and D-D) passing through the center of gridblock 5 in Fig. 4.21a
result in the factor of § x =4 used to calculate the actual bulk volume, well-
block rate, and wellblock geometric factor for gridblock 5 in Fig. 4.21b. That

is to say, the modifying factor equals r% X %, where n,, is the number of vertical
vsp
planes of symmetry passing through the center of a gridblock.
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FIG. 4.21 Reservoir with odd gridblocks in the x- and y-directions exhibiting four vertical planes
of symmetry. (a) Whole reservoir and planes of symmetry and (b) Boundary conditions at the sym-
metry interfaces.

It should be mentioned that set &, for gridblocks in the modified problem
might include new elements such as bgw, byw, bse, byg that reflect oblique
boundaries such as plane C-C or D-D. The flow rates across such boundaries
(Q?Z~,_,,) are set to zero because these boundaries represent no-flow boundaries.

4.7 Summary

This chapter presents reservoir discretization in Cartesian and radial—cylindrical
coordinates using a block-centered grid. For the Cartesian coordinate system,
equations similar to those represented by Eq. (4.1) define gridblock locations
and the relationships between gridblock sizes, gridblock boundaries, and dis-
tances between points representing gridblocks in the x-, y-, and z-directions,
and Table 4.1 presents equations for the calculation of the transmissibility
geometric factors in the three directions. For the radial-cylindrical coordinate
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system used for single-well simulation, the equations that define block locations
and the relationships between gridblock sizes, gridblock boundaries, and dis-
tances between points representing blocks in the r-direction are given by
Egs. (4.81) through (4.88), Eq. (4.80) in the #-direction, and an equation similar
to Eq. (4.1) for the z-direction. The equations in either Table 4.2 or Table 4.3 can
be used to calculate transmissibility geometric factors in the r-, -, and z-direc-
tions. Eq. (4.2) expresses the general form of the flow equation that applies to
boundary gridblocks and interior gridblocks in 1-D, 2-D, or 3-D flow in both Car-
tesian and radial-cylindrical coordinates. The flow equation for any gridblock has
flow terms equal to the number of existing neighboring gridblocks and fictitious
wells equal to the number of boundary conditions. Each fictitious well represents
a boundary condition. The flow rate of a fictitious well is given by Eq. (4.24b),
(4.27), (4.32), or (4.37b) for a specified pressure gradient, specified flow rate,
no-flow, or specified pressure boundary condition, respectively.

If reservoir symmetry exists, it can be exploited to define the smallest ele-
ment of symmetry. Planes of symmetry may pass along gridblock boundaries or
through gridblock centers. To simulate the smallest element of symmetry,
planes of symmetry are replaced with no-flow boundaries and new interblock
geometric factors, bulk volume, wellblock rate, and wellblock geometric factors
for boundary gridblocks are calculated prior to simulation.

4.8 Exercises
4.1. What is the meaning of reservoir discretization into gridblocks?

4.2. Using your own words, describe how you discretize a reservoir of length
L, along the x-direction using n gridblocks.

4.3. Fig. 4.5 shows a reservoir with regular boundaries.

a. How many boundaries does this reservoir have along the x-direction?
Identify and name these boundaries.

b. How many boundaries does this reservoir have along the y-direction?
Identify and name these boundaries.

c. How many boundaries does this reservoir have along the z-direction?
Identify and name these boundaries.

d. How many boundaries does this reservoir have along all directions?

4.4. Consider the 2-D reservoir described in Example 4.5 and shown in

Fig. 4.12.

a. Identify the interior and boundary gridblocks in the reservoir.

b. Write the set of neighboring gridblocks (y,,) for each gridblock in the
IeServoir.

c. Write the set of reservoir boundaries (&,) for each gridblock in the
reservoir.

d. How many boundary conditions does each boundary gridblock have?
How many fictitious wells does each boundary gridblock have?
Write the terminology for the flow rate of each fictitious well.
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e. How many flow terms does each boundary gridblock have?

f. Add the number of flow terms and number of fictitious wells for each
boundary gridblock. Do they add up to four for each boundary gridblock?

g. How many flow terms does each interior gridblock have?

h. What can you conclude from your results of (f) and (g) earlier?

4.5. Consider fluid flow in the 1-D horizontal reservoir shown in Fig. 4.22.
a. Write the appropriate flow equation for gridblock # in this reservoir.
b. Write the flow equation for gridblock 1 by finding y and £, and then
use them to expand the equation in (a).
c. Write the flow equation for gridblock 2 by finding y, and &, and then
use them to expand the equation in (a).
d. Write the flow equation for gridblock 3 by finding w3 and &3 and then
use them to expand the equation in (a).

1 2 3 —
Pp,, = 2000 psia ——>- ° PY ° 5 s, T —-100 STB/D
—>
—>X

FIG. 4.22 1-D reservoir in Exercise 4.5.

4.6. Consider fluid flow in the 2-D horizontal reservoir shown in Fig. 4.23.
a. Write the appropriate flow equation for gridblock 7 in this reservoir.
b. Write the flow equation for gridblock 1 by finding y, and £, and then
use them to expand the equation in (a).
c. Write the flow equation for gridblock 3 by finding y3 and &5 and then
use them to expand the equation in (a).
d. Write the flow equation for gridblock 5 by finding w5 and &5 and then
use them to expand the equation in (a).
e. Write the flow equation for gridblock 9 by finding ¢ and &y and then
use them to expand the equation in (a).

No-flow boundary

W

9 10

y ® °
T—>X 5 6 7 l8

v No-flow boundary

° ° °
= 3000 psi ® 9P| = 5 psit
Py, = psia ——> o dx b
1 2 3 4
® ° ° °

Ppg = 3000 psia
FIG. 4.23 2-D reservoir for Exercise 4.6.
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Consider single-phase flow in a homogeneous, 1-D reservoir with constant
pressure specification at the reservoir left boundary. The reservoir is dis-
cretized using a regular grid. Write the flow equation for gridblock 1,
which shares its left boundary with the reservoir, and prove that
pp=" / 2(3p1 — p2). Aziz and Settari (1979) claim that the earlier equation
represents a second-order correct approximation for boundary pressure.

A single-phase oil reservoir is described by four equal gridblocks as
shown in Fig. 4.24. The reservoir is horizontal and has k=25 md. Grid-
block dimensions are Ax=500, Ay=700, and /=60 ft. Oil properties
are B=1RB/STB and p=0.5 cP. The reservoir left boundary is main-
tained at constant pressure of 2500 psia, and the reservoir right boundary
is sealed off to flow. A well in gridblock 3 produces 80STB/D of oil.
Assuming that the reservoir rock and oil are incompressible, calculate
the pressure distribution in the reservoir.

z 80 STB/D
T4{ ] i
X ] =
] g 60 ft
~ M1 2 3 | 4

p, = 2500 psia e | o e | e

v [P I I S R “ No-flow boundary

i 0
500f | 1>

FIG. 4.24 Discretized 1D reservoir in Exercise 4.8.

4.9. A 1-D horizontal oil reservoir shown in Fig. 4.25 is described by four

equal gridblocks. Reservoir blocks have k=90 md, Ax=300 ft,
Ay=250 ft, and h=45 ft. Oil FVF and viscosity are 1RB/STB and
2cP, respectively. The reservoir left boundary is maintained at constant
pressure of 2000 psia, and the reservoir right boundary has a constant
influx of oil at a rate of 80STB/D. A well in gridblock 3 produces
175STB/D of oil. Assuming that the reservoir rock and oil are incom-
pressible, calculate the pressure distribution in the reservoir.

z 175 STB/D
y ) B
X ] 5
3 A 45 ft

~— ™= 1 2 3:] 4

= ; o i o o | e
Py, = 2000 psia o Gc, =80 STBID

----- oR :
3007 |22

FIG. 4.25 Discretized 1D reservoir in Exercise 4.9.

4.10. A 1-D horizontal oil reservoir shown in Fig. 4.26 is described by four

equal gridblocks. Reservoir blocks have k=120 md, Ax=500 ft,
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Ay=450 ft, and h=30 ft. Oil FVF and viscosity are 1RB/STB and
3.7cP, respectively. The reservoir left boundary is subject to a constant
pressure gradient of —0.2 psi/ft, and the reservoir right boundary is a no-
flow boundary. A well in gridblock 3 produces oil at a rate such that the
pressure of gridblock 3 is maintained at 1500 psia. Assuming that the res-
ervoir rock and oil are incompressible, calculate the pressure distribution
in the reservoir. Then, estimate the well production rate.

z Gsg, =2 STBID
p5 = 1500 psia
y 4 -
X ] [
: g 30 ft
d /™1 i 2 3| 4
%‘ =-0.2 psifft ® .® |1 e :l.® |. .~ No-flow boundary
bw | T 60“
500 ft | &

FIG. 4.26 Discretized 1-D reservoir in Exercise 4.10.

4.11. A 1-D horizontal oil reservoir shown in Fig. 4.27 is described by four
equal gridblocks. Reservoir blocks have k=70md, Ax=400 ft,
Ay=660 ft, and h=10 ft. Oil FVF and viscosity are 1RB/STB and
1.5¢P, respectively. The reservoir left boundary is maintained at con-
stant pressure of 2700, while the boundary condition at the reservoir right
boundary is not known, the pressure of gridblock 4 is maintained at
1900psia. A well in gridblock 3 produces 150 STB/D of oil. Assuming
that the reservoir rock and oil are incompressible, calculate the pressure
distribution in the reservoir. Estimate the rate of oil that crosses the res-
ervoir right boundary.

2 150 STB/D
TA{ ] 2
X ] S
: o4 107 = 1900 psia

p, =2700 psia °
,=2700psia | @ i @ | ® ‘[ & .l
i T
2007 | 8

FIG. 4.27 Discretized 1-D reservoir in Exercise 4.11.

4.12. Consider the 2-D horizontal oil reservoir shown in Fig. 4.28. The reser-
voir is described using a regular grid. Reservoir gridblocks have
Ax=350ft, Ay=300 ft, h=35ft, k,=160 md, and k,=190 md. Oil
FVF and viscosity are 1 RB/STB and 4.0cP, respectively. Boundary con-
ditions are specified as shown in the figure. A well in gridblock 5 pro-
duces oil at a rate of 2000 STB/D. Assume that the reservoir rock and oil
are incompressible. Write the flow equations for all gridblocks. Do not
solve the equations.
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X
N 350 ft
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FIG. 4.28 Discretized 2-D reservoir in Exercise 4.12.

4.13. Starting with Eq. (4.88c), which expresses the bulk volume of gridblock
(n,J,k) in terms of r, and r,, _1/», derive Eq. (4.83d), which expresses the
bulk volume in terms of a;, and r.,.

4.14. A 6-in. vertical well producing 500 STB/D of oil is located in 16-acre
spacing. The reservoir is 30ft thick and has horizontal permeability of
50md. The oil FVF and viscosity are 1 RB/B and 3.5cP, respectively.
The reservoir external boundaries are no-flow boundaries. The reservoir
is simulated using four gridblocks in the radial direction as shown in
Fig. 4.29. Write the flow equations for all gridblocks. Do not substitute
for values on the RHS of equations.

500 STB/D
1 No-flow boundary
W
23| 4
o| ® [} \ 30 ft

i=1i=2 i=3¥4 No-flow boundary
z

‘[ No-flow boundary
r

FIG. 4.29 Discretized reservoir in Exercise 4.14.

4.15. A 9%-in vertical well is located in 12-acre spacing. The reservoir thick-
ness is 50 ft. Horizontal and vertical reservoir permeabilities are 70 md
and 40 md, respectively. The flowing fluid has a density, FVF, and viscos-
ity of 62.4 lbm/ft3, 1RB/B, and 0.7cP, respectively. The reservoir
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external boundary in the radial direction is a no-flow boundary, and the
well is completed in the top 20 ft only and produces at a rate of 1000B/
D. The reservoir bottom boundary is subject to influx such that the bound-
ary is maintained at 3000 psia. The reservoir top boundary is sealed to
flow. Assuming the reservoir can be simulated using two gridblocks in
the vertical direction and four gridblocks in the radial direction as shown
in Fig. 4.30, write the flow equations for all gridblocks in this reservoir.
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FIG. 4.30 Discretized 2-D radial-cylindrical reservoir in Exercise 4.15.
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5.1 Introduction

Discretization process creates inherent challenges involving proper representa-
tion of natural processes. The problem is accentuated by boundaries, which cre-
ate discontinuities—an absurd condition for natural systems. Historically, the
petroleum engineers have identified these problems and have attempted to
address many problems that emerge from discretization and boundary condi-
tions, which must be addressed separately. Few, however, have recognized that
the engineering approach keeps the process transparent and enables modelers to
remedy with physically realistic solutions. This chapter presents discretization
of 1-D, 2-D, and 3-D reservoirs using point-distributed grids in Cartesian and
radial-cylindrical coordinate systems. This chapter describes the construction
of a point-distributed grid for a reservoir and the relationships between the
distances separating gridpoints, block boundaries, and sizes of the blocks
represented by the gridpoints. The resulting gridpoints can be classified into
interior and boundary gridpoints. While Chapter 2 derives the flow equations
for interior gridpoints, the boundary gridpoints are subject to boundary con-
ditions and thus require special treatment. This chapter presents the treatment
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FIG. 5.1 Discretization of a 1-D reservoir using a point-distributed grid.

of various boundary conditions and introduces a general flow equation that is
applicable to interior gridpoints and boundary gridpoints. This chapter also
presents the equations for directional transmissibilities in both Cartesian
and radial-cylindrical coordinate systems and discusses the use of symmetry
in reservoir simulation.

There are three important differences between the block-centered grid dis-
cussed in Chapter 4 and the point-distributed grid discussed in this chapter.
First, the boundary gridpoints for a point-distributed grid fall on reservoir
boundaries, not inside reservoir boundaries as in the case of a block-centered
grid. Second, the actual bulk volume and actual well rate of boundary gridpoints
are a half, a quarter, or an eighth of those of whole blocks if they fall on one, two,
or three reservoir boundaries, respectively. Third, the transmissibility parallel to
the reservoir boundary for a boundary gridpoint has half of that of the whole
block. These points are taken into consideration in developing the general flow
equation for a point-distributed grid.

5.2 Reservoir discretization

As described in Chapter 4, reservoir discretization involves the assigning a set
of gridpoints that represent blocks that are well defined in terms of properties,
dimensions, boundaries, and locations in the reservoir. Fig. 5.1 shows a point-
distributed grid for a 1-D reservoir in the direction of the x-axis. The point-
distributed grid is constructed by choosing n, gridpoints that span the entire res-
ervoir length in the x-direction. In other words, the first gridpoint is placed at
one reservoir boundary, and the last gridpoint is placed at the other reservoir
boundary. The distances between gridpoints are assigned predetermined values
(Axip1p0, 1 =1,2,3... n,—1) that are not necessarily equal. Each gridpoint rep-
resents a block whose boundaries are placed halfway between the gridpoint and
its neighboring gridpoints.

Fig. 5.2 focuses on gridpoint i and its neighboring gridpoints. It shows how
these gridpoints are related to each other. In addition, the figure shows block
dimensions (Ax;_j, Ax;, Ax; ), block boundaries (x;_1,, Xi+12), distances
between gridpoint i and block boundaries (dx;-, ox;+), and distances between
gridpoints (Ax;_y, Ax;12). Block dimensions, block boundaries, and grid-
point locations satisfy the following relationships:
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x1=0, x,, =Ly, (i.e.,x,, —x1 =Ly),

Ox;- =1/2Axi,1/2, i=2,3...n,,

oxie =" /3Axiy 1y, i=1,2,3..n— 1,

Xiv1 =Xi+Axip1p2, 1=1,2,3..n,— 1,
Xi_12 =Xi — 6xj- =X; — l/zAx,-,l/z, i=2,3...n,,
Xip1j2 =Xi+0x+ =x; + l/zAle/z, i=1,2,3...n,—1, G.D
Ax; =68xi- +8x;+ =" [2(Axi_y p+ DX ), =23, — 1,
Ax;=68xpr =" /2Ax 410,

and

Ax,, =0x, - = l/zAxnx,l/}

Fig. 5.3 shows the discretization of a 2-D reservoir into a 5 x 4 irregular grid.
An irregular grid implies that the distances between the gridpoints in the direc-
tion of the x-axis (Ax;+12) and the y-axis (Ay;+/,) are neither equal nor con-
stant. Discretization using a regular grid means that distances between
gridpoints in the x-direction and those in the y-direction are constant but not
necessarily equal in both directions. The discretization in the x-direction uses
the procedure just mentioned and the relationships presented in Eq. (5.1). Dis-
cretization in the y-direction uses a procedure and relationships similar to those
for the x-direction, and the same can be said of the z-direction for a 3-D

L M M R
< < >
OXj— X
@i @ i+1
Xj-1 X Xje1
L Mg L Ax; P AXiy g R
< >« >1€ »
Xiz1i2 X+ 112

FIG. 5.2 Gridpoint i and its neighboring gridpoints in the x-direction.
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FIG. 5.3 Discretization of a 2-D reservoir using a point-distributed grid.
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reservoir. Inspection of Figs. 5.1 and 5.3 shows that the boundary gridpoints fall
on the boundaries of the reservoir. In addition, they are not completely enclosed
by the blocks they represent.

Example 5.1 A 5000ft x 1200 ft x 75 ft horizontal reservoir contains oil that
flows along its length. The reservoir rock porosity and permeability are 0.18
and 15md, respectively. The oil FVF and viscosity are 1 RB/STB and 10cP,
respectively. The reservoir has a well located at 4000 ft from the reservoir left
boundary and produces oil at a rate of 150 STB/D. Discretize the reservoir into
six equally spaced gridpoints using a point-distributed grid and assign proper-
ties to the gridpoints comprising this reservoir.

Solution

Using a point-distributed grid, the reservoir is divided along its length into
six equally spaced gridpoints with gridpoints 1 and 6 being placed on the res-
ervoir left and right boundaries, respectively. Each gridpoint represents a block
whose boundaries are placed halfway between gridpoints. Therefore, n, =6 and
AXiz12=L./(n,— 1) = 5000/5 = 1000 ft. Gridpoints are numbered from 1 to 6 as
shown in Fig. 5.4.

Now, the reservoir is described through assigning properties to its six grid-
points (i=1, 2, 3, 4, 5, 6). All gridpoints have the same elevation because the
reservoir is horizontal. The blocks that are represented by the gridpoints have
the dimensions of Ay=1200 ft and Az="75 ft and properties of k,=15 md and
¢ =0.18. The blocks for gridpoints 2, 3, 4, and 5 have Ax=1000 ft, whereas
those for gridpoints 1 and 6 have Ax= 1500 ft. The distances between neighbor-
ing gridpoints are equal; that is, Ax;z1,,=1000 ft and Ame:Ax: Ayx Az=
1200 x 75=90, 000 ft*. Gridpoint 1 falls on the reservoir west boundary, grid-
point 6 falls on the reservoir east boundary, and gridpoints 2, 3, 4, and 5 are
interior gridpoints. In addition, the block enclosing gridpoint 5 hosts a well with
gsc,= — 150 STB/D. Fluid properties are B=1 RB/STB and =10 cP.

5.3 Flow equation for boundary gridpoints

In this section, we present a form of the flow equation that applies to interior
gridpoints and boundary gridpoints. That is to say, the proposed flow equation
reduces to the flow equations presented in Chapters 2 and 3 for interior grid-
points, but it also includes the effects of boundary conditions for boundary

150 STB/D
" 1
TA{ = i
x ' 75 ft
1 2 3 4 5| e
) [ ) [ ]

° o |

- o
1000 ft 000 ft A~ |

FIG. 5.4 Discretized 1-D reservoir in Example 5.1.
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gridpoints. Fig. 5.1 shows a discretized 1-D reservoir in the direction of the x-
axis. Gridpoints 2, 3, ... n,— | are interior gridpoints, whereas gridpoints 1 and
n, are boundary gridpoints that each falls on one reservoir boundary. Fig. 5.3
shows a discretized 2-D reservoir. The figure highlights an interior gridpoint,
gridpoint (3,3); two boundary gridpoints that each falls on one reservoir bound-
ary, gridpoints (1,3) and (3,1); and a gridpoint that falls at the intersection of two
reservoir boundaries, gridpoint (1,1). Therefore, one can conclude that not all
gridpoints fall inside reservoir boundaries, and the boundary gridpoints have
incomplete blocks. As discussed in the previous chapter, there are interior grid-
points and boundary gridpoints, which may fall on one, two, or three reservoir
boundaries. The terminology in this discussion has been presented in Chapter 4.
This terminology is repeated in Fig. 5.5. Reservoir boundaries along the x-axis
are termed reservoir west boundary (by,) and reservoir east boundary (bg), and
those along the y-axis are termed reservoir south boundary (bg) and reservoir
north boundary (by). Reservoir boundaries along the z-axis are termed reservoir
lower boundary (b;) and reservoir upper boundary (by)).

The flow equations for both interior and boundary gridpoints have a produc-
tion (injection) term and an accumulation term. The treatment of a boundary
condition by the engineering approach involves replacing the boundary condi-
tion with a no-flow boundary plus a fictitious well having flow rate of ¢, ,, that
reflects fluid transfer between the gridpoint that is exterior to the reservoir and
the reservoir boundary itself (b) or the boundary gridpoint (bP). The flow equa-
tion for an interior gridpoint has a number of flow terms that equals the number
of neighboring gridpoints (two, four, or six terms for a 1-D, 2-D, or 3-D reser-
voir, respectively). The flow equation for a boundary gridpoint has a number of
flow terms that equals the number of existing neighboring gridpoints in the res-
ervoir and a number of fictitious wells that equals the number of reservoir
boundaries the boundary gridpoint falls on.

A general form of the flow equation that applies to boundary gridpoints and
interior gridpoints in 1-D, 2-D, or 3-D flow in both Cartesian and radial-
cylindrical coordinates can be expressed best using CVFD terminology. The
use of summation operators in CVFD terminology makes it flexible and suitable
for describing flow terms in the equation of any gridpoint that may or may not

y7 bs
4
7

FIG. 5.5 Definition of the reservoir left and right boundaries in 3-D reservoirs.
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be on a reservoir boundary. The general form of the flow equation for gridpoint
n can be written as

ZTZ’n[(p;n ) yln +Zq%1n

ley, leg,

wo th ? n+1_ ? n
To =ant|\B), ~\B),

or, in terms of potentials, as
n+1 n
(&) (0 ] 652b)

Z Ln (D;n un, n qu,, - Vb“
iy, €8, acAt
where y,,= the set whose elements are the existing neighboring gridpoints in
the reservoir, £,= the set whose elements are the reservoir boundaries (b,
bs, bw, bg, by, by) that are shared by gridpoint n, and Qs(, = flow rate of the
fictitious well representing fluid transfer between reservoir boundary / and grid-
point 7 as a result of a boundary condition. For a 3-D reservoir, ¢, is either an
empty set for interior gridpoints or a set that contains one element for boundary
gridpoints that fall on one reservoir boundary, two elements for boundary grid-
points that fall on two reservoir boundaries, or three elements for boundary grid-
points that fall on three reservoir boundaries. An empty set implies that the
gridpoint does not fall on any reservoir boundary; that is, gridpoint # is an inte-

(5.2a)

rior gridpoint, and hence, qu =0. In engineering notation, n= (i, j,k), and
e,
Eq. (5.2a) becomes

Z Ly [(PT—PTj,k) ~ 70 G=Zijk } Z Dy ) + Do

Iy jk I€&; .k

Vh,/A <£>n+l_<£>n
B i,j,k B i,j,k

a.At

It is important to recognize that the flow equations for interior gridpoints in a
point-distributed grid and those for interior gridblocks in a block-centered grid are
the same because interior gridpoints represent the whole blocks. The flow equa-
tions for boundary blocks and boundary gridpoints, however, are different
because of the way the two grids are constructed. To incorporate boundary con-
ditions appropriately in the flow equation of a boundary gridpoint, we must write
the flow equation for the whole block, which completely encloses the boundary
gridpoint, in terms of the properties of the actual block and note that the whole
block and the actual block are represented by the same boundary gridpoint.

It must be mentioned that reservoir blocks have a three-dimensional shape
whether fluid flow is 1-D, 2-D, or 3-D. The number of existing neighboring
gridpoints and the number of reservoir boundaries shared by a reservoir

(5.2¢)
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gridpoint add up to six as the case in 3-D flow. Existing neighboring gridpoints
contribute to flow to or from the gridpoint, whereas reservoir boundaries may or
may not contribute to flow depending on the dimensionality of flow and the pre-
vailing boundary conditions. The dimensionality of flow implicitly defines
those reservoir boundaries that do not contribute to flow at all. In 1-D flow prob-
lems, all reservoir gridpoints have four reservoir boundaries that do not contrib-
ute to flow. In 1-D flow in the x-direction, the reservoir south, north, lower, and
upper boundaries do not contribute to flow to any reservoir gridpoint, including
boundary gridpoints. These four reservoir boundaries (b;, bs, by, by) are dis-
carded as if they did not exist. As a result, an interior reservoir gridpoint has
two neighboring gridpoints and no reservoir boundaries, whereas a boundary
gridpoint has one neighboring gridpoint and one reservoir boundary. In 2-D
flow problems, all reservoir gridpoints have two reservoir boundaries that do
not contribute to flow. For example, in 2-D flow in the x-y plane, the reservoir
lower and upper boundaries do not contribute to flow to any reservoir gridpoint,
including boundary gridpoints. These two reservoir boundaries (b, , b)) are dis-
carded as if they did not exist. As a result, an interior reservoir gridpoint has four
neighboring gridpoints and no reservoir boundaries, a reservoir gridpoint that
falls on one reservoir boundary has three neighboring gridpoints and one reser-
voir boundary, and a reservoir gridpoint that falls on two reservoir boundaries
has two neighboring gridpoints and two reservoir boundaries. In 3-D flow prob-
lems, any of the six reservoir boundaries may contribute to flow depending on
the specified boundary condition. An interior gridpoint has six neighboring
gridpoints. It does not share any of its boundaries with any of the reservoir
boundaries. A boundary gridpoint may fall on one, two, or three of the reservoir
boundaries. Therefore, a boundary gridpoint that falls on one, two, or three res-
ervoir boundaries has five, four, or three neighboring gridpoints, respectively.
The earlier discussion leads to a few conclusions related to the number of ele-
ments contained in sets y and &.

(1) For an interior reservoir gridpoint, set y contains two, four, or six elements
for a 1-D, 2-D, or 3-D flow problem, respectively, and set £ contains no
elements or, in other words, is empty.

(2) For aboundary reservoir gridpoint, set y contains less than two, four, or six
elements for a 1-D, 2-D, or 3-D flow problem, respectively, and set & is
not empty.

(3) The sum of the number of elements in sets y and & for any reservoir grid-
point is a constant that depends on the dimensionality of flow. This sum is
two, four, or six for a 1-D, 2-D, or 3-D flow problem, respectively.

For 1-D reservoirs, the flow equation for interior gridpoint i in Fig. 5.6 is given
by Eq. (2.32):

m m m m m m m Vbl ¢ n+l ¢ !
Txifl/z (q)ifl - q)i ) +TXi+1/z (q)i+1 _(I)i ) e :(X(;Al <B>i - E

i

(5.3)
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FIG. 5.6 Boundary gridpoints at the left and right boundaries of a 1-D reservoir.

The aforementioned flow equation can be obtained from Eq. (5.2b) for n =1,
w;={i—1,i+1}, and ;= {} and by observing that qum =0 for an interior
gridpoint and 77, =T%_ . le

To write the flow equation for boundary gridpoint 1, which falls on the res-
ervoir west boundary in Fig. 5.6, we write the flow equation for the whole block

of boundary gridpoint 1:
m m m m m m n 2Vbl ¢ e ¢ "
T\’]—l/z (q)o _©1)+TX1+1/2 ((DZ _q)l)+2qscl :Ot(Al‘ l(B)l - E |
54

Note that the properties of the whole block in Eq. (5.4) are expressed in
terms of those of the actual block; that is, V;,=2V,, and g, =2g. . Adding
and subtracting the flow term T! | (®3' — ®7') to the LHS of the aforementioned
equation gives

! (D) —@F) =Ty (@ —@)+2T (@ — D) +24

X1-1/2 X1+1/2 X1+1/2
Y n+1 n

_ 2V (N (2 (5.5)
aAt|\B), B/,

Multiplying Eq. (5.5) by half results in the flow equation for the actual block
represented by boundary gridpoint 1,
ol ey - o) —Tr @y -op) |7 (o) o)) +q,

X1+1/2 X1+1/2

B Vbl ¢ n+1 ¢ n
~aAt|\B), B/,

The first term on the LHS of Eq. (5.6a) represents the rate of fluid flow
across the reservoir west boundary (by). This term can be replaced with the flow
rate of a fictitious well (quéhw ) that transfers fluid through the reservoir west
boundary to gridpoint 1; that is,

(5.6a)

qh, =T (o) T (@ -] 5.7)

X1-1/2 X1+1/2
Substitution of Eq. (5.7) into Eq. (5.6a) yields
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The aforementioned flow equation can be obtained from Eq. (5.2b) forn=1,
w1 =1{2},and £, = { by} and by observing that qu = qm Land T4 =T .
leg,
To write the flow equation for boundary gridpoint n,, which falls on the
reservoir east boundary in Fig. 5.6, we write the flow equation for the whole
block of boundary gridpoint #,:

m m m m m m m
TX,,{\,I/') ((Dn —1 cI)n>V> + TX,,X+ 1/2 (q)n +1 (I)nx) + zqsc,,l\

72Vb ¢ n+1 ¢ n
~ A <E)m <E>J o8

a At
Here again, note that the properties of the whole block in Eq. (5.8) are
expressed in terms of those of the actual block; that is, V;,=2V, and
qsc=2qsc, . The aforementioned equation can be manipulated as was done
for gridpoint 1 to obtain the flow equation for the actual block represented

by boundary gridpoint n,:

T:Zr]/z (q)"m\ 17@17\') / |:T;Z +1/2( "v+17q)m) T;Zr]/z (q)"mx 17@27\)}

oo 7me Q n+17 ? n
q“‘”" 7(,(5Al B Ny B Ny

The second term on the LHS of Eq. (5.92) represents the rate of fluid flow
across the reservoir east boundary (bg). This term can be replaced with the flow

(5.92)

rate of a fictitious well (qg’éh ) that transfers fluid through the reservoir east
s

boundary to gridpoint n,; that is,

qg’:'bE,m 1/2[ /1,\+1/2( ny+1 _q)m> T"'T’\ 12 ((I)’rln\*l _q)ZI\)} (5.10)

Substitution of Eq. (5.10) into Eq. (5.9a) yields

Vb,,\ ¢ n+1 ¢ n
T () = [(g) (0] s
¢ Ny

Ny

The aforementioned flow equation can be obtained from Eq. (5.2b)
for n=n,, y,={n—1}, and &, ={bg} and by observing that
qum —qw " and Ty, =T '

I€&,,

For 2-D reservoirs, the flow equation for interior gridpoint (,j) is given by

Eq. (2.37):

(e )T (o —ap) T (9, - o)
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The aforementioned flow equation can be obtained from Eq. (5.2b) for
n=0.)), yi;={Gj—D,(—L),@+1,),0j+D}, and &;={} and by
observing that quz_,,«,o =0 for an interior gridpoint, T ;z1u)=T5, .

Ieg; ;
and Tz .6y =T, 0

For a gridpoint that falls on one reservoir boundary, like gridpoint (3,1),
which falls on the reservoir south boundary in Fig. 5.3, the bulk volume, well
rate, and transmissibility in the x-direction for the whole block are twice the
bulk volume, well rate, and transmissibility in the x-direction for the actual
block represented by gridpoint (3,1). However, the transmissibility in the y-
direction is the same for the whole and actual blocks. Therefore, the flow equa-
tion for the whole block expressed in terms of the properties of the actual block
can be written as

T;';,l—l/z (q)gn’o _q)gn,l) +2T271/2,1 (q)gl,l _q)gn,l) +2T:’Z+1/2,1 ((I)Ztl - (I)gn,l)
72Vb3,1

. n . o\ (P (5.12)
+T>’3,1+1/z(q)3.2_q)3.1)+2qsc3,1_aCAt (B - “\B -

Adding and subtracting the flow term T, (@3, —®53')) to the LHS of the
aforementioned equation gives

|:T)’Z,l—l/2 ((I)V%Vto _q)g'(l) - T;Z,IH/Z (qy%ﬂ’z - d)g’fl)} +2T:‘271/2,1 (q)g'J _q)g'fl)
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(5.13)

Multiplying Eq. (5.13) by half results in the flow equation for the actual
block represented by boundary gridpoint (3,1):

1
/2 [T;z,]—l/z <<Dgn,0 7<Dg1,1) 7T;n3,1+1/2 <<Dgny2 7(1)2?1)} +T¥;71/2,| ((Drzrfl 7<Dgn,1)

GO

(5.14a)
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The first term on the LHS of Eq. (5.14a) represents the rate of fluid flow
across the reservoir south boundary (bs). This term can be replaced with the

flow rate of a fictitious well (q’{éh . l)) that transfers fluid through the reservoir
>Cbg, (3,

south boundary to boundary gridpoint (3,1); that is,

Dscrg,,1) = 1/2 [T;:’H/z (q;gfo a q)g’fl) - T;Z,Hl/z ((Dgnl - (Dgnl):| (5.15)
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Substitution of Eq. (5.15) into Eq. (5.14a) yields
+T (D —@F ) T (D, — DY)

qm
SChg,(3,1) X3-1/2,1

A3+1/2,1
v nel n 5.14b
+T (D, — D)+l _ Lo (O (2 ( )
3,141/2 , > 5€3,1 (ZCAI B 3.1 B 31

The aforementioned flow equation can be obtained from Eq. (5.2) for
n=@3,1), w31=1{2,1),(4,1),(3,2)}, and &3 1={bs} and by observing that

m _.m __Tm _Tm m —
Z qxc;y(ll) - q‘“’"’s’(}'l) ’ m’l),(3,1) - TX371/2,1’ m’l),(&l) - TX3+|/2,|’ and T(3,2),(3,1) -

1€&3,
n
V314172

Another example is gridpoint (1,3), which falls on the reservoir west bound-
ary in the 2-D reservoir shown in Fig. 5.3. In this case, the bulk volume, well
rate, and transmissibility in the y-direction for the whole block are twice the
bulk volume, well rate, and transmissibility in the y-direction for the actual
block represented by gridpoint (1,3). However, the transmissibility in the x-
direction is the same for the whole and actual blocks. Similarly, the flow equa-
tion for the actual block represented by gridpoint (1,3) can be expressed as

T;’r,,%fl/z (q)rln,z o q)'1'7’3> + q;’;hw,(l,a) + T;rll+1/z,3 (q)r2n’3 - q)’1n,3>
<¢)"+1 <¢) (5.16)
B 1,3 B 1,3

1
Dscoy, 0 = /2 [T;rllfl/zg (@6’1,3 - q)'1n,3) - T;rlln/z,} (q)’z"’3 - q)r1n’3>} G.17)

The flow equation given by Eq. (5.16) can be obtained from Eq. (5.2b) for
n= (17 3), Yi3= {(1’ 2)’ (2’ 3)’ (174) }’ and 51,3 = {bW} and b)’ ObserVing that

m _om _m _m m _
Z qxzr,'(l__;) - qSChW’(I_})’ T'(,ri,z)’(lﬁ) _Tyl.S—l/Z’ m,4),(1,3)_T}’1‘3+1/2’ and T(2>3)»(1’3)_

163
1
Xi4123°

Now, consider a gridpoint that falls on two reservoir boundaries, like boundary
gridpoint (1,1), which falls on the reservoir south and west boundaries in Fig. 5.3.
In this case, the bulk volume and well rate for the whole block are four times the
bulk volume and well rate for the actual block represented by gridpoint (1,1).
However, the transmissibilities in the x- and y-directions for the whole
block are only twice the transmissibilities in the x- and y-directions for the
actual block represented by gridpoint (3,1). Therefore, the flow equation for
the whole block in terms of the properties of the actual block can be written as

Vb
m m o dHm m 1,3
+T (@7, —25) e, PN,

Y1,3+1/2

where

2T;Z,1 12 ((I)rln,o o (I)’ln,l) +2TZ: 1/2,1 ((I)gzl o (I)rln,l) +2T”C’:+1/z,1 (CDZII _qy{fl)
AV,

” v\ o\ ()
+2T (q)l,Ziq)l,l) +4q5(‘1,1 = o Al‘ <B — E
c 1,1 1,1

Yi,1+1/2

(5.18)
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Adding and subtracting 2T\Mm(cbg’,1— T+2T
LHS of the aforementioned equation gives

21 (@) =T2 (@1, - o)

}11+1/z(¢)r{12_ ’lﬂ’l) to the

+2{T;Vl’ 1/2,1 (d)gfl 7qy]n1) 7T¥1’+1/2,1 ((I)gll (I)}lnl)}
+4T (@, =) 44T (O, — D)) (5.19)

g _4Vh]’] f n+1_ é n
B =qar [\B),, ~\B/,,

Dividing the aforementioned equation by four results in the flow equation
for the actual block represented by boundary gridpoint (1,1) results in

1

/ [T;'fl 1/2<(Drlrf0_q)r1”,1) T}r’rllul/z(cprlnyz_q)rl”,l)}
1

Sl (e -t -, (@8 - o )]

+T™m o o >+Tm <¢)m — ™ )+ m _h ? e _ é !
X1+1/2,1 2,1 - 1,1 Yi,1+1/2 1,2 1,1 qSCl,I 70!0At B L1 B L1
(5.20a)

The aforementioned equation can be rewritten as

5 — @) +T! (®T2*¢T1)+‘1§'§1,1

m n m
qS(‘/zs,(l.l) qS(‘bW,(l.l) +TX1+1/2,1 ( Yi,1+1/2

_th ¢ n+1 ¢ n
CaAr(\B),, \B/,
where

Dscng, 1) 1/2[ Yi,1- 1/2( 1,0 _(I)q’tl) T;’:l+]/‘7 (qy{fz_qy{fl)} .21

(5.20b)

and

Dscry,00) = 1/2 [Ti‘rllfl/m ((D(y)n,l - q)rln,l) Ty ((DZT,I - ®7§1):| (5.22)

X1+1/2,1

Eq. (5.20b) can be obtained from Eq. (5.2b) forn=(1, 1),y 1 =1{(2,1),(1,2)},

and &;;={bs,by} and by observing that quc’ o —qsch o T, 000
1€€))
1
Tenan="Tr,,,» and T an="Ty,

The following example demonstrates the use of the general equation,
Eq. (5.2a), to write the flow equations for interior gridpoints in a 1-D reservoir.

Example 5.2 For the 1-D reservoir described in Example 5.1, write the flow
equations for interior gridpoints 2, 3, 4, and 5.

Solution

The flow equation for gridpoint # in a 1-D horizontal reservoir is obtained
from Eq. (5.2a) by discarding the gravity term,
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n+1 n
(&)%) ] 52

For interior gridpoints, w,={n—1,n+1}, and ¢&,={}. Therefore,

V
DT —p) * D, + e = o n

= I€E,

qu’j’n =0. The gridpoints in this problem are equally spaced (Ax;zi,=
ZEEN

Ax=1000 ft) and have the same cross-sectional area (Ay x h=1200 x 75 ft%),
permeability (k,=15md), and constants u and B. Therefore,

T =B, A = 0.001127 x 550200 — 0.1521 STB/D-psi. ~ In  addition,

TPy =T33 =T}, =T}'s=T%s=T"=0.1521 STB/D-psi.
For gridpoint 2, n=2, y,={1,3}, &=1{}, Zq;’é,z =0, and ¢, =0.
leé,

Therefore, substitution into Eq. (5.23) yields
n+l n
@) - (é) (5.24)
B/, B/,

For gridpoint 3, n=3, w3={2,4}, &={}, ZCI?Z;,} =0, and g5, =0.
leé&s

Therefore, substitution into Eq. (5.23) yields
¢> n+l <¢) n
- —| = (5.25)
(&), (),

For gridpoint 4, n=4, w4,=1{3,5}, &=1{}, ZC]?ZM =0, and g5, =0.
leg&y

Therefore, substitution into Eq. (5.23) yields
n+1 n
5) -(5) | e
B/, B/,

For gridpoint 5, n=35, ws={4,6}, &s={}, qu’éls =0, and ¢, = — 150

l€és
<5>n+] <E>n
B/, B/,

STB/D. Therefore, substitution into Eq. (5.23) yields
(5.27)

a.At

(0.1521) (p — i) +(0.1521) (p — i)

v,
(0.1521) (5 — i) + (0.1521) (pff —p) = =

= Vb4
a.At

(0.1521) (9§ ) +(0.1521) (0 — )

Vs
a.At

(0.1521) (py — p') +(0.1521) (p — p2') — 150 =

5.4 Treatment of boundary conditions

A reservoir boundary can be subject to one of four conditions: (1) no-flow
boundary, (2) constant flow boundary, (3) constant pressure gradient boundary,
and (4) constant pressure boundary. They have been discussed in Chapter 4.
Block-centered grid and point-distributed grid are the most widely used grids
to describe a petroleum reservoir as units in reservoir simulation. In the
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point-distributed grid, the boundary grid point falls on the boundary, whereas
the point that represents the boundary grid block is half a block away from
the boundary. As a result, the point-distributed grid gives an accurate represen-
tation of constant pressure boundary condition. In the block-centered grid, the
approximation of a constant pressure boundary is implemented by assuming the
boundary pressure being displaced half a block coincides with the point that rep-
resents the boundary grid block and by assigning boundary pressure to boundary
grid block pressure. This is a first-order approximation. A second-order approx-
imation was suggested, but it has not been used because it requires the addition
of an extra equation for each reservoir boundary of a boundary grid block. Fur-
thermore, the extra equations do not have the form of a flow equation. Abou-
Kassem and Osman (2008) presented the engineering approach for the represen-
tation of a constant pressure boundary condition in a block-centered grid. The
new approach involves adding a fictitious well term per boundary to the flow
equation of a boundary grid block. This treatment is valid in both rectangular
and radial-cylindrical grids. The flow toward a fictitious well is linear in rect-
angular coordinates and radial in radial-cylindrical coordinates. The flow rate
equations for fictitious wells were derived from the interblock flow rate term
between a boundary grid block and the grid block that falls immediately outside
reservoir boundary. With the new treatment, both block-centered grid and
point-distributed grid produce pressure profiles with comparable accuracy. In
other words, the use of the point-distributed grid does not offer any advantage
over the block-centered grid in rectangular and radial-cylindrical coordinates
for the case of constant pressure boundaries.

The general form for the flow rate of the fictitious wells presented by
Egs. (5.7), (5.10), (5.15), (5.17), (5.21), and (5.22) can be expressed as

_1 m m m m m
seyur = /2[ b,bP" (q)bp** - q>hP> T (cbhp* - QhP)} (5.28a)

where, as shown in Fig. 5.7, q’S’Z,thP:ﬂow rate of a fictitious well representing
flow across reservoir boundary () into the actual block represented by bound-
ary gridpoint bP, T}, ,p++=transmissibility between reservoir boundary b (or
boundary gridpoint »P) and the gridpoint that is exterior to the reservoir
and located immediately next to the reservoir boundary (gridpoint bP™"), and
T, ,p+=transmissibility between reservoir boundary b (or boundary gridpoint
bP) and the gridpoint that is in the reservoir and located immediately next to
the reservoir boundary (gridpoint 5P"). Since there is no geologic control for
areas outside the reservoir (e.g., aquifers), it is not uncommon to assign reser-
voir rock properties to those areas in the neighborhood of the reservoir under
consideration. Similar to Chapter 4, we use the reflection technique about
the reservoir boundary, shown in Fig. 5.7, with regard to transmissibility only
(i.e., Thpp=Thpp):

1A kiA; ] "
" ) =g =T" . (5.292)
hbe [ BAI] bP,bP* [ HBAL] ,p p- h-br
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FIG. 5.7 Definition of the terminology used in Eq. (5.28).

where / is the direction normal to reservoir boundary (b). Substituting
Eq. (5.29a) into Eq. (5.28a) results in

m 1 m m
ity = [2Thpp- (q)bP** (I)bP*) (5.28b)

In the following sections, we derive expressions for g%, . under various
boundary conditions for a point-distributed grid in Cartesian coordinates and
stress that this rate must produce the same effects as the specified boundary con-
dition. In Cartesian coordinates, real wells have radial flow, and fictitious wells
have linear flow, whereas in radial-cylindrical coordinates in single-well sim-
ulation, both real wells and fictitious wells have radial flow. Therefore, in
single-well simulation, (1) the equations for the flow rate of real wells presented
in Sections 6.2.2 and 6.3.2 can be used to estimate the flow rate of fictitious
wells representing boundary conditions in the radial direction only, (2) the flow
rate equations of fictitious wells in the z-direction are similar to those presented
next in this section because flow in the vertical direction is linear, and (3) there
are no reservoir boundaries and hence fictitious wells in the @-direction. The
flow rate of a fictitious well is positive for fluid gain (injection) or negative
for fluid loss (production) across a reservoir boundary.

5.4.1 Specified pressure gradient boundary condition

For the reservoir left (lower, south, or west) boundary, like boundary gridpoint 1
shown in Fig. 5.8, Eq. (5.28b) becomes

=2l (e —ap)] - /[( ) (o)

1+1/2
[ } (of —@5) { kA} oo|" [ﬂ kxAX]’" 0P
“HB i1 28%100) B 1+1/20x b “uB | ,0x],,

(5.30)

Note that to arrive at the aforementioned equation, the first-order derivative
of potential was approximated by its central difference; that is,

I s )

ox lby — 2Ax14q
gradient to pressure gradient, into Eq. (5.30) gives:

m

(see Fig. 5.6). Substituting Eq. (2.10), which relates potential
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w

FIG. 5.8 Specified pressure gradient condition at reservoir boundaries in a point-distributed grid.

m kx Ax m
by HE J12

Similar steps can be carried out for the reservoir right (east, north, or upper)
boundary. For example, Eq. (5.28b) for boundary gridpoint n, on the reservoir

east boundary becomes
" kA" |op
b H X b

Ny, ny—1
(5.32)

op
ox

m }/m aZ
—7—
by ox

kA" o
] (5.31)

uB

m
chb o1 = |:ﬂc "
v 120 bw

" oz

m
yn,\.,nx—l ax

. kA" oD
qsvh_ e = ﬂ c Y
£y uB 1 0x

Ty, Ny b

In general, for a specified pressure gradient at the reservoir left (lower,
south, or west) boundary,

k1A1:| " |:ap

qu'h,hl" - |:'B¢HB E

m ” aZ
ybP,hP*al‘ ] (5.33a)
vp,bp+ LI b

and at the reservoir right (east, north, or upper) boundary,
k1A1:| n |:()p " oz

q;ycl‘h,hl’ = {'B“,uB a1 , - y;)nP,hP*E

] (5.33b)
bP,bP* b.

where / is the direction normal to the reservoir boundary.

5.4.2 Specified flow rate boundary condition

This condition arises when the reservoir near the boundary has higher or lower
potential than that of a neighboring reservoir or aquifer. In this case, fluids move
across the reservoir boundary. Methods such as water influx calculations and
classical material balance in reservoir engineering can be used to estimate fluid
flow rate, which we term here as specified flow rate (g,s). Therefore, for
boundary gridpoint 1,

Dy, = Dspse (5.34)
and for boundary gridpoint n,,
qg’(l:hﬁ,,,x = d{spsc (5.35)

In general, for a specified flow rate boundary condition, Eq. (5.28b) becomes

scp,pp = 9spsc (5.36)
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In multidimensional flow with g, specified for the whole reservoir bound-
ary, q ZZ.W for each boundary gridpoint that falls on that boundary is obtained by
prorating g, among all boundary gridpoints that fall on that boundary; that is,

Thp bp
qsch P ZTm ~— ., 4spsc (5.37)
LI

ley,

where y;, = the set that contains all boundary gridpoints that fall on the reservoir
boundary in question and 77 = transmissibility between boundary gridpoint /
(or reservoir boundary b) and gridpoint I", which falls inside the reservoir and is
located immediately next to the reservoir boundary in a direction normal to it
(see Fig. 5.7). Thppp- is defined as given in Eq. (5.29a):

- kAl
bP,bP* c B A l bPbP*

Subscript / in Eq. (4.29b) is replaced with x, y, or z depending on the bound-
ary face of boundary block. It should be mentioned that Eq. (5.37) incorporates
the assumption that the potential drops across the boundary for all gridpoints
falling on the reservoir boundary are equal.

(5.29b)

5.4.3 No-flow boundary condition

The no-flow boundary condition results from vanishing permeability at a
reservoir boundary (e.g., T;'T/Z:O for the left boundary of gridpoint 1, and
Tﬁ’fmﬂa:O for the right boundary of gridpoint n,) or because of symmetry
about the reservoir boundary in Fig. 5.6 (®f=®5 for gridpoint 1 and

n—1=®} 'y for gridpoint n,). In either case, Eq. (5.28b) for boundary
gridpoint 1 reduces to

Ty = /210, (@F = @F) =1 /2(0)(0F = @) =1 /oT7) (0)=0  (5.38)

and for boundary gridpoint n,, it reduces to

C]?Z-hE,,,‘ 1/ A,,\H/Z(CDTH Qﬁfl):l/z(o (q)rn (13,,'"‘71>
='/Ty (0 (5.39)

In general, for a reservoir no-flow boundary, Eq. (5.28b) becomes

=0 (5.40)

qSCb,hP

For multidimensional flow, ¢, for each boundary gridpoint that falls on a
no-flow boundary in the x-, y-, or z-direction is set to zero as Eq. (5.40) implies.
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FIG. 5.9 Specified pressure condition at reservoir boundaries for a point-distributed grid.

5.4.4 Specified boundary pressure condition

The specified boundary pressure condition arises when the reservoir is in com-
munication with a strong water aquifer or when wells on the other side of the
reservoir boundary operate to maintain voidage replacement and as a result keep
the reservoir boundary pressure (p;,) constant. Fig. 5.9 shows this boundary con-
dition at the reservoir left and right boundaries.

For a point-distributed grid, boundary gridpoint 1 falls on the reservoir left
boundary (by); therefore, p; =p;, , and p, =p;, for gridpoint n,, which falls on
the reservoir right boundary. The specified boundary pressure is used in the flow
equation for gridpoint bP" (e.g., gridpoint 2 and gridpoint n,— 1 in Fig. 5.9).
The flow equation for gridpoint 2 can be written as

Tml/z [(wa p’zn) _71"+1/2(Z1 _ZZ)] +T)’£+1/2 [(pgn _p'zn) _75"+1/2(Z3 —2,)
+qm _ Vbz ? n+1 B ? n
" oar|\B), ~\B),

Similarly, the flow equation for gridpoint n, — 1 can be written as

(5.41a)

m

Txnx—s/z [(PZ?K—Z _PZ:—1> - 7:7\.73/2 (Zn,—2 _Z"A*l)]

Voo [(#\" (9"
+Tzirl/2 [(phf —PZ’\,_l) _72,1/2(211,\‘ _Zﬂrl)] +q§'l.n(\,,, - (IL-AT {(E 1 \B

ny ne—1

(5.422)

The condition that is responsible for maintaining the pressure of boundary
gridpoint 1 constant at p;,, can be obtained from Eq. (5.7):

dh,, =T L@ - o)~ (@ —ep)] )

To keep the pressure at the reservoir west boundary constant, the rate of fluid
entering the boundary, (@0 — @), must equal the rate of fluid leaving the
boundary, Ty (@7 — ®5); that is,

" (P —@)) =T (9 —Dy) (5.43)

X1-1/2 X1+1/2

‘1 12

Substituting Eq. (5.43) into Eq. (5.7) gives

G =T (@ =) =T (@ — )| =T (@ - o)
= T;’l’”/2 ((D’l” — (IDZT) (5.44a)
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or
G =T |01 =P8 =711 o2 = 22) (5.44b)

with p; = Db,
Note that Eq. (5.44b) can be derived from Eq. (5.2a) forn=1, y;={2}, and
&= {by} and by observing that qu = qsch »T31=TY,, and the RHS of
€&,
Eq. (5.2a) vanishes because p; =p;,, at all times.
Similarly, for boundary gridpoint n,,

g, =T (q)m @:171) (5.45a)
or
G =i [P =) =V 2% = 70| (5.45b)

with Pn,=Db,-
The general equation becomes

Gyt = Thive (O — @pp.) (5.46a)
or
q;';,,,,,, =T ppr [(pr _PZIP*) —Viopp+ (Zop = Zpp+ )] (5.46b)
where

0, oo = | 2N
bP,bP (‘MBAI bP.bP*

v»op+ = fluid gravity between boundary gridpoint bP and gridpoint bP", and

(5.29b)

PbpP=Db-
Combining Egs. (5.46b) and (5.29b) gives
kiAr " moom o\ om
qsch wP { ¢ ,uBAl} - [(pbP _pbP*) ~ Vb, bP (Zvp —ZbP*)} (5.46¢)

In multidimensional flow, g;., ,, for a boundary gridpoint that falls on a spec-
ified pressure boundary in the x-, y-, or z-direction is estimated using Eq. (5.46c)
with the corresponding x, y, or z replacing /.

5.4.5 Specified boundary gridpoint pressure

The specification of pressure at a reservoir boundary in a point-distributed grid
results in the specification of the pressure of the boundary gridpoints that fall
on that boundary as discussed in Section 5.4.4. This results in p; 2 p,, for grid-
point 1 and p,, =p;, for gridpoint n, for the reservoir presented in Fig. 5.9. One
way to implement this boundary condition is to write the flow equation for
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gridpoint bP” (i.e., gridpoint 2 and gridpoint n, — 1 in Fig. 5.9) and substitute for
the pressure of boundary gridpoint bP (i.e., p1 =p;,, and p, =p,, ) as has been
mentioned in Section 5.4.4. The resulting flow equation is given for gridpoint 2
as

Tg:ﬂ/z [(wa —pﬁ") _ann/z(zl _Z2)] +T)':l2+1/z [(pgn —pﬁ") _Vgn+1/2(z3 )
+'”:V”2 Qnﬂf P\
Te: = oat|\B), ~\B),

and that for gridpoint n,— 1 as
Tzlzrs/z [(p;nhfZ _p::l\71> —7:1_73/2 (Zm_z _Z”.\‘_l)]

th\—l ¢ n+1 ¢ n
i [(p”h‘ _p:tr,l\fl) ~Tm—1)2 (Zn, _anl)} + e, = A [(E -z

n,—1 ny—1

(5.42a)

(5.41a)

Another way to implement this boundary condition is to assume that the
block boundary between gridpoints bP” and bP is a reservoir boundary with
gridpoint bP falling outside the new reservoir description. Therefore,

Eq. (5.41a) for gridpoint 2 becomes
¢ n+1 ¢ n
(5. - ),

(5.41b)
where qg'('{.bw‘z :qg’;bw,] :Tf\,’fwz[(p,,w —p2) —v1412(Z1 — Zy)], and Eq. (5.42a) for
gridpoint n, — 1 becomes

T;:r}/z |:(p:i72 _sz\71> _7:1,3/2(Zn,\.—2 _an—l )}

Vb,
a.At

m

T 0= )~V p B = 2)| 4+ =

% n+1 n (5 42b)
P
c ny—1 ne—1
where g, - =qie, , =T% Po, =15 )=V n-12Zn,—Zy 1))

The following examples demonstrate the use of the general equation,
Eq. (5.2a), and the appropriate expressions for g,  to write the flow equations
for boundary gridpoints in 1-D and 2-D reservoirs that are subject to various

boundary conditions.

Example 5.3 For the 1-D reservoir described in Example 5.1, the reservoir left
boundary is kept at a constant pressure of 5000psia, and the reservoir right
boundary is a no-flow (sealed) boundary as shown in Fig. 5.10. Write the flow
equations for boundary gridpoints 1 and 6.
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FIG. 5.10 Discretized 1-D reservoir in Example 5.3.

Solution
The flow equation for gridpoint n in a 1-D horizontal reservoir that is
obtained from Eq. (5.2a) by discarding the gravity term yields:

- . Vb,, ¢ n+1 ¢ n
ZTln pn un, qu,,iacAt <B>n B . (523)

ley, leg,

For boundary gridpoint 1, n=1, and p; =p;, = 5000 psia because this grid-
point falls on the reservoir left boundary. Therefore, there is no need to write the
flow equation for gridpoint 1. However, for the sake of generalization, let us
proceed and write the flow equation. For n=1, w;={2}, & ={bw},

> i, =dy, - and ¢, =0. In addition, T{,=0.1521 STB/D-psi from
€&,
Example 5.2. Therefore, substitution into Eq. (5.23) yields

¢ n+1 ¢ n
(%) (E)l] 4D

Furthermore, the RHS of Eq. (5.47) vanishes, resulting in

¢ n+1 ¢ n B
(), ()) - 54

because pi*' =p}=p,, =5000 psia.
Combining Egs. (5.47) and (5.48) and solving for qZ}hw,l yields

qn, = (0.1521)(5000 - p}) (5.49)

Vb,

(0.1521) (p3' —pY') +4, | = Al

Vi,
a.At

Note that Eq. (5.46¢) also gives an estimate for gg.,

" 15 x (1200 x 75)
m—p) =0.001127 5000 — p5'
Ticn 1 = [‘,uBAx]lz(pl ) “ 701 x (1000/2) 000 ~72)
= (0.1521) (5000 — p3')
(5.50)

Egs. (5.49) and (5.50) give identical estimates for the flow rate of a fictitious
well resulting from constant pressure boundary specification. Therefore,
Eq. (5.46¢) produces a result consistent with that obtained using the general
flow equation for a boundary gridpoint.
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FIG. 5.11 Discretized 1-D reservoir in Example 5.4.

For boundary gridpoint 6, n =6, wg=1{5}, és={bg}, qu = qu ,» and
(<43
¢sc,=0. In addition, T5s=0.1521 STB/D-psi from Example 5.2. Therefore,
substitution into Eq. (5.23) yields

w_ e o Ve [ (#)"_ ()
(0-1520)(pF —pE) + 4, = 5 a7 [(B>6 (3) J (5.51)

where the flow rate of a fictitious well for a no-flow boundary is given by
Eq. (5.40). For the reservoir east boundary, reservoir boundary b = bg, gridpoint
bP =6, and %(,, ,=0.

Substitution into Eq. (5.51) results in the flow equation for boundary grid-

point 6,
¢)n+l_<¢)n 55
(), ()] o

Example 5.4 For the 1-D reservoir described in Example 5.1, the reservoir left
boundary is kept at a constant pressure gradient of —0.1 psi/ft, and the reservoir
right boundary is supplied with fluid at a rate of 50 STB/D as shown in Fig. 5.11.
Write the flow equations for boundary gridpoints 1 and 6.

Solution

The flow equation for gridpoint » in a 1-D horizontal reservoir is obtained
from Eq. (5.2a) by discarding the gravity term, yielding

n+1 n
ZT’” qu(/ n qsc,, = aVAt [(¢> _ (ﬁ) ‘| (523)

ley, leg, n

= Vb6
a.At

(0.1521) (pg" —p’6") +

For boundary gridpoint 1, n=1, y; ={2}, &, = {bw}, ;q%“ —qul and
€6
¢se,=0. In addition, T7’,=0.1521 STB/D-psi from Example 5.2. Therefore,

substitution into Eq. (5.23) yields
Vhl <¢) n+1 <¢> n
- — = (5.53)
B/, B/,

(01520)(p5 =pY') + 45, =1
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where the flow rate of a fictitious well for specified pressure gradient at the res-
ervoir left boundary is estimated using Eq. (5.33a):

" m ap m . %
scrya = 7 |Pe ox|,, ERAEPY bw
15 x (1200 x 75
- 0.001127><M [-0.1—0] = —152.15 x (—0.1) = 15.215
10x 1
(5.54)
Substitution into Eq. (5.53) results in the flow equation for boundary grid-
point 1:
Vb ¢ n+1 ¢ n
A2 (py —pT) +15.215=—1 | | = —(= .
(0.1521) (p3' —pff) + 15215 =~ (3)1 B), (5.55)

For boundary gridpoint 6, n="6, ws=1{5}, Es={b}, Zqi,’(f,l = qg’zhp . and
1€, ;
¢sc,=0. In addition, T5s=0.1521 STB/D-psi from Example 5.2. Therefore,

substitution into Eq. (5.23) yields
n+1 n
&) - (5.56)
B/ B/

where the flow rate of fictitious well for a specified rate boundary is estimated
using Eq. (5.36); that is, g, o =50 STB/D.
Substitution into Eq. (5. 56) results in the flow equation for boundary grid-

point 6:
£)11+1_(£)n] ss7
@), -G, o

Example 5.5 Consider single-phase fluid flow in the 2-D horizontal reservoir
shown in Fig. 5.12.

Vb
a.At

(0. 1521)( p6)+qwh56

Ve
a.At

(0.1521) (p% —pg') +50 =

dsc, =—500 STBD 250 ft
No-flow boundary 16 17 18 19 20 ]
12 | 13 | 14 Ll =0.1psint
11| o ° e |15 be
7 8 9
y 300 ft 6 L] ° I 10
300 ft
X 1 2 3 4 5 No-flow boundary
2501t |
Py, = 3000 psia 4000 STB/D

FIG. 5.12 Discretized 2-D reservoir in Examples 5.5 and 5.6.
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A well located in gridpoint 9 produces at a rate of 4000STB/D. All grid-
points have Ax;+1,=2501t, Ayjr»=3001ft, =100 ft, k,=270 md, and
ky,=220 md. The FVF and viscosity of the flowing fluid are 1.0RB/STB and
2cP, respectively. The reservoir south boundary is maintained at 3000 psia,
the reservoir west boundary is sealed off to flow, the reservoir east boundary
is kept at constant pressure gradient of 0.1 psi/ft, and the reservoir loses fluid
across its north boundary at a rate of 500STB/D. Write the flow equations
for gridpoints 2, 6, 10, and 18 that fall on one reservoir boundary.

Solution

The general flow equation for gridpoint #, in a 2-D horizontal reservoir that
is obtained from Eq. (5.2a) by discarding the gravity term yields:

V n+1 n
ST )+ S v = Y l("’) _ (g) 1 (5.23)

ley, leg, n

Before writing any flow equation, we calculate the transmissibilities in
the x- and y-directions. The gridpoints in the x-direction are equally spaced
(Axiz12;=Ax=250ft) and have the same cross-sectional area
(A,=Ay x h=300x 100 ft>) and permeability in  the x-direction
(ky=270md), p=2cP and B=1RB/STB. Therefore, T} = Bk ﬂBAX

0.001127 x w 18.2574 STB/D-psi. The gridpoints in the y-direction
are also equally spaced (i.e., Ay;jr1»=Ay=300 ft) and have the same cross-
sectional area of A, = Ax x h=250 x 100 ft?, permeability ky, =220 md, constant
viscosity of 2cP, and FVF of 1 RB/STB. Therefore,

kA, 220 x (250 x 100)

T" = =0.001127 x
Y e Bay uBAy 2 x 1 %300

=10.3308 STB /D-psi
In addition,

Tgf7 = T'7ﬂs = sz;rf9 = Tg,llo - Tﬂ,lz - anz,w - T;"s,m - Tﬁ,ls - T;n
= 18.2574STB/D-psi

because the gridpoints in the second and third rows have

A, = Ay x h=1300 x 100ft>

However, T{’fz = Té’f3 = Tg’j4 = Tf(fs = T{’g’ 7= T{”“g = T{’}m = Tin9,20 =
! / 2T =9.1287 STB/D-psi  because the gridpoints in the first and last
rows have A, =(Ay/2) x h=150 x 100 ft>. Similarly,
T57=T712=T1217=T33=T813=T1518=T4.0=T514=T14,10=Ty' =10.3308
STB/D-psi because the gridpoints in the second, third, and fourth
columns have
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Ay = Ax x h=250 x 100ft>, but
T =Tg 1 =T} 16=T510=Ty15=T{5 20 ="/2T}' =5.1654STB/D-psi

because the gridpoints in the first and last columns have
Ay = (Ax/2) x h= 125 x 100ft*
For boundary gridpoint 2, n=2, y,={1,3,7}, &,= {bs}, and ¢, =0.
qu:., , =4, ,» where q;’;.h&z is obtained using Eq. (5.46¢) by discarding
eg v
the gravity term, resulting in

kyAy 1" 220 x (250 x 100)
"o =1p. —p7) = 10.001127 3000 — p7
qsch&z [ﬂ( yBAy] X (phs D7 ) |: X 2% 1x (300) ( D7 )
— (10.3308) (3000 — p)
(5.58)

In  addition, T, =15, ="T"=9.1287 STB/D-psi, T3=Ty=
10.3308 STB/D-psi, and V; =250 x(300/2) x 100 ft>. Substitution into
Eq. (5.23) results in the flow equation for boundary gridpoint 2:

(9.1287) () +(9.1287) (8 — %) + (103308) (57 — %)

Vi [(6\"" (¢ (5.59)
B 2 B 2

a.At
The aforementioned equation reduces to identity equation
because pi'=p5=p3=3000psia, and the RHS vanishes because
ph=pi*! =pp,= 3000 psia. In other words, Eq. (5.59) does not introduce new
information, but it confirms that Eq. (5.46¢) produces the correct fluid flow rate
estimate across the constant pressure south boundary of gridpoint 2.
For boundary gridpoint 6, n=6, ye={1,7,11}, &= {bw}, and gy =0.

+(10.3308) (3000 — p2) +0 =

qu’ém =4y, ,» Where ¢J. s obtained using Eq. (5.40) for the no-flow
» W0 W

€&

boundary; that is, qﬁhw,s =0. In addition, T57s=T, =18.2574 STB/D-psi,

ITs =T} ¢= '/ZT;" =5.1654 STB/D-psi, and V, =(250/2) x 300 x 100 ft’.
Substitution into Eq. (5.23) results in the flow equation for boundary
gridpoint 6:

(5.1654) (p' = pg ) + (18.2574) (p} —pg') + (5.1654) (P — )

(5. ()

For boundary gridpoint 10, n=10, y/10={5,9,15}, §,0= {bg}, and ¢ ,=0.

+0+0— |73 (5.60)
a.At

Z Dye = q;'l’,hEYm, where q;’g.hE’m is estimated using Eq. (5.33b) for the reservoir
€&y
east boundary:
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ﬂhE 0| l‘B 10,9 | 9%

—7 _
by 10,9ax b
= [0.001 127 x

270 x (300 x 100
X(lex )}[0.1—0}_4564.35><(0.1)

=456.435STB/D (5.61)

In addition, To 10=Ty =18.2574 STB/D-psi, T5 0="115=
l/2T’" 5.1654 STB/D-psi, and V,, =(250/2) x 300 x 100 ft>. Substitution
into Eq. (5.23) results in the flow equation for boundary gridpoint 10,

(51654) (py —ply) + (18.2574) (p' — pfy) +(5.1654) (p's — Pl

m (f)n+l_<£)n (562)
B 10 B 10

a.At
For boundary gridpoint 18, n=18, y3={13,17,19}, & s={by}, and
G =0 Z qm 5= qw L , where qg’l’,hN s is estimated using Eq. (5.37) because
IS3T
qspse= — 500 STB/D is specified for the whole reservoir north boundary. This
rate has to be prorated among all gridpoints falling on that boundary. Therefore,
using Eq. (5.37),

+456.435+0=

_ TlS 13 (5 63)
qs"w 18 Z T;nl qspsc .

leyy,
where y;, ={16,17,18,19,20}. Note that, using Eq. (5.29b),

m 220 % (250 x 100
0 5= |B. 0.001127 x 220X (250 % 100)
yBAy 515 2% 1% 300

=10.3308 STB /D-psi (5.64)
AlSO, Tv1n7’12 = TTS,I?: = Tflng’14 =10.3308 STB/D-pSl, and Tvln&ll = 731(),15 =5.1654
STB/D-psi. Substitution into Eq. (5.37) yields.
" _ 10.3308
Dscns = 51654+ 3 x 10.3308 + 5.1654

In addition, TP, o=T7h s= l/zT'” 9.1287 STB/D-psi, Ti5.15=T)'=
10.3308, and V;, =250 x (300/2) x 100 ft>. Substitution into Eq. (5.23) results
in the flow equatlon for boundary gridpoint 18:

(10.3308) (py — pli) + (9-1287) (py — i) + (9.1287) (ply — pls)

Vi (Q)"”_@)" (5.66)
B/ g B/ g

x (—500) = —125STB/D-psi (5.65)

—125+0=
* a.At
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Example 5.6 Consider single-phase fluid flow in the 2-D horizontal reservoir
described in Example 5.5. Write the flow equations for gridpoints 1, 5, 16, and
20, which fall on two reservoir boundaries.

Solution

The general flow equation for gridpoint 7 in a 2-D horizontal reservoir that is
obtained from Eq. (5.2a) by discarding the gravity term yields:

n+1 n
DT W =)+ i+ qu,,—avm (¢> —(%)] (5.23)

ley, 1&g,
The data necessary to write flow equations for any boundary gridpoint were
calculated in Example 5.5. The following is a summary:

T =18.2574STB /D-psi
T;” =10.3308STB/D-psi

Tgl7 :T;ns —T§n9 _T;"IO_T” 12 —anz,w :T%,M:Tﬁ,lj :T;n
=18.2574STB/D-psi

T:’fz = T;’f3 = Tg'f:t = TZS = T;%,n = T1n7 18 = T7§,19 = T;n9,20 = 1/2T;n
=9.1287STB/D-psi

T;’f7 :T%z = anz,n :Tgfg :Tsysr,lw :TT’;,IS = Tf{,’f} = Tgfm :Tﬁ,w = T;n
=10.3308 STB/D-psi

T{né :Tg"n :Tﬁ 16 :Tgnw :Tﬁl) 15 :T;"s 20— 1/ZTm =5.1654STB /D-psi

qﬂl ,P*(IO 3308)(3000 — pjp*) STB/D for bP=2, 3, 4, where 2" =7,
3" =38, and 4" =9; or more explicitly,

qy,. ., = (10.3308) (3000 - p)

v, . = (10.3308)(3000 - pf)

dye,, . = (10.3308) (3000 — py)
Dcy, o = 0STB/D forbP =6,11
Ay, p = 456.435STB/D forbP =10,15

and

=—125STB/D forbP=17,18,19

‘ZSChE,bP

For corner gridpoints, the areas open to flow in the x- and y-directions are
half the size of those of the other gridpoints that fall on the same reservoir
boundary; thus,
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Gse, ”,—(5 1654)(3000 — ppp*) STB/D for bP=1, 5, where 1"=6 and
5"=10 or more explicitly,

T, = (5.1654) (3000 — pg)

and
Dreye s = (5.1654) (3000 — p)
U 0STB/D forbP=1,16
45, ,=0STB/D
dy,, ., =228.2175STB/D
and
qr,  =—625STB/D forbP=16,20
SChy e

For boundary gridpoint 1, n=1, y;={2,6}, & ={bs,bw}, g5 =0, and

>, =y, +dy, = (5.1654)(3000 - p§') +0 STB/D.
€&,

In  addition, T}, ="/,T"=9.1287 STB/D- psi Trs="/2Ty =
5.1654 STB/D-psi, and V; =(250/2) x (300/2) x 100 ft’. Substitution into
Eq. (5.23) results in the ﬂow equation for boundary gridpoint 1:

(9:1287) (98 — ) + (5.1654) (g — ) + (5.1654) (3000 — pf’) +0+0
B Vb1 f n+1_ f n
aAt|\B), B/,
5.67)

For boundary gridpoint 5, n=35, ys={4,10}, &= {bs,be}, ¢ic, =0, and
qu sty 5 + ey, s = (5- 1654) (3000 — p'ly)) + 0= (5.1654) (3000 — pfi) STB/D
l€és

In addition, 7}'5 = /T =9.1287 STB/D -psi, Ty 5 = =/ 2T} =5.1654 STB/
D-psi, and Vj, = (250/2) x (300/2) x 100 ft’.

Substitution into Eq. (5.23) results in the flow equation for boundary grid-
point 5,

(9.1287) (pf —p2) +(5.1654) (pffy — p2') + (5.1654) (3000 — pfy) +0

B Vb5 ? n+17 é n (5.68)
B/ B/

a At
For boundary gridpoint 16, n=16, ;6= {11,17}, {16 = {bw. by}, dic, =0,
and Yy, =dr, . +dv, =0-62.5STB/D.
€16
In addition, T7; = l/zT’” 9.1287 STB/D- psi T 6= 1/2T;” =
5.1654 STB/D-psi, and V;, = (250/2) x (300/2) x 100 ft*.
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Substitution into Eq. (5.23) results in the flow equation for boundary grid-
point 16:

(5.1654) (p, — i) +(9.1287) (P, — p) + 0 — 62.5+0

_ Vo ?)“1_(?)" 5.69
(B 16 B 16 ( )

T a At
For boundary gridpoint 20, n=20, 0= (15,19}, &0= {be, by}, dic,, =0,
and Yy, =, L, +dh, ,, =2282175—-62.5 STB/D.

I addition, TPy o0 ="/2T0 =9.1287 STB/D-psi, Tf4,,="/2T0=
5.1654 STB/D-psi, and V;,, = (250/2) x (300/2) x 100 ft>.

Substitution into Eq. (5.23) results in the flow equation for boundary grid-
point 20:

(5.1654) (ps — i ) +(9.1287) (py — ply) +228.2175 — 62.5+0

Vi (é)"”_ @)" (5.70)
B 20 B 20

T a At
5.5 Calculation of transmissibilities

The flow equations in Cartesian coordinates have transmissibilities in the x-, y-,
and z-directions that are defined by Eq. (2.39) in Chapter 2:

1
Tr,-;u/z,k,-,k = G,‘Cq;l/z,j,k (_B> (5.71a)
H XiF1/2, ),k
1
Tyi,ix , :G,\n,- 1k () (5.71b)
1/2,k i\ uB _—
and
1
TZ,',/.m/z = G—’z',j,k;l/z <_B> (5.71¢)
H Zi, jk¥1/2

where the geometric factors G for anisotropic porous media and irregular grid-
point distribution are given in Table 5.1 (Ertekin et al., 2001). The treatment of
the pressure-dependent term uB in Eq. (5.71) is discussed in detail under line-
arization in Chapter 8 (Section 8.4.1).The equations for geometric factors in
Table 5.1 can be derived using the procedure followed in Example 4.7. For
example, the derivation of G, for 1-D flow in the x-direction is the same
as that presented in Example 4.7 except that ox;+ = dx;41- = 1 / 2Ax; 1), for a
point-distributed grid.

The flow equations in radial-cylindrical coordinates have transmissibility in
the r-, 8-, and z-directions that are defined by Eq. (2.69) in Chapter 2:
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TABLE 5.1 Geometric factors in rectangular grids (Ertekin et al., 2001).

Direction Geometric factor
X 2p
GX/:]/’Z,/,k = =
AX,’;1 /2,j,k/ (AXI,/,k kX:,/,k) + Axiﬂ/Z,/,k/ (Axm,/,k ka,l,k)
Yy Gy _ 2p.
i, i¥1/2,k
Ayf, [;1/2,k/ <A}4',/,k k}/r,i,k) + Ayi,jxl/Z,k/ (Ayr,/ﬂ,kkyr,/ﬂ,k)
z 2p
GZ,,,,Am/z = £

AZi,j,kqﬂ/Z/ <AZ,,,,I< kZ,,,,k) + Azi,j,kqﬂ/z/ (AZ,,/,;m ka,,,k;W )

1
T, . =G, . (—) (5.72a)
F1/2,j,k T1/2,j,k /lB -
1
b =Go . (= (5.72b)
L JF1/2,k LJF1/2,k ,MB 91",‘;1/2’,‘7
and
1
TZi,/,L;l/z = GZ:’,/’,I@I/Z (E) (5720)
Zi,jkF1/2

where the geometric factors G for anisotropic porous media and irregular grid-
point distribution are given in Table 5.2 (Pedrosa Jr. and Aziz, 1986). Note that
for gridpoint (i, j, k), r; and ;1> depend on the value of subscript i only, Af); and
A0+, depend on the value of subscript j only, and Az, and Az, depend on
the value of subscript k only. The treatment of the pressure-dependent term uB
in Eq. (5.72) is discussed in detail under linearization in Chapter 8
(Section 8.4.1).

In Table 5.2, gridpoint spacing and block boundaries in the z-direction are
defined as in Eq. (5.1), with z replacing x. Those in the f-direction are defined in
a similar way. Specifically,

6,=0,6,, =2z, (ie.6,, —0 =2x)

6j+1:9j+A9j+1/2, j=l,2,3...n9—1

Op10=0;+" /200,11, j=1,2,3...ng—1 (5.73)
AO;=0;10— 010, j=1,2,3...n9

91/2 291, and 9,10+1/2=9,10

In the r-direction, however, gridpoints are spaced such that pressure drops
between neighboring gridpoints are equal (see Example 4.8 and note that in this
case, there are n, — 1 spacings separating the n, gridpoints). Additionally, block
boundaries for transmissibility calculations are spaced logarithmically in r to
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TABLE 5.2 Geometric factors in cylindrical grids (Pedrosa Jr. and Aziz, 1986).

Direction Geometric factor
7 BAGAZ
G’H/z,/,k = ! ]
Ioge(r,~/r,.71/2>/l<,wk + loge (rH/z/rH)/k,Hmk
Grf+1/2,j,k = A Ol
Ioge<rf+1/2/r,~)/k,”,k + loge (r;+1 /riL+1/z>/k’r+1,/,k
0 26,1 Lok o)A
G ﬂc Oge rl+1/2/rl—1/2 Zk
97,/+T/Z,k - A0/¥1/2/k«9,',;,k +A'9/¥1/2/k&9,,,;1,k
Z 2ﬂC(/ZAg)(I+1/2 = 1/2)
GZ,,/,k:wz =

AZip1)a/ Kz, + BZkpr o/ Kz i

warrant that the radial flow rates between neighboring gridpoints using the con-
tinuous and discretized forms of Darcy’s law are identical (see Example 4.9),
and block boundaries for bulk volume calculations are spaced logarithmically in
r* to warrant that the actual and discretized bulk volumes of gridblocks are
equal. Therefore, the radii for the pressure points (r;+;), transmissibility calcu-
lations (1];;1 12), and bulk volume calculations (7;+1,,) that appear in Table 5.2,
are as follows (Aziz and Settari, 1979; Ertekin et al., 2001):

Tig1 = Qgli (5.74)
YL L ki 5.75
i+1/2 loge("i+1/ri) ( a)
L ri—ri—
" 5.76
’1—1/2 log ( /’1 1) ( a)
and
2 2
2 Niv1 =1
r =—1— L _ 5.77
Iz+1/2 logg(riz_'—l/riz) ( a)
2 7=
-2 = ! i 5.78
Tii1)2 loge( /12 ) ( a)
where
0\ Y r=1)
a, = <re> (5.79)
and

r=ry (5.80)
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Note that gridpoint 1 falls on the reservoir internal boundary (r,,) and grid-
point n, falls on the reservoir external boundary (r,); therefore, r;=r,
and r, =r, by definition for a point-distributed grid. Furthermore, ry_;=1r,,
and r, +1,=r, define the internal boundary for gridpoint 1 and the external
boundary for gridpoint n, that are used to calculate block bulk volumes.

The bulk volume of gridpoint (i,j,k) is calculated from

V= (’"i2+1/2 —”?71/2> (' /286;) Az (5.81a)

Note that r,—2_1 /zzrfv for i=1 and r,—2+1/2:r§ for i=n,.

It should be mentioned that the geometric factors in the r-direction given in
Tables 4.2 and 5.2, Gfm/m’ differ only in the handling of block thickness. The
block thickness in Table 5.2 is constant for all gridpoints in layer k, whereas in
Table 4.2, it may assume different values for the gridblocks in layer k. This
difference is a result of grid construction in block-centered and point-
distributed grids.

Egs. (5.75) through (5.78) and Eq. (5.81a) can be expressed in terms of r; and
a;, (see Example 4.10), resulting in

riL+1/2:{(051g—1) [lOge(alg)]}ri (5.75b)
i1 = { (@ — 1)/ agloge (a) ] }ri= (Y, ) ki1 2 (5.76b)

)
(@) s
Rp={ (@ 1)/ [aoee ()] }r= (Y )2 GT8D)

and

_ > N\ 2 2 21 ‘ . _
Vi =19 (a1 / aj log. (aj, ri( /ZAQ,)Azk fori=2,3,...n,—1
(5.81b)

Example 4.10 demonstrates that quotients rlre /20 oy 21, ko It Tivt]
r,ﬁl 12, and I‘,<L+1 /2/r,<L, 1,2 are functions of the logarithmic spacing constant a;, only
as given by Eqgs. (4.111), (4.114), (4.103), (4.106), and (4.116), respectively.
By substituting these equations, or Egs. (5.82), (5.75b), (5.76b), (5.77b), and

(5.78b), into Table 5.2 and observing that (/2A9)(

Vi, ../ Az using Eq. (5.81a), we obtain Table 5.3.
Now, the calculation of geometric factors and pore volumes can be simpli-
fied using the following algorithm:

Fivipp —Tie 1/2) =

1. Define

r 1/(n—1)
= (}—) (5.79)

w
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TABLE 5.3 Geometric factors in cylindrical grids.

Direction = Geometric factor

r G - ﬂcA9/Azk
N =
YR [a/g loge (a/g)/(alg = 1)]/l<r,,,,k +loge Ka/g -1 )/'°8e (“/g)]/kr,,w,,yk
G - ﬂcA(’/'Azk
Tiv1/2,),k loge [(a/g - 1>/|Oge ((llg)] /kr,-///k + loge [alg loge (Wg)/(u,g " )} /kriﬂym{
’ G _ 2pcloge (wg ) Az
e A9j¥1/2/k9i,/,k + Aaj:F1/2/k6i,/T1,k
‘ GZI,/,k;w/z = 2be (Vbi,/,k /Azk)

Azkﬂ/z/klr,,‘,k +Azk¥1/2/kli,/,kﬂ

2. Let
r=ry (5.80)

3. Set
ri=a'r (5.82)

where i=1, 2, 3, ...n,
4. Forj=1,2,3,...npand k=1, 2, 3, ...n,, set

Vi, = { (alzg - 1)2 / [a,zgloge (a,zg)} }rf(l /206)) Az (5.81b)
fori=2,3,..n.—1

Vi ={ | (= 1)/1oee(e)| -1} aa0)az st

for i=1; and

Vi, u = {1 (1) /[a}loge (3] }2 (/286 (5.81d)

for i=n,. Note that Eq. (5.81b) is used to calculate bulk volumes of grid-
points other than those falling on the reservoir internal and external bound-
aries in the r-direction (see Example 5.7). For i=1 and i =n,, Egs. (5.81c)
and (5.81d) are used.

5. Estimate the geometric factors using the equations in Table 5.3. Note that in
the calculation of G, or G, terms that describe properties of blocks

Zija/2 +172°

that fall outside the reserv01r (k 0 and k=n_.+1) are discarded.

Examples 5.7 and 5.8 show that reservoir discretization in the radial direction
can be accomplished using either the traditional equations reported in the
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previous literature (Eqs. 5.74, 5.75a, 5.76a, 5.77a, 5.78a, 5.79, 5.80, and 5.8 1a)
or those reported in this book (Egs. 7.74, 5.75b, 5.76b, 5.77b, 5.78b, 5.79, 5.80,
5.81b, 5.81c, and 5.81d) that led to Table 5.3. The equations reported in this
book, however, are easier and less confusing because they use r; and a;, only.
In Example 5.9, we demonstrate how to use Eq. (5.2a) and the appropriate
expressions for ¢i, , along with Table 5.3, to write the flow equations for
boundary and interior gridpoints in a 2-D single-well simulation problem.

Example 5.7 Consider the simulation of a single-well in 40-acre spacing. Wellbore
diameteris 0.5 ft, and the reservoir thickness is 100 ft. The reservoir can be simulated
using a single layer discretized into six gridpoints in the radial direction.

1. Find gridpoint spacing in the r-direction.

2. Find the gridpoint block boundaries in the r-direction for transmissibility
calculations.

3. Calculate the arguments of the log, terms in Table 5.2.

4. Find the gridpoint block boundaries in the r-direction for bulk volume
calculations and calculate the bulk volumes.

Solution
1. The external reservoir radius can be estimated from well spacing,

re =+/43,560 x 40/7x =744.73 ft, and well radius, r,,=0.25 ft.
First, estimate o using Eq. (5.79):

S\ V1) 1/(6-1)
ro 744.73
W = (7) - (W) =4.9524

Second, according to Eq. (5.80), let r; =r,,=0.25 ft. Third, calculate the
location of the gridpoints in the r-direction using Eq. (5.82), r;= a};lrl. For
example, for i=2, r,= (4.9524)* ' % 0.25=1.2381 ft. Table 5.4 shows the
location of the other gridpoints along the r-direction.

2. Block boundaries for transmissibility calculations (riL,l/z, i ,2) are esti-
mated using Eqgs. (5.75a) and (5.76a).

For i=2,
L men 6131612381 oo
= = =3. t
24127 Y0g (13 /r2)  log,(6.1316/1.2381)
and
. ra—r1 1.2381—0.25
- - —0.6176ft
"2-12 " Jog  (ra/r1)  log.(1.2381/0.25)

Table 5.4 shows the block boundaries for transmissibility calculations
for the other gridpoints.
3. Table 5.4 Shows the calculated values for ri/r,L,l 25 r,~+1/riL+1 25 r{-‘,l 2ITi—1,
r,-L+1 nlri, and 1{-11/2/1{-‘_1/2, which appear in the argument of log, terms in
Table 5.2



TABLE 5.4 r;, rf;1/5, and log. arguments in Table 5.2 for Example 5.7.

i

ri

0.25

1.2381
6.1316
30.366
150.38
744.73

'{'_—1/2

0.6176
3.0587
15.148
75.016
371.51

r:'_+1/2

0.6176
3.0587
15.148
75.018
371.51

i/
I

i-1/2

2.005
2.005
2.005
2.005
2.005

r
i+1 /r‘
i+1/2

2.005
2.005
2.005
2.005
2.005
2.005

L
’H/z/
riq

2.470
2.470
2.470
2.470

2.470

L
’M/z/
i

2.470
2.470
2.470
2.470

2.470

L
’i+1/z/

L
Tivp2

4.9524
4.9524
4.9524

4.9524

g | 4e1dey) pug painguisip-iuiod B yum uone|nwis

6S1L
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4. The block boundaries for bulk volume calculations (r;_1,2, ;+1/2) are esti-
mated using Eqgs. (5.77a) and (5.78a).

For i=2,
o - (61316 (123817 oo
2+1/2 - - '
12 log, (12/13) loge{(6.1316)2/(1.2381)2}
and
2_ 2 1.2381)* — (0.25)
Bp=2 i = ( SO 450562

loge(13/r7)  log, [(1.2381)%/(0.25)?]

Therefore, the block boundaries for bulk volume calculations are
Iy 1/2= a! 1.2707 =3.3572ft

and

rie172=V0.4595 =0.67791t

The bulk volume for gridpoints can be calculated using Eq. (5.81a).
For i=2,

Vi, = [(3:3572)° = (0.6779)| (*/2 x 22) x 100 = 3396.451¢°
Fori=1,
Vi, = [(13558)° = (0.25)°| (/2 x 27) x 100 = 124.73¢
For i=6,
Vi, = [(744.73)° = (407.77)°| (*/2 x 22) x 100 = 122.003 x 10°F¢

Table 5.5 shows the block boundaries and bulk volumes of blocks for the
other gridpoints.

Example 5.8 Solve Example 5.7 again, this time using Eqgs. (5.75b), (5.76b),

(5.77b), (5.78b), and (5.81b), which make use of r; and «a;,, and Eqgs. (5.81c)

and (5.81d).
Solution

1. From Example 5.7, r,=744.73 ft., r,=r,,=0.25 ft, and a;,=4.9524. In
addition, the radii of gridpoints are calculated using Eq. (5.82), r[:a}';rl,
as shown in Example 5.7.

2. The block boundaries for transmissibility calculations G 25 ko 2)s
estimated using Egs. (5.75b) and (5.76b), are

rivin = { (aig— 1)/ [log, (ag) | }ri={(4.9524 — 1) /[log . (4.9524)]}r;
=2.47045r;
(5.83)
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TABLE5.5 Gridpoint boundaries and bulk volumes for gridpoints

in Example 5.7.

i ri ri—1z riv1/2 Vb,

1 0.25 0.25° 0.6779 124.73

2 1.2381 0.6779 3.3572 3396.5

3 6.1316 3.3572 16.626 83,300.3
4 30.366 16.626 82.337 2.04 x10°
5 150.38 82.337 407.77 50.1x 10°
6 744.73 407.77 744.73P 122 x 108

i_1p=rw=0.25.
ror1/2=Te=744.73.

and

"1471/2 = { (a1, — 1)/ [argloge ()] }ri
= {(4.9524 — 1)/[4.952410g.(4.9524)] }r; =0.49884r;  (5.84)

Substitution of values of r; into Egs. (5.83) and (5.84) produces the
results reported in Table 5.4.

3. Example 4.10 derives the ratios rl-/ij,»‘_ 125 r,-+1//,-“+1/2, r,L_l 21, r,-L+1 /1, and
riaplrt 1 as functions of @y, as Egs. (4.111), (4.106), (4.114), (4.103),
and (4.116), respectively. Substituting of a;,=4.9524 in these equations,
one obtains

rifriy = [aigloge (o) ]/ (e — 1) = [4.95241og,.(4.9524)] /(4.9524 — 1)

=2.005
(5.85)
ris1 /i1 p = [@gloge (aig)] / (e — 1) =2.005 (5.86)
"1'L—1/2/rf*1 = (g — 1) /log ()
= (4.9524 —1)/log . (4.9524) =2.470 (5.87)
riva/ri= (g — 1) /log, (arg) =2.470 (5.88)
and
a1t = g =4.9524 (5.89)

Note that the values of the aforementioned ratios are the same as those
reported in Table 5.4.
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4. The block boundaries for bulk volume calculations (r;_1,2, ;+1/2) are esti-
mated using Eqgs. (5.77b) and (5.78b), yielding

= { (1) 1ome()

—{(495247 1)/ [tog. ((49524)?) ] }r2 = (7.3525)2  (5.90)

and
7= { (a%g - 1) / [afg log. (afgﬂ }r,.z - {7.3525 /(4.9524)2}@2
=(0.29978)r? (5.91)
Therefore,
riv1p =1/ (7.3525)r} = (2.7116)r; (5.92)
and
rioija =1/ (0.29978)r? = (0.54752)r; (5.93)

The bulk volume associated with each gridpoint can be calculated using
Egs. (5.81b), (5.81c), and (5.81d), yielding

Vi, = { (alzg — 1)2/ [alzg log, ((l,zg)} }rlz [I/Z(Zn)]AZ
= { ((4.9524)2 — 1)7/[(4.9524)% log, ((4.9524)?)] }r? [1/2(27)] x 100 =2215.7r?
(5.94)
fori=2,3,4,5.

Vi ={[ (= 1) /108 (o) | - 1} (! 280) a2
_ { [((4.9524)2 _ 1)/ loge ((4.9524)2)] - 1}(0.25)2 [/2(20)] x 100= 1247388
(5.95)

and

Vi ={1= (e~ 1)/ [ 10ge (o, )] }2(1/280) Az
= {1—((4.9524)* 1) /[(4.9524)* log, ((4.9524)%)] } (744.73)*[" /2(27)] x 100
=122.006 x 1053
(5.96)
Note that the values of the estimated bulk volumes slightly differ from

those reported in Table 5.5 because of round-off errors resulting from
approximations in the various stages of calculations.
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Example 5.9 A 0.5-ft diameter water well is located in 20-acre spacing. The
reservoir thickness, horizontal permeability, and porosity are 30ft, 150md,
and 0.23, respectively. The (ky/ky) for this reservoir is estimated from core data
as 0.30. The flowing fluid has a density, FVF, and viscosity of 62.4 Ibm/ft>,
1 RB/B, and 0.5 cP, respectively. The reservoir external boundary in the radial
direction is a no-flow boundary, and the well is completed in the top 22.5 ft only
and produces at a rate of 2000 B/D. The reservoir bottom boundary is subject to
influx such that the boundary is kept at 4000 psia. The reservoir top boundary is
sealed to flow. Assuming the reservoir can be simulated using three equispaced
gridpoints in the vertical direction and four gridpoints in the radial direction, as
shown in Fig. 5.13, write the flow equations for gridpoints 1, 3, 5, 7, and 11.

Solution

To write flow equations, the gridpoints are first ordered using natural order-
ing (n=1, 2,3, ...10, 11, 12), as shown in Fig. 5.13, in addition to being iden-
tified using the engineering notation along the radial direction (i=1, 2, 3, 4)
and the vertical direction (k= 1, 2, 3). This step is followed by the determination
of the location of the gridpoints in the radial direction and the calculation of
the gridpoints separation and elevation in the vertical direction, Next, the bulk
volumes and transmissibilities in the r- and z-directions are calculated. We
demonstrate in this example that block boundaries for transmissibility calcula-
tions and block boundaries for bulk volume calculations are not needed if we
use Egs. (5.81b), (5.81c), and (5.81d) for bulk volume calculations and
Table 5.3. Making use of the aforementioned information, we estimate the con-
tributions of the gridpoints to the well rates and the fictitious well rates resulting
from reservoir boundary conditions.

The reservoir rock and fluid data are restated as follows: h=301t, ¢ =0.23,
k,=ky =150 md, k, = ky(ky/ky) =150 x 0.30=45 md, B=1 RB/B, 1 =0.5 cP,
¥ =78 =0.21584 x 10 >(62.4)(32.174) =0.4333 psi/ft, r,,=0.25 ft, and the

2000 STB/D

N

<

q 11 12

No-flow boundary

=
1
w

| No-flow boundary

\\
N

30 ft

[ 1)
[ BN
oo
a
ES
1
N

-y

|~ i=1i=2 i=3 =4
Lz \ pp, = 4000 psia
L

FIG. 5.13 Discretized 2-D radial-cylindrical reservoir in Example 5.9.
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reservoir external radius is estimated from well spacing as r, = (20 x 43560/x)" =
526.60 ft. The reservoir east (external) and upper (top) boundaries are no-flow
boundaries, the reservoir lower (bottom) boundary has p;, =4000 psia, and the res-
ervoir west (internal) boundary has g, = — 2000 B/D to reflect the effect of the
production well (i.e., the well is treated as a boundary condition).

For the point-distributed grid shown in Fig. 5.13, n,=4, n,=3, and Azjy1p =
h/(n,—1)=30/(3—1)=15 ft for k=1, 2; hence, Az,=15/2=7.5ftforn=1, 2,
3, 4; Az,=15ft for n=5, 6, 7, 8; and Az,=15/2="7.5 ft for n=9, 10, 11, 12.
Assuming the top of the reservoir as the reference level for elevation, Z, =0 ft
for n=9, 10, 11, 12; Z,=15 ft for n=5,6, 7, 8; Z,=30ft for n=1, 2, 3, 4; and
Zy,, = 30 ft. The locations of the gridpoints in the radial direction are calculated using
Egs. (5.79), (5.80), and (5.82), yielding a,=(526.60/0.25)"“ "=12.8188;
r=r,=025ft; and r,=(12.8188)"1(0.25) for i=2, 3, 4 or r,=3.2047 ft,
r;=41.080 ft, and r4,=526.60 ft.

The bulk volumes associated with the gridpoints are listed in Table 5.6.
They are calculated using Egs. (5.81b), (5.81c), and (5.81d). Note that subscript
j is discarded and A@=2x.

Vi = { [(afg - 1)/10ge (a,zg)} - 1}r§,(‘/2A9) Az

- { [((12.8188)2 - 1>/loge((12.8188)2>} - 1}(0.25)2(1/2 x 27) Az
— (6.0892685) Az

TABLE 5.6 Gridpoint locations, bulk volumes, and radial and vertical
transmissibilities for Example 5.9.

Az, Z, Feavak Ziesrn
n ik ori(ft) (ft) (ft) Vp (ft%) (B/D-psi) (B/D-psi)
1 1 1 0.25 7.5 30 45.66941 6.245838 0.041176
2 2 1 3.2047 7.5 30 7699.337 6.245838 6.941719
3 3 1 41.080 7.5 30 1,265,140 6.245838 1140.650
4 4 1 526.60 7.5 30 5,261,005 6.245838 4743.320
5 1 2 0.25 15 15 91.33882 12.49168 0.041176
6 2 2 3.2047 15 15 15,398.67 12.49168 6.941719
7 3 2  41.080 15 15 2,530,280 12.49168 1140.650
8 4 2  526.60 15 15 10,522,011 12.49168 4743.320
9 1 3 0.25 7.5 0 45.66941 6.245838 0.041176
10 2 3  3.2047 7.5 0 7699.337 6.245838 6.941719
11 3 3 41.080 7.5 0 1,265,140 6.245838 1140.650
12 4 3 526.60 7.5 0 5,261,005 6.245838 4743.320
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th,k

{(@ 1) [tos ()] 2 220)an

{ ((12.8188)2 - 1)2/ [(12.8188)210ge ((12.8188)2)} }r,?(‘/2 x 21) Az
=(99.957858)r7 Az

for i=2, 3, and

Vi, = {1 - <a,2g - 1)/[a12g log, (a,zgﬂ }rj(l/er)Azk
={1-((12.8188)% —1)/[(12.8188)? log, ((12.8188)*)] } (526.60)* (1 /2 x 27) Az
= (701466.65)Az;

The transmissibility in the r-direction is defined by Eq. (5.72a), yielding

1 1
Tl'z;]/z,k = G"i;l/z,k (E) = Gr‘m/z,k (05 » 1) = (2)G"i¥1/2,k (597)

where G, is defined in Table 5.3. With Af=2x and constant radial perme-
ability, the equations for the geometric factor reduce to
B 27 .k Az
TR Jog, [argloge (aug) / (arg — 1) + log. [ (arg — 1) /log. (g ) |
27 kA 27(0.001127)(150)A
_ 27fcki Az 2n( JUSOAZ _ ) 4163892) A%
log. (ay,) log,.(12.8188)

G

(5.98)

Therefore, the transmissibility in the radial direction can be estimated by
substituting Eq. (5.98) into Eq. (5.97), resulting in

Tyyps = (2)Gron, = (2)(0.4163892) Az = (0.8327784) Az (5.99)

The transmissibility in the vertical direction is defined by Eq. (5.72c),
yielding

1 1
TZi,krr]/z = GZf,kxl/z (E) = Gzi,l@l/z (m) = (Z)Gzi,k;l/z (5100)

is defined in Table 5.3 as

2ﬂc Vb,- / AZk
Gy = (Ve,./A%) (5.101)
Azpzrp ke + Bz o /Koy
For this problem, gridpoint spacing and vertical permeability are constants;
therefore, the equation for the geometric factor reduces to

_ 2Bk (Vo /Azi) _ Bek: (Vi /Az)

ZikF1/2

where G

ZikF1/2

G

2A2k11/2 AZk:pl/z

_ (0.001 127)(‘1‘2 ) Vo /A2) _ (0.003381) (V) /Az)

(5.102)
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Substituting Eq. (5.102) into Eq. (5.100) results in

T = (2)G., ., = (2)(0.003381) (V},, / Azt ) = (0.006762) (Vs , / Az
(5.103)

ZikF1/2

The estimated transmissibilities in the radial and vertical directions are
listed in Table 5.6.

Before writing the flow equations, the well production rate (specified rate
for the reservoir west boundary) must be prorated between gridpoints 5 and
9 using

m _ T}’;”P’hP* (5 37)
Dscppp — ZTm q'spsc .
LI
ley,

where T}, ,p- = transmissibility in the radial direction between gridpoints bP and
bP" with the well being the reservoir internal boundary and y, =y, = {5,9}.
Note that gridpoint 1 has a no-flow boundary because it is not penetrated by
the well; that is, th ,=0. Note also that 5"=6and 9" =10 according to the
terminology in Fig. 5.7. From Table 5.6,

Ty ¢ =Ty =12.49168B/D-psi
and
Ty 0=Tp , =6.245838B/D-psi
The application of Eq. (5.37) results in

. 6245838
Tscns ~ 6.245838 + 12.49168

x (—2000) = —666.67B /D

and

_— 12.49168
Tscny.s = 6245838 + 12.49168

With this treatment of the production well, g5. =0 for each gridpoint
(including 1, 5, and 9).

For the reservoir lower boundary, pY'=p5 =p3 =ps'=p, =4000 psia.
The flow rates of the fictitious wells in boundary gridpoints 1, 2, 3, and 4
are estimated using Eq. (5.46c), yielding.

=T™  [(4000 — pyp-) — (0.4333)(30 — 15)]B/D (5.104)

qV(h ,bP Zijk+1/2

x (—2000) = —1333.33B/D

where according to Fig. 5.13 and our terminology in Fig. 5.7, 1"=5,2"=6,
3"=7, and 4" =8. For the reservoir east and upper (no-flow) boundaries,
qsch =0 for n=4, 8, 12 and ¢, n—O for n=9, 10, 11, 12. The contributions
of grldpomts to the well rates and the fictitious well rates are summarized in
Table 5.7.
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TABLE 5.7 Contribution of gridpoints to well rates and fictitious well rates
for Example 5.9.

9sc, qsc,,,, s, s

n i k (@®D 9%, ®BD (B/D) B/D)  (B/D)
1 1T 1 0 (0.041176) 0

[(4000 — p3") —(0.4333)

(30—15)]
2 21 0 (6.941719)

[(4000 — pg') —(0.4333)

(30—15)]
3 3001 0 (1140.650)

[(4000 — p7") — (0.4333)

(30—15)]
4 4 1 0 (4743.320) 0

[(4000 — pg') —(0.4333)

(30—15)]
5 1T 2 0 —1333.33
6 2 2 0
7 3 2 0
8 4 2 0 0
9 13 0 —666.67 0
0 2 3 0 0
1 3 3 0 0
12 4 3 0 0 0

The general form of the flow equation for gridpoint » is written as:

V” ¢ n+1 ¢ n
ST 01 ) 2|+ Sl et = [(B) -(9)

ley, leg, " "
(5.2a)

For gridpoint 1, pT'=4000 psia because gridpoint 1 falls on the constant
pressure boundary. Let us write the flow equation for this gridpoint. For
gridpoint 1, n=1, i=1, k=1, yw,;={2,5}, & ={b., by}, and
qu'(‘,,,l :qu.bbl +qzz.bw’l, where from Table 5.7, qf('.bbl:(0.041176)[(4000—
le¢,

P5)—(0.4333)(30—15)] B/D, ¢, =0, and ¢i. =0. Therefore, substitution
into Eq. (5.2a) yields "
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(6.245838) [ (p& —p') — (0.4333)(30 —30)]
+(0.041176) [ (p2 — p') — (0.4333)(15 - 30)]
+(0.041176)[ (4000 — p2') — (0.4333)(30— 15)] +0+0 (5.105)

3]

where p7'=4000 psia. Note that the accumulation term vanishes because the
gridpoint pressure is constant. Therefore, Eq. (5.105) after simplification
becomes

~ 45.66941
T . Ar

(6.245838) [ (p}' — p5') — (0.4333)(30—30)] =0 (5.106)
or
pr=p5 (5.107)

Eq. (5.107) does not introduce new knowledge because both gridpoints fall
on the constant pressure bottom boundary, but it confirms that the flow equation
for gridpoint 1, as expressed by Eq. (5.105), is correct.

For gridpoint 3, p5 =4000 psia because gridpoint 3 falls on the constant
pressure boundary. Again, let us write the flow equation for this gridpoint.
For gridpoint 3, n=3, =3, k=1, w;={2,4,7}, &={b.}, and
quz/,s = q;’lf.hL,s, where from Table 5.7, qu'bL,B =(1 140.650)[(4000—1)'7")
Ieg,

—(0.4333)(30 - 15)] B/D and g, =0 (no wells).

Therefore, substitution into Eq. (5.2a) yields

(6.245838) [ (p4 — p4r) — (0.4333)(30 — 30)]
+(6.245838) [ (pi — p7') — (0.4333)(30—30)]
+(1140.650) [ (p2 — p3') — (0.4333)(15 - 30)]

n+1 n
+(1140.650) [ (4000 — p2') — (0.4333)(30 — 15)| + 0 = 12:2?0 [(g) L (%) J

(5.108)

where p3' =4000 psia. Note that the accumulation term vanishes because the
gridpoint pressure is constant. Therefore, Eq. (5.108) after simplification
becomes

(6.245838) [ (p —p) — (0.4333)(30 — 30)]

+(6.245838) [(p — p') — (0.4333)(30—30)] =0 (5.109)

or

pg"zl/z(pg’+p21) (5.110)
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Eq. (5.110) does not introduce new knowledge because gridpoints 2, 3, and 4
fall on the constant pressure bottom boundary, but it confirms that the flow
equation for gridpoint 3, as expressed by Eq. (5.108), is correct.

For gridpoint 5, n=5, i=1, k=2, ws={1,6,9}, &={by},
qu s = qwh =—1333.33 B/D, and ¢, =0 (the well is treated as a bound-
le€s
ary condition). Therefore, substitution into Eq. (5.2a) yields

(0.041176) [ (p' — =) — (0.4333)(30— 15)]
+(12.49168) [ (py — p2') — (0.4333)(15 — 15)]
+(0.041176) [ (p3 —p2') — (0.4333)(0—15)] —1333.33+0  (5.111)

9133882 | ()" [¢\"
“aar |(), - (5),

a.At

In Eq. (5.111), the well is treated as a fictitious well. This treatment (or
the substitution of well by a fictitious well and vice versa) is valid only in
single-well simulation because, contrary to the situation in Cartesian coordi-
nates, in cylindrical coordinates, both the well and the fictitious well have
radial flow.

For gridpoint 7, n=7, i=3, k=2, y7=1{3,6,8,11}, &={}, > ¢} =0

le&;

(interior gridpoint), and qg';:O (no wells). Therefore, substitution into
Eq. (5.2a) yields

(1140.650) [ (p5 — '") —(0.4333)(30— 15)]

+(12.49168) [ (p2 — p2r) — (0.4333)(15—15)]
+(12.49168) [ (p — p') — (0.4333) (15— 15)]

n+1 n
+(1140.650)[(p'1"1—pg1)—(0.4333)(0—15)]+0+0:2559A2f0 <§)7 —<§>J

(5.112)

For gridpoint 11, n=11, i=3, k=3, y,={7,10,12}, &,={by},
Zq;’él L= q;';hy . and q;';hy ., =0 (no-flow boundary), and ¢, =0 (no wells).
1€éy,

Therefore, substitution into Eq. (5.2a) yields

(1140.650) [ (p — p',) — (0.4333)(15—0)]
+(6.245838) [ (pfy —pfy) — (0.4333)(0-0)]
n+1 n
+(6.245838) [(p7, — p) — (0.4333)(0—0)] +0+0= 12:1]?0 [(g) LT <£> 11}
(5.113)
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5.6 Symmetry and its use in solving practical problems

The use of symmetry in solving practical problems has been discussed in
Chapter 4. In most cases, the use of symmetry is justified if a pattern is found
in the reservoir properties. The use of symmetry reduces the efforts to solve a
problem by considering solving a modified problem for one element of symme-
try in the reservoir, usually the smallest element of symmetry (Abou-Kassem
et al., 1991). The smallest element of symmetry is a segment of the reservoir
that is a mirror image of the rest of reservoir segments. Before solving the mod-
ified problem for one element of symmetry, however, symmetry must first
be established. For symmetry to exist about a plane, there must be symmetry
with regard to (1) the number of gridpoints and gridpoints spacing, (2) reservoir
rock properties, (3) physical wells, (4) reservoir boundaries, and (5) initial
conditions. Gridpoint spacing deals with the separation between gridpoints
(Axiz1/2, AYjx1/2, Azi12) and gridpoint elevation (Z). Reservoir rock proper-
ties deal with gridpoint porosity (¢) and permeability in the various directions
(ky, ky, k.). Wells deal with well location, well type (injection or production),
and well operating condition. Reservoir boundaries deal with the geometry
of boundaries and boundary conditions. Initial conditions deal with initial
pressure and fluid saturation distributions in the reservoir. Failing to satisfy
symmetry with respect to any of the items mentioned earlier means there is
no symmetry about that plane. The formulation of the modified problem for
the smallest element of symmetry involves replacing each plane of symmetry
with a no-flow boundary and determining the new interblock geometric factors,
bulk volume, wellblock rate, and wellblock geometric factor for those grid-
points that share their boundaries with the planes of symmetry. To elaborate
on this point, we present a few possible cases. In the following discussion,
we use bold numbers to identify the gridpoints that require determining new
values for their bulk volume, wellblock rate, wellblock geometric factor, and
interblock geometric factors in the element of symmetry.

The first two examples show planes of symmetry that coincide with the
boundaries between gridpoints. Fig. 5.14a presents a 1-D flow problem in which
the plane of symmetry A-A, which is normal to the flow direction (x-direction)
and coincides with the block boundary halfway between gridpoints 3 and 4,
divides the reservoir into two symmetrical elements. Consequently, p; =ps,
p2>=ps, and p3=p,4. The modified problem is represented by the element of
symmetry shown in Fig. 5.14b, with the plane of symmetry being replaced with
a no-flow boundary. Fig. 5.15a presents a 2-D horizontal reservoir with two
vertical planes of symmetry A-A and B-B. Plane of symmetry A-A is normal
to the x-direction and coincides with the block boundaries halfway between grid-
points 2, 6, 10, and 14 on one side and gridpoints 3,7, 11, and 15 on the other side.
Plane of symmetry B-B is normal to the y-direction and coincides with the
block boundaries halfway between gridpoints 5, 6, 7, and 8 on one side and grid-
points 9, 10, 11, and 12 on the other side. The two planes of symmetry divide
the reservoir into four symmetrical elements. Consequently, p; =ps=pi3=pis,
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FIG. 5.14 1-D reservoir with even gridpoints exhibiting a vertical plane of symmetry. (a) Whole
reservoir and planes of symmetry and (b) smallest element of symmetry.

P2=P3=P1a=p1s5, Ps=pPs=pPo=pi12, and ps=p7;=pio=p11- The modified
problem is represented by the smallest element of symmetry shown in
Fig. 5.15b, with each plane of symmetry being replaced with a no-flow boundary.

The second two examples show planes of symmetry that pass through grid-
points. Fig. 5.16a presents a 1-D flow problem in which the plane of symmetry

A
|
13 14 15 16
9 10 1" 12
° ¢
B — B
5 6 ® ® 7 8 9
y 1 2 3 4
X |
A
(a)
No-flow boundary A
B I— B
5 6 e
No-flow boundary
————
y 1 2
L. .
(b)

FIG. 5.15 2-D reservoir with even gridpoints in the x- and y-directions exhibiting two vertical
planes of symmetry. (a) Whole reservoir and planes of symmetry and (b) smallest element of
symmetry.
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FIG. 5.16 1-D reservoir with odd gridpoints exhibiting a vertical plane of symmetry. (a) Whole
reservoir and planes of symmetry and (b) smallest element of symmetry.

A-A, which is normal to the flow direction (x-direction) and passes through
gridpoint 3, divides the reservoir into two symmetrical elements. Consequently,
p1=ps and p, = p,. The modified problem is represented by the element of sym-
metry shown in Fig. 5.16b, with the plane of symmetry being replaced with a
no-flow boundary. This plane of symmetry bisects the gridpoint bulk volume,
wellblock rate, and wellblock geometric factor for gridpoint 3 in Fig. 5.16a.
Therefore, for gridpoint 3, Vi, =1V4,, g, =34se,, and G, =1G,,,. Note that
the interblock geometric factor in the direction normal to the plane of symmetry
(G,,,) is not affected. Fig. 5.17a presents a 2-D horizontal reservoir with two
vertical planes of symmetry A-A and B-B. Plane A-A is a vertical plane of sym-
metry that is parallel to the y-z plane (normal to the x-direction) and passes
through gridpoints 2, 5, and 8. Note that gridpoints 1, 4, and 7 are mirror images
of gridpoints 3, 6, and 9. Plane B-B is a vertical plane of symmetry that is par-
allel to the x-z plane (normal to the y-direction) and passes through gridpoints 4,
5, and 6. Note that gridpoints 1, 2, and 3 are mirror images of gridpoints 7, 8,
and 9. The two planes of symmetry divide the reservoir into four symmetrical
elements. Consequently, p; =p3=p;=p9, pa=ps, and p, =pg. The modified
problem is represented by the smallest element of symmetry shown in
Fig. 5.17b, with each plane of symmetry being replaced with a no-flow bound-
ary. Each plane of symmetry bisects the gridpoint bulk volume, wellblock rate,
and wellblock geometric factor of the gridpoint it passes through and bisects the
interblock geometric factors in the directions that are parallel to the plane of
symmetry. Therefore, V,= %th, Gscy = %qm, Gy, = %GWz; Vi, = %V;M,
qscy = %QSCw GW4 = %GW./;; Vbs = Allvbs’ qscs = %qslfj? Gws = A]_;Gws; Gyz,s = %Gyz,s;
and Gy, ; :%Gm’s. Note that a plane of symmetry passing through a gridpoint
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results in a factor of % as in gridpoints 2 and 4. Two planes of symmetry passing

through a gridpoint result in a factor of % X %:i as in gridpoint 5.

The third example presents two vertical planes of symmetry, one coinciding
with the boundaries between gridpoints and the other passing through the grid-
points. Fig. 5.18a presents a 2-D horizontal reservoir with two vertical planes of
symmetry A-A and B-B. Plane A-A is a vertical plane of symmetry that is par-
allel to the y-z plane (normal to the x-direction) and passes through gridpoints 2,
5, 8, and 11. Note that gridpoints 1, 4, 7, and 10 are mirror images of gridpoints
3,6,9, and 12. Plane B-B is a vertical plane of symmetry that is parallel to the
x-z plane (normal to the y-direction) and coincides with the boundaries between
gridpoints 4, 5, and 6 on one side and gridpoints 7, 8, and 9 on the other side.
Note that gridpoints 1, 2, and 3 are mirror images of gridpoints 10, 11, and 12
and gridpoints 4, 5, and 6 are mirror images of gridpoints 7, 8, and 9. The two
planes of symmetry divide the reservoir into four symmetrical elements.
Consequently, py=p3=pio=pi2, Pa=Ps=P7=P9, P2=p11, and ps=pg. The
modified problem is represented by the smallest element of symmetry shown
in Fig. 4.18b, with each plane of symmetry being replaced with a no-flow
boundary. Plane of symmetry A-A bisects the block bulk volume, wellblock
rate, and wellblock geometric factor of the gridpoints it passes through and
bisects the interblock geometric factors in the directions that are parallel to
the plane of symmetry (y-direction in this case). Therefore, V), = %V;,z,
qsc;, = %QSQ; Gwz = %Gwz; Vbs = %Vhs s fscs = %qscsa Gws = %Gws; Vbs = %ng»
qscg = %q&'g s Gw:; = %Gw;g; Vbu = %V}m s qscyy = %QSC“ s qu = %Gwll 5
Gy, s =3Gy, : Gy y =3Gy, ; and Gy, =1Gy, . Note also a plane of symmetry
passing through a gridpoint results in a factor of % as in gridpoints 2, 5, 8, and 11
in Fig. 5.18a.

The fourth two examples show oblique planes of symmetry. Fig. 5.19a
shows a reservoir similar to that depicted in Fig. 5.15a, but the present reservoir
has two additional planes of symmetry C-C and D-D. The four planes of sym-
metry divide the reservoir into eight symmetrical elements, each with a trian-
gular shape as shown in Fig. 5.19b. Consequently, py =ps=p13=p16, P2=P3=
P1a=Pp15s=P5s=Ps=Po=P12, P6=P7=P10=P11, Ad pr=p3=p1a=p1s=ps=
Ps =po=p12. The modified problem is represented by the smallest element of
symmetry shown in Fig. 5.19b, with each plane of symmetry being replaced
with a no-flow boundary. Fig. 5.20a shows a reservoir similar to that depicted
in Fig. 5.17a, but the present reservoir has two additional planes of symmetry
C-C and D-D. The four planes of symmetry divide the reservoir into eight
symmetrical elements, each with a triangular shape as shown in Fig. 5.20b.
Consequently, p =p;=p;=p9, and p,=pe=p,=pg. The modified problem
is represented by the smallest element of symmetry shown in Fig. 5.20b, with
each plane of symmetry being replaced with a no-flow boundary. A vertical
plane of symmetry C-C or D-D that passes through a gridpoint but is neither
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FIG. 5.17 2-D reservoir with odd gridpoints in the x- and y-directions exhibiting two vertical
planes of symmetry. (a) Whole reservoir and planes of symmetry and (b) smallest element of
symmetry.

parallel to the x-axis nor the y-axis (oblique plane), as shown in Figs. 5.19a and
5.20a, bisects the gridpoint bulk volume, wellblock rate, and wellblock geomet-
ric factor of the gridpoint it passes through. An oblique plane does not affect the
interblock geometric factors in the x-axis or the y-axis. In reference to gridpoints

1, 6, and 5 in Figs. 5.19b and 5.20b, Vj, =1V, Gee, =3Gse,, Gy =3G:

Ve = %Vb(,» Asce = %Qscﬁ, G = %GWG; Vs = %VhS’ Gscs = %q“'S o Gus = %GW5;
Gy,,=Gy Gy, = %Gyz,s; and G, =G,, . Note that the four planes of symme-
try (A-A, B-B, C-C, and D-D) passing through gridpoint 5 in Fig. 5.20a result in
the factor of % X % :% used to calculate the actual gridpoint bulk volume, well-
block rate, and wellblock geometric factor for gridpoint 5 in Fig. 5.20b. That is
to say, the modifying factor equals ﬁ X % where n,, is the number of vertical

planes of symmetry passing through a gridpoint.

It should be mentioned that set £, for gridblocks in the modified problem
might include new elements such as bgyw, byw, bse, by that reflect oblique
boundaries such as plane C-C or D-D. The flow rates across such boundaries
(q?ﬁ.m) are set to zero because these boundaries represent no-flow

boundaries.
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FIG. 5.18 Reservoir with even gridpoints in the y-direction and odd gridpoints in the x-direction
exhibiting two vertical planes of symmetry. (a) Whole reservoir and planes of symmetry and (b)
smallest element of symmetry.

D A o]
\ | /
ANE 14 15 16 ,

N /

/
\ 4
N /7
¢ 9| Nt 1e” | 12
\ //
B — > _.B
7
Ve \\
¢ 5 /.’ 6| 7% 8 ¢
y Vi N
N\
L1 2 3 4\
et N
/7 | N
C A D
(a)
y A c
1,
X
No-fl 6
o-flow boundary No-flow boundary
B —
1 2
K o
c |
A

(b)
FIG.5.19 Reservoir with even gridpoints in the x- and y-directions exhibiting four vertical planes
of symmetry. (a) Whole reservoir and planes of symmetry and (b) smallest element of symmetry.
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FIG. 5.20 Reservoir with odd gridpoints in the x- and y-directions exhibiting four vertical planes
of symmetry. (a) Whole reservoir and planes of symmetry and (b) smallest element of symmetry.

5.7 Summary

This chapter presents reservoir discretization in Cartesian and radial-cylindrical
coordinates using point-distributed grids. For the Cartesian coordinate system,
equations similar to those represented by Eq. (5.1) define gridpoint locations
and the relationships between the distances separating gridpoints, block bound-
aries, and sizes of the blocks represented by the gridpoints in the x-, y-,
and z-directions. Table 5.1 presents equations for the calculation of the trans-
missibility geometric factors in the three directions. For the radial-cylindrical
coordinate system used for single-well simulation, the equations that define
gridpoint locations and the relationships between the distances separating grid-
points, block boundaries, and sizes of the blocks represented by the gridpoints in
the r-direction are given by Eqgs. (5.74) through (5.81), Eq. (5.73) in the #-direc-
tion, and an equation similar to Eq. (5.1) for the z-direction. The equations in
either Table 5.2 or 5.3 can be used to calculate the transmissibility geometric
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factors in the -, 6-, and z-directions. Eq. (5.2) expresses the general form of the
flow equation that applies to boundary gridpoints and interior gridpoints in 1-D,
2-D, or 3-D flow in both Cartesian and radial-cylindrical coordinates. The flow equa-
tion for any gridpoint has flow terms equal to the number of existing neighboring
gridpoints and fictitious wells equal to the number of boundary conditions. Each fic-
titious well represents a boundary condition. The flow rate of a fictitious well is given
by Eq. (5.33), (5.36), (5.40), or (5.46) for a specified pressure gradient, specified flow
rate, no-flow, or specified pressure boundary condition, respectively.

If reservoir symmetry exists, it can be exploited to define the smallest ele-
ment of symmetry. Planes of symmetry may pass through gridpoints or along
block boundaries. To simulate the smallest element of symmetry, planes of
symmetry are replaced with no-flow boundaries, and new interblock geometric
factors, bulk volume, wellblock rate, and wellblock geometric factors for
boundary gridpoints are calculated prior to simulation.

5.8 Exercises
5.1 What is the meaning of reservoir discretization into gridpoints?

5.2 Using your own words, describe how you discretize a reservoir of length
L, along the x-direction using n gridpoints.

5.3 Fig. 5.5 shows a reservoir with regular boundaries.

a. How many boundaries does this reservoir have along the x-direction?
Identify and name these boundaries.

b. How many boundaries does this reservoir have along the y-direction?
Identify and name these boundaries.

c. How many boundaries does this reservoir have along the z-direction?
Identify and name these boundaries.

d. How many boundaries does this reservoir have along all directions?

5.4 Consider the 2-D reservoir described in Example 5.5 and shown in

Fig. 5.12.

a. Identify the interior and boundary gridpoints in the reservoir.

b. Write the set of neighboring gridpoints (y,) for each gridpoint in the
IeServoir.

c. Write the set of reservoir boundaries (£,) for each gridpoint in the
reservoir.

d. How many boundary conditions does each boundary gridpoint have?
How many fictitious wells does each boundary gridpoint have? Write
the terminology for the flow rate of each fictitious well.

e. How many flow terms does each boundary gridpoint have?

f. Add the number of flow terms and number of fictitious wells for each

boundary gridpoint. Do they add up to four for each boundary gridpoint?

g. How many flow terms does each interior gridpoint have?

h. What can you conclude from your results of (f) and (g) earlier?
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5.5 Consider fluid flow in the 1-D horizontal reservoir shown in Fig. 5.21.
a. Write the appropriate flow equation for gridpoint # in this reservoir.
b. Write the flow equation for gridpoint 1 by finding y, and £, and then
use them to expand the equation in (a).
c. Write the flow equation for gridpoint 2 by finding y, and &, and then
use them to expand the equation in (a).
d. Write the flow equation for gridpoint 3 by finding w3 and &3 and then
use them to expand the equation in (a).

1 2 3|— B
Py, = 2000 psia —>® ° &> Usc, = —100 STB/D
—>
—_—>X

FIG. 5.21 1-D reservoir in Exercise 5.5.

5.6 Consider fluid flow in the 2-D horizontal reservoir shown in Fig. 5.22.
a. Write the appropriate flow equation for gridpoint » in this reservoir.
b. Write the flow equation for gridpoint 1 by finding v and &, and then
use them to expand the equation in (a).
c. Write the flow equation for gridpoint 7 by finding y; and &; and then
use them to expand the equation in (a).
d. Write the flow equation for gridpoint 15 by finding y5 and &5 and
then use them to expand the equation in (a).
e. Write the flow equation for gridpoint 19 by finding w9 and &, and
then use them to expand the equation in (a).

/ No-flow boundary

19 0T A No-flow boundary
D/

A ¢ 16| (®©17| 186 l
L>x T o1 13 17 |15
Py, = 3000 psia —>$6 o7 8 [ (®9]10 G'K-g—fb:—z psifft
1] 2 3 4 5
™~

Ppg = 3000 psia
FIG. 5.22 1-D reservoir for Exercise 5.6.

5.7 Single-phase oil reservoir is described by four equally spaced gridpoints as
shown in Fig. 5.23. The reservoir is horizontal and has k=25 md. Gridpoint
spacing is Ax=500ft, Ay=700ft, and =60 ft. Oil properties are
B=1RB/STB and ;1 =0.5 cP. The reservoir left boundary is kept at constant
pressure of 2500 psia, and the reservoir right boundary is sealed to flow. A well
in gridpoint 3 produces 80 STB/D of oil. Assuming that the reservoir rock and
oil are incompressible, calculate the pressure distribution in the reservoir.
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FIG. 5.23 Discretized 1-D reservoir in Exercise 5.7.

No-flow boundary

5.8 The 1-D horizontal oil reservoir shown in Fig. 5.24 is described by four
equally spaced gridpoints. Reservoir gridpoints have k=90 md,
Ax=300 ft, Ay=250 ft, and #=45 ft. Oil FVF and viscosity are 1 RB/
STB and 2cP, respectively. The reservoir left boundary is maintained
at constant pressure of 2000psia, and the reservoir right boundary has
constant influx of oil at a rate of 80 STB/D. A well in gridpoint 3 produces
175STB/D of oil. Assuming that the reservoir rock and oil are incom-
pressible, calculate the pressure distribution in the reservoir.

z 175 STB/D

e ) ,/
X / é
=T T 45 ft
2500 psia b, 3 o il

= Sia > @ ® |

Pow ps! R S R b R 2T G0, = 80STBID
- 0 e
300 ft =

FIG. 5.24 Discretized 1-D reservoir in Exercise 5.8.

5.9 The 1-D horizontal oil reservoir shown in Fig. 5.25 is described by four
equally spaced gridpoints. Reservoir gridpoints have k=120 md,
Ax=500 ft, Ay=450 ft, and #=30 ft. Oil FVF and viscosity are 1 RB/
STB and 3.7cP, respectively. The reservoir left boundary is subject to
constant pressure gradient of —0.2 psi/ft, and the reservoir right boundary
is a no-flow boundary. A well in gridpoint 3 produces oil at a rate such

Gs, =7 STBID
y P, = 1500 psia
*
Q»x : =%
=T T 301t
s T R 30| 4
%‘ =-0.2 psi/ft P 5, R PR T S No-flow boundary
by, 4"
.- SR
500 ft A

FIG. 5.25 Discretized 1-D reservoir in Exercise 5.9.
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5.10

that the pressure of gridpoint 3 is maintained at 1500 psia. Assuming that
the reservoir rock and oil are incompressible, calculate the pressure dis-
tribution in the reservoir. Then estimate well production rate.

The 1-D horizontal oil reservoir shown in Fig. 5.26 is described by
four equally spaced gridpoints. Reservoir gridpoints have k=70 md,
Ax=400 ft, Ay=0660 ft, and 7= 10 ft. Oil FVF and viscosity are 1 RB/
STB and 1.5c¢P, respectively. The reservoir left boundary is maintained
at constant pressure of 2700, and while the boundary condition at the res-
ervoir right boundary is not known, the pressure of gridpoint 4 is main-
tained at 1900psia. A well in gridpoint 3 produces 150STB/D of oil.
Assuming that the reservoir rock and oil are incompressible, calculate
the pressure distribution in the reservoir. Estimate the rate of oil that
crosses the reservoir right boundary.

150 STB/D
L~ { :
X : 3
N~ ] L 10 ft
~ | 2 3|4l
pbW=27OOpS|a p o | e | ¢

. - D 3 Y
400 ft e

P4 = 1900 psia

FIG. 5.26 Discretized 1-D reservoir in Exercise 5.10.

5.1

Consider the 2-D horizontal oil reservoir shown in Fig. 5.27. The reser-
voir is described using regular grid. Reservoir gridpoints have
Ax=3501t, Ay=300ft, h=35 ft, k,=160 md, and k,=190 md. Oil
FVF and viscosity are 1RB/STB and 4.0cP, respectively. Boundary

Influx, =0.02 STB/D-ft?

-\ No-flow boundary
dp . 7 8 9 b
——| =0.10 psi/ft
dx bu — 5
) 4 6 G, = —2000 STB/D
No-flow boundary 300 ft
y 1 2 3
| 350 ft \
X

Py = 3200 psia

FIG. 5.27 Discretized 2-D reservoir in Exercise 5.11.
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conditions are specified as shown in the figure. A well in gridpoint 5 pro-
duces oil at a rate of 2000 STB/D. Assume that the reservoir rock and oil
are incompressible, and write the flow equations for gridpoints 4, 5, 6, 7,
8, and 9. Do not solve the equations.

5.12 Starting with Eq. (5.81a), which expresses the bulk volume of gridpoint
(i,j, k), derive Eq. (5.81c) for gridpoint (1,j,k) and Eq. (5.81d) for grid-
point (n,,], k).

5.13 A 6-in. vertical well producing 500 STB/D of oil is located in 16-acre
spacing. The reservoir is 30-ft thick and has a horizontal permeability
of 50md. The oil FVF and viscosity are 1 RB/B and 3.5cP, respectively.
The reservoir external boundaries are no-flow boundaries. The reservoir
is simulated using four gridpoints in the radial direction as shown in
Fig. 5.28. Write the flow equations for all gridpoints. Do not substitute
for values on the RHS of equations.

500 STB/D

1 No-flow boundary

j2] 3 4
plo| @ +\ 30 ft

i=1i=2i=3 xft No-flow boundary
V4

‘[ No-flow boundary
r

FIG. 5.28 Discretized reservoir in Exercise 5.13.

5.14 A 9%-in vertical well is located in 12-acre spacing. The reservoir thick-
ness is 50ft. The horizontal and vertical reservoir permeabilities are 70
and 40md, respectively. The flowing fluid has a density, FVF, and vis-
cosity of 62.41bm/ft>, 1RB/B, and 0.7cP, respectively. The reservoir
external boundary in the radial direction is no-flow boundary, and the
well is completed in the top 25ft only and produces at a rate of
1000 B/D. The reservoir bottom boundary is subject to influx such that
the reservoir boundary is maintained at 3000psia. The reservoir top
boundary is sealed to flow. Assuming the reservoir can be simulated
using two gridpoints in the vertical direction and four gridpoints in the
radial direction, as shown in Fig. 5.29, write the flow equations for all
gridpoints in this reservoir.
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FIG. 5.29 Discretized 2-D radial-cylindrical reservoir in Exercise 5.14.
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6.1 Introduction

Wells in reservoir simulation are the most astute form of discontinuity. As such,
the difficulties encountered due to boundary conditions are accentuated by the
presence of wells. Yet, wells are paramount to reservoir evaluation because of
the fact that engineering is all about optimizing well performance. In general,
the contribution of any reservoir block penetrated by a well to the well flow rate
is independent of the flow equation for that block. Such contribution has to be
estimated separately from and then substituted into the flow equation for the
wellblock. Fluid flow toward a well in a wellblock is radial regardless of the
dimensionality of the flow problem. A well is modeled as a line source/sink
term. In this chapter, the emphasis in 1-D and 2-D flow problems is on the esti-
mation of the well geometric factor, while in 3-D flow problems, the focus is on
the distribution of the well rate among the different blocks that are penetrated by
the well. The estimation of the wellblock geometric factor is presented for a well
hosted by one block and falling inside block boundaries and a well hosted by
one block and falling on one or two of block boundaries (in 1-D and 2-D flow)
that are reservoir boundaries. We present the production rate equation for
a wellblock and the equations necessary for the estimation of the production rate
or flowing bottom-hole pressure (FBHP) for wells operating under different
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conditions, which include (1) a shut-in well, (2) a specified well production rate,
(3) a specified well pressure gradient, and (4) a specified well FBHP.
The production rate equation for a wellblock has the form of

wi

Biu;

Gsc; = — (pi 7]714;/‘,) (6.1)
where Gsc, Gw,7 and p;= production rate, geometric factor, and pressure for
wellblock i, respectively; p,r= well pressure opposite wellblock i; and B;
and u,=fluid FVF and viscosity at the pressure of wellblock i. Eq. (6.1) is
consistent with the sign convention of negative flow rate for production and
positive flow rate for injection.

6.2 Single-block wells

In this section, we present the treatment of a well that penetrates a single block.
Wells in 1-D linear flow, 1-D radial flow, and 2-D areal flow fall into this
category.

6.2.1 Treatment of wells in 1-D linear flow

Fig. 6.1 depicts fluid flow in a 1-D linear flow problem. Fluid transfer into or out
of a reservoir block has two components, global fluid transfer, and local fluid
transfer. The global fluid transfer is linear and moves fluid from one block to
another, and the local fluid transfer is radial and moves fluid within the block to
aproduction well (or from an injection well). Although this treatment of wells is
new for 1-D flow problems, it is consistent with and widely accepted in model-
ing fluid flow in 2-D, single-layer reservoirs. For a boundary gridblock
(Fig. 6.2) or aboundary gridpoint (Fig. 6.3) in 1-D flow problem:s, it is important
to differentiate between the source term that represents a real (or physical) well
and the source term that represents a fictitious well (or boundary condition).
This differentiation is crucial because flow resulting from a boundary condition
is always linear, whereas flow to or from a real well is always radial (see
Example 7.6). For example, the fluid that crosses the reservoir right boundary
(gridblock 5 in Fig. 6.2 or gridpoint 5 in Fig. 6.3) is estimated from the specific

Local flow around an injection well

Global flow between blocks
Local flow around a production well

FIG. 6.1 Global flow and local flow around wells in 1-D reservoirs.
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Radial flow due to well Linear flow due to boundary condition

FIG. 6.2 Well at a boundary block in a block-centered grid.

Radial flow due to well  Linear flow due to boundary condition

= x Y

FIG. 6.3 Well at a boundary block in a point-distributed grid.

boundary conditions, the list of which was given in Chapters 4 and 5. However,
the fluid that enters or leaves the block (gridblock 1 in Fig. 6.2 or gridpoint 1 in
Fig. 6.3) at any point, including the boundary point, through a well is estimated
from the radial flow equation of a real well given by Eq. (6.1). It must be men-
tioned; however, that modeling linear-flood experiments should use boundary
conditions to represent injection and production at core end points. The logic
behind this choice is that the injection and production ends of a core flood
are designed such that the end effect is minimized and, consequently, linear
flow near core end points is realized using end stems. An end stem (or end plug)
is a thin cylinder that has a number of concentric grooves intersected by a num-
ber of radial grooves on the side adjacent to the core. The injected fluid enters
through a hole at the center on the other side of the end stem and flows into the
grooves making a uniform distribution of fluid across the face of the core
adjacent to the grooves. This design of end stems results in linear flow of fluid
along the axis of the core.
For a real well, the following equations apply.
Shut-in well
qsc; = 0 (62)
Specified well production rate
qsc; = Yspsc (63)
Specified well pressure gradient
271'/))6.er[-1,. h,‘ 0p
Bip;  or,

"

qsc; = (6 4)

Specified well FBHP

wi

Bip;

4sc; = — (P: —me,) (61)
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where G, is estimated using Eq. (6.12) in Section 6.2.3. The dimensions and
rock properties of wellblock i are dealt with as explained for 2-D areal flow
in Section 6.2.3.

6.2.2 Treatment of wells in 1-D radial flow

In 1-Dradial flow in a single-well simulation, the well is hosted by the inner ringlike
blocks termed here block 1 (i=1). Traditionally, wells in radial flow (single-well
simulation) are treated as boundary conditions (Aziz and Settari, 1979; Ertekin
etal., 2001). In the engineering approach, such wells can be treated as either source
terms (real wells) or fictitious wells (boundary conditions) because in cylindrical
coordinates, both real wells and fictitious wells have radial flow. Chapters 4 and 5
present equations for the flow rate of fictitious wells. In this section, we present
equations for the flow rate of wells as a source term. The well production rate equa-
tions for block 1, under various well operating conditions, are given as follows:
Shut-in well
qsc; = 0 (65)

Specified well production rate
qscy = 4spsc (6.6)

Well FBHP can be estimated from Eq. (6.9), with g, replacing g,.,.
Specified well pressure gradient

_ 277,'ﬂcl’wk[-11 h] a_p

scp = 6.7
e, Big,  or|, 6.7)
Specified well FBHP
Darcy’s law for radial flow applies; that is,
27 kuh
oe=————""——(Pe —Pw 6.8
q‘ B,Lt loge(l’e/l’w) (pe p f) ( )

For a block-centered grid, consider the flow of fluid in the radial segment
enclosed between the external radius r; (the point representing gridblock 1)
and the well radius r,, (the internal radius of gridblock 1). In this case, r,=ry,
Pe=p1, and gy =q,.,. Therefore, Eq. (6.8) becomes:

20 ki,

- —Dw 6.9a
Blmloge(i‘l/rw)(p1 Pu) (052

qsc, =

from which
_ 2xp ok,
log.(ri/rw)

Eq. (6.10a) can also be obtained by finding G,, , for i=1 in Table 4.2
or Table 4.3, discarding the second term in the denominator that corresponds
to the nonexistent gridblock O and observing that, for a block-centered grid,

(6.10a)

wi
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rf/zzrw by definition if Table 4.2 is used or (r1/r,,) = [aglog.(aye)/(ay, — 1)1, as
given by Eq. (4.87), if Table 4.3 is used.

For a point-distributed grid, consider the flow of fluid between gridpoints
1 and 2. These two gridpoints can be looked at as the internal and external
boundaries of a radial reservoir segment. The application of Darcy’s law for
radial flow gives

log.(r2/rw)

because p,=po, pwr=pi, re="12, and r;=r,. Eq. (6.9b) is in the form of
Eq. (6.8), where

Gse, = — (p2—p1) (6.9b)

o 2”:60(th)1,2
log.(ra/rw)

Eq. (6.10b) can also be obtained by finding G, for i=1 in Table 5.2 or
Table 5.3 and observing that for a point-distributed grid, r; =r,, by definition
and (r»/r;)=ay, as given by Eq. (5.74). Note that for constant permeability
(ky =k, =kp) and constant thickness (h, =h,=h), (kyh), »=kgh=ky h;.

You will notice that in a point-distributed grid, there is no need to write the
flow equation for gridpoint 1 because the pressure of gridpoint 1 is known
(p1=pwp- In fact, this equation is nothing but Eq. (6.9b), which gives an esti-
mate of the flow rate of wellblock 1 (refer to Exercise 6.7). The pressure of grid-
point 1 (p; =p,); however, is substituted in the flow equation for gridpoint 2.

(6.10b)

wi

6.2.3 Treatment of wells in 2-D areal flow

The wellblock pressure (p) and FBHP (p,, ) of a vertical well hosted by a well-
block in a single-layer reservoir are related through the inflow performance
relationship (IPR) equation (Peaceman, 1983):

qm:—B—;(p—pwf) (6.11)
where
27B kih
G, = < (6.12)
[10ge (req/rw) +5]

For anisotropic wellblock properties, kj is estimated from the geometric mean
permeability,

]0.5

kiy = [kyky (6.13)

The equivalent wellblock radius, for a well located at the center of a
rectangular wellblock having anisotropic permeability as shown in Fig. 6.4,
is given by
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reg

& o

Ax

FIG. 6.4 Equivalent wellblock radius in a rectangular block showing anisotropy.

[k /0)" (0 + (k1) (]

[(ky/kx)o.zs + (kx/ky)o.zs}

For isotropic permeability in the horizontal plane (k,=k%,) and a rectangular
wellblock, Eq. (6.14) reduces to

(6.14)

Teq=0.

Feg :0.14[(Ax)2 + (Ay)z} ° (6.15)

For isotropic permeability and a square wellblock (Ax=Ay), Eq. (6.15)
becomes

Teq =0.198Ax (6.16)

Egs. (6.14) through (6.16) apply to both block-centered and point-distributed
grids. These equations, however, assume that the vertical well coincides with
the center of the block hosting the well. They also have no provisions for the
departure of the well axis from the block center. Therefore, the closer the well
to the wellblock center, the better the representation of pressure distribution
around the well. For centered wells in regularly distributed grids, the application
of these equations is equally good for both grids, but the block-centered grid is
preferred in an irregularly distributed grid because the wellblock center always
coincides with the well. For wells that fall on reservoir boundaries (see
Section 6.3.3); however, the point-distributed grid is preferred because the well
and the gridpoint coincide.

For horizontal wells, Eq. (6.11) applies but with an appropriate definition of
G,,. Further details on the estimation of G,, for horizontal wells can be found
elsewhere (Babu and Odeh, 1989; Ertekin et al., 2001).

Examples 6.1 and 6.2 demonstrate the estimation of the wellblock geometric
factor in square and rectangular blocks, isotropic and anisotropic permeability,
and wells with and without skin. Examples 6.3 through 6.6 demonstrate the esti-
mations of the well production rate and obtain the wellblock production rate
equation under various well operating conditions.
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TABLE 6.1 Dimensions, permeabilities, and skin factors of wellblocks.

Well ID Wellblock

Ax (ft) Ay (ft) h (ft) k, (md) ky, (md) s
W-1 208 832 30 100 225 0
W-2 208 832 30 150 150 0
W-3 416 416 30 100 225 0
W-4 416 416 30 150 150 0

Example 6.1 A single-phase oil reservoir, consisting of a horizontal layer, has
many vertical production wells. Table 6.1 identifies four of these wells and the
dimensions, permeabilities, and skin factors of their wellblocks. Each well is
located at the center of the wellblock and fully penetrates the layer. The oil
FVF and viscosity are 1RB/STB and 2cP, respectively. Well diameter is
7in. Calculate the wellblock geometric factors for the wells given in Table 6.1.

Solution

Well W-1

The wellblock has k, # k, and Ax # Ay. Therefore, Eqgs. (6.14) and (6.13) can
be used to estimate the equivalent wellblock radius and horizontal permeability,
respectively:
[(225 /100)°3(208)? + (100/225)0'5(832)2} .
Teq =0.28

— — —=99.521 ft
(225/100)"% +(100,/225)

and

ky = [100 x 225]°° = 150 md
The wellblock geometric factor is estimated using Eq. (6.12):

_ 27x0.001127 x 150 x 30
" {log,[99.521/(3.5/12)] +0}

Well W-2
The wellblock has k, = k,, but Ax# Ay. Therefore, Eq. (6.15) can be used to
estimate the equivalent wellblock radius:

= 5.463RB-cP/D-psi

2 2 0.5
Feg=0.14 x [ (208)> + (832) } = 120.065 ft
and

ky =k, =k, =150md
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The wellblock geometric factor is estimated by substituting values into
Eq. (6.12), yielding
_ 27x0.001127 x 150 x 30
" {log,[120.065/(3.5/12)] + 0}

Well W-3

The wellblock has k,#k,, but Ax=Ay. Therefore, Eqs. (6.14) and (6.13)
can be used to estimate the wellblock equivalent radius and horizontal
permeability:

=5.293 RB-cP/D-psi

[(225 /100)°3(416) + (100,225 (416)2} °
— 83.995 ft

req = 0.28 0.25 025
[(225/100) 251(100/225)" }

and

kyy = [100 x 225]*° = 150 md
The wellblock geometric factor is estimated by substituting values into
Eq. (6.12), yielding
_ 272x0.001127 x 150 x 30
" {log,[83.995/(3.5/12)] +0}

Well W-4
The wellblock has k, =k, and Ax= Ay. Therefore, Eq. (6.16) can be used to
estimate the equivalent wellblock radius:

=5.627 RB-cP/D-psi

Teq =0.198 x 416 = 82.364 ft
and
ky =150md

The wellblock geometric factor is estimated by substituting values into
Eq. (6.12), yielding

_ 2xx0.001127 x 150 x 30
" {log,[82.364/(3.5/12)] + 0}

=5.647 RB-cP/D-psi

It should be noted that even though all four wellblocks have the same thick-
ness of 30ft, area of 173,056 ftz, and horizontal permeability of 150 md, the well
geometric factors are different because of heterogeneity and/or wellblock
dimensions.

Example 6.2 Consider well W-1 in Example 6.1 and estimate the well geomet-
ric factors for the following cases: (1) no mechanical well damage; that is, s=0;
(2) well damage resulting in s=+1; and (3) well stimulation resulting in
s=—1.
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Solution
The wellblock of well W-1 has k,7#k, and Ax# Ay. Therefore, Eqs. (6.14)
and (6.13) can be used to estimate the equivalent wellblock radius and horizon-
tal permeability:
0.5
[(225 /100)°3(208)? + (100/225)‘)'5(832)2}

Teq =0.28 =99.521ft

[(225 /100)°% + (100 /225)0'25}
and

ky = [100 x 225]°° =150 md

The wellblock geometric factor is estimated using Eq. (6.12):

1. For s=0 (zero skin)

~ 27x0.001127 x 150 x 30
" {log,.[99.521/(3.5/12)] +0}

=5.463 RB-cP/D-psi

2. For s=+1 (positive skin)

27 0.001127 x 150 x 30
" {log,.[99.521/(3.5/12)] + 1}

=4.664 RB-cP/D-psi

3. For s= —1 (negative skin)

~ 27x0.001127 x 150 x 30
" {log,[99.521/(3.5/12)] — 1}

=6.594RB-cP/D-psi

This example demonstrates the effect of well damage and stimulation on the
well geometric factor and, in turn, on the well production rate. The reported
damage in this well reduces the well geometric factor by 14.6%, where as
the reported stimulation increases, the well geometric factor by 20.7%.

Example 6.3 Consider well W-1 in Example 6.1 and estimate the well produc-
tion rate for the following possible operating conditions: (1) Well is closed,
(2) has constant production rate of 3000 STB/D, and (3) has pressure gradient
at sandface of 300 psi/ft, and (4) wellblock pressure is p,, and FBHP is kept at
2000 psia.

Solution

For well W-1, r,,=99.521 ft, k;;=150 md, and G,,=5.463 RB-cP/D-psi
from Example 6.1.

1. For a closed well, Eq. (6.2) applies. Therefore, g, =0 STB/D.

2. For a specified production rate, Eq. (6.3) applies. Therefore, g, = —3000
STB/D.

3. For a specified pressure gradient, Eq. (6.4) applies. Therefore,
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27 x0.001127 x (3.5/12) x 150 x 30
1x2

qsc, = — x 300=-1394.1 STB/D
4. For a specified FBHP, Eq. (6.1) applies. Therefore,
5.463
Gsei = =3~ (p, —2000)
or
qse, = —2.7315(p, —2000) STB/D (6.17)

If, for example, the wellblock pressure is 3000psia, then Eq. (6.17)
predicts

Gse, = —2.7315(3000 — 2000) = —2731.5 STB/D.

Example 6.4 Estimate the FBHP of the well hosted by gridblock 4 in Example
4.1. The wellbore diameter is 7in., and the well has zero skin.

Solution

From Example 4.1, gridblock 4 has the following dimensions and properties:
Ax=1000 ft, Ay=1200 ft, h= Az=75 ft, and k, = 15 md; the flowing fluid has
B=1RB/STB and p=10 cP. The well in gridblock 4 has g,.,,= — 150 STB/D.
The local flow of fluid toward this well is radial. The equivalent wellblock
radius can be estimated using Eq. (6.15):

) 5705
Feg=0.14 [(1000) +(1200) ] —118.687 ft
and
ky =k, = 15md

The wellblock geometric factor is estimated by substituting values into
Eq. (6.12), yielding

G 2xx0001127 x15x 75
" {log,[218.687/(3.5/12)] + 0}

= 1.203 RB-cP/D-psi

Applying Eq. (6.1) gives

1.203
—150=-7"75 (Pa—pur.)

from which the FBHP of the well in Example 4.1, where ¢,.,= —150 STB/D,
can be estimated as a function of the pressure of gridblock 4 as

Pwf, = P4 — 1246 .9psia (6.18)



Well representation in simulators Chapter | 6 193

Example 6.5 Consider the single-well simulation in Example 4.11. Write the
production rate equation for the well in gridblock 1 for each of the following
well operating conditions: (1) The pressure gradient at sandface is specified
at 200 psi/ft, and (2) the FBHP at the middle of formation is kept constant at
2000 psia. Rock and fluid properties are as follows: k=233 md, B=1RB/
STB, and y=1.5 cP.

Solution

The following data are taken from Example 4.11: r,=744.73 ft, r,,=0.25 ft,
and ~2=100 ft. In addition, discretization in the radial direction results in
r1=0.5012 ft, r,=2.4819 ft, r; =12.2914 ft, r, = 60.8715 ft, and rs=301.457 ft.

1. For a specified pressure gradient, Eq. (6.7) applies. Therefore

27 x 0.001127 x 0.25 x 233 x 100
1x1.5

e, = — x 200 = —5499.7 STB /D

2. For a specified FBHP, Eq. (6.9a) applies. Therefore

27 % 0.001127 x 233 x 100
1x 1.5 x log.(0.5012/0.25)

qsc; = (p1 —2000)

or
se, = 158.1407 (p; —2000)STB /D (6.19)

If, for example, the wellblock pressure is 2050psia, then Eq. (6.19)
predicts

qse, = —158.1407(2050 — 2000) = —7907.0 STB/D.

Example 6.6 Write the production rate equation for the well in gridpoint 9 in
Example 5.5, and then estimate the FBHP of the well. The wellbore diameter is
71in., and the wellblock has zero skin.

Solution

From Example 5.5, the block represented by gridpoint 9 has the following
dimensions and properties: Ax=250 ft, Ay=300 ft, =100 ft, k£,=270 md,
and k, =220 md; the flowing fluid has B=1 RB/STB and p=2 cP. The well
(or wellblock 9) production rate is specified at g,.,= —4000 STB/D.

The equivalent wellblock radius and horizontal permeability can be esti-
mated using Eqgs. (6.14) and (6.13), yielding

[(220/270)0'5 (250)% + (270/220)"3 (300)2} "

Fog 0. =55.2451t

((220/270)°% +(270/220)° |
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and

ki = [270 x 220]*° =243.72md

The wellblock geometric factor is estimated by substituting values into
Eq. (6.12), resulting in

_ 27xx0.001127 x 243.72 x 100

" {log,.[55.245/(3.5/12)] + 0}

=32.911RB-cP/D-psi

Applying Eq. (6.1) gives

32911
“Tx32 (P9 — Pug,) = —16.456(py — pus,) STB/D

from which the FBHP of the well in Example 5.5, where ¢, = —4000 STB/D,
can be estimated as a function of the pressure of gridpoint 9 as

Dwf, = P9 —243.1psia (6.20)

Gscoy =

6.3 Multiblock wells

In this section, we present treatments of pressure variations within the wellbore,
allocation of the well production rate among all layers penetrated by the well,
and the treatment of the flow between hosting block and well, especially for
wells that fall on reservoir boundaries sealed off to flow.

6.3.1 Vertical effects (flow within wellbore)

Pressures within the wellbore, opposite wellblocks, differ because of hydro-
static pressure, frictional loss due to flow, and kinetic energy. For vertical wells,
the latter two factors can be neglected; therefore, pressure variation in the well-
bore resulting from hydrostatic pressure can be expressed as.

Pwf; :pr,Pf + 7wb (Zl - Zref) (62 1)
where
7\4)1) = }/(,'pwbg (622)
and
— Psc
i 6.23
Pwb B ( )

Average FBHP can be used to obtain an estimate for B.

6.3.2 Wellblock contribution to well rate

In this case, the vertical well penetrates several blocks. Fig. 6.5 shows a well
that penetrates wellblocks located in different layers; that is, the wellblocks
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FIG. 6.5 Cross section showing pressures within vertical wellbore.

are vertically stacked. The concern here is to estimate the production rate of
wellblock i, where wellblock i is a member of the set of all blocks that are pen-
etrated by the well; that is, i €y,,. The equations in this section also apply to the
well in single-well simulation if the appropriate wellblock geometric factors
are used.

Shut-in well Goo =0 6.2)

Specified well production rate

The contribution of wellblock i to the well production rate is given by
Eq. (6.1):

Gy,
s — = (Pi — Pwy 6.1
4=~ g (Pi =) ©1
where p,,; is given by Eq. (6.21).
Combining Egs. (6.1) and (6.21) yields

wi

By

)

qsc; = — [Pz _ow,.ef - 7wh (Zl - Zref)} (624‘)

The sum of the production rates of all wellblocks must add up to the
specified well production rate; that is,

qspsc = Z qsc; (625)

i<y,
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The FBHP of the well (pwfw,) can be estimated by combining Eqgs. (6.24) and
(6.25), yielding '

> { (%) ,~ (P =7 (Zi = Zef)] } + opse

i€y,

Putg = Gy
> (5),

ey,

(6.26)

For a specified well production rate, Eq. (6.26) is used to estimate p,,; , and
this estimate is subsequently used in Eq. (6.24) to calculate the wellblock pro-
duction rate. The use of Eq. (6.26), however, requires the knowledge of the
unknown pressure values of all wellblocks. An implicit treatment of p,,; _solves
the problem, but such treatment leads to complications (e.g., construction and
solution of the resulting matrix equation) that are beyond the scope of this intro-
ductory book. Ertekin et al. (2001) presented the details of the implicit treatment
of p,,z . One solution is to estimate p,,; at the beginning of each time step (old
time level n); another solution is to assume that all vertically stacked wellblocks
have the same pressure drop (p; —p.y, = Ap). Solving Eq. (6.26) for Ap and
substituting the result into Eq. (6.1) yields.

(5),

qsc; = 7Gqupxc
> (),

ley,,

6.27)

Furthermore, if fluid properties are not sensitive to small pressure variations
and all vertically stacked wellblocks are assumed to have the same equivalent
well radius and skin factor, the aforementioned equation can be simplified to.

o, = (th)i q
sc;p — spsc
> k),

ley,,

(6.28)

Eq. (6.28) prorates the well production rate among vertically stacked well-
blocks according to their capacities (kyh);. In addition, if the horizontal perme-
ability of various layers is the same, then the well production rate is prorated
according to wellblock thickness:

h;
sc;i — spsc (629)
q Z h;q P

ley,

Specified well pressure gradient
For a specified well pressure gradient, the contribution of wellblock i to the
well production rate is given by.

ZJTF,'ﬁLJ'WkH,./’l,'a_p

6.30
B[/’ti or ( )

qsc; = —

Iy
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where F;=ratio of wellblock i area to the theoretical area from which the well
withdraws its fluid (see Section 6.3.3).

Specified well FBHP

The contribution of wellblock i to the well production rate is given by
Eq. (6.24):

wi

Biu;

U]

qsc; = — [Pz _pwf,.ff —7wb (Zl - Zref):| (6.24)

The following example demonstrates the estimation of the production rate of
individual wellblocks that are penetrated by the same well and the estimation of
FBHP of the well.

Example 6.7 Consider the well in Example 5.9. The well production rate
is specified at 2000B/D of water. (1) Prorate the well production rate
between wellblocks 5 and 9. (2) Estimate the FBHP of the well at the for-
mation top if the pressure of gridpoints 5 and 9 are 3812.5 and 3789.7 psia,
respectively. (3) Prorate the well production rate between wellblocks 5 and 9
if the pressure of gridpoints 5 and 9 is known a priori as given earlier.
Assume that the well fully penetrates both wellblocks and uses open well
completion.

Solution

The following data are taken from Example 5.9: r,=526.6 ft, r,,=0.25 ft,
ky =150 md, B=1 RB/STB, 4 =0.5 cP, and y =0.4333 psi/ft. In addition, dis-
cretization in the radial direction results in r,=r,,=0.25 ft, r,=3.2047 ft,
r3=41.080 ft, and r,=526.60 ft; discretization in the vertical direction results
in hs=15, Zs=15, hg="7.5, and Zy=0 ft. The FBHP is to be reported at the
elevation of the formation top; that is, Z,..,,=0 ft.

1. The well in this problem is completed in wellblocks 5 and 9; that is,
v,,=1{5,9}. For a point-distributed grid, the wellblock geometric factors
for wellblocks 5 and 9 are estimated using Eq. (6.10b), yielding

_ 2afokyshs 27 x0.001127 x 150 x 15

~log.(ra/rw)  log.(3.2047/0.25)

=6.2458 B-cP/D-psi

Ws

and

 2mBkphe 27 x0.001127 x 150 x 7.5
~log.(ra/rw)  log,.(3.2047/0.25)

=3.1229 B-cP/D-psi

Wo

Eq. (6.27) can be used to prorate well rate among wellblocks, resulting in

<§> <6.2458)
B 1%0.
K/ s x 0.5 % 2000 = 1333.33B/D

Tses =776 . (Gn Dspse =76 2458 L (3122
Bu), \Bu), 1x05 1x05
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and

G, 3.12299
<E>9 ( 1x0.5 )
Gsey = (G_) . (Gw> s = (6.24588) . (3.12299)
Bu)s \Bu), 1x0.5 1x0.5

=666.67B/D

% 2000

Note that in this case, the wellblock rates can be prorated according to
thickness using Eq. (6.29) because the FVF, viscosity, and horizontal per-
meability are constant.

2. The FBHP at the reference depth can be estimated using Eq. (6.26):

6.2458 3.1229
B <71 X 05) [3812.5—0.4333(15—-0)] + (m> [3789.7 —0.4333(0 — 0)] — 2000
Pufy = 6.2458 + 3.1229
1x0.5 1x05
or
Puy,, = 3693.8psia (6.31)

3. The first step involves the estimation of the FBHP at the reference depth as
shown in the previous step (2). The result is given by Eq. (6.31) as
Pwz,,=3693.8 psia. The second step involves applying Eq. (6.24) for each
wellblock, yielding

6.2458
Gres = (1 = 5) [3812.5 —3693.8 —0.4333(15— 0)] = 1401.56 B/D.

and

3.1229
Gscy = <1 <0 5) [3789.7 —3693.8 —0.4333(0—0)] =598.97B/D

6.3.3 Estimation of the wellblock geometric factor

In general, the geometric factor for wellblock i (G,,) is a fraction of the
theoretical well geometric factor (G;,):

Gy, =Fi x Gy, (6.32)

where F;=ratio of wellblock area to the theoretical area from which the well
withdraws its fluid. The geometric factor depends on well location in the well-
block and whether or not it falls on no-flow reservoir boundaries.

Fig. 6.6 shows a discretized reservoir surrounded by no-flow boundaries
and penetrated by a few vertical wells. Two of these wells fall at the center
of wellblocks (W-A and W-K), four fall on one reservoir boundary (wells
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FIG. 6.6 Single-layer reservoir penetrated by vertical wells.

W-B, W-C, W-D, and W-E), and five fall at the intersection of two reservoir
boundaries (W-F, W-G, W-H, W-I, and W-J). F;=1 if the well falls within
the boundaries of a wellblock, F; = 4 if the well falls on one reservoir boundary,
and F; =Y if the well falls at the intersection of two reservoir boundaries. The
theoretical well geometric factor depends on well location, well radius, and
the dimensions and permeabilities of the wellblock. To estimate the geometric
factor for wellblock i, the dimensions of the area from which the well
withdraws its fluid (Ax x Ay) are first determined. This is followed by using
Eq. (6.13) to estimate the horizontal permeability for wellblock i; Eq. (6.33),
(6.34), or (6.35) to estimate the theoretical equivalent wellblock radius for
block-centered grid; and Eq. (6.12) to estimate the theoretical well geometric
factor (G;f). Finally, Eq. (6.32) is used to estimate the geometric factor for well-
block i (G,,).

For vertically stacked wellblocks such as those shown in Fig. 6.5, F;=1,
Ax=Ax;, and Ay=Ay,. Therefore, the theoretical well geometric factor and
the geometric factor for wellblock i are identical; that is, GWI:G:,,. In this
section, we present configurations in which the well is located on one and
two reservoir boundaries sealed off to flow. We consider wells that are located
at no-flow reservoir boundaries and that each produce from a single block
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(W-B, W-C, W-D, W-E, and W-F). There are three possible configurations.
The wellblock geometric factor in each configuration is estimated as follows
(Peaceman, 1987).

Configuration 1 Fig. 6.7a presents a well located at the south boundary of a
boundary wellblock that falls on the reservoir south boundary (W-B, hosted by
block 2 in Fig. 6.6). Fig. 6.7b depicts the theoretical area from which the well
withdraws fluid that is twice the area of the hosting wellblock. F; =% as
shown in Fig. 6.7c and r,,, and G:v, are calculated using Eqgs. (6.33) and (6.12):

Feq = 0.1403694[Ax® + Ay*] " exp [(Ay/Ax)tan ' (Ax/AY)]  (6.33)

A well that is located at the north boundary of a boundary wellblock (well
W-C, hosted by block 35 in Fig. 6.6) receives similar treatment.

Configuration 2 Fig. 6.8a presents a well located at the east boundary of a
boundary wellblock that falls on the reservoir east boundary (W-D, hosted
by block 18 in Fig. 6.6). Fig. 6.8b depicts the theoretical area from which
the well withdraws fluid that is twice the area of the hosting wellblock.
F; ="/ as shown in Fig. 6.8c and r,,, and G:’, are calculated using Egs. (6.34)
and (6.12):

Feq = 0.1403694[Ax” + Ay*] " exp [(Ax/Ay)tan ' (Ay/AY)]  (6.34)

A well that is located at the west boundary of a boundary wellblock (W-E,
hosted by block 19 in Fig. 6.6) receives similar treatment.

Configuration 3 Fig. 6.9a presents a well located at the intersection of the south
and east boundaries of a wellblock that falls on the reservoir south and east
boundaries (W-F, hosted by block 6 in Fig. 6.6). Fig. 6.9b depicts the theoretical
area from which the well withdraws fluid that is four times the area of the

AX, AX;
y Fi=1/2
[ ] Ay; Ay;
— L
X PN (c)
| - 1 Ay
(a) ! 1 Vi
[ Ly

FIG. 6.7 Configuration 1 for a well on the reservoir south boundary.
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FIG. 6.9 Configuration 3 for a well on the reservoir south and east boundaries.

hosting wellblock. F; = / 4 as shown in Fig. 6.9c and r,, and G:I_ are calculated
using Egs. (6.35) and (6.12):

0.2520

roo = [A2 + Ay?]%7 03816 +
4 [ y] (Ay/Ax)O'%O] +(Ax/Ay)0'940]

(6.35)

A well that is located at the intersection of the south and west (W-J), west
and north (W-H and W-I), or east and north (W-G) boundaries of the reservoir
receives similar treatment.

Example 6.8 The single-phase oil, heterogeneous, anisotropic reservoir
shown in Fig. 6.6 has many vertical production wells. The reservoir consists
of a 40-ft-thick horizontal layer and has no-flow boundaries. Table 6.2 lists
the identification of a few of these wells and the dimensions and permeabilities
of the wellblocks. Each well fully penetrates the layer, and all wells were drilled
with a 7-in. bit and have open-hole completion. Calculate the wellblock
geometric factors for the wells given in Table 6.2. Assume zero skin factors.

Solution

Well W-A
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TABLE 6.2 Wells and their wellblock dimensions and properties for Example
6.8.

Wellblock
Wellblock Wellblock dimensions permeabilities
Well ID order Ax (ft) Ay (ft) h (ft) k, (md) ky, (md)
W-A 20 300 200 40 86 142
W-B 2 300 250 40 86 65
W-D 18 400 450 40 156 117
W-F 6 400 250 40 156 65

Wellblock 20 totally hosts well W-A, which falls at its center or inside
the gridblock boundaries. Therefore, F;=1, Ax=Ax;=300ft, and Ay=
Ay;=200 ft. Wellblock 20 has k,=86 md and k,= 142 md. Egs. (6.14) and
(6.13) are used to estimate the equivalent wellblock radius and horizontal
permeability, yielding

[(142 /86)%°(300)? + (86/ 142)0'5(200)2} .

=0.28 =53.217ft

relho

[(142/86)0‘25 + (86/142)0-25]
and

kiz,, = [86 % 142]°% =110.51 md

The well geometric factor specific to wellblock 20 is estimated by substitut-
ing values into Eq. (6.12), resulting in

. 2xx0.001127 x 110.51 x 40

"0 flog,[53.217/(3.5/12)] +0}

=6.012RB-cP/D-psi

The geometric factor for wellblock 20 is obtained using Eq. (6.32), yielding
Gy, =1 x6.012=6.012RB-cP/D-psi

Well W-B

Wellblock 2 hosts well W-B, which falls at the south gridblock boundary
(Configuration 1). Therefore, F;="%, Ax=Ax;=300ft, and Ay=Ay,=
250 ft. Wellblock 2 has k,=86 md and k,=65 md. Eqs. (6.33) and (6.13) are
used to estimate the equivalent wellblock radius and horizontal permeability,
yielding
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0.5
Feg, =0.1403694 [(300)2 + (250)2} exp [(300/250) tan ~ (250/300) ]
— 126.175ft

and

ki, = [86 x 65]°° =74.766 md

The well geometric factor specific to wellblock 2 is estimated by substitut-
ing values into Eq. (6.12), resulting in

« _ 2mx0.001127 x 74.766 x 40

"2 {log,[126.175/(3.5/12)] +0}

=3.489RB-cP/D-psi

The geometric factor for Wellblock 2 is obtained using Eq. (6.32), yielding
G,, =" %x3.489 =1.744RB-cP/D-psi

Well W-D

Wellblock 18 hosts well W-D, which falls at the east gridblock boundary
(Configuration 2). Therefore, F;= 1/2, Ax=Ax;=400ft, and Ay=Ay;=
450 ft. Wellblock 18 has k=156 md and k,= 117 md. Eqgs. (6.34) and (6.13)
are used to estimate the equivalent wellblock radius and horizontal perme-
ability, yielding

0.5
Fegiy = 0.1403694 | (400)° + (450)2} exp [(400/450) tan ~" (450/400)]
= 178.97ft
and
ki, = [156 x 117]>° =135.10md

The well geometric factor specific to wellblock 18 is estimated by substitut-
ing values into Eq. (6.12), resulting in

. 27x0.001127 x 135.10 x 40
v Llog,[178.97/(3.5/12)] + 0}

=5.961 RB-cP/D-psi

The geometric factor for wellblock 18 is obtained using Eq. (6.32), yielding

Gy =% %x5.961 =2.981 RB-cP/D-psi

Well W-F

Wellblock 6 hosts well W-F, which falls at gridblock south and east bound-
aries (Configuration 3). Therefore, F; =Y, Ax=Ax;=400 ft, and Ay=Ay,=
250 ft. Wellblock 6 has k,=156 md and k,=65 md. Eqgs. (6.35) and (6.13)
are used to estimate the equivalent wellblock radius and horizontal permeabil-
ity, yielding
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0.2520
(250,/400)%4°" 4 (400/250)*"

5 2 0.5
Feg, = | (400) +(250)} 03816+
—234.1ft
and

ki, = [156 x 65]°° = 100.70 md

The well geometric factor specific to wellblock 6 is estimated by substitut-
ing values into Eq. (6.12), resulting in
. 2mx0.001127 x 100.70 x 40
wo {log,[234.1/(3.5/12)]+0}

=4.265RB-cP/D-psi

The geometric factor for wellblock 6 is obtained using Eq. (6.32), yielding
Gy, =% 4.265 = 1.066 RB-cP/D-psi

Table 6.3 shows the summary of intermediate and final results.

6.3.4 Estimation of well rate and FBHP

If the FBHP of a well (p, ) is specified, then the well production rate can be
estimated as the sum of production rates from all wellblocks that are vertically
penetrated by the well; that is,

qsc = Z qsc; (636)
i€y,

If, on the other hand, the well production rate is specified, then the FBHP of
the well (p, ) can be estimated using Eq. (6.26):

S{(2) Ir-7@-2)] | a0

i€y,

Pwf, et G .
> (5),

i€y,

(6.26)

Eqgs. (6.26) and (6.36) apply to vertical wells that are completed through ver-
tically stacked wellblocks.

6.4 Practical considerations dealing with modeling well
operating conditions

It is important for a reservoir model to represent the basic features of well per-
formance. For example, a production well may not produce fluids at a constant
rate indefinitely. We usually specify a desired constant rate for a well (g,,.) and
place a constraint on the FBHP of the well (p,,. ). The specified FBHP must be



TABLE 6.3 Estimated properties of theoretical wells and wellblock geometric factors.

Well ID
W-A
W-B
W-D
W-F

Wellblock i
20

2

18

Configuation
#

Ax (ft)
300
300
400
400

Ay (ft)
200
250
450
250

ky (md)

86
86
156
156

Theoretical well

ky, (md)

142
65
117
65

kpi, (md)
110.51
74.766
135.10
100.70

Feq, (1)
53.220
126.17
178.97
234.1

£

Gy,
6.012
3.489
5.961
4.265

Wellblock
F; G,
1 6.012
1/2 1.744
1/2 2.981
1/4 1.066
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sufficient to transport fluid from the bottom hole to the wellhead and maybe
even to fluid treatment facilities. Additionally, an injection well may not inject
fluid at a constant rate indefinitely. We usually specify a desired constant rate
for a well (g,ps.) that is consistent with the availability of injected fluid and place
a constraint on the FBHP of the well (p,, ) that is consistent with the maximum
pressure of the used pump or compressor (Abou-Kassem, 1996). The specified
FBHP plus frictional loss in the injection well and the surface lines minus fluid
head in the well must be less than or equal to the maximum pressure for the
injection pump or compressor. To include the aforementioned practical features
in a simulator, the following logic must be implemented in the developed sim-
ulator: (1) set pyy =puy, ; (2) estimate the well FBHP (p,,; ) that corresponds to
the specified desired production (or injection) well rate using Eq. (6.26); and (3)
use s for the well rate as long as p,y >p,, for a production well or
Pwf,, <Pwr, for an injection well, and distribute the well rate accordingly among
the wellblocks (g, as outlined in the text. Otherwise, (1) set p,,; = Pwf,, (2)
estimate the wellblock rate (g, ) for each wellblock in the well using Eq. (6.24),
and (3) estimate the resulting well rate for multiblock wells using Eq. (6.36).
These three steps are executed every iteration in every time step. A similar treat-
ment is followed if the well pressure gradient at sandface is specified instead of
the well rate. In this case, the desired wellblock rate is calculated using Eq. (6.4).
If we neglect implementing provisions for the treatment of the aforementioned
practical considerations in a simulator, the continuous withdrawal of fluids may
result in negative simulated pressures, and the continuous injection of fluids
may result in infinitely large simulated pressures. All reservoir simulators used
by the petroleum industry, however, include logic for handling varying degrees
of complicated well operating conditions.

6.5 Summary

Wells can be completed in a single block in 1-D and 2-D single-layer reservoirs
or in multiblocks in multilayer reservoirs. Wells can be shut in or operated with
a specified production rate, pressure gradient, or bottom-hole pressure. Shut-in
wells have zero flow rates, and Eq. (6.2) defines the production rate of shut-in
wells completed in wellblocks. Eq. (6.1) represents the IPR equation for a well-
block, and this equation can be used to estimate the production rate from the
wellblock or the flowing bottom-hole pressure of the well in the wellblock.
In single-well simulation, wells are incorporated in the flow equation as line
source terms using Eq. (6.9). The wellblock geometric factor in a rectangular
wellblock is estimated using Eq. (6.12). Eq. (6.4) can be used to estimate the
wellblock production rate for a well operating with a specified pressure gradi-
ent, whereas Eq. (6.1) is used for a well operating with specified flowing
bottom-hole pressure. In multiblock wells, proration of the well production rate
among wellblocks can be achieved using Eq. (6.26) to estimate p,,, followed
by Eq. (6.24) with wellblock geometric factor being estimated using Eq. (6.32).
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6.6 Exercises

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

A well penetrates the whole thickness of a single layer. Does fluid flow
toward (or away from) the well linearly, radially, or spherically?

In reservoir simulation, a well is represented as a source/sink line in the
wellblock.

a. What is the fluid flow geometry within a wellblock in a 1-D reservoir?
b. What is the fluid flow geometry within a wellblock in a 2-D reservoir?
c. What is the fluid flow geometry within a wellblock in a 3-D reservoir?

You develop a model to simulate a 1-D, linear-flood experiment. Do you
use fictitious wells or physical wells to reflect fluid input in the first block
and fluid output out of the last block? Justify your answers.

You develop a single-well model. Justify why it is possible to use either a
fictitious well or a physical well to describe the well rate in this case.

What are the different well operating conditions? Write the well produc-
tion rate equation for each well operating condition.

Prove that Eq. (6.9a) is nothing but the flow rate of the fictitious well
resulting from flow across the inner boundary of gridblock 1 in radial-
cylindrical flow, which is equivalent to the flow term between the left
boundary and the block center of gridblock 1; that is,

G"] —-1/2

s, =By, (po—p1), where G, is given in Table 4.3 in Chapter 4
and Po=Dws

Prove that Eq. (6.9b) can be derived from the steady-state flow equation
for gridpoint 1 in radial-cylindrical flow and by using the definition of geo-
metric factors given in Table 5.3 in Chapter 5.

Consider the reservoir presented in Example 6.8. Fig. 6.6 shows the block
dimensions and permeabilities. Calculate the wellblock geometric factors
for those penetrated by the wells identified as W-C, W-E, W-G, W-H, W-I,
W-J, and W-K. All aforementioned wells have open-hole completion and
were drilled with a 5-in. bit.



Chapter 7

Single-phase flow equation
for various fluids

Chapter outline

7.1 Introduction 209 7.3.1 Incompressible fluid

7.2 Pressure dependence of fluid flow equation 212
and rock properties 209 7.3.2 Slightly compressible
7.2.1 Incompressible fluid 210 fluid flow equation 236
7.2.2 Slightly compressible 7.3.3 Compressible fluid

fluid 210 flow equation 264

7.2.3 Compressible fluid 211 7.4 Summary 275
7.2.4 Rock porosity 211 7.5 Exercises 277

7.3 General single-phase flow
equation in multidimensions 211

7.1 Introduction

The single-phase, multidimensional flow equation for a reservoir block was
derived in Chapter 2. In Chapter 3, this flow equation was rewritten using
CVFD terminology for a reservoir block identified by engineering notation
or block order. Chapters 4 and 5 presented the treatment of blocks that fall
on reservoir boundaries using fictitious wells. In Chapter 6, the wellblock pro-
duction rate equation was derived for various well operating conditions. In this
chapter, the single-phase, multidimensional flow equation that incorporates the
wellblock production rate and boundary conditions is presented for various
fluids, including incompressible, slightly compressible, and compressible
fluids. These fluids differ from each other by the pressure dependence of their
densities, formation volume factors (FVFs), and viscosities. The presentation
includes the flow equation for an incompressible system (rock and fluid) and
the explicit, implicit, and Crank-Nicolson equations for slightly compressible
and compressible fluids. The flow equations for block-centered grids and
point-distributed grids have the same general form. The differences between
the two grid systems lie in the construction of the grid, the treatment of bound-
ary conditions, and the treatment of the wellblock production rate as was dis-
cussed in Chapters 4—6. The presentation in this chapter uses CVFD
terminology to express the flow equation in a multidimensional domain.
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7.2 Pressure dependence of fluid and rock properties

The pressure-dependent properties that are important in this chapter include
those properties that appear in transmissibility, potential, production, and accu-
mulation term, namely, fluid density, FVF, fluid viscosity, and rock porosity.
Fluid density is needed for the estimation of fluid gravity using

V=7cP8 (7.1)

The equations used for the estimation of these properties for various fluids
and rock porosity are presented next.

7.2.1 Incompressible fluid

This type of fluid is an idealization of gas-free oil and water. An incompressible
fluid has zero compressibility; therefore, regardless of pressure, it has a constant
density, FVF, and viscosity. Mathematically,

p #f(p) = constant (7.2)
B#f(p)=B"~1 (7.3)

and
u#f(p) = constant (7.4)

7.2.2  Slightly compressible fluid

A slightly compressible fluid has a small but constant compressibility (c) that
usually ranges from 107> to 10~ ® psi~'. Gas-free oil, water, and oil above
bubble-point pressure are examples of slightly compressible fluids. The pres-
sure dependence of the density, FVF, and viscosity for slightly compressible
fluids is expressed as

p=p [1+c(p—p)] (1.5)
.
B=— 7.6
T+ cp—p)] 7.0
and
o 1.7)

= —p)]

where p, B', and y_ are fluid density, FVF, and viscosity, respectively, at ref-
erence pressure (p ) and reservoir temperature and ¢, is the fractional change of
viscosity with pressure change. Oil above its bubble-point pressure can be trea-
ted as a slightly compressible fluid with the reference pressure being the oil
bubble-point pressure, and in this case, po, Bo, and ,u° are the oil-saturated prop-
erties at the oil bubble-point pressure.
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7.2.3 Compressible fluid

A compressible fluid has orders of magnitude higher compressibility than that
of a slightly compressible fluid, usually 1072 to 10~ psi~' depending on pres-
sure. The density and viscosity of a compressible fluid increase as pressure
increases but tend to level off at high pressures. The FVF decreases orders of
magnitude as the pressure increases from atmospheric pressure to high
pressure. Natural gas is a good example of a compressible fluid. The
pressure dependencies of the density, FVF, and viscosity of natural gas are
expressed as

pM
= 7.8
P =T (7.8)
B, :—0’: Be _ Poc . 7= (7.9)
cPg Oclse P
and
yg:f(T,p,M) (7.10)

The equations presented by Lee et al. (1966) and Dranchuk et al. (1986)
are two forms of f(7,p,M) in Eq. (7.10). Although these gas properties can
be estimated using Eqs. (7.8) through (7.10), these equations are used, external
to a simulator, to calculate the density, FVF, and viscosity as functions of
pressure over the pressure range of interest at reservoir temperature. The calcu-
lated FVF and viscosity are then supplied to the simulator in tabular form as
functions of pressure. In addition, the gas density at standard conditions is sup-
plied to calculate the gas density that corresponds to the gas FVF at any
pressure.

7.2.4 Rock porosity

Porosity depends on reservoir pressure because of the combined compressibility
of rock and pore. Porosity increases as reservoir pressure (pressure of the fluid
contained in the pores) increases. This relationship can be expressed as

p=¢ [1+c,(p—p)] (7.11)

where ¢ is the porosity at the reference pressure (p) and ¢y 1s the porosity com-
pressibility. If the reference pressure is chosen as the initial reservoir pressure,
then ¢ may incorporate the effect of overburden on porosity.

7.3 General single-phase flow equation in multidimensions

The single-phase, multidimensional flow equation for Block (gridblock or grid-
point) n that incorporates boundary conditions is presented using CVFD termi-
nology as in Eq. (4.2) (or Eq. 5.2)
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Z 71 n Z q_w I,n qu,l

ley, leg,

B Vb,, ¢ n+1 ¢ n
B aCAt l(E) n - (E> n] (712)

where 7, = the set whose elements are the existing neighboring blocks in the res-
ervoir, £, = the set whose elements are the reservoir boundaries (b, , bs, by, bg, by,
by) that are shared by block 7, and ¢ ?(’I = the flow rate of the fictitious well repre-
senting fluid transfer between reservoir boundary / and block # as a result of a
boundary condition. For a 3-D reservoir, ¢, is either an empty set for interior
blocks or a set that contains one element for boundary blocks that fall on
one reservoir boundary, two elements for boundary blocks that fall on two res-
ervoir boundaries, or three elements for boundary blocks that fall on three reser-
voir boundaries. An empty set implies that the block does not fall on any reservoir

boundary; that is, block 7 is an interior block, and hence Z q;ﬁlm =0. Chapter 6
Ieg,

discusses the estimation of the production rate equation for a wellblock (¢, )

with the well producing (or injecting) fluid under a given operating condition.

The accumulation term, represented by the RHS of Eq. (7.12), is presented for

each type of fluid separately in Sections 7.3.1-7.3.3. In engineering notation,

block order n is replaced with (i,,k), and Eq. (7.12) becomes

Z T i) [(P;ﬂ —PTJ;O _7;7,1(1‘,/‘,1()( Zijk } Z ‘1“1 1)y 1) e,
ley; ik ZEE, Jok
Vh,/k |:(4,)n+1 (‘/’)n :|
a(,Al‘ i),k i,).k

(7.13)

7.3.1 Incompressible fluid flow equation

The density, FVF, and viscosity of an incompressible fluid are constant inde-
pendent of pressure (Eqs. 7.2 through 7.4). Therefore, the accumulation term
for an incompressible fluid (c=0) but a compressible porous medium

reduces to
? n+1 B ? n
B n B n

with B=B’ 21 for negligible fluid thermal expansion. If, in addition, the porous
medium is treated as incompressible (c,=0), the accumulation term expressed
by Eq. (7.14) becomes zero; that is,

n+1 n
(-] 719

Vb,
a.At

— Vbn¢nc¢ [ n+1

Lt 0

Vi,
a.At
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Substituting Eq. (7.15) into Eq. (7.12) yields the flow equation for incom-
pressible systems:

ZTZ” 71,, Z%L, s, =0 (7.16a)

ley, e,

or

Z Tl (i,j,k |: szk> 71,(1,;, )( tjk :| Z QSLI (injy k +q5('f’]‘,k:O

ley; sk ISR

(7.16b)

The superscript m in Eq. (7.16) is dropped because none of the pressures
depend on time, in addition to the condition that the wellblock production rate
and boundary conditions do not change with time. Therefore, the pressure dis-
tribution for incompressible flow systems does not change with time.

7.3.1.1 Algorithm for obtaining the pressure solution

The pressure distribution for an incompressible flow problem is obtained using
the following steps:

1. Calculate the interblock transmissibilities for all reservoir blocks.

2. Estimate the production rate (or write the production rate equation) for each
wellblock in the reservoir as discussed in Chapter 6.

3. Estimate the flow rate (or write the flow rate equation) for each fictitious
well in the reservoir as discussed in Chapter 4 (or Chapter 5); that is, esti-
mate the flow rates resulting from the boundary conditions.

4. For every gridblock (or gridpoint) in the reservoir, define the set of existing
neighboring reservoir blocks (y,,) and the set of reservoir boundaries that are
block boundaries (£,), expand the summation terms in the flow equation
(Eq. 7.16 in this case), and substitute for the wellblock production rate
obtained in (2) and the fictitious well rates obtained in (3).

5. Factorize, order, and place the unknown pressures on the LHS and place the
known quantities on the RHS of each flow equation.

6. Solve the resulting set of equations for the unknown pressures using a linear
equation solver such as those presented in Chapter 9.

7. Estimate the wellblock production rates and fictitious well rates if necessary
using the flow rate equations obtained in (2) and (3).

8. Perform a material balance check.

7.3.1.2 Material balance check for an incompressible
fluid flow problem

For an incompressible fluid flow problem (constant ¢ and B), there is no accu-
mulation of mass in any reservoir block. Therefore, the sum of fluids entering
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and leaving the reservoir boundaries including wells must add up to zero (or a
small number to account for round-off errors); that is,

N
Z (‘Iscn + Zq“f,,,,> =0 (7.17a)

n=1 1€,

where N is the total number of blocks in the reservoir. The production (or injec-
tion) rate is set to zero for any reservoir block that is not penetrated by a well.
The second term in the parentheses in Eq. (7.17a) takes care of fluid flow across

reservoir boundaries resulting from boundary conditions. If reservoir blocks are
identified using engineering notation, subscript n and summation ZN: in

N n=1
Eq. (7.17a) are replaced with subscripts (i,j,k) and > > ", respectively.
The resulting equation is e

ne My n

SN (st Y dwern | =0 (7.17b)

i=1 j=1 k=1 1€E 1

The material balance check that is expressed by Eq. (7.17) can be derived by
writing Eq. (7.16) for each block in the system (n=1, 2, 3...N) and then sum-
ming up all N equations. All interblock flow terms in the resulting equation can-
cel out, leading to Eq. (7.17). It is customary to perform a material balance
check after solving any simulation problem. An unsatisfactory material balance
check implies an incorrect pressure solution for the problem. A satisfactory
material balance check; however, does not necessarily imply a correct pressure
solution. If the material balance check is unsatisfactory, the flow equation and
all of its elements (transmissibilities, well production rate, fictitious well
rates, y,, &, ...etc.) for every gridblock (gridpoint) in the reservoir and the solu-
tion of the algebraic equations must be carefully investigated to find the cause of
the error.

Examples 7.1 through 7.6 present the solutions for several variations of the
1-D flow problem. The variations include different boundary conditions, well
operating conditions, and well location within the reservoir block. Example 7.1
demonstrates the application of the algorithm presented in this section to obtain
the pressure solution. Example 7.2 presents an approximate solution method
used by other reservoir simulation books when dealing with a constant pressure
boundary in a block-centered grid. In Example 7.3, the well produces oil with a
constant FBHP specification instead of a constant well production rate. In
Example 7.4, the reservoir right boundary is specified as a constant pressure
gradient boundary instead of a no-flow boundary. In Example 7.5, the reservoir
is an inclined reservoir instead of horizontal. In Example 7.6, the well is relo-
cated at a reservoir boundary, and the effect of treating it as a boundary condi-
tion is demonstrated. Example 7.7 presents a 2-D reservoir with anisotropic
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=,

40 ft
— R 2 3 L
Py, = 4000 psia o [} ® ® | No-flow boundary

>

.............................................

300 ft 300 ft

FIG. 7.1 Discretized 1-D reservoir in Example 7.1.

permeability. Example 7.8 presents a 2-D homogeneous and isotropic reservoir
showing symmetry.

Example 7.1 A single-phase fluid reservoir is described by four equal blocks as
showninFig.7.1. The reservoir is horizontal and has homogeneous and isotropic
rock properties, k=270 md and ¢=0.27. The gridblock dimensions are
Ax=300 ft, Ay=350ft, and 7=40 ft. The reservoir fluid properties are
B=B°=1RB/STB, p=50 lbm/ft3, and y=0.5 cP. The reservoir left boundary
is kept at constant pressure of 4000 psia, and the reservoir right boundary is sealed
off to flow. A 7-in vertical well was drilled at the center of gridblock 4. The well
produces 600 STB/D of fluid and has a skin factor of 1.5. Assuming that the
reservoir rock and fluid are incompressible, find the pressure distribution in
the reservoir and the FBHP of the well. Perform a material balance check.

Solution

The gridblocks have the same dimensions and rock properties.

3
Therefore, T),=T,3=T34=T,, where T, :ﬂ(,‘/fég*x =0.001127x %

=28.4004 STB/D-psi. There is a production well in gridblock 4 only.
Therefore, g,,= —600 STB/D. In addition, for the other gridblocks,
Qsc, =Y4sc,=YGsc, = 0.

Gridblock 1 falls on the reservoir west boundary, which is kept at a constant
pressure of 4000 psia. Therefore, Eq. (4.37¢) can be used, yielding

kA,
s = Doz (o =) =1 =20

2 4
_ [0.001127 « 210x (350 x 0)} [(4000 — ) —y x 0]

0.5 x 1 x (300/2)
or
Gsey,., = 56.8008(4000 — p;) STB/D (7.18)

Gridblock 4 falls on the reservoir east boundary, which is a no-flow bound-
ary. Therefore, Eq. (4.32) applies giving ¢,., ,=0 STB/D.

The general flow equation for this 1-D horizontal reservoir is obtained from
Eq. (7.16a) by discarding the gravity term, yielding

ZTl,n (PI _pn) + Z%q,n +4sc, = 0 (719)

ley, 1€,
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For gridblock 1, n=1, y; =12}, and & ={by}. Therefore, > ¢y, =
Gscy,,,1» and Eq. (7.19) becomes leg

T1,2(P2—P1)+Qscbw,] +QSC'1 =0 (720)
Substitution of the values in this equation gives
28.4004(p2 — p1) +56.8008(4000 —p; ) +0=0

or after factorizing and ordering the unknowns,

—85.2012p; +28.4004p, = —227203.2 (7.21)

For gridblock 2, n=2, y,={1,3}, and £, ={}. Therefore, Z Gscip = 0, and
Eq. (7.19) becomes leg,

T12(p1 —p2) +T2,3(p3 —P2) + Gse, =0 (7.22)

Substitution of the values in this equation gives
28.4004(p, — py) +28.4004(p; —p2) +0=0

or after factorizing and ordering the unknowns,

28.4004p; — 56.8008p, +28.4004p; =0 (7.23)

For gridblock 3, n=3,y3={2,4},and &= { }. Therefore, Y _¢,, =0, and
Eq. (7.19) becomes leg;

T2 3(p2 —p3) + T3.4(pa —p3) + s, =0 (7.24)

Substitution of the values in this equation gives
28.4004(py — p3) +28.4004(ps — p3)+0=0

or after factorizing and ordering the unknowns,

28.4004p, — 56.8008p3 +28.4004p, =0 (7.25)

For gridblock 4, n=4,y4 = {3}, and & = (b ). Therefore, > gy, = sy,
and Eq. (7.19) becomes leg,

T3-4 (p3 _p4) + qsc;,E,4 + Gsc, = 0 (726)

Substitution of the values in this equation gives
28.4004(p3 — ps) +0+ (—600) =0
or after the ordering of the unknowns,
28.4004p3 —28.4004p, = 600 (7.27)

The results of solving Egs. (7.21), (7.23), (7.25), and (7.27) for the unknown
pressures are p;=23989.44 psia, p,=3968.31 psia, p3;=3947.18 psia, and
P4=3926.06 psia.
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Next, the flow rate across the reservoir left boundary (gy., ) is estimated
using Eq. (7.18), yielding.

ey, = 56.8008(4000 — p1) = 56.8008 (4000 — 3989.44) = 599.816 STB/D

The FBHP of the well in gridblock 4 is estimated using Eq. (6.1). First, how-
ever, the equivalent wellblock radius using Eq. (6.15) followed by the wellblock
geometric factor using Eq. (6.12) must be calculated, yielding

5 2 0.5
Feq =0.14(300) +(350)] —=64.5371t

_ 27x0.001127 x 270 x 40
" log,[64.537/(3.5/12)] + 1.5

=11.0845RB-cP/D-psi

and

11.0845

—600=-7775

(3926.06 — p,.z,)

from which
Pwf, = 3899.00 psia

The material balance for an incompressible fluid and rock system is checked
by substituting the values for the well production rates and fictitious well rates
on the LHS of Eq. (7.17a), yielding

N
Z <Qs<‘,, + quc[,,,> = (QS(‘I + QXCI,W,I ) + (Qs(fg + O) + (615(,~3 + O) + (Qsm + CIsc,,E,4)
n=1 1€,
=(04599.816) + (0+0) + (0+0) + (—600+0)
=-0.184

Therefore, the material balance check is satisfied, and a small error
of 0.184STB/D is observed because of rounding off during calculations.

Example 7.2 Find the pressure distribution in the reservoir presented in
Example 7.1, but this time, assume that the boundary pressure is displaced
half a block to coincide with the center of boundary gridblock 1. In other
words, the pressure of gridblock 1 is kept constant at 4000 psia as shown in
Fig. 7.2.

Solution

For gridblock 1,

P12 py, =4000 psia (7.28)

What remains is to find the pressure of gridblocks 2, 3, and 4. The flow equa-
tions for these three blocks are obtained from Eqs. (7.23), (7.25), and (7.27) in
Example 7.1.
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FIG. 7.2 Discretized 1-D reservoir in Example 7.2.
For gridblock 2,
28.4004p; — 56.8008p;, +28.4004p; =0 (7.23)
For gridblock 3,
28.4004p, — 56.8008p3 +28.4004p4 =0 (7.25)
For gridblock 4,
28.4004p; — 28.4004p, = 600 (7.27)

Substitution of Eq. (7.28) into Eq. (7.23) yields
28.4004 x 4000 — 56.8008p, +28.4004p3 =0
or the flow equation for gridblock 2 becomes
—56.8008p, +28.4004p; = —113601.6 (7.29)

The results of solving Eqgs. (7.25), (7.27), and (7.29) for the unknown pres-
sures are p, =3978.87 psia, p3=3957.75 psia, and p, =3936.62 psia.

The flow rate across reservoir the left boundary (g,., ) can be estimated
using the flow equation for gridblock 1, Eq. (7.20) obtained in Example 7.1,
yielding

T12(p2 = P1) +dscyy 1 +dse, =0 (7.20)
Substitution of the values of the gridblock pressures in this equation gives
28.4004(3978.87 —4000) + gsc,,, , +0=0
or

Gscny, =600.100STB/D

The approximation presented by Eq. (7.28) results in p; =4000 psia, com-
pared with p; =3989.44 psia using Eq. (4.37c) in Example 7.1. This approxima-
tion has been used in currently available books on reservoir simulation to obtain
a solution for problems involving a specified pressure boundary condition in a
block-centered grid. Such an approximation; however, is first-order correct and
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FIG. 7.3 Discretized 1-D reservoir in Example 7.3.

produces results that are less accurate than the treatment that uses Eq. (4.37¢)
and was demonstrated in Example 7.1.

Example 7.3 Consider the reservoir described in Example 7.1, but this time the
well in gridblock 4 produces under a constant FBHP of 3899 psia as shown in
Fig. 7.3. Find the pressure distribution in the reservoir. In addition, find the well
production rate and flow rate across the reservoir west boundary.

Solution

From Example 7.1, the transmissibility and the flow rate across the reservoir
left boundary are obtained as 7, =28.4004 STB/D-psi and

Gsey,., = 36.8008(4000 — p;) STB/D (7.18)
respectively.
The flow equations for the first three gridblocks are obtained as in
Example 7.1.
For gridblock 1,
—85.2012p, +28.4004p, = —227203.2 (7.21)
For gridblock 2,
28.4004p, — 56.8008p, +28.4004p3 =0 (7.23)
For gridblock 3,
28.4004p, — 56.8008p3 +28.4004p4 =0 (7.25)

In addition, for the well in gridblock 4, r,,=64.5371ft, and
G,,=11.0845 RB-cP/D-psi.

The rate of production from the well in gridblock 4 can estimated using
Eq. (6.1) for a constant FBHP specification, yielding

11.0845
1x0.5

For gridblock 4, the flow equation is obtained from Eq. (7.26) in
Example 7.1:

- (ps — 3899) = —22.1690(p4 — 3899) (7.30)

T3,4 (}73 _p4) + q.vchEA +Gsc, = 0 (726)
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FIG. 7.4 Discretized 1-D reservoir in Example 7.4.

Substitution of transmissibility and Eq. (7.30) into Eq. (7.26) yields
28.4004(p3 — pa) +0+[—22.1690(ps — 3899)] =0
or after factorizing and ordering the unknowns,
28.4004ps — 50.5694p4 = —86436.93. (7.31)

The results of solving Egs. (7.21), (7.23), (7.25), and (7.31) for the unknown
pressures are p;=23989.44 psia, p,=3968.31 psia, p3;=3947.19 psia, and
P4=3926.06 psia.

Substitution for pressures in the equations for g, (Eq. 7.30) and g, |
(Eq. 7.18) yields "

Gsee = —22.1690(p4 — 3899) = —22.1690(3926.06 — 3899)
= —599.893 STB/D

and

Gscyy., = 56.8008(4000 — p; ) = 56.8008 (4000 — 3989.44) = 599.816 STB /D

Example 7.4 Find the pressure distribution in the reservoir presented in
Example 7.1, but this time, a pressure gradient of —0.2psi/ft is specified at
the reservoir right boundary as shown in Fig. 7.4.

Solution

From Example 7.1, the transmissibility and the flow rate across the reservoir
west boundary are obtained as T, =28.4004 STB/D-psi and

Gscry, = 56.8008(4000 — p;) STB/D (7.18)

respectively.
The flow rate across the reservoir east boundary is estimated using
Eq. (4.24b), yielding

_|p KA (op| _ 02
qSChE,zt - c /lB . 0x by }/ax b
270 x (350 x 40
0.001127 x 210X (350280) 5 g

05x1
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or
Gscyy.. = —1704.024 STB /D

The flow equations for the first three gridblocks are obtained as in
Example 7.1.
For gridblock 1,

—85.2012p; +28.4004p, = —227203.2 (7.21)
For gridblock 2,

28.4004p; — 56.8008p, +28.4004p3 =0 (7.23)
For gridblock 3,

28.4004p, — 56.8008p3 +28.4004p4 =0 (7.25)

For gridblock 4, the flow equation is obtained from Eq. (7.26) in
Example 7.1, yielding

T3,4(p3 —P4) + Gscyy s+ Gsey =0 (7.26)
Substitution of values in Eq. (7.26) gives
28.4004(p3 — p4) + (—1704.024) + (—600) =0
or after the ordering of the unknowns,
28.4004p3 — 28.4004p, = 2304.024 (7.32)

The results of solving Egs. (7.21), (7.23), (7.25), and (7.32) for the unknown
pressures are p;=23959.44 psia, p,=3878.31 psia, p3=3797.18 psia, and
p4=13716.06 psia.

Substitution for the pressures in the equation for qschwv](Eq. 7.18) yields

sen,., = 56.8008(4000 — p1) = 56.8008 (4000 — 3959.44) =2304.024 STB /D

Example 7.5 Consider the reservoir shown in Fig. 7.5. The reservoir has the
same description as that presented in Example 7.1, with the exception that this
reservoir is inclined along the formation dip. The elevations of the center of
gridblocks 1, 2, 3, and 4 are, respectively, 3182.34, 3121.56, 3060.78, and
30001t below sea level. The centers of the reservoir west and east boundaries
are, respectively, 3212.73 and 2969.62 ft below sea level. Assuming that the res-
ervoir rock and fluid are incompressible, find the pressure distribution in the
reservoir and the FBHP of the well in gridblock 4. Perform a material
balance check.

Solution

The gridblocks have the same dimensions and rock properties. Therefore,

Ak, 350x40)x270 __ .
T12=To3=T54=T,= .53 = 0.001127x % =28.4004 STB/D-psi.

The fluid gravity is estimated using Eq. (7.1), yielding
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FIG. 7.5 Discretized 1-D reservoir in Example 7.5.

y=7pg = (021584 x 107%) x 50 x 32.174 = 0.34722 psi /t

There is a production well in gridblock 4 only. Therefore, g,.,= — 600 STB/D.
In addition, for the other gridblocks, gy, = ¢y, = gse, =0.

Gridblock 1 falls on the reservoir west boundary, which is kept at a constant
pressure of 4000psia. Therefore, g, can be estimated using Eq. (4.37¢),
which yields "

kxAx
Ascpy1 = { (m} X [(Phw —Pl) —}’(wa —Zl)]

270 x (350 x 40)
= 0.001127 x 222X 114000 - py ) —0.34722 % (3212.73 — 3182.34
{ “05x1x (300/2)} I P) x( )
or
Gsey,., = 56.8008(3989.448 — p;)STB/D (7.33)

Gridblock 4 falls on the reservoir east boundary, which is a no-flow bound-
ary. Therefore, Eq. (4.32) applies, giving g, 4—0 STB/D.

The general flow equation for gridblock n'in this 1-D inclined reservoir is
expressed by Eq. (7.16a):

ZT/,n [(171 —Dn) -7 al qu, s, =0 (7.16a)
ley, leé&,
For gridblock 1, n=1, y; =12}, and & = {by). Therefore, » ¢y, =
ey 1> and Eq. (7.16a) becomes 1ez,

Tl,Z[(pZ _pl) - }/(Zz _Zl)] T Gscpya tse) = 0 (7.34)
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Substitution of Eq. (7.33) and the values into Eq. (7.34) gives 28.4004 x
[(p2—p1) —0.34722 x (3121.56 — 3182.34)] +56.8008(3989.448 — p,) +0=0,
or after factorizing and ordering the unknowns,

—85.2012p; +28.4004p, = —227203.2 (7.35)

For gridblock 2, n=2,y,={1,3}, and &, ={}. Therefore, qu,z =0, and
Eq. (7.16a) becomes leg,

T12[(p1 —p2) —7(Z1 = Z2)| + T2 3[(p3 —p2) —7(Z3 — Z2)| + 45e, =0 (7.36)
Substitution of the values in this equation gives

28.4004[(p1 — pa) — 0.34722 x (3182.34 — 3121.56)]
+28.4004[(p3 — pa) — 0.34722 x (3060.78 — 3121.56)] +0 =0

or after factorizing and ordering the unknowns,

28.4004p, — 56.8008p, +28.4004p; =0 (7.37)
For gridblock 3, n=3,y3={2,4}, and £&;={}. Therefore, Z Gsc,; =0, and
Eq. (7.16a) becomes leg;

T25[(p2—p3) —7(Z2 = Z3)| + T3.4[(pa —p3) = 7(Zs — Z3)| + Gse; =0 (7.38)

Substitution of the values in this equation gives

28.4004[(p, — p3) — 0.34722 x (3121.56 — 3060.78)]
+28.4004((ps — p3) — 0.34722 x (3000 — 3060.78)] +0 =0

or after factorizing and ordering the unknowns,

28.4004p, — 56.8008p3 +28.4004p, =0 (7.39)

For gridblock 4, n =4, 4= {3}, and &= { bg). Therefore, » _ qsc,, = qscy, .-
and Eq. (7.16a) becomes leg,

T3,4[(p3 —pa) = ¥(Zs = Za)] + qse s + Gscs =0 (7.40)

Substitution of the values in this equation gives
28.4004[(p3 —p4) —0.34722 x (3060.78 —3000)] + 0+ (—600) =0
or after ordering the unknowns,
28.4004p3 —28.4004p4 = 1199.366 (7.41)

The results of solving Egs. (7.35), (7.37), (7.39), and (7.41) for the unknown
pressures are p;=23978.88 psia, p,=3936.65 psia, p3;=3894.42 psia, and
p4=3852.19 psia.

Next, the flow rate across the reservoir left boundary (g,., ) is estimated
using Eq. (7.33), yielding "
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Gsey,,,, = 56.8008(3989.448 — p;) = 56.8008(3989.448 — 3978.88)
—600.271 STB/D

The FBHP of the well in gridblock 4 is estimated using Eq. (6.1), but first,
the equivalent wellblock radius using Eq. (6.15) followed by the wellblock geo-
metric factor using Eq. (6.12) must be calculated, giving

2 2 0.5
Feg = 0.14](300) + (350) } — 64.537ft

27 x0.001127 x 270 x 40
" log,[64.537/(3.5/12)] + 1.5

= 11.0845RB-cP/D-psi

and
11.0845

—600 = *W (385219 7p“f4)

from which
Pwr, = 3825.13 psia

The material balance for an incompressible fluid and rock system is checked
by substituting the values for the well production rates and the rates across res-
ervoir boundaries on the LHS of Eq. (7.17a), which yields

N
Z (qszrn + qu'c,,n> = (%(:] + QM:;,W,] ) + (Qscz + 0) + (Qsz:g + 0) + (Qscu + qS('hE,4)
n=1 1€¢,

=(04+600.271)+ (0+0) + (0+0) + (—600+0)

= +0.271

Therefore, the material balance check is satisfied, and a small error of
0.271 STB/D is observed because of rounding off during calculations.

Example 7.6 Find the equation for the well production rate and pressure distri-
bution in the reservoir presented in Example 7.1 if the vertical well is operated
with a constant FBHP of 3850 psia for the following three cases:

1. The well is located at the center of gridblock 4.

2. The well is located at the east boundary of gridblock 4.

3. The well is treated as a boundary condition with the reservoir boundary
pressure equal to 3850 psia.

Solution
From Example 7.1, the transmissibility and the flow rate across the reservoir
west boundary are obtained as T, =28.4004 STB/D-psi and

Gsen,., = 56.8008(4000 — p;) STB/D (7.18)

respectively.
The flow equations for the first three gridblocks are obtained as in
Example 7.1.
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For gridblock 1,

—85.2012p, +28.4004p, = —227203.2
For gridblock 2,

28.4004p, — 56.8008p, +28.4004p; =0
For gridblock 3,

28.4004p, — 56.8008p3 +28.4004p4 =0

For gridblock 4, n =4, w4 = {3}, and & = { bz }. Therefore, Z e =

and Eq. (7.16a) for a horizontal reservoir becomes leg,

T3,4 (p3 _p4) + ‘Isc'hE,4 +Gsc, = 0

(7.21)

(7.23)

(7.25)

CZSCF,EA ’

(7.26)

1. The well is located at center of gridblock 4. The equation for the well pro-
duction rate is obtained using Eq. (6.15) for r,,, Eq. (6.12) for G, and

Eq. (6.1) for gy, (see Fig. 7.6a), yielding

pwr = 3850 psia
s, =?

y

=
~— >

Pp,, = 4000 psia —

40 ft

B
c = Y

Py = 3850 psia

Gsc, =7

,:y : _ ,T _

No-flow boundary

~— ™1 i 2 3 4 : o
Pb,, =4000 psia [ @ I . b b R b o [ No-flow boundary
----- By
- oft
300 ft 300 fi %
(b)
y -
4»)( : 40 ft
~— ™1 i 2 3 4 — 51
Py, =4000 psia [ ® —— @ ® ® V'l B2
________ S Rl iy il I R R pr=3850 psia

0% -
300 ft 300 P

=2

FIG. 7.6 Well location and treatment in Example 7.6. (a) Well is located at center of gridblock 4,
(b) well is located at east boundary of gridblock 4, (c) well is replaced with a boundary condition at

east boundary of gridblock 4.
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2 ) 0.5
g =0.14[(300)* + (3507 =64.5371¢

_ 27x0.001127 x 270 x 40
" log,[64.537/(3.5/12)] + 1.5

= 11.0845RB-cP/D-psi

and
11.0845
%'4 = _W@A‘ — 3850)
or
Gse, = —22.1690(p4 — 3850) STB/D (7.42)

Substitution of the transmissibility and Eq. (7.42) into Eq. (7.26) gives
28.4004(p3 — p4) + 0+ [—22.1690(p4 — 3850)] =0
or after factorizing and ordering the unknowns,
28.4004p3 — 50.5694p, = —85350.65 (7.43)

The results of solving Egs. (7.21), (7.23), (7.25), and (7.43) for the unknown
pressures are p;=23984.31 psia, p,=3952.94 psia, p3=3921.56 psia, and
Pp4=3890.19 psia.

Substitution for p,=3890.19 into Eq. (7.42) yields

ey = —22.169(p4 — 3850) = —22.169(3890.19 — 3850) = —890.972 STB /D
(7.44)

2. The well is located at the east boundary of gridblock 4. The equation for the
well production rate is obtained using Eq. (6.34) for r,,, Eq. (6.32) for G,,,
and Eq. (6.1) for g,,. Note that the well at the block boundary withdraws
only half of its fluid production potential from gridblock 4, as shown in
Fig.7.6b (i.e., Fy =1 / 2, configuration 2 in Chapter 6). The geometric factor
of wellblock 4 is half of that for the whole well. Therefore,

0.5
Feq, =0.1403684 [(300)2 + (350)2] exp [(300/350) tan "' (350/300)]
=135.487ft

27 % 0.001127 x 270 x 40
Gl = = 10.009 RB-cp/D-psi
"~ log,[135.487/(3.5/12)] + 1.5 cp/D-psi

Gy, ="/2G;,, ="/2(10.009) = 5.0045 RB-cp/D-psi
and

5.0045

1x05 (P4 —3850)

qsc, = —

or
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se, = —10.009(ps —3850) STB/D (7.45)
Substitution of the transmissibility and Eq. (7.45) into Eq. (7.26) gives
28.4004(p3 —p4) +0+[—10.009(ps —3850)] =0
or after factorizing and ordering the unknowns,
28.4004p3 —38.4094p, = —38534.65 (7.46)

The results of solving Egs. (7.21), (7.23), (7.25), and (7.46)
for the unknown pressures are p;=3988.17 psia, p,=3964.50 psia,
p3= 3940.83 psia, and p,=3917.16 psia. Substitution for p,=3917.16
into Eq. (7.45) yields

qsc, = —10.009(ps — 3850) = —10.009(3917.16 — 3850) = —672.20 STB/D
(7.47)
3. The well is treated as a boundary condition with the reservoir east boundary
pressure equal to 3850 psia as shown in Fig. 7.6¢c. Therefore, the flow rate of

the fictitious well can be estimated using Eq. (4.37¢) for a constant pressure
boundary condition, whose application gives

kA,
Dschps = [ CMBWAX/z)} 4[(Pb,; —pa) =1 (Zp, — Z4)]
- [0.001 127 %} [(3850 — pa) — 7 x 0]

or
ey, s = 56.8008(3850 — p4) STB /D (7.48)
Substitution of Eq. (7.48) and the values into Eq. (7.26) gives
28.4004(p3 — p4) +56.8008(3850 — ps) +0=0
or after factorizing and ordering the unknowns,
28.4004p3; — 85.2012p4 = —218683.08 (7.49)

The results of solving Egs. (7.21), (7.23), (7.25), and (7.49) for
the wunknown pressures are p;=3981.25psia, p,=3943.75 psia,
p3= 3906.25 psia, and p,=3868.75 psia.

Substitution for p,=3868.75 into Eq. (7.48) yields the rate of flow
across the reservoir east boundary. Therefore,

Gscy = Gscyy.. = 56.8008(3850 — py) = 56.8008(3850 — 3868.75)
or

Gse; = —1065.015STB/D (7.50)
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The predicted well production rates given by Egs. (7.44), (7.47), and
(7.50) demonstrate that even for 1-D flow, it is not appropriate to treat wells
at reservoir ends as boundary conditions; that it is important to differentiate
between physical wells and fictitious wells as discussed in Chapter 6; and
that well performance and pressure distribution are affected by well location
(within a block or on a no-flow reservoir boundary).

Example 7.7 A 2-D oil reservoir is described by four equal blocks as shown in
Fig. 7.7a. The reservoir is horizontal and has ¢ =0.27 and anisotropic perme-
ability, k,=150md and k,=100md. The gridblock dimensions are
Ax=350ft, Ay=250ft, and h=30 ft. The reservoir fluid properties are
B=B°=1RB/STB and yu=3.5 cP. The reservoir boundaries are subject to
the conditions shown in Fig. 7.7b. A vertical well in gridblock 2 produces oil
with a constant FBHP of 2000 psia, and another vertical well in gridblock 3 pro-
duces 600 STB/D of oil. The wells have a 3-in radius. Assuming that the reser-
voir rock and fluid are incompressible, find the pressure distribution in the
reservoir. Find the rate of production of the well in gridblock 2 and the FBHP
of the well in gridblock 3. Find oil flow rates across the reservoir boundaries.
Perform a material balance check.

Solution

The gridblocks have the same dimensions and rock properties. Therefore,

Tia=Ts4=T,=p, ;‘gﬁ; = 0001127 BL3DA0 _ 4350 STB/D-psi.
Ak (350 % 30) x 100
Ti3=Tr4=T,=p.—22=0.001127 x~—— 2" "~

3= 2470 ﬂ‘ﬂBAy *T35% 1 %250

=1.3524 STB/D-psi

Gsc, = ~600 STB/D No-flow boundaries

A Pw, = 2000 psia \ Qsc, =—200STB/D
N4

I 4
4

®

NS
~ 0 :
0.3 psifft

Q
o |
& Ly % ° na
S s — Ik
v/ % 8 sl
; ° @
; y —
& v S 1 2
& [ S
350 ft ¥ /

Ppg = 4000 psia

(a) (b)
FIG. 7.7 Discretized 2-D reservoir in Example 7.7. (a) Gridblocks and wells and (b) boundary
conditions.
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There are two production wells in gridblock 2 and gridblock 3. For both

wells, we use Egs. (6.13), (6.14), and (6.12) to estimate kp, 7., and G,
respectively.
kg = [150 x 100]° = 122.474 md
0.5
[(100/150)0‘5(350)2 +(150/100)° (250)2}
Fog=0.28 =58.527ft
[(100/150)0-25 + (150/100)0'25}
27 % 0.001127 x 122.474 x 30
= =4.7688 RB-cp/D-psi
{log,[58.527/(3/12)] + 0} cp/D-psi
For the well in gridblock 2, we apply Eq. (6.11), yielding
4.7688
Ges = =1 3 5 (P2 —2000) = —1.3625(p; — 2000) STB/D (7.51)

For the well in gridblock 3, g,.,= — 600 STB/D. In addition, for the other
gridblocks, ¢y, =gy, =0. ‘

Gridblock 1 falls on the reservoir south and west boundaries. The reservoir
south boundary is kept at a constant pressure of 4000 psia. Therefore, the flow
rate of the fictitious well can be estimated using Eq. (4.37c), whose application
gives

ky,A
scpg,1 = I:ﬂcm] . [(phs _p1> - ]/(st - Zl)]

1
_ [0.001127 « 100 x (350 x 30)} (4000 —py) — 7 x 0]

3.5x 1x(250/2)
or

Gsey,., =2.7048(4000 —p;) STB/D (7.52)

The reservoir west boundary is a constant rate boundary supplying fluid to
gridblock 1. Therefore, g,., =500 STB/D.

Gridblock 2 falls on the reservoir south and east boundaries. The reservoir
south boundary is kept at a constant pressure of 4000psia. Therefore, using
Eq. (4.37c),

100 x (350 x 30)

= 10.001127 x -2 =2
Gscng » “35%1x(250/2)

[(4000 —p2) —y x O]
or
Gsey,., =2.7048(4000 — py) STB/D (7.53)

The reservoir east boundary is a constant pressure gradient boundary. There-
fore, using Eq. (4.24b),
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dp
5| 0x

0Z

B ydx 1
be be
150 x (250 x 30)

35x1

kA]

QS(,'hE 2 [ c

=0.001127 x [~0.3—7x0]

or
Gscpy» = —108.675STB/D

Gridblock 3 falls on the reservoir west and north boundaries. Both reservoir
boundaries are no-flow boundaries. Therefore, g, s = se, s =
Gridblock 4 falls on the reservoir east and north boundaries. The reservoir
east boundary is a constant pressure gradient boundary. Therefore, using
= =

Eq. (4.24D),
keAx
uB | |ox], " ox|,

0.001127 x 150 x (250 x 30)
35x1

dop 0Z

qSChE,4 = |: c
[—0.3—y x 0]

or

Ascpps = — 108.675 STB/D

The reservoir north boundary is a constant rate boundary withdrawing fluid
from gridblock 4. Therefore, g,., ,= —200 STB/D.

The general flow equation for gridblock 7 in this 2-D horizontal reservoir
can be obtained from Eq. (7.16a) by discarding the gravity term, yielding

S Tipr—pa) + > dsey, +se, =0 (7.19)
ley, €&,

For gridblock 1, n=1, w;={2,3}, and ¢& ={bs,by}. Therefore,
Z%cl,] ={scpg,1 *Gscy,,» and Eq. (7.19) becomes

leé
l TI,Z(PZ _P1)+T1,3(P3 _pl)+QschS,1 +Qscbw,1 s, =0 (7.54)

Upon substitution of the corresponding values, this equation becomes
1.0350(p2 — p1) +1.3524(p3 — p1 ) +2.7048(4000 — p;) + 500 + 0 =0
or after factorizing and ordering the unknowns,
—5.0922p; +1.0350p, +1.3524p3 = —11319.20 (7.55)

For gridblock 2, n=2, w,={1,4}, and & ={bs,bg}. Therefore,
> dsers = dseng2 + Gscs, - and Eq. (7.19) becomes

Iez
’ T1,2 (Pl _pZ) + T2,4(P4 _pZ) + qSChS’z + Clsc,,E,z +qsc, = 0 (756)
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Upon substitution of the corresponding values, this equation becomes

1.0350(p; — pa) + 1.3524(py — pa) +2.7048 (4000 — py)
—108.675 — 1.3625(p, —2000) =0

After factorizing and ordering the unknowns, the equation becomes
1.0350p; —6.4547p, +1.3524p, = —13435.554 (7.57)

For gridblock 3, n=3, w;={1,4}, and &3={by,by}. Therefore,
qu% = scpy 3+ Gschy > and Eq. (7.19) becomes

s T13(p1 —P3) + T3.4(04 = 3) + ucyy 2 + e s + sy =0 (1.58)
Upon substitution of the corresponding values, this equation becomes
1.3524(py —p3) + 1.0350(ps — p3) +0+0—600 =0
After factorizing and ordering the unknowns, the equation becomes
1.3524p; —2.3874p; +1.0350p4 = 600 (7.59)

For gridblock 4, n=4, w,=1{2,3}, and ¢&;={bg,by}. Therefore,
quw =scppa T Dschy a0 and Eq. (7.19) becomes

=3
' T2,4(p2 —pa) + T3,4(P3 —Pa) + Gscy, o + Gscyyy o + Gses =0 (7.60)

Upon substitution of the corresponding values, this equation becomes
1.3524(py — pa) + 1.0350(p3 — ps) — 108.675—200+0=0
After factorizing and ordering the unknowns, the equation becomes
1.3524p, +1.0350p3 — 2.3874p4 = 308.675 (7.61)

The results of solving Egs. (7.55), (7.57), (7.59), and (7.61) for the unknown
pressures are p;=23772.36 psia, p,=3354.20 psia, p3=3267.39 psia, and
p4=3187.27 psia. The flow rates across the reservoir boundaries are estimated
by substituting for the pressures in Egs. (7.52) and (7.53), yielding

Gscrg1 = 2.7048(4000 — p, ) =2.7048(4000 — 3772.36) = 615.721 STB /D
and

scy,,, = 2.7048 (4000 — p,) =2.7048(4000 — 3354.20) = 1746.787 STB /D

The production rate for the well in gridblock 2 is obtained by substituting for
gridblock pressure in Eq. (7.51), which gives

Gses = —1.3625(p> — 2000) = —1.3625(3354.20 — 2000) = —1845.12STB /D

The FBHP of the well in gridblock 3 is estimated using Eq. (6.11), yielding

4.7688

7600:71 x3.5

(3267.36 —puy,)
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from which
Pwf, = 2827.00 psia

The material balance for an incompressible fluid and rock system is checked
by substituting values for the well production rates and fictitious well rates on
the LHS of Eq. (7.17a), resulting in

N
Z (Ckcn + Zq‘“'”"

(q“'] + Qschs,] + Qschw,]) + (%z:z +Qszr;,s,z +QschE‘2>
n=1 leg,

+(‘]sc3 +scy, 5 +‘Isclw,3> + (%m +dsch, 4 +‘1sclw,4>
(04+615.721 +500) + (—1845.12 + 1746.787 — 108.675)

- {+(—600+0+0)+(0— 108.675 —200) ]

=0.038

Therefore, the material balance check is satisfied, and a small error of
0.038 STB/D is observed because of rounding off during calculations.

Example 7.8 Find the pressure distribution in the 2-D horizontal reservoir
shown in Fig. 7.8. The reservoir rock properties are homogeneous and isotropic:
¢=0.19 and k, =k, =200 md. Gridblocks have Ax=Ay=400 ft and # =50 ft,
and fluid properties are B=~B° =1 RB/STB, p=55 Ibm/ft>, and u=3cP. The
reservoir has no-flow boundaries, and there are three wells in this reservoir.
The well in gridblock 7 produces fluid at a constant rate of 1000 STB/D. Each
of the two wells in gridblocks 2 and 6 injects fluid with a constant FBHP of
3500psia. The wells have a diameter of 6in. Assume that reservoir rock and
fluid are incompressible.

Gsc, = ~1000 STB/D b, = 3500 i

, 400 ft_ Puwts = 3500 psia

% No-flow boundaries
b 7

L. LY

(b)

©®

®

50 ft

FIG. 7.8 Discretized 2-D reservoir in Example 7.8. (a) Gridblocks and wells and (b) boundary
conditions.
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Solution
The gridblocks have the same dimensions and rock properties. Therefore,

T4,5 = T5,6 = T7’g = Tx = Tz’ 5= T4,7 = TS,S = Ty =T where

Ak, (400 % 50) x 200
T—p 2% 0001127 x X)X =D
be Bax “ T3 X 1% 400

For each of the three wells, we use Egs. (6.13), (6.16), (6.12), and (6.1) for
ki, Tegs Gy, and gy, Tespectively:

ky =200md
Teq =0.198 x 400 =79.200 ft

=3.7567 STB/D-psi

and

_ 27x0.001127 x 200 x 50
" {log,[79.200/(3/12)] + 0}

The application of Eq. (6.1) gives

= 12.2974RB-cp/D-psi

12.2974
—1000 = — 1x3 (P7 —ow7)

or

for wellblock 7, Dwf, = P71 —243.954 psia (7.62)

12.2974
I = =733 (p2 —3500)

or

for wellblock 2, Gse, = —4.0991(p, —3500) STB /D (7.63)
and for wellblock 6, s, = —4.0991(ps —3500) STB/D. (7.64)

In addition, gy, = gy, = qsc, = 0.
For no-flow boundary conditions and interior blocks, qucl,nzo
leg,

forn=2,4,5,6,7,8.

The general flow equation for gridblock n in this 2-D horizontal
reservoir can be obtained from Eq. (7.16a) by discarding the gravity term,
yielding

S Tiapr—pa) + > sy, +dsc, =0 (7.19)

ley, l€g,
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For no-flow boundaries (Z Qs = O), Eq. (7.19) reduces to
€8y

ZTz,n(pz —Pn) +Gse, =0 (7.65)

ley,
For gridblock 2, n=2, and w,={5}. Therefore, applying Eq. (7.65) gives
T25(ps —P2) + s, =0 (7.66)
Upon substitution of the corresponding values, this equation becomes
3.7567(ps — p2) — 4.0991(p, — 3500) =0
After factorizing and ordering the unknowns, the equation becomes
—7.8558p, +3.7567ps = —14346.97 (7.67)

For gridblock 4, n=4, and w,={5,7}. Therefore, applying Eq. (7.65)
gives

Ta5(ps —pa) +Ta7(p7—P4) + Gse, =0 (7.68)
Upon substitution of the corresponding values, this equation becomes
3.7567(ps —pa) +3.7567(p7 —pa) +0=0
or after factorizing and ordering the unknowns,
—7.5134ps +3.7567ps +3.7567p7; =0 (7.69)

For gridblock 5, n=35, and ws=1{2,4,6,8}. Therefore, applying Eq. (7.65)
gives

T55(p2—ps) +Tas(ps—ps) +Ts6(ps —ps) +Ts5,3(ps —ps) + qse; =0 (7.70)
Upon substitution of the corresponding values, this equation becomes

3.7567(p2 — ps) +3.7567(ps — ps) +3.7567(ps — ps) +3.7567(ps — ps) +0 =0

After factorizing and ordering the unknowns, the equation becomes
3.7567p, +3.7567ps — 15.0268ps +3.7567pe +3.7567pg =0 (7.71)

For gridblock 6, n=6, and wg={5}. Therefore, applying Eq. (7.65)
gives

Ts,6(Ps —P6) + s, =0 (1.72)
Upon substitution of the corresponding values, this equation becomes
3.7567(ps — pe) — 4.0991(ps — 3500) =0
After factorizing and ordering the unknowns, the equation becomes

3.7567ps —7.8558ps = — 14346.97 (7.73)
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For gridblock 7, n="7, and y;={4,8}. Therefore, applying Eq. (7.65)
gives
T47(ps—p7) +T7.8(Ps —P7) + Gse; =0 (1.74)
Upon substitution of the corresponding values, this equation becomes
3.7567(ps — p7) +3.7567(ps —p7) — 1000 =0
After factorizing and ordering the unknowns, the equation becomes
3.7567ps —7.5134p7 +3.7567pg = 1000 (7.75)

For gridblock 8, n=8, and wg={5,7}. Therefore, applying Eq. (7.65)
gives

Tss(ps —ps) +T7,3(P7 —Ps) + Gscy =0 (7.76)
Upon substitution of the corresponding values, this equation becomes
3.7567(ps —ps) +3.7567(p7 —ps) +0=0
or after factorizing and ordering the unknowns,
3.7567ps +3.7567p7; — 7.5134ps =0 (7.77)

The results of solving Egs. (7.67), (7.69), (7.71), (7.73), (7.75), and (7.77)
for the wunknown pressures are p,=3378.02psia, p,=3111.83 psia,
ps=73244.93 psia, pe=3378.02 psia, p; =2978.73 psia, and pg=3111.83 psia.
Note the symmetry about the vertical plane that passes through the centers of
gridblocks 5 and 7 (see Section 4.6). We could have made use of this symmetry
and, accordingly, set p, = pg and p4 = pg; write the flow equations for gridblocks
2,4, 5, and 7; and finally solve the resulting four equations for the unknowns p,,
P4, ps, and p.

Next, the production rate for the wells in gridblocks 2 and 6 are estimated by
substituting for gridblock pressures in Eqgs. (7.63) and (7.64), yielding

Gsc, = —4.0991 (p2 — 3500) = —4.0991(3378.02 — 3500) = 500.008 STB /D
and
Gsce = —4.0991 (ps — 3500) = —4.0991(3378.02 — 3500) = 500.008 STB /D

The FBHP of the well in gridblock 7 is estimated using Eq. (7.62), which
gives
Dwf, =p7—243.954 =2978.73 — 243.954 =2734.8 psia
The material balance for an incompressible fluid and rock system is checked
by substituting the values for the well production rates and fictitious well rates

on the LHS of Eq. (7.17a). For no-flow boundaries, the LHS of Eq. (7.17b)
reduces to
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8 8 8
Z (qscn + qucl,n> = Z (qsc,, + O) = ZQscn
n=2

n=2 IS n=2

=500.008 +0+0+500.008 —1000+0=0.016

Therefore, the material balance check is satisfied, and a small error of
0.016 STB/D is observed because of rounding off during calculations.

7.3.2 Slightly compressible fluid flow equation

The density, FVF, and viscosity of slightly compressible fluids at reservoir tem-
perature are functions of pressure. Such dependence; however, is weak. In this
context, the FVF, viscosity, and density that appear on the LHS of a flow equa-
tion (Eq. 7.12) can be assumed constant. The accumulation term can be
expressed in terms of pressure changes over a time step by substituting for B
and ¢ (using Egs. 7.6 and 7.11) into the RHS of Eq. (7.12). The resulting accu-
mulation term is

1% n+1 n v °

ac}Zl <g>n - <é_¢;> ‘| %TZHZ‘% (C+C¢) [ ;Hl _p;l] (7.78)

n

Note that Eq. (7.78) reduces to Eq. (7.14) for an incompressible fluid where
¢=0. Substitution of Eq. (7.78) into Eq. (7.12) yields the flow equation for
slightly compressible fluids:

ST Pl —p) =i @ —2)]+ > q + 4

ley, e,

_Vbn¢;<C+C¢> n+1 n
=T aBA Pt —pr] (7.79)

7.3.2.1 Formulations of the slightly compressible fluid flow
equation

The time level m in Eq. (7.79) is approximated in reservoir simulation in one of
three ways (7", "', or #"*'/?) as mentioned in Chapter 2. The resulting equation
is commonly known as the explicit formulation of the flow equation (or the
forward-central-difference equation), the implicit formulation of the flow equa-
tion (or the backward-central-difference equation), and the Crank-Nicolson
formulation of the flow equation (or the second-order-central-difference equa-
tion). The terminology in the parentheses above is usually used in the mathe-
matical approach to reservoir simulation. It originates from the way the
partial differential equation (PDE) describing the problem is approximated to
give the finite-difference equation (or flow equation in algebraic form). The for-
ward, backward, or second-order descriptor refers to the approximation of the
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time derivative (or accumulation) term with reference to the time level at which
the PDE is written. The central-difference descriptor refers to using a second-
order approximation of (interblock) flow terms in the PDE.

Explicit formulation of the flow equation

The explicit formulation of the flow equation can be obtained from Eq. (7.79) if
the argument F™ (defined in Section 2.6.3) is dated at old time level "; that is,
"=¢", and as a result, F"" = F". Therefore, Eq. (7.79) becomes

Vi, ¢, (c+c
ZT;[n n yl n qucl l;c,, = ’ anBEOA[ ¢) [p’l‘” pn]
ley, leg, ¢
(7.80a)
or

Z T} 0,50 [(P7—Pi‘f/,k) ~V1 G50 (%= Zijk } Z ey 1,1+ Drcie

ley; j i 1€ j
Vb ik (c+cq) [p“ L }
a.B° At hik  TLik

(7.80b)

Inspection of Eq. (7.80a) reveals that it has one unknown pressure, namely,
p*! and that all the neighboring blocks (nodes) have known pressures at the old
time level. Therefore, the pressure solution at time level n+1 is obtained by
solving Eq. (7.80a) for p’*! for block n independent of the flow equations of
the other blocks. Stability analysis performed in the mathematical approach
(Ertekin et al., 2001) concludes that Eq. (7.80) is conditionally stable; that is,
the use of Eq. (7.80) gives numerically stable pressure solutions for small time
steps only (see Fig. 7.9). In other words, the allowable time step is quite small,
and the amount of computational effort required to obtain the solution to prac-
tical problems at a given time level is prohibitive. Consequently, this formula-
tion is not used in reservoir simulation. The explicit formulation is only of
academic interest to mathematicians, and it is not pursued further in this book.

Implicit formulation of the flow equation

The implicit formulation of the flow equation can be obtained from Eq. (7.79) if

the argument F"" (defined in Section 2.6.3) is dated at new time level /"' that is,
/22" and as a result, F" = F"™*'. Therefore, Eq. (7.79) becomes
DT P =) =i [+ dirl+q!
ey, 1€g,
V@ (c+c
™ hn¢n( f/’) [ n+1 p”} (7813)

a.B° At
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e Stable numerical solution n
m Unstable numerical solution I’\

Pressure

FIG. 7.9 Pressure behavior for a gridblock.

or

> Titiw {(P?Hl —PE’,ZE) ~ Y1, j,0) (Zl—Zi,j,k)}

leyr ji
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In this equation, dating fluid gravity at old time level » instead of new time
level n+1 does not introduce any noticeable errors (Coats et al., 1974). This
approximation will be used throughout this book. Inspection of Eq. (7.81a)
reveals that block » and all its neighboring blocks (nodes) have unknown pres-
sures at the current time level. Therefore, the pressure solution at current time
level n+ 1 is obtained by solving simultaneously the system of equations, which
result from writing Eq. (7.81a) for all blocks (nodes) in the reservoir. Stability
analysis performed in the mathematical approach (Ertekin et al., 2001) con-
cludes that Eq. (7.81) is unconditionally stable because of the linearity of this
equation; that is, Eq. (7.81) gives numerically stable pressure solutions with no
limits on the allowable time step. However, there has to be a limit on the time
step to obtain an accurate solution, but this is not a stability consideration. The
property of unconditional stability of the implicit formulation method makes it
attractive in spite of the extra computational effort required per time step. The
solution at a given simulation time can be obtained with much less computa-
tional effort by taking large time steps. The time step is limited only by accuracy
requirements. Consequently, the implicit formulation method is commonly
used in reservoir simulation.

Crank-Nicolson formulation of the flow equation

The Crank-Nicolson formulation of the flow equation can be obtained
from Eq. (7.79) if the argument F” (defined in Section 2.6.3) is dated at
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time #"*"?. In the mathematical approach, this time level was chosen to make
the RHS of Eq. (7.79) a second-order approximation in time. In the engineer-
ing approach; however, the argument F™ can be approximated as
Frepr+l/2=1/,(Fr 4+ Fr+1). Therefore, Eq. (7.79) becomes

VR T (f =Pl 72— 2)]

ley,
I/ZZTIH;—I n+l pz+]) n,n(Zl_Z”):I-'_]/z <Zq?€lu+zq;’;—:>
ley, leg, ' leg, '
n Vbn¢; ¢ + C¢ n
+1/2(CI“ +51s<+n1) acl(;om)[l? p]
(7.82a)

Eq. (7.82a) can be rewritten in the form of Eq. (7.81a) as

ZT11+1 n+l p2+])_}/zn(zl_z]1)]

ley,

n+1 1~ hn¢ (C+C¢) n+1 7
+;qs5ﬂ S IV Pyt —py] (7.82b)
{ZTfn pn Z[ _Z”)] + Zq:/‘lc,,,, +q:‘1c'n}
ley, e,

Like Eq. (7.81), the pressure solution at current time level n+1 is obtained
by solving simultaneously the system of equations, which result from writing
Eq. (7.82b) for all blocks (nodes) in the reservoir. The Crank-Nicolson formu-
lation is unconditionally stable, and the time step is limited only by accuracy
requirements. The advantage of the Crank-Nicolson formulation over the
implicit formulation is a more accurate solution for the same time step or larger
time steps for the same accuracy (Hoffman, 1992). This gain in accuracy is
obtained at no extra computational cost because the terms in the braces {}
on the RHS of Eq. (7.82b) are calculated at the end of the previous time step.
The drawback of the Crank-Nicolson formulation is that the numerical solution
may exhibit overshoot and oscillations for some problems. Such oscillations are
not due to instability but rather to an inherent feature of the Crank-Nicolson for-
mulation (Hoffman, 1992). This formulation method finds infrequent use in res-
ervoir simulation perhaps because of this drawback and the problems that may
arise because of specifying a pressure gradient at reservoir boundaries (Keast
and Mitchell, 1966).

7.3.2.2 Advancing the pressure solution in time

The pressure distribution in a slightly compressible flow problem changes with
time. This means that the flow problem must be solved in its unsteady-state
form. At time #,=0, all reservoir block pressures (pS, n=1, 2, 3...N) must
be specified. Initially, a fluid in the reservoir is in hydrodynamic equilibrium.
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Therefore, it is sufficient to specify the pressure at one point in the reservoir, and
the initial pressure of any block in the reservoir can be estimated from hydro-
static pressure considerations. Then, the procedure entails finding the pressure
solution at discrete times (¢, ;, #3, t4, ...€tc.) by marching the latest value of
pressure in time using time steps (Atq, At,, Ats, Aty, ...etc.). The pressure solu-
tion is advanced from initial conditions at 1,=0 (time level n) to t; =ty+ At
(time level n+1). The solution then is advanced in time from #; (time level
n) to t,=t+At, (time level n+1), from ¢, to t3=t,+At;, and from #3 to
t,=1t3+At4, and the process is repeated as many times as necessary until the
desired simulation time is reached. To obtain the pressure solution at time level
n+1, we assign the pressure solution just obtained as pressures at time level 7,
write the flow equation for every block (node) in the discretized reservoir, and
solve the resulting set of linear equations for the set of unknown pressures.

For the explicit formulation, the calculation procedure within each time step
follows:

1. Calculate the interblock transmissibilities and the coefficient of (p/™' —p’),

and define the pressure at the old time level for all reservoir blocks.

2. Estimate the production rate at time level n for each wellblock in the reser-
voir as discussed in Chapter 6.

3. Estimate the flow rate at time level n for each fictitious well in the reservoir
as discussed in Chapter 4 (or Chapter 5); that is, estimate the flow rates
resulting from boundary conditions.

4. For every gridblock (or gridpoint) in the reservoir, define the set of existing
reservoir neighboring blocks (y,,) and the set of reservoir boundaries that are
block boundaries (£,,), expand the summation terms in the flow equation
(Eq. 7.80 in this case), and substitute for the wellblock production rate
obtained in (2) and fictitious well rates obtained in (3).

5. Solve the flow equation of each reservoir block (node) for its unknown pres-
sure independent of the other flow equations because each flow equation in
the explicit formulation has only one unknown pressure.

6. Perform incremental and cumulative material balance checks.

For the implicit and the Crank-Nicolson formulations, the calculation procedure
within each time step follows:

1. Calculate the interblock transmissibilities and the coefficient of (p,'j+l — D

and define pressure at the old time level for all reservoir blocks.

2. Estimate the production rate (or write the production rate equation) at time
level n+1 for each wellblock in the reservoir as discussed in Chapter 6.

3. Estimate the flow rate (or write the flow rate equation) at time level n+ 1 for
each fictitious well in the reservoir as discussed in Chapter 4 (or Chapter 5);
that is, estimate the flow rates resulting from boundary conditions.

4. For every gridblock (or gridpoint) in the reservoir, define the set of existing
reservoir neighboring blocks (y,,) and the set of reservoir boundaries that are
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block boundaries (£,), expand the summation terms in the flow equation
(Eq. 7.81 or 7.82b), and substitute for the wellblock production rate obtained
in (2) and fictitious well rates obtained in (3).

5. Factorize, order, and place the unknown pressures (at time level n+ 1) on the
LHS and place known quantities on the RHS of each flow equaton.

6. Solve the resulting set of equations for the set of unknown pressures (at time
level n+1) using a linear equation solver such as those presented in
Chapter 9.

7. Estimate the wellblock production rates and fictitious well rates at time level
n+ 1 if necessary by substituting the values of pressures obtained in (6) into
the flow rate equations obtained in (2) and (3).

8. Perform incremental and cumulative material balance checks.

7.3.2.3 Material balance check for a slightly compressible fluid
flow problem

For slightly compressible fluid flow problems, there are usually two material
balance checks. The first is called the incremental material balance check
(Iyp) and is used to check the material balance over a time step. The second
is called the cumulative material balance check (C,;z) and is used to check
the material balance from the initial conditions up to the current time step.
The latter check tends to smooth errors that occur over all the previous time
steps; therefore, it provides a less accurate check than the first check. In reser-
voir simulation, a material balance check is defined as the ratio of the accumu-
lated mass to the net mass entering and leaving reservoir boundaries, including
wells. If reservoir blocks are identified using block order and the implicit for-
mulation is used, the equations for material balance checks are

N Vh,, 4) n+1 ¢ n
Sol@) ().

Iyp = "= (7.83)

N
Z (qiiﬁl +> g )

leg,

Vh [( n+l )d|
n=1 a‘ n

n+l N
Atmz (qycﬂ un, ,,)

m=1 n—=1 =

and

Cup = (7.84)

where N is the total number of blocks in the reservoir, subscript 7 is block num-
ber, and superscript 7 is old time level. In Egs. (7.83) and (7.84), the production
(or injection) rate is set to zero for any reservoir block that is not penetrated by a
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well. In addition, Eq. (7.11) defines rock porosity, and Eq. (7.6) defines FVF
for slightly compressible fluid. Alternatively, we can substitute Eq. (7.78) for
a slightly compressible fluid and porosity into Egs. (7.83) and (7.84). The mate-
rial balance checks become

N o
Vbn¢n(C+C¢) n+1
; a.B° At [p p,,]
Iyp = N (7.85)
) (qzz:l Zq:t;‘)
n= leg,
and
zlv:vbn¢;(c+c¢) = pY]

a.B°

Cup = (7.86)

n+1
ZAth (qul unl ,1>

=1 leg,

The second term in the parentheses in the denominator of Egs. (7.85) and
(7.86) takes care of fluid flow across reservoir boundaries. The numerical value
of both I,z and C, checks should be close to one. A value of 0.995-1.005 or
better is acceptable for solving problems using handheld calculators, compared
with 0.999995-1.000005 used in numerical simulators.

The incremental material balance check at time level n+1, which is
expressed by Eq. (7.85), can be derived by writing Eq. (7.81a) for each block
in the system (n=1, 2, 3...N) and then summing up all » equations. The result-
ing equation is

N
Z{ZTZ’J‘ AR y,n<zz—zn>]}+Z<ZqﬁJ,,‘ q':;‘>
lew, n=1 \I€¢,

R SUAGIDI

- @.B At 7]

n=1

(7.87)

The sum of all interblock terms in the reservoir, which are expressed by the
first term on the LHS of Eq. (7.87), adds up to zero, while the second term on the
LHS represents the algebraic sum of all production rates through wells

(Z qu 1) and those across reservoir boundaries (Z Zqﬁ';l> The RHS
n llEf

of this equation represents the sum of the accumulation terms in all blocks in
the reservoir. Therefore, Eq. (7.87) becomes

= ) Vi, da(c+cp)
> (Zq;‘ qg‘) _ZW [+t —p] (7.88)

n=1 \I/€¢, n=1
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Dividing this equation by the term on the LHS yields

N °
Vh/r ¢Vl (C + C(/)) n
Z a.B° At P! —pl]

| =22 (7.89)

N
S (e ya)

n=1 leg,

Comparing Egs. (7.85) and (7.89) dictates that I,,5 must be equal or close to
1 to preserve the material balance. The equation for the cumulative material bal-
ance check is obtained by writing Eq. (7.88) for all time steps (m=1, 2, 3...
n+1), observing that Ar,,=7"" — " replaces At, and summing up all resulting
equations. It should be mentioned that for the explicit formulation, the denom-

(q?z:,, + qu’w ) For the Crank-

1€¢,
Nicolson formulation, the denominator of Eq. (7.89) becomes

N
Z [1 /2 (q?c-:l +q?¢‘,,) + Zl/z (qg;/:: +q;lc1,,,)‘|

n=1 I€é,

N
inator of Eq. (7.89) is replaced with >
n=1

Both Examples 7.9 and 7.10 demonstrate the application of the solution
algorithm presented in this section to advance the pressure solution from one
time step to another. The reservoir is discretized using a block-centered grid
in Example 7.9, whereas a point-distributed grid is used in Example 7.10.
Example 7.11 presents the simulation of a heterogeneous 1-D reservoir.
Example 7.12 demonstrates the advancement of the pressure solution in time
in single-well simulation.

Example 7.9 A single-phase fluid reservoir is described by four equal blocks as
shown in Fig. 7.10. The reservoir is horizontal and has homogeneous rock prop-
erties, k=270 md, ¢=0.27, and c,=1x 107 psifl. Initially, the reservoir
pressure is 4000 psia. Gridblock dimensions are Ax=300 ft, Ay =350 ft, and
h=40 ft. Reservoir fluid properties are B=B°=1RB/STB, p=50 1bm/ft3,
1#=0.5cP,and c=1x 107" psi—". The reservoir left boundary is kept at a con-
stant pressure of 4000 psia, and the reservoir right boundary is sealed off to flow.
A 7-in vertical well was drilled at the center of gridblock 4. The well produces

Gsc, = —600 STB/D

y 1
40 ft

~ ] : 2 3 4
Pb,, = 4000 psia e ® [} ® |

No-flow boundary

g ,550“

300 ft 300 ft

FIG. 7.10 Discretized 1-D reservoir in Example 7.9.
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600 STB/D of fluid and has a skin factor of 1.5. Find the pressure distribution in
the reservoir after 1day and 2days using the implicit formulation. Take time
steps of 1day. Perform a material balance check. This problem is the same
as that presented in Example 7.1, except both the fluid and rock are slightly
compressible.

Solution

The gridblocks have the same dimensions and rock properties. Therefore,

T12=Ty3="Ts4=T,=p, Ak = 0001127 x 520~ 28 4004 STB/D-psi

and

Vi, (c+c4)  (300% 350 x40) x0.27 x (1x 107> +1x107°)

aB° At 5.614583 x 1 x 1
=22217forn=1,2,3,4

There is a production well in gridblock 4 only. Therefore, q(’:'l 1=
g =q4 =0 and ¢4 = — 600 STB/D.
Gridblock 1 falls on the reservoir west boundary, which is kept at a constant
n+l1

pressure of 4000psia. Therefore, 9sc,,, can be estimated using Eq. (4.37c),
whose application gives

n+1 kXAX :| n+1
qsrhw = |:ﬂ47 [(pbw — P ) —J/(wa _Zl)}
uB(Ax/2)|, 7.90)

270 x (350 x 40)
= (0.001127 x = ——————"=|[(4000 — p{*' 0
[ ><o.5><1><(300/2)] [(4000—p™) =7 x0]
or
sy, = 56.8008 (4000 —pi*') STB/D (7.91)

Gridblock 4 falls on the reservoir east boundary, which is a no-flow bound-
ary. Therefore, Eq. (4.32) applies, giving ¢"' =0 STB/D.

SCh4

1. First time step calculations (n=0, ¢,,1 =1 day, and Ar=1 day)

Assign p'{=p5=p3=pi=p;,=4000 psia.
The general flow equation for gridblock # in this 1-D horizontal reservoir is
obtained from Eq. (7.81a) by discarding the gravity term, yielding

V, ¢O(C+C,/,)
n+1( n+1 n+l n+1 n+1 ~ n ' n n+1
[ZT (v} )£ Yo = e T -] 92)
<y, leg,
For gridblock 1, n=1, w;={2}, and &, ={by}. Therefore,
Zq’s’:]l = q?(tl .» and Eq. (7.92) becomes
=3
V},lqﬁi (C + C¢)

Tia(py™ =pi™ )+l +ai == P P (7.93)
C
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Substitution of the values in this equation gives
28.4004 (p5*' —pi*') +56.8008 (4000 — p} ') +0=2.2217 [p}*" — 4000]

or after factorizing and ordering the unknowns,

—87.4229p1* ! +28.4004p5 ! = —236090.06 (7.94)
For gridblock 2, n=2,w,={1,3}, and &, = { }. Therefore, Z q”+1 0, and
Eq. (7.92) becomes leg
Vi, 0, (c +c )
n+1 n+1 n+1 n+1 n+1 2 [ n+1
Ta(pi™ =p") + s (p5 ™ —py™') + 0445 W[ H=p3]
(7.95)

Substitution of the values in this equation gives

28.4004 (p} "' —p5*") +28.4004 (p4+! — 5t 1) +0+0=2.2217[p5*" —4000]

or after factorizing and ordering the unknowns,

28.4004p1+ ! —59.0225p5 %! +28.4004p5 ' = —8886.86 (7.96)
For gridblock 3, n=3, w3 ={2,4}, and £&3={ }. Therefore, Z qi’:i =0, and
Eq. (7.92) becomes g

Vs (c+
Tos (3! —p3*) + Ta (P! p’§”)+0+q;1§1=7h“i31§fmc¢)['3”'—19’3’]
)

(7.97)

Substitution of the values in this equation gives

28.4004 (p5*! —pi*!) +28.4004 (p4 ! —pit!) +0+0=2.2217[p4*" — 4000]

or after factorizing and ordering the unknowns,
28.4004p5* ! —59.0225p5 ! +28.4004p; ' = —8886.86 (7.98)
For gridblock 4, n=4,w,= {3}, and &, = { bz }. Therefore, Zq".+ L— gl

scrLa qschE 4

and Eq. (7.92) becomes leg,

nel L o+l Vb4¢2(c+c(/,)[ nel

T3,4( n+1 pz+1)+qm LT, = 2B Al pd (7.99)

Substitution of the values in this equation gives
28.4004 (p3* ' —p4 ') +0—600 =2.2217 [p} ' —4000]

or after factorizing and ordering the unknowns,

28.4004p"+! —30.6221p]* ! = —8286.86 (7.100)
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The results of solving Egs. (7.94), (7.96), (7.98), and (7.100) for the
unknown pressures are pit' =3993.75 psia, pi*'=3980.75 psia, pit'=
3966.24 psia, and p4™' =3949.10 psia

Next, the flow rate across the reservoir left boundary (g }’;’b ! ) is estimated
using Eq. (7.91), which gives "

mrl=56.8008(4000 —pi*!) =56.8008(4000 — 3993.75)

qschw‘ 1

=355.005STB/D

The material balance for a slightly compressible fluid and rock system is
checked using Eq. (7.85), yielding

N © ° 4
Vbn¢n(c+c¢) n+l _ n Vb¢ (C+C¢) n+l _ n
S tnhlcist) et pr) LS
al - S n+1 1 n+1
S| it > a) D e, DD )
’ n=1

=1 leg, n=11€e¢g,

~2.2217[(3993.75 — 4000) + (3980.75 — 4000) + (3966.24 — 4000) + (3949.10 — 4000)]
N [0+0+0—600] +[355.005+0+0+0]

22217 x110.16

Toaa995 09987

Therefore, the material balance check is satisfied.
2. Second time step calculations (n=1, t,,; =2 day, and Ar=1 day)

Assign p1=3993.75 psia, p5=23980.75 psia, p3=3966.24 psia, and pj=
3949.10 psia. Because At is constant, the flow equation for each gridblock in
the second and succeeding time steps is obtained in a way similar to that used
in the first time step, except the newly assigned p;, is used to replace the old p;, in
the accumulation term. For example, p,, on the RHS of Egs. (7.93), (7.95),
(7.97), and (7.99) for this time step is replaced with 3993.75, 3980.75,
3966.24, and 3949.10, respectively.
For gridblock 1,

28.4004(p5*! —pi*') +56.8008 (4000 — p ') +0=2.2217[p}* ' —3993.75]

or after factorizing and ordering the unknowns,
—87.4229p1% ! +28.4004p5* ! = —236076.16 (7.101)
For gridblock 2,

28.4004(p} "' —p5 1) +28.4004 (p5 ! —p5T ') +0+0
=2.2217[ps*" —3980.75]



Single-phase flow equation for various fluids Chapter | 7 247

or after factorizing and ordering the unknowns,
28.4004p7+1 —59.0225p4 %! +28.4004p5+ ! = —8844.08 (7.102)
For gridblock 3,

28.4004(p5+! —pi*") +28.4004 (pi ! —pit!) +0+0
—22217[ 4+!—3966.24]

or after factorizing and ordering the unknowns,
28.4004p5 ™! —59.0225p ! +28.4004p; ' = —8811.86 (7.103)
For gridblock 4,
28.4004(p4* ! —pi*') +0—600=2.2217[p}*! —3949.10]
or after factorizing and ordering the unknowns,
28.4004p3+! —30.6221p4+! = —8173.77 (7.104)

The results of solving Eqgs. (7.101) through (7.104) for the unknown
pressures are pf*'=3990.95 psia, p3*' =3972.64 psia, pit'=3953.70 psia,
and p3t' =3933.77 psia.

Next, the flow rate across the reservoir left boundary (¢ ’j:’h Ll) is estimated
using Eq. (7.91), which gives

qf:]'l . =56.8008 (4000 -pi* 1) 56.8008 (4000 — 3990.95)
=514.047STB/D

The material balance is checked using Eq. (7.85), yielding

Vh¢o ((’;+C¢)i[ n+1 pn:l

a.B At pr
Ivup = 2 2
n+1 n+1
> di'+ D i,
n=1 n=1 leg,

- (3990.95 — 3993.75) + (3972.64 — 3980.75)
' +(3953.70 — 3966.24) + (3933.77 — 3949.10)
[0+0+0—600]+[514.047 +0+0+0]

| —2.2217x38.78
~ 85953

=1.00238

Example 7.10 Consider the problem presented in Example 7.9, but this time,
the reservoir is described by five equally spaced gridpoints using a point-
distributed grid as shown in Fig. 7.11.
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7z scs = —600 STB/D
TA: T
X : _
~T . D 40 ft
— i 12 3 4 s5[i
P1 = Pp,, = 4000 psia p O T o | o | 49 ) No-flow boundary

) 0 “
300 ft 300 ft y

FIG. 7.11 Discretized 1-D reservoir in Example 7.10.

The problem is restated as follows. The reservoir length along the
x-direction is 1200ft, Ay=2350 ft, and A=40 ft. The reservoir is horizontal
and has homogeneous rock properties, k=270md, ¢=0.27, and
cp=1x 107 psi~". Initially, the reservoir pressure is 4000 psia. Reservoir
fluid properties are B=B°=1RB/STB, p=50 1bm/ft>, u=0.5cP, and
c=1x10" psi~". The reservoir left boundary is kept constant at 4000 psia,
and the reservoir right boundary is sealed off to flow. A 7-in vertical well
was drilled at the center of gridblock 5. The well produces 600 STB/D of fluid
and has a skin factor of 1.5. Find the pressure distribution in the reservoir after
lday and 2days using the implicit formulation. Take time steps of 1day.
Perform a material balance check.

Solution

The reservoir is discretized into five gridpoints, n,=5. The distance
between the gridpoints is Ax;, 1, =1200/(5 — 1) =300 ftfori=1, 2, 3, 4. There-
fore, block sizes in the x-direction are Ax;=Axs=300/2=150ft and
Ax, = Ax3;=Ax4=300 ft. Blocks represented by the various gridpoints have
the same rock properties. Therefore,

Ak, (350 x 40) x 270
Tir=Tr3=Ts4=Tss=T=f—r —=0.001127 x oL ===
B2z AT s ﬂﬂBAxi+1/2 * 0.5 % 1 x 300

=28.4004 STB/D-psi

Vi, by (c+cy) (300 %350 x 40) x 0.27 x (1 x 1072 +1 x 107%)

aB'At 5.614583 x 1 x 1
=2.2217forn=2,3,4

Additionally,

Vi, (c+cg) (150 X350 x40) x 0.27 x (1x 1077 +1x 107°)

a.B° At 5.614583 x 1 x 1
=1.11085forn=1,5
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There is a production well in gridpoint 5 only. Therefore, q"“— q(’fz 1=

gl =gt =0, and ¢ = — 600 STB/D.
Gridpoint 1 falls on the reservoir west boundary, which is kept at a constant

pressure of 4000 psia. Therefore,

n+1

pPi =py, =4000 psia (7.105)

In addition, C]?:,,;. can be estimated using Eq. (5.46¢), whose application

gives

kA
n+l __ X n+1
q“-ftw 1 _[ c/,lBAx:|l2[<pb -r5" ) (ZbW_Z2)j|

( : (7.106)
270 x (350 x 40
= 10.001127 x === 1 [(4000 — p"+1) —
{000 7 0 (504 }[( 000—pi*1) — x 0]
or
q;;j‘l 28.4004 (4000 — p3*') STB/D (7.107)

Gridpoint 5 falls on the reservoir east boundary, which is a no-flow bound-
ary. Therefore, Eq. (5.40) applies, giving an,s_O STB/D.

1. First time step calculations (n=0, ¢,,; =1 day, and At=1 day)

Assign p=ph=p3=p4=ps=p;,=4000 psia.
The general flow equation for gridpoint 7 in this 1-D horizontal reservoir is
obtained from Eq. (7.81a) by discarding the gravity term, yielding

Vi, (c+
ZTlrf;l( n+l n+1 an+1 n+1g bn¢n(c cd’) [pn+1 pn] (7.92)

SCl,n Sén °
ley, leg, a.B At

For gridpoint 1,n= 1,y = {2}, and & = { by }. Therefore, Zq’;;ll _q’;;v; -
and Eq. (7.92) becomes leg,
Vy d)o (c+c ,)
n+1 n+1 n+1 n+1 1 [% n+1
Tia(ps™ —pi*) +als, +a' == ear it el (799

In reality, we do not need to write or make use of the flow equation for
gridpoint 1 because pi*'=4000 psia is defined by Eq. (7.105); however,
Eq. (7.93) can be used to estimate qz’:', ! - Substitution of values in Eq. (7.93)

gives

28.4004(p3*' —4000) + ;! +0=1.11085[4000 — 4000]

which when solved for q”+1 results in Eq. (7.107). Therefore, we may conclude
for the case of a specified pressure boundary in a point-distributed grid that the
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rate of fluid flow across a reservoir boundary can be obtained by either using
Eq. (5.46¢) or writing the flow equation for the boundary gridpoint and making
n+l
use of Py phP p,
For gridpoint 2, n=2, w>,=1{1,3}, and & = { }. Therefore, Zq’v’;; =0, and
Eq. (7.92) becomes leg,

Tia(pi ' =p3 ) +Tos(Py T = p5 )

vt Vs (€460) it (7.95)

0+ 45, @B At I

Substitution of the values in this equation gives

28.4004 (4000 — p5* ') +28.4004 (p4 ' —ps* 1) +0+0=2.2217[p5*" — 4000]

or after factorizing and ordering the unknowns,

—59.0225p1* ! +28.4004p1* ! = —122488.46 (7.108)
For gridblock 3, n=3,y3={2,4},and &= { }. Therefore, » _¢/,"' =0, and
Eq. (7.92) becomes legs
V[, ¢ (C + C¢)
1 1 1 1 1 3
Toa(Ph™ —p3") + Toa (P —p3™ ) + 04yt == 2o [P =]
(7.97)

Substitution of the values in this equation gives

28.4004 (p5 "' —pi*!) +28.4004 (4! —pit!) +0+0=2.2217[p4*" — 4000]

or after factorizing and ordering the unknowns,

28.4004p5+! —59.0225p4 %! +28.4004p; ! = —8886.86 (7.98)
For gridblock 4, n=4,y4={3,5},and &={}. Therefore, » _¢/,"' =0, and
Eq. (7.92) becomes 7
Vh ¢0 (C + C¢)
n+1 n+1 n+1 n+1 4 n+1
Tsa(pit' —pi* ") + Tus(pet! —pi* )+0+4q W[ —pi]
(7.109)

Substitution of the values in this equation gives

28.4004 (p3* ' —pi* ') +28.4004 (pit! —pi*t ') +04+0=2.2217[p;*" —4000]

or after factorizing and ordering the unknowns,

28.4004p5 ™! —59.0225p; ! +28.4004p2* ! = —8886.86 (7.110)
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For gridblock 5,7 =5, ys= {4}, and & = {bs}. Therefore, » ¢t ! =qit!

NoX qschl_ 5°

and Eq. (7.92) becomes legs

n+1 n+1 Vh5¢;(C+C¢) [ n+1

Tus(py™' —p5™) +ais ! +di' = TN -p] (7111

Substitution of the values in this equation gives

28.4004 (p}* ' —p*') +0—600=1.11085[p2*' — 4000]

or after the factorizing and the ordering of unknowns,

28.4004p;* ! —29.51125p* ! = —3843.4288 (7.112)

The results of solving Egs. (7.108), (7.98), (7.110), and (7.112) for
the unknown pressures are piT'=3987.49 psia, pi*'=3974.00 psia,
Pit' =3958.48 psia, and p2t' = 3939.72 psia.
Next, the flow rate across the reservoir left boundary (g ;’;}1 ) is estimated
using Eq. (7.107), which yields "

Gy =28.4004(4000 —p3 ™) =28.4004(4000 — 3987.49)
=355.289STB/D

The material balance for a slightly compressible fluid and rock system is
checked using Eq. (7.85):

N e+ 5
ZV”ﬂd’” (°+°¢) FA Z ( ) [+ = p]
ac.B° At " = acB° At " n

n=1
N
z(qa:uzqs;:) S Yy k!
n=

n=1 I€ég, n=11€¢,
|: 1.11085 x (4000 —4000) +2.2217 x (3987.49 —4000) +2.2217 x (3974.00 — 4000)

+2.2217 x (3958.48 —4000) + 1.11085 x (3939.72 — 4000)
[(0+0+0+0—600)+(355.289+0+0+0+0)]

Iyp =

—244.765

Therefore, the material balance check is satisfied.
2. Second time step calculations (n=1, t,,; =2 day, and Ar=1 day)

Assign  p5=23987.49 psia, p3=23974.00 psia, p;=3958.48 psia, and
PL=3939.72 psia. Note that p}*' =4000 psia.

Because At is constant, the flow equation for each gridblock in the second
and succeeding time steps is obtained in a way similar to that used in the first
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time step, except the newly assigned p;, is used to replace the old p}, in the accu-
mulation term, as mentioned in Example 7.9. For example, p;, on the RHS of
Eqgs. (7.95), (7.97), (7.109), and (7.111) for the present time step is replaced with
3987.49, 3974.00, 3958.48, and 3939.72, respectively.

For gridblock 2,

28.4004 (4000 — p5*') +28.4004 (p3*! —p5*!) +0+0
=2.2217[p3*! —3987.49]

or after factorizing and ordering the unknowns,
—59. 022519"+1 +28. 4004[7’“r1 = —122460.667 (7.113)
For gridblock 3,

28.4004 (p5*! —pi*') +28.4004 (p4 ! —pit 1) +0+0
—22217[ 4+ —3974.00]

or after factorizing and ordering the unknowns,
28.4004p5+ " —59.0225p4+ ! +28.4004p; +! = —8829.1026 (7.114)
For gridblock 4,

28.4004 (p3*! —pi ') +28.4004 (p* ! —pit 1) +0+0
_22217[ 4! —3958.48]

or after factorizing and ordering the unknowns,
28.4004p5* ! —59.0225p; ! +28.4004p2* ! = —8794.6200 (7.115)
For gridblock 5,
28.4004(p; ™' —p2*1) +0—600=1.11085 [p2*' —3939.72]
or after factorizing and ordering the unknowns,
28.4004p; 1 —29.51125p* ! = —3776.4609 (7.116)

The results of solving Egs. (7.113), (7.114), (7 115), and (7.116) for
the unknown pressures are p3*' =3981.91 psia, pi*' =3963.38 psia, pi™' =
3944.02 psia, and p2' =3923.52 psia.

The flow rate across the reservoir left boundary (%(h ) is estimated next
using Eq. (7.107), yielding

git! | =28.4004(4000 — p} ") =28.4004(4000 — 3981.91)
—513.763STB/D

The application of Eq. (7.85) to check the material balance for the second
time step gives
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van¢n C+C¢ [pn+1 p]
n

a.B° At

Iyp =
n+1 + n+1
;qm ;;@qm”
1.11085 x (4000 — 4000) +2.2217 x (3981.91 — 3987.49)
+2.2217 x (3963.38 —3974.00) +2.2217 x (3944.02 — 3958.48)
+1.11085 x (3923.52 —3939.72)
[(0+0+0+0—600)+(513.763+0+0+0+0)]
—86.103
T 286.237

Therefore, the material balance check is satisfied.

=0.99845

Example 7.11 A 1-D, horizontal, heterogeneous reservoir is discretized as
shown in Fig. 7.12. The reservoir is described by five gridblocks whose dimen-
sions and rock properties are shown in the figure. Reservoir fluid properties are
B=B°=1RB/STB, u=1.5cP, and ¢=2.5x 107° psifl. Initially, reservoir
pressure is 3000 psia. The reservoir left and right boundaries are sealed off to
flow. A 6-in vertical well was drilled at the center of gridblock 4. The well pro-
duces 400 STB/D of fluid and has zero skin. The well is switched to a constant
FBHP of 1500 psia if the reservoir cannot sustain the specified production rate.
Find the pressure distribution in the reservoir after 5days and 10days using the
implicit formulation. Take time steps of 5 days. Tabulate reservoir pressure ver-
sus time until reservoir depletion.

Solution

The general flow equation for gridblock # in this 1-D horizontal reservoir is
obtained from Eq. (7.81a) by discarding the gravity term, yielding

Gsc, = —400 STB/D

No-flow boundary No-flow boundary
[ 4 ([ 4 (4 [ 4
1 2 3 4 5

...................................

50 ft

"k 273md | 248md [127Md] 333 mg [

400 ft 300 ft 150 ft | 200 ft

< N » | >l
< > <€ »>< » <

FIG. 7.12 Discretized 1-D reservoir in Example 7.11.
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ZTrHl( n+1 _ n+l an-ﬂ qn+1 _Vbn(ﬁ:’(C"'C(j)) [p’“'l —p ] (7.92)
sC; SCn ° n :

icy, Icg, acB At

Interblock transmissibilities can be calculated using Eq. (4.67a) with the
geometric factors in the x-direction obtained from Table 4.1 because the grid-
blocks have an irregular grid size distribution and heterogeneous rock proper-
ties, resulting in

o=t (5) -] 2,
nntl = Ly = Uy ey
e w2\ uB Xiz1/2 :“B Ax,/(A kV,)+Ax,;1/( Xixl xm)
(7.117)
Therefore,

1 2 x0.001127

X
1.5x 1" 400/[(500 x 50) x 273] +300/[(500 x 50) x 248]
=14.0442 STB /D-psi.

T\ ,=

Similarly, T,3=15.7131 STB/D-psi, T54=21.0847 STB/D-psi, and
T45=20.1622 STB/D-psi.

Vi (c+cg) (400 x 500 x 50) x 0.21 x (2.5 x 107> +0)

aB°' At 5.614583 x 1 x 5
=1.87013 STB/D-psi

Similarly, “2%(0) _ 1 13544 STB/D-psi, 2L 0) 0 333052 STB/
Dopsi, %00 1 11317 STB/D-psi, and %00 _ 0 723562 STBY
D-psi.

There is a production well in gridblock 4 only. Therefore, ¢, =

—400 STB/D and q"Jr1 q’ffz '=q' =g %" =0. No-flow boundary conditions
imply ¢4, =0 and ¢ =0.
For no-flow boundarles Eq. (7.92) reduces to

n n n n ~ b¢n C+C¢ n n
D T (o —pyt) + qssl—ﬁ[pn”m] (7.118)

ley,

1. First time step calculations (2 =0, ¢,,; =5 days, and Ar=35 days)
Assign p=p5=p5=pj=p5=p;,=3000 psia.
For gridblock 1, n=1, and w;={2}. Therefore, Eq. (7.118) becomes

Vi (c+cey) ¢,
Tia(ps™ —pi*') +dic)' = %[f“—pﬂ (7.119)

Substitution of the values in this equation gives

14.0442(p5 "' —pi*1) +0=1.87013 [p}*' — 3000]
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or after factorizing and ordering the unknowns,

—15.9143p1" ! + 14.0442p5 ! = —5610.39 (7.120)
For gridblock 2, n=2, and w,={1,3}. Therefore, Eq. (7.118) becomes
Vi, 0, (c+c¢,)
n+1 n+1 n+1 2 n+1 n
TPyt —ps* ) + Tos (P —p5 ) + 4 ZW 5 —ph)
(7.121)

Substitution of the values in this equation gives
14.0442(p}* " —p5 1) +15.7131 (p4 ' —p5 ') + 0= 1.13544 [p5*' — 3000]
or after factorizing and ordering the unknowns,
14.0442p* ' —30.8927p5 " +15.7131p5 ! = —3406.32 (7.122)
For gridblock 3, n=3, and w3 ={2,4}. Therefore, Eq. (7.118) becomes

Vh3¢; (C+C¢) [ n+l

a.B A1 —p}]

(7.123)

T2,3(pg+l pf31+1) +T (pZ-H pn+1) +q1;16-:1 —

Substitution of the values in this equation gives

157131 (p5* ! —pi ') +21.0847 (p; ' — p4+1) +0=0.333952[p4*' —3000]

or after factorizing and ordering the unknowns,
15.7131p5 " — 37.1318p3* ! +21.0847p; "' = —1001.856 (7.124)
For gridblock 4, n=4, and w4={3,5}. Therefore, Eq. (7.118) becomes

n+1 n+1 n+1 n+1 n+1 Vb4¢4(C+C¢) [ n+1

Toa(ps™ =i )+ Tas (5" —Pi™) 4y =— 2t il

(7.125)

Substitution of the values in this equation gives

21.0847 (p3*! —pi* ') +20.1622 (pa* ! —pi*t!) — 400 =1.11317 [p4*" — 3000
or after factorizing and ordering the unknowns,
21.0847p5* ! —42.3601p; ! +20.1622p2 %' = —2939.510 (7.126)
For gridblock 5, n=35, and w5={4}. Therefore, Eq. (7.118) becomes

n+l Vb5¢;(c+c¢)[ n+l

Tus(pit! —p3™') vail' =— 2 —pl] (7.127)
)
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Substitution of the values in this equation gives
20.1622(p} "' — pi*!) +0=0.723562 [p: "' —3000]
or after factorizing and ordering the unknowns,
20.1622p5* ' —20.8857p2* ! = —2170.686 (7.128)

The results of solving Egs. (7.120), (7.122), (7.124), (7.126), and (7.128)
for the unknown pressures are pi*'=2936.80 psia, p4"'=2928.38 psia,
Pt =2915.68 psia, pit' =2904.88 psia, and p2™!' =2908.18 psia.

2. Second time step calculations (n=1, #,,; =10 days, and Az=35 days)

Assign p=2936.80 psia, p5=2928.38 psia, p5=2915.68 psia, pj=2904.88
psia, and p5=2908.18 psia. Because At is constant, the flow equation for each
gridblock in the second and succeeding time steps is obtained in a way similar to
that used in the first time step, except the newly assigned p), is used to replace
the old p), in the accumulation term. In fact, for horizontal reservoirs having
no-flow boundaries and constant production wells and simulated using a con-
stant time step, only the RHSs of the final equations for the first time step
change. The new value for the RHS of the equation for gridblock n is

Vi, b, ((‘+c )
n+1 bnPn ¢) n
[— s aBTAt pn]

For gridblock 1,

14.0442(p5*" —pi 1) +0=1.87013 [p}*' —2936.80] (7.129)

or after factorizing and ordering the unknowns,

—15.9143p1% " +14.0442p5% ' = —5492.20 (7.130)
For gridblock 2,

14.0442(p ' = p5* 1) +15.7131 (p5 ' = p5 ') +0
=1. 13544[ 5+ —2928.38] (7.131)

or after factorizing and ordering the unknowns,
14.0442p}* ' —30.8927p5* ! +15.7131p5 ! = —3325.00 (7.132)
For gridblock 3,

157131 (p5*! —pi*!) +21.0847 (p4 ' —ps+1) +0
=0.333952[p3* " —2915.68] (7.133)

or after factorizing and ordering the unknowns,

15.7131p5 1 — 37.1318p5* ! +21.0847p, ! = —973.6972 (7.134)
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For gridblock 4,
21.0847 (pa* ! —pit 1) +20.1622(p2+ ! —pi*t 1) —400 = 1.11317 [p}+ —2904.88]
(7.135)
or after factorizing and ordering the unknowns,
21.0847p5+! —42.3601p;+! +20.1622p2 ' = —2833.63 (7.136)
For gridblock 5,
20.1622(p4 ' —p2*') +0=0.723562[pe* " —2908.180] (7.137)
or after factorizing and ordering the unknowns,
20.1622p5+! —20.8857p2+! = —2104.248 (7.138)

The results of solving Egs. (7.130), (7.132), (7.134), (7.136), and (7.138)
for the unknown pressures are pi*'=2861.76 psia, p5*'=2851.77 psia,
Py =2837.30 psia, pit' =2825.28 psia, and p2*' =2828.15 psia.

Table 7.1 shows gridblock pressures, the well production rate, and the FBHP
of the well as time progresses. Note that the reservoir produces at a constant
rate for the first 90days, after which the reservoir does not have the capacity
to produce fluid at the specified rate and the well is switched to operation
under a constant FBHP of 1500psia. Observe also that reservoir pressure
declines steadily from the initial condition of 3000 psia to ultimately 1500 psia
at abandonment. The estimated p,.r, reported in Table 7.1 used ky=333 md,
1.=75.392 ft, and G,,, =20.652 RB-cp/D-psi, which were based on the proper-
ties of wellblock 4 and the hosted well.

Example 7.12 A 0.5-ft-diameter water well is located in 20-acre spacing. The
reservoir thickness, horizontal permeability, and porosity are 30ft, 150md, and
0.23, respectively. The flowing fluid has FVF, compressibility, and viscosity of
IRB/B, 1x 107> psifl, and 0.5 cP, respectively. The reservoir external bound-
aries are no-flow boundaries. The well has open-well completion and is placed
on production at a rate of 2000 B/D. Initial reservoir pressure is 4000 psia. The
reservoir can be simulated using five gridblocks in the radial direction as shown
in Fig. 7.13. Find the pressure distribution in the reservoir after 1 day and 3 days,
and check the material balance each time step. Use single time steps to advance
the solution from one time to another.

Solution

The reservoir external radius is estimated from well spacing as
ro=(20 x 43560/r)"/* = 526.6040 ft. The well in wellblock 1 has r,,=0.25 ft.
Therefore, using Eq. (4.86) yields a;,=(526.6040/0.25)"” =4.6207112.

The location of gridblock 1 in the radial direction is calculated using
Eq. (4.87), which yields

r =[(4.6207112)log,(4.6207112)/(4.6207112 — 1)] x 0.25 =0.4883173 ft
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TABLE 7.1 Performance of the reservoir described in Example 7.11.

Time  p, P2 P3 Pa Ps Gsc, Pwi,
(day) (psia) (psia) (psia) (psia) (psia) (STB/D) (psia)

0 3000 3000 3000 3000 3000 0 3000

5 2936.80  2928.38 2915.68 2904.88 2908.18 —400 2875.83
10 2861.76 2851.77 2837.30 2825.28 2828.15 —400 2796.23
15 2784.83 2774.59 2759.86 2747.65 2750.44 —400 2718.60
20 2707.61 2697.33 2682.56 2670.32 2673.10 —400 2641.27
25 2630.34 2620.06 2605.28 2593.04 2595.81 —400 2563.98
30 2553.07 2542.78 2528.00 2515.76 2518.53 —400 2486.71
35 2475.79 2465.50  2450.72 2438.48 2441.26 —400 2409.43
40 2398.52  2388.23  2373.45  2361.21 2363.98  —400 2332.15
45 2321.24 2310.95 2296.17 2283.93 2286.71 —400 2254.88
50 2243.97  2233.68 2218.90 2206.66 2209.43 —400 2177.60
55 2166.69 2156.40 2141.62 2129.38 2132.15 —400 2100.33
60 2089.41 2079.12 2064.34 2052.10 2054.88 —400 2023.05
65 2012.14 2001.85 1987.07 1974.83 1977.60 —400 1945.78
70 1934.86 1924.57 1909.79 1897.55 1900.33 —400 1868.50
75 1857.59  1847.30 1832.52 1820.28 1823.05 —400 1791.22
80 1780.31 1770.02 1755.24 1743.00 1745.77 —400 1713.95
85 1703.03 1692.74 1677.96 1665.72 1668.50 —400 1636.67
90 1625.76  1615.47 1600.69  1588.45 1591.22  —400 1559.40
95 1557.58 1548.51 1535.55 1524.87 152717 —342.399 1500.00

100 1524.61 1520.22  1514.26  1509.47 1510.08 —130.389  1500.00
105 1510.35 1508.46  1505.91 1503.88 1504.09 —53.378 1500.00

110 1504.34  1503.54 1502.47  1501.61 1501.70  —22.229 1500.00

115 1501.82  1501.48 1501.03  1500.68  1500.71 -9.294 1500.00
120 1500.76  1500.62  1500.43  1500.28 1500.30 —3.890 1500.00
125 1500.32  1500.26  1500.18  1500.12  1500.12  —1.628 1500.00
130 1500.13  1500.11 1500.08  1500.05 1500.05 —0.682 1500.00

135 1500.06  1500.05  1500.03  1500.02  1500.02  —0.285 1500.00
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FIG. 7.13 Discretized 1-D reservoir in Example 7.12.

The locations of gridblocks 2, 3, 4, and 5 in the radial direction are calcu-
lated using Eq. (4.122), which gives

ri=(4.6207112)"1(0.4883173) (7.139)

for i=2, 3, 4, 5 or r,=2.2564ft, r;=10.4260 ft, r,=48.1758 ft, and
r5s=222.6063 ft.
The gridblock bulk volumes are calculated using Eq. (4.88b), yielding

Vi, = {(4.62071122 —1)*/[4.6207112%log,, (4.62071122)] }r} (*/2 x27z) x 30

=(597.2369)7
(7.140a)

fori=1, 2, 3, 4 and Eq. (4.88d) for i=5is

Vi, = {1 — [log,(4.6207112) /(4.6207112 — 1)]* [4.6207112% — 1]/

[(4.62071 12)?log, (4.62071 122)} }(526.6040)2(‘ /2% 27) %30

=0.24681778 x 10®
(7.140b)

Table 7.2 lists gridblock bulk volumes.
The transmissibility in the 7 direction is defined by Eq. (4.79a), which gives

1 1
T"m/z = G"ixl/z (,“B) = G"m/z (05><1> = (2)G":¢1/2 (7.141)



260 Petroleum reservoir simulation

TABLE 7.2 Gridblock bulk volumes and coefficients of the
accumulation term.

Vi, ¢y (c+Cp)
acB°At,

n i r; (ft) Vp (ft%) At; =1 day Aty =2 days
1 1 0.4883 142.41339 58.339292x 10~° 29.169646 x 10~°
2 2 2.2564 3040.6644 0.00124560063 0.62280032x 1073
3 3 10.4260 64,921.142 0.026594785 0.01329739
4 4 48.1758 1,386,129.5 0.56782451 0.28391226
5 5 222.6063 24,681,778 10.110829 5.0554145

where G, is defined in Table 4.3. With Af =27 and constant radial perme-
ability, the equation for the geometric factor reduces to

G _ 27 k- Az
T log e [anglog e (arg) / (e — 1) ] x [ (e — 1) /1og. (ae) | }

27Bk Az 27(0.001127)(150)(30)
" log.(ag)  log(4.6207112)

(7.142)

=20.819446

for all values of i.
Therefore, transmissibility in the radial direction can be estimated by
substituting Eq. (7.142) into Eq. (7.141), yielding

rp = (2)Gr,., = (2)(20.819446) = 41.6388914 (7.143)
for all values of i, or
Tl,Z = T2,3 = T3'4 = T4'5 =T=41 6388914B/D—p81 (7 144)

Note that gridblocks 2, 3, and 4 are interior gridblocks and gridblocks
1 and 5 have no-flow boundaries; that is, g&. lxl—O and q"”j—O

Therefore, Zq';; l =0 for all gridblocks. There is a well in wellblock 1;
leg,
that is, ¢’ = —2000 B/D and ¢ =q ' =g =gl =0.
The general form of the flow equation for gridblock # in this 1-D reservoir is
obtained from Eq. (7.81a) by discarding the gravity term and noting that

Zq’?.” =0 for all gridblocks, resulting in

SCln
leg,

V”(]bo c+cy
gv;Tln;l n+1 p2+1)+q?;1:%[pn+l pn] (7.118)
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1. First time step calculations (n=0, #,,; =1 day, and Ar=At, =1 day)
Assign p'{=p5 = pi=pl=p5=pi,=4000 psia.

Vi) (c+cy)  142.41339 x0.23 x (1 x 1077 +0)
aB’An 5.614583 x 1 x 1
=58.339292 x 10~° STB/D-psi

b, (c+ep)

aBAt

The calculated values of
Table 7.2.
For gridblock 1, n=1, and w;={2}. Therefore, Eq. (7.118) becomes

for n=1, 2, 3, 4, 5 are reported in

n+1 n+1 n+1 Vh]¢i(C+C¢>[ n+1

Tia(py™ =Pt v == —p] (7.119)

Substitution of the values in this equation gives
41.6388914(ps*' —pi*1) — 2000 =58.339292 x 10~° [p} "' — 4000]

or after factorizing and ordering the unknowns,
—41.6389497p"* 1 +41.6388914p3+! =1999.76664 (7.145)
For gridblock 2, n=2, and w,={1,3}. Therefore, Eq. (7.118) becomes

Vb2¢02 (C+C¢) [ n+ 1

a.B° At p2]

(7.121)

Tl,Z( n+1 pg+l)+T2’3( n+1 pg+1)+q21‘+2—17

Substitution of the values in this equation gives

41.6388914 (p}*' — "+1)+416388914( prlpith) 40
=1.24560063 x 1072 [p4*! —4000]

or after factorizing and ordering the unknowns,

41.6388914p*! —83.2790283p5* ! +41.6388914p+! = —4.98240254
(7.146)

For gridblock 3, n=3, and w3 ={2,4}. Therefore, Eq. (7.118) becomes

n n n n V—¢o C+C n n
T2,3(1724rl P3+1)+T3,4(17 P3+1) qu:l—%[mﬂ_m]

(7.123)

Substitution of the values in this equation gives

41.6388914(p; "' —pi*') +41.6388914 (p; "' —pi*') +0
=0. 026594785[ 4+ —4000]
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or after factorizing and ordering the unknowns,

41.6388914p5* ! —83.3043775p5+ ! +41.6388914p, ! = —106.379139

(7.147)
For gridblock 4, n=4, and w4={3,5}. Therefore, Eq. (7.118) becomes
n n n n n Vb ¢Z (C+C¢) n
T5a(pht =it ") + Tas (P2t —pi* 1) + g0t =W [Pa = pl)
(7.125)

Substitution of the values in this equation gives

41.6388914(p4 ™ —pi*1) +41.6388914(p2 1 —pi+1) +0=0.56782451 [p} ! —4000]

or after factorizing and ordering the unknowns,
41.6388914p ! —83.8456072p+" +41.6388914p2+! = —2271.29805
(7.148)
For gridblock 5, n=35, and ws={4}. Therefore, Eq. (7.118) becomes
Vs by (c+cg) [ n+l
a.B° At
Substitution of the values in this equation gives
41.6388914(p; "' —p2*') +0=10.110829 [p2*' —4000]
or after factorizing and ordering the unknowns,
41.6388914ps*! —51.7497205p2 %! = —40443.3168 (7.149)

The results of solving Egs. (7.145), (7.146), (7.147), (7.148), and (7.149)
for the unknown pressures are pi*'=3627.20 psia, pi*'=3675.23 psia,
Pt =3723.25 psia, p4t' =3771.09 psia, and p2*' =3815.82 psia.
We apply Eq. (7.85) to check the material balance for the first time step:

T4,5( n+1 pg+l) +q;l(-:l — ps} (7127)

ivb ¢n<6+c¢) n+1 n}
—  aBAt It P

Zlq?c: s Z > di!
=

n=11€¢,
58.339292 x 1076 x (3627.20 — 4000) + 1.24560063 x 1073 x (3675.23 — 4000)
+0.026594785 x (3723.25 —4000) + 0.56782451 x (3771.09 — 4000)
+10.110829 x (3815.82 —4000)

Iyp =

[(0+0+0+0—2000)+ (0+0+0+0+0)]
_ —1999.9796

=0.999990
—2000

Therefore, the material balance is satisfied.
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2. Second time step calculations (n=1, t,,1 =3 days, and Ar= Az, =2 days)

Assign p'=3627.20 psia, p5=23675.23 psia, p5=3723.25 psia, p4=3771.09
psia, and p5=23815.82 psia.

Vi (c+cg)  142.41339%0.23 x (1x 1077 +0)

a.B’At, 5.614583 x 1 x 2
=29.169646 x 10~° STB /D-psi
The calculated values of ﬁ for i=1, 2, 3, 4, 5 are reported in

Table 7.2.

The gridblock flow equations for the second time step are obtained by apply-
ing Eq. (7.118).

For gridblock 1,

41.6388914(p} nl pq‘“) 2000 =29.169646 x 10~ [ s 3627.20]
or after factorizing and ordering the unknowns,
—41.6389205p" ! +41.6388914p3+ ! =1999.89420 (7.150)
For gridblock 2,

41.6388914 (pi*! — "+1)+41 6388914 (pi+! — pi+1) +0
=0.62280032 x 107 [p4*+! —3675.23]

or after factorizing and ordering the unknowns,

41.6388914p/*! —83.2784055p5+ ! +41.6388914p5 "' = —2.28893284
(7.151)

For gridblock 3,

41.6388914 (p5 "' —pi*") +41.6388914 (p; "' —pi*') +0
=0. 01329739[ i+l —3723.25]

or after factorizing and ordering the unknowns,

41.6388914p5*! —83.2910801p5+! +41.6388914p}+! = —49.5095063
(7.152)

For gridblock 4,

41.6388914 (p3 "' —pi*") +41.6388914 (p2* ' —pi*') +0
=0. 28391226[ 4t —3771.09]

or after factorizing and ordering the unknowns,

41.6388914p5* ! —83.561695p; ! +41.6388914p* ! = —1070.65989
(7.153)
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For gridblock 5,
41.6388914(py "' —pit!) +0=5.0554145[pe* ! —3815.82]
or after factorizing and ordering the unknowns,
41.6388914p:* ! —46.6943060p*! = —19290.5407 (7.154)

The results of solving Egs. (7.150), (7.151), (7.152), (7.153), and (7.154)
for the unknown pressures are pi*'=3252.93 psia, p4*'=3300.96 psia,
P =3348.99 psia, piT' =3396.89 psia, and p2*' =3442.25 psia.

We apply Eq. (7.85) to check the material balance for the second time step:

ivb”¢;(c+c¢) [ n+1

Pn _pjﬂ

5 5
PIAAED DD
n=1

n=11€¢,
29.169646 x 1070 x (3252.93 —3627.20) +0.62280032 x 1073 x (3300.96 — 3675.23)
+0.01329739 x (3348.99 —3723.25) +0.28391226 x (3396.89 —3771.09)
+5.0554145 x (3442.25 —3815.82)

[(0+0+0+0—2000)+(0+0+0+0+0)]
~—2000.0119

=1.
~2000 000006

Therefore, the material balance is satisfied.

7.3.3 Compressible fluid flow equation

The density, FVF, and viscosity of compressible fluids at reservoir temperature
are functions of pressure. Such dependence, however, is not as weak as the case
in slightly compressible fluids. In this context, the FVF, viscosity, and density
that appear on the LHS of the flow equation (Eq. 7.12) can be assumed constant
but are updated at least once at the beginning of every time step. The accumu-
lation term is expressed in terms of pressure change over a time step such that
the material balance is preserved. The following expansion preserves material

balance:
¢ n+1 ¢ n B Vb,, ¢ / . )
(5) . <E> ] Y <B_g>n Pyt —pp) (7.155a)

/
where (Bi) is the chord slope of <g) between the new pressure (pi*') and
son 8/ n

the old pressure (p},). This chord slope is evaluated at the current time level but is
one iteration lagging behind; that is,

Vb,
a.At

)

/ n+1 n ,
(1;%) N (§> _@) / {Pﬁwl—pﬁ] (7.156a)



Single-phase flow equation for various fluids Chapter | 7 265

As shown in Section 10.4.1, the RHS of Eq. (7.156a) can be expanded as

(b ' n(-l;—)l 1 / 1 !
— | = — — 7.156b
&), (5) 5 e

n

1 !
where again (—) and ¢, are defined as the chord slopes estimated between
gfl

. . . v) .
values at the current time level at old iteration n + 1 and old time level n,

1Y 11 W
) - (o) () om
8n B;” &

and
¢:l: ( ZQI_ ¢n>/< Z+l n) :¢;C¢ (7158)

Alternatively, the accumulation term can be expressed in terms of pressure
change over a time step using Eq. (7.9) and by observing that the contribution of
rock compressibility is negligible compared with that of gas compressibility,
resulting in

Vb” f n+17 Q n :M 1 1

a.At|\B), B),| acAt |Bi*' Bl

Vo, (aT [ent ] Ve b T [P0 P (7.155b)
acAt pS( T Z’n1+ ! Z’n1 pS(TAt ZZH— ! ZZ .

If we adopted the approximation given by Eq. (7.155b), then the flow equa-
tion for compressible fluids becomes

Vb ¢O Tsc' Pn+ ! pn
Z1—7Z,)| + mog g = Ontnm ¢\ Tn  Tn
Z -7, n( = )] Z qsc,,,, 9y, ps(;TAt Zg 1 Zz,

ley, 1€,

(7.159)

In this book, however, we adopt the approximation given by Eq. (7.155a),
which is consistent with the treatment of multiphase flow in Chapter 10. The
resulting flow equation for compressible fluids becomes

Vi, (&)
ST 00 =) <20+ S it = () 7
ley, leg, ¢ 8/ n

(7.160)
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i
where (Bi) is defined by Eq. (7.156b).

7.3.3.1 Formulations of compressible fluid flow equation

The time level m in Eq. (7.160) is approximated in reservoir simulation in one
of three ways, like in the case for slightly compressible fluids. The resulting
equation is commonly known as the explicit formulation of the flow equation
(or forward-central-difference equation), the implicit formulation of the flow
equation (or backward-central-difference equation), and the Crank-Nicolson
formulation of the flow equation (or second-order-central-difference
equation).

Explicit formulation of the flow equation

The explicit formulation of the flow equation can be obtained from Eq. (7.160)
if the argument F" (defined in Section 2.6.3) is dated at old time level ¢"; that is,
"=2¢", and as a result, F"" =2 F". Therefore, Eq. (7.160) reduces to

n n V/’n ¢ / n+1
ZTI n [(pl _pn) 71 n quq ” .SL” - a. At B_ [p pn]

ley, leg,

(7.161a)

or

) Tl’f(i,_,-,k)Kp, —Pi 1k> ~ T (G = Zij ] > @, i T Docy

ley; i €& j &

¢ ' n n
ahr\ay) Pt
i,j.k
(7.161b)

In addition to the remarks related to the explicit formulation method men-
tioned in Section 7.3.2.1, the solution of Eq. (7.161) requires iterations to

”
remove the nonlinearity of the equation exhibited by Bg: lin the definition of

/
(l;%) on the RHS of the equation.

Implicit formulation of the flow equation

The implicit formulation of the flow equation can be obtained from Eq. (7.160)
if the argument F™" (defined in Section 2.6.3) is dated at new time level 7"*'; that
is, 722", and as a result, F" 2 F"*! Therefore, Eq. (7.160) reduces to

n+] n+l n+l n+l n+1
E :Tl n ) yl n E :qscl qsc,,

ley, €&,

o Vo <£> '+ —p] (7.162a)
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or

n+1 n+1 n+1 n n+1 n+1
Z T, (uk)[(pl _Puk) ~V1 a0 (8= Zi } Z Der, i T Dscijn

Ik €& j
/
gvbi,jsk ﬂ [p11+l pn :|
ANy T

In this equation, dating fluid gravity at old time level n instead of time level
n+1 does not introduce any noticeable errors (Coats et al., 1974). Unlike
Eq. (7.81) for slightly compressible fluids, Eq. (7.162) is a nonlinear equation

(7.162b)

!
due to the dependence of transmissibility ( ,’Zl) and (%) on the pressure solu-
8/ n

tion. These nonlinear terms present a serious numerical problem. Chapter 8 dis-
cusses the linearization of these terms in space and time. The time linearization;
however, introduces additional truncation errors that depend on time steps.
Thus, time linearization reduces the accuracy of solution and generally restricts
time step. This leads to the erasing of the advantage of unconditional stability
associated with the implicit formulation method mentioned in Section 7.3.2.1.

Crank-Nicolson formulation of the flow equation

The Crank-Nicolson formulation of the flow equation can be obtained
from Eq. (7.160) if the argument F™ (defined in Section 2.6.3) is dated at time
/"' In the mathematical approach, this time level was selected to make the
RHS of Eq. (7.160) a second-order approximation in time. In the engineering
approach; however, the argument F™ can be approximated as

Frepr+l/2 =1/, (Fr 4 Fr+ 1), Therefore, Eq. (7.160) becomes

eI TL (0 —p) — v @20 |+ S T [ i) — 1@ - 2)

ley, ley,
Vi ¢ ! 1
e\ Y i, + Y _ai) | g, i) =S (—> [P =ph]
gé‘; Lin g};ﬂ Iin ( n n ) aL-At Bg ,
(7.163a)
Eq. (7.163a) can be rewritten in the form of Eq. (7.162) as
ST e =) @20+ Y !
lew, =3
!/
QL ﬁ [ n+l _ n]
~a.(At2)\B, ) Pn TP (7.163b)

{ZT’I n ﬂl,n(zl - Zn)] + Zq;l('l,n + q:‘l(." }

ley, leg,
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7.3.3.2 Advancing the pressure solution in time

The pressure distribution in a compressible flow problem changes with time,
as is the case with slightly compressible fluid flow. Therefore, a compressible
fluid flow problem has an unsteady-state solution, and the pressure solution is
obtained in the same way as that for slightly compressible fluid flow discussed
in Section 7.3.2.2, with a few exceptions. These include the following: (1) Ini-
tialization may require iteration because gas gravity is a function of pressure;
(2) transmissibilities in step 1 are not kept constant but rather are calculated
at the upstream blocks and updated at the beginning of each time step;
(3) Eq. (7.161), (7.162), or (7.163) is used instead of Eq. (7.80), (7.81), or
(7.82) in step 4; (4) an additional step immediately before step 5 is added to
linearize the flow equations for compressible fluid (discussed in Chapter 8);
and (5) obtaining the pressure solution may require iterations because the flow
equation for compressible fluid is nonlinear compared with the almost-linear
flow equation for slightly compressible fluid.

7.3.3.3 Material balance check for a compressible fluid flow
problem

For the implicit formulation, the incremental and cumulative material balance
checks for compressible fluid flow problems are given by Egs. (7.83) and
(7.84), where the rock porosity is defined by Eq. (7.11) and FVF is for natural
gas, yielding

N Vb,, <£)n+l_<£>n‘|
—a.At | \B,/, B.),
Ip ="=— : i (7.164)
> (e )
n=1 1€,

and

S (@) ()]

N
Atmz (C[w qu(,n>

m=1 n=1 leg,

(7.165)

Cup=

where N is the total number of blocks in the reservoir.

The following example presents a single-well simulation of a natural gas
reservoir. It demonstrates the iterative nature of the solution method within indi-
vidual time steps and the progression of the solution in time.

Example 7.13 A vertical well is drilled on 20-acre spacing in a natural gas res-
ervoir. The reservoir is described by four gridblocks in the radial direction as
shown in Fig. 7.14. The reservoir is horizontal and has 30ft net thickness
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1 MMscf/D

A

j e o 30 ft

2] 3 4

it ,

e o 30 ft
12| 3 4

T’!'w ';e‘r

FIG. 7.14 Discretized 1-D reservoir in Example 7.13.

and homogeneous and isotropic rock properties with k=15 md and ¢=0.13.
Initially, reservoir pressure is 4015psia. Gas FVF and viscosity dependence
on pressure are presented in Table 7.3. The reservoir external boundaries are
sealed off to fluid flow. Well diameter is 6in. The well produces 1 MMscf/D
with a minimum FBHP of 515 psia. Find the pressure distribution in the reser-
voir every month (30.42days) for 2years. Take time steps of 30.42 days.

Solution

The interblock geometric factors in the radial direction and the gridblock
bulk volumes can be calculated exactly as in Example 7.12. Alternatively, grid-
block boundaries are estimated using Eqs. (4.82a), (4.83a), (4.84a), and (4.85a),
followed by estimating interblock geometric factors using Table 4.2 and grid-
block bulk volumes using Egs. (4.88a) and (4.88c). The gridblock boundaries,
bulk volume, and geometric factors are presented in Table 7.4.

For single-well simulation in a horizontal reservoir (Z,= constant) with

no-flow boundaries <Zq§‘;1 0), Eq. (7.162a) reduces to
leg,

’H’l n+l n+l n+l __ Vbn ﬂ ' n+1
> T Pt =) I -p] (7166w)
C g n

ley,

The gas in this reservoir flows toward the well in gridblock 1. Therefore,
gridblock 4 is upstream to gridblock 3, gridblock 3 is upstream to gridblock
2, and gridblock 2 is upstream to gridblock 1. In solving this problem, we
use the implicit formulation with simple iteration (Section 8.4.1.2) and
upstream weighting (Section 8.4.1.1) of the pressure-dependent terms in trans-
missibility. Placing the iteration level, Eq. (6.166a) becomes

(v+1) (z.+1) (v+1) V ! (v+1)
ZTlr:;][( n+1 ! |>] +q;’;:l :a—bAt<B£> [ ZH _pz} (7.166b)
.

ley, 8/ n
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TABLE 7.3 Gas FVF and viscosity for Example 7.13.

Pressure (psia)

215.00

415.00

615.00

815.00

1015.00
1215.00
1415.00
1615.00
1815.00
2015.00
2215.00
2415.00
2615.00
2815.00
3015.00
3215.00
3415.00
3615.00
3815.00
4015.00

GFVF (RB/scf)
0.016654
0.008141
0.005371
0.003956
0.003114
0.002544
0.002149
0.001857
0.001630
0.001459
0.001318
0.001201
0.001109
0.001032
0.000972
0.000922
0.000878
0.000840
0.000808
0.000779

Gas viscosity (cP)
0.0126
0.0129
0.0132
0.0135
0.0138
0.0143
0.0147
0.0152
0.0156
0.0161
0.0167
0.0173
0.0180
0.0186
0.0192
0.0198
0.0204
0.0211
0.0217
0.0223

TABLE 7.4 Gridblock locations, boundaries, bulk volumes, and interblock
geometric factors for Example 7.13.

i n ri (ft)

1 1 0.5611
2 2 3.8014
3 3 25.7532

4 4 174.4683

f12 (ft)
0.2500
1.6937
11.4739

77.7317

i (f0) ri—az (ft)

1.6937 0.2837
11.4739 1.9221
77.7317 13.0213

526.6040 88.2144

G,
i1
riv1/2 (ft) (RB-cP/D-psi)

1.9221 1.6655557
13.0213 1.6655557
88.2144 1.6655557

526.6040 1.6655557

Vp, (fE))

340.59522
15,631.859
717,435.23

25,402,604
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1. First time step calculations (n =0, t,,; =30.42 days, and Ar=30.42 days)

Assign pi=p3=p3=pi=pi,=4015 psia. |
For the first iteration (v =0), assume p”+ 1= =ph=4015psiaforn=1,2,3,4.
Table 7.5 presents the estimated values of FVF and viscosity using linear inter-

!/
polation within table entries, chord slope (%) , and ;/’X[ (Bﬂ) for all grid

!
blocks. It should be mentioned; however, that the calculation of (Bﬁ) used a
perturbed value of p"”—pn —e=pi—1=4015—-1=4014 psia for n=1, 2,
3, 4 only for the first iteration.
For example, for gridblock 1,

)
(¢>n+1 <¢ n 013 013
’ B “\B ] —\o.
<£) B | 1 \0.00077914 0.000779 —0.03105672

BT 4014 —4015
V. " 34059522 x 0.03105672
wch <B%)1 T Seass3xz042 0T
and
s |
i =G (E)z = 10033357 (0.0223000 x 0.00077900)

=95877.5281

for upstream weighting of transmissibility.

v
Tn+ 1 — Tn:- 1
3,4

Therefore, T”+ ! s

1,2

=95877.5281 scf/D-psi. Note that
4
upstream weighting is not evident for the first iteration in the first time step

because all gridblock pressures are assumed equal.

TABLE 7.5 Estimated gridblock FVF, viscosity, and chord slope at old
iteration v = 0.

©) A% Vi, (¢
Blockn  pf*'(psia)  Bg (RB/scf)  pg (cP) (E)n acAt (E)n
1 4015 0.00077900 0.0223000 0.03105672 0.06193233
2 4015 0.00077900 0.0223000 0.03105672 2.842428
3 4015 0.00077900 0.0223000 0.03105672 130.4553

4 4015 0.00077900 0.0223000 0.03105672 4619.097
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For gridblock 1, n=1, and y; ={2}. Therefore, Eq. (7.166b) becomes

(v+1) (v+1) Vb ¢ !/ (v+1)
(pﬁ“ p’f“) ta = (B—) {p’f“ pi‘} (7.167)
2 ¢ 871

i
n
T2,1

Substitution of the values in this equation gives

(v+1) (v+1) (v+1)

95877.5281 <pg+‘ —p'f”) —10° =0.06193233 {p'f“ - 4015]

or after factorizing and ordering the unknowns,

(v+1) (v+1)

—95877.5900p" " 11+95877.528 lngrl =999751.1342 (7.168)
For gridblock 2, n=2, and w,={1,3}. Therefore, Eq. (7.166b) becomes

v)

(v+1) (v+1) (v) (v+1) (v+1)
1 1 1 1 1 1
T75 (p’{* -py° >+T§,Z <p§” -py° )
2 3
Vb ¢ I o(w+l)
+qut =— (=) [P =) 7.169
qS(,2 a(¢Af Bg 5 p2 p2 ( )

Substitution of the values in this equation gives

(v+1) (v+1) (v+1) (v+1)
95877.5281 (;f;“ —pg“) +95877.5281 (pg“ _ng) +0
(v+1)
=2.842428 |:p'21+1 —4015]

or after factorizing and ordering the unknowns,

(v+1) (v+1) (v+1)

95877.5281p1 %' — 191757.899p5* 1 +95877.528 1p* ! = —11412.3496
(7.170)

For gridblock 3, n=3, and w3 ={2,4}. Therefore, Eq. (7.166b) becomes
) (v+li (L+li (p)l (L+li (1/+1i |
n+ n+ n+ n+ n+ n+
\ (Pz —D;3 > +Ty5 \ <P4 —P3 ) + e,

;%!
Vi, (N [ 4
_ s (P el 7171
acAt(Bg N LCE (7.171)

Substitution of the values in this equation gives

(v+1) (v+1)

(v+1) (v+1)
95877.5281 <pg+1 pf;“) +95877.5281 <p§+1 pf;“) +0

(v+1)
=130.4553 {pg“ 4015]
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or after factorizing and ordering the unknowns,

(v+1) (v+1) (v+1)
95877.5281p5 "' — 191885.511p5 "' +95877.5281p, ' = —523777.862
(7.172)
For gridblock 4, n=4, and w4={3}. Therefore, Eq. (7.166b) becomes
(v) (v+1) (v+1) / (w+1)
Vo, (&
1 1 1 n+1 b 1
| () e e () )
Substitution of the values in this equation gives
(v+1) (v+1) (v+1)
95877. 5281( o+l p3+1> +0=4619. 097[ ! 4015}
or after factorizing and ordering the unknowns,
(v+1) (v+1)
95877.5281p4% ' — 100496.626p; "' = —18545676.2 (7.174)

The results of solving Eqs. (7.168), (7.170), (7.172), and (7.174) for the

)

unknown  pressures are  p"*!=3773.90 psia, "” =3784.33 psia,
M m

i+l =3794.75 psia, and pi*! =3804.87 psia

For the second iteration (v=1), we use p”+1 to estimate the values of FVF

/
and viscosity using linear interpolation within table entries, chord slope (g) ,
8/ n

!
and (:/,IXI (Bﬁ) for gridblock n. Table 7.6 lists these values. For example, for

gridblock 1,

()

¢ "“_ P\" 0.13 [ 013
o\ \BJ, B), \0.00081458 0.000779
i I = =0.03022975
( 1 ©) 3773.90 — 4015

n+1 n

P1 — P

TABLE 7.6 Estimated gridblock FVF, viscosity, and chord slope at old
iteration v =1.

0 A} Vi (4
Block n p2*1 (psia) B, (RB/scf) pg (cP) (E)n AL (g)n
1 3773.90 0.00081458 0.0215767 0.03022975 0.0602832
2 3784.33 0.00081291 0.0216080 0.03017631 2.761849
3 3794.75 0.00081124 0.0216392 0.03011173 126.4858

4 3804.87 0.00080962 0.0216696 0.03003771 4467.390
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=0.0602832

Vi, <¢ >' ~340.59522 x 0.03022975

a.Art\B,/ 5.614583 x 30.42

and

@)

1 n+1
:G"1+1 D
2 " (ﬂ3>2

=1.6655557 x (

) v)
n+1__ pn+1
Tl‘z,l T

1
0.0216080 x 0.00081291

> =94820.8191

for upstream weighting of transmissibility.
®

Similarly, T7*!
scf/D-psi. 7
For gridblock 1, n=1. Substituting the values in Eq. (7.167) gives

¥)
=94878.4477 scf/D-psi and T,’?;;l =94935.0267

4

3

(v+1) (v+1)

(v+1)
94820.8191 (pg” —p’;”) —10°=0.0602832 {p{'” —4015]

or after factorizing and ordering the unknowns,
(v+1) (v+1)
—94820.8794p"* ! +94820.8191p5* ! =999757.963 (7.175)
For gridblock 2, n=2. Substituting the values in Eq. (7.169) gives

(v+1) (v+1)

(v+1) (v+1)
94820.8191 (p';” —pg“) +94878.4477 <pg+1 _pg+1> +0
(v+1)
=2.761849 [pg“ —4015}

or after factorizing and ordering the unknowns,

(v+1) (v+1) (v+1)

94820.8191p] "' — 189702.029p5 "' +94878.4477p4+ ! = —11088.8252
(7.176)

For gridblock 3, n=3. Substituting the values in Eq. (7.171) gives

(v+1) (v+1)

(v+1) (v+1)
94878.4477 (pg” —pg“) +94935.0267 <pz“ —pi* ‘> +0
(v+1)
=126.4858 [pg“ —4015}

or after factorizing and ordering the unknowns,

(v+1) (v+1) (v+1)

94878.4477p5* " —189939.960p45 "' +94935.0267p4 ! = —507840.406
(7.177)



Single-phase flow equation for various fluids Chapter | 7 275

TABLE 7.7 The pressure solution at t,.; =30.42 days for successive
iterations.

n+1 n+1 n+1

12 (psia) P35+ (psia) (psia) (psia)
1 3773.90 3784.33 3794.75 3804.87
2 3766.44 3776.99 3787.52 3797.75
3 3766.82 3777.37 3787.91 3798.14

For gridblock 4, n=4. Substituting the values in Eq. (7.173) gives

(v+1) v+1) (v+1)

94935. 0267( arl pg”) +0=4467. 390[ A 4015]

or after factorizing and ordering the unknowns,

(v+1) (v+1)

94935.0267p4* ! —99402.4167p;* ! = —17936570.6 (7.178)
The results of solving Egs. (7.175), (7.176), (7.177), and (7.178) for the
®
unknown  pressures  are ”” =3766.44 psia,  pi*'=3776.99 psia,

@ @
pi+t1=3787.52 psia, and p*'=13797.75 psia.
The iterations continue until the convergence criterion is satisfied. The suc-
cessive iterations for the first time step are shown in Table 7.7. It can be seen
that it took three iterations to converge. The convergence criterion was set as

(v+1) v)
n+1 n+1

max (Pr——Pn_| <0001 (7.179)

I<n<N n + 1
P

After reaching convergence, time is incremented by Ar=30.42 days. and
the above procedure is repeated. The converged solutions at various times up
to 2years of simulation time are shown in Table 7.8. Inspection of the simula-
tion results reported in Table 7.8 reveals that the well switched to a constant
FBHP of 500 psia after 21 months because the reservoir does not have the capac-
ity to produce gas at the specified rate of 1 MMscf/D.

7.4 Summary

Reservoir fluids are incompressible, slightly compressible, or compressible.
The flow equation for an incompressible fluid in incompressible porous
media is described by Eq. (7.16). Reservoir pressure in this case has steady-state
behavior and can be obtained using the algorithm presented in Section 7.3.1.1.



TABLE 7.8 The converged pressure solution and gas production at various times.

n+1 Time (day) v pitt (psia) p5+" (psia) p5+" (psia) pat" (psia) pii! (psia) Goec (MMscf/D) Cumulative production (MMMscf)
1 30.42 3 3766.82 3777.37 3787.91 3798.14 3762.36 —1.000000 —0.0304200
2 60.84 3 3556.34 3567.01 3577.67 3588.02 3551.82 —1.000000 —0.0608400
3 91.26 3 3362.00 3372.80 3383.58 3394.05 3357.43 —1.000000 —0.0912600
4 121.68 3 3176.08 3187.08 3198.06 3208.72 3171.43 —1.000000 —0.121680
5 152.10 3 2995.56 3006.78 3017.97 3028.85 2990.81 —1.000000 —0.152100
6 182.52 3 2827.23 2838.72 2850.18 2861.32 2822.36 —1.000000 —0.182520
7 212.94 3 2673.43 2685.26 2697.06 2708.50 2668.42 —1.000000 —0.212940
8 243.36 2 2524.28 2536.47 2548.62 2560.41 2519.12 —1.000000 —0.243360
9 273.78 3 2375.01 2387.59 2400.12 2412.25 2369.67 —1.000000 —0.273780
10 304.20 3 2241.26 2254.33 2267.35 2279.97 2235.71 —1.000000 —0.304200
11 334.62 3 2103.68 2117.34 2130.93 2144.09 2097.88 —1.000000 —0.334620
12 365.04 3 1961.05 1975.39 1989.65 2003.42 1954.95 —1.000000 —0.365040
13 395.46 3 1821.72 1836.86 1851.91 1866.47 1815.29 —1.000000 —0.395460
14 425.88 3 1684.94 1701.18 1717.27 1732.78 1678.02 —1.000000 —0.425880
15 456.30 3 1543.26 1560.78 1578.11 1594.79 1535.78 —1.000000 —0.456300
16 486.72 4 1403.75 1422.64 1441.34 1459.36 1395.67 —1.000000 —0.486720
17 517.14 3 1263.19 1284.07 1304.65 1324.36 1254.24 —1.000000 —0.517140
18 547.56 3 1114.51 1137.93 1160.87 1182.74 1104.42 —1.000000 —0.547560
19 577.98 4 964.49 991.04 1016.79 1041.39 952.91 —1.000000 —0.577980
20 608.40 4 812.91 844.10 874.32 902.83 799.30 —1.000000 —0.608400
21 638.82 3 645.89 684.85 721.84 755.98 628.58 —1.000000 —0.638820
22 669.24 4 531.46 567.57 601.01 631.84 515.00 —0.759957 —0.661938
23 699.66 4 523.60 543.17 561.98 579.67 515.00 —0.391107 —0.673835

24 730.08 3 519.68 530.53 541.13 551.32 515.00 —0.211379 —0.680266
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For a slightly compressible fluid, the flow equation can be expressed using
explicit formulation (Eq. 7.80), implicit formulation (Eq. 7.81), or the
Crank-Nicolson formulation (Eq. 7.82). For a compressible fluid (natural
gas), the flow equation can be expressed using explicit formulation
(Eq. 7.161), implicit formulation (Eq. 7.162), or the Crank-Nicolson formula-
tion (Eq. 7.163). Reservoir pressure for slightly compressible and compressible
fluids has unsteady-state behavior. The pressure solution is obtained by march-
ing in time from the initial conditions to the desired time using time steps.
Advancing the pressure solution one time step is obtained using the algorithms
presented in Section 7.3.2.2 for a slightly compressible fluid or that presented in
Section 7.3.3.2 for a compressible fluid. Material balance is checked every time
a pressure solution is obtained. Eq. (7.17) applies to incompressible fluid flow.
Egs. (7.83) and (7.84) (or Eqgs. 7.85 and 7.86) apply to slightly compressible
fluid flow, and Eqgs. (7.164) and (7.165) apply to compressible fluid flow.
The incremental material balance checks, however, are more accurate than
the cumulative material balance checks.

7.5 Exercises

7.1 Examine the various terms in Eq. (7.16a) for incompressible fluid flow
and then give justification for describing it as a linear equation.

7.2 Examine Eq. (7.81a) for a slightly compressible fluid and then give jus-
tification and conditions under which it can be considered a linear
equation.

7.3 Examine Eq. (7.162a) for a compressible fluid and then give justification
for describing it as a nonlinear equation.

7.4 Explain why Eq. (7.80a) is explicit, whereas Eq. (7.81a) is implicit.

7.5 A 1-D reservoir consists of four gridblocks (N=4) and contains an
incompressible fluid. The reservoir boundaries can be subject to any con-
dition. Write the flow equation for each individual gridblock. Add up all
flow equations and prove that the material balance for this reservoir is
given by Eq. (7.17a) for N=4.

7.6 Repeat the procedure in Exercise 7.5 and prove that the incremental mate-
rial balance for this reservoir is given by Eq. (7.85) for a slightly com-

pressible fluid using the implicit formulation.

7.7 In order, list all the steps necessary to advance the pressure solution in
time for compressible fluid flow in reservoirs.

7.8 Start with Eq. (7.88) and derive Eq. (7.86) as outlined in the text.
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7.9

7.10

Petroleum reservoir simulation

The estimation of transmissibility in incompressible fluid flow and in
slightly compressible fluid flow, as presented in this chapter, does not
mention or make use of upstream weighting. Explain why weighting (or
upstream weighting) of transmissibility is not needed in these two cases.

Consider the single-phase flow of slightly compressible oil in the 2-D
horizontal homogeneous reservoir shown in Fig. 7.15a. The reservoir
is volumetric; that is, it has no-flow boundaries. Initial reservoir pressure
is 4000 psia. Gridblock 5 houses a 7-in well at its center, which produces
at a constant rate of 50 STB/D. Gridblock dimensions and properties are
Ax=Ay=350 ft, h=20 ft, k, =k, =120 md, and ¢ =0.25 Oil properties
are B,=B.=1RB/STB, ¢,=7 x 10 ° psi~ ', 4, =6 cP, and c,=0 psi L.
Using the single-phase simulator, report the pressure distribution in the
reservoir shown in Fig. 7.15a and the well FBHP at 10, 20, and 50days.
Use single time steps to advance the solution from one time to the next.

AX

y
>

y {

4 ® 5@ 6 ® gAy

(a)
4 5 S 5
—0—4@
1 +2 1 2 3 1 2
° °
(b) (c) (d)

FIG.7.15 2-Dreservoir and elements of symmetry in Exercises 7.10 through 7.13. (a) Discretized
2-D reservoir in Exercise 7.10, (b) Element of symmetry in Exercise 7.11, (c) Element of symmetry
in Exercise 7.12, and (d) Element of symmetry in Exercise 7.13.

711

Consider the flow problem presented in Exercise 7.10. In addition, con-
sider symmetry about the two vertical planes passing through the center
of gridblock 5 and perpendicular to either the x-axis or y-axis. Using the
element of symmetry shown in Fig. 7.15b, estimate the pressure distribu-
tion in the reservoir and the well FBHP at 10, 20, and 50days.
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7.13

7.14
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Consider the fluid flow problem described in Exercise 7.10. This time
consider symmetry only about the two diagonal planes passing through
the center of gridblock 5. Using the element of symmetry shown in
Fig. 7.15c, estimate the pressure distribution in the reservoir and the well
FBHP at 10, 20, and 50days.

Consider the fluid flow problem described in Exercise 7.10. This time
consider symmetry about all four planes passing through the center of
gridblock 5. Using the smallest element of symmetry shown in
Fig. 7.15d, estimate the pressure distribution in the reservoir and the well
FBHP at 10, 20, and 50days.

A single-phase fluid reservoir is described by three equal gridblocks as
shown in Fig. 7.16. The reservoir is horizontal and has homogeneous
and isotropic rock properties, k=270 md and ¢ =0.27. Gridblock dimen-
sions are Ax=400 ft, Ay =650 ft, and 7 =060 ft. Reservoir fluid proper-
ties are B=1 RB/STB and u=1 cP. The reservoir left boundary is kept
constant at 3000 psia, and the reservoir right boundary is kept at a pressure
gradient of —0.2psi/ft. Two 7-in vertical wells were drilled at the centers
of gridblocks 1 and 3. The well in gridblock 1 injects 300 STB/D of fluid,
and the well in gridblock 3 produces 600 STB/D of fluid. Both wells have
zero skin. Assume that the reservoir rock and fluid are incompressible.
Find the pressure distribution in the reservoir.

Gsc, = —600 STB/D
Gsc, = 300 STB/D

y _
4})( 1
] 3 60 ft
Pp,=3000psa | ® i @ | . :—)’f = -0.2psiff
E

St
400 ft y

FIG. 7.16 Discretized 1-D reservoir in Exercise 7.14.

7.15

A 0.5-ft-diameter oil well is drilled on 10-acre spacing. The reservoir
thickness, horizontal permeability, and porosity are 50ft, 200md, and
0.15, respectively. The oil has FVF, compressibility, and viscosity of
1RB/STB, 5 x 10~° psi~ ', and 3 cP, respectively. The reservoir external
boundaries are no-flow boundaries. The well has open-well completion
and is placed on production at a rate of 100 STB/D. Initial reservoir pres-
sure is 4000 psia. The reservoir can be simulated using three gridblocks in
the radial direction as shown in Fig. 7.17.
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100 STB/D
A
[ 50 ft
3 \
([ J 50 ft
3 ,
fid r

FIG. 7.17 Discretized 1-D reservoir in Exercise 7.15.

7.16

Use single time steps to advance the solution from one time to
another. Find the pressure distribution in the reservoir and the FBHP
of the well after 5days. Check the material balance. Write the final form
of the flow equations for this reservoir after 10days.

A 0.5-ft-diameter oil well is drilled on 30-acre spacing. The reservoir
thickness, horizontal permeability, and porosity are 50ft, 210md, and
0.17, respectively. The oil has FVF, compressibility, and viscosity of
1RB/STB, 5x 107° psi_l, and 5cP, respectively. The reservoir external
boundaries are no-flow boundaries. The well has open-well completion
and is placed on production at a rate of 1500 STB/D. Initial reservoir pres-
sure is 3500 psia. The reservoir can be simulated using four gridblocks in
the radial direction as shown in Fig. 7.18. Use single time steps to advance
the solution from one time to another. Find the pressure distribution in the
reservoir and the FBHP of the well after 1 day and 3 days. Check the mate-
rial balance.

1500 STB/D

- 7
‘.0 0 | o 50 ft
thl2] 3 4 j

50 ft

w@
~0

o g

FIG. 7.18 Discretized 1-D reservoir in Exercise 7.16.

7.17 A single-phase fluid reservoir is discretized into four equal gridblocks as

shown in Fig. 7.19. The reservoir is horizontal and has k=70 md.
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Gridblock dimensions are Ax=400 ft, Ay=900 ft, and 2 =25 ft. Reser-
voir fluid properties are B=1 RB/STB and y=1.5 cP. The reservoir left
boundary is kept at a constant pressure of 2600 psia, and the reservoir
right boundary is kept at a constant pressure gradient of —0.2psi/ft. A
6-in vertical well located at the center of gridblocks 3 produces fluid
under a constant FBHP of 1000 psia. Assuming that the reservoir rock
and fluid are incompressible, calculate the pressure distribution in the res-
ervoir. Estimate the well production rate and the rates of fluid crossing the
reservoir external boundaries. Perform a material balance check.

pur= 1000 psia

=, ; ! i
— T~ 1 :

f 2 3 4
Po,,, = 2600 psia e { o | o [i & | « d—Xb=O.1 psi/ft
i 3

400 ft

FIG. 7.19 Discretized 1-D reservoir in Exercise 7.17.

7.18 Consider the reservoir shown in Fig. 7.20. The reservoir is discretized
into four equal gridblocks with Ax=300 ft, Ay =600 ft, =30 ft, and
k=180 md. The elevations of the center of gridblocks 1, 2, 3, and 4
are respectively 3532.34, 3471.56, 3410.78, and 3350.56ft below sea
level. The fluid FVF, viscosity, and density are 1RB/STB, 2.4cP, and
451bm/ft’, respectively. The centers of the reservoir west and east bound-
aries are respectively 3562.73 and 3319.62ft below sea level. The west
boundary is sealed off to flow, and the east boundary is prescribed at a
constant pressure gradient of 0.2 psi/ft. The reservoir has two 6-in wells.
The first well is located at the center of gridblock 1 and injects fluid at a
rate of 320 STB/D. The second well is located at the center of gridblocks 3
and produces fluid under a constant FBHP of 1200 psia. Assuming that
the reservoir rock and fluid are incompressible, calculate the reservoir
pressure distribution, the FBHP of the well in gridblock 1, and the pro-
duction rate of the well in gridblock 3. Perform a material balance check.

d—p| = 0.2 psifft
dx be

Gsc, = 320 STB/D

Z,.=3319.62 ft
Z, = 3350.56 ft
Z,=3410.78 ft
Z,=347156 ft
Z,=3532.34 ft
Z,,,=3562.73 ft

No-flow boundary

FIG. 7.20 Discretized 1-D reservoir in Exercise 7.18.
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7.19

7.20

Petroleum reservoir simulation

Perform a single-well simulation of the reservoir described in Exercise
7.16 assuming that the reservoir can be described using four gridpoints.

Consider the 2-D single-phase flow of incompressible oil taking place in
the inclined, homogeneous reservoir shown in Fig. 7.21. The reservoir
east and north external boundaries receive a constant influx of
0.02 STB/D-ft? from a neighboring reservoir. The reservoir west and south
external boundaries are no-flow boundaries. The elevation below sea level
of the center of gridblocks 1, 2, 3, and 4 are, respectively, 2000, 1700,
1700, and 1400ft. The pressure of gridblock 1 is kept at 1000 psia. The
gridblock properties are Ax= Ay =600 ft, # =40 ft, and k= k, = 500 md.
Oil density and viscosity are 37 Ibm/ft* and 4cP, respectively. Calculate
the pressure of gridblocks 2, 3, and 4. Then, estimate the production rate
of the well using the flow equation for gridblock 1, carry out a material
balance check for your results, and estimate the FBHP of the well given
that the well radius is 6 in. Consider symmetry about the vertical plane that
passes through the centers of gridblocks 1 and 4.

FIG. 7.21 Discretized 2-D reservoir in Exercise 7.20.

7.21

Consider the 1-D inclined reservoir shown in Fig. 7.22. The reservoir is
volumetric and homogeneous. The reservoir contains a production well
located in gridblock 2. At the time of discovery (¢=0), the fluids were
in hydrodynamic equilibrium, and the pressure of gridblock 2 was
3000psia. All gridblocks have Ax=400 ft, Ay=200 ft, h=80 ft,
k=222 md, and ¢=0.20. The well in gridblock 2 is produced at a rate
of 200STB/D, and fluid properties are p,=2 cP, B,=B,=1RB/STB,
po=45 Ibm/ft’, and ¢, =5 x 107> psi~'. Estimate the initial pressure dis-
tribution in the reservoir. Find the well FBHP and pressure distribution in
the system at 50 and 100days using the implicit formulation. Check the
material balance every time step.
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200 STB/D

No-flow boundary

Z, = 3500 ft
Y Z,=3700 ft
Z, =3900 ft

No-flow boundary
FIG. 7.22 Discretized 1-D reservoir in Exercise 7.21.

7.22 Consider the single-well simulation problem presented in Example 7.13.
Solve the problem again, but this time, the reservoir is discretized into
four gridpoints in the radial direction as shown in Fig. 7.23.

1 MMscf/D

A

Y No-flow boundary
S A
12| 3 4
ol@l ® 30 ft

Lo, 2
i=1i=2i=3 i=4

z

No-flow boundary
>r

FIG. 7.23 Discretized reservoir in Exercise 7.22.

7.23 If the reservoir described in Exercise 7.21 is horizontal as shown in
Fig. 7.24, observe and use the symmetry about the vertical plane that
passes through the center of gridblock 2 and solve the problem.

200 STB/D

y '
4” T 80 ft

1 2 N 3
— ™S o ( e [ e
No-flow boundary i

No-flow boundary

400 ft
————

FIG. 7.24 Discretized 1-D reservoir in Exercise 7.23.
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8.1 Introduction

The flow equations presented in Chapter 7 are generally nonlinear. Even if
solved implicitly, the nonlinearity comes in boundary conditions and wells,
which invoke discontinuities. Solving nonlinear algebraic equations is limited
to trivial ones. All other forms have to be linearized before they are amenable
to solutions. Only recently, some progress has been made for solving flow
equations in their nonlinear forms (Mustafiz et al., 2008a,b). These solutions
are extremely cumbersome to obtain and often result in hitting spurious solu-
tions. Fortunately, such rigorous treatment is not necessary for most practical
applications, for which a priori linearization suffices. To obtain the pressure
distribution in the reservoir, these equations are linearized to use linear
equation solvers. In this chapter, we aim at obtaining the linearized flow equa-
tion for an arbitrary gridblock (or gridpoint). To achieve this objective, we
identify the nonlinear terms in the flow equations, present methods of linear-
izing these terms in space and time, and subsequently present the linearized
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flow equation for single-phase flow problems. To simplify the presentation
of concepts, we use the implicit formulation of the 1-D flow equation in
the x-direction and use a block-centered grid in discretizing the reservoir.
We first discuss the incompressible fluid flow equation that exhibits linearity,
then the implicit formulation for the slightly compressible fluid flow equation
that exhibits very weak nonlinearity, and finally the implicit formulation
for the compressible fluid flow equation that exhibits a higher degree of
nonlinearity. Although single-phase flow equations exhibit different degrees
of nonlinearity, these equations are usually classified as having weak
nonlinearities.

8.2 Nonlinear terms in flow equations

The terms composing any flow equation include interblock flow terms, the
accumulation term, the well production rate term, and fictitious well rate terms
reflecting flow across reservoir boundaries for boundary blocks. The number of
interblock flow terms equals the number of all the existing neighboring blocks.
The number of fictitious well rate terms equals the number of block boundaries
that fall on reservoir boundaries. For any boundary block, the number of exist-
ing neighboring blocks and the number of fictitious wells always add up to two,
four, or six for 1-D, 2-D, or 3-D flow, respectively. In single-phase flow prob-
lems, if the coefficients of unknown block pressures in the flow equation depend
on block pressure, the algebraic equation is termed nonlinear; otherwise, the
equation is linear. Therefore, the terms that may exhibit pressure dependence
include transmissibilities, the well production rate, fictitious well rates, and
the coefficient of block pressure difference in the accumulation term. This is
true for equations in the mathematical approach. In the engineering approach;
however, interblock flow terms, the well production rate, and fictitious well
rates receive the same treatment; that is, block pressures contributing to flow
potential (the pressure difference) in any term are treated implicitly as demon-
strated in Chapter 7. Therefore, the nonlinear terms include transmissibilities in
interblock flow terms and fictitious well rates, the coefficient of pressure drop
in the well production rate term, and the coefficient of block pressure difference
in the accumulation term.

8.3 Nonlinearity of flow equations for various fluids

In this section, we examine the nonlinearity of the flow equations for slightly
compressible and compressible fluids. The flow equation for incompressible
fluids is linear. We examine the pressure dependence of the various terms in
a flow equation, namely, the interblock flow terms, the accumulation term,
the well production rate term, and the fictitious well rate terms.
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8.3.1 Linearity of the incompressible fluid flow equation

The 1-D flow equation in the x-direction for an incompressible fluid can be
obtained from Eq. (7.16a), which states

ZTl,n[(pl_pn }/ln Zl ZQALI,,"'QA'(,, —O (81)

ley, e,

where y,={n—1L,n+1}, §,=1{}, {bw}, or {bg}, and n=1, 2, 3, ...n,
For gridblock 1,

T [ P2=P) 1101022~ 20)] + 4, +00, =0 B29)
For gridblock i=2, 3, ...n,— 1,
T, [(pi—l —pi) = Vic1p(Zica _Zi)}
+Ts,,, [(Pi+1 —pi) —Vi+1/2(Zi+1 _Zi)} +qse; =0

For gridblock n,,

(8.2b)

Txn,\'fl/z [(Pn,\.—l _Pn,\) ~Vne—1/2 (Zru—l _an)} T 4scoy i, T scr, = 0 (8.2¢)

Transmissibility T\, is expressed as Eq. (2.39a):

1
Xz ¢ = G.\’, _) (8.3a)
w2 ( wm) - e (ﬂB e

Geometric factor G, _ , is defined in Table 4.1 for a block-centered grid,

F1/.
o 2%,
Xig1/2 T AXi/(A,v;k.‘t ) + AXZZFI/( XiF1 ‘C@l)

8.4)

The well production rate (g,.) is estimated according to the well operating
condition as discussed in Chapter 6, and fictitious well rates (‘Ischw,p qm,ﬁ’m)

are estimated according to the type of boundary condition as discussed in
Chapter 4. Note that 7\, and G, are functions of the space between grid-
blocks i and i F1 only. It should be mentioned that a numerical value for the well
production rate could be calculated for well operating conditions other than a
specified FBHP. Similarly, a numerical value for a fictitious well flow rate
can be calculated for boundary conditions other than a specified pressure bound-
ary. In such cases, both the well production rate and fictitious well rate are known
quantities and, as aresult, can be moved to the RHS of the flow equation (Eq. 8.2).
Otherwise, the well production rate and fictitious well rate are functions of block
pressure (p;), and as aresult, part of the rate equations appears in the coefficient of
P, and the other part has to be moved to the RHS of the flow equation (Eq. 8.2).
The FVF, viscosity, and gravity of an incompressible fluid are not functions of
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pressure. Therefore, transmissibilities and gravity are not functions of pressure;
consequently, Eq. (8.2) represents a system of n, linear algebraic equations.
This system of linear equations can be solved for the unknown pressures
(P15 P2, P35---Pn ) by the algorithm presented in Section 7.3.1.1.

8.3.2 Nonlinearity of the slightly compressible fluid flow equation

The implicit flow equation for a slightly compressible fluid is expressed as
Eq. (7.81a):

ST o =ppt) = Z=Z)] > d !

ley, €&,
_ Vb, @, (C + C¢) [ n+1
a.B° At

(8.5)
-}

where the FVF, viscosity, and density are described by Egs. (7.5) through (7.7):

.
-5 8.6
Trcp—p)] ®0)
r

= 8.7)

)]

and

p=p[l+c(p—p’)] (8.8)

The numerical values of ¢ and c,, for slightly compressible fluids are in the
order of magnitude of 10~° to 10_54. Consequently, the effect of pressure var-
iation on the FVF, viscosity, and gravity can be neglected without introducing
noticeable errors. Simply stated B~ B°, u=u°, and p=2p°, and in turn, transmis-
sibilities and gravity are independent of pressure (i.e., Tf’;l ~T;,and 77,22y
Therefore, Eq. (8.5) simplifies to

ZTln n+1 n+1) yln Zqz—:—l qgj,l
ley, leg,
7Vbn¢;(C+C¢) n+1 n
- aBAt [ . 7]7"]

(8.9)

Eq. (8.9) is a linear algebraic equation because the coefficients of the
unknown pressures at time level n+1 are independent of pressure.

The 1-D flow equation in the x-direction for a slightly compressible fluid is
obtained from Eq. (8.9) in the same way that was described in the previous
section.
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For gridblock 1,

T.\'Hl/z [(Pg“ _pllH-l) _}/l+1/2(Z2 _Zl)i| +q;lc:v;,1 +q;lc+|—l
SR 8.10
:Vb1¢1(6+6¢) [pn+1_pn] ( a)
a.B° At ! !

For gridblock i=2,3,...n,— 1,

T\ [(p,’»z_*ll =P —visip(Zic —Z,»)}

n+1 :Vb,¢;<c‘+c¢) [ n+1

+T,,) [(Pffll i) =vie1p(Zinn —Zi)} + s aBAr i —pj]
(8.10b)
For gridblock n,,
To | (P2 =207 ) = HaipZaa = 20| + i)+
(8.10c)

:Vb”rqﬁﬂx <C+C¢) [ n+l _ _n ]
a.B° At i e

In the aforementioned equation, T,
are defined by Egs. (8.3a) and (8.4):

kA
T._,=|5. -
iF1/2 (ﬂ(IMBAX>

and G, _  for a block-centered grid

iF1/2

1
=G, () (8.3a)
iF1/2
Xig1/2 h ﬂB Xig1/2

and

28.
G...,= : 8.4
AN (Aky) + Axizr [ (Ax, K 84

xﬂ:])
n+l

Here again, the well production rate (g5 ) and fictitious well rates

Xirl

(qz’; ! s Dser 1" ) are handled in exactly the same way as discussed in the previous
oW, PEOE s

section. The resulting set of n, linear algebraic equations can be solved for the
unknown pressures (pi™', p5*', p5*', ... pi*!) by the algorithm presented in
Section 7.3.2.2.

Although each of Egs. (8.2) and (8.10) represents a set of linear algebraic equa-
tions, there is a basic difference between them. In Eq. (8.2), the reservoir pressure
depends on space (location) only, whereas in Eq. (8.10), reservoir pressure depends
on both space and time. The implication of this difference is that the flow equation
for an incompressible fluid (Eq. 8.2) has a steady-state solution (i.e., a solution that
isindependent of time), whereas the flow equation for a slightly compressible fluid
(Eq. 8.10) has an unsteady-state solution (i.e., a solution that is dependent on time).
It should be mentioned that the pressure solution for Eq. (8.10) at any time step is
obtained without iteration because the equation is linear.
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We must reiterate that the linearity of Eq. (8.9) is the result of neglecting the
pressure dependence of FVF and viscosity in transmissibility, the well produc-
tion rate, and the fictitious well rates on the LHS of Eq. (8.5). If Egs. (8.6) and
(8.7) are used to reflect such pressure dependence, the resulting flow equation
becomes nonlinear. In conclusion, understanding the behavior of fluid proper-
ties has led to devising a practical way of linearizing the flow equation for a
slightly compressible fluid.

8.3.3 Nonlinearity of the compressible fluid flow equation
The implicit flow equation for a compressible fluid is expressed as Eq. (7.162a):

§ n+1 n+1 n+1 E n+1 n+1
T[,n [( pn ) }/l n + qs(, n qs(,,

ley, e,

8.11
_ Vh,, i l[ n+1 pn} ( )
acAt\Bg/ " "
The pressure dependence of density is expressed as Eq. (7.9):
/)gsc
=— 8.12
Pe= g B, (8.12)

In addition, gas FVF and viscosity are presented in a tabular form as func-
tions of pressure at reservoir temperature:

B, =1(p) (8.13)
and
1, =f(p) (8.14)

As mentioned in Chapter 7, the density and viscosity of a compressible fluid
increase as pressure increases but tend to level off at high pressures. The FVF
decreases orders of magnitude as the pressure increases from low pressure to
high pressure. Consequently, interblock transmissibilities, gas gravity, the coef-
ficient of pressure difference in accumulation term, well production, and trans-
missibility in fictitious well terms are all functions of unknown block pressures.
Therefore, Eq. (8.11) is nonlinear. The solution of this equation requires line-
arization of nonlinear terms in both space and time.

The 1-D flow equation in the x-direction for a compressible fluid can be
obtained from Eq. (8.11) in the same way that was described in Section 8.3.1.

For gridblock 1,

T [ =) =@ =20 ] !

V ! (8.15a)
—_'h (¢) [n+1_pl]

aAt\Bg /|
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For gridblock i=2, 3, ...n,— 1,
T (G =) = o2~ )]

Vi, (¢
L GE =) a2+ i = aAt(B> G
c s/ i

(8.15b)
For gridblock n,,
N [ ALl B ARNCAREE ) BV s
Vi (9 ! |:n+1 n} (8.15¢)
a.At\B, n P, = Pu,

In the aforementioned equation, T;’:/z and me/z for a block-centered grid

are defined by Egs. (8.3b) and (8.4):
n+1 1 n+1
=Gy, ) (—) (8.3b)
Xig1/2 ,LtB Xix1/2

n+1 o
Lo = C,uBAx

and

o 2p.
izl /2 _Axi/(Ax‘kj)+Ax,;1/( 5K )

8.4

where B and y stand for B, and p,, respectively.
Here again, the well productlon rate (q"”) and fictitious well rates

(qg’(:; l,qg‘(:;”) are handled in exactly the same way as discussed in

Section 8.3.1. In addition, interblock transmissibility (Eq. 8.3b) is a function
of the space between gridblocks i and i 1 and time. The resulting set of n, non-
linear algebraic equations has to be linearized prior to being solved for the
unknown pressures (pi*!, pa*tt, patt, . "+1) The algorithm outlined in
Section 7.3.3.2 uses explicit transmissiblllty to linearize flow equations. This
essentially involves transmissibility values being used from nth time step.
The following section presents other methods of linearization. It should be men-
tioned that even though the solutions of Eqs. (8.10) and (8.15) are time depen-
dent, the solution of Eq. (8.10) requires no iteration because of the linearity of
the equation, while the solution of Eq. (8.15) requires iteration to remove the
nonlinearity due to time. In addition, while the pressure coefficients in
Eq. (8.10) are constant (i.e., they do not change from one time step to another),
the pressure coefficients in Eq. (8.15) are not constant and need to be updated at
least once at the beginning of each time step.

8.4 Linearization of nonlinear terms

In this section, we present the various methods used to treat nonlinearities.
Although the methods of linearization presented here may not be required
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because nonlinearities in single-phase flow are weak, these linearization
methods are needed for the simulation of multiphase flow in petroleum reser-
voirs that is presented in Chapter 11. Nonlinear terms have to be approximated
in both space and time. Linearization in space defines the location where the
nonlinearity is to be evaluated and which reservoir blocks should be used in
its estimation. Linearization in time implies how the term is approximated to
reflect its value at the current time level where the pressure solution is unknown.
Fig. 8.1 sketches three commonly used linearization methods as they apply to a
nonlinearity (f) that is a function of one variable (p): (a) the explicit method
(Fig. 8.1a), (b) the simple iteration method (Fig. 8.1b), and (c) the fully implicit
method (Fig. 8.1c¢).

Each figure shows the improvements in the linearized value of the nonli-
nearity as iteration progresses from the first iteration (v =0) to the second iter-
ation (v= 1) and so on until the pressure converges to p"*'. Iteration on pressure
in the case of a compressible fluid only is necessary to satisfy material balance
and remove the nonlinearity of the accumulation term due to time. In Fig. 8.1,
the value of the nonlinearity at time level n (the beginning of the time step) is
represented by an empty circle, its value at time level n+ 1 (after reaching con-
vergence) is represented by a solid circle, and its value at any iteration is repre-
sented by an empty square at that iteration. Note that the explicit method,
sketched in Fig. 8.1a, does not provide for any improvement in the value of
the nonlinearity as iteration progresses. The simple iteration method, sketched
in Fig. 8.1b, provides for improvement in the value of the nonlinearity in step-
wise fashion. In the fully implicit treatment, presented Fig. 8.1c, the improved
value of the nonlinearity, as iteration progresses, falls on the tangent of the non-
linearity at the previous iteration. Other linearization methods, such as the lin-
earized implicit method (MacDonald and Coats, 1970) and the semi-implicit
method of Nolen and Berry (1972), are not applicable to single-phase flow.
They are used in multiphase flow to deal with nonlinearities due to fluid satu-
ration only. The treatments of the various nonlinear terms that appear in single-
phase flow equations are presented in Sections 8.4.1-8.4.4.

8.4.1 Linearization of transmissibilities
Transmissibilities at time level n+1 are expressed by Eq. (8.3b):

. kA n+1 1 n+1 )
n+1 __ XEAX _ _ n+
Txm/z - (ﬁ(‘,uBAX> - G"'r‘¥1/2 (MB) - G“‘i¥l/2 Pix1/2 (8.16)

Xig1/2 Xiz1/2

where G,  is defined by Eq. (8.4) for a block-centered grid and fp’:ll/z is
defined as

1 n+1
n+1 __
/71:1/2 = (MB> (8.17)

Xix1/2
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FIG. 8.1 Convergence of different methods of linearization. (a) Explicit linearization, (b) Simple-
iteration linearization, and (c) Fully implicit linearization.
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Therefore, linearization of transmissibility reduces to linearization of f;f;l/z.
The function f;, is evaluated between the corresponding two blocks (termed here
as block boundaries x;/,) and at time level n+ 1, where the pressure solution is
not known. Therefore, f,, needs to be expressed as a function of the pressure of
the blocks on both sides of the specific block boundary and at some known time.
These approximations are termed linearization in space and linearization

in time.

8.4.1.1 Linearization of f, in space

There are several methods used to approximate f, in space.
With single-point upstream weighting,

f}h;m :f}’i (8.18a)
if block i is upstream to block i F1 or
Toirps =l (8.18b)

if block i is downstream to block i F1. The potential difference between blocks
i and i1 is used to determine the upstream and downstream blocks.
With average function value weighting,

Freip =F =112 +1p=1) (8.19)
With average pressure value weighting,
Joey =F(P) =1/u(P)B(P) (8.20)
where
P=1/2(pi+piz1) (8.21)
With average function components value weighting,
f}%;l/z :f(ﬁ) = l/ﬁE (8.22)
where
p:M(Pz‘)*‘zﬂ(Pnﬂl) (8.23)
and
—  B(p;)+B(p;
g BB (8.24)

2

Once f, is linearized in space as in Egs. (8.18) through (8.24), then the space-
linearized transmissibility is obtained by applying Eq. (8.16):

TX,';I/z = G«’ff;l/zf[h;l/z (8.25)
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8.4.1.2 Linearization of fp in time

The effect of the nonlinearity of f,, on the stability of the solution depends on the
magnitude of the pressure change over a time step. The methods of time line-
arization presented earlier in Fig. 8.1 may be used to approximate f, in time.
Note that f), is a function of the pressures of the blocks that surround a block
boundary as mentioned in the previous section; that is, f, =f(p;, pix1)-

With the explicit method (see Fig. 8.1a), the nonlinearity is evaluated at the
beginning of the time step (at time level n) as

n+1 ~ £n _ n o.n
fl’i;l/z = Pix1/2 7f(pl ’piIF]) (826)

With the simple iteration method (see Fig. 8.1b), the nonlinearity is evalu-
ated one iteration behind the pressure solution

v)
fpn:]/l2 an+l/12: ( "H,p;’;ll) (8.27)

With the fully implicit method (see Fig. 8.1c), the nonlinearity is approxi-
mated by its value at iteration level (v) plus a term that depends on the rate of
n+l ~ (rij—li Ef( n+)1 n(+>l> +M

change of pressure over iteration,
n<+‘/)1 (v+1) @)
n+1 n+1
Pix1/2 ~ Y Dig1)2 T i ’pzq:l 0 i —Pi
Pi
O ipis)

e
. (pi]Fl pg]) (8.28)
Once f, is linearized in time as in Eq. (8.26), (8.27), or (8.28), then the time-
linearized transmissibility is obtained by applying Eq. (8.16):
Tn+l :Gx’_ﬂ/zfnﬂ (8.29)

Xig1/2 Pix1/2

8.4.2 Linearization of well rates

A wellblock production (injection) rate is evaluated in space at the gridblock (or
gridpoint) for which the flow equation is written. Linearization in time of the
wellblock production rate involves first linearizing the wellblock production
(injection) rate equation and then substituting the result in the linearized flow
equation for the wellblock. This method of linearization, which is usually used
in reservoir simulation, parallels the linearization of interblock transmissibility.
The following methods may be used to approximate a wellblock rate in time.

For wells operating with specified bottom-hole pressure condition, the non-

n+1
linearity involves the term G,, ( ”) .
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Explicit transmissibility method:

1 n
q?LT'——Gu,(Bﬂ) (Pi*' = pur) (8.30)

i

Simple iteration on transmissibility method:
1 n+1
4G (5) 01 -py) 31
1

Fully implicit method:

n(i)l w+1) o
<pn+l p;1+> (832)

For wells operating with specified pressure gradient condition, nonlinearity

(v+1)
n+l ~ n+1 ~ n+1 qSC:

qs(, _qsc, _qsc, dp
i

n+1
involves the term 2zp,.r,, (kh); (ﬁ) . Linearization in space involves evalu-
1

1

n+1
ating this term for wellblock. Linearization of the term (5) ~ intime parallels
1

the time linearization of f, in transmissibility. In this case f, = (ﬁ) .
1

Explicit transmissibility method:

e ), () (8.33)
qM e B,Lt i dr ™w '
Simple iteration on transmissibility method:
., 1 n+l dp
qor' = 2mp.r,, (kh), (Bu> arl.. (8.34)
Fully implicit method:
)
wit o 5 s [T Y
gt g g i, (p Hep; ”) (8.32)
where
n(i)l (+U)l
dgs, dp| d(1/Bu)|"
— |  =2ap.ry(kh)—| ——= 8.35
b =2t g S (835)

8.4.3 Linearization of fictitious well rates

The fictitious well rate in point-distrusted grid, presented in Chapter 5, is the
interblock flow term between the boundary gridpoint and the nelghborlng
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reservoir grid point. Therefore, the linearization, in space and time, of fictitious
well rate is similar to the linearization of interblock flow terms. For a block-
centered grid, presented in Chapter 4, the fictitious well rate is nothing but
the flow term within the gridblock between the gridblock boundary and the
point that represents the gridblock. Therefore, a fictitious well rate can be lin-
earized, in space and time, the same way as that of a physical well rate.

8.4.4 Linearization of coefficients in accumulation term

The coefficient of pressure change in the accumulation term exhibits nonlinear-
ity for a compressible fluid only (Eq. 8.11). This nonlinearity results from the

) /
pressure dependence of B * in Eq. (7.157) that is used in the definition of (Bﬁ>

8/ n

)
given by Eq. (7.156a). Linearization in space involves evaluating BZ”” and

/
hence (%) at the pressure of the gridblock (or gridpoint) for which the flow

equation is written (gridblock n). Linearization in time uses simple iteration;

o)
that is, Bif:l is evaluated at the current block pressure with one iteration
lagging behind.

8.5 Linearized flow equations in time

As mentioned earlier in this chapter, the flow equation for a compressible
fluid exhibits the highest degree of nonlinearity among single-phase flow
equations. Eq. (8.15b) for an interior block in 1-D flow having a well operating
with specified bottom-hole pressure (Eq. 6.11) is used to demonstrate the
various methods of linearizing flow equations. The flow equation considered
here is

T (i = ot Y) = (2~ )]

1 n+1
e[ ) A2 = 6(g) e —p)
i

Vi 4 ' +1
=—|(= el ph 8.36
oAt (Bg)l. [pl Pi ] ( )

n+l
where qg'cjl =—-G,, (ﬁ)i (P:‘Hl *owi)

The final form of the linearized flow equation for a boundary block must be
modified to include fictitious wells (boundary conditions).
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8.5.1 Explicit transmissibility method

In the explicit transmissibility method, transmissibility of interblock flow and
coefficient of pressure drop in well rate equation are dated at old time level

!
(time level n). One still has to iterate on (Bﬂ) . Eq. (8.36) becomes
/i

T =) = (2~ 20)|

1 n
RO {( =t ~iplin _Zi)} — Gy, (B_y) (P! = pur,)

— Vbi i / n+l _ n l
_aL.At<Bg).[pi pl}

1

(8.37)

By placing the iteration level and rearranging the terms, we obtain the final
form of the flow equation for interior block i:

(v+1) Vi, ¢ ! 1 N7 (w+1)
n n+1 n n bi n+1
Tx,-,,/zpi—l - |:Tx,-|/2 +Txi+|/2 + a. At (B_g> .+Gwl’ (B_/l) :|pl
i i

(v+1)

"‘Tf,ﬂ/zp:'l:f = [TZ,]/ZV?A/z(Zi—I —Z)+T} | Vie1pZi —Zi)]

G 1 n Vb’ ¢ ! )
"\Bu), P ani\B, ).

The unknowns in Eq. (8.38) are the pressures of blocks i — 1, i, and i+ 1 at

(v+1) (v+1) (v+1)

time level n+1 and current iteration (v+1), pi*!, p#*1, and piHl.

The general flow equation for interior block # in multidimensional flow
using explicit transmissibility can be expressed as

wi o Ve (9 1\’
ZTlrfnp7+] - [ Tlfn+a At (B_> +Gwn B_ p
ley, ¢ 8/ n H

ley, n

1" Vo, (¢
=N 1712~ 2) G, - b (P
l,n}/l,n( 1 ’1) n <B/l> pru (XCAI (Bg ., Pn

ley, n

(8.38)

(v+1)
n+1
n

8.5.2 Simple iteration on transmissibility method

In the simple iteration on transmissibility method, transmissibilities and the
coefficient of pressure drop in well flow rate are dated at the current time
level (n+1) with one iteration lagging behind (v). Gravities are dated at
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the old time level as mentioned in Chapter 7. We still have to iterate on

!/
(l;i) . Eq. (8.36) becomes
¢/
,,)1 (u+11) (u+11)
T;”+l/2 |:<pln+1 p;1+ > _yl’f_l/z(zi,l —Z,'):|
+Tn(+’:)1 nb-:ll) /(;-:11) _ (Z —Z)
xinp |\ Pivt T Pi Vierp\Liv1 —4i (8.40)

(v)
1 n+l s ) Vi, ¢ T w1
-G, | — n+1 )= i [ n+l _ n
" <Bﬂ)i ( ! pwf,) acAt <Bg>i |:P, b

The final form of the flow equation for interior block i is obtained by re-
arranging the terms, yielding

)
1
) (v+1) v) V, ¢ / 1 n+ (v+1)
n+1 n+l _ n+] n+1 bi n+1
T, 1/2 Piay T, 1/2 T’fin/z + 2 ) 16wl 5 Di
aAt\B;/, Bu).

1

V+1/zpl+1 T 1/27/1 1/2 120 i+1)2

(v)
-G LHI s ﬂlf'
“\Bu), P ani\B,),”

The unknowns in Eq. (8.41) are the pressures of blocks i — 1, i, and i+1 at
(v+1) (v+1) (v+1)

time level n+1 and current iteration (v+1), p?*!, p?*!, and p}}

i+1°
The general flow equation for interior block » in multidimensional flow

using simple iteration on transmissibility can be expressed as

(v) (v+1) (v) v)
Tn+l n+1 |:Tn+1 ( Z)+Tn+1 7/n ( il _Zi):| (841)

)
v+ v / 1 v+

ZTn(i)l i’l+ll Tn(+)1 n Vb, i +G., L " pf(’l+]1>

= =D Ln (XCAZ Bg . Wn B/l . n

' o (8.42)
1\ v, ¢ /

- Tln + 1 }/7 Zn) - Gwn (_> pwf,, - - <_ )4 ;
IEZW: n Vi Bu), " abi\B,) "

8.5.3 Fully implicit (Newton’s iteration) method

In the fully implicit method, transmissibility, well production rate, and fictitious
well rates if present are dated at the current time level (n+ 1). Gravities are dated
at the old time level as mentioned in Chapter 7. By dating nonlinear terms and
unknown pressures at the current time level and current iteration and using the

/
previous iteration in calculating (l%) , Eq. (8.36) becomes
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(v+1) (v+1) (v+1)
+1 +1 +1
T, KP,” L Py > 7y pin *Zi)}

(\:—Il) (\111) (‘111) (‘:—ll) V P 1 2111)

o () ] = () ]
l

(8.43)

The first, second, and third terms on the LHS of Eq. (8.43) can be approx-
imated using the fully implicit method as

(v+1) (v+1) (v+1)
n+1 n+1 n+1 n
Txm/z |:(p111 4 > 7}/iI1/2(Z53F1 Zl)]

n(-i‘—>1 n+1 an n n+1 n(-::)l
—T,Wz Diz1 —Di _yiﬂFl/2(Zi3Fl_Zl') Diz1 —Di

oT n E:)l e

x; v+l (v)

Al =20 | T2l ()
1

()
oT, n+l /oy ) ) (v+1) 0) (v+1) 0)
AiFl/2 n+l1 n+1 n+1 n+l n+1 n+1 n+1
+ 6Pi11 Pir1 —Pix1 +Tx,11/2 Pix1 —Pix1 i 4
(8.44)
and
(v)
(\+11) (yl dq n+l <p+11) (p)l
n+ n+ SCi n+ n+
q_g(‘, = chl dp <pl _pi > (832)
1

The RHS of Eq. (8.43) can be rewritten as

V(£ f"‘:‘) p| = (2 / R
aAt\B, /, aAt\By, /,
(8.45)

Substitution of Egs. (8.32), (8.44), and (8.45) into Eq. (8.43) and collecting
terms yields the final form for the fully implicit flow equation for interior grid-
block i,

9

) oT, n+l (v+1)

n+1 n+1 n+l n Xi-1/2 n+1

Tx,-,,/o sz 1~ Pi ) _7’1'71/2(21‘71 _Zi)} —0p~ : i—1
i

(v)

nil )
n+1
Xiv1/2

_ Tn(l)l o n+1 n+1 o (Z —Z') aTxi—l/Z
Xi—1/2 Di—1 —Di yi—1/2 i—1 i 6]71‘

)

o) ( aT n+1
[(pfff pi”')—yi’ﬂ/z(Zm—Zi)]—(; -

Pi
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(v)
+1 / v+
" + Vbi ¢ 5p£l + 11)
a.At\B, ; !

o oT,.
SRl (o) BN Al
1

n(-i‘-)l n+1 n+1 n n+1 n+1 n(+)1
=- T, i [\ Pie1 —Pi _yi—l/Z(Z"*I Zi) Tx,+1/v Pis1—Pi
n n(l/) Vhl ¢ ' }’L(b) n
—yi+1/2(2i+1—zf>]+qS(t : A;( ) ] (8.46)

The unknowns in Eq. (8.46), which reflects the fully implicit treatment of
nonlinearities in the flow equation for interior block i, are the pressure changes

(v+1) (v) (v+1) (v
over an iteration in blocks i — 1, i, and i+1, (pl" +11 -p} J'll) ( j”l p! +1>

quvc,v
dp;

)
n+1 (v+1)
n+1
i+1

() ® ©
and (p" A pf';'ll) Note that for the first iteration (v=0), p?*! = p for

i+1

i=1, 2,3, ...n,and the first-order derivatives are evaluated at old time level n.
The fully implicit method general equation for block # has the form

® )
) ()T; n+1 0 - n+1 (v+1)
Z Tln;l_'_ |:<pn+1 PZH)_?’Z,I(ZI_Zn)} f n asc , 5p7+1
ley, DI meé, /4
®
oT n+1 0 ] n+1
— Z Tn+1 p p)n1+l _7;1"(21_211) Ln _ qYCl,n
lEl[/,l ’ api’l 165,7 apn
)
dgee "1 Vi (@) G ® ®
_ n + o spttl = Tn+l n+1 n+1 no(z _7z
dpn a(-At Bg . prl IEZWH In p pn yl,n( l ”)
+ Z l‘1+l }’l+)l ¢ _ (8 47a)
le: qAL/,, A(,, a At B p pn .
©
Note that the summation term  — q“"”” in Eq. (8.47a) contributes a
meé,
maximum of one term for neighboring block / if and only if block # is a bound-

Dscm,n

ary block and block [ falls next to reservoir boundary m. In addition, 067 and

aqc;;" =~ are obtained from the flow rate equation of the fictitious well, which
depends on the prevailing boundary condition. Note also that Eq. (8.47a) does

not produce a symmetric matrix because of the term

) oT n+l1
1 1 7 l,
(=) -2 |5
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Coats et al. (1977) derived the fully implicit equations for their steam model
without conservative expansions of the accumulation terms. Although their equa-
tions do not conserve the material balance during iterations, they preserve it at con-
vergence. Their method of obtaining the fully implicit iterative equation is applied
here for the compressible fluid described by the implicit form of Eq. (7.12). This
equation is written in a residual from at time level n+ 1; that is, all terms are placed
on one side of the equation and the other side is zero. Each term at time level n+ 1 in
the resulting equation is approximated by its value at the current iteration level
(v+1), which in turn can be approximated by its value at the last iteration level
(v), plus a linear combination of the unknowns arising from partial differentiation
with respect to all unknown pressures. The unknown quantities in the resulting
equation are the changes over an iteration of all the unknown pressures in the orig-
inal equation. The resulting fully implicit iterative equation for block 7 is

®) )
v) (v T, n+1 aqsc,,, . n+1 (v+1)
Z T;l,;rl l:(p PZH) —J’Zn(zl—zn)} ap,ln + Z W 5p;z+1
ley, et
)
(v) ) T, n+1 e ) n+i
(5 (5 ) ) e
ley, Pn iz Pn

(v

n+1
Vi (45)/ @) ]{( 3 1) }
+— = &p "+ n+ n+ n+l) _n (7 7
acAt\Bg " /gl//: — Py Vl,n( i n)
@)
v) % ¢ n+1 ¢ n
+ n+l n+1_ b, 9 (P 847b
Z qu/ » Tsc, acAt Bg . Bg ., ( )

leg,

2
n
7dq‘run

dpp

Eq. (8.47b) is similar to Eq. (8.47a) with three exceptions that are related to
the accumulation term. First, while Eq. (8.47a) preserves material balance at
every current iteration, Eq. (8.47b) preserves material balance only at conver-

!
gence. Second, the term (Bﬁ) in Eq. (8.47a) represents the chord slope that
8/ n

v
¢ 7 n+1
results from a conservative expansion, whereas the term (B)
g

in

n

Eq. (8.47b) represents the slope of (;) , both terms being evaluated at last
8/ n
iteration level v. Third, the last term on the RHS of Eq. (8.47a),

®
v) n+1 n
%(?) ( ZH—PZ) is replaced with V”" l(l%)n - (%)n] in Eq. (8.47b).

For single-phase flow, where the accumulation term is a function of pressure
only, these two terms are equal because both represent the accumulation term
evaluated at the last iteration.

The next set of examples demonstrates the mechanics of implementing the
explicit transmissibility method, simple iteration on transmissibility method,
and fully implicit method of linearization in solving the equations for single-
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well simulation. It should be noted that the simple iteration on transmissibility
and fully implicit methods produce close results because, contrary to the
explicit transmissibility method, the transmissibility in both methods is
updated every iteration. All methods in this problem show the same conver-
gence property for a time step of 1 month because, over the pressure range
1515-4015 psia, the product uB is approximately straight line having small
slope (—4.5 x 10~°cP-RB/scf-psi).

Example 8.1 Consider the reservoir described in Example 7.13, where a 6-in
vertical well is drilled on 20-acre spacing in a natural gas reservoir. The reser-
voir is described by four gridblocks in the radial direction as shown in Fig. 8.2.
The reservoir is horizontal and has 30-ft net thickness and homogeneous and
isotropic rock properties with k=15 md and ¢ =0.13.

Initially, reservoir pressure is 4015 psia. Table 8.1 presents gas FVF and vis-
cosity dependence on pressure. The external reservoir boundaries are sealed to
fluid flow. Let the well produce with a FBHP of 1515 psia. Find the pressure
distribution in the reservoir after 1 month (30.42 days) using a single time step.
Solve the problem using the implicit formulation with the explicit transmissi-
bility method of linearization and present the simulation results up to 6 months.

Solution

Gridblock locations, bulk volumes, and geometric factors in the radial direc-
tion are calculated in exactly the same way as in Example 7.13. The results are
presented in Table 8.2.

For single-well simulation in a horizontal reservoir (Z,= constant) with

SClyn

no-flow boundaries (Zq" o= 0) , the implicit flow equation with explicit
leg,

transmissibility is obtained from Eq. (8.39). For gridblock n with a well oper-
ating under a specified FBHP,

(“”f v, ¢ 4 1\" (L+1f
E Tﬂ n+1l E T}’I + n . + Gw _ n+
l,npl [ hn aCAt (Bg) n ! Bﬂ p”

ley, ley, n

1\ Vi, (¢
= —Uw, | 5 wf, — — | — " 4
Gy, <Bﬂ)n DPuf, PN (Bg),,p" (8.48a)

pwf1 = 1515 psia

4

IN

30 ft

30 ft

~0

V4
T(w Te

FIG. 8.2 Discretized 1-D reservoir in Example 8.1.
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TABLE 8.1 Gas FVF and viscosity in Example 8.1.

Pressure (psia) GFVF (RB/scf) Gas viscosity (cP)
215.00 0.016654 0.0126
415.00 0.008141 0.0129
615.00 0.005371 0.0132
815.00 0.003956 0.0135

1015.00 0.003114 0.0138

1215.00 0.002544 0.0143

1415.00 0.002149 0.0147

1615.00 0.001857 0.0152

1815.00 0.001630 0.0156

2015.00 0.001459 0.0161

2215.00 0.001318 0.0167

2415.00 0.001201 0.0173

2615.00 0.001109 0.0180

2815.00 0.001032 0.0186

3015.00 0.000972 0.0192

3215.00 0.000922 0.0198

3415.00 0.000878 0.0204

3615.00 0.000840 0.0211

3815.00 0.000808 0.0217

4015.00 0.000779 0.0223

For gridblock n without a well,

n }(’;l+n n V n ¢ ' }(’Z/J'lf Vbrl ¢ / n

7 prt ST T +—”<—) + _——(—) 8.48b

IGZ,IH I,npl [e% In aCA Bg ., pn a(,At Bg npn ( )

The gas in this reservoir flows toward the well in gridblock 1. Therefore,

gridblock 4 is upstream to gridblock 3, gridblock 3 is upstream to gridblock

2, and gridblock 2 is upstream to gridblock 1. In solving this problem, we

use upstream weighting (Section 8.4.1.1) of the pressure-dependent terms in
transmissibility.
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TABLE 8.2 Gridblock locations, bulk volumes, and geometric factors.

n i r; (ft) G..,, (RB-cP/D-psi) Vp, (ft%)

1 1 0.5611 1.6655557 340.59522
2 2 3.8014 1.6655557 15,631.859
3 3 25.7532 1.6655557 717,435.23
4 4 174.4683 1.6655557 25,402,604

TABLE 8.3 Estimated gridblock FVF, viscosity, and chord slope at old
iteration v = 0.

Blockn  pi*'(psia) By (RB/sch g (cP) $/By) vai(2)
i 4015 0.00077900 00223000  0.0310567  0.0619323
2 4015 0.00077900 00223000  0.0310567  2.84243

3 4015 0.00077900 00223000  0.0310567  130.455
4 4015 0.00077900  0.0223000  0.0310567  4619.10

First time step calculations (n=0, t,,; =30.42 days, and Ar=30.42 days).
Assign p=p5=p3=pi=p;,=4015 psia.

o)
For the first iteration (v=0), assume p/* 1= pi =4015 psia for n=1, 2, 3,4 In

!/

addition, we estimate (B(/’Q ) between p), and p,, — e where e=1 psi. Table 8.3
8/ n

presents the estimated values of the FVF and viscosity using linear interpolation

!/ i
within table entries, chord slope (Bﬂ) , and % (B%) for all grid blocks at

the first iteration. Note that at p=4014 psia, B,=0.00077914 RB/scf and
1o =0.0222970 cP. For example, for gridblock 1,

)
¢ ”*‘_ P\" 0.13 [ 013
¢\  \B/, B/, \0.00077914 0.000779)
<B o S 4014 — 4015 =0.0310567

/
Vi, ( ¢ ) ~340.59522 x 0.0310567 —0.0619323

B,),  5.614583x30.42

8
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and

n
2,1

— n

1\" 1
=G,.,,(—) =16655557
SR <,;B>2 x (0.0223000 X 0.00077900)
=95877.5281

2 T

for upstream weighting of transmissibility.
In addition, for the production well in wellblock 1, G,, is calculated using
Eq. (6.10a), yielding

2% 7% 0.001127 x 15 x 30
Gy, =
log,(0.5611/0.25)

1\" 1
wl—] =3.941572
¢ 1(,uB>1 3941572 <0.0223000><0.00077900)

=226896.165scf/D-psi

=3.941572

Therefore, T,TZA2|2:T,’;3|3:T,Z)4|4:95877.5281 scf/D-psi. Note also that
T =T!.
For gridblock 1, n=1 and y;={2}. Therefore, Eq. (8.48a) becomes

Vi, ® / 1\” (14+lf <u+11>
_[Tg’1|2+acAt(B_g 1+Gwl B_y IP'f+ "'T'21,1|2P'21+

1 n Vb ¢ /!
— _Gw _ o — 1 T n
1 (Bﬂ>1 P acAr (Bg)l 7

Substitution of the values in this equation gives

(8.49)

(v+1

(v+1 )
—[95877.5281+0.0619323 + 226896.16]p’1“rf +95877.5281p4™*!
= —226896.16 x 1515 —-0.0619323 x 4015

or after simplification,

(v+1 (v+1

—322773.749p "' +95877.528 lngrf = —343747929 (8.50)
For gridblock 2, n=2 and y,={1,3}. Therefore, Eq. (8.48b) becomes

(1/+lf v ¢ 4 (v+lf w+1
Mol = [Tl ol 2 () |odH el f?
8/ 2

a.At
_ Vb, i / n
aAt\B,/, 2

Substitution of the values in this equation gives

(8.51)

(v+1 (v+1

95877.5281p"* 1 —[95877.5281 + 95877.5281 + 2.84243|p5 *

(v+1

+95877.5281p4*" = —2.84243 x 4015
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or after simplification,

(v+1

(v+1 (v+1
95877.5281p1* ! — 191757.899pg+f +95877.5281p4* {=—11412.3996 (8.52)
For gridblock 3, n=3 and yw3={2,4}. Therefore, Eq. (8.48b) becomes

1/+lf Vi ¢ / (l/+] (v+lf Vi ¢ /
Tn Tﬂ +Tn + 3 . +Tn n+ — 3 . n
23’31’ [ 2,3}3 4,3|4 a A (Bg>3 ps* 43| N B, 3173

(8.53)

Substitution of the values in this equation gives

(v+1 (v+1

95877.5281p5* " —[95877.5281 +95877.5281 + 130.455|p4 *

(v+1
+95877.5281pfrf = —130.455 x 4015

or after simplification,

(v+1 (v+1

v+1
95877.5281p5 " — 191885.511p§+f +95877.5281py " = —523777.862
(8.54)

For gridblock 4, n=4 and y4={3}. Therefore, Eq. (8.48b) becomes
M? Vi (]5 / (u+l? Vi ¢ !
Tn Tn + 4 o n+ — _ b n 855
3 4|4P3 [ 3,4|4 a Al (Bg)JIM PN, B_g Dy (8.55)

4

Substitution of the values in this equation gives

(v+1 (v+1
95877.5281p§’+f —[95877.5281 +4619.10]p2+f =—4619.10 x 4015

or after simplification,

(v+1 (v+1

95877.5281p5™" —100496.6251p} ™" = —18545676.2 (8.56)
The results of solving Eqgs. (8.50), (8 52) (8.54), and (8. 56) for the unknown
pressures are p’“r I 1559.88 psia, p”+ - 1666.08 psia, p"+ - 1772.22 psia,

and p"+ - 1875.30 psia.
For the second iteration (v = 1), we use p), 't 1to estimate the values of FVF to

!
estimate chord slope (Bg) and a[b& , (Bﬂ) for gridblock n. Table 8.4 lists these

values. For example, for gridblock 1,

(&) (), ()

)
n+l_

! D1 Pl

( 0.13 ) B ( 0.13 )
0.0019375 0.000779000
B 155988 — 4015 —0.0406428
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TABLE 8.4 Estimated gridblock FVF and chord slope at old iteration v =1.

Blockn  p*(psia) B1 " (RB/sc) @By ke (B%)/
1 1559.88 0.0019375 0.0406428 0.0810486
2 1666.08 0.0017990 0.0402820 3.68676

3 1772.22 0.0016786 0.0398760 167.501

4 1875.30 0.0015784 0.0395013 5875.07

" 340.59522 x 0.040642
Vi, <¢) ~340.59522 % 0.0406 8:0.0810486

a.Ar\B,),  5.614583 x30.42

Note that for the explicit transmissibility treatment, T |,=T}

23 |3
T |4=95877.5281 scf/D-psi and G,, (i)n =1226896.16 scf/D-psi for all
3 1
iterations.
For gridblock 1, n=1. Substitution of the values in Eq. (8.49) gives

(v+1) (v+1
—[95877.5281 +0.0810486 +226896.16]p1* | +95877.5281p5* {
= —226896.16 x 1515 —0.0810486 x 4015

or after simplification,

(v+1 (v+1)

—322773.768p"* ! +95877.5281p5* ! = —343748006 (8.57)
For gridblock 2, n=2. Substitution of the values in Eq. (8.51) gives

(v+1

(v+1
95877.5281p§“rf —[95877.5281 +95877.5281 + 3.68676]p4*

(v+1

+ 95877.5281p’3’+£ =—3.68676 x 4015

or after simplification,

(v+1 (b+lf (v+1

95877.5281p ™" — 191758.743p5* " +95877.5281p4*" = —14802.3438
(8.58)
For gridblock 3, n=3. Substitution of the values in Eq. (8.53) gives

(v+1

(v+1
05877.5281p3+1 — [95877.5281 +95877.5281 + 167.501]pli |

(v+1

+95877.5281p, "' =—167.501 x 4015
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or after simplification,

(v+1 (v+1

(w+1
95877.5281p5* " — 191922.557p§’+f +95877.5281p, " = —672516.495
(8.59)

For gridblock 4, n=4. Substitution of the values in Eq. (8.55) gives

(v+1 (v+1

95877.5281p% ™" —[95877.5281 +5875.07]p} i = —5875.07 x 4015

or after simplification,

(v+1 v+1
95877.528 1p§+f — 101752.599[7?rf = —23588411.0 (8.60)
The results of solving Eqgs. (8.57), (8 58) (8.59), and (8. 60) for the unknown
pressures are pi*1=1569.96 psia, p”+ [ 1700.03 psia, p"+ - 1830.00 psia,

and p"+ 1* 1956.16 psia. Iterations continue until the convergence criterion is

satisfied. Table 8.5 shows the successive iterations for the first time step. Note
that it took four iterations to converge. The convergence criterion was set as
given by Eq. (7.179); that is,
It
max [-——"—| <0.001 (8.61)
1<n<N 1
P
After reaching convergence, the time is incremented by Ar=30.42 days,
and the earlier procedure is repeated. Table 8.6 shows the converged solutions

at various times up to 6 months of simulation time.

Example 8.2 Consider the problem described in Example 8.1. Apply the simple
iteration on transmissibility method to find the pressure distribution in the res-
ervoir after 1 month (30.42 days) using a single time step. Present the simulation
results up to 6 months.

TABLE 8.5 Pressure solution at t,.;=30.42 days for successive iterations.

(v+1) (v+1) (v+1) (W +1)

v+1 pi 1 (psia) P31 (psia) P31 (psia) pa+t (psia)
0 4015.00 4015.00 4015.00 4015.00
1 1559.88 1666.08 1772.22 1875.30
2 1569.96 1700.03 1830.00 1956.16
3 1569.64 1698.94 1828.15 1953.57

4 1569.65 1698.98 1828.23 1953.68



TABLE 8.6 Converged pressure solution and gas production at various times.

n+1

o o AW

Time (day)
30.42
60.84
91.26

121.68

152.10

182.52

n+1

pi (psia)
1569.65
1531.85
1519.81
1516.45
1515.44
1515.13

p5*" (psia)

1698.98
1569.07
1530.96
1519.88
1516.49

1515.45

n+1

p3" (psia)
1828.23
1603.85
1541.87
1523.27
1517.53
1515.77

pi*" (psia)

1953.68
1636.31
1552.37
1526.58
1518.55
1516.09

qoec (MMscf/D)
—12.4003
—2.28961
—0.639629
—0.191978
—0.058311
—0.017769

Cumulative
production
(MMM scf)

—-0.377217
—0.446867
—0.466324
—0.472164
—0.473938

—0.474478

UOIIB|NWIS JIOAISSaI WNDJ0Rd  (OLE
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Solution
Table 8.2 reports the gridblock locations, bulk volumes, and geometric fac-

tors in the radial direction. For single-well simulation in a horizontal reservoir
SCi,n

(Z,,= constant) with no-flow boundaries (Z gl = > the implicit flow

equation with simple iteration on transmissibility is obtained from Eq. (8.42).
For gridblock n with a well operating under a specified FBHP,

)
@ ey W Y o\ 1\"*! wrb
E n+1 n+ n+1 b, n+
Tl,n P - Tl,n + (X(‘At (B_g> . + GWu (B_/l) Py

ley, ley, n

v)
1 n+l Vh ¢ /
=Gy, | — wf, ——— (=) p" 8.62
! (Bﬂ> il acAt <B§)n P ( a)

n

For gridblock n without a well,

@ e I 74 d e Vi (¢ !
Tn+l n+ iy e [ © nel o (7 " (8.62b
> LW bt e ar\By ) |Pn ani\B,) Pr (B0

ley,

As mentioned in Example 8.1, the gas in this reservoir flows toward the well
in gridblock 1, gridblock 4 is upstream to gridblock 3, gridblock 3 is upstream to
gridblock 2, and gridblock 2 is upstream to gridblock 1. In solving this problem,
we use upstream weighting (Section 8.4.1.1) of the pressure-dependent terms in
transmissibility.

First time step calculations (n=0, l,1+1 =30.42 days, and Ar=30.42 days).
=ph=4015psiaforn=1,2,3,4.

For the first iteration (v =0), assume p”+ i

o
+1
Therefore, G, (;4_13)? =Gy, (”L) =226896.16 scf/D-psi and T"+1 1! , or

ln
more explicitly,
n 1 _7Tn 1 _7Tn 1 _ : :
T”J“2 | T,zt | T,;'4 | =95877.5281 scf/D-psi. Consequently, the equations
for gridblocks 1, 2, 3, and 4 are given by Egs. (8.50), (8.52), (8.54), and
()
(8. 56) respectively, and the unknown pressures are pi*1=1559.88 psia,

””— 1666.08 psia, p’”l— 1772.22 psia, andp"”— 1875.30 psia.

For the second iteration (v=1), we use pZ”to estimate the values of FVF, gas

/ !
viscosity, and chord slope (Bi) and calculate :’zt (l;%) for gridblock n.

Table 8.7 lists these values in addition to the upstream value of interblock trans-

missibility (T”“ ) For example, for gridblock 1,

(v)
(qb)”” <¢) ( 0.13 ) ( 0.13 )
C(2) (2 _
(ﬂ) _\B/, B), \0.0019375 0.000779000/ _ 1406428

. pm_pn - 1559.88 — 4015
1 1

By



TABLE 8.7 Estimated gridblock FVF and chord slope at old iteration v =1.

)
Block n Py (psia) By (RB/sch ! (eP) Tl (/B (),
1 1559.88 0.0019375 0.0150622 60,502.0907 0.0406428 0.0810486
2 1666.08 0.0017990 0.0153022 63,956.9105 0.0402820 3.68676
3 1772.22 0.0016786 0.0155144 66,993.0320 0.0398760 167.501

4 1875.30 0.0015784 0.0157508 = 0.0395013 5875.07

UOIIB|NWIS JIOAISSaI WNDJ0Rd  TLE
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Vo, (¢ 340.59522 x 0.0406428
At (B_g) | 5.614583x3042 00810486
and
()
- - 1\"" 1
Tl =T, =G <ﬂ3> , 16655557 x (0.0153022 x 0.0017990)

=60502.0907

for upstream weighting of transmissibility. In addition, for the production well
in wellblock 1,

v)

1 n+1 1
Gy, | = =3.941572 =135065.6
! (w) | 8 (0.01506220 x 0.00193748)

For gridblock 1, n=1 and y; ={2}. Therefore, Eq. (8.62a) becomes

®
/ +1

+ Vi, i +G i ’ pﬁlb;lf_’_Tn(i)l

, aAt\B,), "\ Bu), | 21

)
G 1 11+1n Vb, ¢ / .
7B/, P T aan\B,)

Substitution of the values in this equation gives

(v+ll>
n+
1)

2

o
n
- T2,1

(8.63)

(v+1

(v+1
—[60502.0907 +0.0810486 + 135065.6]p' * f +60502.0907p5* f
= —135065.6 x 1515 —0.0810486 x 4015

or after simplification,

(v+1 (v+1

—195567.739p'* +60502.0907p§+{ = —204624660 (8.64)
For gridblock 2, n=2 and w,={1,3}. Therefore, Eq. (8.62b) becomes

Wl @) @) Vi ¢ 7w
T;’l-El p711+ _ |:sz +Tn+1 + 2 (_ pn+
s , 3,2 2
2 2 3 %AI\Bg/,
| @y Vi, (&)
+Tn+1 n+1 I 2 o n 865
3.2 3173 PANAVE 21’2 (8.65)

Substitution of the values in this equation gives

(v+1) (v+1)
60502.0907p;* | —[60502.0907 +63956.9105 +3.68676]p+!
(v+1
+63956.9105p§7+f = —3.68676 x 4015
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or after simplification,

(v+1)

(v+1 W+l
60502.0907]7'1“rf —124462.688p5 " + +63956. 9105p”+1 =—14802.3438
(8.66)

For gridblock 3, n=3 and y3=1{2,4}. Therefore, Eq. (8.62b) becomes

10} (u+|l) ) ) Vi ¢ ! (H? (p)l (v+1
o) i ] ]« e (2 |k el
3 Tl e acAt\Bg/, -
Vo, (& ,
= 8.67
acAt<B P (8.67)

Substitution of the values in this equation gives

(v+1 (v+1

63956.9105p5* " —[63956.9105 + 66993.0320 + 167.501|p4*

(v+1
+ 66993.0320[7?rf =—167.501 x 4015

or after simplification,

(v+1 (v+1)

(v+1
63956. 9105p”+f 131117.443p4* H +66993.0320p; "' = —672516.495
(8.68)

For gridblock 4, n=4 and y,={3}. Therefore, Eq. (8.62b) becomes

(H? Vi ’ (w? 17 ¢ !
Tn+l 4 (i) n+l _ 4 [ P n 8.69
4173 [ 5414+ a.Af\B) 4 Dy a.A\B, 41’4 (8.69)

Substitution of the values in this equation gives

L)l
n+
T3,

(v+1 (v+1)
66993.0320p4 * H — [66993.0320 + 5875.07]p} 1 — _5875.07 x 4015
or after simplification,

(p+l (v+1

66993.0320p5 7" —72868.1032p; " = —23588411.0 (8.70)
The results of solving Egs. (8.64), (8. 66) (8.68), and (8. 70) for the unknown
pressures are p’l’” 1599.52 psia, p’” ! =1788.20 psia, p”+ i =1966.57 psia,

andp”+1 2131.72 psia.

Iterations continue until the convergence criterion is satisfied. Table 8.8
shows the successive iterations for the first time step. Note that it took five iter-
ations to converge. The convergence criterion was set as given by Eq. (8.61).
After reaching convergence, the time is incremented by Atr=30.42 days, and
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TABLE 8.8 Pressure solution at t,.; =30.42 days for successive iterations.

(v+1) (v+1) (v+1) (v+1)

v+1 pi*1 (psia) pa*1 (psia) pa*1 (psia) pi*t (psia)
0 4015.00 4015.00 4015.00 4015.00
1 1559.88 1666.08 1772.22 1875.30
2 1599.52 1788.20 1966.57 2131.72
3 1597.28 1773.65 1937.34 2087.32
4 1597.54 1775.64 1941.60 2094.01
5 1597.51 1775.38 1941.02 2093.08

the aforementioned procedure is repeated. Table 8.9 shows the converged solu-
tions at various times up to 6 months of simulation time.

Example 8.3 Consider the problem described in Example 8.1. Apply Newton’s
iteration method to find the pressure distribution in the reservoir after 1 month
(30.42days) using a single time step, and present the simulation results up to
6 months.

Solution

Table 8.2 reports the gridblock locations, bulk volumes, and geometric fac-
tors in the radial direction. For single-well simulation in a horizontal reservoir

SCl,n

(Z,,= constant) with no-flow boundaries (Z gt = >, the implicit flow

equation with implicit transmissibility is obtained from Eq. (8.47a).
For gridblock n with a well operating under a specified FBHP,

®)

® ® @\ T, |"*! (v +1)
E n+1 n+1 n+1 l,n n+1
T (pl —Pn ) ap 6]71
ley, !
®)
(v) n +1 n+l1 ! (v+1)
— E " +1 (pn +1 pn +1> aTl n _ qu(fu + Vbn ( ) 5[)” +1
1, 1
& n n op, dp, acAt\Bg J, n

®) 1% / )
1 1 1 1 by ¢ 1
-5 T"+ < p pZ*) CI’!J aCA,<Bg) <Z+ *pZ)

ley,

(8.71a)



TABLE 8.9 Converged pressure solution and gas production at various times.

n+1

1

Time (day)

30.42
60.84
91.26
121.68
152.10
182.52

n+1

pi (psia)
1597.51
1537.18
1521.54
1517.03
1515.62
1515.19

n+1

P2 (psia)
1775.38
1588.10
1536.87
1521.84
1517.10
1515.64

p5*" (psia)
1941.02
1637.63
1552.07
1526.63
1518.58
1516.09

pa*" (psia)
2093.08
1685.01
1566.82
1531.31
1520.02
1516.54

g2 (MMscf/D)
~11.3980
—2.95585
—0.863641
~0.268151
—0.082278

—0.025150

Cumulative
production (MMM scf)

—0.346727
—0.436644
—0.462916
—0.471073
—0.473576

—0.474341
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For gridblock n without a well,

Z T;l’(‘-ji—l (pt;(ﬂ pz+1>a ln

icy, ap,

(v)
n+l1 (v+1)

5p;'l +1

®)

n+l / v+l)
Vo, (& (n+1
+aCAt (Bg>n}5pn
®) ) ®) 174 ! ®)

_ n +1 n+l o n+l b, ¢ n+l _ n
- {ZTI,H <P1 Dy ) a(At (B > <pn pn)}

ley, n

(8.71b)

As mentioned in Example 8.1, gridblock 4 is upstream to gridblock 3, grid-
block 3 is upstream to gridblock 2, and gridblock 2 is upstream to gridblock 1.
Upstream weighting of the pressure-dependent terms in transmissibility is used.

First time step calculations (n=0, tn+1 =30.42 days, and Ar=30.42 days).

For the first iteration (v = 0), assume p, g =p, =4015psiaforn=1,2,3,4.

"+ = 95877.5281 forall gridblocks, ( p n>%

ap;

o) o) oT
— {Z T;l’:l-l _ (p7+1 pz+1) l,n

v op,

Consequently, T),, , +1|

i
= 0 for all values of / and n, and "A” - (%) is obtained as shown in Table 8.3.

n +
For wellblock 1, £ ()" = 2970747
1
(0)

n((-]:l 1 " n((-):l
o (), ()
1

= —3.941572 x (0.0223000 X 0.0007790) X (4015 — 1515)
= —567240397
and
((21 <U)1 ((-J:l
dg., |" (1)”* d(l)" <<°> )
“sey —_ _Gw L +— = n+l "
dpl ! ﬂB 1 dp ﬂB 1 P P /i

1
— ~3.941572 x [(0.0223000 - 0.0007790) +2.970747 x (4015 — 1515)]
= —256169.692

In addition, the flow equation for gridblock n with a well (Eq. 8.71a)
reduces to

(0)
) o © n+l ! ) )
™ +15 n +1 ™ +1 dQSCn + th ﬁ Sp" + n+1
Iyn lyn aCAt Bg pn qsc,,
n

d
ley, ley, P
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and that for gridblock n without a well (Eq. 8.71b) reduces to

(0) (1) (0) 1% / (1)
E n +1 n+1 n +1 by ﬂ n+l _
Tl n 5 {1@,, Tl, n +(,¥C~Al <Bg>n }5pn =0 (8.72b)

ley,

For gridblock 1, n=1 and w;={2}. Substitution of the relevant values in
Eq. (8.72a) yields

(1) (1)
— {95877.5281 — (—256169.692) +0.06193233} x &p" *! +95877.5281 x pl *!

—(—567240397)

or
(1) (1)
—352047.281 x dp ™' +95877.5281 x spi*! = 567240397 (8.73)

For gridblock 2, n=2 and y, = {1,3}. Substitution of the relevant values in
Eq. (8.72b) results in

(1) (1
95877.5281 x opf ! +95877.5281 x op5*!

M
—{95877.5281 +95877.5281 +2.842428} x ép) =0
or

(1) (1) )
95877.5281 x 6p ! — 191757.899 x &ph*! +95877.5281 x 6pi*! =0

(8.74)
For gridblock 3, n=3 and w3 = {2,4}. Substitution of the relevant values in
Eq. (8.72b) results in

(1) (1

95877.5281 x 8p5 ! +95877.5281 x opj *!

)
—{95877.5281 +95877.5281 +130.4553} x &p}; =0

or

(1) (1) (1)
95877.5281 x dpi*! — 191885.511 x &pi ™' +95877.5281 x épi ™' =0

(8.75)
For gridblock 4, n=4 and y4={3}. Substitution of the relevant values in
Eq. (8.72b) results in

(1 m
95877.5281 x dps*! — {95877.5281 +4619.097} x 3p*! =0
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or

(1 (1)
95877.5281 x opl ! — 100496.626 x 5pi*' =0 (8.76)

The results of solving Egs. (8.73) through (8.76) for the pressure change
1) (1) Q)]
over the first 1terat10n are opi*! = —2179.03, 6p"+1 = —2084.77, opit! =
M
—1990.57, and &p} L. = —1899.08. Therefore Dl C = 1835.97 psia, p4*l =

0
1930.23 psia, pi *! = 2024.43 psia, and p)} C. = 2115.92 psia.
(1)

For second iteration (v=1), we use p/, n to estimate values of FVF, gas

!/
viscosity, (1'%:);1’ thAnz (B%)n’ and transmissibility and its derivative with respect

to block pressure. Table 8.10 lists these values. For example, for gridblock 1,

)

n+1 n
o\ _ (%) - (%)1 _ (Govieran) — (owtom) _
(B_ ) 0 = 183507 —do1s 0397679

1 n+1 n

P — P

Vi, (¢ ' ~340.59522 x 0.03957679
a.At\B 5.614583 x 30.42

4

=0.07892278

1
(v)

(V)l 1 n+l
n+l n+l
T)1 )2 =T 1,2, *Grm/z (,UB>2

1
= 1.6635557 % (0.01588807 X 0.00153148) = 68450.4979
(:—)l (1)1 (:—)1
T, ,|" T »|" "
L2 —0,and =22 =G, H/zi <1> — 1.6655557 x 16.47741
apl 2 apZ 2 dp ﬂB 2
—27.444044

for upstream weighting of transmissibility. In addition, for the production well
in wellblock 1,

)
(Ql 1 nl (:-1
n n
q?(] = _Gw1 (E) | (pl - owl)

1
= 3941572 % (0.01565241 X 0.00161207) x (1835.97 = 1515)
— 50137330
% % “31
9| " _ o (L) L4 (L i
dp; \uB), Tap\uB)|, \PV TP




TABLE 8.10 Estimated gridblock functions at old iteration » =1.

&
n pr*1 (psia)

1 1835.97
2 1930.23
3 2024.43

4 2115.92

Bg?’ (RB/scf)
0.00161207
0.00153148
0.00145235
0.00138785

1)

(P

0.01565241
0.01588807
0.01612828
0.01640276

@/By)
0.03957679
0.03933064
0.03886858
0.03855058

)
! n+1

0
acAt \ Bg n %(ﬁ)
n

0.07892278 14.68929

3.599688 16.47741
163.2694 12.78223
5733.667 14.28023

v)
0Tn,n+1|" i
9Pn |
24.465831
27.444044
21.289516

23.784518

(v)1
n+
Tn,n +1p

66,007.6163
68,450.4979
71,104.7736
73,164.3131
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or
(v)
Y "™ _ 3 oa1572 !
| T x [(0.01565241 x 0.00161207)

+14.68929 x (1835.97 — 1515)] = —174791.4

For gridblock 1, n=1 and y;={2}. Therefore, Eq. (8.71a) becomes

@) ®)
n+l

v) v) ) n+l / (v+1)
n+l pn +1 pn +1 6T1’2 _ dqsm + Vbl ﬂ 5pn :—1
2 ! apy |, dp, acAt\B, ) | !
) (")1
v ® oT: 1"+ w+)
n+l n+1 n +1 1, n+l1
2 T (Pz 4! ) P op;

@ ® @ ! ®
+1 V;,
—{ 2[5 (p’é - ”) Ky (%) | (p’l”' —p’f) }

Substitution of the values in Eq. (8.77) gives

(8.77)

(v+1)

—[68450.4979 — (1930.23 — 1835.97) x 0 — (—174791.4) + 0.07892278]6p +l
(v+1)

+[68450.4979 +(1930.23 — 1835.97) x 27.444044]5p} *!
= —{68450.4979 x (1930.23 — 1835.97) + (—50137330) — 0.07892278
% (1835.97 — 4015)}
After simplification, the equation becomes

(v+1) (v+1)

—243242.024 x 6p *1 471037.4371 x oph 1 = 43684856.7 (8.78)
For gridblock 2, n=2 and y,={1,3}. Therefore, Eq. (8.71b) becomes

n+l1 ) (v) oT n+1 (v+1)
1 n+1 1,2 n+1
T I U R P
s 1 2 apl 1
) ) ) ()
T nH pn(‘-ﬁl pn('::l 0T1,2 (s +T i pn(:—l pn +1 6T3 2 nH
- 1,2 - - -V 3,2 - -
2 1 2 Py |, 3 3 2 0p2 3

)
Vo (9| i
+(XL-AZ <B_g 5p2 + T3’2 3
v)

n+l1 (v) (v)
, P = p ) 4Ts o

= Ty,

v)
n+l1 (v) (v) / (v)
pn +1 pn +1]| _ Vbz i pn +1 7pn
3 3 2 acAt Bg ) 2 2

(8.79)
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In the earlier equation,
w

(v) (b)l 1 n+l
n+
Tn +1 — T‘; ) — G]—
3 241/2
3,2 »<13 +1/ ”B 3

1
= 1.6635557 x (0.01612828 X 0.00145235) = 711047736
% % %
a2l o, ana 2220 Grm/zi <i>
apZ 3 6p3 3 dp ,uB 3

= 1.6655557 x 12.78223 = 21.289516

Substitution of these values in Eq. (8.79) gives

(v+1)

[68450.4979 + (1835.97 — 1930.23) x 0]5p" *!
—[68450.4979 — (1835.97 — 1930.23) x 27.444044 +71104.7736

(v +1)
—(2024.43 — 1930.23) x 0 +3.599688]5p" *!

(v+1)

+[71104.7736 + (2024.43 — 1930.23) x 21.289516]5p" *!
— —{[68450.4979 x (1835.97 — 1930.23)
+71104.7736 x (2024.43 — 1930.23)] —3.599688 x (1930.23 — 4015)}

or after simplification,

(v+1) (v+1) (v+1)
68450.4979 x op} *! — 142145.810 x dp5*! +73110.2577 x op *!
= —253308.066 (8.80)

For gridblock 3, n=3 and w3=1{2,4}. Therefore, Eq. (8.71b) becomes

(v) v)
n+l1 (v+1)

(v) @)
n+l ) ) n+l1 ) (v) n+l
Ty 3 + pn +1 _pn +1 dT2,3 pn +1 _ Ty 3 _ pn +1 _pn +1 0T2,3
s 2 3 oy |3 2 5 2 3 o3 |3
®) v
R R LR L Py
430, 4 3 o3 |y acAt\Bg), |73
(»)1 (b)l
n+ (v) @\ 9T n+ (v+1)
1 n+1 4,3 n+1
+|Ta3| |\ P47 =057 |5 |op
2y ( 4 3 op4 4 4

®
n+l (b)] (D)l
+ +

=—41|T23 P P3| +T43

3

®)

+1 ®) ®) / @)
" pn+l _pn +1)| _ Vb3 i pn+l_pn
4 4 3 acAt Bg 3 3 3
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where
®)
) (b)l 1 n+l
n +1 _ n+ _
Tr4,3 =T43|, =6Gr,, (E)
4
1

0.01640276 x 0.00138785

(v) (v) (v)

n+1 aT43n+1_G d(1>n:—1
. r3+1/zdp /JB

=0, and 2=
= 1.6655557 x 14.28023 = 23.784518

— 1.6655557 x ( ) — 731643131

0Ty, 3

5

ops3

4 04 4
Substitution of these values in Eq. (8.81) gives

(v+1)

[71104.7736 +(1930.23 — 2024.43) x 0]5p" *!
—[71104.7736 — (1930.23 — 2024.43)x21.289516 +73164.3131

(v+1)

—(2115.92 —2024.43) x 0 +163.2694]5p; +

(v +1)

+[73164.3131 +(2115.92 — 2024.43) x 23.784518]5174’{+1
= —{[71104.7736 x (1930.23 — 2024.43) +73164.3131

x(2115.92 — 2024.43)] — 163.2694 x (2024.43 — 4015)}

After simplification, the equation becomes

(v+1) (v +1) (v+1)

71104.7736 x 8p5 ™' — 146437.840 x op3 ™' +75340.4074 x op; !
= —320846.394 (8.82)

For gridblock 4, n=4 and y4,={3}. Therefore, Eq. (8.71b) becomes

( 0

v)
n+l1 v) ) 0T3 4 n+l (v+1)
T + n+l _ n+l 5 n+1
3.4, <p3 Pa’ )5, \ op3
n(:zl ® ® \ T "(:)1 v b ’ (w+1)
—|T —(pat =t )22 b () gt (8.83)
3,4), <p3 P ) opy |, taear\B,), P4
n(:}l (”)1 (vll vy d’ / (u)l
— n+l _ n+ _ 4 v n+l _ _n
- T34 . (P3 Dy ) PN, (Bg>4 <P4 P4>

Substitution of the values in Eq. (8.83) gives
(v+1)

[73164.3131 +(2024.43 — 2115.92) x 0]p? *!

(v+1)

—[73164.3131 — (2024.43 — 2115.92) x 23.784518 +5733.667]6p), +l
= —{[73164.3131 x (2024.43 — 2115.92)] — 5733.667 x (2115.92 — 4015)}
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TABLE 8.11 Pressure solution at ¢, =30.42 days for successive iterations.

(v+1) (v+1) (v +1) (v+1)

v+1 pi 1 (psia) pa*1 (psia) pa*1 (psia) pa*1 (psia)
0 4015.00 4015.00 4015.00 4015.00
1 1835.97 1930.23 2024.43 2115.92
2 1614.00 1785.15 1946.71 2097.52
3 1597.65 1775.45 1941.04 2093.09
4 1597.51 1775.42 1941.09 2093.20

After simplification, the equation becomes

(v+1) (v+1)

73164.3131 x 6p} 1 81074.0745 x 5pZ+1 = —4194735.68 (8.84)

The results of solving Egs. (8.78), (8.80), (8.82), and (8.84) for the pressure
change over the second iteration are 5]7’17(3')1 = -221.97, 517’27(%')1 = —145.08,
6p§(2' = —77.72, and 6p2<2+)1 = —18.40. Therefore, p’l‘(?l = 1614.00 psia,
pg(i)l = 1785.15 psia, pg(i)l = 1946.71 psia, and pf{(i)l = 2097.52 psia. Itera-

tions continue until the convergence criterion is satisfied. Table 8.11 shows
the successive iterations for the first time step. As can be seen, it took four iter-
ations to converge. The convergence criterion was set as given by Eq. (8.61).
After reaching convergence, time is incremented by Ar=30.42 days, and the
aforementioned procedure is repeated. Table 8.12 shows the converged solu-
tions at various times up to 6 months of simulation time.

8.6 Summary

The flow equation for an incompressible fluid (Eq. 8.1) is linear. The flow equa-
tion for a slightly compressible fluid has very weak nonlinearity caused by the
product uB that appears in the interblock flow terms, fictitious well flow rate,
and well production rate. This product can be assumed constant without intro-
ducing noticeable errors; hence, the flow equation for a slightly compressible
fluid becomes linear (Eq. 8.9). The flow equation for a compressible fluid
has weak nonlinearity, but it needs to be linearized. Linearization involves treat-
ment in both space and time of the transmissibilities, well production rate, fic-
titious well flow rate, and coefficient of pressure in the accumulation term.
Linearization of transmissibility in space and time is accomplished by any of
the methods mentioned in Section 8.4.1. In the engineering approach, the flow



TABLE 8.12 Converged pressure solution and gas production at various times.

n+1

1

Time (day)

30.42
60.84
91.26
121.68
152.10
182.52

w » A

w

n+1

pi " (psia)
1597.51
1537.18
1521.54
1517.04
1515.63
1515.19

n+1

p2" (psia)
1775.42
1588.11
1536.88
1521.84
1517.10
1515.64

n+1

ps" " (psia)
1941.09
1637.66
1552.08
1526.63
1518.58
1516.10

n+1

pa " (psia)
2093.20
1685.05
1566.84
1531.32
1520.03
1516.54

qg;? (MMscf/D)
—11.3984
—2.95637
—0.863862
—0.268285
—0.082326

—0.025165

Cumulative
production (MMMscf)

—0.346740
—0.436673
—0.462951
—0.471113
—0.473617
—0.474382

6ge ¢ | 4e1dey) suonenbs moyy Jo uoneziiesur]
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equation or any of its components (interblock flow term, well rate, fictitious
well rate) can be linearized in time by the explicit transmissibility method, sim-
ple iteration on transmissibility method, or fully implicit method. Section 8.4.2
presented linearization of the physical well rates, Section 8.4.3 presented linear-
ization of fictitious well rates, and Section 8.4.4 presented linearization of the
coefficient of pressure change in the accumulation term. The linearized flow
equation is obtained by substituting the linearized terms in the flow equation.

8.7
8.1

8.2

8.3
8.4
8.5

8.6

8.7

Exercises

Define the linearity of Eq. (8.1) by examining the various terms in the
equation.

Define the linearity of Eq. (8.9) by examining the various terms in the
equation.

Explain why Eq. (8.5) can be looked at as a nonlinear equation.
Explain why Eq. (8.11) is a nonlinear equation.

Examine Eq. (8.30), used for the linearization of the well production rate,
and point out the differences between the explicit method and the explicit
transmissibility method (Eq. 8.30).

Examine Eq. (8.31), used for the linearization of the well production rate,
and point out the differences between the simple iteration method and the
simple iteration on transmissibility method (Eq. 8.31).

Consider the 1-D, inclined reservoir shown in Fig. 8.3. The reservoir is
volumetric and homogeneous. The reservoir contains a production well
located in gridblock 2. At the time of discovery (t=0), fluids were in
hydrodynamic equilibrium, and the pressure of gridblock 2 was 3000 psia.
All gridblocks have Ax=400 ft, w=200 ft, /=80 ft, k=222 md, and
¢=0.20. The well in gridblock 2 produces fluid at a rate of 10° scf/D.
Table 8.1 gives the gas FVF and viscosity. Gas density at standard

1 MMscf/D

No-flow boundary

Z,= 3500 ft
Z,=3700 ft
Z,=3900 ft

No-flow boundary

FIG. 8.3 Discretized 1-D reservoir in Exercise 8.7.
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conditions is 0.05343 Ibm/ft>. Estimate the initial pressure distribution in
the reservoir. Find the well FBHP and pressure distribution in the system
at 50 and 100days. Use the implicit formulation with the explicit transmis-
sibility method.

Consider the 1-D flow problem described in Exercise 8.7. Find the pres-
sure distribution in the reservoir at 50 and 100days. Use the implicit for-
mulation with the simple iteration on transmissibility method.

Consider the 1-D flow problem described in Exercise 8.7. Find the pres-
sure distribution in the reservoir at 50 and 100 days. Use the implicit for-
mulation with the fully implicit method.

A vertical well is drilled on 16-acre spacing in a natural gas reservoir. The
reservoir is described by four gridpoints in the radial direction as shown in
Fig. 8.4. The reservoir is horizontal and has 20-ft net thickness and homo-
geneous and isotropic rock properties with k=10 md and ¢ =0.13. Ini-
tially, reservoir pressure is 3015 psia. Table 8.1 presents the gas FVF
and viscosity dependence on pressure. The external reservoir boundaries
are sealed to fluid flow. Well diameter is 6in. The well produces under a
constant FBHP of 2015 psia. Find the pressure distribution in the reservoir
every month (30.42days) for 2months. Take time steps of 30.42days.
Use the implicit formulation with the explicit transmissibility method.

= 2015 psia

A

pr1
No-flow boundary

112

3
sle| @ 1\ 20 ft

i=1i=2 i=3¥4 No-flow boundary

z

I No-flow boundary
r

FIG. 8.4 Discretized reservoir in Exercise 8.10.

8.11

8.12

8.13

Consider the single-well simulation problem presented in Exercise 8.10.
Find the pressure distribution in the reservoir at 1 and 2months. Use the
implicit formulation with the simple iteration on transmissibility method.

Consider the single-well simulation problem presented in Exercise 8.10.
Find the pressure distribution in the reservoir at 1 and 2months. Use the
implicit formulation with the fully implicit transmissibility method.

Consider the 2-D single-phase flow of natural gas taking place in the
horizontal, homogeneous reservoir shown in Fig. 8.5. The external
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1@® e Ay

FIG. 8.5 Discretized 2-D reservoir in Exercise 8.13.

8.14

8.15

8.16

8.17

reservoir boundaries are sealed off to fluid flow. Gridblock properties
are Ax=Ay=1000 ft, h =25 ft, k,=k,=20 md, and ¢ =0.12. Initially,
reservoir pressure is 4015 psia. Table 8.1 presents the gas FVF and vis-
cosity dependence on pressure. The well in gridblock 1 produces gas at a
rate of 10° scf/D. Well diameter is 6in. Find the pressure distribution in
the reservoir and the FBHP of the well every month (30.42days) for
2months. Check the material balance every time step. Use the implicit
formulation with the explicit transmissibility method. Observe symme-
try and take time steps of 30.42days.

Consider the 2-D flow problem described in Exercise 8.13. Find the pres-
sure distribution in the reservoir and the FBHP of the well at 1 and
2months. Check the material balance every time step. Use the implicit
formulation with the simple iteration on transmissibility method.

Consider the 2-D flow problem described in Exercise 8.13. Find the pres-
sure distribution in the reservoir and the FBHP of the well at 1 and
2months. Check the material balance every time step. Use the implicit
formulation with the fully implicit transmissibility method.

Derive Eq. (8.47b) that represents the fully implicit equation without con-
servative expansion of accumulation term for compressible fluid, using
the method of Coats et al. (1977) as outlined in the text.

What would be a rigorous treatment of nonlinear equations? What hap-
pens if multiple solutions emerge?
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9.1 Introduction

Today, practically all aspects of reservoir engineering problems are solved with
a reservoir simulator. The use of the simulators is so extensive that it will be no
exaggeration to describe them as “the standard.” The simulators enable us to
predict reservoir performance, although this task becomes immensely difficult
when dealing with complex reservoirs. The complexity can arise from variation
in formation and fluid properties. The complexity of the reservoirs has always
been handled with increasingly advanced approaches. Mustafiz and Islam
(2008) reviewed latest advancements in petroleum reservoir simulation. Also,
they discussed the framework of a futuristic reservoir simulator. They predicted
that in the near future, the coupling of 3-D imaging with comprehensive reser-
voir models will enable one to use drilling data as input information for the
simulator creating a real-time reservoir monitoring system. At the same time,
coupling of ultrafast data acquisition system with digital/analog converters
transforming signals into tangible sensations will make use of the capability
of virtual reality incorporated into the state-of-the-art reservoir models. The
basis of all these, however, is the formulation presented in this book. The res-
ervoir was discretized into gridblocks in Chapter 4 and gridpoints in Chapter 5.
These chapters demonstrated the flow equation for a general block while
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incorporating the boundary conditions into the flow equation. Chapter 6 pre-
sented the well production rates. The resulting flow equation is either linear
(incompressible fluid and slightly compressible fluid) or nonlinear (compress-
ible fluid). Chapter 8 presented the linearization of a nonlinear flow equation.
What remains is to write the linearized flow equation for each gridblock (or
gridpoint) in the reservoir and solve the resulting set of linear equations. These
tasks are the focus of this chapter. Linear equations can be solved using either
direct or iterative methods. We restrict our discussion in this chapter to basic
solution methods of both categories and present their application to 1-D,
2-D, and 3-D flow problems. The objective here is to introduce the reader to
the mechanics of the basic methods of solution for linear equations of the form

[A] X=d ©.1)

L=l

-
where [A] = square coefficient matrix, x = vector of unknowns, and d = vector
of known values.

9.2 Direct solution methods

The direct solution methods are characterized by their capacity to produce the
solution vector for a given system of linear equations after a fixed number of
operations. Direct solution methods not only require storing the information

contained in the coefficient matrix [A] and the known vector 2 but also suffer
from an accumulation of roundoff errors that occur during computations. In the
following sections, we discuss methods such as Thomas’ algorithm and Tang’s
algorithm, which are used for 1-D flow problems, and the g-band algorithm,
which is used for 1-D, 2-D, or 3-D flow problems. These algorithms are based
on the LU factorization of the coefficient matrix (i.e., [A]=[L][U)).

9.2.1 1-D rectangular or radial flow problems (Thomas’ algorithm)

This algorithm is applicable for a reservoir where flow takes place in the
x-direction in rectangular flow problems, as shown in Fig. 9.1a, or in the
r-direction in radial flow problems, as shown in Fig. 9.1b. In other words, there
is one row of blocks arranged along a line (with N=n, or N=n,).

The equation for the first block (i=1) has the form

cix1+ex, =d; (9.2a)

because block 1 falls on the reservoir west boundary.
The equation for interior blocks i=2, 3, ..., N—1 has the form

WiXi_1 +CiXi +eiXxiy1 =d; (9.2b)
The equation for the last block (i=N) has the form
WNXN_1 +CcyXy =dn (9.2¢)

because block N falls on the reservoir east boundary.
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1 2 3 Ny -1 Ny
(a)

(b) (c)

FIG. 9.1 Types of 1-D flow problems. (a) 1-D linear flow in x-direction, (b) 1-D radial flow in
r-direction, and (c) 1-D tangential flow in @-direction.

Inspection of Eq. (9.2) reveals that c; is the coefficient of the unknown for
block i (the center block), the block for which the flow equation is written, w; is
the coefficient of the unknown for neighboring block i — 1 (the west block), and
e, is the coefficient of the unknown for neighboring block i+ 1 (the east block).
The known RHS of the flow equation for block i is d;. Consider Eq. (8.2b) for
the flow of an incompressible fluid. This equation can be rewritten as

TXH/zpl'—l - |:T'ﬁ—l/2 + T~\‘i+1/2]pi +T«Vi+1/zpl'+1
= [Tt oZid = Z) 4 T i pZi = 70) =g 93)

This equation has the form of Eq. (9.2b) with the unknowns p; 1, p;, and p;;
the coefficients w;=T,,_ ,¢;=—I[T,_ ,+T,, 1] and ¢;=T,_  ;and the known
RHS d;=IT,,  yi1pZii—2Z)+Tx,, Yis12(Zivs —Z)] — qsc. 1f we consider
Eq. (8.10b) for the flow of a slightly compressible fluid and assume the well

production rate is specified (say, qf:l ={gpsc,)> then we obtain

Vb; (ﬁj (C + C¢)
a.B° At

n+1 T n+1
& Y

n+1
Txi—l/Zpifl - |?&1/2 + TXi+1/2 + i w120+ 1

Vi; (c+c ,
:Txffu/zyi—l/Z(Zifl -Z) +Txi+]/2yi+ I/Z(Zi+1 =), — Yspsc; _M

aB’Ar
9.4)
The unknowns in Eq. (9.4) are p/*i, pi*', and p}; the coefficients
V,iqﬁ; c+c
are w,-:TxH/z, c[——{Txil/2+Txm/2+' a(.z(rm‘ﬁ)]’ and e,-:TX,m; and
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the known RHS is d;,= Tx,;l/zyi—l/Z (Z,;l —Z,') + TXH]/27/1'+ l/Z(Zi+1 —Z,')—

Vi (c+c . ..
Gspse; 7%])?. In either case, block 1 does not have coefficient wy,

and block N does not have coefficient ey because these blocks are boundary
blocks. Depending on the boundary condition specification, its effects are
embedded in d; and c¢; for boundary gridblocks (see Section 4.4) and in
d;, ¢;, and w; or e; for boundary gridpoints (see Section 5.4).

The set of N equations expressed by Eq. (9.2) can be written in a matrix
form as

1 € X1 dl

Wy Cr € X2 d2
...... S ©.5)

WN_1 CN-1 eN—1| |XN-1 dn—1

Wy CN XN dn

The matrix in Eq. (9.5) is called a tridiagonal matrix. This matrix equation
can be solved using Thomas’ algorithm. Thomas’ algorithm is nothing more
than an efficient procedure to solve a tridiagonal matrix equation (Eq. 9.5)
through matrix factorization into lower [L] and upper [U] triangular matrices
(Aziz and Settari, 1979). In addition, we do not have to store the whole matrix.
Instead, it is sufficient to store four vectors (VT/, ¢, ¢, and d ) of dimension N to
store all information contained in Eq. (9.5). Thomas’ algorithm is executed in
two major steps that require the creation of two more vectors (# and g) of
dimension N. The two major steps are the forward solution and the backward
solution.

9.2.1.1 Forward solution

Set u; =L (9.6)
c1
and

d
g=— ©.7)

1

Fori=2,3..N—1,

=t ©.8)

(ci—witti—y)
and for i=2, 3...N,

di —wigi-
i:& 9.9)
(ci—witti—y)
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9.2.1.2 Backward solution

Set xy =gy (9.10)

Fori=N—-1,N-2,...,3,2, 1;
Xi=8i — UiXi+1 .11
The following example demonstrates the application of Thomas’ algorithm

to the equations of a 1-D reservoir.

Example 9.1 The following equations were obtained for the 1-D reservoir in
Example 7.1:

—85.2012p; +28.4004p, = —227203.2 9.12)
28.4004p; — 56.8008p, +28.4004p3 =0 (9.13)
28.4004p, — 56.8008p3 +28.4004ps =0 9.14)
and
28.4004p3 — 28.4004p4 = 600 9.15)

Solve these equations using Thomas’ algorithm.

Solution
The first step is to calculate u; and g, using Egs. (9.6) and (9.7), yielding

uy=ej/c; =28.4004/ —85.2012 = —0.333333
and
g1==d/c; =-227203.2/ — 85.2012 = 2666.667
Then, u, and uj are calculated in that order using Eq. (9.8), which gives

1ty =2/ (c2 — wouy ) = 28.4004/[—56.8008 — 28.4004 x (—0.333333)]
= —0.600000

and

13 = e3/(c3 — waity) = 28.4004 /[—56.8008 — 28.4004 x (—0.600000)]
= —0.714286

This is followed by calculating g, g3, and g4 in that order using Eq. (9.9),
resulting in

(dy —wg1) (0 —28.4004 x 2666.667)
= = = 1600.000
827 (e —waur)  [~56.8008 — 28.4004 x (—0.333333)]
. (ds —wsgs) _ (0—28.4004 x 1600.000) l428s7
(c3—wsi)  [—56.8008 — 28.4004 x (—0.600000)]
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and

(ds — wag3) (600 — 28.4004 x 1142.857)
84 T Ca—wauz)  [—28.4004 — 28.4004 x (—0.714286)]

Then x4, =g, is set according to Eq. (9.10), yielding
X4 = g4=3929.06

This is followed by calculating x3, x,, and x; in that order using Eq. (9.11),
which gives

X3 =g3 —usxy = 1142.857 — (—0.714286) x 3926.06 = 3947.18

X2 = g — upx3 = 1600.000 — (—0.600000) x 3947.18 =3968.31
and

X1 = g1 — u1xp =2666.667 — (—0.333333) x 3968.31 =3989.44

Table 9.1 shows the results of the calculations as outlined here. The solution
vector given in the last column in Table 9.1 is

ol [3989.44

= |w| [396831

Y= | T [3947.18 ©.16)
| 392606

Therefore, the pressure solution of the set of equations in this example is
p1=73989.44 psia, p, =3968.31 psia, p3 =3947.18 psia, and p, =3926.06 psia.

9.2.2 1-D tangential flow problem (Tang’s algorithm)

This algorithm is applicable when flow takes place only in the € direction; that
is, there is one row of blocks arranged in a circle as shown in Fig. 9.1c (with
N=mny). This is a 1-D flow problem that results in equations similar in form
to those given by Eq. (9.2b) for a 1-D rectangular flow problem.

The equation for the first block (i=1) has the form

WXy +C1X1 +ex, =d; (9.17a)
The equation for blocks i=2, 3, ..., N—1 has the form
WiXi_1 +cixi+exiy1=d; (9.17b)
The equation for the last block (i=N) has the form
WNXN_1 + CnXN +enyx) =dy (9.17¢)

Note that Egs. (9.17a) and (9.17c) have coefficients w; and ey, respectively,
because in this flow problem, blocks 1 and N are neighbors as shown in
Fig. 9.1c.



TABLE 9.1 Use of Thomas’

i w;

1 =

2 28.4004
3 28.4004
4 28.4004

algorithm to solve the equations of Example 9.1.

Cj

—85.2012
—56.8008
—56.8008

—28.4004

€j
28.4004
28.4004

28.4004

d;
—227,203.2
0

0

600

uj

—0.333333
—0.600000
—0.714286

8i

2666.667
1600.000
1142.857

3926.057

Xi

3989.44
3968.31
3947.18
3926.06
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The set of N equations expressed by Eq. (9.17) can be written in a matrix
form as

1 € wi X1 d
wy e X2 dy
...... | ©.18)
WN_1 CN-1 eN—1| |XN-1 dn—1
éen Wn CN XN dN

Tang (1969) presented the following algorithm for the solution of this matrix
equation. As in Thomas’ algorithm, this algorithm is based on LU matrix fac-
torization. Here again, the solution is obtained in two major steps.

9.2.2.1 Forward solution

Set £, =0 9.19)
B =—1 (9.20)
and
71 =0 9.21)
d
Set £, =— (9.22)
4]
pry="" 9.23)
€]
and
vy =t 9.24)
€]
Fori=2,3..N—1,
cifi+wili 1 —di
Ly == 1 (9.25)
C; Z+W i—
proy =P e{’ﬁ : (9.26)
and
CiyitWiyi_
Vi) = — TV 9.27)

€
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9.2.2.2 Backward solution
First, calculate

AN (9.28)

1+yy

By
=N 9.29
1+yy ( )
dv —
C:L’Vé}\’*1 (9.30)
CN —WNYN_1
and

D :w 9.31)

CN —WNYN-1

Second, calculate the value of the first unknown (x;) and the value of the last
unknown (xy) of the solution vector,

A-C
i 32
n=p—r 932)
and
BC —AD
W=TBoD ©39)

Third, calculate the value of the other unknowns of the solution vector. For
i=2,3..N—1,

Xi=§i—Pix1 —vixn (9.34)

The next example demonstrates the application of Tang’s algorithm to solve
the equations of a ring-like 1-D reservoir.

Example 9.2 Using Tang’s algorithm, solve the following set of equations:

2.84004x, — 5.68008x; +2.84004x, =0 (9.35)
2.84004x; — 8.52012x; +2.84004x3 = —22720.32 (9.36)
2.84004x; — 5.68008x3 +2.84004x4 =0 (9.37)
and
2.84004x3 — 5.680084x4 +2.84004x; = 600 (9.38)
Solution

The first step for the forward solution is to set {{ =0, f;= —1, and y; =0,
according to Egs. (9.19) through (9.21), and then to calculate 5, 55, and y, using
Egs. (9.22), (9.23), and (9.24), which give
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{r=di/e; =0/2.84004 =0
, =c1/e; =—5.68008/2.84004 = —2
and
7o =wi/er =2.84004/2.84004 = 1

The next step is to calculate {3 and {4 using Eq. (9.25), 3 and f, using
Eq. (9.26) and y; and y, using Eq. (9.27), yielding

rm Cob+wli—dy  —8.52012x 0+2.84004 x 0 — (—22720.32)
3T es 2.84004
= —8000
- e3ls+wily—ds  —5.68008 x (—8000) +2.84004 x 0 — 0
4 e - 2.84004
— 16000
g — CafytwaB —8.52012x (—2)+2.84004 x (1) s
3T e - 2.84004 -
g — Ccafs+wsBy  —5.68008 x (—5) +2.84004 x (=2) g
4 es - 2.84004 -
__ptwiyy —8.52012x1+2.84004 %0 _
3= PO 2.84004 -
and
__Gratwiry —5.68008x3+2.84004x 1 _
4= e 2 84004 -

Table 9.2 shows the results of the calculations as outlined here. The forward
substitution step is followed by the backward substitution step, which involves
calculating A, B, C, and D using Egs. (9.28) through (9.31), resulting in

&y —16000

= —2666.667

TABLE 9.2 Use of Tang’s algorithm to solve the equations of Example 9.2.

i Wi Ci € d; Gi Bi Yi
1 2.84004 —5.68008 2.84004 0 0 —1 0
2 2.84004 —8.52012 2.84004 —22,720.32 0 -2 1
3 2.84004 —5.68008 2.84004 0 —8000 -5 3

4 2.84004 —5.68008 2.84004 600 —16,000 -8 5
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p= P _ 8 33333
T+y, 145

:d4 —wal3 _ 600 — 2.84004 x (—8000) 1642253
ca—ways;  —5.68008 —2.84004 x 3

C

and

_ea— waf;  2.84004 —2.84004 x (—5)

D = =
c4s—ways;  —5.68008 —2.84004 x 3

—-1.2

calculating x; and x4 using Egs. (9.32) and (9.33), yielding
_A—-C —2666.667 — (—1642.253)

— _ =7683.30
MTB-D —133333—(-12)
and
. _BC—AD _ —133333 x (~1642.253) — (~2666.667) x (~1.2)
‘" B-D —1.33333—(-1.2)
=7577.70

and finally calculating x, and x3 using Eq. (9.34) successively, which gives
X2 =(p — Pox1 —yxa =0—(—2)(7683.30) — (1)(7577.70) =7788.90
and
X3 =3 — Pax; —y3x4 = —8000 — (—5)(7683.30) — (3)(7577.70) =7683.40

Therefore, the solution vector is

X1 7683.30

~ x| |7788.90

x| T |7683.40 ©.39)
X 7577.70

9.2.3 2-D and 3-D flow problems (sparse matrices)

The linear equations for 2-D and 3-D flow problems can be obtained by (1)
writing the flow equation using the CVFD method, (2) writing the definition
of set y, for block n in 2-D or 3-D, using Fig. 3.1 for engineering notation
of block identification or Fig. 3.3 for natural ordering of blocks, as explained
in Sections 3.2.1 and 3.2.2, and the definition of set &, for block 7, and (3) writ-
ing the flow equation in an expanded form. For example, we use Eq. (8.1) in step
1 for 3-D flow of an incompressible fluid, yielding

S Tinlpr=p0) = 110(Zi=Z)] + Y Gser, +dse, =0 (9.40)

ley, e,
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If the reservoir has no-flow boundaries (£,={} and as a result qum =0

l€5n
for all values of n) and if the wells have specified flow rates, Eq. (9.40) can be

rearranged as

> Tiwpi— (ZTz,n>pn = Tt Z—Z)) 4w, (941

ley, ley, ley,

In step 2, we define block n as a block in 3-D space [n=(i,j,k)]. Accord-
ingly, v, is given as in Fig. 3.3c:

v, =i =1{(n—mny), (n—ny),(n—=1), (n+1), (n+ny), (n+nen,) }
(9.42)
provided that the reservoir blocks are ordered using natural ordering, with the
blocks ordered in the i direction, the j direction, and finally the & direction. Now,
Eq. (9.41) and the new definition of y,, given by Eq. (9.42) provide the sought
equation.
In step 3, we expand Eq. (9.41) as

T n—nen,Pn—nny + Trn—nDn—n, + Tnn-1Pn—1+Tpn+1Pn+1+ T nnDn+n,
+TunsnonPrsnan, = Tnn-nny + Tonn + Tunt + Tonst + Tunsn, + Tunsnen, | P
= [(T}/)n,nfn,(ny (Zn—n,rny - Zn) + (TV)n,nan (Zn-n, —Zn) + (TY)n,nfl (Zn-1—Z)
+<T7’)n,n+ | (Zns1—2Z,) + (TJ’)n,n + nX(Zn n— L)+ (TV)n,n+ neny (Zn + ey Zn)] —Ysc,
| (9.43)

The unknown pressures in Eq. (9.43) are rearranged in the order shown in
Fig. 9.2, yielding
Tn,n—n*nypn—n,\,nv + Tn,n—n,\pn—nx + Tn,n—lpn—]
- [Tn,nfnxny + Tn,nfnx + Tn,nfl + Tn,n+1 + Tn,n+nx + Tn,n+nxny]pn
+Tn,n +1Pn+1t Tn,n+nxpn+n,\ + Tn,n+nxnypn+nxny
= [(TY)n,n—nxny (Z"—"r"y _Z") + (T}/)n,n—nx (Z”l—".r _Zn) + (T}/)n,n—l (Z”l—l - Zﬂ)
+(Ty)n,n+ 1 (Z’H' 1= Z’l) + (Ty)n,n+n,‘ (Z’H'”x_ Z’l) + (Ty)n,n+nxny(zn+"xny_ Z")] s,

(9.44)

~No

2

<
wes
- . i
Qe

b
°
1

FIG. 9.2 Ordering of unknowns of neighboring blocks in flow equations.
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Eq. (9.44) is the linear equation for 3-D flow of an incompressible fluid. The
unknowns in this equation are p,—, n; Pu—ns> Pn—1> Pn> Pn+1s Prin> A0 Ppiy .
Eq. (9.44) can be expressed as

buXn—nun, + SnXn—n, ¥ WnXn_1 + CpXp + €uXp 11 + MyXpsn, + QpXppnon, = dn  (9.45)

where
by =Tnn-nn,=T: 1 (9.46a)
$n=Tnnn =Ty, . (9.46b)
Wop=Tyn1=Ty_,,,, (9.46¢)
en=Tnn+1=Tx, , (9.464)
Mu=Tonen =Ty, 01k (9.46e)
an=Tnpsnn, =T ;1) (9.46f)
chn=—(bp+sp+w,+e,+n,+a,) (9.46g)

and

dn = [(07),(Zu-nin, = Za) + (57),(Zn-n, = Z0) + (W7)(Zs-1 = Z,) (9.46h)

+(e}/)n(Zn+1 _Zn) + (”}’)n(znwl,\ _Zn) + (a}/)n (Zn+nxnv _Zn)] —Ysc,

If Eq. (9.45) is written for each block n=1, 2, 3..., N where N=n, X n, X n,
in a rectangular reservoir, the matrix equation will have seven diagonals
(a heptadiagonal coefficient matrix) as shown in Fig. 9.3c. Fluid flow in a
2-D reservoir (b, =a,=0) with regular boundaries results in a matrix equation
with five diagonals (a pentadiagonal coefficient matrix) as shown in Fig. 9.3b.
Fluid flow in a 1-D reservoir (b,,=s,=n, =a,=0) results in a matrix equation
with three diagonals (a tridiagonal coefficient matrix) as shown in Fig. 9.3a.

Ny
Nx [~ x>]
12 2 112

f\\}s ) <\\\

RN 2
= \ ()\\\ T;\\\

FIG. 9.3 Coefficient matrices in 1-D, 2-D, and 3-D flow problems. (a) Tridiagonal matrix,
(b) Pentadiagonal matrix, and (c) Heptadiagonal matrix.
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The solutions of these matrix equations can be obtained using a g-band
matrix solver. Such a solver is nothing more than Gaussian elimination using
LU factorization, which operates only on elements within the outermost bands
of the sparse matrix. Zeros outside the outermost bands are not operated on. The
number of row (or column) elements within the outermost bands is called the
bandwidth (2b,,+ 1), where b,,=1 for 1-D flow problems, b,, = n, for 2-D flow
problems, and b,,=n, x n, for 3-D flow problems as shown in Fig. 9.3. The fol-
lowing algorithm is a g-band algorithm. The g-band algorithm is executed in
three major steps: the initialization step, the forward elimination step, and

the back substitution step.

9.2.3.1 Initialization step
Fori=1, 2, ...N, set

(0)
d;’ =d;
jmin = max ( )
Jmax = min (i +b,,, N)
and
le’(;) =4aj,;

forj:jmin» jmin+ 1, ~~jmax~

9.2.3.2 Forward elimination step
Fori=1, 2, ...N, set

(i-1)
0 _d;
d! (

=~ a4
a )

i1
B

Jmax = min (i +b,,, N)

for j=i,i+1, ... Jmax, and

For k:i+1, l.+2’ ~--jmax’ set

d = =D _ g g=D

i i

i i-1 i) (i-1
afy=a;" ~aa;"

(9.47)
(9.48a)
(9.48b)

(9.49)

(9.50)

(9.48b)

(9.51a)

(9.51b)

9.52)

(9.53a)
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for j=i,i+1, ...jmax, and

k=0 (9.53b)

9.2.3.3 Back substitution step

Set xy =d.") (9.54)
Fori=N—-1,N—-2, ...2, 1, set
Jmax = min (i + by, N) (9.48b)
and
jmss
x=d" =" afx; 9.55)
j=it1

The FORTRAN computer codes that use this algorithm are available in the
literature (Aziz and Settari, 1979; Abou-Kassem and Ertekin, 1992). Such pro-
grams require storing matrix elements within the outermost bands row-wise in
a vector (a one-dimensional matrix).

9.3 Iterative solution methods

Iterative solution methods produce the solution vector for a given system of
equations as the limit of a sequence of intermediate vectors that progressively
converge toward the solution. Iterative solution methods do not require storing
the coefficient matrix [A] as in the direct solution methods. In addition, these
methods do not suffer from the accumulation of roundoff errors that occur dur-
ing computations. In iterative methods, the reservoir blocks are usually ordered
using natural ordering. In the following presentation, the blocks are ordered
along the x-direction, then along the y-direction, and finally along the z-direc-
tion. We discuss basic iterative methods such as the point iterative methods
[Jacobi, Gauss-Seidel, or point successive overrelaxation (PSOR)] that are most
useful in solving equations for 1-D problems, line SOR (LSOR), and block SOR
(BSOR) methods and alternating direction implicit procedure (ADIP) that are
useful in solving equations for 2-D and 3-D problems. Although these methods
are practically unused in today’s simulators because of the development of
advanced and more powerful iterative methods, they are sufficient for single-
phase flow problems. We will use Eq. (9.45) to demonstrate the application
of the various iterative solution methods for 1-D, 2-D, and 3-D problems. Ini-
tiation of the iterative methods requires the assignment of initial guesses for all
the unknowns. For flow problems involving an incompressible fluid, the initial
guess for unknown x,, is taken as zero; that is, x'’ = 0. For flow problems involv-
ing slightly compressible and compressible fluids, the initial guess for unknown
x,, for the first outer iteration (k=1) is taken as the value of the unknown at the
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old time level (p},); that is, X0 = pn. However, for the second (k= 2), third (k=3),
and higher (k=4, 5, ...) outer iterations, the initial guess for unknown xn is taken

as the value of the unknown at the latest outer iteration; that is, x\”’ = ”” . Outer
iterations refer to the iterations used to linearize the equations in the process of
advancing the pressure solution from old time level n to new time level n+1.

9.3.1 Point iterative methods

Point iterative methods include the point Jacobi, point Gauss-Seidel, and point
successive overrelaxation (PSOR) methods. In these methods, the solution, at
any iteration level (v+1), is obtained by solving for one unknown using one
equation at a time. They start with the equation for block 1, followed by the
equation for block 2, and proceed block by block (or point by point) to the last
block (block N). Though these methods can be used for multidimensional prob-
lems, their use is recommended for 1-D problems because of their extremely
slow convergence.

9.3.1.1 Point Jacobi method

To write the point Jacobi iterative equation for 1-D problems, we have to solve
for the unknown of a general block # (x,, in this case) using the linear equation
for the same block (Eq. 9.45 with b,,=s,=n,=a,=0); that is,

1
Xy =—(dy —WpXp—1 — €nXns1) (9.56)

Cﬂ
The unknown for block n on the LHS of the resulting equation (Eq. 9.56) is
assigned current iteration level (v+ 1), whereas all other unknowns on the RHS
of Eq. (9.56) are assigned old iteration level (). The point Jacobi iterative
scheme becomes
1
W == (= winl? —ennlt] ) 9.57)
n
where n=1,2, ..Nandv=0,1, 2, ...
The iteration process starts from v =0 and uses initial guess values for all

0)_

unknowns (say, x 0 for incompressible flow problems or the old time value,

X0 =%" for slightly compressible and compressible flow problems as men-
tioned earlier in the introduction in Section 9.3). We start with block 1, then block
2, ..., until block N and estimate the results of the first iteration (x (1)). The
process is repeated for v=1, and second iteration estimates for all unknowns
are obtained (x (?)). Tterations continue until a specified convergence criterion
is satisfied. One form of convergence criterion is related to the maximum absolute
difference between the successive iterations among all blocks; that is,
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dvr) <e (9.58)
where
(v+1) _ v+1) _ (v)
dpr) = 1r§nna§)§v X, X, ’ (9.59)

and e is some acceptable tolerance.
A better convergence criterion is related to the residual (7,,) of the linear
equation (Aziz and Settari, 1979):

v+1)| «
121223\] ‘rn ’ <e (9.60)

The residual of Eq. (9.45) is defined as

I'n= bnxnfnxny t SpXp—n, T WpXp—1+CpXpy +€pXp1 +NpXyyp, + anxn+nxny - dn
9.61)

Fig. 9.4 shows the iteration level of the unknowns of the neighboring blocks
that usually appear in iterative equations of the point Jacobi method in multi-
dimensional problems. Fig. 9.5 illustrates the application of the method in a 2-D
reservoir. It should be noted that the point Jacobi method requires storing the old
iterate values of all unknowns. In addition, the convergence of this method is
extremely slow. In Example 9.3, we apply the point Jacobi iterative method
to solve the equations of a 1-D reservoir.

Example 9.3 The following equations were obtained for the 1-D reservoir in
Example 7.1 and were solved in Example 9.1:

—85.2012p; +28.4004p, = —227203.2 9.12)
28.4004p; — 56.8008p, +28.4004p; =0 9.13)
28.4004p, — 56.8008p3 +28.4004p, =0 9.14)

X£7V2n ul
xNy
X,
y
z
i X(nV—)1 XLVH) X(ni)1
X
X
X
Xy

FIG. 9.4 TIteration level of the unknowns of the neighboring blocks in the point Jacobi method.
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25 | 26 | 27| 28| 20| 30 | =5
19 [ 20 |x0) | 22| 23 [ 24 | j=4
13 | x0T X0 | 17 | 18 | =3
7 8 x| 0] 11| 12 |2
y 1 2 3 4 5 6 |j=1

FIG. 9.5 TIteration level of the unknowns of the neighboring blocks in estimating values in the
point Jacobi method in 2-D problems.

and
28.4004p5 — 28.4004p, = 600 9.15)

Solve these equations using the point Jacobi iterative method.

Solution
First, we solve for p; using Eq. (9.12), p, using Eq. (9.13), p3 using
Eq. (9.14), and p, using Eq. (9.15):

p1=2666.6667 +0.33333333p, 9.62)
p2=0.5(p1 +p3) (9.63)
p3=0.5(p2 +pa) (9.64)
and
pa = —21.126463 + p; (9.65)

Second, the Jacobi iterative equations are obtained by placing levels of iter-
ation according to Eq. (9.57),

pi' Y =2666.6667 +0.33333333p) (9.66)
pév+ D _ 0.5 (p<1v> +[7(3V)> 9.67)
P 05 (pgo + pg\o) (9.68)

and

P+ = —21.126463 + p!” (9.69)
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With an initial guess of 0 for all unknowns, the Jacobi iterative equations for
the first iteration (v =0) predict

P\ =2666.6667 +0.33333333p") = 2666.6667 + 0.33333333(0)
=2666.6667

Py =0.5(p" +p") =0.50+0) =0

Py =0.5(p" +p)") =0.50+0) =0
and

P\ =—21.126463 +p'”) = —21.126463 + 0 = —21.126463

For the second iteration (v=1), the Jacobi iterative equations predict

p\Y =2666.6667 +0.33333333p}") = 2666.6667 +0.33333333(0)
=2666.6667

PP =05 <p§” + pg”) =0.5(2666.6667 +0) = 1333.33335

P =0.5(p" +p{") =0.5(0-21.126463) = ~10.5632315
and

PP = —21.126463 +p|) = —21.126463 +0 = —21.126463

The procedure continues until the convergence criterion is satisfied. The
convergence criterion set for this problem is € <0.0001. Table 9.3 presents
the solution within the specified tolerance obtained after 159 iterations. At con-
vergence, the maximum absolute difference calculated using Eq. (9.59) was
0.0000841.

9.3.1.2 Point Gauss-Seidel method

The point Gauss-Seidel method differs from the point Jacobi method in that it
uses the latest available iterates of the unknowns in computing the unknown for
block n at the current iteration (x**"). When we obtain the current iteration
value for the unknown for block n, we already have obtained the current iter-
ation values for the unknowns for blocks 1, 2, ..., and n — 1 that precede block n.
The unknowns for blocks n+1, n+2, ..., and N still have their latest iteration
value at iteration level v. Therefore, the point Gauss-Seidel iterative equation
for block n in 1-D problems is

1
_t (dn —wt D e, x) ) (9.70)

(v+1)
X n+1
n

n



TABLE 9.3 Jacobi iteration for Example 9.3.

v+1

S 1 W

21
22
23
24

45
46
47
48

67
68
69
70

90
91
92
93

112
113

158
159

P1

0
2666.67
2666.67
3111.11
3109.35
3294.54
3292.92

3425.64

3855.62
3855.30
3880.47
3880.21

3978.06
3978.03
3980.17
3980.15

3988.25
3988.25
3988.47

3988.47

3989.31
3989.34
3989.34

3989.35

3989.42
3989.43

3989.44

3989.44

P2

0

0.00
1333.33
1328.05
1883.61
1878.77
2276.91

2272.92

3565.91
3641.40
3640.62

3702.09

3934.09
3940.51
3940.44

3945.67

3964.74
3965.41
3965.40

3965.95

3968.01
3968.01
3968.06

3968.06

3968.28
3968.28

3968.31

3968.31

P3

0

0.00
—10.56
656.10
648.18
1259.29
1252.91
1757.54

3427.17
3425.94
3523.72

3522.72

3902.96
3902.86
3911.17
3911.09

3942.57
3942.55
3943.42

3943.41

3946.70
3946.79
3946.79

3946.86

3947.13
3947.14

3947.18

3947.18

P4

0
-21.13
—21.13
—31.69
634.98
627.05
1238.17
1231.78

3285.97
3406.05
3404.81

3502.60

3871.62
3881.84
3881.73
3890.05

3920.37
3921.44
3921.43
3922.30

3925.58
3925.57
3925.66

3925.66

3926.01
3926.01

3926.06

3926.06

d(l/+1)

max

2666.6667
1333.3333
666.6667
666.6667
611.1111
611.1111

504.6296

120.0747
120.0747
97.7808

97.7808

10.2113
10.2113
8.3154
8.3154

1.0664
1.0664
0.8684

0.8684

0.1114
0.0907
0.0907

0.0738

0.0116
0.0095

0.0001
0.0001
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(v)
y y z Xn+nxny
(v) : ()
X Xn+ny X XnV+nx
v+l v (v+1) () 1
o e wo s | 4, wn | |
—}
X (v+1) (v+1)
(a) n—ny (1) Xn-ny
Xn—nxny
(b) (c)

FIG. 9.6 Iteration level of the unknowns of the neighboring blocks in the point Gauss-Seidel
method. (a) 1-D, (b) 2-D, and (c) 3-D.

25 26 27 28 29 30 | j=5

19 | 20 [ x5, | 22| 23 | 24 | =4

(v+1) (v+1) (v)

13 | XU | ¢ ol IETAN IRTIN RS
7 8 Xﬁfjnlx) 10| 11| 12 |j=2
y 1 2 3 4 5 6 | j=1

i=1 i=2 i=3 i=4 i=5  i=6
X

FIG. 9.7 Tteration level of the unknowns of the neighboring blocks in estimating values in the
point Gauss-Seidel method in 2-D problems.

It should be mentioned that not only does the point Gauss-Seidel method not
require storing the old iterate value of the unknowns but also it is easier to pro-
gram and converges twice as fast as the point Jacobi method. Fig. 9.6 shows the
iteration level of the unknowns of the neighboring blocks that usually appear in
iterative equations in multidimensional problems. Fig. 9.7 illustrates the appli-
cation of the method in a 2-D reservoir. Example 9.4 demonstrates the applica-
tion of this iterative method to solve the equations presented in Example 9.3.
Observe the improvement in the rate of convergence over that of the point
Jacobi method.

Example 9.4 The following equations were obtained for the 1-D reservoir in
Example 7.1:

—85.2012p; +28.4004p, = —227203.2 9.12)
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28.4004p; — 56.8008p, +28.4004p3 =0 (9.13)
28.4004p, — 56.8008p3 +28.4004p4 =0 9.14)

and
28.4004p3 — 28.4004p4 = 600 9.15)

Solve these equations using the point Gauss-Seidel iterative method.

Solution
First, we solve for p; using Eq. (9.12), p, using Eq. (9.13), p3 using
Eq. (9.14), and p4 using Eq. (9.15) as in Example 9.3:

p1=2666.6667 +0.33333333p, 9.62)
p2=0.5(p1 +p3) (9.63)
p3=0.5(ps+p4) (9.64)

and
pa=—21.126463 +p; (9.65)

Second, the Gauss-Seidel iterative equations are obtained by placing levels
of iteration according to Eq. (9.70):

P = 2666.6667 +0.33333333p." ©.70)
pé\ﬂ- 1) — 05 (p<1v+ 1) +pgv)) (9'72)
pg\,_‘_]) —05 (pgv+ 1) +pi")) (973)
and
PV = 21.126463 +p{' ©.74)

With an initial guess of O for all unknowns, the Gauss-Seidel iterative equa-
tions for the first iteration (v=0) predict

PV =2666.6667 +0.33333333p)) =2666.6667 +0.33333333(0)
=2666.6667

V=05 (p§1> + p§°>) —0.5(2666.6667 +0) = 1333.33335
Py =0.5(p" +p{") =0.5(1333.33335 +0) = 666.66668

and

P = —21.126463 + p!) = —21.126463 + 666.66668 = 645.54021
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For the second iteration (v = 1), the Gauss-Seidel iterative equations predict

P! =2666.6667 +0.33333333 p

=3111.11115

o =05

2 2
o =05(s

and

P4

)

1
ol

(O]
2

=2666.6667 +0.33333333(1333.33335)

) =0.5(3111.11115 +666.66668) = 1888.88889

) =0.5(1888.88889 +645.54021) = 1267.21455

—21.126463 +pg2) = —21.126463 +1267.21455 = 1246.08809

The procedure continues until the convergence criterion is satisfied. The
convergence criterion set for this problem is € <0.0001. Table 9.4 presents
the solution within the specified tolerance obtained after 79 iterations. At con-
vergence, the maximum absolute difference calculated using Eq. (9.59) was

0.0000828.

TABLE 9.4 Gauss-Seidel iteration for Example 9.4.

v+1

21
22

23

P1

0
2666.67
3111.11
3296.30
3427.25
3531.86
3616.84
3686.02
3742.36
3788.23
3825.59
3856.01

3880.78

3972.33
3975.50
3978.09

P2

0
1333.33
1888.89
2281.76
2595.59
2850.53
3058.07
3227.07
3364.69
3476.77
3568.03
3642.35

3702.87

3926.51
3934.27
3940.59

Ps3
0

666.67

1267.21
1763.92
2169.19
2499.30
2768.12
2987.03
3165.30
3310.47
3428.69
3524.95

3603.35

3893.04
3903.09
3911.28

P4

0
645.54
1246.09
1742.80
2148.06
2478.17
2746.99
2965.91
3144.17
3289.34
3407.56
3503.83

3582.22

3871.91
3881.96
3890.15

d(u+1)

max

2666.6667
600.5479
496.7072
405.2693
330.1046
268.8234
218.9128
178.2681
145.1697
118.2165
96.2677

78.3940

12.3454
10.0532
8.1867

Continued
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TABLE 9.4 Gauss-Seidel iteration for Example 9.4.—cont'd

v+1 P1 P2 P3 Pa dg:;:)

32 3987.65 3963.94 3941.53 3920.40 1.2892
33 3987.98 3964.76 3942.58 3921.45 1.0499
34 3988.25 3965.42 3943.43 3922.31 0.8549
42 3989.21 3967.75 3946.46 3925.33 0.1653
43 3989.25 3967.85 3946.59 3925.47 0.1346
44 3989.28 3967.94 3946.70 3925.58 0.1096
45 3989.31 3968.01 3946.79 3925.67 0.0893
46 3989.34 3968.06 3946.86 3925.74 0.0727
78 3989.44 3968.31 3947.18 3926.06 0.0001
79 3989.44 3968.31 3947.18 3926.06 0.0001

9.3.1.3 Point SOR method

The point SOR (PSOR) method offers improvements in convergence over the
point Gauss-Seidel method by making use of the latest iterate value of the
unknown (x*’) and introducing a parameter () that accelerates convergence.
Starting with the Gauss-Seidel method for 1-D problems, an intermediated

value is estimated:
1 v v
P (dn — D — e,k 1) (9.75)
Fig. 9.8 shows the iteration level of the unknowns of the neighboring blocks
that are used to estimate the intermediate value of the unknown of block
n (6,""Y). Fig. 9.9 illustrates the application of this step of the method in a

2-D reservoir. This intermediate value is improved and accelerated to obtain
the current iterate value of the unknown before moving on to the next block:

D = (1 — @)™ + @x: v+ (9.76)

where 1 <@ <2. The acceleration parameter has an optimum value that is called
the optimum overrelaxation parameter (@,,,). The use of this optimum value
improves the convergence of the PSOR method that is roughly twice the
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(v)
y y z Xn+nen,
() : ()
X Xn+nx X Xny*-nx
1 - v+l * v 1 “ ,
XLV_+1) X,,(VH) X2V+)1 X£;71> Xn(m) X£1+)1 X$7V-+1) X,,(VH) X(n,*-)‘\
—>
X (v+1) (v+1)
Xn-ny (+1) n=ny
v
(a) Xn—nxny
(b) (c)

FIG. 9.8 Iteration level of the unknowns of the neighboring blocks in the PSOR method prior to
acceleration. (a) 1-D, (b) 2-D, and (c¢) 3-D.

25 26 27 28 29 30 | j=5

19 20 (v) 22 23 24 | j=4

Xn+ny

(I Bl PRGN ISVGON TN IR EK

7 8 0+ 1 90 11 12 | j=2
Xn—ny /=

1 2 3 4 5 6 | j=1

FIG. 9.9 Iteration level of the unknowns of the neighboring blocks in estimating the values in the
PSOR method prior to acceleration in 2-D problems.

convergence rate of the point Gauss-Seidel method. The optimum overrelaxa-
tion parameter is estimated using

2

Wopt =7 ——
I+/1=pcs

9.77)

where

(v+1)
== (9.78)
dmax
is obtained from the Gauss-Seidel method for sufficiently large values of v. This
means that the overrelaxation parameter (@,,,) is estimated by solving

PGs
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Egs. (9.75) and (9.76) with @ = 1 until pgg, estimated using Eq. (9.78), stabilizes
(converges within 0.2%); then Eq. (9.77) is used. For 2-D and 3-D problems,
Eq. (9.75) is replaced with the appropriate equation. Example 9.5 demonstrates
the application of this iterative method to solve the equations presented in
Example 9.3. Observe the improvement in the rate of convergence over that
of the Gauss-Seidel method.

Example 9.5 The following equations were obtained for the 1-D reservoir in
Example 7.1:

—85.2012p; +28.4004p, = —227203.2 9.12)
28.4004p; — 56.8008p;, +28.4004p3 =0 (9.13)
28.4004p, — 56.8008p3 +28.4004p4 =0 9.14)
and
28.4004p3 —28.4004p4 = 600 9.15)

Solve these equations using the PSOR iterative method.

Solution

First, we estimate the optimum overrelaxation parameter (@,,) using
Eq. (9.77). This equation requires an estimate of the spectral radius that can
be obtained by applying Eq. (9.78) and the Gauss-Seidel iteration as in
Example 9.4. Table 9.5 shows that the spectral radius converges to 0.814531
within 0.15% after five iterations. Now, we can estimate @,,,, from Eq. (9.77) as

_ 2 _
WDopt = 17 /T=08 a1 1.397955

To write the PSOR iterative equations, we first write the Gauss-Seidel iter-
ative equations as in Example 9.4:

PV =2666.6667 +0.33333333p" 9.71)

TABLE 9.5 Determination of spectral radius for Example 9.5.

v+1 P1 P2 P3 Pa dia? PGs

0 0 0 0 = —
1 2666.67 1333.33 666.67 645.54 2666.6667 -
2 3111.11 1888.89 1267.21 1246.09 600.5479 0.225205
3 3296.30 2281.76 1763.92 1742.80 496.7072 0.827090
4 3427.25 2595.59 2169.19 2148.06 405.2693 0.815912
5 3531.86 2850.53 2499.30 2478.17 330.1046 0.814531
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A0 420) o)
pgw D_05 (p2v+ 1) +piv)) (9.73)
and
Pl = —21.126463 +pi Y ©.74)
Then, applying Eq. (9.76), the PSOR iterative equations become
PtV = (1= 0o ) + 00 [2666.6667+0.33333333) ] 9.79)
P<zv+ D= (1 — a)o1;1)l7§v> + Wopr {05 <p$v+ Y +PgV))} (9.80)
PU Y = (1= )l + 0 [05 (p1 40 ©.81)
and
(v+1) (1_ ) _ (v+1)
Pl = Wopt)Pa |+ Oopr | —21.126463 + ;) (9.82)

We continue the solution process with the PSOR iterative equations using
®op:=1.397955 and starting with the results of the last Gauss-Seidel iteration,
shown as the fifth iteration in Table 9.5, as an initial guess. The PSOR iterative
equations for the first iteration (v =0) predict

P}V = (1= @0p )P\ + @op [2666.6667 + 0.3333333319(20)]

= (1-1.397955)(3531.86) + (1.397955)[2666.6667 + 0.33333333 x 2850.53]
=3650.66047

pél) = (1 — a)op,)péo) + Wopr {0.5 (p(ll> +pg0>>}
— (1—1.397955)(2850.53) + (1.397955)[0.5(3650.66047 + 2499.30)]
=3164.29973

p;” = (1 — w,,p,)pgo) + Wt {0.5 (pgl) +pio))]

= (1—1.397955)(2499.30) + (1.397955)[0.5(3164.29973 +2478.17)]
—2949.35180

and

P = (1= @) P + s [—21.126463 + pg“]
= (1—1.397955)(2478.17) + (1.397955)|—21.126463 +2949.35180]
—3107.32771

We continue with the second iteration using Egs. (9.79) through (9.82), fol-
lowed by the third iteration, and the iteration process is repeated until the
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TABLE 9.6 PSOR iteration for Example 9.5.

v+1 P1
3531.86
1 3650.66
2 3749.60
3 3830.85
4 3920.82
5 3951.70
6 3972.11
7 3981.85
8 3985.72
3987.90
10 3988.74
11 3989.13
12 3989.31
13 3989.38
14 3989.41
15 3989.43
16 3989.43
17 3989.44
18 3989.44
19 3989.44
20 3989.44
21 3989.44
22 3989.44

P2

2850.53
3164.30
3423.17
3685.62
3828.73
3898.91
3937.23
3953.87
3961.84
3965.51
3967.06
3967.78
3968.08
3968.21
3968.27
3968.29
3968.30
3968.31
3968.31
3968.31
3968.31
3968.31
3968.31

P3
2499.30

2949.35
3390.96
3655.17
3806.16
3880.53
3916.41
3933.42
3941.03
3944.49
3946.01
3946.68
3946.97
3947.09
3947.14
3947.17
3947.18
3947.18
3947.18
3947.18
3947.18
3947.18
3947.18

Pa

2478.17
3107.33
3474.30
3697.62
3819.82
3875.16
3903.29
3915.88
3921.50
3924.10
3925.20
3925.69
3925.90
3925.99
3926.03
3926.05
3926.05
3926.06
3926.06
3926.06
3926.06
3926.06
3926.06

i
629.1586
441.6074
264.2122
150.9853
74.3782
38.3272
17.0095
7.97870
3.66090
1.5505
0.7205
0.3034
0.1311
0.0578
0.0237
0.0104
0.0043
0.0018
0.0008
0.0003
0.0001
0.0001

convergence criterion is satisfied. The convergence criterion set for this prob-
lem is € <0.0001. Table 9.6 presents the solution within the specified tolerance
obtained after 22 iterations. The total number of iterations, including the Gauss-
Seidel iterations necessary to estimate the optimum relaxation parameter, is 27.
At convergence, the maximum absolute difference calculated using Eq. (9.59)

was 0.00006.
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9.3.2 Line and block SOR methods

Although point iterative methods can be used to solve equations for 2-D and 3-D
problems, they are inefficient because of their extremely slow convergence. The
line SOR (LSOR) and block SOR (BSOR) methods are more efficient in solving
equations for these problems. The overrelaxation parameter (w,,,) is estimated
using the point Gauss-Seidel method until pgg stabilizes and then using
Eq. (9.77) as mentioned in Section 9.3.1.3.

9.3.2.17 Line SOR method

In the LSOR method, the reservoir is looked at as consisting of group of lines.
These lines are usually aligned with the direction of highest transmissibility
(Aziz and Settari, 1979) and are taken in order, one line at a time. For example,
for a 2-D reservoir having the highest transmissibility along the x-direction,
the lines are chosen parallel to the x-axis. Then, the lines are taken in order,
one at a time for j=1, 2, 3, ..., n,. In other words, the lines are swept in the
y-direction. First, the equations for all blocks in a given line (line j) are written.
In writing the equations for the current line (line j), the unknowns for the pre-
ceding line (line j — 1) are assigned current iteration level v+ 1, and those for
the succeeding line (line j+ 1) are assigned old iteration level v as shown in
Fig. 9.10a. In addition, the unknowns for the current line are assigned current
iteration level v+ 1.
First, the equations for line j are written

(v+1) (v+1)

WX, e+ et =, — 5D i) n (9.83)

n+1 n—n,

forn=i+(G—1)xngsi=1,2, ..., n,.

Second, the resulting n, equations for the current line (line j) are solved
simultaneously, using Thomas’ algorithm, for the intermediate values of the
unknowns for the current line (line j) at current iteration level v+1 (e.g., line
j=3in Fig. 9.10a):

*(v+1)

n—1

*(v+1) (v+1) )

+1
v+ 4 ex =dy—sp%, ) = MnXnsn, (9.84)

Lok
WyX +c,,xn< X |

forn=i+(G—1)xngsi=1,2, ..., n,.

Third, the intermediate solution for the current line (line j) is accelerated,
using the acceleration parameter, to obtain the current iterate values of the
unknowns for line j:

D = (1 — @)™ + @x: v+ (9.85)

n
forn=i+(G—1)xngsi=1,2, ..., n,.
It should be mentioned that the improvement in the convergence of the

LSOR method over the PSOR method is achieved because more unknowns
are solved simultaneously at current iteration level v+ 1.
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FIG.9.10 Iteration level of the unknowns of the blocks in estimating the intermediate values in the
LSOR method. (a) y-direction sweep and (b) x-direction sweep.

If lines are swept in the x-direction as shown in Fig. 9.10b, they are taken in
order one at a time fori=1,2, 3, ..., n,, and Eqgs. (9.84) and (9.85) are replaced
with Egs. (9.86) and (9.87):

s,,x:‘l&”nt Dy c,lx,’;(’“r Dy nnxfl(:,z]) =d, — wnxiffll) + — e,,xs’ll (9.86)
for n=i+(G—1)xny j=1,2, ..., n,and
) = (1 — 0)x® + @x*+ 1) (9.87)

forn=i+(G—1) xnyj=1,2, ..., n,.

Eq. (9.86) assumes that the block ordering has not changed, that is, the
blocks are ordered along the ith direction followed by the jth direction. The
application of the LSOR method is presented in the next example.

Example 9.6 The following equations were obtained for the 2-D reservoir in
Example 7.8 and shown in Fig. 9.11:

—7.8558p, +3.7567ps = —14346.97 (9.88)
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FIG.9.11 Discretized 2-D reservoir in Example 7.8 (and Example 9.6). (a) Gridblocks and wells
and (b) Boundary conditions.

—7.5134ps +3.7567ps +3.7567p7; =0 (9.89)
3.7567p2 +3.7567ps — 15.0268ps +3.7567pe +3.7567ps =0 (9.90)
3.7567ps —7.8558ps = —14346.97 (9.91)
3.7567ps —7.5134p7 +3.7567pg = 1000 (9.92)

and
3.7567ps +3.7567p7 —7.5134pg =0 (9.93)

Solve these equations using the LSOR iterative method by sweeping the
lines in the y-direction.

Solution

For the y-direction sweep, Eq. (9.84) is applied to lines j=1, 2, ...n,. To
obtain the LSOR equations for line j, the equation for each gridblock on
that line is rearranged as follows. The unknowns on line j are assigned iter-
ation level *(v+1) and kept on the LHS of equation, the unknowns on line
Jj—1 are assigned iteration level v+1 and moved to the RHS of equation,
and those on line j+1 are assigned iteration level v and moved to the RHS
of equation. For the problem at hand, only gridblock 2 falls on line j=1;
gridblocks 4, 5, and 6 fall on line j=2; and gridblocks 7 and 8 fall on line
Jj=3.

The LSOR equations for line j=1 are obtained by considering Eq. (9.88):

—7.8558p3“ ") = —14346.97 — 3.7567p" (9.94)
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After solving Eq. (9.94) for p>**", Eq. (9.85) is applied to accelerate the
solution, yielding

p(2”+ N _ (1 a)(,,,,)p(2 < +a)0,,,p;(b+ D (9.95)

The LSOR equations for line j=2 are obtained by considering Egs. (9.89),
(9.90), and (9.91), which state

—7.5134p; "V +3.7567p5 ) = —3.7567p) (9.96)
3.7567p;" "1 —15.0268p;¢ T +3.7567p; TV = —3.7567p\ V) —3.7567p)
9.97)

and
3.7567ps“ ") —7.8558p; ¢ ") = —14346.97 (9.98)

After solving Egs. (9.96), (9.97), and (9.98) for p3**", ps®*V, and pg®*V
using Thomas’ algorithm, Eq. (9.85) is applied to accelerate the solution,
yielding

P = (1= @opt ) pY) + @opupi @V (9.99)

for n=4, 5, 6.
The LSOR equations for line j=3 are obtained by considering Egs. (9.92)
and (9.93), which state

—7.5134p3% Y +3.7567p3¢ "V = 1000 — 3.7567p (9.100)
and
3.7567p3¢ " —7.5134p2 ) = —3.7567p V) (9.101)

After solving Egs. (9.100) and (9.101) for p;“*" and ps®*", Eq. (9.85) is
applied to accelerate the solution, yielding

p£1y+ D= (1 - wopt)p;g ?) +w0prpn(y+ ) (9.102)

for n="7 and 8.

Before applying the procedure given in Eqs. (9.94) through (9.102), we need
to estimate the value of the optimum overrelaxation parameter @, that must be
estimated. The spectral radius for the system of Egs. (9.88) through (9.93) is
estimated using the point Gauss-Seidel iterative method, as in Example 9.5.
Table 9.7 displays the results, which show that the spectral radius converges
to 0.848526 within 0.22% after seven iterations. Now, we can calculate w,,,
from Eq. (9.77) as

2

Wopt = =1.439681
1++/1—0.848526




TABLE 9.7 Determination of spectral radius for Example 9.6.

v+1 P2
0

1 1826.26
2 2044.60
3 2353.81
4 2524.38
5 2656.13
6 2766.05
7 2859.02

P4

0

0.00
161.73
565.90
946.33
1274.29
1553.20
1789.87

Ps

0
456.57
1103.17
1459.85
1735.35
1965.21
2159.63
2324.44

Pe
0

2044.60
2353.81
2524.38
2656.13
2766.05
2859.02

2937.84

Pz
0

—133.10
28.64
432.80
813.23
1141.20
1420.11
1656.77

Ps
0

161.73
565.90
946.33
1274.29
1553.20
1789.87

1990.61

d(v+1)

max

2044.5959
646.5998
404.1670
380.4281
327.9642
278.9100

236.6624

PGs

0.316248
0.625065
0.941265
0.862092
0.850428

0.848526

19¢ 6 | 191dey) suonenbs tesui| jo uonn|os Jo spoyIdIN
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For the first iteration (v=0) of the LSOR method, the initial guess used is
the pressure solution obtained at the seventh Gauss-Seidel iteration, which is
shown in Table 9.7.

For v=0, the LSOR equations for line j=1 become

—7.8558p3'") = —14346.97 — 3.7567p (9.103a)

After substitution for p§” =2324.44, this equation becomes

—7.8558ps") = —14346.97 — 3.7567 x 2324.44 (9.103b)

The solution is p>"’ =2937.8351.
The accelerated solution is

1 0 *(1
p(z ) = (1 - wopt)pg )+woptp2( )

= (1—1.439681) x 2859.02+ 1.439681 x 2937.835 (9.104)
=2972.4896

For v=0, the LSOR equations for line j=2 become

~7.5134p;" +3.7567p1") = —3.7567p\" (9.105a)
3.7567p;" — 15.0268p:") +3.7567p:") = —3.7567p{") — 3.7567p"
(9.106a)
and
3.7567ps") —7.8558p; ") = —14346.97 (9.107a)

After substitution for p$ =1656.77, pt"’ =2972.4896, and p§’ =1990.61,
these three equations become

—7.5134p;" +3.7567p3" = —6223.9300 (9.105b)
3.7567p;") — 15.0268p5" +3.7567p; ") = —18644.694 (9.106b)

and
3.7567p5" — 7.8558p; ") = —14346.97 (9.107b)

The solution for these three equations is pa? =2088.8534, psV=
2520.9375, and pe’ =3031.8015.
Next, the solution is accelerated, giving

1 0 *(1
pz(l ) - (1 - wopt)pfl ) +woptp4( )

=(1-1.439681) x 1789.87 +1.439681 x 2088.8534 (9.108)
=2220.3125
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(m_

0 *(1
Ps = (1 _a)[)pt)pg ) +w0ptp5( )

=(1—1.439681) x 2324.44 +1.439681 x 2520.9375 (9.109)
=2607.3329

and
péU = (1 - a)[)pt)p(ﬁ[)) +w0ptpz(1)
=(1—1.439681) x 2937.84 + 1.439681 x 3031.8015 (9.110)
=3073.1167

For v =0, the LSOR equations for line j=3 become

—7.5134p:" +3.7567p3" = 1000 — 3.7567p." (9.111a)

and

3.7567p3") —7.5134ps") = —3.7567p") (9.112a)

After substitution for p$”=2220.3125 and p§’ =2607.3329, these two
equations become

~7.5134p3") +3.7567p3") = —7340.9740 9.111b)

and

3.7567p%" — 7.5134p;") = —9794.8807 (9.112b)

The solution for these two equations is p7"'=2171.8570 and
ps? =2389.5950.
Next, the solution is accelerated, giving

1 0 (1
p; )= (1 - co,,,,,)pg ) +w,,,,,p7( )

=(1-1.439681) x 1656.77 + 1.439681 x 2171.8570 (9.113)
=2398.3313

and

1 0 *
Pé )= (1- a),,,,,)pé ) + WoptPg

= (1—1.439681) x 1990.61 + 1.439681 x 2389.5950 9.114)
=2565.0230

(1

This completes the first LSOR iteration. Table 9.8 shows the results of this
iteration. We perform calculations for the second iteration (z=1) and so on
until convergence is reached. Table 9.8 shows the results of all LSOR itera-
tions until the converged solution is obtained. The convergence criterion
for this problem is set at a tolerance of £ <0.0001. The solution to the given
system of equations is reached after 20 iterations. The results of solving
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TABLE 9.8 LSOR iteration for Example 9.6.

v+l  py P4 Ps Pe P7 Ps dipd
2859.02 1789.87 2324.44 2937.84 1656.77 1990.61 =

1 2972.49 2220.31 2607.33 3073.12 2398.33 2565.02 741.5620
2 3117.36 2824.53 3002.30 3261.99 2841.74 2981.51 604.2200
3 3325.58 3079.68 3231.90 3371.79 3001.86 3141.20 255.1517
4 3392.11 3155.72 3276.87 3393.29 3026.01 3150.63 76.0318
5 3393.82 3145.21 3268.16 3389.13 3001.13 3133.08 24.8878
6 3387.07 3123.16 3254.48 3382.59 2984.35 3117.09 22.0462
7 3380.62 3113.43 3245.81 3378.44 2978.22 3111.13 9.7293

8 3377.48 3110.40 3243.83 3377.49 2977.06 3110.40 3.1368

9 3377.50 3110.59 3244.08 3377.62 2977.87 3111.05 0.8096
10 3377.67 3111.38 3244.55 3377.84 2978.50 3111.60 0.7935
11 3377.92 3111.75 3244.87 3378.00 2978.74 3111.84 0.3718
12 3378.03 3111.87 3244.96 3378.04 2978.79 3111.87 0.1189
13 3378.04 3111.87 3244.95 3378.03 2978.76 3111.86 0.0253
14 3378.03 3111.84 3244.94 3378.03 2978.74 3111.83 0.0281
15 3378.02 3111.83 3244.92 3378.02 2978.73 3111.83 0.0142

16 3378.02 3111.83 3244.92 3378.02 2978.73 3111.82 0.0049

17 3378.02 3111.83 3244.92 3378.02 2978.73 3111.83 0.0007
18 3378.02 3111.83 3244.92 3378.02 2978.73 3111.83 0.0010
19 3378.02 3111.83 3244.92 3378.02 2978.73 3111.83 0.0005

20 3378.02 3111.83 3244.92 3378.02 2978.73 3111.83 0.0002

Egs. (9.88) through (9.93) for the unknown pressures are p, =3378.02 psia,
p4=3111.83 psia, ps=3244.92 psia, pe=3378.02 psia, p;=2978.73 psia,
and pg=3111.83 psia.

9.3.2.2 Block SOR method

The block SOR (BSOR) method is a generalization of the LSOR method in that
it treats any group of blocks instead of a line of blocks. The most commonly
used group of blocks is a (horizontal) plane or a (vertical) slice. The following
steps for obtaining the solution are similar to those for the LSOR method. Here
again, planes (or slices) should be aligned with the direction of highest trans-
missibility and are taken in order, one plane (or slice) at a time. For example,
for a 3-D reservoir having the highest transmissibility along the z-direction,
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slices are chosen parallel to the z-axis. Then, the slices are taken in order and
one slice atatime fori=1, 2, 3, ..., n,. In other words, the slices are swept in the
x-direction.

First, the equations for slice i are written. In writing the equations for the
current slice (slice i), the unknowns for the preceding slices (slice i-1) are
assigned current iteration level v+ 1 and those for the succeeding slices (slice
i+ 1) are assigned old iteration level v. In addition, the unknowns in the current
slice are assigned current iteration level v+ 1:

(v+1) (v+1) (v+1)

+nnxn+n\ +anXp 4 nn, =dy —wpx

1(1 1 )+e,1x,(721

(9.115)

b+l + 8,0 (v+ 1)

n—nyny +C)C

forn=i+(G—1)xn+(k—1)x nayy j=1,2,...,n k=1,2,...,n

Second, the resulting n,n. equations for the current slice (slice 7) are solved
simultaneously, using algorithms for sparse matrices, for the intermediate
values of the unknowns of the current slice (slice i) at iteration level *(v+1):

KD | g ) WD) ) WD), W)

v+1
bnx( ) Xy gn,  F AnXpynn, = An — WaX, +€nxn+1

e, + 8,50+ epx)

(9.116)

for n=i+(G— 1D xn+k—-1)xXnmny; j=1,2,...,n; k=1,2, ..., n;
Fig. 9.12a schematically shows slice SOR for slice i=2 and the iteration
level for the unknowns of the blocks in preceding and succeeding slices.
Third, the intermediate solution for the current slice (slice i) is accelerated
using acceleration parameter:

x(u+l) (1_ ) ](1D>+0)X;(D+l) 9.117)

for n=i+(G—1D xn+k—-1)xnmny,; j=1,2,...,n; k=1,2, ..., n,

It should be mentioned that the improvement in the convergence of the
BSOR method over the LSOR method is achieved because more unknowns
are solved simultaneously at iteration level v+1.

If the blocks are swept in the z-direction (i.e., plane SOR) as shown in
Fig. 9.12b, the planes are taken in order, one at a time for k=1, 2, 3, ..., n,,
and Egs. (9.116) and (9.117) are replaced with Egs. (9.118) and (9.119), which
state

Snxn(bij—l)+an:(j1+l)+Cﬂx;ﬂ1(b+1)+e”x:(:rl)+ n :(':'JV:I)
’ (9.118)
_d b l/+1) —a x(l’i
Xy ey nAn+nyny
for I’l:l+(]_ 1) an+(k— 1) ani’ly; l:1, 2’ ey Ny .]:1’ 2’ Tt ny; and
x}(qy+1) (1_ ) (’/>+wx (v+1) (9.119)

forn=i+(G— D xn+k—1) xnny; i=1,2,...,n j=1,2,...,n

Egs. (9.118) and (9.119) assume that the block ordering has not changed,
that is, blocks are ordered along the ith direction, followed by the jth direction,
and finally along the kth direction.
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FIG. 9.12 Slice and plane sweeps in the BSOR method. (a) Slice sweep in BSOR and (b) Plane
sweep in BSOR.

9.3.3 Alternating-direction implicit procedure

The alternating direction implicit procedure(ADIP) aims at replacing a 2-D or
3-D problem with two or three sets of 1-D problems in the x-, y-, and z-directions
that are solved consecutively. This method was introduced by Peaceman and
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Rachford (1955). In this section, we apply the method to a slightly compressible
fluid flow problem in a 2-D parallelepiped reservoir (n, X n,). The equation for
block n in a 2-D problem is obtained from Eq. (9.45) as

SnXn—n, +WpXy—1+CpXp +€nXp41 +NpXp +ny = dn (9 1203)

forn=i+(G—1)xny; i=1,2,...,nsandj=1,2, ..., n,,wheres,, w,, e,, and n,
are given by Egs. (9.46b) through (9.46e), yielding

Vi, b, (c+cy)

Ch=—|Sp+Wwp+e,+n,+ aB Al (9.120b)
D, =(sy),(Zn-n, —Zy) +(Wy),(Zn-1 —Z,
(5710 Zon, ~2)+ (07),(Za1 = 2) o120
+<€}/)H(Zn+] 7Z’l) + (ny)n(zn“'"x 7Z")] —Ysc,
and
Vi ¢ (c+c
dn:Dn—M ; (9.120d)

- X
a.B At n

and the unknown x stands for pressure. The solution of this equation is obtained
by finding the solutions of two sets of 1-D problems, one in the x-direction and
the other in the y-direction as outlined in the succeeding text.

9.3.3.1 Set of 1-D problems in the x-direction

For each line j=1, 2, ..., n, solve
an:q +cnxy +e,lx:+1 =d, (9.121a)
forn=i+(G—1)xn,i=1, 2, ..., n,, where
vV qﬁ; (c+c¢)
F = +e,+ ——m— 9.121b
Cn lwn €n a.B (AZ‘/Z) ( )
and

. Vi, (c+cy) ,
dn :Dn —WXZ — |:Sn (Xz_nx —XZ) +n, (xn+nx —XZ):| (9121C)

Each set of equations represented by Eq. (9.121a) consists of n, linear equa-
tions that can be solved simultaneously using Thomas’ algorithm or iteratively
using the PSOR method.

9.3.3.2 Set of 1-D problems in the y-direction

For each line i =1, 2, ..., n, solve

n+1 % N+ 1 n+1l _ gxx
SnXpyly HCX T X, L, =d, (9.122a)
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for n=i+(j—1)xn,, j=1,2, ..., n, where
V}, d)o (C+C¢)
= s, —— L 9.122b
“n St it B (A1)2) ( )
and

Vndileres) w py o e —e)] ©.1220)

d**:Dn > -
n aCB (At/Z) n n+1

Each set of equations represented by Eq. (9.122a) consists of n, linear equa-
tions that can be solved simultaneously using Thomas’ algorithm or iteratively
using the PSOR method.

While the ADIP just presented is a noniterative version of the method, other
literature presents an iterative version that has better convergence (Ertekin
et al., 2001). For 2-D problems, the ADIP is unconditionally stable. However,
a direct extension of the ADIP presented here to 3-D problems is conditionally
stable. Aziz and Settari (1979) reviewed unconditionally stable extensions of
ADIP for 3-D problems.

9.3.4 Advanced iterative methods

As mentioned in the introduction, we restricted our discussion in this chapter to
basic solution methods. The objective in this chapter was to introduce the
mechanics of the basic methods of solution, although many of these iterative
methods are not used in today’s simulators. However, the algorithms for
advanced iterative methods of solving systems of linear equations, such as con-
jugate gradient methods, the block iterative method, the nested factorization
method, and Orthomin are beyond the scope of this book and can be found else-
where (Ertekin et al., 2001; Behie and Vinsome, 1982; Appleyard and Cheshire,
1983; Vinsome, 1976). Such methods are very efficient for solving systems of
linear equations for multiphase flow, compositional, and thermal simulation.

9.4 Summary

Systems of linear equations can be solved using direct solvers or iterative
solvers. The methods presented in this chapter are basic methods that aim at
introducing the mechanics of solving sets of linear equations resulting from res-
ervoir simulation. Direct solvers include methods that use variations of LU fac-
torization of the coefficient matrix [A]. These include Thomas’ algorithm and
Tang’s algorithm for 1-D flow problems and the g-band matrix solver for 2-D
and 3-D flow problems. Iterative solvers include point Jacobi, point Gauss-
Seidel, and PSOR methods mainly for 1-D flow problems, the LSOR and BSOR
methods for 2-D and 3-D flow problems, and the ADIP method for 2-D flow
problems. The important issue in this chapter is how to relate the coefficients
of matrix [A] to the linearized flow equation. The unknowns in the linearized
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equation for a general block 7 are placed on the LHS of equation, factorized, and
ordered in ascending order; that is, they are ordered as shown in Fig. 9.2. Sub-
sequently, the coefficients b,,, s,,, w,, ¢,,, €,, n,,, and a,, correspond to locations 1,
2,3,4,5,6,and 7 in Fig. 9.2. The RHS of equation corresponds to d,,.

9.5 Exercises

9.1 Define a direct solution method. Name any two methods under this
category.

9.2 Define an iterative solution method. Name any two methods under this
category.

9.3 What is the difference between the iteration level and the time level?
When do you use each?

9.4 The following equations were obtained for the 1-D reservoir problem
described in Example 7.2 and Fig. 7.2:

—56.8008p, +28.4004p; = —113601.6
28.4004p, — 56.8008p3 +28.4004p4 =0
and
28.4004p3 —28.4004p, = 600

Solve these three equations for the unknowns p», p3, and p,4 using the
following:
a. Thomas’ algorithm
b. Jacobi iterative method
c. Gauss-Seidel iterative method
d. PSOR method

For iterative methods, start with an initial guess of zero for all the
unknowns and use a convergence tolerance of 1 psi (for hand calculations).

9.5 The following equations were obtained for the 1-D reservoir problem
described in Example 7.5 and Fig. 7.5:

—85.2012p; +28.4004p, = —227203.2
28.4004p; — 56.8008p; +28.4004p3 =0
28.4004p, — 56.8008p3 +28.4004p, =0

and
28.4004p3 —28.4004ps = 1199.366

Solve these four equations for the unknowns p1, p, p3, and p, using
the following:
a. Thomas’ algorithm
b. Jacobi iterative method
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c. Gauss-Seidel iterative method
d. PSOR method

For iterative methods, start with an initial guess of zero for all the
unknowns and use a convergence tolerance of 5 psi (for hand calculations).

The following equations were obtained for the 2-D reservoir problem
described in Example 7.7 and Fig. 7.7:

—5.0922p; +1.0350p, +1.3524p3 = —11319.20
1.0350p, —6.4547p, +1.3524p, = —13435.554
1.3524p, —2.3874ps + 1.0350p4 = 600
and
1.3524p, +1.0350p3 —2.3874p4 = 308.675

Solve these four equations for the unknowns py, p,, p3, and p, using
the following:
Gaussian elimination
. Jacobi iterative method
Gauss-Seidel iterative method
. PSOR method
LSOR method
For iterative methods, start with an initial guess of zero for all the
unknowns and use a convergence tolerance of 1psi (for hand
calculations).

peo Ty

The following equations were obtained for the 2-D reservoir problem
described in Example 7.8 and Fig. 7.8:

—7.8558p, +3.7567ps = —14346.97
—7.5134p4 +3.7567ps +3.7567p7; =0
3.7567p, +3.7567ps — 15.0268ps +3.7567pe +3.756Tps =0
3.7567ps —7.8558ps = —14346.97
3.7567ps —7.5134p7 +3.7567pg = 1000
and
3.7567ps +3.7567p7 —7.5134ps =0

Solve these six equations for the unknowns p», pa4, ps, Ps, P7, and pg
using the following:
a. Jacobi iterative method
b. Gauss-Seidel iterative method
c. PSOR iterative method
d. LSOR iterative method by sweeping lines in the x-direction
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For iterative methods, start with an initial guess of zero for all the
unknowns and use a convergence tolerance of 10psi (for hand
calculations).

Consider the 1-D flow problem presented in Example 7.11 and Fig. 7.12.
Solve this problem for the first two time steps using the following:
a. Thomas’ algorithm
b. Jacobi iterative method
c. Gauss-Seidel iterative method
d. PSOR iterative method

For iterative methods, take the pressures at the old time level as the
initial guess and use a convergence tolerance of 1psi (for hand
calculations).

Consider the 1-D flow problem presented in Example 7.10 and Fig. 7.11.
Solve this problem for the first two time steps using the following:
a. Thomas’ algorithm
b. Jacobi iterative method
c. Gauss-Seidel iterative method
d. PSOR iterative method

For iterative methods, take the pressures at the old time level as the
initial guess and use a convergence tolerance of 0.1psi (for hand
calculations).

Consider the 1-D single-well simulation problem presented in Exercise
7.16 and Fig. 7.18. Solve this problem using the following:
a. Thomas’ algorithm
b. Jacobi iterative method
c. Gauss-Seidel iterative method
d. PSOR iterative method

For iterative methods, take the pressures at the old time level as the
initial guess and use a convergence tolerance of 1psi (for hand
calculations).

Consider the 2-D flow problem presented in Exercise 7.10 and Fig. 7.15a.
Solve this problem for the first time step using

Gauss-Seidel iterative method

. PSOR iterative method

LSOR iterative method by sweeping lines in the y-direction

. LSOR iterative method by sweeping lines in the x-direction

ADIP

For iterative methods, take the pressures at the old time level as the
initial guess and use a convergence tolerance of 1psi (for hand
calculations).

eao Ty
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10.1 Introduction

Traditionally, the steps involved in the development of a simulator include the
following: (1) derivation of the partial differential equations (PDEs) describing
the recovery process through formulation, (2) discretization of the PDEs in
space and time to obtain the nonlinear algebraic equations, (3) linearization
of resulting algebraic equations, (4) solving the linearized algebraic equations
numerically, and (5) validation of the simulator. The mathematical approach
refers to the first three steps. The engineering approach independently derives
the same finite-difference equations, as special cases of approximating the inte-
gral equation in the engineering approach, without going through the rigor of
PDEs and discretization. The two approaches, however, have a few differences
in treating nonlinearities and boundary conditions. The objective in this chapter
is to highlight the similarities and differences between the two approaches.
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10.2 Derivation of fluid flow equations in discretized form

The fluid flow equations in discretized form (nonlinear algebraic equations) can
be obtained by either the traditional mathematical approach or the engineering
approach. Both of these approaches make use of the same basic principles and
both approaches discretize the reservoir into gridblocks (or gridpoints). Both
approaches yield the same discretized flow equations for modeling any reser-
voir fluid system (multiphase, multicomponent, thermal, and heterogeneous
reservoir) using any coordinate system (Cartesian, cylindrical, and spherical)
in one-dimensional (1-D), two-dimensional (2-D), or three-dimensional (3-
D) reservoirs (Abou-Kassem, 2006). Therefore, the presentation here will be
for modeling the flow of single-phase, compressible fluid in horizontal, 1-D res-
ervoir using irregular block size distribution in rectangular coordinates. We will
take advantage of this simple case to demonstrate the capacity of the engineer-
ing approach to give independent verification for the discretization methods
used in the mathematical approach.

10.2.1 Basic principles

The basic principles include mass conservation, equation of state, and constitu-
tive equation. The principle of mass conservation states that the total mass of
fluid entering and leaving a volume element of the reservoir must equal the
net increase in the mass of the fluid in the reservoir element:

m; —m, +mg =my (10.1)

An equation of state describes the density of fluid as a function of pressure
and temperature:

B=p,./p (102)

A constitutive equation describes the rate of fluid movement into (or out of)
the reservoir element. In reservoir simulation, Darcy’s law is used to relate fluid
flow rate to potential gradient. The differential form of Darcy’s law for a hor-
izontal reservoir is

kap

: 10.
o (10.3)

Uy = qx/Ax =—p

10.2.2 Reservoir discretization

Reservoir discretization means that the reservoir is described by a set of grid-
blocks (or gridpoints) whose properties, dimensions, boundaries, and locations
in the reservoir are well defined. Fig. 10.1 shows reservoir discretization in the
x-direction for both block-centered and point-distributed grids in rectangular
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FIG. 10.1 Reservoir discretization. (a) Point-distributed grid and (b) block-centered grid.

coordinates as one focuses on gridblock i or gridpoint i. The figure shows how
the blocks are related to each other [block i and its neighboring blocks (blocks
i—1andi+1)], block dimensions (Ax;, Ax;_;, Ax;.1), block boundaries (x;_1,2,
Xi+1,2), distances between the point that represents the block and block bound-
aries (dx;-, O0x;+), and distances between the gridpoints or points representing the
blocks (Ax; 1, Ax;y12). In addition, each gridblock or gridpoint is assigned
elevation and rock properties such as porosity and permeability.

In block-centered grid system, the grid is constructed by choosing n, grid-
blocks that span the entire reservoir length in the x-direction. The gridblocks are
assigned predetermined dimensions (Ax;, i=1, 2, 3... n,) that are not necessar-
ily equal. Then, the point that represents a gridblock is consequently located at
the center of the gridblock. In point-distributed grid system, the grid is con-
structed by choosing 7, gridpoints that span the entire reservoir length in the
x-direction. In other words, the first gridpoint is placed at one reservoir bound-
ary and the last gridpoint is placed at the other reservoir boundary. The distances
between gridpoints are assigned predetermined values (Ax; i, i=1, 2, 3...
n,—1) that are not necessarily equal. Each gridpoint represents a gridblock
whose boundaries are placed halfway between the gridpoint and its neighboring
gridpoints.
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10.2.3 The mathematical approach

In the mathematical approach, the algebraic flow equations are derived in
three consecutive steps: (1) derivation of the PDE describing fluid flow in
reservoir using basic principles, (2) discretization of reservoir into grid-
blocks or gridpoints, and (3) discretization of the resulting PDE in space
and time.

10.2.3.1 Derivation of PDE

Fig. 10.2 shows a finite control volume with a cross-sectional area A, perpen-
dicular to the direction of flow, length Ax in the direction of flow, and
volume V;,=A,Ax. Point x represents control volume and falls at its center
for block-centered grid. The fluid enters the control volume across its surface
at x — Ax/2 and leaves across its surface at x+ Ax/2 at mass rates of w,|,_ a2
and w, |, a2, respectively. The fluid also enters the control volume through a
well at a mass rate of g,,. The mass of fluid in the control volume per unit vol-
ume of rock is m,. Therefore, the material balance equation written over a time
step At as expressed by Eq. (10.1) becomes

Mil e axj2 = Mol s 2 +Ms =Ma (10.4)
or
Wil oo a2 B = Wal i arp AL+ Gt =my (10.5)
where mass flow rate (w,) and mass flux (71,) are related through
Wy =11, A, (10.6)
In addition, mass accumulation is defined as

mg=A,(Vpm,) =V, (m‘,,|,+A, —m‘,|,) =V, (m'“rl —m”) (10.7)

v v

Substitution of Eqgs. (10.6) and (10.7) into Eq. (10.5) yields

(mxAX) a2 D — (LA o p AL+ GuAL =V (my], oy, —my],)  (10.8)

Well
||qu |
1 1
SN T AT -
Flowin —> /T > Flow out
e pd

X—Ax/2 x X +Ax/2

FIG. 10.2 Control volume in 1-D traditionally used for writing material balance.
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Dividing Eq. (10.8) by V,At, observing that V,=A,Ax, and rearranging
results in

. > qm
- |:<m«’f‘x+ Ax/2 mx|fox/2) /Ax:| * 7}7

The limits of the terms in brackets in Eq. (10.9) as Ax and At approach zero
(i.e., as Ax— 0 and Ar— 0) become first-order partial derivatives and the result-
ing equation becomes

= [l —ml) /A (109)

on N qm _ Om,
ox V, ot

(10.10)
Mass flux (m1,) can be stated in terms of fluid density (p) and volumetric
velocity (u,) as

My = e PUly (10.11)

m, can be expressed in terms of fluid density and porosity (¢) as
m, = ¢p (10.12)
and ¢, can be expressed in terms of well volumetric rate (¢) and fluid density as
qm = cpq (10.13)

Substituting Egs. (10.11) through (10.13) into Eq. (10.10) results in the con-
tinuity equation:

Ipuy) , pg _ 1 9pg)
ox Vi, a. ot

(10.14)

The flow equation can be obtained by combining the continuity equation
(Eq. 10.14), the equation of state (Eq. 10.2), and Darcy’s law (Eq. 10.3), and
noting that ¢/B = g,.. The resulting flow equation for single-phase flow is

0 ky 0 . 10
9 (pladp) G _19(9 (10.15)
ox uB ox Vi, a0t \B
The above equation is the PDE that describes single-phase flow in 1-D rect-
angular coordinates.

10.2.3.2 Discretization of PDE in space and time

First, the reservoir is discretized as mentioned earlier. Second, Eq. (10.15) is
rewritten in another form, to take care of variations of cross-sectional area
through multiplying by V,,=A,Ax, as

0 ( kA dp Vo 0 (¢
9 (p B PNy =200 (2 10.16
ox <ﬂ‘ uB 0x> x*q a. ot (B ( )
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Eq. (10.16) is then written for gridblock i:

(. kA dp Vi, 0 (¢
EW Al sc-:_’_ = 10.17
ax( 4B a) N s = az<B l. (10.17)

Space discretization

The second-order derivative w.r.t. x at Point i appearing on the LHS of
Eq. (10.17) is approximated using second-order central differencing. The result-
ing approximation can be written as

0 [ kAdp
a( c /lB o ) Axle), l/o(p pi)+TX,-+1/z(pi+1—p,‘) (1018)

with transmissibility T, _  being defined as

10.19

The process of the approximation leading to Eq. (10.18) can be looked at as
follows. Using the definition of central-difference approximation to the first-
order derivative evaluated at Point i (see Fig. 10.1), one can write

kA ap ~ kA, dp 5 kxAxa_p
0x “uB ox), “ uB ox 1+1/2 ¢ uB ox 12

9
Use of central differencing again to approximate <_p> yields
iF1/2

F1/2

JAx;  (10.20)

ls)
<a_17> =~ (piv1 —pi)/(Xiv1 —Xi) = (Piv1 —pi) [ Axic1 )2 (10.21)
X)iv1)2

and

J
(a_p> = (pi—pi1)/(xi—xi-1) = (Pi—pi-1)/ Bxi_1 (10.22)
X/ i1)2

Substitution of Egs. (10.21) and (10.22) into Eq. (10.20) and rearranging
results in

kyAy Op
( CuB ()x> [< L”BA)‘>I+1/2(pM_p[)_( ‘ﬂBAX), 1/2@,4—19,-1)}
(10.23)

or

0 (. kAap kA,

Z(p ) v | ( 1 —pi —pi
ax( <uB ox) " “uBAx M/z(p’” P+ ‘ﬂBAx . 1/2(”’ 1 =pi)

(10.24)
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Eq. (10.18) results from the substitution of T,
Eq. (10.24).

Substitution of Eq. (10.18) into the PDE given by Eq. (10.17) yields an equa-
tion that is discrete in space but continuous in time:

given by Eq. (10.19) into

F1/2

Vi 0 (¢
Ty, (Pic1 —=pi) + T, (Piv1 = Pi) + Gse; %?E (E) 4 (10.25)

Time discretization

The discretization of Eq. (10.25) in time is accomplished by approximating the
first-order derivative appearing on the RHS of the equation. We will consider
here the forward-difference, backward-difference, and central-difference
approximations. All three approximations can be written as

0 ¢ Nl ¢ n+1 ¢ n
a(é)rﬁ[(s?)f (EM (1020

Forward-difference discretization In the forward-difference discretization,
one writes Eq. (10.25) at time level n (old time level ¢"):

n Vi [o[(d\]"
P;lﬁ@il—po+7gﬂﬂ@H1—p»+qm}:=;:&;(E)J (10.27)

In this case, it can be looked at Eq. (10.26) as forward difference of the first-
order derivative w.r.t. time at time level n. The discretized flow equation is

called a forward-difference equation:
qs n+1 ¢ n
) -]

(10.28)

\ Vi,

n n n n n n ~ i
T Pl =PI+ T Py —Pf) + e =

The RHS of Eq. (10.28) can be expressed in terms of the pressure of grid-
block i such that material balance is preserved. The resulting equation is

V !/
T =)+ T el el 2o (5) B -] 1029

where the derivative (%): is defined as the chord; that is,

(%)} l(g)ﬂ - @ﬂ/[pﬁ”' -] (10.30)
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Backward-difference discretization In the backward-difference discretiza-
tion, one writes Eq. (10.25) at time level n+1 (current time level Y.

n+1 Vh,v 0 ¢ n+l
To 1y (Pict =pi) + Ty (Pie 1 — i) +%a} = L)f <B> } (10.31)

In this case, it can be looked at Eq. (10.26) as backward-difference of the
first-order derivative w.r.t. time at time level n+ 1. The discretized flow equa-
tion is called a backward-difference equation:

Vb ¢ n+1 ¢ n

1 1 1 1 1 1 I~ i

re - et e = (8- (3)]
l

i

(10.32)
The equation that corresponds to Eq. (10.29) is
Vi, (d\
n+1 (.n+l1 __n+l n+1 (,.n+1 _n+1 n+l ~ Vb n+l _n
Tx:l/z (pijl —D; ’ ) +Txijl/2 (pl':l D ’ ) +qs; :(ZCAI <E)[pl ’ _pi]
(10.33)

Central-difference discretization In the central-difference discretization,
one writes Eq. (10.25) at time level n+1/2 (time level /%)

w12V, [0 n+1/2
[Tx,,,/z(]?i—l _pi)+Tx,v+|/2(pi+l _Pi)"'%c,] ul =y ?
ot \B);

ac

(10.34)

In this case, it can be looked at Eq. (10.26) as central-difference of the first-
order derivative w.r.t. time at time level n+1/2. In addition, the flow terms at
time level n+ 1/2 are approximated by the average values at time level n+ 1 and
time level n. The discretized flow equation in this case is the Crank-Nicholson
approximation:

a2 =)+ T8, (=)
(1[I o = o) +Ti ) (i =) (10.35)
+(1/2) g vai | = [0 - 9]
The equation that corresponds to Eq. (10.29) is
a2 Wi =)+ 17, (0 =)

+ ([T o = pre ) + T (o =P )] (10.36)

n n Vbl ¢ / n n
+(1/2) {qm +61551} ~—0 <§) [P =l

T a At
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10.2.3.3 Observations on the derivation of the mathematical
approach

1.

For heterogeneous block permeability distribution and irregular grid blocks
(neither constant nor equal Ax), note that for a discretized reservoir, blocks
have defined dimensions and permeabilities; therefore, interblock geomet-

o | (55
ric factor A

X

X
addition, the pressure-dependent term (yB)|X’W2 of transmissibility uses
some average viscosity and formation volume factor (FVF) of the fluid con-
tained in block i and neighboring blocks i1 or some weight (upstream
weighting or average weighting) at any instant of time z. In other words,
the term (/4B)|x,_ﬂ/2 is not a function of space, but it is a function of time
as block pressures change with time. Similarly, for multiphase flow, the rel-
ative permeability of phase p=o0, w, g between block i and neighboring
blocks i1 at any instant of time ¢ (k,, |xm/2) uses upstream value or two-
point upstream value of block i and neighboring blocks i F1 that are already
fixed in space. In other words, the term k., |xm/2 is not a function of space but
it is a function of time as block saturations change with time. Hence, trans-
missibility 7', between block 7 and its neighboring blocks i F1 is a func-
tion of time only; it does not depend on space at any instant of time.
A close inspection of the flow terms on the LHS of the discretized flow
equation expressed by Eq. (10.25) reveals that these terms are nothing
but Darcy’s law describing volumetric flow rates at standard conditions
(qﬂ.m/z) between gridblock i and its neighboring gridblocks i F1 in the x-
direction, that is,

) |, } is constant, independent of space and time. In
XiF1/2

kyAx
uBAx

Ty, ,(piz1 —pi)= ( p ) (Pix1 = Pi) = Gseir (10.37)
iFl/2

Interblock flow terms and production/injection rates that appear on the LHS
of the discretized flow equations (Egs. 10.29, 10.33, and 10.36) are dated at
time level n for explicit flow equation, time level n+1 for implicit flow
equation or time level n+1/2 for the Crank-Nicolson flow equation. In
all cases, the RHS of the flow equations represent accumulation over a time
step At. In other words, the accumulation term does not take into consider-
ation the variation of interblock flow terms and production/injection rate
(source/sink term) with time within a time step.

10.2.4 The engineering approach

In the engineering approach, the derivation of the algebraic flow equation is
straightforward. It is accomplished in three consecutive steps: (1) discretization
of reservoir into gridblocks (or gridpoints) as shown earlier to remove the effect
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of space variable as mentioned in Observation 1 earlier, (2) derivation of the
algebraic flow equation for gridblock i (or gridpoint 7) using the three basic prin-
ciples mentioned earlier taking into consideration the variation of interblock
flow terms and source/sink term with time within a time step, and (3) approx-
imation of the time integrals in the resulting flow equation to produce the non-
linear algebraic flow equations.

10.2.4.1 Derivation of the algebraic flow equations

In the first step, the reservoir is discretized as mentioned earlier. Fig. 10.3 shows
gridblock i (or gridpoint i) and its neighboring gridblocks in the x-direction
(gridblock i—1 and gridblock i+1). At any instant in time, fluid enters grid-
block i, coming from gridblock i— 1, across its x;_1,, face at a mass rate of
Wy |x,» > and leaves to gridblock i+1 across its x;;1,, face at a mass rate of
Wy |x,,+1/2. The fluid also enters gridblock i through a well at a mass rate of g,,.
The mass of fluid in gridblock i per unit volume of rock is m,,.

Therefore, the material balance equation written over a time step
Ar=7"""—¢" as expressed by Eq. (10.1) becomes

mi|xi,1/2 _m0|x”1/2 +my, =My, (10.38)

Terms like wy |, ., wi|. . and g,, are functions of time only because space
. . Ai—1/2 i+1/2 i . . .
is not a variable for an already discretized reservoir (see Observation 1).

Therefore,
t’“’l
mil_,, = J Wy A,H/zdt (10.39)
,,,
tn+l
Mol = J wx|xi+l/2dt (10.40)
t”
Well
. m v Mo .
i-1@ —>» ( X -1 @ i+1
| |
XiZ1i2 Xi+1p2
L Mg |, Mg R
) L ) 7

FIG. 10.3 Gridblock i (or gridpoint i) used for writing material balance in the engineering
approach.
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and

tn+]

ms, = J Gm;dt (10.41)

"

Using Egs. (10.39) through (10.41), Eq. (10.38) can be rewritten as

tn+] tn+l tn+l
J wx|x,_71/2dt— J Wx|x,.+,/2dt+ J G dt = my, (10.42)
f’l ,” t”

Substitution of Egs. (10.6) and (10.7) into Eq. (10.42) yields

tn+l t/1+1 tn+1

J(mXAx)|xH/2dt— J(mXAx)\xMﬂdH qu,dt:v,,, (' —m), (10.43)

e i n
Substitution of Eq. (10.11) through (10.13) into Eq. (10.43) yields

M+l M+l i+l

J (agpuxAX)|X17]/2dt— J (acpuxAx)|XM/2dt+ J (acpq),dt
" " o
= Vi, |(g0)i ! = (90 - (10.44)

Substitution of Eq. (10.2) into Eq. (10.44), dividing through by a.p,. and
noting that g/B =g, yields

+1 f”+l +1

t"
uxAx uxAx o Vh,’ ¢ e ¢ "
i Xi-1/2 i Xit1/2 i l i

(10.45)
Fluid volumetric velocity (flow rate per unit cross-sectional area) from grid-
block i-1 to gridblock i is given by the algebraic analog of Eq. (10.3),

ky i-1 —Pi
wl,  =p. (= pi-1=pi). (10.46)
e K/ i AXicap

Likewise, fluid flow rate per unit cross-sectional area from gridblock i to

gridblock i+1 is
k i — Di
wl, =p(= M (10.47)
Xi+1/2 c A .
K/ iv1p BXiv1)2
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Substitution of Eqgs. (10.46) and (10.47) into Eq. (10.45) and rearranging

results in
kA,
— i—1—pi)|dt
J [(ﬂ‘ﬂBM) , (Pt p)l
m Xi-1/2
tn+l [n+l
kA,
- J [( "yBAx> (Pi_pi+l)‘| dr+ qudt
i Xit1/2 n
V. n+1 n
:a—”' (%) - (%) ] (10.48)
c i i
or

] i+l M+l

J [Tx,-,./z(Pifl—Pi)}dl‘F J |:Txi+|/2(pl'+1_pi):| dr+ J qse,dt

" m m

_& ?n+1_ én
Cac [\B); B/,

The derivation of Eq. (10.49) is rigorous and involves no assumptions other
than the validity of Darcy’s law (Eqgs. 10.46 and 10.47) to estimate fluid volu-
metric velocity between gridblock i and its neighboring gridblocks i-1 and i+ 1.
Such validity is not questionable by petroleum engineers.

Again, the accumulation term in the earlier equation can be expressed in
terms of the pressure of gridblock i, and Eq. (10.49) becomes

(10.49)

o+l o+ o+l
J [Tx,»,l/z (i1 _Pi)} dr+ J [Tx,-ﬂ,z (Pis1 _Pi)} dr+ J Gsc,dt
I ) " ”
:‘;_" (%) i) (10.50)
where (%)i is chord slope defined by Eq. (10.30).

10.2.4.2 Approximation of time integrals

If the argument of an integral is an explicit function of time, the integral can be
evaluated analytically. This is not the case for the integrals appearing on the
LHS of either Eq. (10.49) or Eq. (10.50). The integration is schematically shown
in Fig. 10.4. Performing the integrals on the LHS of Eq. (10.49) or (10.50)
necessitates making certain assumptions. Such assumptions lead to deriving
equations as those expressed by Egs. (10.28), (10.32), and (10.35) or
Egs. (10.29), (10.33), and (10.36).
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F(®)
F(tn+1)

F(t™)

tn tn+1

FIG. 10.4 Representation of integral of function as the area under the curve.

F(t)

Ft™ ) = — = —— — — =
Fitm | — —
Finy - = =

th tm tn+1

FIG. 10.5 Representation of integral of function as F(#"") x At.

M+l
Consider the integral | F(¢)ds shown in Fig. 10.5. This integral can be eval-

uated as follows "
1 1 i+ it
J F(t)dr= J F({M)dt= J F"dt=F" J dt:Fmtltt:“ :F’"(t"+1 _l,n)
" " m n
=F"At
(10.51)
The argument F stands for [T, (p;_1—pil, [TXM/Z(pl. =PI, or gy, that

i—1/2

appears on the LHS of Eq. (10.49) and F = approximation of F at time
" =constant over the time interval Ar.

Forward-difference equation

The forward-difference equation given by Eq. (10.28) can be obtained from
Eq. (10.49) if the argument F of integrals is dated at time ¢”; that is, F=F" =F"
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A

F(t"'”) 77777777
12 [F(t") +|F(t"*T)]
Fit")

tn tn+12 g+t
(c)

FIG. 10.6 Different methods of approximation of the integral of a function. (a) Forward differ-

ence; (b) Backward difference; (c) Central difference (Crank Nicholson).

tn+1

as shown in Fig. 10.6a. Therefore, Eq. (10.51) becomes f F(t)dt= F"At, and
Eq. (10.49) reduces to

|:T),:l;1/2 (p?—l —p:l):|At+ |:TX+1/2 (pl+l p?)i|At+qzlL,At

& (é n+1_ £>n
B/, B/,

Dividing above equation by At gives Eq. (10.28):

n n n n n n n ~u Vbl ¢ n+l ¢ !
Tx,.,l/z (PH _Pi) +Tx,'+1/z (pi+1 _Pi) Ty, = adr [(E) - {5/

~

(10.52)

ac

1 1

(10.28)

If one starts with Eq. (10.50) instead of Eq. (10.49), he ends up with
Eq. (10.29):

Vi, (¢
Ty W =pl) + T, (Pl P?)+Q?Ci’£;2t(g>i[p"+l—pl] (10.29)

Backward-difference equation

The backward-difference equation given by Eq. (10.32) can be obtained from
Eq. (10.49) if the argument F of integrals is dated at time #*'; that is,
F~F"=F" as shown in Fig. 10.6b. Therefore, Eq. (10.51) becomes
tn+1

[ F()dt=F"*'At, and Eq. (10.49) reduces to

"

Xi1/2 iv12 i+ 1 Di

n+1 n
Vi l(ﬂ) _ (?) 1 (10.53)
a. |\B/; B/,

Dividing above equation by At gives Eq. (10.32):

1
Tn+1 (pn+1 pn+1) Tn+1 (pn+1 pn+1) qn+1~ Vbi ? " _ ? ’
Xi12 Wi—1 i Xip12 i+ 1 i SCi _(XCAI‘ B/. B

|:Tn+1 (P,n+11 ln+1):| At + |:Tn+l (pn+l n+l):|At+qSC+lAt

i i

(10.32)
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If one starts with Eq. (10.50) instead of Eq. (10.49), he ends up with
Eq. (10.33)

Vo, (¢
1 1 1 1 1 1 I ~ i 1
T )T G =) e = e ()

(10.33)

Central-difference (Crank-Nicholson) equation

The second order in time Crank-Nicholson approximation given by Eq. (10.35)
can be obtained from Eq. (10.49) if the argument F of integrals is dated at time
/""12_ This choice of time level was made to make the RHS of Eq. (10.26) to
appear as second-order approximation in time in the mathematical approach.
In this case, the argument F in the integrals can be approximated as
FxF"=F"™'"2—(F"+F™"/2 as shown in Fig. 10.6c. Therefore,

1+l

f F(r)dt =2 (F"+F"*')At, and Eq. (10.49) reduces to

(/2T (P =)+ o (i =) e
n n 7 n+1 n+1 n+1
(1/2) {T,H/Z(Pml_l’l‘) Tx:]/z(pz:l z+ )}At (10_54)
¢ n+1 ¢ n
(), ()]
Dividing above equation by At and rearranging terms give Eq. (10.35):
(W2)|Ts, (P =) +T0, (01 =)

H QT o = p )+ T (o =] (1035)

n+1 n
a2 (0 ()]

If one starts with Eq. (10.50) instead of Eq. (10.49), he ends up with
Eq. (10.36):

W21 P =)+ T (P =)

(2T, i =pi ) + 7o) (o =) (10.36)
Vi n+1 ﬁ ¢ ' n+1

+(1/2) |l + | = AI(B> i+ = pl]

Therefore, one can conclude that the same nonlinear algebraic equations can
be derived by the mathematical and engineering approaches.

V
+(1/2) ], + i ar=22

c
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10.3 Treatment of initial and boundary conditions

Initial conditions receive the same treatment by both the mathematical and engi-
neering approaches. Therefore, this section focuses on the treatment of bound-
ary conditions by both approaches and highlights differences. An external (or
internal) reservoir boundary can be subject to one of four conditions: no-flow
boundary, constant-flow boundary, constant pressure-gradient boundary, or
constant pressure boundary. In fact, the first three boundary conditions reduce
to specified pressure-gradient condition (Neumann boundary condition) and the
fourth boundary condition is the Dirichlet boundary condition. In the following
presentation, we demonstrate the treatment of boundary conditions at x =0 only
as an example.

10.3.1 Specified boundary pressure condition

10.3.1.1 The mathematical approach

For point-distributed grid (see Fig. 10.7a), p; =p,,. Therefore, fictitious well rate
across left boundary becomes

Gsery = T1412(P1 —P2) =T1412(Pp — P2) (10.55)

which is the interblock flow rate (¢, ) between gridpoints 1 and 2.

For block-centered grid, one sets p;=p, at reservoir left boundary (see
Fig. 10.7b) and the flow equation for gridblock 1 is removed from the system
of flow equations. This is a first-order approximation.

If a second-order approximation is used at reservoir left boundary (Settari
and Aziz, 1975), the following pressure equation is added and solved with
the system of flow equations.

QAX1/2+AX1+1/2 Axy

Pp= p1— D2 (10.56a)
AXl+1/2 Axiy1p2
or for equal size gridblocks,
1
Db = 5(3191 —p2) (10.56b)
Py, P,
T BT W | T N
Left t‘)oundary (a) H Right bour‘]dary
Py, Py,
S e [ e ffTe T
‘ 1 2 3]J Nx -1 ”X‘
Left boundary (b) Right boundary

FIG. 10.7 Dirichlet boundary condition. (a) Point-distributed grid and (b) block-centered grid.
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This treatment increases the number of equations to be solved by one equation
for each boundary block having specified boundary pressure. Furthermore, this
extra equation does not have the same form as that of the final pressure equation
for a gridblock.

10.3.1.2 The engineering approach
For point-distributed grid, the fictitious well flow rate was derived earlier in
Chapter 5 and expressed by Eq. (5.46¢):

kA "
CIM,, v T uBAL bP,bP*

[Pl —Plipe ) = 71 e (Zop — Zpp+) ] (5.46¢)

where / is the direction normal to the boundary.
Replacing direction / by x and discarding time level m and gravity term,
Eq. (5.46c) reduces to

Ascppp = [ ¢ MBA)J . (Pvp — DbpP+) (10.57a)
or
Gscrp = T.oP+ (PbP — PbP*) (10.57b)
where
Ty, pp: ( e > (10.58)
HB X/ yp pp

For point-distributed grid (see Figs. 10.7a and 10.8a), p; =ppp, P2 =ppp+, and
T1+12=Tp pp+. Substitution of these relations into Eq. (10.57b) gives

Gserpp = T14+12(P1 —P2) (10.59)

which is the interblock flow rate (¢, , ) between gridpoints 1 and 2 as given by
Eq. (10.55) in the mathematical approach.

For block-centered grid the fictitious well flow rate was derived earlier in
Chapter 4 and expressed by Eq. (4.37¢c):

k]A[ :| m

qvch B |: CIMB(AI/Z) [(pb _p;':B) - YZI,/,B (Zb _ZhB)] (437C)

bB

Replacing direction / by x and discarding time level m and gravity term,
Eq. (4.37c) reduces to

kA,
Gscrs = |:ﬂc B(Ax/Z)] (P»—DPoB) (10.60a)
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or
sy = To.08(Pb — PB) (10.60b)
where
kA
Ty = [ (m] " (10.61)
The application of Eq. (10.60b) for boundary gridblock 1 gives
Gsep s =T, 1(Po—P1) = {ﬂCkXAX] (Po—p1) (10.62)
’ (vBAX/2) |,

Note that the fictitious well rate presented by Eq. (10.62) is a second-order
approximation and does not need the introduction of an extra equation as
required by the mathematical approach.

10.3.2 Specified boundary pressure-gradient condition

10.3.2.1 The mathematical approach

For the mathematical approach, we will demonstrate the application of bound-
ary pressure-gradient specification for gridblock 1 and gridpoint 1. A second-
order approximation for the pressure gradient is possible using the “reflection
technique” by introducing an auxiliary point (pg) outside the reservoir on the
other side of the boundary as shown in Fig. 10.8. Aziz and Settari (1979)
reported the discretization of this boundary condition for both block-centered
and point-distributed grids for regular grids. The discretization of this boundary
condition is presented here for irregular grids.
For point-distributed grid (Fig. 10.8a),

dp
ox

~ P2—Po

& (10.63)
b 2Ax1+1/2

The difference flow equation for the whole boundary block in terms of the
original reservoir boundary block represented by gridpoint 1 is

d’ n+l ¢ n
B0 e

because V,=2V, and g, =2q,.. Using Eq. (10.63) to eliminate p, from
Eq. (10.64), dividing the resulting equation by 2, and observing that
Axip=Axy4pand T, =T, because of the reflection technique, one obtains

Xit12

2V,

T
a.At

xl/z(PO—Pl) +TX1+1/2 (PZ —171) +2q5‘61 -

V-

ap Vh ¢ n+1 ¢ n
—T, A —| +T, — +gsc =15 “\r
X112 BX1+1/2 o, |+1/2(p2 P1)+ s, acAfl(B | B/,

(10.652)
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Noting that the first term on the LHS in above equation is nothing but g, ,
kA kA

and that T\, ,Axj410= <ﬂ‘, > AXy1p= (ﬂc.'> , then,

fen T HBAX/ |41 Y HB ) 1sip

)2
b ‘ uB 1+1/26xb

¢ n+1 ¢ n
(3), ‘(E)I] ooy

For specified pressure gradient at reservoir east boundary, the fictitious well
flow rate for gridpoint 7, is defined by:

%
ox

q‘vch,l = _Txl/zAxl/z (1066)

Therefore, Eq. (10.65a) becomes

Vb,

qsc'w +Tx|+|/2 (PZ _Pl) + qsc, = apAt

dap kiAy dap
oo =+Ty Ax, 1,—| =+ |P. - 10.67
For block-centered grid (Fig. 10.8b),
dp| _pP1—Po
2= 10.68
ox|, Ax; ( )

The difference equation for gridblock 1 is

Vv n+1 n
Txl/z(po —P1)+Tx,+1/z(P2 —P1)+qsc. _'h [(g) _ (g) ‘| (10.69)

a At | ]

Using Eq. (10.68) to eliminate py from Eq. (10.69), one obtains

ap Vb ¢ n+1 ¢ n
_Txl/zAX1/2 & b+T,r1+1/2 (PZ _pl) +Gsc, :acAlt [(B) — E (10.70a)

1 1

or
Vb ¢ n+1 ¢ n
QSC;,J+Trl+1/2(p2_pl)+qszr|:?Alt (E)l - E | (1O7Ob)
where
ap keAx\ op
o =—Te  Axpn 2| =—(p. @x 10.71
Gscp, xipBX1/2 axb (ﬂ uB 1(3)6;, ( )
kA,

Because in this case Ax;, = Ax; and T, n= ( A ) because properties

uBAx /|

and dimensions of gridblock 0 are the same as those of gridblock 1 (reflection
technique about reservoir boundary [see Eq. 4.19]).
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For specified pressure gradient at reservoir east boundary, the fictitious well
flow rate for gridpoint n, is defined by Eq. (10.72):

kAc\ op
uB ), ox

(10.72)

dp
Gscpe = T TXnA+l/2 Axﬂ\ +1/2 ax'b =+ (ﬂ( )

10.3.2.2 The engineering approach

For point-distributed grid, if pressure gradient at reservoir boundary is speci-
fied (see Fig. 10.9a), Chapter 5 defines the flow rate across the reservoir bound-
ary by Eq. (5.31) for reservoir left boundary and Eq. (5.32) for reservoir right
boundary. Discarding the time level m and gravity term in these equations, they
reduce to

kxAx) P (10.73)

b

ALppppr © ALpppp

O bP — 0 bP obP

Direction L

Boundary
(a)

(1120 ALpg b (112) ALpg

| Direction L
T

>

Boundary
(b)
FIG. 10.8 Reflection technique. (a) Point-distributed grid and (b) block-centered grid. bP**=0,
bP=1, bP*=2, bB**=0, bB=1.

a4 dp
d d
e T B ) |
Left l‘)oundary ( ) U Right bot‘mdary
a
dp dp
“dx Ip,, dx lp,
e[ e [ e ff T e el
| 2 3l Mx=1 N |
Left boundary (b) Right boundary

FIG. 10.9 Neumann boundary condition. (a) Point-distributed grid and (b) block-centered grid.



Engineering versus mathematical approach Chapter | 10 393

for boundary gridpoint 1, on reservoir left (west) boundary, and

kA dp
q‘vc/,‘,,'\. =+ <ﬂ( >
MB ne—1/2 ax

(10.74)

b

for boundary gridpoint n,, on reservoir right (east) boundary.

For block-centered grid, if pressure gradient at reservoir boundary is spec-
ified (see Fig. 10.9b), Chapter 4 defines the flow rate across the reservoir bound-
ary as Eq. (4.23b) for reservoir left boundary and Eq. (4.24b) for reservoir right
boundary. Discarding the time level m and gravity term in these equations and
replacing direction / by x, these two equation reduce to

kA ap
seos = — | Pe— — 10.75
Bsci s (ﬁ‘ uB )bB ox|,, ( )
for reservoir left (west) boundary, and
kA, ap
SC| = c — - 10.76
Bocsss (ﬁ uB )bB 0x|;, ( )

for reservoir right (east) boundary.
Applying Eq. (10.75) for boundary gridblock 1 on reservoir west boundary

results in
keAr\ op
s = — | o | = 10.77
Bacns (ﬁ MB)laxh ( )
and Eq. (10.76) for boundary gridblock 7, on reservoir east results in
kAy\ Op
SC =+ = - 10.78
o (ﬁ‘ 4B ) ox|, (107

10.3.3 Specified flow rate condition

10.3.3.1 The mathematical approach

In the mathematical approach, the specified flow rate boundary condition is
expressed in terms of pressure-gradient condition using an equation similar
to Eq. (10.66) for point-distributed grid or Eq. (10.71) for block-centered grid.
This is followed by the treatment of specified pressure-gradient condition as
presented in Section 10.3.2.1.

10.3.3.2 The engineering approach

In the engineering approach, the specified flow rate across reservoir boundary
of a specific boundary gridblock (gyc,,,=¢spsc) Or boundary gridpoint
(Gsc, ,, = 9qspsc) 1s substituted in the flow equation for that gridblock or gridpoint.
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Note that g, 7#0 reflects constant flow rate boundary condition and
qspsc =0 reflects no-flow boundary condition.

10.4 Linearization of well flow rates

A wellblock production (or injection) rate is evaluated in space at the gridblock
(or gridpoint) for which the flow equation is written. Linearization in time of the
wellblock flow rate equation involves first linearizing the wellblock production
rate equation and then substituting the result in the linearized flow equation for
the wellblock.

The well flow rate equation for wellblock i that needs linearization is

1 n+1
' =-G,, (B_u> (PI*" = pur,) (10.79)

i

for specified bottom-hole pressure (Mode 1), or

n+1 1 m dp
G, =2mPry (kh), B//t T (10.80)

for specified pressure gradient at well radius (Mode 2).
In the mathematical approach, time nonlinearity in well rate includes both

n+1
(B%) ~and (pj"*" —p,,s), whereas in the engineering approach, it is limited to
1

n+1

(BL» . This difference results from considering q”+1 as the average of the
1

time integral of well flow rate over a time step. This difference leads to

having different methods of linearization as shown in the next sections. The

treatment of well rate nonlinearities in time is presented for wells operating with

Mode 1.

10.4.1 The mathematical approach

The explicit method,

1 n
qir' =gl =—G,, (137) (P! = Dpur,) (10.81)

l

The simple iteration method,

(v)

n+1 n+)1 1 ! )1(-’;—)1
9. =q;" =—Gy, @ i = Dwy, (10.82)

i

The explicit transmissibility method,
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1 n (v+1)
gt = Gw,.(B—ﬂ> (:”l—pwf,) (10.83)

The simple iteration on transmissibility method,

1 n(-lil—)l (v+1)
dir' = =Gy, (B—#> ( 7“—pwf,> (10.84)

The fully implicit method,

®)

(w+1) w) q n+1 (v+1) )

n+1 n+1 n+1 SCi n+1 n+1
o gt o 156 ( iy ) (10.85)

Dse; —95e; = qvcl dp
i

10.4.2 The engineering approach

The explicit transmissibility method,

1\"/ @
I ~ 1
C]?: = Yw; (B_ﬂ>, < ;H— _ow,> (1083)

The simple iteration on transmissibility method,
e o (LY
q5. =—G,, (E), ( ; —pwf,) (10.84)
The fully implicit method,

(v)
n+1 (v+1) (v)
(p”“ pf”) (10.85)

The degree of implicitness increases with the equation selection from
Eq. (10.81) to Eq. (10.85). Furthermore, the use of Egs. (10.83)—(10.85) pro-
vides tremendous improvement in implicitness and hence stability over the lin-
earization with Egs. (10.81) and (10.82). This is the case because the primary
nonlinearity in time of the production rate is due to (p/"*' — Pwy) term; the con-

(v+1)
n+l ~ n+l~ n+1 CISC:

qsz, qsz, qsc, T dpi

n+1
tribution of the (ﬁ) term to nonlinearity is secondary.
1

For wells operating with Mode 2, the explicit method is the same as explicit
transmissibility method, and simple iteration method is the same as the simple
iteration on transmissibility method because there is only one nonlinear term in

n+1
the wellblock rate equation, namely, (ﬁ) .

Another method of well rate linearization in time involves substituting the
appropriate well rate equation into the flow equation for the wellblock prior to
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linearization and subsequently linearizing all terms in the resulting flow equa-
tion. That is to say, the well rate, fictitious well rates, and interblock flow rate
terms receive identical linearization treatments. For a well operating with
bottom-hole-pressure specification, this method results in the implicit treatment
of wellblock pressure compared with the explicit treatments provided by the
explicit transmissibility method, Eq. (10.83), and simple iteration on transmis-
sibility method, Eq. (10.84). This method of linearization is identical to the lin-
earization method used in the engineering approach because all terms in the
flow equation except accumulation (well rate, fictitious rate, interblock flow
rates) receive the same treatment of nonlinear terms in time.

10.5 Summary
The following conclusions can be drawn.

1. The discretized flow equations (nonlinear algebraic equations) in reservoir
simulation of any process can be obtained in a rigorous way by the engineer-
ing approach without going through the rigor of obtaining the PDEs describ-
ing the process and space and time discretizations (mathematical approach).

2. The engineering approach rather than the mathematical approach is closer to
engineer’s thinking. While the mathematical approach derives the nonlinear
algebraic equations by first deriving the PDEs, followed by discretizing the
reservoir, and finally discretizing the PDEs, the engineering approach first
discretizes the reservoir, then derives the algebraic flow equations with time
integrals, and finally approximates the time integrals to obtain the same
nonlinear algebraic flow equations.

3. Both the engineering and mathematical approaches treat boundary condi-
tions with the same accuracy if second-order approximation is used. If dis-
cretization of specified boundary pressure condition in block-centered grid
is first-order correct, then the engineering approach gives a representation
that is more accurate. If a second-order approximation of boundary condi-
tions in block-centered grid is used, then the engineering approach provides
lesser number of equations.

4. The engineering approach is closer to the physical meaning of various terms
in the algebraic flow equation. It also provides confirmation for using
central-difference approximation of the second-order space derivative
and gives interpretation of the forward-, backward-, and central-difference
approximations of the first-order time derivative in the PDE. Analysis of
local truncation errors, consistency, convergence, and stability; however,
can be studied by the mathematical approach only. Therefore, one may con-
clude that the mathematical and engineering approaches complement
each other.
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11.1 Introduction

Nature is inherently multiphase and multicomponent. Water being ubiquitous in
nature, any oil and gas formation is necessarily multiphase. In general, condi-
tions pertaining to fluid, commonly designated as “black oil,” show the pres-
ence of water, oil, and gas. For simplicity, previous chapters have dealt with
single-phase fluid. This chapter presents the basics of modeling a black-oil res-
ervoir. In this context, we present the necessary engineering concepts for multi-
phase flow in porous media, followed by the derivation of the flow equation for
any component in the system in a 1-D rectangular reservoir. Then, using CVFD
terminology, we present the component general flow equations in a multiphase,
multidimensional system, which apply to interior and boundary reservoir
blocks. From these component flow equations, the basic flow models of
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© 2020 Elsevier Inc. All rights reserved. 397
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two-phase oil/water, oil/gas, and gas/water and three-phase oil/water/gas are
derived. The accumulation terms in flow equations are expressed in terms of
changes in the reservoir block unknowns over a time step. We present the equa-
tions for phase production and injection rates from single-block and multiblock
wells operating with different conditions. The treatment of boundary conditions
as fictitious wells is presented and discussed in detail. Methods of linearization
of nonlinear terms in multiphase flow are discussed. We introduce two of the
basic methods for solving the linearized multiphase flow equations, the implicit
pressure-explicit saturation (IMPES) and simultaneous solution (SS) methods.
Because this chapter forms an introduction to the simulation of multiphase flow,
we present the two solution methods (IMPES and SS) as they apply to the two-
phase oil/water flow model only. The extensions of these methods to other flow
models are straightforward, whereas the application of additional solution
methods, such as the sequential (SEQ) and the fully implicit methods, is dis-
cussed elsewhere.

11.2 Reservoir engineering concepts in multiphase flow

The reservoir engineering concepts discussed in this chapter pertain to the
simultaneous flow of oil, water, and gas. These three phases coexist and fill
the pore volume of the reservoir; that is,

So+S8y+S8,=1 (11.1)

The properties of interest in modeling multiphase flow in petroleum reser-
voirs include the PVT and transport properties of oil phase, water phase, and gas
phase; the relative permeabilities to oil phase, water phase, and gas phase; and
oil/water capillary pressure and gas/oil capillary pressure. Such data are usually
available and supplied to simulators in a tabular form.

11.2.1 Fluid properties

In a black-oil system, the oil, water, and gas phases coexist in equilibrium under
isothermal conditions. To describe this behavior in a practical sense at reservoir
temperature and any reservoir pressure, the oil and water phases can be assumed
immiscible, neither the oil component nor the water component dissolves in the
gas phase, and the gas-component miscibility may be large in the oil phase but is
negligible in the water phase. Therefore, the water-phase and gas-phase prop-
erties that were discussed previously in single-phase flow are applicable for
multiphase flow, whereas the oil-phase properties in multiphase flow are
affected by pressure and solution-gas/oil ratio only. Fig. 11.1 demonstrates
the dependence of the gas FVF and viscosity on pressure. Fig. 11.2 shows
the pressure dependence of the water FVF and viscosity. Fig. 11.3 shows the
oil FVF, oil viscosity, and solution-gas/oil ratio dependence on pressure.
Fig. 11.3 highlights the effect of the solution-gas/oil ratio on oil FVF and vis-
cosity below the oil bubble-point pressure. Above the oil bubble-point pressure,
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Gas formation volume factor
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FIG. 11.1 Gas properties.

Water formation volume factor
Water viscosity
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FIG. 11.2 Water properties.

>
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Qil viscosity
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b
Pressure

FIG. 11.3  Oil properties.

these properties are similar to those for a slightly compressible fluid and can be
estimated from the values at the bubble-point pressure using

Bob

B =l e, o]

(11.2)
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and

", = Hob
’ [1 - Cﬂ(P_Pb)]

where ¢, and ¢, are treated as constants although they, in general, depend on the
solution-gas/oil ratio at the bubble-point pressure.

The densities of oil, water, and gas at standard conditions are usually sup-
plied to simulators to aid in estimating the phase densities at reservoir temper-
ature and any pressure using

(11.3)

pM’SC
= 11.4
=" (11.4)
for the water phase,
pgsc
=8 11.5
Py «.B, (11.5)

for the gas phase,

(posc + pgscRMl/(L‘)

/)osaf =
BOS(U

(11.6a)

for the saturated oil phase (oil at saturation pressures that are below or equal to
the bubble-point pressure, p =p,,, and p,,, <p;), and

Po=Pop!1+¢o(p—pb)] (11.6b)

for the undersaturated oil phase (oil at pressures above the saturation pressure,
D> Psar)-

Example 11.1 Table 11.1 lists the properties of gas, water, and saturated oil at
reservoir temperature. Other pertinent data are p,,,. = 45 Ibm/ft?, Prse =07 1bm/ft’,
Pase=0.057922 Ibm/ft’, c,=21 x 10 ° psi~',and ¢, =40 x 10° psi~'. Estimate
the oil-, water-, and gas-phase properties (B, u, and p) at the following reservoir
conditions:

1. p=4000 psia and R;=724.92 sctf/STB
2. p=4000 psia and R;=522.71 scf/STB

Solution
1. p=4000 psia and R,=724.92 scf/STB
Water and gas properties are obtained from Table 11.1 at the reported
reservoir  pressure, p=4000 psia. Therefore, B, =1.01024 RB/B,
1,=0.5200 cP, and Eq. (11.4) is used to estimate the water density,
Do :’jT = % =66.321 Ibm/ft’; B,=0.00069 RB/scf, u,=0.0241 cP,
and Eq. (11.5) is wused to estimate the gas density,

_ Pee 0057922 _ 3 :
Py —J—Bg—m— 14.951 Ibm/ft”. Note that if the sought entry

value (p =4000 in this example) is not listed in the table, linear interpolation



TABLE 11.1 Fluid PVT and viscosity data for Example 11.1.

Pressure (psia)
1500
2000
2500
3000
3500
4000
4500

R, (scf/STB)
292.75
368.00
443.75
522.71
619.00
724.92

818.60

Oil
B, (RB/STB)
1.20413
1.23210
1.26054
1.29208
1.32933
1.37193
1.42596

Ho (cP)
1.7356
1.5562
1.4015
1.2516
1.1024
0.9647

0.9180

B, (RB/B)
1.02527
1.02224
1.01921
1.01621
1.01321
1.01024
1.00731

Water

#w (cP)
0.5200
0.5200
0.5200
0.5200
0.5200
0.5200

0.5200

Gas
B, (RB/scf)
0.00180
0.00133
0.00105
0.00088
0.00077
0.00069

0.00064

#g (cP)
0.0150
0.0167
0.0185
0.0204
0.0222
0.0241
0.0260

L1 | 191dey) snoasssar ui mojy aseydninw Surjsponw

LOY
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within table entries is used (linear interpolation is widely used in commer-
cial reservoir simulators). For oil properties, we first determine if the oil, at
the reported pressure conditions, falls into the saturated or undersaturated
oil region using the saturated oil properties reported in Table 11.1. From
the pressure entries in the table, Ry, =724.92 scf/STB at p,,,=4000 psia.
Since R, =724.92 =R, then p =4000=p,,,, the oil in the reservoir is sat-
urated, and the oil properties at the reported pressure conditions are those of
saturated oil at p=p,,=4000 psia. Second, R,=R,,,=724.92 scf/STB,
B,=B ;= 1.37193 RB/STB, u,=p,s.:=0.9647 cP, and the density of
oil is estimated using Eq. (11.6a) at py,;, which gives

(ﬂosc +PoscRsar/ ae) _ (45+0.057922 x 724.92/5.614583)

Posat = Bosa 1.37193
=32.9431bm/ft’

Therefore, p, = p,sa:=32.943 Ibm/ft® because P =Dast
2. p=4000 psia and R;=522.71 scf/STB
Water and gas properties are obtained from Table 11.1 at the reported
reservoir  pressure, p=4000psia as in part 1. Therefore,
B,,=1.01024 RB/B, u,,=0.5200 cP, and Eq. (11.4) is used to estimate
the water density, p,, =2 =7 —66.321 Ibm/ft’; B,=0.00069 RB/scf,

=B, _ 101024
u;=0.0241cP, and Eq. (11.5) is used to estimate the gas density,
Pe ::f"l‘;" :%: 14.951 Ibm/ft>. For oil properties, we first

determine if the oil, at the reported pressure, falls into the saturated or
undersaturated oil region using the saturated oil properties reported in
Table 11.1. From the pressure entries in the table, R, =724.92 scf/STB
at p,,, =4000 psia. Since R, =724.92>522.71 =R, the oil in the reservoir
is undersaturated. The oil bubble-point pressure is obtained by searching
the table for the saturation pressure that corresponds to
Ry, =R;;=R;=522.71 scf/STB. The search in Table 11.1 results in
Pb="Psa:=3000 psia, B,,=B,s,; = 1.29208 RB/STB, 1y, = posar=1.2516 cP,
and B,,=0.00088 RB/scf. The FVF, viscosity, and density of undersaturated
oil at p=4000 psia are estimated using Egs. (11.2), (11.3), and (11.6b),
respectively. The use of Eq. (11.6b) requires the calculation of p,, from
Eq. (11.6a). Therefore,

B 1.29208
B,= = =1.26550RB/STB
[L+co(p—ps)]  [1+(21 x 107°) (4000 — 3000)] /
Hop 1.2516
Ho [1—cu(p—p»)] [1— (40 % 1076)(4000 —3000)] ¢
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B (ﬂ +PgscRsn/ ar) (4540057922 x 522.71/5.614583)
Pob = Boy B 1.29208

—39.0011bm /ft’

and

Po="Pop[1+co(p—pp)] =39.001 x [1+ (21 x 107°) (4000 — 3000)]
=39.8201bm/ft’

11.2.2 Relative permeability

In multiphase flow, oil, water, and gas may coexist in any reservoir block at any
time. The capacity of the rock to transmit any phase through its pores is
described by the relative permeability to that phase. The flow rate of the same
phase is described by Darcy’s law in multiphase flow (Section 11.2.4).
Figs. 11.4 and 11.5 show sketches of the phase relative permeability depen-
dence on saturation in two-phase oil/water and gas/oil systems.

The relative permeability in three-phase oil/water/gas system can be esti-
mated using data obtained from two-phase systems (Figs. 11.4 and 11.5). A
widely used model for that purpose is Stone’s Three-Phase Model II presented
by Eqgs. (11.7)—-(11.9):

i =£(S.) (11.7)
for the water phase,

krg = £(S,) (11.8)

3

Relative permeability 2 —

0 Sw Water saturation

FIG. 11.4 O/W relative permeability.
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FIG. 11.5 G/O relative permeability.

for the gas phase, and
kro = k/'ocw [(kmw/krocw + krw) (krog/krocw + krg) - (krw + k/g)] (1 1 9)

for the oil phase, where k,, >0, k,,,, and k., at a given S|, are obtained from two-
phase oil/water data (Fig. 11.4), k,,, and k., at a given S, are obtained from
two-phase oil/gas data (Fig. 11.5), and k., is the relative permeability to oil
at irreducible water saturation (K, |s —s,_ obtained from Fig. 11.4 or k| 5,0
obtained from Fig. 11.5). It should be mentioned that the oil/gas relative perme-
ability data in Fig. 11.5 must be obtained in the presence of irreducible water.
Although Eq. (11.9) reduces to k,, =k, at S, =0 (i.e., for a two-phase oil/water
system) and to k,,=k,,, at S,,=S;, (i.e., for a two-phase oil/gas system), the
estimation of relative permeabilities uses Fig. 11.4 for oil/water reservoirs and
Fig. 11.5 for oil/gas reservoirs.

Example 11.2 Table 11.2 lists two-phase oil/water and oil/gas relative perme-
ability data that will be used in three-phase relative permeability calculations.
Estimate the relative permeability to oil, water, and gas using Stone’s Three-
Phase Model 1II for the following fluid saturation distributions:

1. §,=0.315, 5,,=0.490, and S, =0.195
2. 5,=0.510, S,,=0.490, and S, =0.000
3. $,=0.675, S,,=0.130, and S, =0.195

Solution
1. §,=0.315, §,,=0.490, and S,=0.195

AtS,,=0.490, k,,, = 0.0665 and k,,,, =0.3170 using the two-phase oil/water rel-
ative permeability data. At S,=0.195, k,,=0.0195, and k,,,, =0.2919 using the
two-phase oil/gas relative permeability data. According to Stone’s Three-Phase
Model 1II, the application of Eq. (11.7) gives relative permeability to the water
phase, that is, k,,=0.0665; the application of Eq. (11.8) gives relative
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TABLE 11.2 Two-phase relative permeability data (Coats et al., 1974).

Oil/water data Oil/gas data

Sw Kiw krow Sg krg krog

0.130 0.0000 1.0000 0.000 0.0000 1.0000
0.191 0.0051 0.9990 0.101 0.0026 0.5169
0.250 0.0102 0.8000 0.150 0.0121 0.3373
0.294 0.0168 0.7241 0.195 0.0195 0.2919
0.357 0.0275 0.6206 0.250 0.0285 0.2255
0.414 0.0424 0.5040 0.281 0.0372 0.2100
0.490 0.0665 0.3170 0.337 0.0500 0.1764
0.557 0.0970 0.3029 0.386 0.0654 0.1433
0.630 0.1148 0.1555 0.431 0.0761 0.1172
0.673 0.1259 0.0956 0.485 0.0855 0.0883
0.719 0.1381 0.0576 0.567 0.1022 0.0461
0.789 0.1636 0.0000 0.605 0.1120 0.0294
1.000 1.0000 0.0000 0.800 0.1700 0.0000

permeability to the gas phase, that is, k.,=0.0195; and the application of
Eq. (11.9) gives relative permeability to the oil phase, that is,

k+, = 1.0000[(0.3170,/1.0000 +0.0665)(0.2919,/1.0000 + 0.0195)
—(0.0665+0.0195)]

or k., =0.03342. Note that %,.,.,, = 1.0000 from the oil/water data at the irreduc-
ible water saturation of 0.13 or from oil/gas data at S,=0.

2. §,=0510, §,,=0.490, and S,=0.000

This is an example of two-phase flow of oil and water only because the gas sat-
uration is zero. Therefore, at S,,=0.490, k,,,=0.0665, and k,,=k,,,=0.3170.
Alternatively, the application of Stone’s Three-Phase Model II gives
k~,=0.0665 and %,,,=0.3170 at S,,=0.490 from the oil/water data and
k-, =0.0000, k,,,=1.0000 at S,=0.000 from the oil/gas data. Therefore,
kv=0.0665, k., =0.0000, and the application of Eq. (11.9) gives

k:, = 1.0000[(0.3170,/1.0000 +0.0665)(1.0000/1.0000 + 0.0000)
—(0.0665 +0.0000)]

or k,.,=0.3170.
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3. §,=0.675, S,,=0.130, and S,=0.195

This is a case of two-phase flow of oil and gas only because the water saturation
is at the irreducible value of 0.130. Therefore, at S,=0.195, k,,=0.0195 and
kyo=ky,g=0.2919. Alternatively, the application of Stone’s Three-Phase
Model II gives k,,,=0.0000 and %,,,, = 1.0000 at S,,=0.130 from the oil/water
data and k,,=0.0195, £,,,=0.2919 at §,=0.195 from the oil/gas data. There-
fore, k;,,=0.0000, k,,=0.0195, and the application of Eq. (11.9) gives

kro = 1.0000[(1.0000/1.0000 +0.0000)(0.2919/1.0000 +0.0195) — (0.0000 +0.0195)]

or k,.,=0.2919.

The results of parts 2 and 3 confirm that Stone’s Three-Phase Model Il reduces
to two-phase oil/water relative permeability data at zero gas saturation and to two-
phase oil/gas relative permeability data at irreducible water saturation.

11.2.3 Capillary pressure

The coexistence of more than one phase in the capillary size pores of the res-
ervoir rock is responsible for the creation of pressure difference between any
two phases across the interface. This pressure difference is called capillary pres-
sure, and it is a function of fluid saturation. Capillary pressure is defined as the
pressure of the nonwetting phase minus the pressure of the wetting phase.
Therefore,

Peow=po—pw=1(Sy) (11.10)
for a two-phase oil/water system in water-wet rock, and
Pz?go:pg_po:f(sg) 11.11)

for a two-phase gas/oil system. Note that in the presence of gas, liquid (oil or
water) always wets the rock. Figs. 11.6 and 11.7 show sketches of the depen-
dence of f(S,,) and f(S,) on saturation.

Leverett and Lewis (1941) reported that the capillary pressures in a three-
phase oil/water/gas system can be described by those obtained from two-phase
systems.

Example 11.3 Table 11.3 lists two-phase oil/water and gas/oil capillary pres-
sure data. Estimate the oil/water and gas/oil capillary pressures in a three-phase
oil/water/gas reservoir at S,=0.26, S,,=0.50, and S,=0.24.

Solution

Using two-phase oil/water capillary pressure data, P,,=2.42psi at
S,,=0.50. Also, using two-phase gas/oil capillary pressure data, P .o, =0.54 psi
at S, =0.24. Now, the three-phase capillary pressure data at the given fluid sat-
urations are those obtained from two-phase data; that is, P, =2.42 psi and
P oo ="0.54 psi.
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11.2.4 Darcy’s law in multiphase flow

In multiphase flow in petroleum reservoirs, the fluid volumetric velocity (flow
rate per unit cross-sectional area) of phase p=o, w, or g from block i —1 to
block i is given by

(ko) [(@, -
ux" :ﬁ i-1/2 ( Di-1 P,) (1112)
PXxicip ¢ | AX;
Hp 12 i—1/2
The potential difference between block i — 1 and block i is
q)pF] - d)pi = (pprl —pp’.) - ypi71/2 (Zi—l - Zl) (1 113)

for p=o0, w, or g.
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TABLE 11.3 Two-phase capillary pressure data.

Oil/water data Gas/oil data
Sw Peow (psi) S Pego (psi)
0.20 16.00 0.04 0.02
0.25 8.60 0.24 0.54
0.30 6.00 0.34 1.02
0.40 3.56 0.49 2.08
0.50 2.42 0.59 2.98
0.60 1.58 0.69 4.44
0.70 0.86 0.74 5.88
0.80 0.20 0.79 9.52
0.90 0.00

Substituting Eq. (11.13) into Eq. (11.12) yields

(kxk’W) ’-\‘1;1/2 [(ppil _pﬂi) _717,-,,/2 (Zi—l _Zi)

(11.14)

U, =
pX Xi1/2 c

Hp |X,71/2 Axi12

Eq. (11.14) can be rewritten as

IR R S L
P Yi-1/2 CAX[—I/Z /’tp

for p=o0, w, or g.
Likewise, the fluid volumetric velocity of phase p from block i to block i + 1
is expressed as

u =p il (K
Pz =T A0 \ 4y

for p=o0, w, or g.

[(pl’i—l _Pﬂf) _717,-,,/2(Zi—1 —Zi)} (11.15a)

Xi—1/2

[(Pp,- ~Ppici) = Vprp(Zi=Ziv1)| (11.15b)

Xit1/2

11.3 Multiphase flow models

In this section, we derive the equations for two-phase and three-phase flow
models. As in the case for single-phase, the flow equations are obtained by first
discretizing the reservoir into gridblocks as shown in Fig. 4.1 (or gridpoints as
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shown in Fig. 5.1), followed by writing the material balance for the component
under consideration for block i and combining it with Darcy’s law and FVF. We
must clarify that once the reservoir is discretized and elevation and rock prop-
erties are assigned to gridblocks (or gridpoints), space is no longer a variable,
and the functions that depend on space, such as interblock properties, become
well defined. In other words, reservoir discretization removes space from being
a variable in the formulation of the problem. In the black-oil model, we have
three components in the system compared with one component in a single-phase
flow model. The three components are oil, water, and gas at standard conditions
(c=o0, w, g). As implied in Section 11.2.1, the oil component (c=0) is con-
tained in the oil phase (p=o0), the water component (c=w) is contained in
the water phase (p =w), and the gas component (¢ =g) is distributed between
the oil phase (p=o0) as solution gas and the gas phase (p=fg=g) as free
gas. In deriving the flow equation for the gas component, we fictitiously split
the gas component (¢ =g) into a free-gas component (¢ =fg) that is contained
in the gas phase (p = g) and a solution-gas component (c =sg) that is contained
in the oil phase (p =0); that is, c = g =fg +sg. In addition, the oil phase consists
of the oil component and the solution-gas component. Close inspection of the
density of the gas-saturated oil phase as given by Eq. (11.6a) gives the definition
of the apparent density of the oil component and the solution-gas component at
reservoir conditions (on the basis of the oil-phase volume) as p,,./B, and
PescRsl(acB,), respectively. It does not need mentioning that R, and B, are sat-
urated oil properties (i.e., R;=R,, and B,=B,,,) and the density of the oil
component and the solution-gas component at standard conditions are p,.
and p,,., respectively. The flow equations for the water and free-gas compo-
nents (c=w, fg) are similar in form because each of these two components is
the sole occupant of its phase. However, the flow equations for the oil compo-
nent (¢ = o) and the solution-gas component (¢ = sg) (both occupy the oil phase)
are obtained by considering the flow of the oil phase at reservoir conditions and
the apparent densities of these two components.

Fig. 11.8 shows block 7 and its neighboring blocks in the x-direction (block
i— 1 and block i+ 1). At any instant in time, oil, water, free-gas, and solution-gas

Meg; Nl Meo .
o [ i — > 0+

AXj
Xi_1/2 Xj+112
AXigp o )
L)

i-1@

FIG. 11.8 Block i as a reservoir volume element in 1-D flow.
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components enter block i, coming from block i — 1 across its x;_1,, face at mass
rates of w,, \XH/Z, and leave to block i+1 across its x;;1,> face at mass rates of
Wex |X,+1/z‘ Any of the components ¢=o, w, fg, and sg may also enter block i
through a well at mass rates of Gem,- The mass of component c=o0, w, fg, or
sg contained in a unit volume of rock is m,,. In the following steps, we derive
the material balance equation for component ¢ =o, w, fg, and sg for block 7 writ-
ten over a time step At=¢""1—¢". For block i in Fig. 11.8, the mass balance
equation for component ¢ can be written as

Ml ,, —Meoly,,, , +Mes, = Meg, (11.16)
where
tn+1
Mei X J Wex XH/zdt (11.17)
i
f"'”
Meo X2 J w"'x|Xi+1/2dt (11.18)
n
and
f"'”
Mes; = J qL'm,-dl (11.19)
tn
because terms like w,, |XH/2’ Wey |v‘",'+|/z’ and g, for an already discretized reser-

voir are functions of time only, as discussed earlier. Further justification is pre-
sented later in this section.
Substitution of Eqs. (11.17) through (11.19) into Eq. (11.16) yields

tn+l tn+1 tﬂ+l
J Wc‘X|x,,l/2dt - J Ww"x,,, ]/zdt + J Gem,dt = Mg, (11.20)
n n n

The mass accumulation of component c is defined as

Mea, = A(Voey): = Vi, Ay, = Vi, (m“ - ) (11.21)

cv; oy

Note that the mass flow rate and mass flux for component ¢ are related
through

Wex = HieAy (11.22)

mass flux (#1.,) can be expressed in terms of the component density (or apparent
density) and phase volumetric velocity as



Modeling multiphase flow in reservoirs Chapter | 11 411

My = APy Uwx (11.23a)
mfgx = QcPglUgx (11.23b)
Moy = Ot (p ) Upy (11.23¢c)
BO
and
. /) S(,'RS
Mgy = Qc <;—B> Uy (11.23d)

The mass of component ¢ contained per unit rock volume (m,.,) can be
expressed in terms of porosity, fluid saturation, and component density (or
apparent density) as

Myy = Pp,,Sw (11.24a)
Mgy = ¢pgSg (11.24b)
e (”g“‘) S, (11.24c)
and
Mygy = b (’%) S, (11.24d)

The mass production rate of component ¢ (¢,,,) can be expressed in terms of
the phase volumetric production rate (¢,) and component density (or apparent
density) as

Gwm = AcPrdw (1 1253)
Afgm = AcPglfs = AcPolg (11.25b)
Gom = ( B> 9o (11.25¢)
and
pgscRS
sgm — e\ — 5 |40 11.25d
Gsgm = ( o.B, )61 ( )

It should be mentioned that, in Eqs. (11.23) through (11.25), 1y, Uy, Ugy, Gos
Gws Q2> Sos Sws Sg» Boy By, Bg, R, py,, and p, are all phase properties, whereas p .,
Pwse> and pgg. are component properties.
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Substitution of Egs. (11.21) and (11.22) into Eq. (11.20) yields

1+ M+l pl
J (m”AX) |Xi—l/2 dr— J (m"XA"‘) |Xi+ 1/2 dr+ J Gem; dr= Vbi (mf\:— = mgv;)
" " "

(11.26)

Substituting Eqs. (11.23) through (11.25) into Eq. (11.26) after using
Pw=Pwsc/By, in Eqs. (11.23a), (11.24a), and (11.25a) and p,=p../(a.B,) in
Egs. (11.23b), (11.24b), and (11.25b); dividing by the appropriate a.p,;. for
p=o0,w, g; and noting that g,/B, = g, for p=o0, w, g yield

n+ 1 n+ 1 o+ 1

A, wAx
J (uwx .x) dr— J (M) dr+ J C]wsc,'dt
m By Xio1/2 i Bu iv1/2 '

_Vb, ¢Sw n+1 (ISSW n
_n (BW),- _<Bw>i] (11.27a)

ac
for the water component,

tn+1 tn+1

ngAx> (ugx v) J
- dt— dr+ Gfgse,dt
J ( Bg Xi12 B Xiv1/2
PS,
11.27b
( B, (11.27b)

for the free-gas component,

a ¢

1+ 1 rn+l
A,
J (%) dr— <“‘§ ) dr+ J Gose,d1
p o Xi—1/2 Xit+1/2
¢S n+1
11.27
“a < B, ( c)
for the oil component, and

t71+1 A tr1+l A tu+|

RS ox4x RS ox4x

Rslloxlx dr— " di+ | Ry g dr

Ba ‘. Bo ) ' ’

n Xi-1/2 i Xi+1/2

Vi | (ors,\" T (gR,S,\"
:ac[(ﬂo>,- _(Ta>,. (11.27d)

for the solution-gas component.
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Consider the equation for the water component. Water-phase volumetric
velocities from block i — 1 to block i and from block i to block i+ 1 are given
by Eq. (11.15) for p =w. Substitution of Eq. (11.15) for p=w into Eq. (11.27a)
yields

trH-l

kxAxkrw
J { (ﬁc /’thWAx)

"

[(pw, VT Pw) ~ Y, (Zie — Z,-)} }dr

Xi-1/2

n+ 1 trH-I

ki Ak,

" Xi+1/2 "
B Vb; ¢Sw n+1 ¢SW n
B ac Bw i Bw i

Define the transmissibility of phase w in the x-direction between block i and
neighboring block i F1 as

(11.28)

keAxk,
wa":l/z _ ﬂ(- xOxRpw
B Ax

Combining Eq. (11.29) and Eq. (11.28) and rearranging the terms result in

(11.29)

Xiz1/2

ln+|

J {wa,-,]/z [(pw,,l _pw,) - 7w,-,1/2 (Zifl _Zi):| }dt
tn

tn+l
+ J {TWXi+1/2 |:(pwi+l _pwi) _yw,,,,/z (Zi+1 _Zi)] }dt (11.30)
m

n+ 1 1

Vi, <¢Sw>n+ ((/55‘4))"

+ wsc; dt=— —\ 5

J 1 ac B, i B, i

"

The derivation of Eq. (11.30) is rigorous and involves no assumptions other
than the validity of Darcy’s law for multiphase flow (Eq. 11.15) to estimate the
water-phase volumetric velocities between block i and its neighboring blocks
i—1and i+ 1. Such validity is widely accepted by petroleum engineers. As dis-
cussed in Section 2.6.2 for single-phase flow, once the reservoir is discretized
into blocks (or nodes), the interblock geometric factor between block i and its
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()
‘ Ax Xix1/2

time. In addition, the pressure-dependent term (u,,B,,) |xm/2 of transmissibility of
the water phase uses some average viscosity and FVF for block i/ and neighbor-
ing block i F1, or some weight (upstream weighting, average weighting, etc.) at
any instant of time ¢. In other words, the term (/4WBW)|XM2 is not a function of
space but a function of time as the block pressures change with time. Sim-
ilarly, the relative permeability of the water phase between block i and
neighboring block i1 at any instant of time ¢ (krw|x,¢m) uses the upstream
value or two-point upstream value of block i and neighboring block i F1 that
are already fixed in space. In other words, the term k., |Xm/2 is not a function
of space but a function of time as the block saturations change with time.
Hence, transmissibility T, _,, between block i and its neighboring block
iF1 is a function of time only; it does not depend on space at any instant
of time.

neighboring block i F1

] is constant, independent of space and

l‘n+]
As discussed in Chapter 2, the integral [ F(z)dt is equal to the area under
pt
the curve F(7) in the interval /" <¢<¢""'. This area is also equal to the area of a
rectangle with the dimensions of F(¢"") and At where F™ is evaluated at time 7"
and ' < "< ™!, Therefore,

tn+l In+l fn+l tn+1
J F(r)dt= J F(M)dt= J F'dt=F" J dt=F"t

™ m " m

=F"At

M+ 1
m

— (Pt )

(11.31)

Substituting Eq. (11.31) for the integrals into Eq. (11.30) and dividing by At
result in the flow equation for the water component,

TVr\'JXi—l/Z |:(p$[—l 71)%) 77/\’?13,71/2 (ZFI 7Zi)]
m mo_am\ _ . m 7.
m Vh/ PSw n A "
+ Qse, = x “\p
“oa At |\ By / B, /,;

Steps similar to those that resulted in Eq. (11.32a) can be carried out on
Egs. (11.27b), (11.27¢), and (11.27d) to derive the flow equations for the
free-gas, oil, and solution-gas components, respectively.
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For the free-gas component,
m (P ) e - 2)
o, szn fp;’f) Vi Zin *Zi)} (11.32b)
L (ﬁ) _ (ﬁ)
s g At |\ By /, B, /.
For the oil component,
T(’{’\,I_il/z KPZLI —P(r)",) —}’ZLI/Z (Zi4 _Zi)}
. ¢S +1 ¢S() n
+qosc -
Loae At B, /,; B, ],
For the solution-gas component,
(TR 1o | (P, =) =721 = 2)]
+(ToxRy), 12 [(p’JjH —ng) - }’Zfﬂ/z (Zis1 —Zi)] (11.32d)
PR,S,\""!  (BRS,\"
B, ], B, ],
The general flow equations for the various components present in block n,

written in CVFD terminology, are now presented in Eq. (11.33).
For the water component,

Z Win |:(p:‘r’ll 71)31’;7) 7}/W[ :| qus(/, +qWSL,,

ley, leg,
5. NN
a( Af n B, n

For the free-gas component,

ZTgl n |:(ng pgt) ygl n :| qugSLl n quSC

ley,

B th % n+1_ %
= K 5 ) (Bg )] (11.33b)

R.S osc ’n_
+(Rsqosc); Yy,

(11.33a)
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For the oil component,

ZTOII:{(pUI_p0n> }/UINZZ } Zqosuﬂ qoscn

ley, IS
<¢S0>n+l B (d)sg)n

BU n BU n
For the solution-gas component,

Z (T()RS)Zln {(pzl, —PZQ - 721,’71 (Z/ _Zn)} + Z (RsQOsc)Zln + (RSQOSC)Z/!

ley, e,
¢RsSD n+1 ¢RsSo n
(455), (5]
(11.33d)

As defined in the previous chapters, i, = a set whose elements are the exist-
ing neighboring blocks to block # in the reservoir, £, = a set whose elements are
the reservoir boundaries (by, bs, by, bg, by, by) that are shared by block n, and
q,’;;?, = flow rate of the fictitious well that represents transfer of phase p=o, w,
fg between reservoir boundary / and block # as a result of a boundary condition.
As mentioned in Chapters 4 and 5, &, is either an empty set for interior blocks or
a set that contains one element for boundary blocks that fall on one reservoir
boundary, two elements for boundary blocks that fall on two reservoir bound-
aries, or three elements for blocks that fall on three reservoir boundaries. An
empty set implies that the block does not fall on any reservoir boundary; that
is, block » is an interior block, and hence, ZqZ;,I

Ieg,

= 11.33
a.At ( ©)

a At

=0forp=o,w,fg.

The explicit, implicit, and Crank-Nicolson formulations are derived from
Eq. (11.33) by specifying the approximation of time /" as ", /"', or #"*'/?, which
are equivalent to using the first, second, and third integral approximation
methods referred to in Section 2.6.3. The explicit formulation, however, is
not used in multiphase flow because of time step limitations, and the Crank-
Nicolson formulation is not commonly used. Consequently, we limit our pre-
sentation to the implicit formulation. In the following equations, fluid gravity
is dated at old time level n instead of new time level n+ 1, as this approximation
does not introduce any noticeable errors (Coats et al. 1974).

For the water component,

E n+1 n+1 n+1 E n+1 n+1
Twl,n |:<p\41 pw ) }/W/n ] qws"/ qWSCn

ley, 1eé,

+1 n
<¢s ) (428)1 (11342)

a( At
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For the free-gas component,

n+1 n+1 n+1 n+1 n+1
ZTgl,n |:<p21 pén ) y{s/n ] qulsS‘/n qf[s“

ley,
S S n
(¢ ) — <¢g> (11.34b)
a( At B/, B /,
For the oil component,
n+1 n+1 n+1 n+1 n+1
DT, (P o) =7 @2+ Y )
ley, €&,
:—V”" 95\"" _ (45:)" (11.34¢)
aAt|\ B, /, B, /, )

For the solution-gas component,

SOTRY (P =) =7, @ =) |+ D Reose )i+ (Rt ™

ley, 1€,
PRS,\" (DRSS
B, /, B, J,

The transmissibility of phase p=o0, w, or g between blocks / and # is
defined as

T a At

(11.34d)

1
Ty, = Gin <—> kip,., (11.35)
#po Ln '

where G, = the geometric factor between blocks n and / presented in Chapter 4
for a block-centered grid or Chapter 5 for a point-distributed grid.

We limit our presentation in this chapter to the p, —S,, — S, formulation, that
is, the formulation that uses p,, S, and S, as the primary unknowns in the
reservoir. The secondary unknowns in this formulation are p,,, p,, and S,.
Explicitly, the flow models of oil/water, oil/gas, and oil/water/gas use p,—S,,,
DPo—Sg, and p,—S,, — S, formulations, respectively. Other formulations such as
DPo—DPw—Pg» Po—Pcow—Pcgor O po—Pcp,— S, break down for negligible or
zero capillary pressures. To obtain the reduced set of equations for each block,
we express the secondary unknowns in the flow equations in terms of the pri-
mary unknowns and thus eliminate the secondary unknowns from the flow
equations. The equations used to eliminate the secondary unknowns are the sat-
uration constraint equation (Eq. 11.1):

Sp=1-8,—-8, (11.36)
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and the capillary pressure relationships (Eqs. 11.10 and 11.11),

Pw=Do _PCDW(SW) 11.37)
and
Pe=Po+Pcgo(Ss) (11.38)

The gas/water flow model uses the p, — S, formulation, and thus, the equa-
tions used to eliminate the secondary unknowns are

Sp=1-8, (11.39)

and

pw:pg_chw(Sg) (11.40)

Once the primary unknowns are solved for, the saturation and capillary pres-
sure relationships (Eqs. 11.36 through 11.40) are used to solve for the secondary
unknowns for each reservoir block.

11.3.1 Flow equations for oil/water flow model

The two components in the oil/water flow model are oil (or gas-free oil) and
water at standard conditions. The oil phase in this case contains the oil compo-
nent only. The flow equations for block n in the oil/water flow model are
expressed by Eqs. (11.34a) and (11.34c). Combine these two equations with
S,=1-S8,, and p,,=p,— P.,.(S,,) to obtain the p,—S,, formulation.

For the oil component,

n+1 n+1 n+1 n+1 n+1
> T [(pm —P,, ) Yora( } > o, + o

ley, €&,
Vi, [[p =501 [p(1=S0)]"
T a At B, . B, .

For the water component,

erf:[(pz,“ ) = (P = Piat ) =1 @ =20 | + Yo+
ley 1€g,
¢Sw n+1 ¢Sw n
<Bw>n _(B_w>n
(11.42)

Egs. (11.41) and (11.42) also model the flow of undersaturated oil and
water as long as the reservoir is operated above the oil bubble-point pressure.

(11.41)

N
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Injection well Production well
y Y 1
— & )

No-flow boundary

No-flow boundary

FIG. 11.9 1-D reservoir in Example 11.4.

Under such condition, the gas remains in the solution, and the undersaturated oil
behaves as a slightly compressible fluid with B, =B, and a constant oil com-
pressibility (c,) whose value depends on the solution GOR at the bubble-point
pressure (Rgp).

Example 11.4 A homogeneous, 1-D horizontal, two-phase oil/water reservoir
is described by four equal blocks as shown in Fig. 11.9. Initial reservoir pres-
sure and phase saturations are known. The reservoir left and right boundaries
are sealed off to flow. The reservoir has a water injection well in gridblock 1
and a production well in gridblock 4. Write the flow equations for interior
gridblock 3.

Solution

For gridblock 3, n=3, and yw3;={2,4}. Gridblock 3 is an interior block;

therefore, &3=1{}, Zqﬁst.:} =0, and Zqﬁ&}} =0. Gridblock 3 has no wells;
Ieg, Ieg,
therefore, g =0 and gjit:, =0.
The oil equation is obtained by substituting the given values into Eq. (11.41)

and expanding the summation terms, yielding

Tt (et =it t) — s, (22~ 23)]

+T5] [(pﬁf Ly 1) ~ Vo, (Zs —23)} +0+0 (11.43a)
_ Ve [ [p1=5)1" g(1-5S)]"
a.At B, 3 B, 3

Observing that Z,=Z3=Z7, for a horizontal reservoir, the oil equation
becomes

n+1 n+1 n+1 n+1 n+1 n+1
T()z’g (p02 71)03 > +T()4’3 (pg4 71)03 )

W, { {4;(1 —sw)} aa [M} } (11.43b)

T a At B, 3 B, 3
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The water equation is obtained by substituting the given values into
Eq. (11.42) and expanding the summation terms, yielding

mie [ =oirt) = (Pt = Poat) =7 (2o —20) |+ T (o =)

QSSW n+1 ¢Sw n
(%), -(5),

(11.44a)

Vi,
a.At

Cowy cows

_<P”+‘ —P"“) 7 (24— Z3)]+0+0=

Observing that Z, =Z3=2Z, for a horizontal reservoir, the water equation
becomes

T —
n+1 n+1 n+1 n+ 1 ntl
+Tw:r,3 [(P 04+ _p03+ ) B (PCO+W4 _P""+W3>} (11.44)
<¢Sw)n+1_ ((/)SW)”
Bw 3 BW 3

Egs. (11.43b) and (11.44b) are the two flow equations for gridblock 3 in this
1-D reservoir.

a.At

11.3.2  Flow equations for gas/water flow model

The two components in the gas/water flow model are water at standard condi-
tions and the free-gas component at standard conditions. Gas solubility in the
water phase is assumed negligible; hence, the gas phase contains all the gas that
exists in this system. Therefore, Egs. (11.34a) and (11.34b) express the gas/
water flow equations for block n. Combine these two equations with S, =1—S
and p,,=p, — P4(S,) to obtain the p, — S, formulation.

For the gas component,

8

> T [(pfé,“ Py 1) ~ Ve, (4~ Zn)] + D i, * o,

ley, €&,
_ Vb,, @ n+1 B % n
aAt |\ By /, B, /,

n+1 n+1 n+1 n+1
where qgse, = Gfesc, ad Gese,, = s,

(11.45)
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Production well

s

~— ] 3 1] 4
No-flow boundary e [ e | O No-flow boundary

............................................

FIG. 11.10 1-D reservoir in Example 11.5.

For the water component,

n+ 1 n+1 n+1 n+ 1 n+1 n+1 n+1
ST (! =) = (Pl =Pt ) 7o, (2= 20| + 3t

ley, 1€,
Ve, [[#0=S"[h(1=50)]"
At B, |, B, |,
(11.46)

Example 11.5 A homogeneous, 1-D horizontal, two-phase gas/water reservoir is
described by four equal blocks as shown in Fig. 11.10. Initial reservoir pressure and
phase saturations are known. The reservoir left and right boundaries are sealed off
toflow. The reservoir has a production well in gridblock 3. Write the flow equations
for interior gridblock 2. Assume negligible gas/water capillary pressure.
Solution
For gridblock 2, n=2 and y3={1,3}. Gridblock 2 is an interior block;

therefore, & =1}, Zq’”.l =0, and Zq"” =0. Gridblock 2 has no wells;

gsc wsc
leg, le&,

therefore, qgf(lz =0 and q@fz =0.

The gas flow equation is obtained by substituting the given values into
Eq. (11.45) and expanding the summation terms, yielding

T szlﬁ PZfl) A —Zz)}
st (o =) 72, (25— 22)] 4040 (11478
(&>n+l B (%)n
Bg 2 Bg 2
Observing that Z, =Z, =Z; for a horizontal reservoir, the gas flow equation

becomes
()
By /, By /,

(11.47b)

a.At

Vi,

n+1 n+1 n+1 n+1 n+1 n+1
Tg12<p€’1 pgz )+Tg12(p%’w pgz ) a. At
"

The water flow equation is obtained by substituting the given values into
Eq. (11.46) and expanding the summation terms, yielding
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n+1 n+1 1 1 1 7
Tt (e v ) = (Prgs —Pik ) =72 (21~ )

n n+1 n n+1 n+1 n
T (part = pit) = (Prad —Pizd ) =72, (2= 22) |+ 0+0 (11.48a)
1
Vo [[p0=5)) [p(-5))
(lCAt Bw 2 Bw 2

Observing that Z; =Z, =Z; for a horizontal reservoir and for negligible gas/
water capillary pressure, the water flow equation becomes

n+1 n+1 n+1 n+ 1 n+1 n+1
Twm(pgl pgz ) T\Mz(pg% pgz )

oV, [Te(1=8)7" [p(1-5)1" (11.48b)
T acAt { B, L _[TL

Eqgs. (11.47b) and (11.48b) are the two flow equations for gridblock 2 in this 1-D
reservoir.

11.3.3 Flow equations for oil/gas flow model

The components in the oil/gas flow model are oil at standard conditions, gas at
standard conditions, and irreducible water (immobile water). Gas consists of
both free-gas and solution-gas components. The flow equation for gas is
obtained by adding Egs. (11.34b) and (11.34d):

So{mnet (ot = pt V) = 2= 2|+ TR (o =P ) o 2~ 2| }

ley,

Z{q}'}g;l[ RsQosc)ln} [q]’}g;l (RsQosc)Z+1]

1
R ICARCAYN (¢Rsso>"“_<¢zesso>"
acAt Bg " By " By /i, Bo Jn

Therefore, Eqgs. (11.34c) and (11.49) express the oil/gas flow equations for
block 7.

Combine these two equations with S,=(1—S;,) =S, and p,=p,+P4,(S,)
to obtain the p, — S, formulation.

For the oil component,

(11.49)

n+] n+1 n+1 n+1 n+1
01 n [(p o Po, ) 7/01 B } E :qm(v . T ose,
/ey/,, e,

_ Vo [ [#(1=Sw=5q) M, ¢(1—Siw —S¢)]" (1130
705At Bo n Bo \
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For the gas component,

Z{TE,T[(PZ,” —t )+ (Prt =i ) =7, 2= 7)]

ley,

TR (o1 =) i 2] o X, R
leg,

n+l n+1

[qu‘lgtcl Rsﬂ qosz}

W, (@)“L(@) [M}[w}
S acAt| \ By /, B, /, B, " B, "

(11.51)

The irreducible water in this model is assumed to have the same compress-
ibility as that of porosity. If the irreducible water is assumed incompressible,
then ¢pc=¢(1—S;,) replaces ¢, and (1-S,) replaces (1—S;,—S,) in
Egs. (11.50) and (11.51).

y /13/14/15/&16
Z}//10/11/12”
YAVAVAVL
Caas

FIG. 11.11 2-D reservoir in Example 11.6.

Example 11.6 A homogeneous, 2-D horizontal, two-phase oil/gas reservoir is
shown in Fig. 11.11. Initial reservoir pressure and phase saturations are known.
The reservoir has no-flow boundaries. There is a gas injection well in gridblock
1 and a production well in gridblock 16. Write the flow equations for interior
gridblock 10. Assume negligible gas/oil capillary pressure.

Solution

For gridblock 10, n=10 and y{(={6,9,11,14}. Gridblock 10 is an interior

block; therefore, &1o={}, » g =0,and Y git! =0.Gridblock 10 has
l€&io l€éio |
no wells; therefore, %sc]o—o and q,’{;},ID:O.
The oil equation is obtained by substituting the given values into Eq. (11.50)

and expanding the summation terms, yielding
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T [ (ot =) =7, s = 2u0)]
ST [ (i =) =7, (20— Z00)|
st (o =) =700 (20— Z0)] (11.52)

ATl | (P =Pt ) = V0 (Zia = Zi0) | +040

o [[B0-Su-5))" 15 -5,)]
_agAl B, 10 B, o

For a horizontal reservoir, Zg=Z9=27Z10=2Z11=2Z14, and the oil equation
becomes

n+1 n+l _ . n+l n+1 n+l _ . n+1l
TOe,lo (pos p010 ) +T09,10 <p09 p010 )

n+1 n+1 n+1 n+1 n+1 n+1
+T01J1r,1o (pmt P ) +T01I,1o (po; ~Poy ) (11.52b)
n+1 n
Vi (=80 =S [d(1 =S —S,)
a At B, 10 B, 10

The gas equation is obtained by substituting the given values into
Eq. (11.51) and expanding the summation terms, yielding

mont (e =pit )+ (Phsd = Prt ) =72 o (Ze = 210)]
TR (o = past) =70 (Zo —210)]

AT [t —pt) + (Prid Pl ) =70 @~ 20)
TR [ (part =pint) =7, (20~ Z10)]

st (et =)+ (Pt —PosL ) =70 @0~ Z10)]
+(ToRs) 1 1o KPZITI P 1) ~Yon.0Zn —Z1o)]

st [ =)+ (PRl =PI ) = 7o (Zra = Z10)]
TR [ (P =i ) =7 o (Zra = Z10)| +0+ [0+ R 0]

_ Vo (m)"”_ (aﬁsg)” . V&(l-s,-w_sg)r”_ {¢Rs<1—siw—sg>}"
acAt Bg 10 Bg 10 B, 10 B, 10

(11.53a)
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Observing that Zg=Z9=7Z,0=Z,1=2Z,4 for a horizontal reservoir and for
negligible gas/oil capillary pressure, the gas equation becomes

1 1
[T L (RO (i =it ) + [T + (TR0 (P =)

1 1 1 1 +1 1 1
| Tard (TR (o =it )+ [Tl + (TR ) (i =)

:h (%)nﬂ_(%) VR ( M_Sg)rﬂ_ {¢Rs(1_5iw_5g)r
acAt B /10 Be /10 B, 10 B, 10
(11.53b)

Eqgs. (11.52b) and (11.53b) are the two flow equations for gridblock 10 in this
2-D reservoir.

11.3.4 Flow equations for black-oil model

The isothermal oil/water/gas flow model is known as the black-oil model. The
oil component forms the bulk of the oil phase. The solution-gas component dis-
solves in it, and the remaining gas (the free-gas component) forms the gas phase.
Oil and water are immiscible, and both do not dissolve in the gas phase. There-
fore, the black-oil system consists of the water component, the oil component,
and the gas component (solution gas plus free gas). Accordingly, a black-oil
model consists of Egs. (11.34a), (11.34c), and (11.49).
For the oil component,

n+1 n+1 n+1 n+1 n+1
St (et ) v, @-Z) |+ > di) )

ley, 1€g,
_ Vh” ¢So n+1 B @ n
B, /, B, /,

a At
For the gas component,

ST [ =it =7 @2

ley,

(11.34c)

n

(R (P =it ) =1 (2= 2] }

1
Z [q;g-;ét bq()&( )I n :| [Q;lgzcl (RA Gosc )n+ :|

e,
S\ (#S\" RSN\ (PRS,\"
<Bg>n (B_%’>n * < BO >n < BU >n

-2d
(11.49)
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For the water component,

n+1 n+1 n+1 n+1 n+1
2 :TWI,” [(pm —Dw, ) }/m n (Zi— } 2 :qMS(I)1+qWSLn

ley, €&,

B Vh” ¢Sw n+1 (bsw n
aAt|\ B, ], B, /,
Combine these three equations with S,=1-S5,,—S,, pw=p, —Pcou(Sw),

and p,=p,+P.,(S,) to obtain the p,—S,, — S, formulation.
For the oil component,

n+1 n+1 n+1 n+1 n+1
E :Tol,,, [(pol pun ) yuln } § :qou'l qosc

ley, €&,

(11.34a)

; ; 11.54
Vo, [[6(1=S0=8)]" [(1-S0—5,)]" (1159
a.At B, R B, .
For the gas component,
S{r (=) (Prat = piat) 7, 21 2)
ley,
(T R )n+1 |:(p2’+1 pZ:l) 7}/2’”(21*2”)} }
Z {q;gtclz + ’Yllthz:(—1l } [q;gtcl +R?n+ lqz;(—-,,l}
leg,
B th (¢Sg)n+l (¢Sg)n+ |:¢Rs(l_Sw_Sg):|n+l |:¢R3(l _SW_SX):|n
acAr Bg n B%’ n B, n B, n
(11.55)

For the water component,

n+1 n+1 n+1 n+1 n+1 n+1 n+1
E :Tw,,n [(po, po,, ) (wa, P(()w) yw,,, } E qwsc; B qwsc,,

ley, €&,

¢Sw n+1 ¢Sw) n
() (5] 139
It is noteworthy to mention that the flow equations in a black-oil model
(Egs. 11.54, 11.55, and 11.56) can be reduced to any of the two-phase flow
models already presented. This is accomplished by discarding the flow equation
for the missing phase and setting the saturation of the missing phase to zero in
the remaining flow equations. For example, the oil/water flow model is obtained

from the black-oil model by discarding the gas flow equation (Eq. 11.55) and
setting S, =0 in Eq. (11.54). The oil/gas flow model is obtained by discarding

T a At
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No-flow boundary
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FIG. 11.12 2-D radial-cylindrical reservoir in Example 11.7.

the water flow equation (Eq. 11.56) and setting S,, =S, in Egs. (11.54) and
(11.55).

Example 11.7 A single-well simulation problem is presented in Fig. 11.12. The
reservoir is horizontal and contains oil, water, and gas. Initial reservoir pressure
and phase saturations are known. The reservoir top and lateral boundaries are
no-flow boundaries, whereas the reservoir bottom boundary represents a con-
stant pressure WOC. The well is completed through the top layer. Write the flow
equations for interior gridblock 7.

Solution

For gridblock 7, n="7 and w7 = {3,6,8, 11}. Gridblock 7 is an interior block;
therefore, &={1}, Y qin! =0, gii) =0,and Y git! =0.Gridblock 7

leg Ie& Ieg '

has no wells; therefore, g =0, gise. =0, and g, =0. Observe also that
Z6 == Z7 = Zg.

The oil equation is obtained by substituting the given values into Eq. (11.54)
and expanding the summation terms, yielding

Toe (' =) =, (2 =2 |+ T (v =)

T (oo =)+t (oo = p ) 70, 20 = 2) | 040
n+1 n
_ Ve J(1=80=S)]" [¢(1-Su—Sy)
acAt B, ; B, ;

The gas equation is obtained by substituting the given values into
Eq. (11.55) and expanding the summation terms, yielding

(11.57)
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rt (s et ) + (Prt = Pegh) 1, (@ - 29)]

RS (o =) =i, (23— 70)]

e [ (o i)+ (Pt = et )|+ (TR [ (ot =)
A1 (ot =) + (Pt = Prat )] + (TR [ (o =)
st (ot =) + (Phi, —Piget) =7, (20 = 29)]
TR (o = o) =7, (@0 = 72)] +0+ [0+ RE 1 x0]

s (B () e [

CacAt |\ B, /, B, /, B, B,
(11.58)

The water equation is obtained by substituting the given values into
Eq. (11.56) and expanding the summation terms, yielding

ri [(p =) = (Prad = Prst) =7, (22— 20)]
n+1 n+1 n+1 n+1 n+1
+Tw;:7 |:(p0(,+ _po7+ ) - (Pc';w(, _P(';W7>:|
st (et =) = (P — P (11.59)
+T$:,17 [(pz:l _pz;— 1) _ (P?:wl” — PZ:W]7) — ]/:lv”’7 (le —Z7)i| +0+0
B Vb7 (,wa n+1 ¢Sw n
~aAt |\ B, /, B, ),
Egs. (11.57), (11.58), and (11.59) are the three flow equations for gridblock 7 in
this 2-D radial flow reservoir.

11.4 Solution of multiphase flow equations

The equations for the whole reservoir consist of the flow equations contributed
by all reservoir blocks. The unknowns in the system are the unknowns of the
formulation for all reservoir blocks. To solve the flow equations of a reservoir
model, several steps are taken. The accumulation terms in the flow equations
are expanded in a conservative way and expressed in terms of the changes of
the unknowns of the block over a time step, the boundary conditions are imple-
mented (or the rates of fictitious wells are estimated), production and injection
rates are included, and the nonlinear terms are linearized both in space and time.
The treatments of boundary conditions, production (injection), and linearization
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are, to some extent, similar to those for single-flow models presented in
Chapters 4, 5, 6, and 8. In this section, we present, in elaborate detail, the expan-
sion of the accumulation terms, the treatments of production and injection wells,
boundary conditions, and solution methods of the equations of multiphase flow
models. In addition, we highlight differences in the treatment of nonlinear terms
from single-phase flow.

11.4.1 Expansion of accumulation terms

The accumulation terms of the reduced set of equations for each reservoir block
must be expanded and expressed in terms of the changes of the primary
unknowns of formulation over a time step. These accumulation terms form
the RHS of Eqgs. (11.41) and (11.42) for the oil/water model, Eqgs. (11.45)
and (11.46) for the gas/water model, Eqs. (11.50) and (11.51) for the oil/gas
model, and Egs. (11.54) through (11.56) for the oil/water/gas model. The expan-
sion scheme used must preserve material balance. For example, consider the
expansion of the RHS of Eq. (11.42) Vi [(‘/}%‘)HH — (";’%) n] , in terms of

> acAt

n+1
Do and S,,. Add and subtract the term S} (#) and factorize the terms as
w\Bw )

follows:
A
a(At < )
$Sw ¢ o\ (BSW\"
aCA[ (B )n <BW) Mn( W)n _<E>n] (1160)

_Vb,, ¢ n+1 el . . ¢ n+1 ¢ n
_a(rAt{<B_w>n <Swn _Swn> +SW,, B_w . - B_w .

n+1 l

Again, add and subtract the term ¢, in the square bracket on the RHS

of Eq. (11.60) and factorize the terms as follows.

¢Sw n+l_ @ n

By ), By ),

_Vbn ¢ el n+1 n n ¢ el n+1 1 n+l_~ 1 ¢ "
_acm{(Bw)n (sar st )vst| () - e o (),

Vb ¢ n+1 ( 1 1 1
_ n ha S",+1 s ) sn n+1 - n+l _ n
(chI{ (Bw),, Wi Wi wa | BT B, + B, (¢n o)

(11.61)
Expressing the changes in B% and ¢, over a time step in terms of the changes

in oil-phase pressure over the same time step, results in

acAt
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th ¢Sw n+l_ ¢Sw n
a.At |\ B, ), B. /,
_ Vbn ¢ e n+1 n ) n n+1 1 ' 1 /
—M{(B—w) O A i v R

n Wy

(or'=ps) }

(11.62)
1 /
where (—> and ¢, are defined as the chord slopes estimated between values

)
at current time level at old iteration n+ 1 and old time level n

1Y 1 1 W
<B> -5 / (po:'l—pon) (11.63)

B+ 1 W
Wn

and

o) )
b= (o -0n) /(-0 (11.64)

The RHS of Eq. (11.62), along with the definitions of chord slopes given by
Eqgs. (11.63) and (11.64), is termed a conservative expansion of the accumula-
tion term represented by the LHS of Eq. (11.62).

Other accumulation terms can be expanded using similar steps as those that
led to Eq. (11.62). Ertekin et al. (2001) derived a generic equation for a conser-
vative expansion of any accumulation term, which states

Vb n+1 n Vb n 1
Uuvxy —(UVXY)' | = vxy)" ("' -u"
vy vy = Dy e )

+Un+1(xy)”(vn+l 7vn) + (Uv)’1+1Y/1(Xn+l 7Xn) + (va)"+l(Y11+l 7Yn)]
(11.65)

where U is the weakest nonlinear function, Y is the strongest nonlinear function,
and the degree of nonlinearity of V and X increases in the direction from U to Y.
Usually, U=¢,V=1/B,, X=R,and Y=S§,.If U, V, X, or Y does not exist, then
itis assigned a value of 1. Because ¢, 1/B,,, and R, are functions of the oil-phase
pressure that is a primary unknown and S, is either a primary unknown as in case
of §,, and S, or a function of the saturations that are primary unknowns (S,,, S,)
as in the case of S,, Eq. (11.65) can be developed further to give

Vb n+1 n Vb nyp (. n+1 n

XY — XY) | =—— XY —
i OVXY)T VY| = S (VRY)'U (0 =)
+Un+1(xy)"v/(pn+l _pn) + (Uv)"+lynxl(Pn+l _pn) (1166)

HOVX)"™ (0 /08.,) (537! —S5) + (0¥ /05,) (511 53] }
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or
Vh n+1 n Vb nyqt +1 ny s/
XY —(UVXY)" | = XY "
Y [(wvxyy' = (uvxry| acm{[(v YU+ UM (XY )V
+(UV)”+ IYnX/] (pn+l _pn> + (UVX)’HI(()Y/OSW) (Sﬁ,Jr 1 —Sﬁ’) (1 1.67)
+HUVX)" " (aY /0S,) (sg“ - Sg> }
where
(v) )
U/ — <Un+1_ Un)/<pn+l_pn> (11683)
®) ®)
V/ _ (Vn+1_ Vn)/<pn+l_pn) (1168]3)
and

! n(+‘/)1 n n(-:)l n
X =(x1_x /p —p (11.68¢)

Moreover, for Y=S,,, dY/0S,,=1 and 0Y/0S,=0; for Y=S,, 0Y/dS,,=0 and
0Y/0S,=1; and for Y=S,, 0Y/0S,,= —1 and 0Y/0S,= — 1.

Let us apply Eq. (11.67) to obtain the expansion given by Eq. (11.62). In this
case, we have U=¢, V=1/B,,, X=1, and Y=S,,. Note that p =p,,. Substitution
into Eq. (11.68) gives

/I n(;—')l_ n f’l?]_ n

P=¢"" =" )/ {Ps" =P, (11.69)
1Y 1 1 SO
(B_) g By /(P —p,,) (11.70)

and
X' =0 (11.71)
In addition,
dY /dS,,=0S,,/dS,, =1 (11.72a)
and

0Y/dS,=0S,,/0S, =0 (11.72b)



432 Petroleum reservoir simulation

Substitution of Egs. (11.69) and (11.70) and the definitions of U, V, X, and Y
into Eq. (11.67) gives

1 el 1 nivb 1 n/ n+1gn 1 /
(455 (s sl oo ()

1 n+l 1 n+1
+ <¢B> Sﬁ,X’] (Pl —pt) + (¢B> (oY /aS,,) (St —5sm)

w

(o) orgas sy -s))

w

Vi
a.At

(11.73)
Substitution of Eqs. (11.71) and (11.72) into this equation yields

1 n 1 " Vb 1 ! ! n+1gn 1 '
(#5) (g5 |- [ o)

n+l n+1
+<¢Bi> Sﬁ,xo} (pg+1—pg)+<¢3i> ) 1 (Sprt—sm)

w w

+<¢;>n+] X 0% (sg“-sg)}

which upon simplification, term factorization, and addition of subscript 7 to all
functions to identify the block gives Eq. (11.62), which states

Vbn ¢Sw n+1_ @ n
aAt|\ B, ), B. /),
Vb” ¢ n+1 . . . ) 1 / 1
—A{<B) (i =su) vt |07 (5,0) g

n

Vi
a.At

(11.74)

(ort=ps) }

(11.62)

11.4.2 Well rate terms

Production and injection wells are treated separately because injection usually
involves one phase only, either water or gas, but production involves all phases
present in wellblocks.

11.4.2.17 Production terms

Fluid production rates in multiphase flow are dependent on each other through at
leastrelative permeabilities. In other words, the specification of the production rate
of any phase implicitly dictates the production rates of the other phases. In this sec-
tion, we emphasize the treatment of a vertical well that is completed in several
blocks, as shown in Fig. 11.13, and produces fluids from a multiphase reservoir.
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FIG. 11.13 Cross section showing pressures within a vertical production wellbore.

If the FBHP at reference depth (p,, ) is assumed to be known, then well
pressure opposite wellblock i can be estimated using the following equation:

Dwf; :p"‘fre/ +7wb (Zl - Zref) (11.75)
where

Ywb =Y cPwb8 (11.76)

In addition, the average fluid density in the wellbore opposite the producing
formation is approximated as
Z ﬁ pE pqpst‘

—_ — pe{n’ W,_fg}

Pwb =" =~ =
" Z By qpsc

pe{o,w, g}

(11.77a)

where average FBHP or p,,; can be used to obtain estimates for B, and p, for
phase p=o, w, g.

The concern here is to estimate the production rate of phase p =0, w, fg from
wellblock i under different well operating conditions, where wellblock i is a
member of the set of all blocks that contribute to well production; that is, i € y,,.

Shut-in well

dpsc; =0 (1178)

where p=o, w, fg.
Specified well flow rate
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TABLE 11.4 Well rate specification and definitions of set #,,4 and M,

Well rate specification Set of specified phases Phase relative mobility
qsp Nprd M,

Gosp {o, w} kiplptp

Grsp {o, W} Ko/t

qrsp {o,w, g} kiplpp

Gospsc {o, w} Ko/ (Bpty)

GLspsc A% Kip/(Bptp)

The production rate of phase p=o0, w, fg from wellblock i is given by

ky,
Ipse; = =G, | =—— | (pi— Py, (11.79a)
D (Bp,up> i ( f )
This equation can be combined with Eq. (11.75) to give
krp —_
Ipse, = —Gw, [Pi —Puf,y =V (zi— Zref):| (11.80a)
B,u, i

For a multiblock well, p,,  is estimated from the well rate specification
(qsp) using

Z GW; [pi —Vwb (Zi - Zreff)] Z Mp, +qsp

icy,, PEMpra

P = > G > M,

iey,, PEMpra

(11.81a)

where 7,,; and M, depend on the type of well rate specification as listed in
Table 11.4. The use of Eq. (11.81a) requires solving for p,,; _implicitly along with
the reservoir block pressures. An explicit treatment, however, uses Eq. (11.81a) at
old time level n to estimate pﬁfﬁ, which is subsequently substituted into
Eq. (11.80a) to estimate the production rate of phase p=o0, w, fg from wellblock
i (gpsc). For a single-block well, the application of Eq. (11.81a) for y,, = {i}
followed by substitution for p,, into Eq. (11.80a) yields.

_ qs
pr,-e/ = [pi_ywb(zi_zref)] +W (1181C)

P€Mpra
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and
krp Q\'p
= ~— (11.80c)
PEMpra
for p=o, w, fg.

Specified well pressure gradient
For a specified well pressure gradient, the production rate of phase p=o, w,
fg from wellblock i is given by

k, 7]
4psc; = _2”ﬁc-"wkHihi< L ) &

(11.82a)

Byu, | or

i T

Specified well FBHP
If the FBHP of a well (p,,; ) is specified, then the production rate of phase
p=o, w, fg from wellblock i can be estimated using Eq. (11.80a):

ky _
Qpsc; = _Gw; L [P: —ow,.ef —Vwb (Zl - Zré’f)} (1 1 8021)
By, .

Example 11.8 Consider the single-well simulation problem presented in
Example 11.7. Write the production rate equations for oil, water, and gas from
the well in gridblock 9 given that the well is producing at a specified constant
liquid rate of gy g5

Solution

The concern here is to find the production rate of the individual phases from
the well in wellblock 9 given that gy, =q;.. For single-block wells,
Eq. (11.80c¢) is applicable, stating

krp qsp
dpsc; = ~= .. (1180C)
’ (Bp’u”>i Z M,

DPE€Npra

where p=o, w, fg. For gy, =q; s in Table 11.4, we have 7,,4={o,w} and
M, =k,,/Bpup. Therefore, substitution into Eq. (11.80c) for wellblock 9
(i.e., 1=9) gives

kra qLspsc
oscg = 11.83
1 ’ (BO.MU>9 |:( kra ) + ( krw > :| ( a)
9 9

Bou,

krw qLspsc
wscg = 11.83b
Gwsco (BWW>9K k,.o) +<k,w ) } ( )
9 9
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FIG. 11.14 Cross section showing pressures within a vertical injection wellbore.

and

By, B,u,

krg qLspsc
SCo — - 11.83¢c
qu‘ 9 (Bg'ug>9 |:( kro ) . ( k)w ) :l ( )
9 9

It should be noted that qs, = Gfgsc, + Rs,Gosc,:

11.4.2.2 Injection terms

For injection wells, one phase (usually water or gas) is injected. The mobility of
the injected fluid at reservoir conditions in a wellblock is equal to the sum of the
mobilities of all phases present in the wellblock (Abou-Kassem, 1996); that is,

M= M, (11.84)
DPENjyj
where
Nigj = 10, W, 8} (11.85)

M, = (k,,/u,,), and B .k, M, = mobility of phase p at reservoir conditions of
the wellblock.

In this section, we emphasize the treatment of a well that is completed in
several blocks, as shown in Fig. 11.14, and injects either water or gas into a mul-
tiphase reservoir. If the FBHP at reference depth (p,,; ) is assumed to be known,
then the well pressure opposite wellblock i can be estimated using Eq. (11.75):
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p"‘fi :prre/ + 7wb (Zl - Zref) (1 1 .75)
where

Vb = YcPwb8 (11.76)
and the average density of the injected fluid, opposite the formation, is esti-
mated as

B, = (11.77b)

p

o~

Average FBHP or p,, can be used to obtain an estimate for B, of the
injected phase p. The concern here is to estimate the injection rate of the injected
phase (usually water or gas) into wellblock i under different well operating con-
ditions, where wellblock i is a member of the set of all blocks that receive the
injected fluid; that is, i € y,,. Of course, the rates of injection of the remaining
phases are set to zero.

Shut-in well

dpsc; =0 (11.78)

where p=w or fg.
Specified well flow rate
The injection rate of the injected fluid p=w or fg into wellblock i is given by

My
Gpse, = =G, ( B”") (pi—DPwr,) (11.79b)
p /i
This equation can be combined with Eq. (11.75) to give
_ My _
qpsc,» - 7GW1‘ B |:pl 7pwf,.ef —Ywb (Zl - Z]()f):| (1 1 80b)
p /i

For a single-block well, g, =gspsc and Eq. (11.80b) is used to estimate
Pwy,, For amultiblock well, however, p,,; is estimated from the well rate spec-
ification at standard conditions (gy,s.) using

Min' —_
Z {GW:’ ( B j) [pl —Vwh (Zl - Zref)] } + qspsc
P /i

p _ icy,,
Wf vor —
| > ()
p /i

Then, the injection rate of the injected fluid p =w or fg into wellblock i (g,,.)
is estimated using Eq. (11.80b). The use of Eq. (11.81b) requires solving for
Pwy,, implicitly along with the reservoir block pressures. An explicit treatment,
however, uses Eq. (11.81b) at old time level # to estimate pf%/, which is sub-
sequently substituted into Eq. (11.80b) to estimate the injection rate of the
injected phase p=w or fg into wellblock 7 (gpy,).

(11.81b)
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Specified well pressure gradient
For a specified well pressure gradient, the injection rate of fluid p=w or fg
into wellblock i is given by

(11.82b)

M\ 0
dpsc; = _2”ﬁprwkH,vhi ( nj) _p

B, ) or

Specified well FBHP
If the FBHP of a well (p, ) is specified, then the injection rate of the
injected fluid p =w or fg into wellblock i can be estimated using Eq. (11.80b):
M;,; _
Grse, = =G (L) |Pi=Pusy =7 (Zi=Zur) | (11.80b)
p

i

11.4.3 Treatment of boundary conditions

A reservoir boundary can be subject to one of four conditions: (1) a no-flow
boundary, (2) a constant flow boundary, (3) a constant pressure gradient bound-
ary, and (4) a constant pressure boundary. As discussed in single-phase flow in
Chapters 4 and 5, the first three boundary conditions reduce to a specified pres-
sure gradient condition (the Neumann boundary condition), and the fourth
boundary condition is the Dirichlet boundary condition. The treatment of
boundary conditions for 1-D flow in the x-direction is similar to that presented
in Section 4.4 for a block-centered grid and Section 5.4 for a point-distributed
grid. In this section, we present the fictitious well rate equations as they apply to
multiphase flow in reservoirs discretized using a block-centered grid only. The
effect of capillary pressure is assumed negligible. The fictitious well rate of
phase p (ql’;;.l/"hg) reflects fluid transfer of phase p between the boundary block
(bB) and the reservoir boundary itself (b) or the block next to the reservoir
boundary that falls outside the reservoir. In multiphase flow, a reservoir bound-
ary may (1) separate two segments of one reservoir that has same fluids,
(2) separate an oil reservoir from a water aquifer or a gas cap, or (3) seal off
the reservoir from a neighboring reservoir. If the neighboring reservoir segment
is an aquifer, then either water invades the reservoir across the reservoir bound-
ary (WOC), or reservoir fluids leave the reservoir block to the aquifer. Simi-
larly, if the neighboring reservoir segment is a gas cap, then either gas
invades the reservoir across the reservoir boundary (GOC), or reservoir fluids
leave the reservoir block to the gas cap.

11.4.3.1 Specified pressure gradient boundary condition

For a specified pressure gradient at the reservoir left (west) boundary,

n+1
[017_1)

al |, bB 9]

n+1 ; oz
() } ] (11.862)
bB b
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for p=o0, w, fg, and at the reservoir right (east) boundary,

n+1
klkrpA] %
HyBp . ol

n+1 ; aZ
- (}’p)bgj

(11.86b)

‘ b

n+l  ~u
Dosein = lﬂa
b b

for p=o, w, fg, where the component physical properties and phase physical
properties other than the flow rate for the gas phase and the free-gas component
are the same. The flow rate at standard conditions of the gas component, how-
ever, equals the sum of flow rates at standard conditions of the free-gas and
solution-gas components; that is,

n+1 n+1 +Rn+l n+1 (1187)

qg“'h,/m - qusch,hk SbB qos"b,hli

In Eq. (11.86), the specified pressure gradient may replace the phase pres-
sure gradient at the boundary. Eq. (11.86) applies to fluid flow across a res-
ervoir boundary that separates two segments of the same reservoir or across a
reservoir boundary that represents WOC with fluids being lost to the water
aquifer. If the reservoir boundary represents WOC and water invades the
reservoir, then

LA n+1 d n+1 o7
n+1 1A n+1 0P n
= Ky — —(rw)p—= 11.88
qwsc/,,/,g |:ﬁc ,uwa:| . ( )aq |f31 , (}’ )hB al , ( a)
for the reservoir left (west) boundary, and
A n+l 0 n+1 o7
n+1 1] n+1 P n
L= B kpw — —(Yw)p—= 11.88b
qWSLh,hB |:ﬂz //lew:| b8 ( )aq ol , (y )bB al ‘b ( )
for the reservoir right (east) boundary.
Moreover,
n+l __ n+l __ n+l __
ql);'b, bB qu:L'h,lyB - qg;;b,hﬂ =0 (11.89)

Note that, in Eq. (11.88), the rock and fluid properties in the aquifer are
approximated by those of the boundary block properties because of the lack
of geologic control in aquifers and because the effect of oil/water capillary pres-

sure is neglected. In addition, (%, Z;l =1 because S,,=1 in the aquifer.

11.4.3.2 Specified flow rate boundary condition

If the specified flow rate stands for water influx across a reservoir boundary,
then

Dtor s = Dsp/Bu (11.90)

.. . . 1 1 1

In addltloq, .Eq. (11.89) applies (i.e., q.Z;}h)hB:q}?ﬂ,hym:qg;b‘hn:O). If, how-
ever, the specified flow rate stands for fluid transfer between two segments of
the same reservoir or fluid loss to an aquifer across WOC, then
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n+1
R n+1 (IC’_P>
)
el _ (p b,bB Fr ) g

PSCh, b3 - n+1 q-YP =
" B, Z (Tf)b;)B B, Z (@)
le{o, w, fg}

—— (11.91)

1e{o, w, f2} Hi) b

for p=o0, w, fg because in this case,

(TR)n+l _ (TR>n+l: ﬁ(_ klkrpA/
P/ b,bB 7/ bB u,(AL)2)

Eq. (11.91) neglects the effects of gravity forces and capillary pressures.

n+1

(11.92)

bB

11.4.3.3 No-flow boundary condition

This condition results from vanishing permeability at a reservoir boundary or
because of symmetry about a reservoir boundary. In either case, for a reservoir
no-flow boundary,

nrl (11.93)

qP-YUh,bB -

for p=o, w, fg.

11.4.3.4 Specified boundary pressure condition

This condition arises due to the presence of wells on the other side of a reservoir
boundary that operate to maintain voidage replacement and as a result keep
the boundary pressure (p;,) constant. The flow rate of phase p across a reservoir
boundary that separates two segments of the same reservoir or across a reservoir
boundary that represents WOC with fluid loss to an aquifer is estimated using

n+1

kikypAl
“u,B,(A1/2)

qn +1
PSCh,pB

B

[0 =133") = ()2~ 2)] (1199
bB

for p=o, w, fg.
If the reservoir boundary represents WOC with water influx, then

7 klAl el n+1 n
qfu:cl,,,g = {ﬁcm] (krW)a; [(pb _PZE 1) - (}’w)hB(Zb _ZbB)]

(11.95)

bB

In addition, Eq. (11.89) applies (i.c., g, . =Gfase,,, =, ,,=0). Note
that, in Eq. (11.95), the rock and fluid properties in the aquifer are approximated
by those of the boundary block properties because of the lack of geologic con-

trol in aquifers. In addition, (k,.W)Z;1 =1 because S,,=1 in the aquifer.
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It is worth mentioning that when reservoir boundary b stands for WOC, the
flow rate of phase p across the reservoir boundary is determined from the
knowledge of the upstream point between reservoir boundary b and boundary
block bB. If b is upstream to bB (i.e., when A®D,, >0), the flow is from the
aquifer to the reservoir boundary block, and Eq. (11.95) applies for water
and qhet =qft =qml =0. If b is downstream to bB (i.e., when
A®,,<0), the flow is from the reservoir boundary block to the aquifer,
and Eq. (11.94) applies for all phases. The water potential between the
reservoir boundary and the reservoir boundary block is defined as

AD,, = (pp—pps) — Yw(Zp — Zpp).

Example 11.9 Consider the single-well simulation problem presented in
Example 11.7. Write the flow equations for boundary gridblock 3.

Solution

In this problem, the reservoir is subject to water influx. For gridblock 3,
n=3, and w,={2,4,7}. Gridblock 3 is a boundary block that falls on the res-
ervoir lower boundary; therefore, £&3={b,}, Zq(’j;:} =0, Zq,’cgi} =0, and

leg, leg,

Zq%}} = qa;i » Where qf’vﬁ.m , is estimated using Eq. (11.95) as
le,

KA. n+1
n+l _ z-3z n+1 _ o+l

or
n+1 ﬂ kA n+l _ antl _( )nA /2
qu(;,L 3 [T Az/2 pwoc po; Yw 3 Z3

where py, =p, ., (kn, g;‘ =1, and (Z,, — Z3) = Az3/2.

Gridblock 3 has no wells; therefore, qﬁj}} =0, q“wtcls 0,
q;g;l‘ =0. Observe also that Z,=Z3=27,.

The oil equation is obtained by substituting the given values into Eq. (11.54)

and expanding the summation terms, yielding

and

Tt (ot =) =, 0]+ T [ (pi =) =7, < 0)

st (ot =) =7, (2= 2)] 4040 106)
Vi [[o(1=Su =51 [p(1-S, =57
70(L-At B, 5 B, 3

The gas equation is obtained by substituting the given values into
Eq. (11.55) and expanding the summation terms, yielding
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n+1 n+1 n+1 n+1 n+l) _ . n
Tt [ (onrt =it ) + (Plgat = Pigt ) =7, <]

+(T0RS)'21,+3l [(Pf,;l Pﬁfl) ~ ¥, X 0}
+Tn+1 n+1 n+1 Pn+l Pn+1 —¥ %0

84,3 p04 pﬂs €80y €803 ygA,B

+HToRs) 5! Kpﬁfl Py ‘) — V5 X 0}
s [(pzrl o) (Pris = Pit) 7, (7= 23)|

TR, (P = pr ) =t (27— 23)| +0+ [0+R2 1 x0]

1

_ Vi, < ”” ¢S> N [¢R5(1—SW—S§)T+ - [¢Rs(1—sw—sg)r

acAt Bg 3 Bl) 3 Bo 3

(11.97)

The water equation is obtained by substituting the given values into
Eq. (11.56) and expanding the summation terms, yielding

rie (o =) = (Prsh = Pist) =7, <]
w1 (oo =pn ) = (Pasd =Pk ) =7, <0
s (o = t) = (Prst =P ) =70, (20— 20)]

s, (o)t o

B Vb3 (wa n+1_ @ n
o a.At B, 3 B, 3

(11.98)

11.4.4 Treatment of nonlinearities

The time linearization methods of the phase transmissibility terms in multiphase
flow are similar to those presented in Section 8.4.1.2 for single-phase flow
(explicit method, simple iteration method, and fully implicit method). There
are other time linearization methods such as the linearized-implicit method
(MacDonald and Coats, 1970) and the semiimplicit method of Nolen and
Berry (1972); however, these methods deal with nonlinearities due to fluid sat-
uration only. The time linearization methods of well production rates in multi-
phase flow are similar to those presented in Section 8.4.2 for single-phase
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flow (explicit transmissibility method, simple iteration on transmissibility
method, and fully implicit method). It should be mentioned that the time linear-
ization of well rate terms (production and injection) and fictitious well rates in
multiphase flow are the same as those used for the treatment of flow terms
between a block and its neighboring blocks (see Section 8.4.3).

The space linearization methods of phase transmissibility are different from
those for single-phase flow. For phase transmissibility defined by Eq. (11.35),

1
Ty =Gin| —= | kip. (11.35)
pi, n (ﬂp Bp) y Pi,

the various space-weighting methods presented for single-phase flow

1
(Section 8.4.1.1) work for the pressure-dependent terms, ( B ) and
PP )

R; o
( B) , but only the upstream-weighting method works for the

saturation-dependent terms, k,, . In fact, the function average-value method
and the variable average-value method presented in Section 8.4.1.1 give erro-
neous results when applied to relative permeabilities. The most commonly used
method for space linearization of pressure- and saturation-dependent terms is
the upstream-weighting method.

%

11.4.5 Solution methods

In this section, we present the implicit pressure-explicit saturation (IMPES) and
simultaneous solution (SS) methods as they apply to the two-phase oil/water
flow model in multidimensional reservoirs. The flow equations (reduced set
of equations) for block n in a multidimensional reservoir are presented in
Section 11.3.1 as Eqgs. (11.41) and (11.42).

The oil equation is

2 n+1 n+1 n+1 2 n+1 n+1
Tol,n |:<p01 p()n > yol n :| qu"l n qOSLn

ley, e,
_ Vbn ¢(1 _SW) e B ¢(1 _SW) "
At B, |, B, |,

The water equation is

n+ 1 n+1 n+1 n+ 1 n+1 n+1 n+1
ZTW,’” |:(p0/ p()u ) (PC(JW] _PC()W ) yw, :| qug‘cl qw\‘pn

ley, 1€,

() - (%)

(11.41)

acAt

(11.42)
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The p,—S,, formulation is used here; hence, the primary unknowns are p,,
and S,,, and the secondary unknowns are p,, and S, where p,,=p, — P.,.(S,,) and
S,=1-S,,. The expansions of the RHS of Eqs. (11.41) and (11.42) are

e

:0:?&‘{(2)):+1<S3:] S:"”) (1Sn>|:¢n+1<%)/+l;g”¢:1:|<pgn+l pgn>}
(11.99)

and

V},ﬂ
(5 (5]
E{<l;£>n+l(s,,+1 S,1)+S$’Il¢z+1<Biw>/+Bi¢‘|<pzn+l pgn)}

Wn

(11.62)
Egs. (11.99) and (11.62) can be rewritten as
Vo, J[¢(1=5)1""" _ [¢(1=S.)]"
a.At B, n B, u
—Cop, (P =Pl ) + Com, (S22 =55, (11.100)
and
¢SW n ¢Sw " ( n+1 n) ( n+1 n )
acAt <Bw . B, ),| O \Por o) o (=5
(11.101)
where
Vi 1
c,, ——b (1—S”> AN G R 11.102
Dn acAt { Wy ¢n Bou 0” ¢ ( a)
Vi ¢
Cow, =— — 11.102b
sl (B> ] v

Vi,

n n+1
n a, A I{ Wy [ ( w” ] } ( C)

pr
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and

Vv, n+1
Co, == ’zt (;) (11.102d)

A form of the reduced set of flow equations for the oil/water model that is
suitable for applying a solution method is obtained by substituting Eqs. (11.100)
and (11.101) into Egs. (11.41) and (11.42).

The oil equation becomes

Sorut(part = e ) v, @ - 20|+ Y ait +di!
ley, leg, (11.103)
= Cop, (P =13, ) + Co, (sa,:1 si,)
and the water equation becomes
S (oot =) = (P =Pl ) =, (=2 + S ak)
ley, leg,
+ e =Cup, (pZ,Tl pZn)+wa,l (Sﬁ,jl—sgn) (11.104)

The coefficients C,, , Coyy,, Cyyp» and C,,, are defined in Eq. (11.102), and

Y /1y
the derivatives <B> , <B > , and ¢, are chord slopes that are defined as

1y 1 1 oo
(B_ ) A\ Bl / (Pofl Po,,> (11.105a)
On n On
1Y 1 1 )
Bu)  \ a1 Pl =P, (11.105b)
BW" Bn+1 Bﬁ:n

Wn

) 0
= ((pz“— ”)/(pz;fl p:’)”> (11.105¢)

The pressure dependence of the oil and water FVFs in the oil/water flow
model is described by Eq. (7.6) and that of porosity is described by
Eq. (7.11). Substitution of Egs. (7.6) and (7.11) into Eq. (11.105) yields

and

1Y Co
) =& 11.106
<Bo/x> Bj) ( a)
1Y e
<> O (11.106b)
B,, B,

and

¢ = cy (11.106c¢)
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11.4.5.1 IMPES method

The IMPES method, as the name implies, obtains an implicit pressure solution
followed by an explicit solution for saturation. In the first step, the transmissi-
bilities, capillary pressures, and coefficients of pressure difference in the well
production rates and fictitious well rates, in addition to the fluid gravities, are
treated explicitly. The resulting water and oil equations using Eqs. (11.103) and
(11.104) are combined to obtain the pressure equation for block » through the
elimination of the saturation term (S”+1 — S, ) that appears on the RHS of equa-
tions. This is achieved by multiplying the oil equation (Eq. 11.103) by B"+l
multiplying the water equation (Eq. 11.104) by BC’V‘ZI, and adding the two result-
ing equations. Then, the pressure equation is written for all blocks n=1, 2, 3...
N, and the resulting set of pressure equations is solved for block pressures at
time level n+1 (pﬁfl for n=1, 2, 3...N). The second step involves solving
the water equation for block n (Eq. 11.104) explicitly for water saturation at
time level n+1 (S"“) Capillary pressures are then updated (PZ’ZJV":
ww(Sﬁ“) for n=1, 2, 3...N) and used as P¢,,, in the following time step.

For a volumetric reservoir (no-flow boundarles) with explicit well produc-

tion rates, the pressure equation for block n=1, 2, 3...N is

3D A (IR

lewy, ley,
+(B$*CW”+BE*CW%)}pg” S [(Borms o, +Bi T 1, ) (2= 2)]
ley,
1 1 1
43 BT, (Pl =P, ) = (BA Cop, + B Cup, ),
ley,
(B’H]qaun Bﬁ:]q:'mc,,) (11.107)

Solving Eq. (11.107) for oil-phase pressure distribution may, in general,
require iterating on Bﬁ:’l, Bf;;l, Cop,» and C,,, to preserve material balance.
For 1-D flow problems, Eq. (11.107) represents a tridiagonal matrix equation.
In this case, the coefficients of the unknowns p;*' | p2*', and p/;*! in the equation
for block n correspond to w,, ¢,,, and e,,, respectively, and the RHS of the equa-
tion corresponds to d,, in Thomas’ algorithm presented in Section 9.2.1.

The water saturation for individual blocks in a volumetric reservoir is
obtained from Eq. (11.104) with explicit transmissibilities and capillary pres-
sures as

1
1 1 1
st =t o S [ =) = (P =P~ B2

ley,

*+iuse, = Cup, (pZ,,* ! —pZ,,) } (11.108)

The water saturation for block 7 is solved for explicitly using Eq. (11.108) inde-
pendent of the equations for other blocks. This new estimate of water saturation is
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used to update the capillary pressure for block #, Pﬁ;\},ﬂ:Pcow(Sﬁtl), and this
updated value will be used as Pr,,, in the calculations for the following time step.

11.4.5.2 SS method

The SS method, as the name implies, solves the water and oil equations simul-
taneously for the unknowns of the formulation. Although this method is well

suited to fully implicit formulation, we demonstrate its application for a volumet-
ric reservoir (no-flow boundaries, Z q ;[1 =0, and Z qfv;,l ~=0) using

e, leg,
explicit transmissibilities (7 and T, ), explicit well rates (¢5s, and G ),
and implicit capillary pressufes. The caplllary pressure terms (Pf:,’vlvl Pf’:,’viv
in the water equation (Eq. 11.104) are expressed in terms of water saturation.
In addition, the fluid gravities are treated explicitly.
Therefore, for block 7, the oil equation becomes

Som (v =pirt) — i, (2= 20)| +0+dly,
icv, (11.109)

=Cop, (" =25, )+ Con, (1" =53,

and the water equation becomes

Z TW[ n [(PZ,+1 PZ,T l) { fow, cow; (Sn+1 _Sn ) P:low,, P(omn (Sn+1 Sﬁ/,,)]
Il

_y:lvl,n (Zl - Z”)] +0+ qf\’ﬂ?n = CWI’n ( Z+ ! —PZ,,) + Can (S(};: T S’JV”) (1 1.1 10)

The terms in Eqgs. (11.109) and (11.110) are rearranged as follows:

3 [TZ, P (())va;rl} _ { [(Z " ”> +Cop,

n+l n+1
p() + Cown Sw,, }

ley, ley,

_ n o n n n n

- Z [TOI, L onn (ZZ - Z")] “osc, — COPnpm - CUWnSwn
ley,

(11.111)

for the oil equation, and

Z [T‘Z[ npz/+l T:lvln (0”15371} { [(ZT$1,71> +pr"‘|pzl;‘—l

ley,

n " n+1
J(sr ) ee]o)
ley,

= ZTvr\lq,n |:( cow; Pc(m,Sﬁq) (P:I()w - Pcuw,,Sﬁf,,) +}/fv1,,, (Zl - Z’7)1|

ley,

~Gse, = Cup,Po, = Con,Sy,
(11.112)
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for the water equation.

Eqgs. (11.111) and (11.112) are written for all blocks (n=1,2, 3...N), and the
2N equations are solved simultaneously for the 2N unknowns. For 1-D flow
problems, there are 2n, equations that form a bitridiagonal matrix equation:

[A]X=h (11.113a)
or
[ [e1] [ei] 1 )jl 21
[wa] [e2] [eo] X, b,
wi] [ei] el X, |=1| b
ot leant] leant] | [X0 | |50
] [wﬂx] [cn,\l - L Xn, L bn,\ i
(11.113b)
where
T, 0
wil={ " . (11.114)
WXl WXi_12" cowiy
Tﬂ ) 0
e]=| " (11.115)
WXivi2 | WXip12h COWis
CI - 1
- (Taxiil/z " Taw"" 12 " CWP") [(Ts’x"*l/Z + T:l"'xnl/Z)PCow,- - wai:|
(11.116)
_ n+1
Xi= [gZ’+1] (11.117)
Wi
and
T Vg Zict = Z0)+ To 76, (Ziet = Zi) = @5, = CopiPly, — Cowi Sy,
B 20T it~ 20~ Cop o ST,
b

i= ”n ;n
n n n n n
+wa,-,]/2 |:(Pcaw,-,| 7Pcaw,-) - (Pcow,vswi,l 7Pc0w,vsw,v>]

+T1’/1vx,+1/2 [( ?ow,url _Pf'owi) - (P(rowiﬂsgviﬂ _wa,'Sﬁ),>]}
(11.118)

fori=1, 2, 3...n,.
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The solution of the bitridiagonal matrix equation for 1-D flow problems is
obtained using the same steps as in Thomas’ algorithm, presented in
Section 9.2.1, with scalar mathematical operations being replaced with matrix
mathematical operations. Therefore, Thomas’ algorithm for solving bitridiago-
nal matrix equation becomes.

Forward solution

Set
[w] = [e1] '[ei] (11.119)
and
gi=la]d, (11.120)
Fori=2,3...n,—1,
[w] = [[ei] — (Wil [w;_1]] " [ey] (11.121)
and for i=2, 3...n,,
gi=[[ei] = [wil[wi 1] (di - [“ﬂ?i—l) (11.122)
Backward solution
Set
X, =gn, (11.123)

Fori=n,—1,n.—2,...,3,2,1,

Xi=gi— WX (11.124)

For a black-oil model, the resulting set of equations is a tritridiagonal matrix.
The algorithm presented in Egs. (11.119) through (11.124) can be used to obtain
the solution, but note that the submatrices are 3 x 3 and the subvectors have
dimensions of three.

11.5 Material balance checks

The incremental and cumulative material balance checks in multiphase flow are
carried out for each component in the system. For oil and water (p =0, w), each
component is contained within its phase; therefore,

N Vb” ¢Sp n+1 ¢Sp n
Z—AKB—) (%),

Iyp, = (11.125a)

N
n+1 n+1
D\ e+ D,
n=1

1€,

and



450 Petroleum reservoir simulation

N Vb,, QbS n+1 ¢S 0
S| (%) ()

Cup, =~ (11.126a)

1 N
m=1 n=1

leg,

For the gas component, both free-gas and solution-gas components must be

taken into consideration; therefore,
+ d)RSSO o _ ql)RsSa !
B, /, B, /,

N n+1 n

PS, ¢S

S |(5) (5.
(11.125b)

g

n+1 n+1 +1 n+1 n+l _n+1
{ [quvt qugsc, + Rgl,, quc',, + ZR.S/H qusc,n] }

e, leg,

and

GRS\ (#R,S,"
< BO )n _< BO )n

qasc,, + E : 1, anMI r1‘| }

leg,

¢Sg n+1 ¢Sg 0
n=1 (Bg)n _(B_g>n ’

n+1 N
S S
1

Cup, =

(11.126b)

11.6 Advancing solution in time

Pressure and phase saturation distributions in multiphase flow problems change
with time. This means that the flow problem has an unsteady-state solution. At
time #( =0, all reservoir unknowns must be specified. Initially, fluids in the res-
ervoir are in hydrodynamic equilibrium. Therefore, it is sufficient to specify the
pressure at water-oil contact (WOC) and at oil-gas contact (OGC), and the ini-
tial pressure and saturations of all three phases can be estimated from hydro-
static pressure considerations, oil-water and gas-oil capillary pressure
relationships, and phase saturations constraint equation. Details can be found
elsewhere (Ertekin et al., 2001). The procedure entails finding phase pressures
and saturations at discrete times (¢, 5, 3, t4, €tc.) by marching the solution in
time using time steps (Aty, At,, Ats, Aty, etc.). The pressure and saturations
solution is advanced from initial conditions at 7o =0 (time level n) to t; =ty + At;
(time level n+ 1). The solution then is advanced in time from ¢, (time level n) to
t, =1+ At (time level n+ 1), from ¢, to 13 =1, + At3, and from #; to t, =13+ Aty,
and the process is repeated as many times as necessary until the desired
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simulation time is reached. To obtain the pressure and saturations solution at
time level n+ 1, we assign the pressures and saturations just obtained as pres-
sures and saturations at time level n, write the flow equation for each component
in every block (node) in the discretized reservoir, and solve the resulting set of
linear equations for the set of unknowns. The calculation procedure within each
time step for a black-oil model follows:

1.

o

10.

Calculate the interblock phase transmissibilities and coefficients C,,,, C,,,
Cogs Cups Crns Crrgy Cop, Copy and Cy, and define the pressure and satu-
rations at the old time level and at the old iteration of the current time level
for all reservoir blocks. Note that the phase transmissibilities are calculated

at the upstream blocks and are not necessarily constant.

. Estimate the phase production rates (or write the phase production rate

equations) at time level n+1 for each wellblock in the reservoir, as
described in Section 11.4.2.

. Estimate the phase flow rates (or write the phase flow rate equations) at

time level n+1 for each fictitious well in the reservoir, that is, estimate
the phase flow rates resulting from boundary conditions, as described in
Section 11.4.3.

For every gridblock (or gridpoint) in the reservoir, define the set of existing
reservoir neighboring blocks (y,,) and the set of reservoir boundaries that
are block boundaries (£,), expand the summation terms in the flow equa-
tions, and substitute for phase production rates from wellblocks obtained in
(2) and phase flow rates from fictitious wells obtained in (3).

Linearize the terms in the flow equations, as outlined in Section 11.4.4.

. Factorize, order, and place the unknowns (at time level n+ 1) on the LHS,

and place known quantities on the RHS of each flow equation.
Solve the resulting set of equations for the set of pressure and saturation
unknowns (at time level n+ 1) using a linear equation solver.

. Check for convergence of the solution. Proceed to (9) if convergence is

achieved. Otherwise, update the interblock phase transmissibilities and
the coefficients mentioned in (1), define the pressure and saturations at
the latest iteration at the current time level for all reservoir blocks, and start
all over from (2).

. Estimate the wellblock production rates and fictitious well rates at

time level n+1 if necessary by substituting for the pressures and satu-
rations obtained in (7) into the phase flow rate equations obtained in
(2) and (3).

Perform incremental and cumulative material balance checks for all com-
ponents (o, w, g) using the equations presented in Section 11.5.

11.7 Summary

In petroleum reservoirs, oil, water, and gas may coexist and flow simulta-
neously. In multiphase reservoirs, the phase saturations add up to one, capillary
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pressures between phases exist, and phase relative permeability and phase
potential gradient among other things affect flow properties. Although volumet-
ric and viscosity properties of water and gas phases are not different from those
in single-phase flow, oil-phase properties are affected by both solution GOR
and whether the pressure is below or above the oil bubble-point pressure. Sim-
ulation of multiphase flow involves writing the flow equation for each compo-
nent in the system and solving all equations for the unknowns in the system. In
black-oil simulation, the components are the oil, water, and gas all at standard
conditions, and the flow model consists of one equation for each of the three
components, the saturation constraint, and the oil/water and gas/oil capillary
pressures. The model formulation dictates how the model equations are com-
bined to produce a reduced set of equations. It also implies the choice of primary
unknowns and secondary unknowns for the reservoir. The black-oil model for-
mulation discussed in this chapter is the p,—S,,— S, formulation, that is, the
formulation that uses p,, S, and S, as the primary unknowns for the reservoir
and p,,, p,, and S, as the secondary unknowns. The two-phase oil/water, oil/gas,
and gas/water flow models can be considered subsets of the black-oil model pre-
sented in this chapter. To solve the model equations, the accumulation terms
have to be expanded in a conservative way and expressed in terms of the
changes of the primary unknowns over the same time step, the well production
rate terms for each phase defined, and the fictitious well rate terms reflecting the
boundary conditions need to be defined. In addition, all nonlinear terms have to
be linearized. This process produces linearized flow equations, and the IMPES
or SS solution methods can be used to obtain the linearized flow equations. The
resulting set of linearized equations for all blocks can then be solved using any
linear equation solver to obtain the solution for one time step. An extension to
Thomas’ algorithm can be used to solve simultaneously the equations of multi-
phase, 1-D flow problems.

11.8 Exercises

11.1 Consider the 1-D reservoir shown in Fig. 11.9. The reservoir has no-
flow boundaries, gridblock 1 hosts a water injection well, and gridblock
4 hosts a production well. The reservoir contains oil and water only.
a. Name the four equations that constitute the flow model for this
Ieservoir.

b. Name the four unknowns for a gridblock in his reservoir.

c. Write the general flow equations for gridblock # in this reservoir.

d. Write the saturation constraint equation and capillary pressure rela-
tionship in this reservoir.

e. If you use the p,—S,, formulation, name the primary unknowns and
secondary unknowns for a gridblock in this reservoir.
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f. Write the flow equations for gridblock n using the p,—S,,
formulation.

g. Write the flow equations for gridblocks 1, 2, 3, and 4 using the p, —S,,
formulation.

Complete the following problems that are related to Exercise 11-1.

a. If you use the p,— S, formulation, name the primary unknowns and
secondary unknowns for a gridblock in this reservoir.

b. Derive the flow equations for gridblock n using the p,—S,
formulation.

c. Write the flow equations for gridblocks 1, 2, 3, and 4 using the p,— S,
formulation.

Consider the 1-D reservoir shown in Fig. 11.9. The reservoir has no-

flow boundaries, gridblock 1 hosts a gas injection well, and gridblock

4 hosts a production well. The reservoir contains oil and gas only.

a. Name the four equations that constitute the flow model for this
IeServoir.

b. Name the four unknowns for a gridblock in this reservoir.

c. Write the general flow equations for gridblock » in this reservoir.

d. Write the saturation constraint equation and capillary pressure rela-
tionship in this reservoir.

e. If you use the p, — S, formulation, name the primary unknowns and
secondary unknowns for a gridblock in this reservoir.

f. Write the flow equations for gridblock n using the p,—S,
formulation.

g. Write the flow equations for gridblocks 1,2, 3, and 4 using the p, — S,
formulation.

Complete the following problems that are related to Exercise 11-3.

a. If you use the p, — S, formulation, name the primary unknowns and
secondary unknowns for a gridblock in this reservoir.

b. Derive the flow equations for gridblock n using the p,—S,
formulation.

c. Write the flow equations for gridblocks 1, 2, 3, and 4 using the
po— S, formulation.

Consider the 1-D reservoir shown in Fig. 11.10. The reservoir has

no-flow boundaries and gridblock 3 hosts a production well. The reser-

voir contains gas and water only.

a. Name the four equations that constitute the flow model for this
reservoir.

b. Name the four unknowns for a gridblock in this reservoir.

c. Write the general flow equations for gridblock # in this reservoir.
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. Write the saturation constraint equation and capillary pressure

relationship in this reservoir.

. If you use the p, — S, formulation, name the primary unknowns and

secondary unknowns for a gridblock in this reservoir.
Write the flow equations for gridblock n using the p,—S,
formulation.

. Write the flow equations for gridblocks 1, 2, 3, and 4 using the

pg— S, formulation.

11.6 Complete the following problems that are related to Exercise 11-5.

a.

b.

If you use the p, — S,, formulation, name the primary unknowns and
secondary unknowns for a gridblock in this reservoir.

Derive the flow equations for gridblock n using the p,—S,,
formulation.

Write the flow equations for gridblocks 1, 2, 3, and 4 using the
pe— S, formulation.

11.7 Consider the 1-D reservoir shown in Fig. 11.9. The reservoir has no-
flow boundaries. Gridblock 1 hosts a water injection well, and gridblock
4 hosts a production well. The reservoir contains oil, gas, and water.

a.

b.
. Write the general flow equations for gridblock # in this reservoir.

c
d.

Name the six equations that constitute the flow model for this
IeServoir.
Name the six unknowns for a gridblock in this reservoir.

Write the saturation constraint equation and capillary pressure rela-
tionships in this reservoir.

. If you use the p, —S,, — S, formulation, name the primary unknowns

and secondary unknowns for a gridblock in this reservoir.
Write the flow equations for gridblock n using the p,—S,,—S,
formulation.

. Write the flow equations for gridblocks 1, 2, 3, and 4 using the

Po—Sw—S, formulation.

11.8 Complete the following problems that are related to Exercise 11.7.

a.

b.

If you use the p, — S,, — S, formulation, name the primary unknowns
and secondary unknowns for a gridblock in this reservoir.

Derive the flow equations for gridblock n using the p,—S,, —S,
formulation.

Write the flow equations for gridblocks 1, 2, 3, and 4 using the
Po—3S,,— S, formulation.

11.9 Complete the following problems that are related to Exercise 11.7.

a.

If you use the p, — S, — S, formulation, name the primary unknowns
and secondary unknowns for a gridblock in this reservoir.
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FIG. 11.15 Discretized 1-D reservoir for Exercises 11.11 and 11.12.

TABLE 11.5 Oil/water relative permeability data for Exercise 11.11.

Sw

0.130
0.191
0.250
0.294
0.357
0.414
0.490
0.557
0.630
0.673
0.719

0.789

K
0.000

0.0051
0.0102
0.0168
0.0275
0.0424
0.0665
0.0910
0.1148
0.1259
0.1381
0.1636

b. Derive the flow equations for gridblock n using the p,—S,—

formulation.

Krow

1.0000
0.9400
0.8300
0.7241
0.6206
0.5040
0.3170
0.2209
0.1455
0.0956
0.0576

0.0000

Peow (psi)
40
15
8.6
6.0
4.0
3.0
2.3
2.0
1.5
1.0
0.8
0.15
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c. Write the flow equations for gridblocks 1, 2, 3, and 4 using the
Po—S,— S, formulation.

11.10 Derive the IMPES equations for the 1-D oil/gas flow model by execut-
ing the following steps:
a. Date the transmissibilities, capillary pressures, phase gravities,

relative permeabilities, and phase properties in production rates at

old time level 7" in Egs. (11.50) and (11.51).

b. Expand the accumulation terms (the RHS of Egs. 11.50 and 11.51) in

n+1

terms of the (pj,

—ps) and (Sp+ —Sh).
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11.11

11.12

c. Substitute the results of the second step into the equations of the
first step.

d. Add the resulting oil equation from the third step multiplied by
(B, —R*'B;*") and the resulting gas equation from the third step
multiplied by Bg,” to obtain the pressure equation.

e. Solve for SZ,” using the resulting oil equation from the third step for
each block.

A 1-D horizontal, two-phase oil/water reservoir is described by three
equal gridblocks as shown in Fig. 11.15. The reservoir rock is incom-
pressible and has homogeneous and isotropic properties, k=270 md
and ¢ =0.27. Initially, the reservoir pressure is 1000 psia, and water sat-
uration is irreducible, §,, =0.13. gridblock dimensions are Ax=300 ft,
Ay=350 ft, and h=40 ft.

Reservoir fluids are incompressible with B,=B, =1 RB/STB,
uo,=3.0cP, B,,=B;,=1RB/STB, and u,,=1.0cP. Table 11.5 gives
the oil/water relative permeability and capillary pressure data. The res-
ervoir right boundary is sealed off to flow, and the reservoir left bound-
ary is kept at constant pressure of 1000 psia because of a strong water
aquifer. A 7-in vertical well at the center of gridblock 3 produces liquid
at arate of 100 STB/D. Using the IMPES solution method, find the pres-
sure and saturation distributions in the reservoir at 100 and 300days.
Take single time steps to advance the solution from one time to another.

Consider the reservoir data presented in Exercise 11.11. Using the SS
method, find the pressure and saturation distributions in the reservoir
at 100 and 300days. Take single time steps to advance the solution from
one time to another.
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A

Accumulation terms The right-hand side term of the flow equation. Every flow equation
consists of a flow term, plus a well term (source/sink) that equals the right side, accumu-
lation term. For water, for instance, see Fig. G.1.

Water:
Vi S
iy 5 Jak
AT AY g *: A (D Biw)
Flow term +Well term = Accumulation term

Fig. G.1 Accumulation term

Alternating-direction implicit procedure (ADIP) Originally suggested in petroleum engi-
neering applications in 1966 (Coats and Tarhune), this method solves the governing equa-
tion alternating between implicit and explicit modes.

Anisotropic permeability Because natural material is never homogenous or uniform, per-
meability varies significantly between the vertical and horizontal planes within a given
formation. This variation in permeability in different planes or directions is known as
anisotropic permeability.

Aphenomenal When a continuous logical train is not followed or first premise is false or
illogical. Such conclusion or process is inherently spurious, meaning has no meaning
or significance.

Areal discretization Any model has to be divided along space in order to find solutions that
apply to that elemental volume. In Cartesian coordinate, this corresponds to assigning Ax
and Ay to a particular grid. This process is called areal discretization.

B

Backward difference The accumulation term, in the finite difference flow equation, is back-
ward difference in time if the remaining terms in the flow equation are dated at new time .

Black-oil model When the simulation process considers oil, gas, and water as discrete
phases, disallowing any component exchange between phases.

Block-centered grid When grid properties are assigned to the center of a particular block
(see Fig. G.2).

n+nxny

n+ny n+ny

z
[ ] (] [ ] y [ ] [ J ° [ ] [ ] [ ]
n-1 n n+1 n-1 n n+1 X n-1 n n+1
—_— X
L”‘ ° °

(a) n—ny n—ny

Fig. G.2 Block-centered grid. (a) w,={(n—1),(n+ 1)}, (b) y,={(n—ny),(n—1),(n+1),(n+n,)},
and (¢) w,={(n—nny),(n—ny),(n—1),(n+1),(n+n,),(n+nn,)}.
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Block identification Numbering of grid blocks in order to assign them corresponding prop-
erties. There can be various ways of numbering the blocks, some yielding advantages over
others.

Boundary conditions Because nature is continuous, but a reservoir model is not, every
model has to have a specific values assigned to the boundary blocks, which may or
may not correspond to original values of the block. These properties are assigned by
the user of the model according to their expectation or knowledge of the prototype.

Block successive over relaxation (BSOR) It is an iterative technique for solving a set of
linear algebraic equation, for which an entire block of properties are assumed/estimated
simultaneously. See also, SOR.

C

Capillary pressure Capillary pressure (Pc) is the pressure difference across the interface
between two immiscible fluids. The difference occurs because of the discontinuity
between two fluids. The magnitude of capillary pressure depends on surface tension,
interfacial tension, pore size, size distribution, and fluid properties.

Cartesian grid Discretization of the model in the Cartesian coordinate system.

Central difference The accumulation term, in the finite difference flow equation, is central
difference in time if the remaining terms in the flow equation are dated at time (#*'/%)
halfway between old time (/") and new time (#*').

Compressible fluid In nature, everything is compressible, only variable being the amount of
compression caused by certain pressure. In petroleum engineering, often incompressibility
is assigned to fluid (such as water) by assigning a constant density (independent of pressure).
Others, for which a small but constant compressibility factors are assigned, these fluids being
called slightly compressible. Conventionally, slightly compressible fluid has a small but con-
stant compressibility (c) that usually ranges from 10> to 10~ psi~'. Gas-free oil, water, and
oil above bubble-point pressure are examples of slightly compressible fluids.

Conservation of mass Mass or energy cannot be created or destroyed, only transformed from
one phase to another. In modeling, it means total mass entering a system or a block must
equal total amount exiting plus (or minus) the amount retained (or extracted) in the block.

Constitutive equation The governing equation, along with boundary and initial conditions
that are necessary to have the number of equations the same as the number of unknowns.
For most reservoir simulators, the governing equation is the Darcey’s law.

Crank-Nicolson formulation This formation is central difference in time and central
difference in space.

D

Darcy’s law It connects pressure drop across a porous body with flow rate with permeability
of the porous medium as a proportionality constant. This is the most commonly used flow
equation in petroleum reservoir engineering. The original equation was developed in the
context of water flow through sand filters, but the law has been extended to include multi-
phase flow through multidimensional space.

E

Elementary volume The volume pertinent to the unit blocks or grids in a reservoir simulation
model. It is synonymous with control volume.

Engineering approach This approach eliminates the partial differential representation of
governing equations and use algebraic form of the governing equations directly.



Glossary 459

This approach thus simplifies the reservoir modeling process without compromising accu-
racy or speed of computation.

Equation of state It is the functional form that connects fluid density with pressure and tem-
perature. There are many equations of states, all of which are empirical but only a few are
practical. The complexity arises from the fact that each reservoir has unique set of reser-
voir fluid and the compositions are such that different coefficients for equation of state
should be used.

Explicit formulation When the governing equations are cast as an explicit function, for
which pressures of each block can be calculated directly. This is the slowest and the most
unstable solution scheme and is useless in the context of reservoir simulation.

F

Fictitious well This is a special technique for representing boundary conditions in the
engineering approach. It involves replacing the boundary condition with a no-flow bound-
ary plus a fictitious well having flow rate, which reflects fluid transfer between the
gridpoint that is exterior to the reservoir and the reservoir boundary itself or the boundary
gridpoint.

Flowing bottom-hole pressure (FBHP) The pressure measured in a well at or near the depth
of the producing formation during production.

Formation volume factor (FVF) This is the ratio of the volume of a fluid under reservoir
conditions to the volume at standard conditions. The ratio depends of the type of fluid
and reservoir conditions (both pressure and temperature). For instance, for most oils,
the FVF values are greater than 1.0. It means for water, this value is closer to 1.0, and
for gas, it is only a fraction of 1.0, meaning gas would occupy much greater space under
standard pressure and temperature conditions. It is the case because natural gas is highly
compressible.

Forward difference The accumulation term, in the finite difference flow equation, is for-
ward difference in time if the remaining terms in the flow equation are dated at old time

().
G

Gas cap In oil reservoirs, where reservoir pressure is below the bubble point, natural gas
escapes to be trapped by the caprock. The collection of this gas within the caprock is
called gas cap.

Gas/oil contact (GOC) The bounding between a top gas layer and underlying oil layer within
a petroleum formation. Such boundary exists because oil and gas are not miscible.

H

Heterogeneous Although Darcy’s law and all other governing equations of mass and energy
transport assume homogeneity, in reality, nature is inherently heterogeneous. In reservoir
simulation, heterogeneity is recognized in the severe changes in permeability in space.
Also, anisotropy can render a porous medium heterogeneous.

History matching The process involving the adjustment of reservoir rock/fluid parameters in
order to match real production data and pressure of the reservoir. Because even best of
models only have limited data available and the rest of the data have to be assumed/inter-
polated, the process of history matching is commonly used. However, history matching
doesn’t assure accuracy in predicting future performance. It is because different sets of
properties would yield the same result, meaning the real properties remain elusive despite
good history match.
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I

Implicit formulation In this formulation, the algebraic equations are expressed in terms of
pressure and saturation values, both sides of equations being at a future time. This system
is inherently nonlinear, and linearization must be applied prior to solving the set of
governing equations and constitutive relationships. Implicit formulation is uncondition-
ally stable.

Implicit pressure and explicit saturation (IMPES) method In this formulation, the pres-
sure terms are implicit, whereas saturation terms are explicit. It is easier to solve in this
method. However, except for a narrow range of parameters and/or very small time steps,
this method is unstable.

Incompressible fluid When the fluid density can be assumed to be constant or independent
of pressure and temperature of confinement. For all practical purposes, only water and oil
under certain conditions can be assumed to be incompressible.

Inflow performance relationship (IPR) It is the fluid flow as a function of flowing bottom-
hole pressure. The shape of the curve is determined by the quality of the reservoir. This
curve is also used to determine at what stage pressure maintenance and other operations
should take place to improve the production capability of the reservoir. Typically, the
intersection between tubing performance versus production rate curve and the IPR marks
the optimal operating conditions (Fig. G.3).

Inflow performance
relationship (IPR)

Tubing performance curve

pressure (psi)

—— Operating point

Bottomhole flowing

Production rate (MMscf/D)
Fig. G.3 IPR and optimum operating conditions.

Initial conditions All values pressure and saturation prevailing at each grid block at the
beginning of the reservoir simulation. Initial conditions are necessary for startup of a sim-
ulation procedure.

L

Line successive overrelaxation (LSOR) method See also BSOR. In this iterative technique,
equations of each line are approximated and integrated.

Linearization Because all algebraic equations are nonlinear in every method other than
explicit (which is practically irrelevant for its lack of stability in solving reservoir simu-
lation equations), the algebraic equations have to be rendered linear prior to any attempt to
solve them. This process is called linearization. Linearization is also necessary because of
the boundary conditions and the presence of wells in a reservoir.
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M

Mass accumulation term See accumulation term.

Mass balance Mass balance is a scientific way to verify if a given solution is not spurious.
The process involves adding up total mass accumulated in each block and see there is an
overall mass balance holds. If not, the iteration process has to restart for the given time
step.

Mathematical approach This is the conventional method that uses partial differential equa-
tions, then discretizes using Taylor series approximations and finally derives the algebraic
equations, to be solved with a numerical solver.

Mobility An expression containing permeability over viscosity. Typically, it represents ease
of flow through a porous medium for a particular fluid.

Multiblock wells When a well penetrates more than one block in the reservoir simulator.

Multiphase flow Whenever more than one mobile phase exists. The most common scenario
is the follow of three phases, namely, oil, water, and gas. Water is innate to petroleum
reservoirs, whereas gas and oil are constantly separating from each other depending on
the operating pressure.

N

Newton’s iteration A linearization technique, in which the slope is taken in order to approx-
imate the solution to a nonlinear equation.

No-flow boundaries This the assumption of a boundary through which no flow occurs. This
is equivalent to perfect seal. Although it is absurd in nature, it is a good approximation for
certain types of reservoirs.

P

Permeability It is the capacity of the rock to transmit fluid through it. It is assumed to be a
constant and a strict property of the rock. Its dimension is L%,

Point successive overrelaxation (PSOR) method It is the SOR method for which iterations
are performed for each point. See SOR.

Pore volume Bulk volume multiplied by porosity. It represents void space of porous media.

Porosity Fraction of void volume over bulk volume of a porous medium.

R

Representative elemental volume (REV) This is the minimum sample volume for which the
sample properties become insensitive to the sample size.

Reservoir characterization Detailed assignment of relevant rock and fluid properties and
reservoir conditions for each blocked considered in a reservoir model. Conventionally,
this is performed after numerous reservoir simulation runs in order to fine tune reservoir
data to match the modeling data with the real history of the reservoir.

Residual oil saturation the saturation of oil that cannot be removed with any more water-
flooding. This saturation is dictated by the oil/water interfacial tension and reservoir
properties.

S

Sandface pressure This pertains to physical interface between the formation and the well-
bore. This is the location where there is a discontinuity between porous medium flow and
open flow in the production tubing, where Darcy’s law ceases to apply. Pressure at this
point is called sandface pressure.
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Stability In a stable process, the errors subside and diminish with more number of interac-
tions. Stability is measured by the outcome where a unique solution emerges.

Steady state When all parameters become insensitive to time.

Successive over relaxation (SOR) method It is an iterative technique for solving a set of
linear algebraic equation. It starts off with an assumed value and then multiplies the
new value with a factor to accelerate the convergence.

T

Transmissibility This is the product of formation rock and fluid properties. It expresses
flow rate between two points per one psi pressure drop. It combines rock (k), fluid prop-
erties (4, i), and blocks dimensions (Ax, Ay, Az or Ar, Af, Az). For multiphase flow, it
uses effective permeability to each phase and viscosity and formation volume factor of
that corresponding phase.

U

Unsteady state When the flow parameters continue to change with time. A natural system is
inherently dynamic, hence, in unsteady state.

\\%

Water/oil contact (WOC) This is the borderline between predominantly oil phase and
water in the aquifer. Similar to gas-oil contact, WOC emerges because oil and water
not miscible. In a porous medium, the WOC is not uniform and depends on the rock
and fluid characteristics.
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User’s manual for single-phase
simulator

A.1 Introduction

This manual provides information on data file preparation and a description of
the variables used in preparing a data file, and it gives instructions for running
the reservoir simulator on a PC. The simulator models the flow of single-phase
fluid in reservoirs. Model description (flow equations and boundary conditions)
for incompressible, slightly compressible, and compressible fluids; well oper-
ating conditions; and methods of solving the algebraic equations of the model is
described in detail in the previous chapters of this book and by Ertekin et al.
(2001). The simulator (written in FORTRAN) was developed to provide
solutions to single-phase flow problems in undergraduate courses in reservoir
simulation. The simulator can be used to model irregular rectangular reservoirs
and single well in r-z radial-cylindrical coordinates using either a block-
centered grid or a point-distributed grid. The purpose of presenting this
simulator as part of this book is to provide the user with intermediate and final
results so the user’s solution for any given problem can be checked and any
errors can be identified and corrected. Educators may use the simulator to make
up new problems and obtain their solutions.

A.2 Data file preparation

The data required for the present simulator are classified into groups based on
how the data within each group are related. A group of data could be as simple
as defining a few related variables or as complicated as defining the variables
for the well recursive data. These groups of data are classified, according to
their format of input procedure, into five categories (A, B, C, D, and E).
Categories A and B include 17 and 6 groups of data, respectively, whereas
categories C, D, and E include one group of data each. The data of each cat-
egory are entered using a specific format procedure; for example, category A
uses format procedure A and category B uses format procedure B. Each group

463



464 Appendix A

of data carries an identification name consisting of the word “DATA” fol-
lowed by a number and an alphabet character; the number identifies the group
and the alphabet character identifies the category and the format procedure.
For example, DATA 04B identifies a group of data that belongs to category
B that uses format procedure B and whose variables are defined under DATA
04B in Section A.3. Data file preparation, including format procedures and
description of variables, follows the work of Abou-Kassem et al. (1996) for
black-oil simulation. The folder available at www.emertec.ca contains four
examples of data files prepared for the problems presented in Example 7.1
(ex7-1.txt), Example 7.7 (ex7-7.txt), Example 7.12 (ex7-12.txt), and Example
5.5 (ex5-5.txt).

Each format procedure is introduced by a title line (line 1), which
includes the identification name and the group of data to be entered, fol-
lowed by a parameter sequence line (line 2), which lists the order of param-
eters to be entered by the user. Only format procedure D has an additional
parameter sequence line (line 3). The user, in each subsequent data line,
enters the values of the parameters ordered and preferably aligned with
the parameters shown in the parameter sequence line for easy recognition.
Both format procedures B and E require a single-line data entry, whereas
format procedures A, C, and D require multiple-line data entry and terminate
with a line of zero entries for all parameters. The various groups of data
and any specific instructions for each format procedure are presented in
the following sections.

A.2.1 Format procedure A

This format procedure is suitable for entering data that describe the distribu-
tion of a grid block property over the whole reservoir. Such data include
block size and permeability in the x-, y-, and z-directions; depth; porosity;
modifiers for porosity, depth, bulk volume, and transmissibilities in the x-,
y-, and z-directions; boundary conditions; and block identifiers that label a
grid block as being active or inactive.

Each line of data (e.g., line 3) represents a property assignment for an arbi-
trary reservoir region having the shape of a prism with I1, 12; J1, J2; and K1, K2
being its lower and upper limits in the x-, y-, and z-directions. The data entered
by each subsequent line (e.g., line 4) are superimposed on top of the data entered
by all earlier lines; that is, the final distribution of a property is the result of the
superposition of the entire arbitrary reservoir regions specified by all lines of
data. This option is activated by setting the option identifier at the beginning
of the parameter sequence line (line 2) to 1. DATA 25A has no option identifier,
but it implicitly assumes a value of 1. This is a powerful method for entering data
if a block property is distributed into well-defined (not necessarily regular)
reservoir regions. For a homogeneous property distribution, only one line of
dataisneeded (with I1 =J1=K1=1,12=n,, J2=n,, and K2 =n.). If; however,
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a block property is so heterogeneous that it varies from block to block and
regional property distribution is minimal, this method loses its effectiveness.
In such cases, the option identifier at the beginning of the parameter sequence
line (line 2) is set to 0, and the data for all blocks are entered sequentially in a
way similar to natural ordering of blocks along rows (i.e., i is incremented first,
j is incremented second, and & is incremented last). In this case, both active and
inactive blocks are assigned property values, and the terminating line of zero
entries is omitted.

A.2.2 Format procedure B

This format procedure is suitable for entering data involving a combination of
integer and/or real variables. Groups of data of this type include options for the
method of solution, block ordering scheme, and units of input and output; con-
trol integers for printing options and number of grid blocks in the x-, y-, and
z-directions; fluid density; fluid and porosity compressibilities and reference
pressure for porosity; and simulation time. Note that the values of the param-
eters are entered in line 3. They are ordered and aligned with the parameters
shown in the parameter sequence line (line 2) for easy recognition.

A.2.3 Format procedure C

This format procedure is suitable for entering a PVT property table for a natural
gas. The parameter sequence line (line 2) lists pressure as the independent var-
iable followed gas FVF and gas viscosity as the dependent variables. It is impor-
tant to note that the range of pressure in the PVT table must cover the range of
pressure changes expected to take place in the reservoir and that the pressure
entries in the table must have equal pressure intervals. Each line of data rep-
resents one entry in the table of data that corresponds to a specified value of
the independent variable. The data in the table are entered in order of increasing
value of the independent variable (pressure). Note that entries in each line of
data (e.g., line 3) are ordered and aligned with the parameters specified on
the parameter sequence line (line 2) for easy recognition.

A.2.4 Format procedure D

This format procedure is suitable for entering well recursive data. As mentioned
earlier, this format procedure has two parameter sequence lines. The parameters
in the first parameter sequence line (line 2) include a time specification that sig-
nals a new user’s request (SIMNEW), an override time step to be used (DELT),
the number of wells changing operating conditions (NOW), the minimum flow-
ing bottom-hole pressure for producing wells (PWFMIN), and the maximum
bottom-hole pressure for injection wells (PWFMAX). This line of data can
be repeated, but each subsequent line must have a time specification larger than
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the last time specification. The parameters in the second parameter sequence
line (line 3) include data for individual wells such as the well identification
number (IDW), wellblock coordinates (IW, JW, and KW), the well type and
well operating condition (IWOPC), the wellblock geometric factor (GWI), a
specified value of condition (SPVALUE), and the well radius (RADW). There
must exist NOW lines describing NOW individual wells immediately following
the line where NOW specification appears if NOW > 0. Using this format pro-
cedure, any number of wells can be introduced, shut-in, reopened, recompleted,
etc., at any number of key times.

A.2.5 Format procedure E

This format procedure is used to enter one line of information, such as the name
of the user and the title of the computer run, consisting of up to 80 alphanumeric
characters.

A.3 Description of variables used in preparing a data file

There are 26 data groups in the data file. The descriptions of the variables within
each data group are given under the data group itself. Follows is a list of all 26
data groups, starting with DATA 01E and ending with DATA 26D:

DATA 01E  Title of Simulation Run
TITLE Name of user and title of simulation run (one line having
up to 80 alphanumeric characters)

Note

For identification purposes, the name of user and title of simulation run appear
immediately after acknowledgement in all four output files.

DATA 02B Simulation Time Data

IPRDAT Option for printing and debugging input data file
=0, do neither print nor debug input data file
=1, print input data file and activate messages to debug data file

TMTOTAL Maximum simulation time, D [d]
TMSTOP Time to stop this simulation run, D [d]
DATA 03B Units

MUNITS Option for units of input data and output

=1, customary units
=2, SPE preferred metric units
=3, laboratory units
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DATA 04B Control Integers for Printing Desired Output (1, print; 0,
do not print)
BORD Block order
MLR Left and right half width
BASIC Basic intermediate results used in simulation
QBC Results and intermediate results related to boundary conditions
EQS Block equations and details of solution method
PITER Block pressure every outer iteration
ITRSOL Detailed results related to method of solving linear equations and
block pressure every inner iteration for iterative methods
Note

The results of simulation appear in four separate files. Description of reservoir and
results related to PITER, QBC, reservoir production rates, and material balance
checks appear in MY-OUT1.LIS. Those related to BORD, MLR, BASIC, QBC,
EQS, PITER, and ITRSOL appear in MY-OUT2.LIS. Tabulation of reservoir pressure
as a function of time appears in MY-OUT3.LIS. Tabulation of reservoir and well
performances appear in MY-OUT4.LIS.

DATA 05B  Reservoir Discretization and Method of Solving Equations
IGRDSYS Type of grid system used in reservoir discretization.

=1, block-centered grid

=2, point-distributed (or node) grid

NX Number of gridblocks (or gridpoints) in the x-direction (or the r-direction if
NY=0)

NY Number of gridblocks (or gridpoints) in the y-direction. For single-well
simulation, set NY=0

NZ Number of gridblocks (or gridpoints) in the z-direction

RW Well radius for single-well simulation, ft [m]

RE External radius of reservoir for single-well simulation, ft [m]

NONLNR Linearization of nonlinear terms. The options that apply to the mathematical
approach (MA) or engineering approach (EA) are as indicated in the
succeeding text.

=1, explicit treatment of transmissibility and production term (MA) (x)

=2, simple iteration on transmissibility and production term (MA) (x)

=3, explicit treatment of transmissibility and coefficient of pressure drop in
production term (EA)

=4, simple iteration on transmissibility and coefficient of pressure drop in
production term (EA)

=5, Newton’s iteration (MA and EA)

LEQSM Method of solving linear equations

=1, Thomas’ algorithm for 1-D flow problems

=2, Tang's algorithm for 1-D flow problems where blocks form a ring (x)
=3, Jacobi iterative method for 1-D, 2-D, and 3-D flow problems

=4, Gauss-Seidel iterative method for 1-D, 2-D, and 3-D flow problems
=5, PSOR iterative method for 1-D, 2-D, and 3-D flow problems

Continued
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DATA 05B  Reservoir Discretization and Method of Solving Equations

=6, LSOR iterative method for 2-D and 3-D flow problems
=7, BSOR iterative method for 3-D flow problems (x)
=8, g-band using natural ordering for 1-D, 2-D, and 3-D flow problems
TOLERSP User’s specified value for maximum absolute relative deviation between two
successive outer iterations. A value of 0.001 is recommended
DXTOLSP  User’s specified value for maximum absolute pressure deviation between two
successive inner iterations. A value of 0.0001 psi is recommended

Notes

1. TOLERSP and DXTOLSP are convergence tolerances. Compressible flow prob-
lems use TOLERSP. Iterative linear equation solvers use DXTOLSP. The correct
solution to a simulation problem is obtained using the recommended

tolerances.

2. If stricter convergence tolerances are specified, the program uses the recom-
mended tolerances to save on iterations. Stricter tolerances do not improve
the pressure solution but rather increase iterations. Relaxed tolerances, how-
ever, influence the solution and may result in unacceptable material balance

errors.

3. Options marked with (x) are not active in this version

DATA 06A to Reservoir Description and Initial Pressure Distribution
DATA 21A
11, 12 Lower and upper limits in the x-direction of a parallelepiped region or
the r-direction of a reservoir region in single-well simulation
J1, )2 Lower and upper limits in the y-direction of a parallelepiped region; for
single-well simulation, set J1=)2=1
K1, K2 Lower and upper limits in the z-direction of a parallelepiped region or a
reservoir region in single-well simulation
IACTIVE Block indicator for active and inactive blocks
=0, inactive gridblock or gridpoint
=—1, inactive gridblock or gridpoint to identify constant pressure
block
=1, active gridblock or gridpoint
DX Block size in the x-direction for block-centered grid (or gridpoint
spacing in the x-direction for point-distributed grid), ft [m]
DY Block size in the y-direction for block-centered grid (or gridpoint
spacing in the y-direction for point-distributed grid), ft [m]
DZ Block size in the z-direction for block-centered grid (or gridpoint
spacing in the z-direction for point-distributed grid), ft [m]
KX Block permeability in the x- or r-direction, md [um?]
KY Block permeability in the y-direction if NY >0, md [pm?]
Kz Block permeability in the z-direction, md [um?]

Continued
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DATA 06A to Reservoir Description and Initial Pressure Distribution
DATA 21A
DEPTH Elevation of top of gridblock for block-centered grid (or elevation of

gridpoint for point-distributed grid) below selected datum, ft [m]

PHI Block porosity, fraction

P Block pressure, psia [kPa]

RATIO Property modifier, dimensionless
=0.0, property is not modified
>0.0, property is increased by that ratio
<0.0, property is decreased by that ratio

Notes

1. A number of gridblocks (or gridpoints) that are part of the reservoir are deacti-
vated on purpose to simulate a specified gridblock (or gridpoint) pressure.

2. DX, DY, and DZ are supplied for all gridblocks (or gridpoints) whether active or
inactive.

3. Ratio is the desired fractional change of a property value entered by the user or
internally calculated by the simulator. Modifiers can be applied to the block
porosity, block elevation, block bulk volume, and transmissibilities in the x-,
y-, and z-directions.

4. For a point-distributed grid, define the gridpoint spacing in a given direction
(DX in i-direction, DY in j-direction, and DZ in k-direction) by setting the upper
limit of a parallelepiped region in that direction only equal to the coordinate of
the upper limit gridpoint in the same direction minus one

DATA 22B  Rock Data and Fluid Density
CPHI Porosity compressibility, psi~' [kPa™']
PREF Reference pressure at which porosities are reported, psia [kPa]
RHOSC Fluid density at reference pressure and reservoir temperature, lbm/ft> [kg/m?]
DATA 23B  Type of Fluid in the Reservoir
LCOMP Type of fluid indicator

=1, incompressible fluid

=2, slightly compressible fluid

=3, compressible fluid (natural gas)
IQUAD Interpolation within gas property table

=1, linear interpolation

=2, quadratic interpolation
DATA 24B  Fluid Properties for LCOMP =1 (Incompressible Fluid)
FVF Formation volume factor at reservoir temperature, RB/STB
MU Fluid viscosity, cP [mPa.s]

Continued
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DATA 24B  Fluid Properties for LCOMP =2 (Slightly Compressible Fluid)
FVFO Formation volume factor at reference pressure and reservoir temperature, RB/
STB
MU0 Fluid viscosity at reference pressure and reservoir temperature, cP [mPa.s]
CO Fluid compressibility, psi~—' [kPa™']
CMU Rate of relative change of viscosity with respect to pressure, psi ' [kPa™']
PREF Reference pressure at which FVFO and MUO are reported, psia [kPa]
MBCONST  Handling of liquid FVF and liquid viscosity in transmissibility terms
=1, constant values independent of pressure
=2, values that depend on pressure
DATA 24C  Fluid Properties for LCOMP =3 (Natural Gas)
PRES Pressure, psia [kPal
FVF Gas formation volume factor, RB/scf [m>/std m?]
MU Gas viscosity, cP [mPa.s]
Note

Gas FVF and viscosity are supplied in a table form. The pressure is entered in
increasing order using equal intervals.

DATA 25A

Boundary Conditions

11,12

n, )2

K1, K2

IFACE

ITYPBC

SPVALUE
ZELBC

Lower and upper limits in the x-direction of a parallelepiped region or the
r-direction of a reservoir region in single-well simulation

Lower and upper limits in the y-direction of a parallelepiped region; for single-
well simulation, set J1=)2=1

Lower and upper limits in the z-direction of a parallelepiped region or a
reservoir region in single-well simulation

Block boundary subject to boundary condition

=1, block boundary in the negative direction of z-axis

=2, block boundary in the negative direction of y-axis

=3, block boundary in the negative direction of x-axis or r-direction

=5, block boundary in the positive direction of x-axis or r-direction

=6, block boundary in the positive direction of y-axis

=7, block boundary in the positive direction of z-axis

Type of boundary condition

=1, specified pressure gradient at reservoir boundary, psi/ft [kPa/m]

=2, specified flow rate across reservoir boundary, STB/D or scf/D [std m3/d]

=3, no-flow boundary

=4, specified pressure at reservoir boundary, psia [kPa]

=5, specified pressure of the block on the other side of reservoir boundary, psia
[kPa]

Specified value of boundary condition

Elevation of center of boundary surface for block-centered grid (or elevation of
boundary node for point-distributed grid) below selected datum, ft [m]

Continued
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DATA 25A  Boundary Conditions
RATIO Property modifier for area open to flow or geometric factor between reservoir
boundary and boundary gridblock (or gridpoint), dimensionless
=0.0, property is not modified
>0.0, property is increased by that ratio
<0.0, property is decreased by that ratio
Notes

1. All reservoir boundaries are assigned a no-flow boundary condition as a
default. Therefore, there is no need to specify no-flow boundaries.

2. For ITYPBC=5, ZELBC is the elevation of the point (node) that represents the
block whose pressure is specified.

3. DATA 25A has no option identifier at the beginning of the parameter sequence
line (line 2).

4. For single-well simulation using point-distributed grid, a specified FBHP must
be simulated as a specified pressure boundary condition

DATA 26D  Well Recursive Data
NOW Number of wells that will change operational conditions
=0, no change in well operations
>0, number of wells that change operational conditions
SIMNEW Time specification signaling user’s new request, D [d]; well data entered here
will be active starting from previous time specification until this time
specification and beyond
DELT Time step to be used, D [d]
PWFMIN Minimum BHP allowed for production well, psia [kPa]
PWFMAX Maximum BHP allowed for injection well, psia [kPa]
IDW Well identification number; each well must have a unique IDW
=1,2,3,4...
W, JW, (i, j, k) location of wellblock
KW
IWOPC Well operating condition
IWOPC for production well
=—1, specified pressure gradient at well radius, psi/ft [kPa/m]
=-2, specified production rate, STB/D or scf/D [std m*/d]
=—3, shut-in well
=—4, specified bottom-hole pressure, psia [kPa]
IWOPC for injection well
=1, specified pressure gradient at well radius, psi/ft [kPa/m]
=2, specified injection rate, STB/D or scf/D [std m>/d]
=3, shut-in well
=4, specified bottom-hole pressure, psia [kPa]
GWI Wellblock i geometric factor, RB-cP/D-psi [m*.mPa.s/(d.kPa)]
SPVALUE Specified value of the operating condition
RADW Well radius, ft [m]
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Notes

1. The NOW line can be repeated for different times, but each subsequent line
must have a time specification larger than the previous time specification.

2. The NOW line can be used to specify new values for DELT, PWFMIN, or
PWFMAX at desired times during simulation.

3. The specified value of PWFMIN and PWFMAX must be within the range of the
pressure specified in the PVT table. For realistic simulation of slightly com-
pressible and compressible fluids, these two parameters need to be specified.
However, setting PWFMIN < —10°% and PWFMAX >10° deactivates the func-
tion of these two parameters.

4. This data group terminates with a line of zero entries.

5. Each IWD line enters specifications for one well. This line must be repeated
NOW times if NOW > 0.

6. Both IWOPC and the specified rate are positive for injection well, and both are
negative for production well.

7. For single-well simulation using point-distributed grid, a specified FBHP must
be simulated as a specified pressure boundary condition.

8. RADW is specified here to handle options IWOPC=1 or —1

A.4 Instructions to run simulator

The user of the simulator is provided with a copy of a reference data file (e.g.,
REF-DATA.TXT) similar to the one presented in Section A.6. The user first
copies this file into a personal data file (e.g., MY-DATA.TXT) and then follows
the instructions in Section A.2 and observes the variable definitions given in
Section A.3 to modify the personal data file such that it describes the con-
structed model of the reservoir under study. The simulator can be run by click-
ing on the compiled version (SinglePhaseSim.exe). The computer responds
with the following statement requesting file names (with file type) of one input
and four output files:

ENTER NAMES OF INPUT AND OUTPUT FILES
‘DATA.TXT” “OUTL.LIS” *OUT2.LIS” “QUT3.LIS” ‘QUT4.LIS’

The user responds using the names of five files, each enclosed within single
quotes separated by a blank space or a comma as follows and then hits the
“Return” key.

‘MY-DATA.TXT’, “MY-OUTL.LIS", “MY-0UT2.LIS", *“MY-QUT3.LIS", ‘MY~
OUT4.LIS’

The computer program continues execution until completion.
Each of the four output files contains specific information. ‘MY-OUT1.LIS’
contains debugging information of the input data file if requested and a
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summary of the input data, block pressure, production and injection data includ-
ing rates and cumulatives, rates of fluid across reservoir boundaries, and mate-
rial balance checks for all time steps. ‘MY-OUT2.LIS’ reports intermediate
results, equations for all blocks, and details specific to the linear equation solver
every iteration in every time step. ‘MY-OUT3.LIS’ contains concise reporting
in tabular form of block pressures at various times. ‘MY-OUT4.LIS’ contains
concise reporting in tabular form of reservoir performance as well as individual
well performances.

A.5 Limitations imposed on the compiled version

The compiled version of SinglePhaseSim is provided here for demonstration
and student training purposes. The critical variables were therefore restricted
to the dimensions given next.

Number of gridblocks (or gridpoints) in x- or r-direction <20
Number of gridblocks (or gridpoints) in y-direction <20

Number of gridblocks (or gridpoints) in z-direction <10

Number of entries in PVT table <30

Number of wells=1 well/block

Unrestricted number of times, wells change operational conditions
Maximum number of time steps = 1000 (precautionary measure)

Nonhkwh=

A.6 Example of a prepared data file
The following data file was prepared as a benchmark test problem:

'"*DATA Q1E* Title of Simulation Run'

"TITLE'

J.H. Abou-Kassem. Input data file for Example 7.1 in Chap. 7.
'"*DATA 02B* Simulation Time Data'

"IPRDAT TMTOTAL TMSTOP'

1 360 10
'*DATA 03B* Units'
"MUNITS"'

1

'*DATA 04B* Control Integers for Printing Desired Output'
'BORD MLR BASIC QBC EQS PITER ITRSOL'

1 1 1 1 1 1 1
'"*DATA 05B* Reservoir Discretization and Method of Solving
Equations'
"IGRDSYS NX NY NZ RW RE NONLNR LEQSM TOLERSP DXTOLSP'
1 4 1 1 0.25 526.604 4 8 0.0 0.0

"*DATA 06A* RESERVOIR REGION WITH ACTIVE OR INACTIVE BLOCK
IACTIVE'
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1,'11 12 J1l J2 K1 K2 IACTIVE"
1 4 1 1 1 1 1
0 0 0 0 0 0 0
"*DATA  07A* RESERVOIR REGION HAVING BLOCK SIZE DX
X-DIRECTION'
1,'11 I2 Jl J2 K1 K2 DX (FT)"
1 4 1 1 1 1 300
0 0 0 0 0 0 0.0
"*DATA  08A* RESERVOIR REGION HAVING BLOCK SIZE DY
Y-DIRECTION'
0,'I1 I2 J1l J2 K1 K2 DY (FT)'
350 350 350 350
"*DATA  09A* RESERVOIR REGION HAVING BLOCK SIZE DZ
Z-DIRECTION'
0,'I1 I2 J1 Jz K1 K2 DZ (FT)'
4%40
"*DATA 10A* RESERVOIR REGION HAVING PERMEABILITY KX
X-DIRECTION'
1,'I1 I2 J1 Jz K1 K2 KX (MD)'
1 4 11 11 270
0 0 0 0 0 0 0.0
"*DATA 11A* RESERVOIR REGION HAVING PERMEABILITY KY
Y-DIRECTION'
1,'I1 I2 J1 Jz2 K1 K2 KY (MD)'
1 4 1 1 1 1 0
0 0 0 0 0 0 0.0
"*DATA 12A* RESERVOIR REGION HAVING PERMEABILITY KZ
Z-DIRECTION'
1,'I1 I2 J1 Jz2 K1 K2 KZ (MD)'
1 4 1 1 1 1 0
0 0 0 0 0 0 0.0
"*DATA 13A* RESERVOIR REGION HAVING ELEVATION Z'
1,'11 I2 Jl J2 K1 K2 DEPTH (FT)'
1 4 1 1 11 0.0
0 0 0 0 0 0 0.0
"*DATA 14A* RESERVOIR REGION HAVING POROSITY PHI'
1,'I1 I2 J1 Jz K1 K2 PHI (FRACTION)'
1 4 1 1 1 1 0.27
0 0 0 0 0 0 0.0
"*DATA 15A* RESERVOIR REGION HAVING INITIAL PRESSURE P’
1,'I1 I2 J1 Je2 K1 K2 P (PSIA)'
1 4 11 1 1 0
0 0 0 0 0 0 0.0
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"*DATA 16A* RESERVOIR REGION WITH BLOCK POROSITY MODIFICATION

RATIO'
1,'11 I2 J1 Jz K1 K2 RATIO'
0 0 0 0 0 0 0.0
"*DATA 17A* RESERVOIR REGION WITH BLOCK ELEVATION MODIFICATION
RATIO'
1,'11 12 J1 J2 K1 K2 RATIO'
1 4 1 1 1 1 0.0
0 0 0 0 0 0 0.0
"*DATA 18A* RESERVOIR REGION WITH BLOCK VOLUME MODIFICATION
RATIO'
1,'11 12 J1 J2 K1 K2 RATIO'
1 4 1 1 1 1 0.0
0 0 0 0 0 0 0.0

"*DATA 19A* RESERVOIR REGION WITH X-TRANSMISSIBILITY MODIFICATION
RATIO'
1,'I1 12 J1 Je K1 K2 RATIO'
1 4 1 1 1 1 0.0
0 0 0 0 0 0 0.0
"*DATA 20A* RESERVOIR REGION WITH Y-TRANSMISSIBILITY MODIFICATION
RATIO'
1,'I1 12 J1 Je K1 K2 RATIO'
1 4 1 1 1 1 0.0
0 0 0 0 0 0 0.0
"*DATA 21A* RESERVOIR REGION WITH Z-TRANSMISSIBILITY MODIFICATION
RATIO'
1,'I11 12 J1 Je K1 K2 RATIO'
1 4 1 1 1 1 0.0
0 0 0 0 0 0 0.0
'"*DATA 22B* Rock and Fluid Density'
'CPHI PREF RHOSC'
0.0 14.7 50.0
"*DATA 23B* Type of Fluid in the Reservoir'
'LCOMP IQUAD'
1 1
"*DATA 24B* FOR LCOMP= 1 AND 2 OR *DATA 24C* FOR LCOMP= 3 ENTER
FLUID PROP'
"LCOMP=1:FVF,MU;LCOMP=2:FVFO,MU0,CO,CMU,PREF,MBCONST; LCOMP=3:
PRES,FVF,MU TABLE'
1.0 0.5
'*DATA 25A* Boundary Conditions'
'"I1 12 J1 J2 K1 K2 IFACE ITYPEBC SPVALUE ZELBC RATIO'
11 11 11 3 4 4000 20 0.0
4 4 11 11 5 3 0 20 0.0
00 0 0 00 0 0 0. 0.0 0.0
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"*DATA 26D* Well Recursive Data'
"NOW SIMNEW DELT PWFMIN PWFMAX'

"IDW W JW KW IWOPC GWI SPVALUE RADW'
1 10.0 10.0 -10000000.0 100000000.0
1 4 1 1 -2 11.0845 -600 0.25

0 0.0 0.0 0.0 0.0
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379
space discretization, 378-379
time discretization, 379-380
solving systems, 5
Pentadiagonal coefficient matrix, 341
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388f, 392-393
boundary conditions, treatment of, 137-153
no-flow boundary condition, 141
specified boundary gridpoint pressure,
143-153
specified boundary pressure condition,
142-143
specified flow rate, 140-141
specified pressure gradient, 139-140
flow equation, 128—-137
reservoir discretization, 126128
solving practical problems, symmetry use in,
170-175
transmissibility, calculation of, 153-169
well at boundary block in, 184—185, 185f
Point iterative methods, 344-356
Gauss-Seidel method, 347-351, 354
Jacobi method, 344-347, 349
point successive overrelaxation (PSOR),
352-356
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Radial-cylindrical coordinates
CVEFD terminology, flow equations
Cartesian coordinates, 5657, 59-60
fluid gravity, 59
functions in, 57¢
3-D flow, 59
transmissibility, 58-59
multidimensional flow
derivation of, 32-38
single-well simulation, reservoir
discretization, 30-32
time integrals, approximation of, 38-39
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Reservoir simulators
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basic principles, 374
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Second-order approximation, 137-153
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447-449
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in 1-D radial flow, 186-187
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Single-phase fluid flow equation
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discretization, 30-32
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Single-well simulation, 30-32
Single-well simulation problem, 427, 435, 441
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288-290
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Crank-Nicolson formulation, 238-239
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material balance check, 241-264
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Sparse matrices, 339-343
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engineering approach, 392-393
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Specified flow rate condition
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T
Tang’s algorithm, 337
backward solution, 337-339
forward solution, 336
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backward solution, 333-334
forward solution, 332
Three-dimensional (3-D) flow, control volume,
3-4f
Three-dimensional (3-D) flow problems,
130-131
Three-dimensional (3-D) reservoirs, 129—-130
Time discretization, 379-380
Time integrals, 384—387, 385f
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calculation of, 153-169
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Tridiagonal coefficient matrix, 341
Tridiagonal matrix, 332
Two-dimensional (2-D) areal flow, 187194,
188f
Two-dimensional (2-D) flow problems,
130-131
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discretization of, 127f, 128-129
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Variational method, 2-3
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pressures within, 194-195, 195f
single-layer reservoir penetration by,
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Water-oil contact (WOC), 438-442, 450-451

Wellblock geometric factor, estimation of,

198-204, 199-201f, 202¢, 205¢

Wellblock pressure, 192—-193

Wellblock radius, 187-188, 188f

Well flow rates, linearization of
engineering approach, 395-396
mathematical approach, 394-395
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