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Preface
The “Information Age” promises infinite transparency, unlimited productivity,

and true access to knowledge. Knowledge, quite distinct and apart from “know-

how,” requires a process of thinking, or imagination—the attribute that sets

human beings apart. Imagination is necessary for anyone wishing to make

decisions based on science. Imagination always begins with visualization—

actually, another term for simulation. Of course, subjective imagination has

no meaning unless backed with objective facts. In fact, subjective knowledge

of the truth has nothing to do with objective facts, but everything to do with

the theory used by the subject to cognize. No other discipline has contributed

to collecting objective facts (data) than the petroleum industry, so the onus is on

modelers who must bring their perception or imagination as close to objective

reality as possible. This is where this book makes a big contribution. By elim-

inating steps that are redundant, convoluted, and potentially misleading, the

book makes it easier to keep the big picture transparent.

Under normal conditions, we simulate a situation prior to making any

decision; that is, we abstract absence and start to fill in the gaps. Reservoir

simulation is no exception. The two most important points that must not be

overlooked in simulation are science and the multiplicity of solutions. Science

is the essence of knowledge, and acceptance of the multiplicity of solutions is

the essence of science. It is so because today’s mathematics is not capable of

producing a single solution to a nonlinear equation. Science, on the other hand,

is limited to governing “laws” that are often a collection of simplistic assump-

tions. Science, not restricted by the notion of a single solution to every problem,

must follow knowledge-based perception. Multiplicity of solutions has been

promoted as an expression of uncertainty. This leads not to science or to

new authentic knowledge, but rather to creating numerous models that generate

“unique” solutions that fit a predetermined agenda of the decision-makers. This

book re-establishes the essential features’ real phenomena in their original form

and applies them to reservoir engineering problems. This approach, which

reconnects with the old—or in other words, time-tested—concept of knowl-

edge, is refreshing and novel in the Information Age.

The petroleum industry is known as the biggest user of computer models.

Even though space research and weather prediction models are robust and are

often tagged as “the mother of all simulation,” the fact that a space probe
xiii



xiv Preface
device or a weather balloon can be launched—while a vehicle capable of mov-

ing around in a petroleum reservoir cannot—makes modeling more vital for

tackling problems in the petroleum reservoir than in any other discipline.

Indeed, from the advent of computer technology, the petroleum industry pio-

neered the use of computer simulations in virtually all aspects of decision-

making. This revolutionary approach required significant investment in

long-term research and advancement of science. That time, when the petro-

leum industry was the energy provider of the world, was synonymous with

its reputation as the most aggressive investor in engineering and science. More

recently however, as the petroleum industry transited into its “middle age” in a

business sense, the industry could not keep up its reputation as the biggest

sponsor of engineering and long-term research. A recent survey by the US

Department of Energy showed that none of the top ten breakthrough petro-

leum technologies in the last decade could be attributed to operating compa-

nies. If this trend continues, major breakthroughs in the petroleum industry

over the next two decades are expected to be in the areas of information tech-

nology and materials science. When it comes to reservoir simulators, this lat-

est trend in the petroleum industry has produced an excessive emphasis on the

tangible aspects of modeling, namely, the number of blocks used in a simu-

lator, graphics, computer speed, etc. For instance, the number of blocks used

in a reservoir model has gone from thousands to millions in just a few years.

Other examples can be cited, including graphics in which flow visualization

has leapt from 2-D, to 3-D, to 4-D and computer processing speeds that make it

practically possible to simulate reservoir activities in real time. While these

developments outwardly appear very impressive, the lack of science and, in

essence, true engineering render the computer revolution irrelevant and quite

possibly dangerous. In the last decade, most investments have been made in

software dedicated to visualization and computer graphics with little being

invested in physics or mathematics. Engineers today have little appreciation

of what physics and mathematics provide for the very framework of all the

fascinating graphics that are generated by commercial reservoir simulators.

As companies struggle to deal with scandals triggered by Enron’s collapse,

few have paid attention to the lack of any discussion in engineering education

regarding what could be characterized as scientific fundamentals. Because of

this lack, little has been done to promote innovation in reservoir simulation,

particularly in the areas of physics and mathematics, the central topical con-

tent of reservoir engineering.

This book provides a means of understanding the underlying principles of

petroleum reservoir simulation. The focus is on basic principles because under-

standing these principles is a prerequisite to developingmore accurate advanced

models. Once the fundamentals are understood, further development of more

useful simulators is only a matter of time. The book takes a truly engineering
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approach and elucidates the principles behind formulating the governing equa-

tions. In contrast to cookbook-type recipes of step-by-step procedures for

manipulating a black box, this approach is full of insights. To paraphrase the

caveat about computing proposed by R.W. Hamming, the inventor of the Ham-

ming code, the purpose of simulation must be insight, not just numbers. The

conventional approach is more focused on packaging than on insight, making

the simulation process more opaque than transparent. The formulation of gov-

erning equations is followed by elaborate treatment of boundary conditions.

This is one aspect that is usually left to the engineers to “figure out” by them-

selves, unfortunately creating an expanding niche for the select few who own

existing commercial simulators. As anyone who has ever engaged in developing

a reservoir simulator well knows, this process of figuring out by oneself is

utterly confusing. In keeping up with the same rigor of treatment, this book pre-

sents the discretization scheme for both block-centered and point-distributed

grids. The difference between a well and a boundary condition is elucidated.

In the same breadth, we present an elaborate treatment of radial grid for

single-well simulation. This particular application has become very important

due to the increased usage of reservoir simulators to analyze well test results and

the use of well pseudofunctions. This aspect is extremely important for any res-

ervoir engineering study. The book continues to give insight into other areas of

reservoir simulation. For instance, we discuss the effect of boundary conditions

on material-balance-check equations and other topics with unparalleled

lucidity.

This is a basic book and is time honored. As such, it can hardly be altered

or updated. So, why come up with a second edition? It turns out that none of

the existing books on the topic covers several crucial aspects of modeling.

Ever since the publication of the first edition in 2006, a number of research

articles have been published praising the engineering approach that we

introduced. After 13 years of the first publication, it was high time for us

to introduce a comprehensive comparison between the conventional mathe-

matical approach and the engineering approach that we introduced. This

will enable the readership to appreciate the fact that the engineering

approach is much easier to implement, bolstered with a number of advan-

tages over the mathematical approach, without the scarifying accuracy of

the solutions. Finally, a glossary was added to help the readership with a

quick lookup of terms, which might not be familiar or which might have

been misunderstood.

Even though the book is written principally for reservoir simulation devel-

opers, it takes an engineering approach that has not been taken before. Topics

are discussed in terms of science and mathematics, rather than with graphical

representation in the backdrop. This makes the book suitable and in fact essen-

tial for every engineer and scientist engaged in modeling and simulation. Even
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those engineers and scientists who wish to limit their activities to field applica-

tions will benefit greatly from this book, which is bound to prepare them better

for the Information Age. The additions made in the second editions are both

timely and comprehensive.

J.H. Abou-Kassem

M.R. Islam

S.M. Farouq Ali



Introduction
In this book the basics of reservoir simulation are presented through the

modeling of single-phase fluid flow and multiphase flow in petroleum reser-

voirs using the engineering approach. This text is written for senior-level BSc

students and first-year MSc students studying petroleum engineering. The aim

of this book is to restore engineering and physics sense to the subject. In this

way the misleading impact of excess mathematical glitter, which has domi-

nated reservoir simulation books in the past, is challenged. The engineering

approach, used in this book, uses mathematics extensively, but it injects engi-

neering meaning to differential equations and to boundary conditions used in

reservoir simulation. It does not need to deal with differential equations as a

means for modeling, and it interprets boundary conditions as fictitious wells

that transfer fluids across reservoir boundaries. The contents of the book can

be taught in two consecutive courses. The first undergraduate senior-level

course includes the use of block-centered grid in rectangular coordinates in

single-phase flow simulation. Thematerial is mainly included in Chapters 2, 3,

4, 6, 7, and 9. The second graduate-level course deals with block-centered grid

in radial-cylindrical coordinates, point-distributed grid in both rectangular

and radial-cylindrical coordinates, and the simulation of multiphase flow in

petroleum reservoirs. The material is covered in Chapters 5, 8, 10, and 11

in addition to specific sections in Chapters 2, 4, 5, 6, and 7 (Sections 2.7,

4.5, 5.5, 6.2.2, 7.3.2, and 7.3.3).

Chapter 1 provides an overview of reservoir simulation and the relationship

between the mathematical approach presented in simulation books and the engi-

neering approach presented in this book. In Chapter 2, we present the derivation

of single-phase, multidimensional flow equations in rectangular and radial-

cylindrical coordinate systems. In Chapter 3, we introduce the control volume

finite difference (CVFD) terminology as a means to writing the flow equations

in multidimensions in compact form. Then, we write the general flow equation

that incorporates both (real) wells and boundary conditions, using the block-

centered grid (in Chapter 4) and the point-distributed grid (in Chapter 5),

and present the corresponding treatments of boundary conditions as fictitious

wells and the exploitation of symmetry in practical reservoir simulation

Chapter 6 deals with wells completed in a single layer and in multilayers and

presents fluid flow rate equations for different well operating conditions.

Chapter 7 presents the explicit, implicit, and Crank-Nicolson formulations of
xvii
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single-phase, slightly compressible, and compressible flow equations and intro-

duces the incremental and cumulative material balance equations as internal

checks to monitor the accuracy of generated solutions. In Chapter 8, we

introduce the space and time treatments of nonlinear terms encountered in

single-phase flow problems. Chapter 9 presents the basic direct and iterative

solution methods of linear algebraic equations used in reservoir simulation.

Chapter 10 presents differences between the engineering approach and the

mathematical approach in derivation, treatment of wells and boundary condi-

tions, and linearization. Chapter 11 is entirely devoted to multiphase flow in

petroleum reservoirs and its simulation. The book concludes with Appendix

A that presents a user’s manual for a single-phase simulator. The folder

available at www.emertec.ca includes a single-phase simulator written in

FORTRAN 95, a compiled version, and data and output files for four solved

problems. The single-phase simulator provides users with intermediate

results and solutions to single-phase flow problems so that a user’s solution

can be checked and errors are identified and corrected. Educators may use

the simulator to make up new problems and obtain their solutions.

http://www.emertec.ca


Nomenclature
an
 coefficient of unknown xn+nxny, defined by Eq. (9.46f)
A
 parameter, defined by Eq. (9.28) in Tang’s algorithm
[A]
 square coefficient matrix
Ax
 cross-sectional area normal to x-direction, ft2[m2]
Ax jx
 cross-sectional area normal to x-direction at x, ft2[m2]
Ax jx+Δx
 cross-sectional area normal to x-direction at x+Δx, ft2[m2]
Ax jxi�1/2
 cross-sectional area normal to x-direction at block boundary

xi�1/2, ft
2[m2]
b
 reservoir boundary
bE
 reservoir east boundary
bL
 reservoir lower boundary
bN
 reservoir north boundary
bs
 reservoir south boundary
bU
 reservoir upper boundary
bW
 reservoir west boundary
bn
 coefficient of unknown xn�nxny
, defined by Eq. (9.46a)
B
 parameter, defined by Eq. (9.29) in Tang’s algorithm
B
 fluid formation volume factor, RB/STB[m3/stdm3]
B
 average fluid formation volume factor in wellbore, RB/STB

[m3/stdm3]
Bg
 gas formation volume factor, RB/scf [m3/stdm3]
Bi
 fluid formation volume factor for block i, RB/STB[m3/stdm3]
Bo
 oil formation volume factor, RB/STB[m3/stdm3]
Bob
 oil formation volume factor at bubble-point pressure, RB/STB

[m3/stdm3]
Bpi
 formation volume factor of phase p in block i

Bw
 water formation volume factor, RB/B[m3/std m3]
B°
 fluid formation volume factor at reference pressure p° and

reservoir temperature, RB/STB[m3/stdm3]
c
 fluid compressibility, psi�1 [kPa�1]
ci
 coefficient of unknown of block i in Thomas’ algorithm
cn
 coefficient of unknown xn, defined by Eq. (9.46g)
cN
 coefficient of unknown xN in Thomas’ or Tang’s algorithm
co
 oil-phase compressibility, psi�1 [kPa�1]
cϕ
 porosity compressibility, psi�1 [kPa�1]
xix



xx Nomenclature
cμ
 rate of fractional viscosity change with pressure change,

psi�1 [kPa�1]
C
 parameter, defined by Eq. (9.30) in Tang’s algorithm
CMB
 cumulative material balance check, dimensionless
Cop
 coefficient of pressure change over time step in expansion of oil

accumulation term, STB/D-psi [stdm3/(d.kPa)]
Cow
 coefficient of water saturation change over time step in expansion

of oil accumulation term, STB/D[stdm3/d]
Cwp
 coefficient of pressure change over time step in expansion of

water accumulation term, B/D-psi [stdm3/(dkPa)]
Cww
 coefficient of water saturation change over time step in expansion

of water accumulation term, B/D[std m3/d]
d
!

vector of known values
D
 parameter, defined by Eq. (9.31) in Tang’s algorithm
di
 known RHS of equation for block i in Thomas’ algorithm
dmax
 maximum absolute difference between two successive iterations
dn
 RHS of equation for gridblock n, defined by Eq. (9.46h)
ei
 coefficient of unknown of block i+1 in Thomas’ algorithm
en
 coefficient of unknown xn+1, defined by Eq. (9.46d)
eN
 coefficient of unknown x1 in Tang’s algorithm
f( )
 function of
fp
 the pressure-dependent term in transmissibility
f n+1pi�1/2

nonlinearity, defined by Eq. (8.17)
F(t)
 argument of an integral at time t

Fi
 ratio of wellblock i area to theoretical area from which well with-

draws its fluid (in Chapter 6), fraction
Fm
 argument of an integral evaluated at time tm
F(tm)
 argument of an integral evaluated at time tm
Fn
 argument of an integral evaluated at time tn
F(tn)
 argument of an integral evaluated at time tn
Fn+1
 argument of an integral evaluated at time tn+1
F(tn+1)
 argument of an integral evaluated at time tn+1
Fn+1/2
 argument of an integral evaluated at time tn+1/2
F(tn+1/2)
 argument of an integral evaluated at time tn+1/2
g
 gravitational acceleration, ft/s2 [m/s2]� �

gi
 element i of a temporary vector g

!
generated in Thomas’

algorithm
G
 geometric factor
Gw
 well geometric factor, RB-cp/D-psi [m3mPas/(dkPa)]
Gwi

well geometric factor for wellblock i, defined by Eq. (6.32),

RB-cp/D-psi [m3mPas/(dkPa)]
G∗
wi
well geometric factor of the theoretical well for wellblock i,
RB-cp/D-psi [m3mPas/(dkPa)]



Nomenclature xxi
Gxi�1/2

interblock geometric factor between block i and block i�1 along

the x-direction, defined by Eq. (8.4)
Gx1,2

interblock geometric factor between blocks 1 and 2 along the

x-direction

Gy2,6
 interblock geometric factor between blocks 2 and 6 along the

y-direction

Gri�1/2,j,k
interblock geometric factor between block (i, j,k) and block

(i�1, j,k) along the r-direction in radial-cylindrical coordinates,

defined in Table 4.2, 4.3, 5.2, and 5.3
Gxi�1/2,j,k

interblock geometric factor between block (i, j,k) and block

(i�1, j,k) along the x-direction in rectangular coordinates,

defined in Tables 4.1 and 5.1
Gyi,�1/2,k

interblock geometric factor between block (i, j,k) and block

(i,j�1,k) along the y-direction in rectangular coordinates, defined
in Tables 4.1 and 5.1
Gzi,j,k�1/2

interblock geometric factor between block (i, j,k) and block

(i, j,k�1) along the z-direction in rectangular coordinates,

defined in Tables 4.1 and 5.1
Gzi,j,k�1/2

interblock geometric factor between block (i, j,k) and block

(i, j,k�1) along the z-direction in radial–cylindrical coordinates,
defined in Tables 4.2, 4.3, 5.2, and 5.3
Gθi,j�1/2,k

interblock geometric factor between block (i, j,k) and block

(i, j�1,k) along the θ-direction in radial-cylindrical coordinates,

defined in Tables 4.2, 4.3, 5.2, and 5.3
h
 thickness, ft [m]
hi
 thickness of wellblock i, ft [m]
hl
 thickness of wellblock l, ft [m]
IMB
 incremental material balance check, dimensionless
kH
 horizontal permeability, md [μm2]
kHi

horizontal permeability of wellblock i, md [μm2]
kr
 permeability along the r-direction in radial flow, md [μm2]
krg
 relative permeability to gas phase, dimensionless
kro
 relative permeability to oil phase, dimensionless
krocw
 relative permeability to oil phase at irreducible water saturation,

dimensionless
krog
 relative permeability to oil phase in gas/oil/irreducible water

system, dimensionless
krow
 relative permeability to oil phase in oil/water system,

dimensionless
krp
 relative permeability to phase p, dimensionless
krp jxi�1/2

relative permeability phase p between point i and point i�1 along

the x-axis, dimensionless
krw
 relative permeability to water phase, dimensionless
kV
 vertical permeability, md [μm2]



xxii Nomenclature
kx
 permeability along the x-axis, md [μm2]
kx ji�1/2
 permeability between point i and point i�1 along the x-axis,
md [μm2]
ky
 permeability along the y-axis, md [μm2]
kz
 permeability along the z-axis, md [μm2]
kθ
 permeability along the θ-direction, md [μm2]
loge
 natural logarithm
L
 reservoir length along the x-axis, ft [m]
[L]
 lower triangular matrix
Lx
 reservoir length along the x-axis, ft [m]
ma
 mass accumulation, lbm [kg]
mai
 mass accumulation in block i, lbm [kg]
mcai
 mass accumulation of component c in block i, lbm [kg]
mci
 mass of component c entering reservoir from other parts of

reservoir, lbm [kg]
mci jxi�1/2

mass of component c entering block i across block boundary

xi�1/2, lbm [kg]
mco jxi+1/2
 mass of component c leaving block i across block boundary xi+1/2,
lbm [kg]
mcsi
 mass of component c entering (or leaving) block i through a well,
lbm [kg]
mn
cvi
 mass of component c per unit volume of block i at time tn, 1bm/

ft3 [kg/m3]
mn+1
cvi
mass of component c per unit volume of block i at time tn+1, 1bm/

ft3 [kg/m3]
_mcx
 x-component of mass flux of component c, 1bm/D-ft2 [kg/(dm2)]
mfgv
 mass of free-gas component per unit volume of reservoir rock,

1bm/ft3[kg/m3]
_mfgx
 x-component of mass flux of free-gas component, 1bm/D-ft2

[kg/(dm2)]
mi
 mass of fluid entering reservoir from other parts of reservoir,

lbm [kg]
mi jx
 mass of fluid entering control volume boundary at x, lbm [kg]
mi jr
 mass of fluid entering control volume boundary at r, lbm [kg]
mi jxi�1/2

mass of fluid entering block i across block boundary xi�1/2,

lbm [kg]
mi jθ
 mass of fluid entering control volume boundary at θ, lbm [kg]
mo
 mass of fluid leaving reservoir to other parts of reservoir, lbm [kg]
mo jr+Δr
 mass of fluid leaving control volume boundary at r+Δr, lbm [kg]
mov
 mass of oil component per unit volume of reservoir rock,

1bm/ft3 [kg/m3]
_mox
 x-component of mass flux of oil component, lbm/D-ft [kg/(dm2)]
mo jx+Δx
 mass of fluid leaving control volume boundary at x+Δx, lbm [kg]
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mo jxi+1/2
 mass of fluid leaving block i across block boundary xi+1/2,
lbm [kg]
mo jθ+Δθ
 mass of fluid leaving control volume boundary at θ+Δθ, lbm [kg]
ms
 mass of fluid entering (or leaving) reservoir through a well,

lbm [kg]
msgv
 mass of solution-gas component per unit volume of reservoir

rock, 1bm/ft3 [kg/m3]
_msgx
 x-component of mass flux of solution-gas component, lbm/D-ft2

[kg/(dm2)]
msi

mass of fluid entering (or leaving) block i through a well, lbm [kg]
mv
 mass of fluid per unit volume of reservoir rock, lbm/ft [kg/m3]
mn
vi
 mass of fluid per unit volume of block i at time tn, lbm/ft3 [kg/m3]
mn+1
vi
 mass of fluid per unit volume of block i at time tn+1, lbm/ft3 [kg/m3]
mwv
 mass of water component per unit volume of reservoir rock,

lbm/ft3 [kg/m3]
_mwx
 x-component of mass flux of water component, lbm/D-ft2

[kg/(dm2)]
_mx
 x-component of mass flux, lbm/D-ft2 [kg/(dm2)]
_mxjx
 x-component of mass flux across control volume boundary at x,
lbm/D-ft2 [kg/(dm2)]
_mxjx +Δx
 x-component of mass flux across control volume boundary at

x+Δx, lbm/D-ft2 [kg/(dm2)]
_mxjxi�1/2

x-component of mass flux across block boundary xi�1/2, lbm/D-ft2

[kg/(dm2)]
M
 gas molecular weight, lbm/lb mole [kg/kmole]
Mpi

mobility of phase p in wellblock i, defined in Table 11.4
nn
 coefficient of unknown xn+nx, defined by Eq. (9.46e)
nr
 number of reservoir gridblocks (or gridpoints) along the

r-direction

nvps
 number of vertical planes of symmetry
nx
 number of reservoir gridblocks (or gridpoints) along the x-axis

ny
 number of reservoir gridblocks (or gridpoints) along the y-axis

nz
 number of reservoir gridblocks (or gridpoints) along the z-axis

nθ
 number of reservoir gridblocks (or gridpoints) in the θ-direction

N
 number of blocks in reservoir
p
 pressure, psia [kPa]
p°
 reference pressure, psia [kPa]
p
 average value pressure, defined by Eq. (8.21), psia [kPa]
pb
 oil bubble-point pressure, psia [kPa]
pg
 gas-phase pressure, psia [kPa]
pi
 pressure of gridblock (gridpoint) or wellblock i, psia [kPa]
pi
m
 pressure of gridblock (gridpoint) i at time tm, psia [kPa]
pi�1
m
 pressure of gridblock (gridpoint) i�1 at time tm, psia [kPa]

pi,j,k
m
 pressure of gridblock (gridpoint) (i, j,k) at time tm, psia [kPa]
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pi�1,j,k
m
 pressure of gridblock (gridpoint) (i�1, j,k) at time tm, psia [kPa]
pi,j�1,k
m
 pressure of gridblock (gridpoint) (i, j�1,k) at time tm, psia [kPa]
pi,j,k�1
m
 pressure of gridblock (gridpoint) (i, j,k�1) at time tm, psia [kPa]
pi
n
 pressure of gridblock (gridpoint) i at time tn, psia [kPa]
pi
n+1
 pressure of gridblock (gridpoint) i at time tn+1, psia [kPa]
p
ν+1ð Þ
n+1
i

pressure of gridblock (gridpoint) i at time level tn+1 and iteration

ν+1, psia [kPa]
δp
ν+1ð Þ
n+1
i

change in pressure of gridblock (gridpoint) i over an iteration at

time level n+1 and iteration ν+1, psi [kPa]

pi�1
 pressure of gridblock (gridpoint) i�1, psia [kPa]
pi+1
 pressure of gridblock (gridpoint) i+1, psia [kPa]
pi+1
n
 pressure of gridblock (gridpoint) i+1 at time tn, psia [kPa]
pi+1
n+1
 pressure of gridblock (gridpoint) i+1 at time tn+1, psia [kPa]
pi�1
n+1
 pressure of gridblock (gridpoint) i�1 at time tn+1, psia [kPa]
pi,j,k
 pressure of gridblock (gridpoint) or wellblock (i, j,k), psia [kPa]

pl
 pressure of neighboring gridblock (gridpoint) l, psia [kPa]
pn
 pressure of gridblock (gridpoint) or wellblock n, psia [kPa]
pn
0
 initial pressure of gridblock (gridpoint) n, psia [kPa]
pn
n
 pressure of gridblock (gridpoint) or wellblock n at time level n,

psia [kPa]
p
νð Þ
n+1
i

pressure of gridblock (gridpoint) i at time level tn+1 and iteration ν,
psia [kPa]
pn
n+1
 pressure of gridblock (gridpoint) or wellblock n at time level n+1,

psia [kPa]
pn
(v)
 pressure of gridblock (gridpoint) n at old iteration v, psia [kPa]
pn
(v+1)
 pressure of gridblock (gridpoint) n at new iteration ν+1,

psia [kPa]
ppi
 pressure of phase p in gridblock (gridpoint) i, psia [kPa]
ppi�1

pressure of phase p in gridblock (gridpoint) i�1, psia [kPa]
po
 oil pressure, psia [kPa]
pref
 pressure at reference datum, psia [kPa]
psc
 standard pressure, psia [kPa]
pw
 water-phase pressure, psia [kPa]
pwf
 well flowing bottom-hole pressure, psia [kPa]
pwfest
 estimated well flowing bottom-hole pressure at reference depth,

psia [kPa]
pwfi
 well flowing bottom-hole pressure opposite wellblock i,
psia [kPa]
pwfref
 well flowing bottom-hole pressure at reference depth, psia [kPa]
pwfsp
 specified well flowing bottom-hole pressure at reference depth,

psia [kPa]
Pcgo
 gas/oil capillary pressure, psi [kPa]
Pcgw
 gas/water capillary pressure, psi [kPa]
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Pcow
 oil/water capillary pressure, psi [kPa]
q
 well production rate at reservoir conditions, RB/D [m3/d]
qcmi

mass rate of component c entering block i through a well, lbm/D

[kg/d]
qfg
 production rate of free-gas component at reservoir conditions,

RB/D[stdm3/d]
qfgm
 mass production rate of free-gas component, lbm/D[kg/d]
qfgsc
 production rate of free-gas component at standard conditions,

scf/D[stdm3/d]
qm
 mass rate entering control volume through a well, lbm/D[kg/d]
qmi

mass rate entering block i through a well, lbm/D[kg/d]
qo
 production rate of oil phase at reservoir conditions, RB/D[stdm3/d]
qom
 mass production rate of oil component, lbm/D[kg/d]
qosc
 production rate of oil phase at standard conditions, STB/D

[stdm3/d]
qsc
 well production rate at standard conditions, STB/D or scf/D

[stdm3/d]
qsci
 production rate at standard conditions from wellblock i, STB/D or

scf/D[stdm3/d]
qmsci
 production rate at standard conditions from wellblock i at time

tm, STB/D or scf/D [stdm3/d]
qmscn
 production rate at standard conditions from wellblock n at time

tm, STB/D or scf/D [stdm3/d]
qmsci,j,k
 production rate at standard conditions from wellblock (i, j,k) at
time tm, STB/D or scf/D [stdm3/d]
qn+1sci

production rate at standard conditions from wellblock i at time

level n+1, STB/D or scf/D [stdm3/d]
q
νð Þ
n+1
sci
production rate at standard conditions from wellblock i at time

tn+1 and iteration v, STB/D or scf/D[stdm3/d]
qmscl,(i,j,k)
 volumetric rate of fluid at standard conditions crossing reservoir

boundary l to block (i, j,k) at time tm, STB/D or scf/D[stdm3/d]
qscl,n
 volumetric rate of fluid at standard conditions crossing reservoir

boundary l to block n, STB/D or scf/D[stdm3/d]
qmscl,n
 volumetric rate of fluid at standard conditions crossing reservoir

boundary l to block n at time tm, STB/D or scf/D [stdm3/d]
qscn
 production rate at standard conditions from wellblock n, STB/D
or scf/D [stdm3/d]
qsci�1/2

interblock volumetric flow rate at standard conditions between

gridblock (gridpoint) i and gridblock (gridpoint) i�1, STB/D

or scf/D [stdm3/d]
qscb,bB
 volumetric flow rate at standard conditions across reservoir

boundary to boundary gridblock bB, STB/D or scf/D[stdm3/d]
qscb,bP
 volumetric flow rate at standard conditions across reservoir

boundary to boundary gridpoint bP, STB/D or scf/D [stdm3/d]
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qscbW,1

volumetric flow rate at standard conditions across reservoir west

boundary to boundary gridblock (gridpoint) 1, STB/D or scf/D

[stdm3/d]
qscbE,nx

volumetric flow rate at standard conditions across reservoir east

boundary to boundary gridblock (gridpoint) nx, STB/D or scf/D

[stdm3/d]
qsgm
 mass production rate of solution-gas component, lbm/D[kg/d]
qspsc
 specified well rate at standard conditions, STB/D or scf/D

[stdm3/d]
qwm
 mass production rate of water component, lbm/D[kg/d]
qwsc
 production rate of water phase at standard conditions, B/D

[stdm3/d]
qx
 volumetric rate at reservoir conditions along the x-axis, RB/D
[m3/d]
r
 distance in the r-direction in the radial-cylindrical coordinate sys-
tem, ft [m]
re
 extemal radius in Darcy’s law for radial flow, ft [m]
req
 equivalent wellblock radius, ft [m]
reqn
 equivalent radius of the area from which the theoretical well for

block n withdraws its fluid, ft [m]
ri�1
 r-direction coordinate of point i�1, ft [m]
ri�1/2
L
 radii for transmissibility calculations, defined by Eqs. (4.82b) and

(4.83b) (or Eqs. 5.75b and 5.76b), ft [m]
ri�1/2
2
 radii squared for bulk volume calculations, defined by

Eqs. (4.84b) and (4.85b) (or Eqs. 5.77b and 5.78b), ft2 [m2]
rn
 residual for block n, defined by Eq. (9.61)
rw
 well radius, ft [m]
Δri
 size of block (i, j, k) along the r-direction, ft [m]
Rs
 solution GOR, scf/STB [stdm3/stdm3]
s
 skin factor, dimensionless
S
 fluid saturation, fraction
Sg
 gas-phase saturation, fraction
Siw
 irreducible water saturation, fraction
sn
 coefficient of unknown xn�nx
, defined by Eq. (9.46b)
So
 oil-phase saturation, fraction
Sw
 water-phase saturation, fraction
t
 time, day
T
 reservoir temperature, °R[K]

Δt
 time step, day
tm
 time at which the argument F of integral is evaluated at,

Eq. (2.30), day
Δtm
 mth time step, day
tn
 old time level, day
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Δtn
 old time step, day
tn+1
 new or current time level, day
Δtn+1
 current (or new) time step, day
Tb,bB
m
 transmissibility between reservoir boundary and boundary grid-

block at time tm
Tb,bP
m
 transmissibility between reservoir boundary and boundary grid-

point at time tm
Tmb,bP∗
 transmissibility between reservoir boundary and gridpoint imme-

diately inside reservoir boundary at time tm
Tgx
 gas-phase transmissibility along the x-direction, scf/D-psi [stdm3/

(dkPa)]
Tl,(i,j,k)
m
 transmissibility between gridblocks (gridpoints) l and (i, j,k) at

time tm
Tl,n
m
 transmissibility between gridblocks (gridpoints) l and n at time tm
Tox
 oil-phase transmissibility along the x-direction, STB/D-psi

[stdm3/(dkPa)]
Tri�1/2,j,k

transmissibility between point (i, j,k) and point (i�1, j,k) along
the r-direction, STB/D-psi or scf/D-psi [stdm3/(dkPa)]
Tmri�1/2,j,k

transmissibility between point (i, j,k) and point (i�1, j,k) along
the r-direction at time tm, STB/D-psi or scf/D-psi [stdm3/(dkPa)]
Tsc
 standard temperature, °R[K]

Twx
 water-phase transmissibility along the x-direction, B/D-psi

[stdm3/(dkPa)]
Txi�1/2

transmissibility between point i and point i�1 along the x-axis,
STB/D-psi or scf/D-psi [stdm3/(dkPa)]
Tn+1xi�1/2

transmissibility between point i and point i�1 along the x-axis at
time tn+1, STB/D-psi or scf/D-psi [stdm3/(dkPa)]
T
νð Þ
n+1
xi�1=2
transmissibility between point i and point i�1 along the x-axis at
time tn+1 and iteration v, STB/D-psi or scf/D-psi [stdm3/(dkPa)]
Txi�1/2,j,k

transmissibility between point (i, j,k) and point (i�1, j,k) along
the x-axis, STB/D-psi or scf/D-psi [stdm3/(dkPa)]
Tmxi�1/2,j,k

transmissibility between point (i, j,k) and point (i�1, j,k) along
the x-axis at time tm, STB/D-psi or scf/D-psi [stdm3/(dkPa)]
Tyi,j�1/2,k

transmissibility between point (i, j,k) and point (i, j�1,k) along
the y-axis, STB/D-psi or scf/D-psi [stdm3/(dkPa)]
Tmyi,j�1/2,k

transmissibility between point (i, j,k) and point (i, j�1,k) along
the y-axis at time tm, STB/D-psi or scf/D-psi [stdm3/(dkPa)]
Tzi,j,k�1/2

transmissibility between point (i, j,k) and point (i, j,k�1) along

the z-axis, STB/D-psi or scf/D-psi [stdm3/(dkPa)]
Tmzi,j,k�1/2

transmissibility between point (i, j,k) and point (i, j,k�1) along

the z-axis at time tm, STB/D-psi or scf/D-psi [stdm3/(dkPa)]
Tθi,j�1/2,k

transmissibility between point (i, j,k) and point (i, j�1,k) along
the θ-direction, STB/D-psi or scf/D-psi [stdm3/(dkPa)]
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Tmθi,j�1/2,k

transmissibility between point (i, j,k) and point (i, j�1,k) along
the θ-direction at time tm STB/D-psi or scf/D-psi [stdm3/(dkPa)]
[U]
 upper triangular matrix
ugx
 x-component of volumetric velocity of gas phase at reservoir con-

ditions, RB/D-ft2 [m3/(dm2)] � �

ui
 element i of a temporary vector u

!
generated in Thomas’

algorithm
uox
 x-component of volumetric velocity of oil phase at reservoir con-

ditions, RB/D-ft2 [m3/(dm2)]
upx jxi�1/2

x-component of volumetric velocity of phase p at reservoir con-

ditions between point i and point i�1, RB/D-ft2 [m3/(dm2)]
uwx
 x-component of volumetric velocity of water phase at reservoir

conditions, RB/D-ft2 [m3/(dm2)]
ux
 x-component of volumetric velocity at reservoir conditions,

RB/D-ft2 [m3/(dm2)]
Vb
 bulk volume, ft3 [m3]
Vbi

bulk volume of block i, ft3[m3]
Vbi,j,k

bulk volume of block (i, j,k), ft3 [m3]
Vbn

bulk volume of block n, ft3[m3]
wci jxi�1/2

mass rate of component c entering block i across block boundary

xi�1/2, lbm/D [kg/d]
wci jxi+1/2
 mass rate of component c leaving block i across block boundary

xi+1/2, lbm/D [kg/d]
wcx
 x-component of mass rate of component c, lbm/D[kg/d]
wi
 coefficient of unknown of block i�1 in Thomas’ algorithm
wn
 coefficient of unknown xn�1, defined by Eq. (9.46c)
wN
 coefficient of unknown xN�1 in Thomas’ or Tang’s algorithm
wx
 x-component of mass rate, lbm/D[kg/d]
wx jx
 x-component of mass rate entering control volume boundary at x,
lbm/D[kg/d]
wx jx+Δx
 x-component of mass rate leaving control volume boundary at

x+Δx, lbm/D[kg/d]
wx jxi�1/2

x-component of mass rate entering (or leaving) block i across
block boundary xi�1/2, lbm/D[kg/d]
x
 distance in the x-direction in the Cartesian coordinate system,

ft [m]
Δx
 size of block or control volume along the x-axis, ft [m]
x
!

vector of unknowns (in Chapter 9)
xi
 x-direction coordinate of point i, ft [m]
xi
 unknown for block i in Thomas’ algorithm
Δxi
 size of block i along the x-axis, ft [m]
δxi�
 distance between gridblock (gridpoint) i and block boundary in

the direction of decreasing i along the x-axis, ft [m]
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δxi+
 distance between gridblock (gridpoint) i and block boundary in

the direction of increasing i along the x-axis, ft [m]
xi�1
 x-direction coordinate of point i�1, ft [m]
xi�1
 unknown for block i�1 in Thomas’ algorithm (in Chapter 9)
Δxi�1
 size of block i�1 along the x-axis, ft [m]
xi�1/2
 x-direction coordinate of block boundary xi�1/2, ft [m]
Δxi�1/2
 distance between point i and point i�1 along the x-axis, ft [m]
xn
 unknown for block n (in Chapter 9)
xn
(v)
 unknown for block n at old iteration v (in Chapter 9)
xn
(v+1)
 unknown for block n at new iteration v+1 (in Chapter 9)
xnx
 x-direction coordinate of gridblock (gridpoint) nx, ft [m]
y
 distance in the y-direction in the Cartesian coordinate system,

ft [m]
Δy
 size of block or control volume along the y-axis, ft [m]
Δyj
 size of block j along the y-axis, ft [m]
z
 gas compressibility factor, dimensionless
z
 distance in the z-direction in the Cartesian coordinate system,

ft [m]
Δz
 size of block or control volume along the z-axis, ft [m]
Δzk
 size of block k along the z-axis, ft [m]
Δzi,j,k
 size of block (i, j,k) along the z-axis, ft [m]
Z
 elevation below datum, ft [m]
Zb
 elevation of center of reservoir boundary below datum, ft [m]
ZbB
 elevation of center of boundary gridblock bB below datum, ft [m]
ZbP
 elevation of boundary gridpoint bP below datum, ft [m]
Zi
 elevation of gridblock (gridpoint) i or wellblock i, ft [m]
Zi�1
 elevation of gridblock (gridpoint) i�1, ft [m]
Zi,j,k
 elevation of gridblock (gridpoint) (i, j,k), ft [m]
Zl
 elevation of gridblock (gridpoint) l, ft [m]
Zn
 elevation of gridblock (gridpoint) n, ft [m]
Zref
 elevation of reference depth in a well, ft [m]

∂p

∂x�

pressure gradient in the x-direction, psi/ft [kPa/m]
∂p

∂x

���
b� �
pressure gradient in the x-direction evaluated at reservoir bound-

ary, psi/ft [kPa/m]
∂p

∂x i�1=2�

pressure gradient in the x-direction evaluated at block boundary

xi�1/2, psi/ft [kPa/m]
∂p

∂r

���
rw
pressure gradient in the rw r-direction evaluated at well radius,

psi/ft [kPa/m]
∂Φ
∂x
potential gradient in the x-direction, psi/ft [kPa/m]
∂Z

∂x
elevation gradient in the x-direction, dimensionless
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∂Z

∂x

����
b

elevation gradient in the x-direction evaluated at reservoir bound-
ary, dimensionless
αc
 volume conversion factor whose numerical value is given in

Table 2.1
αlg
 logarithmic spacing constant, defined by Eq. (4.86) (or Eq. 5.79),

dimensionless
βc
 transmissibility conversion factor whose numerical value is given

in Table 2.1 !� �

βi
 element i of a temporary vector β generated in Tang’s algo-

rithm (in Chapter 9)
γ
 fluid gravity, psi/ft[kPa/m] � �

γi
 element i of a temporary vector γ

!
generated in Tang’s algo-

rithm (in Chapter 9)
γc
 gravity conversion factor whose numerical value is given in

Table 2.1
γg
 gravity of gas phase at reservoir conditions, psi/ft [kPa/m]
γi�1/2
 fluid gravity between point i and point i�1 along the x-axis, psi/ft
[kPa/m]
γi�1/2,j,k
m
 fluid gravity between point (i, j,k) and neighboring point (i�1, j,k)

along the x-axis at time tm, psi/ft [kPa/m]
γi,j�1/2,k
m
 fluid gravity between point (i, j,k) and neighboring point (i, j�1,k)

along the y-axis at time tm, psi/ft [kPa/m]
γi,j,k�1/2
m
 fluid gravity between point (i, j,k) and neighboring point (i, j,k�1)

along the z-axis at time tm, psi/ft [kPa/m]
γl,(i,j,k)
m
 fluid gravity between point (i, j,k) and neighboring point l at time

tm, psi/ft [kPa/m]
γl,n
m
 fluid gravity between point n and neighboring point l at time tm,

psi/ft [kPa/m]
γl,(i,j,k)
 fluid gravity between point (i, j,k) and neighboring point l, psi/ft
[kPa/m]
γl,n
 fluid gravity betweenpointn andneighboringpoint l, psi/ft [kPa/m]
γo
 gravity of oil phase at reservoir conditions, psi/ft [kPa/m]
γpi�1/2

gravity of phase p between point i and point i�1 along the x-axis,
psi/ft [kPa/m]
γpl,n
 gravity of phase p between point l and point n, psi/ft [kPa/m]
γw
 gravity of water phase at reservoir conditions, psi/ft [kPa/m]
γwb
 average fluid gravity in wellbore, psi/ft [kPa/m]
ε
 convergence tolerance
ηinj
 set of phases in determining mobility of injected fluid ¼{o,w,g}

ηprd
 set of phases in determining mobility of produced fluids, defined

in Table 10.4
θ
 angle in the θ-direction, rad

Δθj
 size of block (i, j,k) along the θ-direction, rad

Δθj�1/2
 angle between point (i, j,k) and point (i, j�1,k) along the

θ-direction, rad
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ϕ
 porosity, fraction
ϕi,j,k
 porosity of gridblock (gridpoint) (i, j,k), fraction

ϕn
 porosity of gridblock (gridpoint) n, fraction

ϕ∘
 porosity at reference pressure p∘, fraction

Φ
 potential, psia [kPa]
Φg
 potential of gas phase, psia [kPa]
Φi
 potential of gridblock (gridpoint) i, psia [kPa]
Φi
m
 potential of gridblock (gridpoint) i at time tm, psia [kPa]
Φi
n
 potential of gridblock (gridpoint) i at time tn, psia [kPa]
Φi
n+1
 potential of gridblock (gridpoint) i at time tn+1, psia [kPa]
Φi�1
 potential of gridblock (gridpoint) i�1, psia [kPa]
Φi�1
m
 potential of gridblock (gridpoint) i�1 at time tm, psia [kPa]
Φi�1
n
 potential of gridblock (gridpoint) i�1 at time tn, psia [kPa]
Φi�1
n+1
 potential of gridblock (gridpoint) i�1 at time tn+1, psia [kPa]
Φi,j,k
m
 potential of gridblock (gridpoint) (i, j,k) at time tm, psia [kPa]
Φl
m
 potential of gridblock (gridpoint) l at time tm, psia [kPa]
Φo
 potential of oil phase, psia [kPa]
Φpi

potential of phase p in gridblock (gridpoint) i, psia [kPa]
Φref
 potential at reference depth, psia [kPa]
Φw
 potential of water phase, psia [kPa]
μ
 fluid viscosity, cP [mPas]
μi
 viscosity of fluid in gridblock (gridpoint) i, cP [mPas]
μ°
 fluid viscosity at reference pressure p°, cP [mPas]
μg
 gas-phase viscosity, cP [mPas]
μp jxi�1/2

viscosity of phase p between point i and point i�1 along the

x-axis, cP [mPas]
μo
 oil-phase viscosity, cP [mPas]
μob
 oil-phase viscosity at bubble-point pressure, cP [mPas]
μw
 water-phase viscosity, cP [mPas]
μ jxi�1/2

fluid viscosity between point i and point i�1 along the x-axis,
cP [mPas]
ψ
 a set containing gridblock (or gridpoint) numbers
ψb
 the set of gridblocks (or gridpoints) sharing the same reservoir

boundary b

ψ i,j,k
 the set of existing gridblocks (or gridpoints) that are neighbors

to gridblock (gridpoint) (i, j,k)

ψn
 the set of existing gridblocks (or gridpoints) that are neighbors

to gridblock (gridpoint) n

ψ rn
the set of existing gridblocks (or gridpoints) that are neighbors

to gridblock (gridpoint) n along the r-direction

ψxn
the set of existing gridblocks (or gridpoints) that are neighbors

to gridblock (gridpoint) n along the x-axis

ψyn
the set of existing gridblocks (or gridpoints) that are neighbors

to gridblock (gridpoint) n along the y-axis

ψ zn
 the set of existing gridblocks (or gridpoints) that are neighbors

to gridblock (gridpoint) n along the z-axis



xxxii Nomenclature
ψθn
 the set of existing gridblocks (or gridpoints) that are neighbors

to gridblock (gridpoint) n along the θ-direction

ψw
 the set that contains all wellblocks penetrated by a well
ρ
 fluid density at reservoir conditions, lbm/ft3[kg/m3]
ρ°
 fluid density at reference pressure p° and reservoir temperature,

lbm/ft3[kg/m3]
ρg
 gas-phase density at reservoir conditions, lbm/ft3[kg/m3]
ρGS
 Gauss-Seidel spectral radius
ρgsc
 gas-phase density at standard conditions, lbm/ft3[kg/m3]
ρo
 oil-phase density at reservoir conditions, lbm/ft3[kg/m3]
ρosc
 oil-phase density at standard conditions, lbm/ft3[kg/m3]
ρsc
 fluid density at standard conditions, lbm/ft3[kg/m3]
ρw
 water-phase density at reservoir conditions, lbm/ft3[kg/m3]
ρwsc
 water-phase density at standard conditions, lbm/ft3[kg/m3]
ρwbP
 average fluid density in wellbore, lbm/ft3[kg/m3]
l2ψP
 summation over all members of set ψ
l2ψ i, j,kP
 summation over all members of set ψ i,j,k
l2ψnP
 summation over all members of set ψn
i2ψwP
 summation over all members of set ψw
l2ψwP
 summation over all members of set ψw
l2ξn

summation over all members of set ξn
ζj
 element i of a temporary vector ζ
!� �

generated in Tang’s

algorithm
ξi,j,k
 set of all reservoir boundaries that are shared with gridblock

(gridpoint) (i, j,k)

ξn
 set of all reservoir boundaries that are shared with gridblock

(gridpoint) n

ω
 overrelaxation parameter
ωopt
 optimum overrelaxation parameter
{ }
 empty set or a set that contains no elements
[
 union operator
Subscripts
1,2
 between gridpoints 1 and 2
b
 bulk, boundary, or bubble point
bB
 boundary gridblock
bB∗∗
 gridblock next to reservoir boundary but falls outside the reservoir
bP
 boundary gridpoint
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bP∗
 gridpoint next to reservoir boundary but falls inside the reservoir
bP∗∗
 gridpoint next to reservoir boundary but falls outside the reservoir
c
 component c, c¼o, w, fg, sg; conversion; or capillary

ca
 accumulation for component c

ci
 entering (in) for component c

cm
 mass for component c

co
 leaving (out) for component c

cv
 per unit bulk volume for component c

E
 east
est
 estimated
fg
 free-gas component
g
 gas phase
i
 index for gridblock, gridpoint, or point along the x- or r-direction

i�1
 index for neighboring gridblock, gridpoint, or point along the x- or

r-direction

i�1/2
 between i and i�1
i,i�1/2
 between block (or point) i and block boundary i�1/2 along the

x-direction

(i, j,k)
 index for gridblock, gridpoint, or point in x-y-z (or r -θ - z) space

iw
 irreducible water
j
 index for gridblock, gridpoint, or point along the y- or θ-direction

j�1
 index for neighboring gridblock, gridpoint, or point along the y- or

θ-direction

j�1/2
 between j and j�1
j,j�1/2
 between block (or point) j and block boundary j�1/2 along the

y-direction

k
 index for gridblock, gridpoint, or point along the z-direction

k�1
 index for neighboring gridblock, gridpoint, or point along the

z-direction

k�1/2
 between k and k�1
k,k�1/2
 between block (or point) k and block boundary k�1/2 along the

z-direction

l
 index for neighboring gridblock, gridpoint, or point
L
 lower
lg
 logarithmic
l,n
 between gridblocks (or gridpoints) l and n

m
 mass
n
 index for gridblock (or gridpoint) for which a flow equation is

written
N
 north
nx
 last gridblock (or gridpoint) in the x-direction for a parallelepiped

reservoir
ny
 last gridblock (or gridpoint) in the y-direction for a parallelepiped

reservoir
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nz
 last gridblock (or gridpoint) in the z-direction for a parallelepiped

reservoir
o
 oil phase or oil component
opt
 optimum
p
 phase p, p¼o,w,g

r
 r-direction

ref
 reference
ri�1/2
 between i and i�1 along the r-direction

s
 solution
S
 south
sc
 standard conditions
sg
 solution-gas
sp
 specified
U
 upper
v
 per unit volume of reservoir rock
w
 water phase or water component
W
 west
wb
 wellbore
wf
 flowing well
x
 x-direction

xi�1/2
 between i and i�1 along the x-direction

y
 y-direction

yj�1/2
 between j and j�1 along the y-direction

z
 z-direction

zk�1/2
 between k and k�1 along the z-direction

θ
 θ-direction

θj�1/2
 between j and j�1 along the θ-direction
Superscripts
m
 time level m

n
 time level n (old time level)
n+1
 time level n+1 (new time level, current time level)
n+1
(v)
 time level n+1 and old iteration v
n+ 1
v + 1ð Þ
 time level n+1 and current iteration v+1
(ν)
 old iteration v

(ν+1)
 current iteration v+1

∗
 intermediate value before SOR acceleration
°
 reference
-
 average

0
 derivative with respect to pressure
!
 vector
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1.1 Background

Reservoir simulation in the oil industry has become the standard for solving res-

ervoir engineering problems. Simulators for various recovery processes have

been developed and continue to be developed for new oil recovery processes.

Reservoir simulation is the art of combining physics, mathematics, reservoir

engineering, and computer programming to develop a tool for predicting hydro-

carbon reservoir performance under various operating strategies. Fig. 1.1

depicts the major steps involved in the development of a reservoir simulator:

formulation, discretization, well representation, linearization, solution, and val-

idation (Odeh, 1982). In this figure, formulation outlines the basic assumptions

inherent to the simulator, states these assumptions in precise mathematical

terms, and applies them to a control volume in the reservoir. The result of this

step is a set of coupled, nonlinear partial differential equations (PDEs) that

describes fluid flow through porous media.

The PDEs derived during the formulation step, if solved analytically, would

give reservoir pressure, fluid saturations, andwell flow rates as continuous func-

tions of space and time. Because of the highly nonlinear nature of the PDEs, how-

ever, analytical techniques cannot be used, and solutions must be obtained with

numerical methods. In contrast to analytical solutions, numerical solutions give

the values of pressure and fluid saturations only at discrete points in the reservoir

and at discrete times.Discretization is the process of converting PDEs into alge-
braic equations. Several numerical methods can be used to discretize the PDEs;

however, the most common approach in the oil industry today is the finite-

difference method. The most commonly used finite-difference approach essen-

tially builds on Taylor series expansion and neglects terms that are considered to

be smallwhen small difference in space parameters is considered. This expanded

form is a set of algebraic equations. Finite element method, on the other hand,
0-12-819150-7.00001-3
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FIG. 1.1 Major steps used todevelop reservoir simulators. (Modified fromOdeh,A.S., 1982. Anover-

view of mathematical modeling of the behavior of hydrocarbon reservoirs. SIAM Rev. 24(3), 263.)
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usesvarious functions to express variables in thegoverningequation.These func-

tions lead to the development of an error function that is minimized in order to

generate solutions to thegoverningequation.Tocarryout discretization, aPDE is

written for a given point in space at a given time level. The choice of time level

(old time level, current time level, or intermediate time level) leads to the explicit,

implicit, or Crank-Nicolson formulation method. The discretization process

results in a system of nonlinear algebraic equations. These equations generally

cannot be solved with linear equation solvers, and the linearization of such equa-

tions becomes a necessary step before solutions can be obtained.Well represen-
tation is used to incorporate fluid production and injection into the nonlinear

algebraic equations. Linearization involves approximating nonlinear terms

(transmissibilities, production and injection, and coefficients of unknowns in

the accumulation terms) in both space and time. Linearization results in a set

of linear algebraic equations. Any one of several linear equation solvers can then

be used to obtain the solution, which comprises pressure and fluid saturation dis-

tributions in the reservoir and well flow rates.Validation of a reservoir simulator

is the last step in developing a simulator, afterwhich the simulator can be used for

practical field applications. The validation step is necessary to make sure that no

errors were introduced in the various steps of development or in computer pro-

gramming. This validation is distinct from the concept of conducting experi-

ments in support of a mathematical model. Validation of a reservoir simulator

merely involves testing the numerical code.

There are three methods available for the discretization of any PDE: the

Taylor series method, the integral method, and the variational method (Aziz

and Settari, 1979). The first two methods result in the finite-difference method,

whereas the third results in the variational method. The “mathematical

approach” refers to the methods that obtain the nonlinear algebraic equations

through deriving and discretizing the PDEs. Developers of simulators relied

heavily on mathematics in the mathematical approach to obtain the nonlinear

algebraic equations or the finite-difference equations. However, Abou-

Kassem (2006) recently has presented a new approach that derives the finite-

difference equations without going through the rigor of PDEs and discretization

and that uses fictitious wells to represent boundary conditions. This new tactic is

termed the “engineering approach” because it is closer to the engineer’s think-

ing and to the physical meaning of the terms in the flow equations. The engi-

neering approach is simple and yet general and rigorous, and both the

engineering and mathematical approaches treat boundary conditions with the
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same accuracy if the mathematical approach uses second-order approximations.

In addition, the engineering approach results in the same finite-difference equa-

tions for any hydrocarbon recovery process. Because the engineering approach

is independent of the mathematical approach, it reconfirms the use of central

differencing in space discretization and highlights the assumptions involved

in choosing a time level in the mathematical approach.
1.2 Milestones for the engineering approach

The foundations for the engineering approach have been overlooked all these

years. Traditionally, reservoir simulators were developed by first using a con-

trol volume (or elementary volume), such as that shown in Fig. 1.2 for 1-D flow

or in Fig. 1.3 for 3-D flow that was visualized by mathematicians to develop

fluid flow equations. Note that point x in 1-D and point (x, y, z) in 3-D fall

on the edge of control volumes. The resulting flow equations are in the form

of PDEs. Once the PDEs are derived, early pioneers of simulation looked to

mathematicians to provide solution methods. These methods started with the

description of the reservoir as a collection of gridblocks, represented by points

that fall within them (or gridpoints representing blocks that surround them), fol-

lowed by the replacement of the PDEs and boundary conditions by algebraic

equations, and finally the solution of the resulting algebraic equations. Devel-

opers of simulators were all the time occupied by finding the solution and, per-

haps, forgot that they were solving an engineering problem. The engineering

approach can be realized should one try to relate the terms in the discretized

flow equations for any block to the block itself and to all its neighboring blocks.
Δx
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Flow outFlow in

FIG. 1.2 Control volume used by mathematicians for 1-D flow.
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FIG. 1.3 Control volume used by mathematicians for 3-D flow. (Modified from Bear, J., 1988.
Dynamics of Fluids in Porous Media. Dover Publications, New York.)
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A close inspection of the flow terms in a discretized flow equation of a given

fluid (oil, water, or gas) in a black-oil model for a given block reveals that these

terms are nothing but Darcy’s law describing volumetric flow rates of the fluid

at standard conditions between the block and its neighboring blocks. The accu-

mulation term is the change in the volume at standard conditions of the fluid

contained in the block itself at two different times.

Farouq Ali (1986) observed that the flow terms in the discretized form of

governing equations were nothing but Darcy’s law describing volumetric flow

rate between any two neighboring blocks. Making use of this observation

coupled with an assumption related to the time level at which flow terms are

evaluated, he developed the forward-central-difference equation and the

backward-central-difference equation without going through the rigor of the

mathematical approach in teaching reservoir simulation to undergraduate stu-

dents. Ertekin et al. (2001) were the first to use a control volume represented

by a point at its center in the mathematical approach as shown in Fig. 1.4 for

1-D flow and Fig. 1.5 for 3-D flow. This control volume is closer to engineer’s

thinking of representing blocks in reservoirs. The observation by Farouq Ali in

the early 1970s and the introduction of the new control volume by Ertekin et al.

have been the two milestones that contributed significantly to the recent devel-

opment of the engineering approach.

Overlooking the engineering approach has kept reservoir simulation closely

tied with PDEs. From amathematician’s point of view, this is a blessing because

researchers in reservoir simulation have devised advanced methods for solving
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highly nonlinear PDEs, and this enriched the literature in mathematics in this

important area. Contributions of reservoir simulation to solving PDEs in multi-

phase flow include the following:

l Treating nonlinear terms in space and time (Settari and Aziz, 1975; Coats

et al., 1977; Saad, 1989; Gupta, 1990)

l Devising methods of solving systems of nonlinear PDEs, such as the IMPES

(Breitenbach et al., 1969), SEQ (Spillette et al., 1973; Coats, 1978), fully

implicit SS (Sheffield, 1969), and adaptive implicit (Thomas and

Thurnau, 1983) methods

l Devising advanced iterative methods for solving systems of linear algebraic

equations, such as the Block Iterative (Behie and Vinsome, 1982), Nested

Factorization (Appleyard and Cheshire, 1983), and Orthomin (Vinsome,

1976) methods
1.3 Importance of the engineering and mathematical
approaches

The importance of the engineering approach lies in being close to the engineer’s

mindset and in its capacity to derive the algebraic flow equations easily and

without going through the rigor of PDEs and discretization. In reality, the devel-

opment of a reservoir simulator can do away with the mathematical approach

because the objective of this approach is to obtain the algebraic flow equations

for the process being simulated. In addition, the engineering approach recon-

firms the use of central-difference approximation of the second-order space

derivative and provides interpretation of the approximations involved in the

forward-, backward-, and central-difference of the first-order time derivative

that are used in the mathematical approach.

The majority, if not all, of available commercial reservoir simulators were

developed without even looking at an analysis of truncation errors, consistency,

convergence, or stability. The importance of the mathematical approach, how-

ever, lies within its capacity to provide analysis of such items. Only in this case

do the two approaches complement each other and both become equally impor-

tant in reservoir simulation.
1.4 Summary

The traditional steps involved in the development of a reservoir simulator

include formulation, discretization, well representation, linearization, solution,

and validation. Themathematical approach involves formulation to obtain a dif-

ferential equation, followed by reservoir discretization to describe the reservoir,

and finally the discretization of the differential equation to obtain the flow equa-

tion in algebraic form. In contrast, the engineering approach involves reservoir

discretization to describe the reservoir, followed by formulation to obtain the
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flow equations in integral form, which, when approximated, produce the flow

equations in algebraic form. The mathematical approach and engineering

approach produce the same flow equations in algebraic form but use two unre-

lated routes. The seeds for the engineering approach existed long time ago but

were overlooked by pioneers in reservoir simulation because modeling petro-

leum reservoirs has been considered a mathematical problem rather than an

engineering problem. The engineering approach is both easy and robust. It does

not involve differential equations, discretization of differential equations, or

discretization of boundary conditions.

1.5 Exercises

1.1 Name the major steps used in the development of a reservoir simulator

using the mathematical approach.

1.2 Indicate the input and the expected output for eachmajor step inExercise 1.1.

1.3 How does the engineering approach differ from the mathematical

approach in developing a reservoir simulator?

1.4 Name the major steps used in the development of a reservoir simulator

using the engineering approach.

1.5 Indicate the input and the expected output for eachmajor step inExercise 1.4.

1.6 Draw a sketch, similar to Fig. 1.1, for the development of a reservoir sim-

ulator using the engineering approach.

1.7 Using your ownwords, state the importance of the engineering approach in

reservoir simulation.
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2.1 Introduction

The development of flow equations requires an understanding of the physics of

the flow of fluids in porous media; the knowledge of fluid properties, rock prop-

erties, fluid-rock properties, and reservoir discretization into blocks; and the use

of basic engineering concepts. We have seen in the previous chapter that the

description of the process within the engineering approach is simplified because

casting of equations into partial differential equations is avoided. In practical

term, it means savings of many man months of company time. In this chapter,

single-phase flow is used to show the effectiveness of the engineering approach.

Discussions of fluid-rock properties are postponed until Chapter 11, which

deals with the simulation of multiphase flow. The engineering approach is used

to derive a fluid flow equation. This approach involves three consecutive steps:

(1) discretization of the reservoir into blocks; (2) derivation of the algebraic
19150-7.00002-5
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8 Petroleum reservoir simulation
flow equation for a general block in the reservoir using basic engineering con-

cepts such as material balance, formation volume factor (FVF), and Darcy’s

law; and (3) approximation of time integrals in the algebraic flow equation

derived in the second step. Even though petroleum reservoirs are geometrically

three dimensional, fluids may flow in one direction (1-D flow), two directions

(2-D flow), or three directions (3-D flow). This chapter presents the flow equa-

tion for single phase in 1-D reservoir. Then, it extends the formulation to 2-D

and 3-D in Cartesian coordinates. In addition, this chapter presents the deriva-

tion of the single-phase flow equation in 3-D radial-cylindrical coordinates for

single-well simulation.
2.2 Properties of single-phase fluid

Fluid properties that are needed to model single-phase fluid flow include those

that appear in the flow equations, namely, density (ρ), formation volume factor

(B), and viscosity (μ). Fluid density is needed for the estimation of fluid gravity

(γ) using:

γ¼ γcρg (2.1)

where γc¼ the gravity conversion factor and g¼ acceleration due to gravity. In
general, fluid properties are a function of pressure.Mathematically, the pressure

dependence of fluid properties is expressed as:

ρ¼ f pð Þ (2.2)

B¼ f pð Þ (2.3)

and
μ¼ f pð Þ (2.4)

The derivation of the general flow equation in this chapter does not require
more than the general dependence of fluid properties on pressure as expressed

by Eqs. (2.2) through (2.4). In Chapter 7, the specific pressure dependence of

fluid properties is required for the derivation of the flow equation for each type

of fluid.
2.3 Properties of porous media

Modeling single-phase fluid flow in reservoirs requires the knowledge of basic

rock properties such as porosity and permeability or, more precisely, effective

porosity and absolute permeability. Other rock properties include reservoir

thickness and elevation below sea level. Effective porosity is the ratio of inter-

connected pore spaces to bulk volume of a rock sample. Petroleum reservoirs

usually have heterogeneous porosity distribution; that is, porosity changes with

location. A reservoir is described as homogeneous if porosity is constant
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independent of location. Porosity depends on reservoir pressure because of solid

and pore compressibilities. It increases as reservoir pressure (pressure of the

fluid contained in the pores) increases and vice versa. This relationship can

be expressed as

ϕ¼ϕ° 1 + cϕ p�p°ð Þ� �
(2.5)

where ϕ°¼ porosity at reference pressure (p°) and cϕ¼ porosity compressibil-
ity. Permeability is the capacity of the rock to transmit fluid through its con-

nected pores when the same fluid fills all the interconnected pores.

Permeability is a directional rock property. If the reservoir coordinates coincide

with the principal directions of permeability, then permeability can be repre-

sented by kx, ky, and kz. The reservoir is described as having isotropic perme-

ability distribution if kx¼ky¼kz; otherwise, the reservoir is anisotropic if

permeability shows directional bias. Usually, kx¼ky¼kH, and kz¼kV with

kV<kH because of depositional environments.
2.4 Reservoir discretization

Reservoir discretization means that the reservoir is described by a set of grid-

blocks (or gridpoints) whose properties, dimensions, boundaries, and locations

in the reservoir are well defined. Chapter 4 deals with reservoirs discretized

using a block-centered grid, and Chapter 5 discusses reservoirs discretized

using a point-distributed grid. Fig. 2.1 shows reservoir discretization in the

x-direction as one focuses on block i.
The figure showshowtheblocksare related toeachother—block iand itsneigh-

boring blocks (blocks i�1 and i+1)—block dimensions (Δxi, Δxi�1, Δxi+1),
Δxi – 1/2
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Δx i – 1

x i – 1
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x i + 1
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x i + 1/2

FIG. 2.1 Relationships between block i and its neighboring blocks in 1-D flow.
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block boundaries (xi�1/2, xi+1/2), distances between the point that represents the

block and block boundaries (δxi�,δxi+), and distances between the points represent-
ing the blocks (Δxi�1/2,Δxi+1/2). The terminology presented inFig. 2.1 is applicable

to both block-centered and point-distributed grid systems in 1-D flow in the direc-

tion of the x-axis. Reservoir discretization in the y- and z-directions uses similar

terminology. In addition, each gridblock (or gridpoint) is assigned elevation and

rock properties such as porosity and permeabilities in the x-, y-, and z-directions.
The transfer of fluids from one block to the rest of reservoir takes place through

the immediate neighboring blocks. When the whole reservoir is discretized, each

block is surroundedbyaset (group)ofneighboringblocks.Fig.2.2ashowsthat there

are two neighboring blocks in 1-D flow along the x-axis, Fig. 2.2b shows that there
are four neighboring blocks in 2-D flow in the x-y plane, and Fig. 2.2c shows that
there are six neighboring blocks in 3-D flow in x-y-z space.

It must be made clear that once the reservoir is discretized and rock prop-

erties are assigned to gridblocks (or gridpoints), space is no longer a variable

and functions that depend on space, such as interblock properties, become well

defined. In other words, reservoir discretization removes space from being a

variable in the formulation of the problem. More elaboration follows in

Section 2.6.2.
2.5 Basic engineering concepts

The basic engineering concepts include mass conservation, equation of state,

and constitutive equation. The principle of mass conservation states that the

total mass of fluid entering minus the fluid leaving a volume element of the res-

ervoir, shown in Fig. 2.3 as block i, must equal the net increase in the mass of the

fluid in the reservoir volume element, that is,

mi�mo +ms ¼ma (2.6)
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FIG. 2.3 Block i as a reservoir volume element in 1-D flow.
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where mi¼ the mass of fluid entering the reservoir volume element from other

parts of the reservoir, mo¼ the mass of fluid leaving the reservoir volume ele-

ment to other parts of the reservoir,ms¼ the mass of fluid entering or leaving the

reservoir volume element externally through wells, andma¼ the mass of excess

fluid stored in or depleted from the reservoir volume element over a time

interval.

An equation of state describes the density of fluid as a function of pressure

and temperature. For single-phase fluid,

B¼ ρsc=ρ (2.7a)

for oil or water,
Bg ¼
ρgsc
αcρg

(2.7b)

for gas, where ρ and ρg¼ fluid densities at reservoir conditions, ρsc and
ρgsc¼ fluid densities at standard conditions, and αc¼ the volume

conversion factor.

A constitutive equation describes the rate of fluid movement into (or out of)

the reservoir volume element. In reservoir simulation, Darcy’s law is used to

relate fluid flow rate to potential gradient. The differential form of Darcy’s

law in a 1-D inclined reservoir is

ux ¼ qx=Ax ¼�βc
kx
μ

∂Φ
∂x

(2.8)

where βc¼ the transmissibility conversion factor, kx¼ absolute permeability of
rock in the direction of the x-axis, μ¼ fluid viscosity, Φ¼ potential, and ux¼
volumetric (or superficial) velocity of fluid defined as fluid flow rate (qx) per
unit cross-sectional area (Ax) normal to flow direction x. The potential is related
to pressure through the following relationship:

Φ�Φref ¼ p�pref
� �� γ Z�Zref

� �
(2.9)

where Z¼elevation from datum, with positive values downward.
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Therefore,

∂Φ
∂x

¼ ∂p

∂x
� γ

∂Z

∂x

� �
(2.10)

and the potential differences between block i and its neighbors, block i�1 and
block i+1, are

Φi�1�Φi ¼ pi�1�pið Þ� γi�1=2 Zi�1�Zið Þ (2.11a)

and
Φi+ 1�Φi ¼ pi + 1�pið Þ� γi+ 1=2 Zi+ 1�Zið Þ (2.11b)
2.6 Multidimensional flow in Cartesian coordinates

2.6.1 Block identification and block ordering

Beforewriting the flowequation for a 1-D, 2-D, or 3-D reservoir, the blocks in the

discretized reservoir must be identified and ordered. Any block in the reservoir

can be identified either by engineering notation or by the number the block holds

in agivenordering scheme.Engineering notationuses theorder of theblock in the

x-, y-, and z-directions, that is, it identifies a block as (i, j,k), where i, j, and k are
the orders of the block in the three directions x, y, and z, respectively. The engi-
neering notation for block identification is the most convenient for entering

reservoir description (input) and for printing simulation results (output).

Fig. 2.4 shows the engineering notation for block identification in a 2-D reservoir

consisting of 4�5 blocks. Block ordering not only serves to identify blocks in

the reservoir but also minimizes matrix computations in obtaining the solution

of linear equations.

There are many block-ordering schemes, including natural ordering, zebra

ordering, diagonal (D2) ordering, alternating diagonal (D4) ordering, cyclic

ordering, and cyclic-2 ordering. If the reservoir has inactive blocks within its

external boundaries, such blocks will be skipped, and ordering of active blocks

will continue (Abou-Kassem and Ertekin, 1992). For multidimensional
(1,5) (2,5) (3,5) (4,5)

(1,4) (2,4) (3,4) (4,4)

(1,3) (2,3) (3,3) (4,3)

(1,2) (2,2) (3,2) (4,2)

(1,1) (2,1) (3,1) (4,1)

FIG. 2.4 Engineering notation for block identification.
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reservoirs, natural ordering is the simplest to program but is the least efficient in

solving linear equations, whereas D4 ordering requires complicated program-

ming but is the most efficient in obtaining the solution when the number of

blocks is large. If the number of blocks is very large, however, the zebra order-

ing scheme becomes twice as efficient as D4 ordering in obtaining the solution

(McDonald and Trimble, 1977). Fig. 2.5 shows the various block-ordering

schemes for the 2-D reservoir shown in Fig. 2.4. Given the engineering notation

for block identification, block ordering is generated internally in a simulator.

Any ordering scheme becomes even more efficient computationally if the

ordering is performed along the shortest direction, followed by the intermediate

direction, and finally the longest direction (Abou-Kassem and Ertekin, 1992).
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FIG. 2.5 Block-ordering schemes used in reservoir simulation. (a) Natural ordering, (b) zebra

ordering, (c) diagonal (D2) ordering, (d) alternating diagonal (D4) ordering, (e) cyclic ordering,

and (f) cyclic-2 ordering.
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Details related to various ordering schemes and computational efficiency in

solving linear equations are not discussed further in this book but can be found

elsewhere (Woo et al., 1973; Price and Coats, 1974; McDonald and Trimble,

1977). The natural ordering scheme is used throughout this book because it pro-

duces equations that are readily solvable with handheld calculators and easily

programmable for computer usage. The following three examples demonstrate

the use of engineering notation and natural ordering to identify blocks in

multidimensions.

Example 2.1 Consider the 1-D reservoir shown in Fig. 2.6a. This reservoir is

discretized using four blocks in the x-direction as shown in the figure. Order

the blocks in this reservoir using natural ordering.

Solution

We first choose one of the corner blocks (say the left corner block), identify

it as block 1, and then move along a given direction to the other blocks, one

block at a time. The order of the next block is obtained by incrementing the

order of the previous block by one. The process of block ordering (or number-

ing) continues until the last block in that direction is numbered. The final order-

ing of blocks in this reservoir is shown in Fig. 2.6b.

Example 2.2 Consider the 2-D reservoir shown in Fig. 2.7a. This reservoir is

discretized using 4�3 blocks as shown in the figure. Identify the blocks in this

reservoir using the following:

1. Engineering notation

2. Natural ordering
1 2 3 4

(a) (b)
FIG. 2.6 1-D reservoir representation in Example 2.1. (a) Reservoir representation and (b) natural

ordering of blocks.
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FIG. 2.7 2-D reservoir representation in Example 2.2. (a) Reservoir representation, (b) engineer-

ing notation, and (c) natural ordering of blocks.
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FIG. 2.8 3-D reservoir representation in Example 2.3. (a) Reservoir representation, (b) engineer-

ing notation, and (c) natural ordering of blocks.
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Solution

1. The engineering notation for block identification is shown in Fig. 2.7b.

2. We start by choosing one of the corner blocks in the reservoir. In this example,

we arbitrarily choose the lower-left corner block, block (1,1), and identify it

as block 1. In addition, we choose to order blocks along rows. The rest of the

blocks in the first row (j¼1) are numbered as explained in Example 2.1.

Block (1,2) in the first column (i¼1) and second row (j¼2) is numbered next

as block 5, and block numbering along this row continues as in Example 2.1.

Block numbering continues row by row until all the blocks are numbered.

The final ordering of blocks in this reservoir is shown in Fig. 2.7c.

Example 2.3 Consider the 3-D reservoir shown in Fig. 2.8a. This reservoir is

discretized into 4�3�3 blocks as shown in the figure. Identify the blocks

in this reservoir using the following:

1. Engineering notation

2. Natural ordering.

Solution

1. The engineering notation for block identification in this reservoir is shown

in Fig. 2.8b.

2. We arbitrarily choose the bottom-lower-left corner block, block (1,1,1), and

identify it as block 1. In addition, we choose to order blocks layer by layer

and along rows. The blocks in the first (bottom) layer (k¼1) are ordered as

shown in Example 2.2. Next, block (1,1,2) is numbered as block 13, and the

ordering of blocks in this second layer is carried out as in the first layer.

Finally, block (1,1,3) is numbered as block 25, and the ordering of blocks
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in this third layer (k¼3) is carried out as before. Fig. 2.8c shows the result-

ing natural ordering of blocks in this reservoir.
2.6.2 Derivation of the one-dimensional flow equation in Cartesian
coordinates

Fig. 2.3 shows block i and its neighboring blocks (block i�1 and block i+1) in
the x-direction. At any instant in time, fluid enters block i, coming from block

i�1 across its xi�1/2 face at a mass rate of wx jxi�1/2
, and leaves to block i+1

across its xi+1/2 face at a mass rate of wx jxi+1/2. The fluid also enters block i
through a well at a mass rate of qmi

. The mass of fluid contained in a unit volume

of rock in block i is mvi
. Therefore, the material balance equation for block i

written over a time step Δt¼ tn+1� tn can be rewritten as

mijxi�1=2
�mojxi+ 1=2 +msi ¼mai (2.12)

Terms like wx jxi�1/2
, wx jxi+1/2 and qmi

are functions of time only because space
is not a variable for an already discretized reservoir as discussed in Section 2.4.

Further justification is presented later in this section. Therefore,

mijxi�1=2
¼

ðtn+ 1

tn

wxjxi�1=2
dt (2.13)

mojxi+ 1=2 ¼
ðtn + 1

tn

wxjxi + 1=2dt (2.14)

and
msi ¼
ðtn + 1

tn

qmi
dt (2.15)

Using Eqs. (2.13) through (2.15), Eq. (2.12) can be rewritten as
ðtn + 1

tn

wxjxi�1=2
dt�

ðtn + 1

tn

wxjxi+ 1=2dt+
ðtn + 1

tn

qmi
dt¼mai (2.16)

The mass accumulation is defined as
mai ¼Δt Vbmvð Þi ¼Vbi mn+ 1
vi

�mn
vi

� 	
(2.17)

Note that mass rate and mass flux are related through
wx ¼ _mxAx (2.18)
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Mass flux ( _mx) can be expressed in terms of fluid density and volumetric

velocity:

_mx ¼ αcρux (2.19)

mass of fluid per unit volume of rock (mv) can be expressed in terms of fluid
density and porosity:

mv ¼ϕρ (2.20)

and mass of injected or produced fluid (qm) can be expressed in terms of well
volumetric rate (q) and fluid density:

qm ¼ αcρq (2.21)

Substitution of Eqs. (2.17) and (2.18) into Eq. (2.16) yields:
ðtn+ 1

tn

ð _mxAxÞjxi�1=2
dt�

ðtn + 1

tn

ð _mxAxÞjxi + 1=2dt+
ðtn+ 1

tn

qmi
dt¼Vbi mn+ 1

vi
�mn

vi

� 	
(2.22)

Substitution of Eqs. (2.19) through (2.21) into Eq. (2.22) yields:
ðtn+ 1

tn

ðαcρuxAxÞjxi�1=2
dt�

ðtn+ 1

tn

ðαcρuxAxÞjxi+ 1=2dt+
ðtn+ 1

tn

αcρqð Þidt¼Vbi ϕρð Þn+ 1i � ϕρð Þni
h i

(2.23)

Substitution of Eq. (2.7a) into Eq. (2.23), dividing by αcρsc and noting that
q/B¼qsc, yields

ðtn + 1

tn

uxAx

B

�� 




xi�1=2

dt�
ðtn + 1

tn

uxAx

B

�� 




xi+ 1=2

dt+

ðtn+ 1

tn

qscidt¼
Vbi

αc

ϕ

B

� �n+ 1

i

� ϕ

B

� �n

i

" #

(2.24)

Fluid volumetric velocity (flow rate per unit cross-sectional area) from
block i�1 to block i (ux jxi�1/2
) at any time instant t is given by the algebraic ana-

log of Eq. (2.8):

uxjxi�1=2
¼ βc

kxjxi�1=2

μjxi�1=2

Φi�1�Φið Þ
Δxi�1=2

� �
(2.25a)

where kx jxi�1/2
is rock permeability between blocks i�1 and i that are separated
by a distance Δxi�1/2, Φi�1, and Φi are the potentials of blocks i�1 and i, and
μ jxi�1/2

is viscosity of the fluid between blocks i�1 and i.
Likewise, fluid flow rate per unit cross-sectional area from block i to block

i+1 is:

uxjxi+ 1=2 ¼ βc
kxjxi+ 1=2
μjxi + 1=2

Φi�Φi+ 1ð Þ
Δxi+ 1=2

� �
(2.25b)
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Substitution of Eq. (2.25) into Eq. (2.24) and grouping terms results in

ðtn + 1

tn

βc
kxAx

μBΔx

�� 




xi�1=2

Φi�1�Φið Þ
" #

dt�
ðtn + 1

tn

βc
kxAx

μBΔx

�� 




xi + 1=2

Φi�Φi+ 1ð Þ
" #

dt

+

ðtn + 1

tn

qscidt¼
Vbi

αc

ϕ

B

� �n+ 1

i

� ϕ

B

� �n

i

" #
(2.26)

or
ðtn+ 1

tn

Txi�1=2
Φi�1�Φið Þ

h i
dt+

ðtn + 1

tn

Txi+ 1=2 Φi+ 1�Φið Þ
h i

dt+

ðtn + 1

tn

qscidt

¼Vbi

αc

ϕ

B

� �n + 1

i

� ϕ

B

� �n

i

" #
(2.27)

where
Txi�1=2
¼ βc

kxAx

μBΔx

�� 




xi�1=2

(2.28)

is transmissibility in the x-direction between block i and the neighboring block

i�1. The derivation of Eq. (2.27) is rigorous and involves no assumptions other

than the validity of Darcy’s law (Eq. 2.25) to estimate fluid volumetric velocity

between block i and its neighboring block i�1. The validity of Darcy’s law is

well accepted. Note that similar derivation can be made even if Darcy’s law is

replaced by another flow equation, such as Brinkman’s equation, etc. (Islam,

1992; Mustafiz et al., 2005a, b). For heterogeneous block permeability distri-

bution and irregular grid blocks (neither constant nor equal Δx, Δy, and Δz),

the part βc
kxAx

Δx

�� 




xi�1=2

of transmissibility Txi�1/2
is derived in Chapter 4 for a

block-centered grid and in Chapter 5 for a point-distributed grid. Note that

for a discretized reservoir, blocks have defined dimensions and permeabilities;

therefore, interblock geometric factor βc
kxAx

Δx

�� 




xi�1=2

" #
is constant, indepen-

dent of space and time. In addition, the pressure-dependent term (μB)jxi�1/2
of

transmissibility uses some average viscosity and formation volume factor

(FVF) of the fluid contained in block i and the neighboring block i�1 or some

weight (upstream weighting and average weighting) at any instant of time t. In
other words, the term (μB)jxi�1/2

is not a function of space but a function of time as

block pressures change with time. Hence, transmissibility Txi�1/2
between block i

and its neighboring block i�1 is a function of time only; it does not depend on

space at any instant of time.
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Again, the accumulation term in Eq. (2.27) can be expressed in terms of the

change in the pressure of block i as shown in Eq. (2.29a):

ðtn + 1

tn

Txi�1=2
Φi�1�Φið Þ

h i
dt+

ðtn + 1

tn

Txi + 1=2 Φi+ 1�Φið Þ
h i

dt+

ðtn + 1

tn

qscidt

¼Vbi

αc

d

dp

ϕ

B

� �
i

pn+ 1i �pni
� �

(2.29a)

or after substituting Eq. (2.11) for potential,
ðtn + 1

tn

Txi�1=2
pi�1�pið Þ� γi�1=2 Zi�1�Zið Þ

h in o
dt

+

ðtn+ 1

tn

Txi + 1=2 pi+ 1�pið Þ� γi + 1=2 Zi+ 1�Zið Þ
h in o

dt

+

ðtn+ 1

tn

qscidt¼
Vbi

αc

d

dp

ϕ

B

� �
i

pn+ 1i �pni
� �

(2.29b)

where
d ϕ
� �

¼ the chord slope of
ϕ

� �
between pi

n+1 and pi
n.
dp B i B i

2.6.3 Approximation of time integrals

If the argument of an integral is an explicit function of time, the integral can be

evaluated analytically. This is not the case for the integrals appearing on the

left-hand side (LHS) of either Eq. (2.27) or Eq. (2.29). If Eq. (2.29b) is written

for every block i ¼ 1, 2, 3…nx, then the solution can be obtained by one of

the ODE methods (Euler’s method, the modified Euler method, the explicit

Runge-Kutta method, or the implicit Runge-Kutta method) reviewed by Aziz

and Settari (1979). ODE methods, however, are not efficient for solving reser-

voir simulation problems. Therefore, performing these integrations necessitates

making certain assumptions.

Consider the integral
Ðtn + 1
tn
F tð Þdt shown in Fig. 2.9. This integral is equal to the

area under the curve F(t) in the interval tn� t� tn+1. This area is also equal to the
t
tn tn+1

F(tn)

F(t)

F(tn+1)

FIG. 2.9 Representation of the integral function as the area under the curve.



tn tm
t

tn+1

F(tn)

F(t)

F(tn+1)

F(tm)

Δt

FIG. 2.10 Representation of the integral of a function as F(tm)�Δt.
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area of a rectangle with the dimensions of F(tm), where F is evaluated at time tm,
where tn� tm� tn+1 andΔt, whereΔt¼ (tn+1� tn), as shown in Fig. 2.10. Therefore,

ðtn+ 1

tn

F tð Þdt¼
ðtn + 1

tn

F tmð Þdt¼
ðtn + 1

tn

Fmdt¼Fm

ðtn+ 1

tn

dt¼Fm� tjtn + 1tn

¼Fm� tn + 1� tnð Þ¼Fm�Δt

(2.30)

The value of this integral can be calculated using the previous equation pro-
vided that the value of Fm or F(tm) is known. In reality, however, Fm is not

known, and therefore, it needs to be approximated. The area under the curve

in Fig. 2.9 can be approximated by one of the following four methods:

(1) F(tn)�Δt as shown in Fig. 2.11a, (2) F(tn+1)�Δt as shown in

Fig. 2.11b, (3) 1


2 F tnð Þ+F tn+ 1ð Þ½ ��Δt as shown in Fig. 2.11c, or (4) numer-

ical integration. The argument F in Eq. (2.30) stands for [Txi�1/2
(Φi�1�Φi)],

[Txi+1/2(Φi+1�Φi)], or qsci that appears on the LHS of Eq. (2.27), and Fm¼
value of F at time tm.

Therefore, Eq. (2.27) after this approximation becomes:

Tm
xi�1=2

Φm
i�1�Φm

i

� �h i
Δt+ Tm

xi+ 1=2
Φm

i+ 1�Φm
i

� �h i
Δt+ qmsciΔt

¼Vbi

αc

ϕ

B

� �n+ 1

i

� ϕ

B

� �n

i

" #
(2.31)
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FIG. 2.11 Approximations of the time integral of function.
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Dividing the previous equation by Δt gives:

Tm
xi�1=2

Φm
i�1�Φm

i

� �
+ Tm

xi+ 1=2
Φm

i+ 1�Φm
i

� �
+ qmsci ¼

Vbi

αcΔt
ϕ

B

� �n+ 1

i

� ϕ

B

� �n

i

" #

(2.32)

Substituting Eq. (2.11) into Eq. (2.32), we obtain the flow equation for
block i:

Tm
xi�1=2

pmi�1�pmi
� �� γmi�1=2 Zi�1�Zið Þ
h i

+ Tm
xi + 1=2

pmi+ 1�pmi
� �� γmi + 1=2 Zi+ 1�Zið Þ
h i

+ qmsci ¼
Vbi

αcΔt
ϕ

B

� �n+ 1

i

� ϕ

B

� �n

i

" #

(2.33)

The right-hand side (RHS) of the flow equation expressed as Eq. (2.33),
known as the fluid accumulation term, vanishes in problems involving the flow

of incompressible fluid (c¼0) in an incompressible porous medium (cϕ¼0).

This is the case where both B and ϕ are constant independent of pressure. Res-

ervoir pressure in this type of flow problems is independent of time. Example

2.4 demonstrates the application of Eq. (2.33) for an interior block in a 1-D res-

ervoir using a regular grid. In Chapter 7, the explicit, implicit, and Crank-

Nicolson formulations are derived from Eq. (2.33) by specifying the approxi-

mation of time tm as tn, tn+1, or tn+1/2, which are equivalent to using the first,

second, and third integral approximation methods mentioned previously. The

fourth integration method mentioned previously leads to the Runge-Kutta solu-

tion methods of ordinary differential equations. Table 2.1 presents the units of

all the quantities that appear in flow equations.

Example 2.4 Consider single-phase fluid flow in a 1-D horizontal reservoir.

The reservoir is discretized using four blocks in the x-direction, as shown in

Fig. 2.12. A well located in block 3 produces at a rate of 400STB/D. All grid

blocks have Δx¼250ft, w¼900ft, h¼100 ft, and kx¼270md. The FVF and

the viscosity of the flowing fluid are 1.0RB/STB and 2cP, respectively. Identify

the interior and boundary blocks in this reservoir. Write the flow equation for

block 3 and give the physical meaning of each term in the equation.

Solution

Blocks 2 and 3 are interior blocks, whereas blocks 1 and 4 are boundary

blocks. The flow equation for block 3 can be obtained from Eq. (2.33) for

i¼3, that is,

Tm
x3�1=2

pm2 �pm3
� �� γm

3�1=2 Z2�Z3ð Þ
h i

+ Tm
x3 + 1=2

pm4 �pm3
� �� γm

3 + 1=2 Z4�Z3ð Þ
h i

+qmsc3 ¼
Vb3

αcΔt
ϕ

B

� �n+ 1

3

� ϕ

B

� �n

3

" #
(2.34)



TABLE 2.1 Quantities used in flow equations in different systems of units.

Quantity Symbol

System of units

Customary units SPE metric units Lab units

Length x, y, z, r, Z ft m cm

Area A, Ax, Ay, Az, Ar, Aθ ft2 m2 cm2

Permeability k, kx, ky, kz, kr, kθ md μm2 darcy

Phase viscosity μ, μo, μw, μg cP mPa.s cP

Gas FVF B, Bg RB/scf m3/std m3 cm3/std cm3

Liquid FVF B, Bo, Bw RB/STB m3/std m3 cm3/std cm3

Solution GOR Rs scf/STB std m3/std m3 std cm3/std cm3

Phase pressure p, po, pw, pg psia kPa atm

Phase potential Φ, Φo, Φw, Φg psia kPa atm

Phase gravity γ, γo, γw, γg psi/ft kPa/m atm/cm

Gas flow rate qsc, qgsc scf/D std m3/d std cm3/s

Oil flow rate qsc, qosc STB/D std m3/d std cm3/s

Water flow rate qsc, qwsc B/D std m3/d std cm3/s

Volumetric velocity u RB/D-ft2 m/d cm/s

Phase density ρ, ρo, ρw, ρg lbm/ft3 kg/m3 g/cm3

Block bulk volume Vb ft3 m3 cm3

2
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sim

u
latio

n



Compressibility c, co, cϕ psi-1 kPa-1 atm-1

Compressibility factor z Dimensionless Dimensionless Dimensionless

Temperature T °R K K

Porosity ϕ Fraction Fraction Fraction

Phase saturation S, So, Sw, Sg Fraction Fraction Fraction

Relative permeability kro, krw, krg Fraction Fraction Fraction

Gravitational acceleration g 32.174ft/s2 9.806635m/s2 980.6635cm/s2

Time t, Δt day day sec

Angle θ rad rad rad

Transmissibility conversion factor βc 0.001127 0.0864 1

Gravity conversion factor γc 0.21584�10�3 0.001 0.986923�10�6

Volume conversion factor αc 5.614583 1 1
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FIG. 2.12 1-D reservoir representation in Example 2.4.
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For block 3, Z2¼Z3¼Z4 for horizontal reservoir and qmsc3¼ �400STB/D.

Because Δx3�1/2¼Δx and because μ and B are constant,

Tm
x3�1=2

¼ Tm
x3 + 1=2

¼ βc
kxAx

μBΔx
¼ 0:001127�270� 900�100ð Þ

2�1�250
¼ 54:7722STB=D-psi (2.35)

Substitution of Eq. (2.35) into Eq. (2.34) gives
54:7722ð Þ pm2 �pm3
� �

+ 54:7722ð Þ pm4 �pm3
� ��400¼ Vb3

αcΔt
ϕ

B

� �n+ 1

3

� ϕ

B

� �n

3

" #

(2.36)

The LHS of Eq. (2.36) comprises three terms. The first term represents the rate
of fluid flow from block 2 to block 3, the second term represents the rate of fluid

flow from block 4 to block 3, and the third term represents the rate of fluid pro-

duction from the well in block 3. The RHS of Eq. (2.36) represents the rate of

fluid accumulation in block 3. All terms have the units of STB/D.
2.6.4 Flow equations in multidimensions using engineering notation

A close inspection of the flow equation expressed as Eq. (2.33) reveals that this

equation involves three different groups: the interblock flow terms between

block i and its two neighboring blocks in the x-direction {Tmxi�1/2
[(pi�1

m �pi
m)�

γi�1/2
m (Zi�1�Zi)] and Tmxi+1/2[(pi+1

m �pi
m)�γi+1/2

m (Zi+1�Zi)]}, the source term

due to injection or production (qmsci), and the accumulation term
Vbi

αcΔt
ϕ
B

� �n+ 1
i

� ϕ
B

� �n
i

h in o
. Any block in the reservoir has one source term and

one accumulation term, but the number of interblock flow terms equals the

number of its neighboring blocks. Specifically, any block has a maximum of

two neighboring blocks in 1-D flow (Fig. 2.2a), four neighboring blocks in

2-D flow (Fig. 2.2b), and six neighboring blocks in 3-D flow (Fig. 2.2c). There-

fore, for 2-D flow, the flow equation for block (i, j) in the x-y plane is:
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Tm
yi, j�1=2

pmi, j�1�pmi, j

� 	
� γmi, j�1=2 Zi, j�1�Zi, j

� �h i
+ Tm

xi�1=2, j
pmi�1, j�pmi, j

� 	
� γmi�1=2, j Zi�1, j�Zi, j

� �h i
+ Tm

xi+ 1=2, j
pmi+ 1, j�pmi, j

� 	
� γmi+ 1=2, j Zi+ 1, j�Zi, j

� �h i
+ Tm

yi, j + 1=2
pmi, j+ 1�pmi, j

� 	
� γmi, j+ 1=2 Zi, j+ 1�Zi, j

� �h i

+ qmsci, j ¼
Vbi, j

αcΔt
ϕ

B

� �n+ 1

i, j

� ϕ

B

� �n

i, j

" #
(2.37)

For 3-D flow, the flow equation for block (i, j,k) in the x-y-z space is:
Tm
zi, j,k�1=2

pmi, j,k�1�pmi, j,k

� 	
� γmi, j,k�1=2 Zi, j,k�1�Zi, j,k

� �h i
+ Tm

yi, j�1=2,k
pmi, j�1,k�pmi, j,k

� 	
� γmi, j�1=2,k Zi, j�1,k�Zi, j,k

� �h i
+ Tm

xi�1=2, j,k
pmi�1, j,k�pmi, j,k

� 	
� γmi�1=2, j,k Zi�1, j,k�Zi, j,k

� �h i
+ Tm

xi+ 1=2, j,k
pmi+ 1, j,k�pmi, j,k

� 	
� γmi+ 1=2, j,k Zi+ 1, j,k�Zi, j,k

� �h i
+ Tm

yi, j + 1=2,k
pmi, j+ 1,k�pmi, j,k

� 	
� γmi, j+ 1=2,k Zi, j+ 1,k�Zi, j,k

� �h i
+ Tm

zi, j,k + 1=2
pmi, j,k + 1�pmi, j,k

� 	
� γmi, j,k + 1=2 Zi, j,k + 1�Zi, j,k

� �h i

+ qmsci, j,k ¼
Vbi, j,k

αcΔt
ϕ

B

� �n+ 1

i, j,k

� ϕ

B

� �n

i, j,k

" #

(2.38)

where,
Txi�1=2, j,k ¼ βc
kxAx
μBΔx

�� 




xi�1=2, j,k

¼ βc
kxAx
Δx

� �
xi�1=2, j,k

1

μB

� �
xi�1=2, j,k

¼Gxi�1=2, j,k

1

μB

� �
xi�1=2, j,k

(2.39a)

Tyi, j�1=2,k ¼ βc
kyAy

μBΔy

�� 




yi, j�1=2,k

¼ βc
kyAy

Δy

� �
yi, j�1=2,k

1

μB

� �
yi, j�1=2,k

¼Gyi, j�1=2,k

1

μB

� �
yi, j�1=2,k

(2.39b)

and
Tzi, j,k�1=2
¼ βc

kzAz
μBΔz

�� 




zi, j,k�1=2

¼ βc
kzAz
Δz

� �
zi, j,k�1=2

1

μB

� �
zi, j,k�1=2

¼Gzi, j,k�1=2

1

μB

� �
zi, j,k�1=2

(2.39c)

Expressions for the geometric factorsG for irregular grids in heterogeneous res-
ervoirs are presented in Chapters 4 and 5. It should be mentioned that the inter-

block flow terms in the flow equations for 1-D (Eq. 2.33), 2-D (Eq. 2.37), or 3-D

(Eq. 2.38) problems appear in the sequence shown in Fig. 2.13 for neighboring

blocks. As will be shown in Chapter 9, the sequencing of neighboring blocks as
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FIG. 2.13 The sequence of neighboring blocks in the set ψ i, j, k or ψn.
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in Fig. 2.13 produces flow equations with unknowns already ordered as they

appear in the vector of unknowns for the whole reservoir.

The following two examples demonstrate the application of Eqs. (2.37) and

(2.38) for interior blocks in multidimensional anisotropic reservoirs using reg-

ular grids.

Example 2.5 Consider single-phase fluid flow in a 2-D horizontal reservoir.

The reservoir is discretized using 4�3 blocks as shown in Fig. 2.14. A well that

is located in block (3,2) produces at a rate of 400STB/D. All gridblocks have

Δx¼250ft, Δy¼300ft, h¼100ft, kx¼270md, and ky¼220md. The FVF and

the viscosity of the flowing fluid are 1.0RB/STB and 2cP, respectively. Identify

the interior and boundary blocks in this reservoir. Write the flow equation for

block (3,2) and give the physical meaning of each term in the flow equation.

Write the flow equation for block (2,2).

Solution

Interior blocks in this reservoir include reservoir blocks that are located in

the second and third columns in the second row. Other reservoir blocks are

boundary blocks. In explicit terms, blocks (2,2) and (3,2) are interior blocks,

whereas blocks (1,1), (2,1), (3,1), (4,1), (1,2), (4,2), (1,3), (2,3), (3,3), and

(4,3) are boundary blocks.

The flow equation for block (3,2) can be obtained from Eq. (2.37) for i¼3

and j¼2, that is,

Tm
y3,2�1=2

pm3,1�pm3,2
� �� γm

3,2�1=2 Z3,1�Z3,2ð Þ
h i

+ Tm
x3�1=2,2

pm2,2�pm3,2
� �� γm

3�1=2,2 Z2,2�Z3,2ð Þ
h i

+ Tm
x3 + 1=2,2

pm4,2�pm3,2
� �� γm

3 + 1=2,2 Z4,2�Z3,2ð Þ
h i

+ Tm
y3,2 + 1=2

pm3,3�pm3,2
� �� γm

3,2 + 1=2 Z3,3�Z3,2ð Þ
h i

+ qmsc3,2 ¼
Vb3,2

αcΔt
ϕ

B

� �n+ 1

3,2

� ϕ

B

� �n

3,2

" #
(2.40)
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FIG. 2.14 2-D reservoir representation in Example 2.5.
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For block (3,2), Z3,1¼Z2,2¼Z3,2¼Z4,2¼Z3,3 for a horizontal reservoir and

qmsc3,2¼ �400STB/D. Because Δx3�1/2,2¼Δx¼250ft, Δy3,2�1/2¼Δy¼300ft,

and μ and B are constant,

Tm
x3�1=2,2

¼ Tm
x3 + 1=2,2

¼ βc
kxAx

μBΔx
¼ 0:001127�270� 300�100ð Þ

2�1�250
¼ 18:2574STB=D-psi (2.41a)

and
Tm
y3,2�1=2

¼ Tm
y3,2 + 1=2

¼ βc
kyAy

μBΔy
¼ 0:001127�220� 250�100ð Þ

2�1�300
¼ 10:3308STB=D-psi (2.41b)

Substitution into Eq. (2.40) gives
10:3308ð Þ pm3,1�pm3,2
� �

+ 18:2574ð Þ pm2,2�pm3,2
� �

+ 18:2574ð Þ pm4,2�pm3,2
� �

+ 10:3308ð Þ pm3,3�pm3,2
� ��400¼ Vb3,2

αcΔt
ϕ

B

� �n+ 1

3,2

� ϕ

B

� �n

3,2

" #

(2.42)

The LHS of Eq. (2.42) comprises five terms. The first term represents the rate of
fluid flow from block (3,1) to block (3,2), the second term from block (2,2) to

block (3,2), the third from block (4,2) to block (3,2), and the fourth from block

(3,3) to block (3,2). Finally, the fifth term represents the rate of fluid production

from the well in block (3,2). The RHS of Eq. (2.42) represents the rate of fluid

accumulation in block (3,2). All terms have the units STB/D.

The flow equation for block (2,2) can be obtained from Eq. (2.37) for i¼2

and j¼2; that is,
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Tm
y2,2�1=2

pm2,1�pm2,2
� �� γm

2,2�1=2 Z2,1�Z2,2ð Þ
h i

+ Tm
x2�1=2,2

pm1,2�pm2,2
� �� γm

2�1=2,2 Z1,2�Z2,2ð Þ
h i

+ Tm
x2 + 1=2,2

pm3,2�pm2,2
� �� γm

2 + 1=2,2 Z3,2�Z2,2ð Þ
h i

+ Tm
y2,2 + 1=2

pm2,3�pm2,2
� �� γm

2,2 + 1=2 Z2,3�Z2,2ð Þ
h i

+ qmsc2,2 ¼
Vb2,2

αcΔt
ϕ

B

� �n+ 1

2,2

� ϕ

B

� �n

2,2

" #
(2.43)

For block (2,2), Z2,2¼Z2,1¼Z1,2¼Z2,2¼Z3,2¼Z2,3 for a horizontal
reservoir, qmsc2,2¼0STB/D because block (2,2) does not host a well, Tmx2�1/2,2
¼

Tmx2+1/2,2¼18.2574STB/D-psi, and Tmy2,2�1/2
¼Tmy2,2+1/2¼10.3308 STB/D-psi.

Substitution into Eq. (2.43) gives:

10:3308ð Þ pm2,1�pm2,2
� �

+ 18:2574ð Þ pm1,2�pm2,2
� �

+ 18:2574ð Þ pm3,2�pm2,2
� �

+ 10:3308ð Þ pm2,3�pm2,2
� �¼ Vb2,2

αcΔt
ϕ

B

� �n+ 1

2,2

� ϕ

B

� �n

2,2

" #
(2.44)

Example 2.6 Consider single-phase fluid flow in a 3-D horizontal reservoir.
The reservoir is discretized using 4�3�3 blocks as shown in Fig. 2.15a. Awell
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(1,3,3) (2,3,3) (3,3,3) (4,3,3)

j = 1

j = 2
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(b)
FIG. 2.15 3-D reservoir representation in Example 2.6. (a) Reservoir representation and (b) engi-

neering notation.
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that is located in block (3,2,2) produces at a rate of 133.3STB/D. All grid blocks

have Δx¼250 ft, Δy¼300ft, Δz¼33.333 ft, kx¼270md, ky¼220md, and

kz¼50md. The FVF, density, and viscosity of the flowing fluid are 1.0RB/

STB, 55 lbm/ft3, and 2cP, respectively. Identify the interior and boundary

blocks in this reservoir. Write the flow equation for block (3,2,2).

Solution

As can be seen in Fig. 2.15b, interior blocks include reservoir blocks that are

located in the second and third columns in the second row in the second layer, that

is, blocks (2,2,2) and (3,2,2). All other reservoir blocks are boundary blocks.

The flow equation for block (3,2,2) can be obtained from Eq. (2.38) for i¼3,

j¼2, and k¼2, that is,

Tm
z3,2,2�1=2

pm3,2,1�pm3,2,2
� �� γm

3,2,2�1=2 Z3,2,1�Z3,2,2ð Þ
h i

+ Tm
y3,2�1=2,2

pm3,1,2�pm3,2,2
� �� γm

3,2�1=2,2 Z3,1,2�Z3,2,2ð Þ
h i

+ Tm
x3�1=2,2,2

pm2,2,2�pm3,2,2
� �� γm

3�1=2,2,2 Z2,2,2�Z3,2,2ð Þ
h i

+ Tm
x3 + 1=2,2,2

pm4,2,2�pm3,2,2
� �� γm

3 + 1=2,2,2 Z4,2,2�Z3,2,2ð Þ
h i

+ Tm
y3,2 + 1=2,2

pm3,3,2�pm3,2,2
� �� γm

3,2 + 1=2,2 Z3,3,2�Z3,2,2ð Þ
h i

+ Tm
z3,2,2 + 1=2

pm3,2,3�pm3,2,2
� �� γm

3,2,2 + 1=2 Z3,2,3�Z3,2,2ð Þ
h i

+ qmsc3,2,2 ¼
Vb3,2,2

αcΔt
ϕ

B

� �n+ 1

3,2,2

� ϕ

B

� �n

3,2,2

" #

(2.45)

For block (3,2,2), Z3,1,2¼Z2,2,2¼Z3,2,2¼Z4,2,2¼Z3,3,2, Z3,2,1�Z3,2,2¼

33.333ft, Z3,2,3�Z3,2,2¼ �33.333ft, and qmsc3,2,2¼ �133.3STB/D.

Because Δx3�1/2,2,2¼Δx¼250ft, Δy3,2�1/2,2¼Δy¼300ft, Δz3,2,2�1/2¼
Δz¼33.333ft and because μ, ρ, and B are constant, γm3,2,2�1/2¼ γm3,2,2+1/2¼
γcρg¼0.21584�10�3�55�32.174¼0.3819psi/ft,

Tm
x3�1=2,2,2

¼ βc
kxAx

μBΔx
¼ 0:001127�270� 300�33:333ð Þ

2�1�250
¼ 6:0857STB=D-psi

(2.46a)

Tm
y3,2�1=2,2

¼ βc
kyAy

μBΔy
¼ 0:001127�220� 250�33:333ð Þ

2�1�300
¼ 3:4436STB=D-psi

(2.46b)

and
Tm
z3,2,2�1=2

¼ βc
kzAz

μBΔz
¼ 0:001127�50� 250�300ð Þ

2�1�33:333
¼ 63:3944STB=D-psi

(2.46c)
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Substitution into Eq. (2.45) gives:

63:3944ð Þ pm3,2,1�pm3,2,2

� 	
�12:7287

h i
+ 3:4436ð Þ pm3,1,2�pm3,2,2

� 	

+ 6:0857ð Þ pm2,2,2�pm3,2,2

� 	
+ 6:0857ð Þ pm4,2,2�pm3,2,2

� 	
+ 3:4436ð Þ pm3,3,2�pm3,2,2

� 	

+ 63:3944ð Þ pm3,2,3�pm3,2,2

� 	
+ 12:7287

h i
�133:3¼Vb3,2,2

αcΔt
ϕ

B

� �n+ 1

3,2,2

� ϕ

B

� �n

3,2,2

" #

(2.47)
2.7 Multidimensional flow in radial-cylindrical coordinates

2.7.1 Reservoir discretization for single-well simulation

Single-well simulation uses radial-cylindrical coordinates. A point in space in

radial-cylindrical coordinates is identified as point (r, θ, z) as shown in

Fig. 2.16. A cylinder with the well coinciding with its longitudinal axis repre-

sents the reservoir in single-well simulation. Reservoir discretization involves

dividing the cylinder into nr concentric radial segments with the well passing

through the center. Rays from the center divide the radial segments into nθ
cake-like slices. Planes normal to the longitudinal axis divide the cake-like

slices into nz segments.

A reservoir block in a discretized reservoir is identified as block (i, j,k),
where i, j, and k are, respectively, the orders of the block in r-, θ-, and z-
directions with 1� i�nr, 1� j�nθ, 1�k�nz. This block has the shape shown

in Fig. 2.17.

Fig. 2.18a shows that block (i, j,k) is surrounded by blocks (i�1, j,k) and
(i+ 1, j,k) in the r-direction and by blocks (i, j�1,k) and (i, j+1,k) in the θ direc-
tion. In addition, the figure shows the boundaries between block (i, j,k) and its

neighboring blocks: block boundaries i� 1=2, j, kð Þ, i+ 1=2, j, kð Þ, i, j� 1=2, kð Þ,
and i, j + 1=2, kð Þ. Fig. 2.18b shows that block (i, j,k) is surrounded by blocks
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FIG. 2.16 Graphing a point in Cartesian and radial coordinates.
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FIG. 2.17 Block (i, j,k) in single-well simulation.
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FIG. 2.18 Block (i, j,k) and its neighboring blocks in single-well simulation. (a) Block (i, j,k) and its

neighboring blocks in horizontal plane and (b) block (i, j,k) and its neighboring blocks in the z-direction.
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(i, j, k�1) and (i, j,k+1) in the z-direction. The figure also shows block bound-
aries i, j, k� 1=2ð Þ and i, j, k + 1=2ð Þ. We will demonstrate block identification

and ordering in single-well simulation in the following two examples. In the

absence of fluid flow in the θ-direction, block ordering and identification in

radial and rectangular coordinates are identical.

Example 2.7 In single-well simulation, a reservoir is discretized in the

r-direction into four concentric cylindrical blocks as shown in Fig. 2.19a. Order
blocks in this reservoir using natural ordering.



1 2 3 4

(a) (b)
FIG. 2.19 1-D radial-cylindrical reservoir representation in Example 2.7. (a) Reservoir represen-

tation and (b) natural ordering of blocks.
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Solution
We identify the innermost block enclosing the well as block 1. Then we

move to other blocks, one block at a time, in the direction of increasing radius.

The order of the next block is obtained by incrementing the order of the previous

block by one. We continue the process of block ordering (or numbering) until

the outermost block is numbered. The final ordering of blocks in this reservoir is

shown in Fig. 2.19b.

Example 2.8 Let the reservoir in Example 2.7 consists of three layers as shown

in Fig. 2.20a.

Identify the blocks in this reservoir using the following:

1. The engineering notation

2. Natural ordering

Solution

1. The engineering notation for block identification in this reservoir is shown

in Fig. 2.20b.

2. We arbitrarily choose to order blocks in each layer along rows. Blocks in the

first layer (k¼1) are numbered as explained in Example 2.7. Block (1,2) in

first column (i¼1) and second plane (k¼2) is numbered next as block 5,

and block numbering continues as in Example 2.7. Block numbering con-

tinues (layer by layer) until all blocks are numbered. The final ordering of

blocks in this reservoir is shown in Fig. 2.20c.
2.7.2 Derivation of the multidimensional flow equation
in radial-cylindrical coordinates

To write the material balance for block (i, j,k) in Fig. 2.18 over a time step

Δt¼ tn+1� tn, we assume that the fluid coming from neighboring blocks enters

block (i, j,k) through block boundaries i� 1=2, j, kð Þ, i, j� 1=2, kð Þ, and
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FIG. 2.20 2-D radial-cylindrical reservoir representation in Example 2.8. (a) Reservoir represen-

tation, (b) engineering notation, and (c) natural ordering of blocks.
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i, j, k� 1=2ð Þ leaves through block boundaries i+ 1=2, j, kð Þ, i, j+ 1=2, kð Þ, and
i, j, k + 1=2ð Þ. The application of Eq. (2.6) results in

mið jri�1=2, j,k
�mojri+ 1=2, j,kÞ+ mið jθi, j�1=2,k

�mojθi, j+ 1=2,kÞ + mið jzi, j,k�1=2
�mojzi, j,k + 1=2Þ

+msi, j,k ¼mai, j,k (2.48)

Terms like mass rates, wr jri�1/2, j, k
,wθ jθi, j�1/2, k

,wz jzi, j, k�1/2
,wr jri+1/2, j, k,wθ jθi, j+1/2, k,
wz jzi, j, k+1/2, and well mass rate, qmi, j, k
, are functions of time only (see justification

in Section 2.6.2); therefore,

mijri�1=2, j,k
¼

ðtn + 1

tn

wrjri�1=2, j,k
dt (2.49a)
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mijθi, j�1=2,k
¼

ðtn + 1

tn

wθjθi, j�1=2,k
dt (2.49b)

mijzi, j,k�1=2
¼

ðtn + 1

tn

wzjzi, j,k�1=2
dt (2.49c)

mojri+ 1=2, j,k ¼
ðtn + 1

tn

wrjri+ 1=2, j,kdt (2.50a)

mojθi, j+ 1=2,k ¼
ðtn + 1

tn

wθjθi, j+ 1=2,kdt (2.50b)

mojzi, j,k + 1=2 ¼
ðtn + 1

tn

wzjzi, j,k + 1=2dt (2.50c)

and
msi, j,k ¼
ðtn + 1

tn

qmi, j,kdt (2.51)

In addition, mass accumulation is defined as:
mai, j,k ¼Δt Vbmvð Þi, j,k ¼Vbi, j,k mn + 1
vi, j,k

�mn
vi, j,k

� 	
(2.52)

Mass rates and mass fluxes are related through
wrjr ¼ _mrAr (2.53a)

wθjθ ¼ _mθAθ (2.53b)

and
wzjz ¼ _mzAz (2.53c)

mass fluxes can be expressed in terms of fluid density and volumetric velocities:
_mr ¼ αcρur (2.54a)

_mθ ¼ αcρuθ (2.54b)

and
_mz ¼ αcρuz (2.54c)
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and mv can be expressed in terms of fluid density and porosity:

mvi, j,k ¼ ϕρð Þi, j,k (2.55)

Also, the well mass rate can be expressed in terms of well volumetric rate and
fluid density:

qmi, j,k ¼ αcρqð Þi, j,k (2.56)

Substitution of Eq. (2.54) into Eq. (2.53) yields:
wrjr ¼ αcρurAr (2.57a)

wθjθ ¼ αcρuθAθ (2.57b)

and
wzjz ¼ αcρuzAz (2.57c)

Substitution of Eq. (2.57) into Eqs. (2.49) and (2.50) yields:
mijri�1=2, j,k
¼

ðtn + 1

tn

αc ρurArð Þjri�1=2, j,k
dt (2.58a)

mijθi, j�1=2,k
¼

ðtn + 1

tn

αc ρuθAθð Þjθi, j�1=2,k
dt (2.58b)

mijzi, j,k�1=2
¼

ðtn + 1

tn

αc ρuzAzð Þjzi, j,k�1=2
dt (2.58c)

mojri+ 1=2, j,k ¼
ðtn+ 1

tn

αc ρurArð Þjri+ 1=2, j,kdt (2.59a)

mojθi, j+ 1=2,k ¼
ðtn+ 1

tn

αc ρuθAθð Þjθi, j+ 1=2,kdt (2.59b)

and
mojzi, j,k + 1=2 ¼
ðtn+ 1

tn

αc ρuzAzð Þjzi, j,k + 1=2dt (2.59c)
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Substitution of Eq. (2.56) into Eq. (2.51) yields:

msi, j,k ¼
ðtn+ 1

tn

αcρqð Þi, j,kdt (2.60)

Substitution of Eq. (2.55) into Eq. (2.52) yields:
mai, j,k ¼Vbi, j,k ϕρð Þn+ 1i, j,k � ϕρð Þni, j,k
h i

(2.61)

Substitution of Eqs. (2.58) through (2.61) into Eq. (2.48) results in:
ðtn+ 1

tn

αc ρurArð Þjri�1=2, j,k
dt�

ðtn + 1

tn

αc ρurArð Þjri + 1=2, j,kdt+
ðtn + 1

tn

αc ρuθAθð Þjθi, j�1=2,k
dt

�
ðtn+ 1

tn

αc ρuθAθð Þjθi, j + 1=2,kdt+
ðtn + 1

tn

αc ρuzAzð Þjzi, j,k�1=2
dt�

ðtn + 1

tn

αc ρuzAzð Þjzi, j,k + 1=2dt

+

ðtn + 1

tn

αcρqð Þi, j,kdt¼Vbi, j,k ϕρð Þn+ 1i, j,k � ϕρð Þni, j,k
h i

(2.62)

Substitution of Eq. (2.7a) into Eq. (2.62), dividing by αcρsc and noting that
qsc¼q/B, yields:

ðtn + 1

tn

urAr

B

� �




ri�1=2, j,k

dt�
ðtn + 1

tn

urAr

B

� �




ri+ 1=2, j,k

dt+

ðtn + 1

tn

uθAθ

B

� �




θi, j�1=2,k

dt

�
ðtn+ 1

tn

uθAθ

B

� �




θi, j + 1=2,k

dt+

ðtn + 1

tn

uzAz

B

� �




zi, j,k�1=2

dt�
ðtn+ 1

tn

uzAz

B

� �




zi, j,k + 1=2

dt

+

ðtn + 1

tn

qsci, j,kdt¼
Vbi, j,k

αc

φ

B

� 	n+ 1

i, j,k
� φ

B

� 	n

i, j,k

� �

(2.63)

Fluid volumetric velocities in the r, θ, and z-directions are given by the alge-

braic analogs of Eq. (2.8); i.e.,

urjri�1=2, j,k
¼ βc

krjri�1=2, j,k

μjri�1=2, j,k

Φi�1, j,k�Φi, j,k

� �
Δri�1=2, j,k

� �
(2.64a)

and
urjri + 1=2, j,k ¼ βc
krjri+ 1=2, j,k
μjri+ 1=2, j,k

Φi, j,k�Φi + 1, j,k

� �
Δri+ 1=2, j,k

� �
(2.64b)
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Likewise,

uzjzi, j,k�1=2
¼ βc

kzjzi, j,k�1=2

μjzi, j,k�1=2

Φi, j,k�1�Φi, j,k

� �
Δzi, j,k�1=2

� �
(2.65a)

and
uzjzi, j,k + 1=2 ¼ βc
kzjzi, j,k + 1=2
μjzi, j,k + 1=2

Φi, j,k�Φi, j,k + 1

� �
Δzi, j,k + 1=2

� �
(2.65b)

Similarly,
uθjθi, j�1=2,k
¼ βc

kθjθi, j�1=2,k

μjθi, j�1=2,k

Φi, j�1,k�Φi, j,k

� �
ri, j,kΔθi, j�1=2,k

� �
(2.66a)

and
uθjθi, j + 1=2,k ¼ βc
kθjθi, j+ 1=2,k
μjθi, j + 1=2,k

Φi, j,k�Φi, j+ 1,k

� �
ri, j,kΔθi, j+ 1=2,k

� �
(2.66b)

Substitution of Eqs. (2.64) through (2.66) into Eq. (2.63) and grouping terms
results in:

ðtn+ 1

tn
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μBΔr

� �
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� �" #
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� �




θi, j�1=2,k
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Φi, j,k + 1�Φi, j,k

� �" #
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+
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Vbi, j,k

αc

ϕ

B

� �n+ 1

i, j,k

� ϕ

B

� �n

i, j,k

" #

(2.67)
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Eq. (2.67) can be rewritten as:

ðtn + 1

tn

Tzi, j,k�1=2
Φi, j,k�1�Φi, j,k

� �h i
dt+

ðtn+ 1

tn

Tθi, j�1=2,k Φi, j�1,k�Φi, j,k

� �h i
dt

+

ðtn+ 1

tn

Tri�1=2, j,k Φi�1, j,k�Φi, j,k

� �h i
dt+

ðtn + 1

tn

Tri+ 1=2, j,k Φi+ 1, j,k�Φi, j,k

� �h i
dt

+

ðtn+ 1

tn

Tθi, j + 1=2,k Φi, j+ 1,k�Φi, j,k

� �h i
dt+

ðtn + 1

tn

Tzi, j,k + 1=2 Φi, j,k + 1�Φi, j,k

� �h i
dt

+

ðtn+ 1

tn

qsci, j,kdt¼
Vbi, j,k
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ϕ

B

� �n+ 1

i, j,k

� ϕ

B

� �n
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(2.68)

where
Tri�1=2, j,k ¼ βc
krAr

μBΔr

�� 




ri�1=2, j,k

¼ βc
krAr

Δr

� �
ri�1=2, j,k

1

μB

� �
ri�1=2, j,k

¼Gri�1=2, j,k

1

μB

� �
ri�1=2, j,k

(2.69a)

Tθi, j�1=2,k ¼
1

ri, j,k
ðβc

kθAθ

μBΔθ
Þ





θi, j�1=2,k

¼ βc
kθAθ

ri, j,kΔθ

� �
θi, j�1=2,k

1

μB

� �
θi, j�1=2,k

¼Gθi, j�1=2,k

1

μB

� �
θi, j�1=2,k

(2.69b)

and
Tzi, j,k�1=2
¼ βc

kzAz
μBΔz

�� 




zi, j,k�1=2

¼ βc
kzAz
Δz

� �
zi, j,k�1=2

1

μB

� �
zi, j,k�1=2

¼Gzi, j,k�1=2

1

μB

� �
zi, j,k�1=2

(2.69c)

Expressions for geometric factorsG for irregular grids in heterogeneous res-
ervoirs are presented in Chapters 4 and 5.
2.7.3 Approximation of time integrals

Using Eq. (2.30) to approximate integrals in Eq. (2.68) and dividing by Δt, the
flow equation in radial–cylindrical coordinates becomes:
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Tm
zi, j,k�1=2

Φm
i, j,k�1�Φm

i, j,k

� 	h i
+ Tm

θi, j�1=2,k
Φm

i, j�1,k�Φm
i, j,k

� 	h i
+ Tm

ri�1=2, j,k
Φm

i�1, j,k�Φm
i, j,k

� 	h i
+ Tm

ri + 1=2, j,k
Φm

i + 1, j,k�Φm
i, j,k

� 	h i
+ Tm
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Φm

i, j + 1,k�Φm
i, j,k

� 	h i
+ Tm

zi, j,k + 1=2
Φm

i, j,k + 1�Φm
i, j,k

� 	h i
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Vbi, j,k

αcΔt
ϕ

B

� �n+ 1

i, j,k

� ϕ

B

� �n

i, j,k

" # (2.70)

Using the definition of potential difference, Eq. (2.70) becomes:
Tm
zi, j,k�1=2

pmi, j,k�1�pmi, j,k

� 	
� γmi, j,k�1=2 Zi, j,k�1�Zi, j,k
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� ϕ

B
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(2.71)

Eq. (2.38), the flow equation in Cartesian coordinates (x-y-z), is used for field

simulation, whereas Eq. (2.71), the flow equation in radial-cylindrical coordi-

nates (r-θ-z), is used for single-well simulation. These two equations are similar

in form. The RHS of both equations represents fluid accumulation in block

(i, j, k). On the LHS, both equations have a source term represented by well pro-

duction or injection and six flow terms representing interblock flow between

block (i, j,k) and its six neighboring blocks: blocks (i�1, j,k) and (i+1, j,k) in
the x-direction (or r-direction), blocks (i, j�1,k) and (i, j+1,k) in the y-direction
(or θ-direction), and blocks (i, j,k�1) and (i, j,k+1) in the z-direction. The coef-
ficients of potential differences are transmissibilities Tx, Ty, and Tz in the x-y-z
space and Tr, Tθ, and Tz in the r-θ-z space. Eqs. (2.39) and (2.69) define these

transmissibilities. The geometric factors in these equations are presented in

Chapters 4 and 5.
2.8 Summary

In this chapter, we reviewed various engineering steps involved in rendering

governing equations into algebraic equations. Governing equations, involving

both the rock and fluid properties are discretized without conventional finite-

difference or finite element approximation of PDEs. Fluid properties such as

density, FVF, and viscosity are, in general, functions of pressure. Reservoir

porosity depends on pressure and has heterogeneous distribution, and reservoir
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permeability is usually anisotropic. The basic knowledge of material balance,

FVF, potential difference, and Darcy’s law are necessary for deriving flow

equations in petroleum reservoirs. Rectangular coordinates and radial coordi-

nates are two ways of describing reservoirs in space. Although it is common

to study reservoirs using rectangular coordinates, there are a few applications

that require using radial-cylindrical coordinates. Using the engineering

approach, the single-phase flow equation can be derived in any coordinate

system. In this approach, the reservoir first is discretized into blocks, which

are identified using the engineering notation or any block-ordering scheme.

The second step involves writing the fluid material balance for a general reser-

voir block in a multidimensional reservoir over the time interval tn� t� tn+1 and
combining it with Darcy’s law and the formation volume factor. The third

step provides for an evaluation method of the time integrals in the flow

equation that was obtained in the second step. The result is a flow equation

in algebraic form with all functions evaluated at time tm, where tn� tm� tn+1.
In Chapter 7, we demonstrate how the choice of time tm as old time level tn,
new time level tn +1, or intermediate time level tn+1/2 gives rise to the explicit

formulation, implicit formulation, or the Crank-Nicolson formulation of the

flow equation.
2.9 Exercises

2.1 List the physical properties of rock and fluid necessary for the derivation of

single-phase flow equation.

2.2 Enumerate the three basic engineering concepts or equations used in the

derivation of a flow equation.

2.3 Eq. (2.33) has four major terms, three on the LHS and one on the RHS.

What is the physical meaning of each major term? What are units of each

major term in the three systems of units? Using customary units, state the

units of each variable or function that appears in Eq. (2.33).

2.4 Compare Eq. (2.33) with Eq. (2.37), that is, identify the similar major

terms and the extra major terms in Eq. (2.37). What is the physical mean-

ing of each of these extra terms and to which direction do they belong?

2.5 Compare Eq. (2.33) with Eq. (2.38), that is, identify the similar major

terms and the extra major terms in Eq. (2.38). What is the physical mean-

ing of each of these extra terms? Group the extra terms according to the

direction they belong.

2.6 Compare the 3-D flow equation in rectangular coordinates (x-y-z) in

Eq. (2.38) with the 3-D flow equation in radial-cylindrical coordinates
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(r-θ-z) in Eq. (2.71). Elaborate on the similarities and differences in these

two equations. Note the differences in the definition of geometric factors.

2.7 Consider the 2-D reservoir shown in Fig. 2.21. This reservoir is discretized

using 5�5 blocks but it has irregular boundaries, as shown in the figure.
Acti

Inac

FIG.
Use the following schemes to identify and order the blocks in this

reservoir:

a. Engineering notation

b. Natural ordering by rows

c. Natural ordering by columns

d. Diagonal (D2) ordering

e. Alternating diagonal (D4) ordering

f. Zebra ordering

g. Cyclic ordering

h. Cyclic-2 ordering
i = 5i = 4i = 3i = 2

y

i = 1

j = 5

j = 4

j = 3

j = 2

j = 11

Δx

Δy

h

x

z

ve block

tive block

2.21 2-D reservoir representation in Exercise 2.7.
2.8 Consider single-phase flow in a 1-D inclined reservoir. The flow equation

for block i in this reservoir is expressed as Eq. (2.33).
a. Write Eq. (2.33) for block i assuming tm¼ tn. The resulting equation is

the explicit formulation of the flow equation for block i.
b. Write Eq. (2.33) for block i assuming tm¼ tn+1. The resulting equation

is the implicit formulation of the flow equation for block i.
c. Write Eq. (2.33) for block i assuming tm¼ tn+1/2. The resulting equation

is the Crank-Nicolson formulation of the flow equation for block i.
2.9 Consider single-phase flow of oil in a 1-D horizontal reservoir. The reser-

voir is discretized using six blocks as shown in Fig. 2.22. A well that is
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located in block 4 produces at a rate of 600STB/D. All blocks have

Δx¼220ft, Δy¼1000ft, h¼90ft, and kx¼120md. The oil FVF, viscos-

ity, and compressibility are 1.0RB/STB, 3.5cP, and 1.5�10�5 psi�1,

respectively.
FIG. 2

FIG. 2
a. Identify the interior and boundary blocks in this reservoir.

b. Write the flow equation for every interior block. Leave the RHS of flow

equation without substitution of values.

c. Write the flow equation for every interior block assuming incompress-

ible fluid and porous medium.
1 2 3 4 5 6

90 ft

220 ft 1000 ftx

y

z

600 STB/D

.22 1-D reservoir representation in Exercise 2.9.
2.10 Consider single-phase flow of water in a 2-D horizontal reservoir. The

reservoir is discretized using 4�4 blocks as shown in Fig. 2.23. Two

wells are located in blocks (2,2) and (3,3), and each produces at a rate

of 200STB/D. All blocks have Δx¼200 ft, Δy¼200ft, h¼50ft, and

kx¼ky¼180md. The oil FVF, viscosity, and compressibility are

1.0RB/STB, 0.5cP, and 1�10�6 psi�1, respectively.
.

a. Identify the interior and boundary blocks in this reservoir.

b. Write the flow equation for every interior block. Leave the RHS of

flow equation without substitution of values.

c. Write the flow equation for every interior block assuming incom-

pressible fluid and porous medium.
y

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

200 ft

50 ft

20
0 

ft

200 STB/D

200 STB/D
x

23 2-D reservoir representation in Exercise 2.10.
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2.11 Consider the 2-D horizontal reservoir presented in Fig. 2.21. All blocks

have same dimensions (Δx¼300 ft, Δy¼300ft, and h¼20ft) and rock

properties (kx¼140md, ky¼140md, and ϕ¼0.13). The oil FVF and vis-

cosity are 1.0RB/STB and 3cP, respectively. Write the flow equations

for the interior blocks in this reservoir assuming incompressible fluid

flow in incompressible porous medium. Order the blocks using natural

ordering along the rows.

2.12 Consider the 1-D radial reservoir presented in Fig. 2.19. Write the flow

equations for the interior blocks in this reservoir. Do not estimate inter-

block radial transmissibility. Leave the RHS of flow equations without

substitution.

2.13 Consider the 2-D radial reservoir presented in Fig. 2.20b. Write the flow

equations for the interior blocks in this reservoir. Do not estimate inter-

block radial or vertical transmissibilities. Leave the RHS of flow equa-

tions without substitution.

2.14 A single-phase oil reservoir is described by five equal blocks as shown in

Fig. 2.24. The reservoir is horizontal and has homogeneous and isotropic

rock properties, k¼210 md and ϕ¼0.21. Block dimensions are

Δx¼375ft, Δy¼450ft, and h¼55ft. Oil properties are B¼1RB/STB

and μ¼1.5cP. The pressure of blocks 1 and 5 is 3725 and 1200psia,

respectively. Block 4 hosts a well that produces oil at a rate of

600STB/D. Find the pressure distribution in the reservoir assuming that

the reservoir rock and oil are incompressible. Estimate the rates of oil loss

or gain across the right boundary of block 5 and that across the left bound-

ary of block 1.
1 2 3 4 5

55 ft

375 ft 450 ftx

y

z

600 STB/D

1200 psia3725 psia

FIG. 2.24 1-D reservoir representation in Exercise 2.14.
2.15 A single-phase water reservoir is described by five equal blocks as shown

in Fig. 2.25. The reservoir is horizontal and has k¼178md and ϕ¼0.17.

Block dimensions are Δx¼275 ft, Δy¼650 ft, and h¼30ft. Water prop-

erties are B¼1RB/B and μ¼0.7cP. The pressure of blocks 1 and 5 is

maintained at 3000 and 1000psia, respectively. Block 3 hosts a well that



1 2 3 4 5

30 ft

275 ft 650 ftx

y

z

240 B/D

1000 psia3000 psia

FIG. 2.25 1-D reservoir representation in Exercise 2.15.

44 Petroleum reservoir simulation
produces water at a rate of 240B/D. Find the pressure distribution in the

reservoir assuming that the reservoir water and rock are incompressible.

2.16 Consider the reservoir presented in Fig. 2.14 and the flow problem described

in Example 2.5. Assuming that both the reservoir fluid and rock are incom-

pressible and given that a strong aquifer keeps the pressure of all boundary

blocks at 3200psia, estimate the pressure of blocks (2,2) and (3,2).

2.17 Consider single-phase flow of water in a 2-D horizontal reservoir. The

reservoir is discretized using 4�4 equal blocks as shown in Fig. 2.26.

Block 7 hosts a well that produces 500 B/D of water. All blocks have

Δx¼Δy¼230ft, h¼80ft, and kx¼ky¼65md. The water FVF and vis-

cosity are 1.0RB/B and 0.5cP, respectively. The pressure of reservoir

boundary blocks is specified as p2¼p3¼p4¼p8¼p12¼2500,

p1¼p5¼p9¼p13¼4000, and p14¼p15¼p16¼3500psia. Assuming that

the reservoir water and rock are incompressible, calculate the pressure of

blocks 6, 7, 10, and 11.
y

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

230 ft

80 ft

23
0 

ft

x
500 B/D

3500 psia 3500 psia 3500 psia

4000 psia

4000 psia

4000 psia

4000 psia

2500 psia 2500 psia

2500 psia

2500 psia

2500 psia

FIG. 2.26 2-D reservoir representation in Exercise 2.17.
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3.1 Introduction

The importance of the control volume finite difference (CVFD) method lies in

its capacity to use the same form of flow equation for 1-D, 2-D, and 3-D flow

problems regardless of the ordering scheme of blocks. The same theme applies

to energy balance equations for solutions to nonisothermal problems (Liu et al.,

2013). The only difference among 1-D, 2-D, and 3-D flow equations is the def-

inition of the elements for the set of neighboring blocks. The CVFD method is

mainly used to write flow equations in a compact form, which is independent of

the dimensionality of flow, the coordinate system used, or the block ordering

scheme. This chapter introduces the terminology used in the CVFD method

and the relationship between this method and the traditional way of writing

finite-difference equations presented in Chapter 2.

3.2 Flow equations using CVFD terminology

In petroleum engineering, Aziz (1993) was the first author to refer to the CVFD

method. However, the method had been developed and used by others without

giving it a name (Abou-Kassem, 1981; Lutchmansingh, 1987; Abou-Kassem

and Farouq Ali, 1987). The terminology presented in this section is based on

a 2001 work published by Ertekin, Abou-Kassem, and King. With this
0-12-819150-7.00003-7

45

https://doi.org/10.1016/B978-0-12-819150-7.00003-7
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terminology, we can write the equations for 1-D, 2-D, and 3-D flow in compact

form, using Cartesian or radial–cylindrical coordinates. For the flow equation in

Cartesian space, we define ψxn, ψyn, and ψ zn as the sets whose members are the

neighboring blocks of block n in the directions of the x-axis, y-axis, and z-axis,
respectively. Then, we define ψn as the set that contains the neighboring blocks

in all flow directions as its members; that is,

ψn ¼ψ xn [ψ yn [ψ zn (3.1a)

If there is no flow in a given direction, then the set for that direction is the
empty set, {}. For the flow equation in radial-cylindrical space, the equation that

corresponds to Eq. (3.1a) is

ψn ¼ψ rn [ψθn [ψ zn (3.1b)

where ψ rn
, ψθn, and ψ zn

are the sets whose members are the neighboring blocks
of block n in the r-direction, θ-direction, and z-axis, respectively.
The following sections present the flow equations for blocks identified by

engineering notation or by block ordering using the natural ordering scheme.
3.2.1 Flow equations using CVFD terminology and engineering
notation

For 1-D flow in the direction of the x-axis, block n is termed in engineering nota-

tion as block i (i.e., n� i) as shown in Fig. 3.1a. In this case,

ψ xn ¼ i�1ð Þ, i+ 1ð Þf g (3.2a)

ψ yn ¼fg (3.2b)

and
ψ zn ¼fg (3.2c)
i – 1 i i + 1

x

(i,j – 1)

(i,j + 1)

(i – 1,j) (i,j) (i + 1,j)

x

y

(i,j,k + 1)

(i,j,k – 1)

(i,j – 1,k)

(i,j+1,k)

(i–1,j,k) (i,j,k) (i + 1,j,k)x

y
z

(a) (b) (c)
FIG. 3.1 A block and its neighboring blocks in 1-D, 2-D, and 3-D flow using engineering notation.

(a) ψ i¼{(i�1), (i+1)}

(b) ψ i, j¼{(i, j�1), (i�1, j), (i+1, j), (i, j+1)}

(c) ψ i, j,k¼{(i, j,k�1), (i, j�1, i), (i�1, j,k), (i+1, j,k), (i, j+1,k), (i, j,k+1)}



Flow equations using CVFD terminology Chapter 3 47
Substitution of Eq. (3.2) into Eq. (3.1a) results in
ψn ¼ψ i ¼ i�1ð Þ, i+ 1ð Þf g[fg[fg¼ i�1ð Þ, i+ 1ð Þf g (3.3)

The flow equation for block i in 1-D flow reservoir is expressed as Eq. (2.33):
Tm
xi�1=2

pmi�1�pmi
� �� γmi�1=2 Zi�1�Zið Þ
h i

+ Tm
xi + 1=2

pmi+ 1�pmi
� �� γmi+ 1=2 Zi+ 1�Zið Þ
h i

+qmsci ¼
Vbi

αcΔt
ϕ

B

� �n+ 1

i

� ϕ

B

� �n

i

" #

(3.4a)
which can be written in CVFD form as
X
l2ψ i

Tm
l, i pml �pmi

� �� γml, i Zl�Zið Þ� �
+ qmsci ¼

Vbi

αcΔt
ϕ

B

� �n+ 1

i

� ϕ

B

� �n

i

" #
(3.4b)

where
Tm
i�1, i ¼ Tm

i, i�1 � Tm
xi�1=2

(3.5)

and transmissibilities Tm
xi�1/2

are defined by Eq. (2.39a). In addition,
γmi�1, i ¼ γmi, i�1 � γmi�1=2 (3.6)

For 2-D flow in the x-y plane, block n is termed in engineering notation as
block (i, j), that is, n� (i, j), as shown in Fig. 3.1b. In this case,

ψ xn ¼ i�1, jð Þ, i+ 1, jð Þf g (3.7a)

ψ yn ¼ i, j�1ð Þ, i, j+ 1ð Þf g (3.7b)

and
ψ zn ¼fg (3.7c)

Substitution of Eq. (3.7) into Eq. (3.1a) results in
ψn ¼ψ i, j ¼ i�1, jð Þ, i+ 1, jð Þf g[ i, j�1ð Þ, i, j+ 1ð Þf g[fg
¼ i, j�1ð Þ, i�1, jð Þ, i+ 1, jð Þ, i, j + 1ð Þf g (3.8)

Eq. (2.37) expresses the flow equation for block (i, j) as
Tmyi, j�1=2
pmi, j�1�pmi, j

� 	
� γm

i, j�1=2
Zi, j�1�Zi, j
� �h i

+Tmxi�1=2, j
pmi�1, j�pmi, j

� 	
� γm

i�1=2, j
Zi�1, j�Zi, j
� �h i

+Tmxi + 1=2, j pmi+ 1, j�pmi, j

� 	
� γm

i+ 1=2, j
Zi+ 1, j�Zi, j
� �h i

+Tmyi, j + 1=2 pmi, j+ 1�pmi, j

� 	
� γm

i, j+ 1=2
Zi, j+ 1�Zi, j
� �h i

+ qmsci, j ¼
Vbi, j

αcΔt
ϕ

B

� �n+ 1

i, j
� ϕ

B

� �n

i, j

" #

(3.9a)
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which can be written in CVFD form as
X
l2ψ i, j

Tm
l, i, jð Þ pml �pmi, j

� 	
� γml, i, jð Þ Zl�Zi, j

� �h i
+ qmsci, j ¼

Vbi, j

αcΔt
ϕ

B

� �n + 1

i, j

� ϕ

B

� �n

i, j

" #

(3.9b)

where
Tm
i�1, jð Þ, i, jð Þ ¼ Tm

i, jð Þ, i�1, jð Þ � Tm
xi�1=2, j

(3.10a)

and
Tm
i, j�1ð Þ, i, jð Þ ¼ Tm

i, jð Þ, i, j�1ð Þ � Tm
yi, j�1=2

(3.10b)

Transmissibilities Tm
xi�1/2,j

and Tm
yi,j�1/2

have been defined by Eqs. (2.39a) and
(2.39b), respectively. In addition,

γmi�1, jð Þ, i, jð Þ ¼ γmi, jð Þ, i�1, jð Þ � γmi�1=2, j (3.11a)

and
γmi, j�1ð Þ, i, jð Þ ¼ γmi, jð Þ, i, j�1ð Þ � γmi, j�1=2 (3.11b)

For 3-D flow in the x-y-z space, block n is termed in engineering notation as
block (i, j,k); that is, n� (i, j,k), as shown in Fig. 3.1c. In this case,

ψ xn ¼ i�1, j, kð Þ, i+ 1, j, kð Þf g (3.12a)

ψ yn ¼ i, j�1, kð Þ, i, j+ 1, kð Þf g (3.12b)

and
ψ zn ¼ i, j, k�1ð Þ, i, j, k + 1ð Þf g (3.12c)

Substitution of Eq. (3.12) into Eq. (3.1a) results in
ψn ¼ψ i, j,k

¼ i�1, j, kð Þ, i+ 1, j, kð Þf g[ i, j�1, kð Þ, i, j+ 1, kð Þf g[ i, j, k�1ð Þ, i, j, k + 1ð Þf g
¼ i, j, k�1ð Þ, i, j�1, kð Þ, i�1, j, kð Þ, i+ 1, j, kð Þ, i, j+ 1, kð Þ, i, j, k + 1ð Þf g

(3.13)

The flow equation for block (i, j,k) in 3-D flow reservoir is expressed as
Eq. (2.38):

Tm
zi, j,k�1=2

pmi, j,k�1�pmi, j,k

� 	
� γmi, j,k�1=2 Zi, j,k�1�Zi, j,k

� �h i

+Tm
yi, j�1=2,k

pmi, j�1,k�pmi, j,k

� 	
� γmi, j�1=2,k Zi, j�1,k�Zi, j,k

� �h i

+Tm
xi�1=2, j,k

pmi�1, j,k�pmi, j,k

� 	
� γmi�1=2, j,k Zi�1, j,k�Zi, j,k

� �h i

+Tm
xi + 1=2, j,k

pmi + 1, j,k�pmi, j,k

� 	
� γmi + 1=2, j,k Zi+ 1, j,k�Zi, j,k

� �h i
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+Tm
yi, j+ 1=2,k

pmi, j+ 1,k�pmi, j,k

� 	
� γmi, j+ 1=2,k Zi, j+ 1,k�Zi, j,k

� �h i

+Tm
zi, j,k + 1=2

pmi, j,k + 1�pmi, j,k

� 	
� γmi, j,k + 1=2 Zi, j,k + 1�Zi, j,k

� �h i

+qmsci, j,k ¼
Vbi, j,k

αcΔt
ϕ

B

� �n+ 1

i, j,k

� ϕ

B

� �n

i, j,k

" #
(3.14a)

which can be written in CVFD form as
X
l2ψ i, j,k

Tm
l, i, j, kð Þ pml �pmi, j,k

� 	
� γml, i, j, kð Þ Zl�Zi, j,k

� �h i
+ qmsci, j,k

¼Vbi, j,k

αcΔt
ϕ

B

� �n+ 1

i, j,k

� ϕ

B

� �n

i, j,k

" #
(3.14b)

where
Tm
i�1, j, kð Þ, i, j, kð Þ ¼ Tm

i, j, kð Þ, i�1, j, kð Þ � Tm
xi�1=2, j,k

(3.15a)

Tm
i, j�1, kð Þ, i, j, kð Þ ¼ Tm

i, j, kð Þ, i, j�1, kð Þ � Tm
yi, j�1=2,k

(3.15b)

and
Tm
i, j, k�1ð Þ, i, j, kð Þ ¼ Tm

i, j, kð Þ, i, j, k�1ð Þ � Tm
zi, j,k�1=2

(3.15c)

As mentioned earlier, transmissibilities Tm
xi�1/2,j,k

, Tm
yi,j�1/2,k

, and Tm
zi,j,k�1/2

have
been defined in Eq. (2.39). Also,

γmi�1, j, kð Þ, i, j, kð Þ ¼ γmi, j, kð Þ, i�1, j, kð Þ � γmi�1=2, j,k (3.16a)

γmi, j�1, kð Þ, i, j, kð Þ ¼ γmi, j, kð Þ, i, j�1, kð Þ � γmi, j�1=2,k (3.16b)

and
γmi, j, k�1ð Þ, i, j, kð Þ ¼ γmi, j, kð Þ, i, j, k�1ð Þ � γmi, j,k�1=2 (3.16c)

Eq. (3.4b) for 1-D flow, Eq. (3.9b) for 2-D flow, and Eq. (3.14b) for 3-D
flow reduce to

X
l2ψn

Tm
l,n pml �pmn

� �� γml,n Zl�Znð Þ� �
+ qmscn ¼

Vbn

αcΔt
ϕ

B

� �n+ 1

n

� ϕ

B

� �n

n

" #
(3.17)

where, as mentioned before, n� i for 1-D flow, n� (i, j) for 2-D flow, and
n� (i, j,k) for 3-D flow, and the elements of set ψn are defined accordingly

(Eq. 3.3, 3.8, or 3.13).

Note that the elements of the sets that contain the neighboring blocks given

by Eqs. (3.3), (3.8), and (3.13) for 1-D, 2-D, and 3-D, respectively, are ordered

as shown in Fig. 3.2. The following examples demonstrate the use of CVFD



 7

  1

 2

 6

3 4 5x

y
z

FIG. 3.2 The sequence of neighboring blocks in the set ψ i,j,k or ψn.
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terminology to write the flow equations for an interior block identified by engi-

neering notation in 1-D and 2-D reservoirs.

Example 3.1 Consider the reservoir described in Example 2.4. Write the flow

equation for interior block 3 using CVFD terminology.

Solution
Wemake use of Fig. 2.12, which gives block representation of this reservoir.

For block 3, ψx3
¼{2,4}, ψy3

¼{}, and ψ z3
¼{}. Substitution into Eq. (3.1a)

gives ψ3¼{2,4}[{}[{}¼{2,4}. The application of Eq. (3.17) for n�3

produces

X
l2ψ3

Tm
l,3 pml �pm3

� �� γml,3 Zl�Z3ð Þ� �
+ qmsc3 ¼

Vb3

αcΔt
ϕ

B

� �n+ 1

3

� ϕ

B

� �n

3

" #
(3.18)

which can be expanded as
Tm
2,3 pm2 �pm3

� �� γm2,3 Z2�Z3ð Þ� �
+ Tm

4,3 pm4 �pm3
� �� γm4,3 Z4�Z3ð Þ� �

+ qmsc3 ¼
Vb3

αcΔt
ϕ

B

� �n+ 1

3

� ϕ

B

� �n

3

" #
(3.19)

For this flow problem,
Tm
2,3 ¼ Tm

4,3 ¼ βc
kxAx

μBΔx
¼ 0:001127�270� 900�100ð Þ

2�1�250

¼ 54:7722STB=D-psi (3.20)

Z2¼Z3¼Z4 for a horizontal reservoir, and qmsc3¼ �400 STB/D.
Substitution into Eq. (3.19) yields

54:7722ð Þ pm2 �pm3
� �

+ 54:7722ð Þ pm4 �pm3
� ��400¼ Vb3

αcΔt
ϕ

B

� �n+ 1

3

� ϕ

B

� �n

3

" #

(3.21)

Eq. (3.21) is identical to Eq. (2.36), obtained in Example 2.4.
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Example 3.2 Consider the reservoir described in Example 2.5. Write the flow

equation for interior block (3,2) using CVFD terminology.

Solution
We make use of Fig. 2.14, which gives block representation of this reser-

voir. For block (3,2), ψx3,2
¼{(2,2), (4,2)}, ψy3,2

¼{(3,1), (3,3)}, and

ψ z3,2
¼{}. Substitution into Eq. (3.1a) gives ψ3,2¼{(2,2), (4,2)}[{(3,1),

(3,3)}[{}¼{(3,1), (2,2), (4,2), (3,3)}. The application of Eq. (3.17) for

n� (3,2) produces

X
l2ψ3,2

Tm
l, 3;2ð Þ pml �pm3,2

� �� γml, 3;2ð Þ Zl�Z3,2ð Þ
h i

+ qmsc3,2

¼ Vb3,2

αcΔt
ϕ

B

� �n+ 1

3,2

� ϕ

B

� �n

3,2

" #
(3.22)

which can be expanded as
Tm
3;1ð Þ, 3;2ð Þ pm3,1�pm3,2

� �� γm
3;1ð Þ, 3;2ð Þ Z3,1�Z3,2ð Þ

h i

+Tm
2;2ð Þ, 3;2ð Þ pm2,2�pm3,2

� �� γm
2;2ð Þ, 3;2ð Þ Z2,2�Z3,2ð Þ

h i

+Tm
4;2ð Þ, 3;2ð Þ pm4,2�pm3,2

� �� γm4;2ð Þ, 3;2ð Þ Z4,2�Z3,2ð Þ
h i

+Tm
3;3ð Þ, 3;2ð Þ pm3,3�pm3,2

� �� γm
3;3ð Þ, 3;2ð Þ Z3,3�Z3,2ð Þ

h i

+qmsc3,2 ¼
Vb3,2

αcΔt
ϕ

B

� �n+ 1

3,2

� ϕ

B

� �n

3,2

" #
(3.23)

For this flow problem,
Tm
2;2ð Þ, 3;2ð Þ ¼ Tm

4;2ð Þ, 3;2ð Þ ¼ βc
kxAx

μBΔx
¼ 0:001127�270� 300�100ð Þ

2�1�250
¼ 18:2574STB=D-psi (3.24)

Tm
3;1ð Þ, 3;2ð Þ ¼ Tm

3;3ð Þ, 3;2ð Þ ¼ βc
kyAy

μBΔy
¼ 0:001127�220� 250�100ð Þ

2�1�300
¼ 10:3308STB=D-psi (3.25)

Z3,1¼Z2,2¼Z3,2¼Z4,2¼Z3,3 for a horizontal reservoir, and q
m
sc3,2¼�400 STB/D.
Substitution into Eq. (3.23) yields

10:3308ð Þ pm3,1�pm3,2
� �

+ 18:2574ð Þ pm2,2�pm3,2
� �

+ 18:2574ð Þ pm4,2�pm3,2
� �

+ 10:3308ð Þ pm3,3�pm3,2
� ��400¼ Vb3,2

αcΔt
ϕ

B

� �n+ 1

3,2

� ϕ

B

� �n

3,2

" #
ð3:26Þ

Eq. (3.26) is identical to Eq. (2.42), obtained in Example 2.5.
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FIG. 3.3 A block and its neighboring blocks in 1-D, 2-D, and 3-D flow using natural ordering.

(a) ψn¼{(n�1), (n+1)}

(b) ψn¼{(n�nx), (n�1), (n+1), (n+nx)}
(c) ψn¼{(n�nxny), (n�nx), (n�1), (n+1), (n+nx), (n+nxny)}
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3.2.2 Flow equations using CVFD terminology and the natural
ordering scheme

The flow equation in this case has one generalized form that is given by

Eq. (3.17) with the corresponding definition of ψn for 1-D, 2-D, or 3-D flow.

Blocks in natural ordering can be ordered along rows or along columns. In this

book, we adopt natural ordering along rows (with rows being parallel to the x-
axis) and refer to it, for short, as natural ordering. From this point on, all related

discussions will use only natural ordering.

Fig. 3.3a shows block n in 1-D flow in the direction of the x-axis. In this case,

ψ xn ¼ n�1ð Þ, n+ 1ð Þf g (3.27a)

ψ yn ¼fg (3.27b)

and
ψ zn ¼fg (3.27c)

Substitution of Eq. (3.27) into Eq. (3.1a) results in
ψn ¼ n�1ð Þ, n + 1ð Þf g[fg[fg
¼ n�1ð Þ, n + 1ð Þf g (3.28)

Fig. 3.3b shows block n in 2-D flow in the x-y plane. In this case,
ψ xn ¼ n�1ð Þ, n+ 1ð Þf g (3.29a)

ψ yn ¼ n�nxð Þ, n+ nxð Þf g (3.29b)

and
ψ zn ¼fg (3.29c)
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Substitution of Eq. (3.29) into Eq. (3.1a) results in
ψn ¼ n�1ð Þ, n+ 1ð Þf g[ n�nxð Þ, n+ nxð Þf g[fg
¼ n�nxð Þ, n�1ð Þ, n + 1ð Þ, n+ nxð Þf g (3.30)

Fig. 3.3c shows block n in 3-D flow in the x-y-z space. In this case,
ψ xn ¼ n�1ð Þ, n+ 1ð Þf g (3.31a)

ψ yn ¼ n�nxð Þ, n+ nxð Þf g (3.31b)

and
ψ zn ¼ n�nxny
� �

, n+ nxny
� �
 �

(3.31c)

Substitution of Eq. (3.31) into Eq. (3.1a) results in
ψn ¼ n�1ð Þ, n+ 1ð Þf g[ n�nxð Þ, n + nxð Þf g[ n�nxny
� �

, n+ nxny
� �
 �

¼ n�nxny
� �

, n�nxð Þ, n�1ð Þ, n + 1ð Þ, n+ nxð Þ, n + nxny
� �
 � ð3:32Þ
Note that the elements of the sets containing the neighboring blocks given by

Eqs. (3.28), (3.30), and (3.32) for 1-D, 2-D, and 3-D are ordered as shown in

Fig. 3.2. Now, the flow equation for block n in 1-D, 2-D, or 3-D can be written

in CVFD form again as Eq. (3.17),

X
l2ψn

Tm
l,n pml �pmn

� �� γml,n Zl�Znð Þ� �
+ qmscn ¼

Vbn

αcΔt
ϕ

B

� �n+ 1

n

� ϕ

B

� �n

n

" #
(3.17)

where transmissibility Tl,n
m is defined as
Tm
n�1,n ¼ Tm

n,n�1 � Tm
xi�1=2, j,k

(3.33a)

Tm
n�nx,n

¼ Tm
n,n�nx

� Tm
yi, j�1=2,k

(3.33b)

and
Tm
n�nxny ,n

¼ Tm
n,n�nxny

� Tm
zi, j,k�1=2

(3.33c)

In addition, fluid gravity γl,n
m is defined as
γmn,n�1 ¼ γmn�1,n � γmi�1=2, j,k (3.34a)

γmn,n�nx
¼ γmn�nx ,n

� γmi, j�1=2,k (3.34b)

and
γmn,n�nxny
¼ γmn�nxny,n

� γmi, j,k�1=2 (3.34c)

We should mention here that, throughout this book, we use subscript n to
refer to block order while superscripts n and n+1 refer to old and new time
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levels, respectively. The following examples demonstrate the use of CVFD ter-

minology to write the flow equations for an interior block identified by natural

ordering in 2-D and 3-D reservoirs.

Example 3.3 As we did in Example 2.5, write the flow equations for interior

block (3,2) using CVFD terminology, but this time, use natural ordering of

blocks as shown in Fig. 3.4.

Solution

Block (3,2) in Fig. 2.14 corresponds to block 7 in Fig. 3.4. Therefore, n¼7.

For n¼7, ψx7¼{6,8}, ψy7¼{3,11}, and ψ z7¼{}. Substitution into Eq. (3.1a)

results in ψ7¼{6,8}[{3,11}[{}¼{3,6,8,11}.

The application of Eq. (3.17) produces

X
l2ψ7

Tm
l,7 pml �pm7

� �� γml,7 Zl�Z7ð Þ� �
+ qmsc7 ¼

Vb7

αcΔt
ϕ

B

� �n+ 1

7

� ϕ

B

� �n

7

" #
(3.35)

which can be expanded as
Tm
3,7 pm3 �pm7

� �� γm3,7 Z3�Z7ð Þ� �
+ Tm

6,7 pm6 �pm7
� �� γm6,7 Z6�Z7ð Þ� �

+Tm
8,7 pm8 �pm7

� �� γm8,7 Z8�Z7ð Þ� �
+ Tm

11,7 pm11�pm7
� �� γm11,7 Z11�Z7ð Þ� �

+qmsc7 ¼
Vb7

αcΔt
ϕ

B

� �n+ 1

7

� ϕ

B

� �n

7

" #
ð3:36Þ
Here again,

Tm
6,7 ¼ Tm

8,7 ¼ βc
kxAx

μBΔx
¼ 0:001127�270� 300�100ð Þ

2�1�250
¼ 18:2574STB=D-psi (3.37)

Tm
3,7 ¼ Tm

11,7 ¼ βc
kyAy

μBΔy
¼ 0:001127�220� 250�100ð Þ

2�1�300
¼ 10:3308STB=D-psi (3.38)
x

y
z
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i =1 i =2 i =3 i = 4

j = 1

j = 2

j = 3

300 ft

250 ft
400 STB/D

100 ft

FIG. 3.4 2-D reservoir described in Example 3.3.
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Z3¼Z6¼Z7¼Z8¼Z11 for a horizontal reservoir, and qmsc7¼ �400 STB/D.
Substitution into Eq. (3.36) gives

10:3308ð Þ pm3 �pm7
� �

+ 18:2574ð Þ pm6 �pm7
� �

+ 18:2574ð Þ pm8 �pm7
� �

+ 10:3308ð Þ pm11�pm7
� ��400¼ Vb7

αcΔt
ϕ

B

� �n+ 1

7

� ϕ

B

� �n

7

" #
(3.39)

Eq. (3.39) corresponds to Eq. (2.42) in Example 2.5, which uses engineering
notation.

Example 3.4 Consider single-phase fluid flow in the 3-D horizontal reservoir in

Example 2.6. Write the flow equation for interior block (3,2,2) using CVFD ter-

minology, but this time, use natural ordering of blocks as shown in Fig. 3.5.

Solution

Block (3,2,2) in Fig. 2.15 is block 19 in Fig. 3.5. Therefore, n¼19. For

n¼19, ψx19¼{18,20}, ψy19¼{15,23}, and ψ z19¼{7,31}. Substitution into

Eq. (3.1a) gives ψ19¼{18,20}[{15,23}[{7,31}¼{7,15,18,20,23,31}.

The application of Eq. (3.17) produces

X
l2ψ19

Tm
l,19 pml �pm19

� �� γml,19 Zl�Z19ð Þ� �
+ qmsc19 ¼

Vb19

αcΔt
ϕ

B

� �n+ 1

19

� ϕ

B

� �n

19

" #

(3.40)
(a)

(b)
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FIG. 3.5 3-D reservoir described in Example 3.4. (a) Reservoir representation and (b) natural

ordering of blocks.
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This equation can be expanded as
Tm
7,19 pm7 �pm19

� �� γm7,19 Z7�Z19ð Þ� �
+ Tm

15,19 pm15�pm19
� �� γm15,19 Z15�Z19ð Þ� �

+Tm
18,19 pm18�pm19

� �� γm18,19 Z18�Z19ð Þ� �
+ Tm

20,19 pm20�pm19
� �� γm20,19 Z20�Z19ð Þ� �

+Tm
23,19 pm23�pm19

� �� γm23,19 Z23�Z19ð Þ� �
+ Tm

31,19 pm31�pm19
� �� γm31,19 Z31�Z19ð Þ� �

+qmsc19 ¼
Vb19

αcΔt
ϕ

B

� �n+ 1

19

� ϕ

B

� �n

19

" #
ð3:41Þ
For block 19, Z1¼Z15¼Z18¼Z19¼Z20¼Z23, Z7�Z19¼33.33 ft,

Z31�Z19¼ �33.33 ft, and qm
sc19

¼ �133.3 STB/D. Since Δx18,19¼Δx20,19
¼Δx¼250 ft, Δy15,19¼Δy23,19¼Δy¼300 ft, Δz7,19¼Δz31,19¼Δz¼33.33 ft,

and μ, ρ, and B are constants, then γ7,19
m ¼γ31,19

m ¼ γcρg¼0.21584�10�3

�55�32.174¼0.3819 psi/ft,

Tm
18,19 ¼ Tm

20,19 ¼ βc
kxAx

μBΔx
¼ 0:001127�270� 300�33:33ð Þ

2�1�250
¼ 6:0857STB=D-psi (3.42)

Tm
15,19 ¼ Tm

23,19 ¼ βc
kyAy

μBΔy
¼ 0:001127�220� 250�33:33ð Þ

2�1�300
¼ 3:4436STB=D-psi (3.43)

and
Tm
7,19 ¼ Tm

31,19 ¼ βc
kzAz

μBΔz
¼ 0:001127�50� 250�300ð Þ

2�1�33:33
¼ 63:3944STB=D-psi (3.44)

Substitution into Eq. (3.41) gives
63:3944ð Þ pm7 �pm19
� ��12:7287
� �

+ 3:4436ð Þ pm15�pm19
� �

+ 6:0857ð Þ pm18�pm19
� �

+ 6:0857ð Þ pm20�pm19
� �

+ 3:4436ð Þ pm23�pm19
� �

+ 63:3944ð Þ pm31�pm19
� �

+ 12:7287
� �

�133:3¼ Vb19

αcΔt
ϕ

B

� �n+ 1

19

� ϕ

B

� �n

19

" #
ð3:45Þ

Eq. (3.45) corresponds to Eq. (2.47) in Example 2.6, which uses engineering
notation.
3.3 Flow equations in radial-cylindrical coordinates using
CVFD terminology

The equations presented in Sections 3.2.1 and 3.2.2 use Cartesian coordinates.

The same equations can be made specific to radial-cylindrical coordinates by



TABLE 3.1 Functions in Cartesian and radial-cylindrical coordinates.

Function in Cartesian

coordinates

Function in radial-

cylindrical coordinates

Coordinate x r

y θ

z z

Transmissibility Tx Tr

Ty Tθ

Tz Tz

Set of neighboring blocks
along a direction

ψx ψ r

ψy ψθ

ψz ψz

Number of blocks along a
direction

nx nr

ny nθ

nz nz
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replacing the directions (and subscripts) x and y with the directions (and sub-

scripts) r and θ, respectively. Table 3.1 lists the corresponding functions for

the two coordinate systems. As such, we can obtain the generalized 3-D flow

equation in the r-θ-z space for block n—termed block (i, j,k) in engineering

notation, meaning n� (i, j,k)—from those in the x-y-z space, Eqs. (3.12) through
(3.16). Keep in mind that i, j, and k are counting indices in the r-direction,
θ-direction, and z-axis, respectively. Therefore, Eq. (3.12) becomes

ψ rn ¼ i�1, j, kð Þ, i+ 1, j, kð Þf g (3.46a)

ψθn ¼ i, j�1, kð Þ, i, j+ 1, kð Þf g (3.46b)

and
ψ zn ¼ i, j, k�1ð Þ, i, j, k + 1ð Þf g (3.46c)

Substitution of Eq. (3.46) into Eq. (3.1b) produces
ψn ¼ψ i, j,k

¼ i�1, j, kð Þ, i+ 1, j, kð Þf g[ i, j�1, kð Þ, i, j+ 1, kð Þf g[ i, j, k�1ð Þ, i, j, k + 1ð Þf g
¼ i, j, k�1ð Þ, i, j�1, kð Þ, i�1, j, kð Þ, i+ 1, j, kð Þ, i, j+ 1, kð Þ, i, j, k + 1ð Þf g

(3.47)

which is identical to Eq. (3.13).
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The flow equation for block (i, j,k), represented by Eq. (3.14a), becomes

Tm
zi, j,k�1=2

pmi, j,k�1�pmi, j,k

� 	
� γmi, j,k�1=2 Zi, j,k�1�Zi, j,k

� �h i

+Tm
θi, j�1=2,k

pmi, j�1,k�pmi, j,k

� 	
� γmi, j�1=2,k Zi, j�1,k�Zi, j,k

� �h i

+Tm
ri�1=2, j,k

pmi�1, j,k�pmi, j,k

� 	
� γmi�1=2, j,k Zi�1, j,k�Zi, j,k

� �h i

+Tm
ri + 1=2, j,k

pmi + 1, j,k�pmi, j,k

� 	
� γmi + 1=2, j,k Zi+ 1, j,k�Zi, j,k

� �h i

+Tm
θi, j + 1=2,k

pmi, j+ 1,k�pmi, j,k

� 	
� γmi, j + 1=2,k Zi, j+ 1,k�Zi, j,k

� �h i

+Tm
zi, j,k + 1=2

pmi, j,k + 1�pmi, j,k

� 	
� γmi, j,k + 1=2 Zi, j,k + 1�Zi, j,k

� �h i

+qmsci, j,k ¼
Vbi, j,k

αcΔt
ϕ

B

� �n+ 1

i, j,k

� ϕ

B

� �n

i, j,k

" #

(3.48a)

Eq. (3.14b), the flow equation in CVFD terminology, retains its form:
X
l2ψ i, j,k

Tm
l, i, j, kð Þ pml �pmi, j,k

� 	
� γml, i, j, kð Þ Zl�Zi, j,k

� �h i
+ qmsci, j,k

¼Vbi, j,k

αcΔt
ϕ

B

� �n+ 1

i, j,k

� ϕ

B

� �n

i, j,k

" #
(3.48b)

Eq. (3.15), which defines transmissibilities, becomes
Tm
i�1, j, kð Þ, i, j, kð Þ ¼ Tm

i, j, kð Þ, i�1, j, kð Þ � Tm
ri�1=2, j,k

(3.49a)

Tm
i, j�1, kð Þ, i, j, kð Þ ¼ Tm

i, j, kð Þ, i, j�1, kð Þ � Tm
θi, j�1=2,k

(3.49b)

and
Tm
i, j, k�1ð Þ, i, j, kð Þ ¼ Tm

i, j, kð Þ, i, j, k�1ð Þ � Tm
zi, j,k�1=2

(3.49c)

Transmissibilities in radial-cylindrical coordinates, Tm
ri�1/2,j,k

, Tm
θi,j�1/2,k

, and
Tm
zi,j,k�1/2

, are defined by Eq. (2.69). Note that gravity terms, as described by

Eq. (3.16), remain intact for both coordinate systems:

γmi�1, j, kð Þ, i, j, kð Þ ¼ γmi, j, kð Þ, i�1, j, kð Þ � γmi�1=2, j,k (3.50a)

γmi, j�1, kð Þ, i, j, kð Þ ¼ γmi, j, kð Þ, i, j�1, kð Þ � γmi, j�1=2,k (3.50b)

and
γmi, j, k�1ð Þ, i, j, kð Þ ¼ γmi, j, kð Þ, i, j, k�1ð Þ � γmi, j,k�1=2 (3.50c)

For 3-D flow in the r-θ-z space, if we desire to obtain the equations in CVFD

terminology for block n with the blocks being ordered using natural ordering,

we must write the equations that correspond to Eqs. (3.31) through (3.34) with
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the aid of Table 3.1 and then use Eq. (3.17). The resulting equations are listed as

follows:

ψ rn ¼ n�1ð Þ, n+ 1ð Þf g (3.51a)

ψθn ¼ n�nrð Þ, n+ nrð Þf g (3.51b)

and
ψ zn ¼ n�nrnθð Þ, n+ nrnθð Þf g (3.51c)

Substitution of Eq. (3.51) into Eq. (3.1b) results in
ψn ¼ n�1ð Þ, n+ 1ð Þf g[ n�nrð Þ, n+ nrð Þf g[ n�nrnθð Þ, n + nrnθð Þf g
¼ n�nrnθð Þ, n�nrð Þ, n�1ð Þ, n + 1ð Þ, n+ nrð Þ, n+ nrnθð Þf g ð3:52Þ

Now, the flow equation for block n in 3-D flow can be written again as
Eq. (3.17):

X
l2ψn

Tm
l,n pml �pmn

� �� γml,n Zl�Znð Þ� �
+ qmscn ¼

Vbn

αcΔt
ϕ

B

� �n+ 1

n

� ϕ

B

� �n

n

" #
(3.17)

where transmissibility Tl,n
m is defined as
Tm
n�1,n ¼ Tm

n,n�1 � Tm
ri�1=2, j,k

(3.53a)

Tm
n�nr ,n

¼ Tm
n,n�nr

� Tm
θi, j�1=2,k

(3.53b)

and
Tm
n�nrnθ ,n

¼ Tm
n,n�nrnθ

� Tm
zi, j,k�1=2

(3.53c)

In addition, fluid gravity γl,n
m is defined as
γmn,n�1 ¼ γmn�1,n � γmi�1=2, j,k (3.54a)

γmn,n�nr
¼ γmn�nr ,n

� γmi, j�1=2,k (3.54b)

and
γmn,n�nrnθ
¼ γmn�nrnθ ,n

� γmi, j,k�1=2 (3.54c)

There are two distinct differences, however, between the flow equations in
Cartesian (x-y-z) coordinates and radial-cylindrical (r-θ-z) coordinates. First,
while reservoir external boundaries exist along the y-axis at j¼1 and j¼ny,
there are no external boundaries in the θ-direction because the blocks in this

direction form a ring of blocks; that is, block (i, 1,k) is preceded by block

(i,nθ,k), and block (i,nθ,k) is followed by block (i, 1,k). Second, any block in

Cartesian coordinates is a candidate to host (or contribute to) a well, whereas

in radial-cylindrical coordinates, only one well penetrates the inner circle of
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blocks parallel to the z-direction, and only blocks (1, j,k) are candidates to con-
tribute to this well.
3.4 Flow equations using CVFD terminology in any block
ordering scheme

The flow equation using CFVD terminology for block n in any block ordering

scheme is given by Eq. (3.17), where ψn is expressed by Eq. (3.1). The elements

contained in sets ψxn, ψyn, and ψ zn are, respectively, the neighboring blocks of

block n along the x-axis, y-axis, and z-axis for Cartesian coordinates, and the

elements contained in sets ψ rn, ψθn, and ψ zn are, respectively, the neighboring

blocks of block n in the r-direction, θ-direction, and z-axis for radial-cylindrical
coordinates. The only difference between one ordering scheme and another is

that the blocks in each scheme have different orders. Once reservoir blocks are

ordered, the neighboring blocks are defined for each block in the reservoir, and

finally, the flow equation for any reservoir block can be written. This is in rela-

tion to writing the flow equations in a given reservoir; the method of solving the

resulting set of equations is however another matter (see Chapter 9).
3.5 Summary

A flow equation in CVFD terminology has the same form regardless of the

dimensionality of the flowproblemor thecoordinate system;hence, theobjective

of CVFD terminology is to write flow equations in compact form only. In CVFD

terminology, the flow equation for block n can be made to describe flow in 1-D,

2-D, or 3-D reservoirs by defining the appropriate set of neighboring blocks (ψn).

InCartesian coordinates,Eqs. (3.3), (3.8), and (3.13) define the elements ofψn for

1-D, 2-D, and 3-D reservoirs, respectively. Eq. (3.17) gives the flow equation,

and transmissibilities and gravities are defined by Eqs. (3.15) and (3.16). Equiv-

alent equations can be written for radial-cylindrical coordinates if subscript x is
replaced with subscript r and subscript y is replaced with subscript θ.
3.6 Exercises

3.1 Is 0 the same as {}? If not, how does it differ?

3.2 Write the answers for 2+3 and {2}[{3}.

3.3 Using your own words, give the physical meanings conveyed by

Eqs. (3.2a) and (3.2b).

3.4 Consider the 1-D reservoir representation in Fig. 2.6b. Find ψ1, ψ2, ψ3,

and ψ4.
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3.5 Consider the 2-D reservoir representation in Fig. 3.4. Find ψn for n¼1, 2,

3, …12.

3.6 Consider the 3-D reservoir representation in Fig. 2.8c. Find ψn for n¼1,

2, 3, …36.

3.7 Consider the 3-D reservoir representation in Fig. 2.8b. Find ψ (1,1,1),

ψ (2,2,1), ψ (3,2,2), ψ (4,3,2), ψ (4,1,3), ψ (3,2,3), and ψ (1,3,3).

3.8 Using the definitions of ψn, ψxn
, ψyn

, and ψ zn
along with the aid of

Fig. 3.3c, prove that ψn¼ψxn
[ψyn

[ψ zn
.

3.9 Consider fluid flow in a 1-D horizontal reservoir along the x-axis. The
reservoir left and right boundaries are closed to fluid flow. The reservoir

consists of three blocks as shown in Fig. 3.6.
N

FIG. 3.
a. Write the appropriate flow equation for a general block n in this

reservoir.

b. Write the flow equation for block 1 by finding ψ1 and then using it to

expand the equation in (a).

c. Write the flow equation for block 2 by finding ψ2 and then using it to

expand the equation in (a).

d. Write the flow equation for block 3 by finding ψ3 and then using it to

expand the equation in (a).
1 2 3
x

y

No-flow boundaryo-flow boundary

6 1-D reservoir for Exercise 3.9.
3.10 Consider fluid flow in a 2-D, horizontal, closed reservoir. The reservoir

consists of nine blocks as shown in Fig. 3.7.
a. Write the appropriate flow equation for a general block n in this

reservoir.

b. Write the flow equation for block 1 by finding ψ1 and then using it to

expand the equation in (a).

c. Write the flow equation for block 2 by finding ψ2 and then using it to

expand the equation in (a).

d. Write the flow equation for block 4 by finding ψ4 and then using it to

expand the equation in (a).

e. Write the flow equation for block 5 by finding ψ5 and then using it to

expand the equation in (a).
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FIG. 3.7 2-D reservoir for Exercise 3.10.
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3.11 A 2-D oil reservoir is discretized into 4�4 blocks.
FIG. 3
a. Order the blocks in this reservoir using the natural ordering scheme,

letting block 1 be the lower left corner block.

b. Write the flow equation for each interior block in this reservoir.
3.12 A 2-D oil reservoir is discretized into 4�4 blocks.
a. Order the blocks in this reservoir using the D4 ordering scheme, let-

ting block 1 be the lower left corner block.

b. Write the flow equation for each interior block in this reservoir.
3.13 A single-phase oil reservoir is described by four equal blocks as shown in

Fig. 3.8. The reservoir is horizontal and has homogeneous and isotropic

rock properties, k¼150 md and ϕ¼0.21. Block dimensions are

Δx¼400 ft, Δy¼600 ft, and h¼25 ft. Oil properties are B¼1 RB/STB

andμ¼5 cP.The pressures of blocks 1 and4 are 2200 and900psia, respec-

tively. Block 3 hosts a well that produces oil at a rate of 100STB/D. Find

the pressure distribution in the reservoir assuming that the reservoir rock

and oil are incompressible.
1 2 3 4

25 ft

400 ft 600 ftx

y

z

100 STB/D

900 psia2200 psia

.8 1-D reservoir representation in Exercise 3.13.
3.14 A single-phase oil reservoir is described by five equal blocks as shown

in Fig. 3.9. The reservoir is horizontal and has k¼90 md and ϕ¼0.17.

Block dimensions are Δx¼500 ft, Δy¼900 ft, and h¼45 ft. Oil
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properties are B¼1 RB/STB and μ¼3 cP. The pressures of blocks 1 and

5 are maintained at 2700 and 1200psia, respectively. Gridblock 4 hosts a

well that produces oil at a rate of 325STB/D. Find the pressure distribu-

tion in the reservoir assuming that the reservoir oil and rock are

incompressible.
1 2 3 4 5

45 ft

500 ft 900 ftx

y

z

325 STB/D

1200 psia2700 psia

FIG. 3.9 1-D reservoir representation in Exercise 3.14.
3.15 Consider single-phase flow of oil in a 2-D horizontal reservoir. The res-

ervoir is discretized using 4�4 equal blocks as shown in Fig. 3.10. Block

(2,3) hosts a well that produces 500STB/D of oil. All blocks have

Δx¼Δy¼330 ft, h¼50 ft, and kx¼ky¼210 md. The oil FVF and vis-

cosity are 1.0RB/B and 2cP, respectively. The pressures of reservoir

boundary blocks are specified in Fig. 3.10. Assuming that the reservoir

oil and rock are incompressible, calculate the pressures of blocks (2,2),

(3,2), (2,3), and (3,3).
y

(1,1) (2,1) (3,1) (4,1)

330 ft

50 ft

33
0 

ft

x

4000 psia 4000 psia 3200 psia

3200 psia

4000 psia

4000 psia

4000 psia

2500 psia 2500 psia

2500 psia

2500 psia

2500 psia

(1,2) (2,2) (3,2) (4,2)

(1,3)
(2,3)

(3,3) (4,3)

(1,4) (2,4) (3,4) (4,4)

500 STB/D

FIG. 3.10 2-D reservoir representation in Exercise 3.15.
3.16 Consider single-phase flow of oil in a 2-D horizontal reservoir. The res-

ervoir is discretized using 4�4 equal blocks as shown in Fig. 3.11. Each

of blocks 6 and 11 hosts a well that produces oil at the rate shown in the

figure. All blocks have Δx¼200 ft, Δy¼250 ft, h¼60 ft, kx¼80 md,
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and ky¼65 md. The oil FVF and viscosity are 1.0RB/STB and 2cP,

respectively. The pressures of reservoir boundary blocks are specified

in Fig. 3.11. Assuming that the reservoir oil and rock are incompressible,

calculate the pressures of blocks 6, 7, 10, and 11.
3500 psia 3500 psia 3500 psia4000 psia

y

1 2 3 4

5
6 7 8

9 10
11

12

13 14 15 16

200 ft

60 ft

25
0 

ft

x

4000 psia

4000 psia

4000 psia

2500 psia 2500 psia

2500 psia

2500 psia

2500 psia

400 STB/D

300 STB/D

FIG. 3.11 2-D reservoir representation in Exercise 3.16.
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4.1 Introduction

This chapter presents discretization of 1-D, 2-D, and 3-D reservoirs using block-

centered grids in Cartesian and radial-cylindrical coordinate systems. As the

name implies, the gridblock dimensions are selected first, followed by the

placement of points in central locations of the blocks. In this, the distance

between block boundaries is the defining variable in space. In contrast, the grid-

points (or nodes) are selected first in the point-distributed grid, which is dis-

cussed in Chapter 5. Chapter 2 introduced the terminology for reservoir

discretization into blocks. This chapter describes the construction of a block-

centered grid for a reservoir and the relationships between block sizes, block

boundaries, and distances between points representing blocks. The resulting

gridblocks can be classified into interior and boundary gridblocks. Chapter 2

also derived the flow equations for interior gridblocks. However, the boundary

gridblocks are subject to boundary conditions and thus require special treat-

ment. This chapter presents the treatment of various boundary conditions and

introduces a general flow equation that is applicable for interior blocks and

boundary blocks. This chapter also presents the equations for directional trans-

missibilities in both Cartesian and radial-cylindrical coordinate systems and

discusses the use of symmetry in reservoir simulation.
19150-7.00004-9

65
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4.2 Reservoir discretization

Reservoir discretization means that the reservoir is described by a set of grid-

blocks whose properties, dimensions, boundaries, and locations in the reservoir

are well defined. Fig. 4.1 shows a block-centered grid for a 1-D reservoir in the

direction of the x-axis. The grid is constructed by choosing nx gridblocks that
span the entire reservoir length in the x-direction. The gridblocks are assigned
predetermined dimensions (Δxi, i¼1, 2, 3… nx) that are not necessarily equal.

Then, the point that represents each gridblock is subsequently located at the cen-

ter of that gridblock. Fig. 4.2 focuses on gridblock i and its neighboring grid-

blocks in the x-direction. It shows how the gridblocks are related to each

other, gridblock dimensions (Δxi�1, Δxi, Δxi+1), gridblock boundaries (xi�1/2,

xi+1/2), distances between the point that represents gridblock i and gridblock

boundaries (δxi�,δxi+), and distances between the points representing these grid-
blocks (Δxi�1/2, Δxi+1/2).

Gridblock dimensions, boundaries, and locations satisfy the following

relationships:

Xnx
i¼1

Δxi ¼ Lx,

δxi� ¼ δxi+ ¼ 1
�
2Δxi, i¼ 1,2,3…nx,

Δxi�1=2 ¼ δxi� + δxi�1+ ¼ 1
�
2 Δxi +Δxi�1ð Þ, i¼ 2,3…nx,

Δxi+ 1=2 ¼ δxi+ + δxi+ 1� ¼ 1
�
2 Δxi +Δxi+ 1ð Þ, i¼ 1,2,3…nx�1,

xi+ 1 ¼ xi +Δxi+ 1=2, i¼ 1,2,3…nx�1, x1 ¼ 1
�
2Δx1,

xi�1=2 ¼ xi�δxi� ¼ xi� 1
�
2Δxi, i¼ 1,2,3…nx,

xi+ 1=2 ¼ xi + δxi + ¼ xi +
1
�
2Δxi, i¼ 1,2,3…nx (4.1)

Fig. 4.3 shows the discretization of a 2-D reservoir into a 5�4 irregular grid.
An irregular grid implies that block sizes in the direction of the x-axis (Δxi) and
the y-axis (Δyj) are neither equal nor constant. Discretization using a regular

grid means that block sizes in the x- and y-directions are constants but not

necessarily equal. The discretization in the x-direction uses the procedure just

mentioned and the relationships presented in Eq. (4.1). The discretization in the

y-direction uses a procedure and relationships similar to those for the x-direc-
tion, and the same can be said for the z-direction for a 3-D reservoir. Inspection

of Figs. 4.1 and 4.3 shows that the point that represents a gridblock falls in the
1 2 3 nxnx –1

nx –1 nx

Right boundaryLeft boundary

Δx1 Δx2 Δx3 Δx Δx

FIG. 4.1 Discretization of a 1-D reservoir using a block-centered grid.
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FIG. 4.3 Discretization of a 2-D reservoir using a block-centered grid.

Δx i–1/2

xi–1/2

Δxi–1
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FIG. 4.2 Gridblock i and its neighboring gridblocks in the x-direction.
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center of that block and that all points representing gridblocks fall inside reser-

voir boundaries.

Example 4.1A 5000 � 1200 � 75ft horizontal reservoir contains oil that flows

along its length. The reservoir rock porosity and permeability are 0.18 and

15md, respectively. The oil FVF and viscosity are 1RB/STB and 10cP, respec-

tively. The reservoir has a well located at 3500ft. from the reservoir left bound-

ary and produces oil at a rate of 150STB/D. Discretize the reservoir into five

equal blocks using a block-centered grid and assign properties to the gridblocks

comprising this reservoir.

Solution

Using a block-centered grid, the reservoir is divided along its length into five

equal blocks. Each block is represented by a point at its center. Therefore, nx¼5,

andΔx¼Lx/nx¼5000/5¼1000 ft. Gridblocks are numbered from 1 to 5 as shown

in Fig. 4.4. Now, the reservoir is described through assigning properties to its five

gridblocks (i¼1, 2, 3, 4, 5). All the gridblocks (or the points that represent them)

have the same elevation because the reservoir is horizontal. Each gridblock has the

dimensions of Δx¼1000, Δy¼1200, and Δz¼75 and properties of kx¼15 md

and ϕ¼0.18. The points representing gridblocks are equally spaced; that is,
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FIG. 4.4 Discretized 1-D reservoir in Example 4.1.
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Δxi�1/2¼Δx¼1000 ft and Axi�1/2
¼Ax¼Δy�Δz¼1200�75¼90,000 ft2. Grid-

block 1 falls on the reservoir left boundary, and gridblock 5 falls on the reservoir

right boundary. Gridblocks 2, 3, and 4 are interior gridblocks. In addition, grid-

block 4 hosts a well with qsc4¼ �150 STB/D. Fluid properties are B¼1 RB/STB

and μ¼10 cP.

4.3 Flow equation for boundary gridblocks

In this section, we present a form of the flow equation that applies to interior

blocks and boundary blocks. This means that the proposed flow equation

reduces to the flow equations presented in Chapters 2 and 3 for interior blocks,

but it also includes the effects of boundary conditions for boundary blocks.

Fig. 4.1 shows a discretized 1-D reservoir in the direction of the x-axis. Grid-
blocks 2, 3,… nx�1 are interior blocks, whereas gridblocks 1 and nx are bound-
ary blocks that each falls on one reservoir boundary. Fig. 4.3 shows a discretized

2-D reservoir. This figure highlights an interior gridblock, gridblock (3,3); two

boundary gridblocks that each falls on one reservoir boundary, gridblocks (1,3)

and (3,1); and a gridblock that falls on two reservoir boundaries, gridblock (1,1).

In 3-D reservoirs, there are interior gridblocks and boundary gridblocks. Bound-

ary gridblocks may fall on one, two, or three reservoir boundaries. Fig. 4.5 dem-

onstrates the terminology used in this book for the reservoir boundaries in the

negative and positive directions of the x-, y-, and z-axes. Reservoir boundaries
along the x-axis are termed reservoir west boundary (bW) and reservoir east

boundary (bE), and those along the y-axis are termed reservoir south boundary

(bS) and reservoir north boundary (bN). Reservoir boundaries along the z-axis
are termed reservoir lower boundary (bL) and reservoir upper boundary (bU).
bL

bN bEbU

bS

bW

E
x

yz

U

S

L

W

N

FIG. 4.5 Definition of left and right boundaries in 3-D reservoirs.
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The characteristic forms of the difference equations for interior and bound-

ary gridblocks differ in the terms of dealing with space variables; that is, the

flow terms. The production (injection) term and the accumulation term are

the same for both interior and boundary gridblocks. The engineering approach

involves replacing the boundary condition with a no-flow boundary plus a fic-

titious well having a flow rate qmscb,bB that reflects fluid transfer between the res-

ervoir boundary itself (b) and the boundary block (bB). In other words, a

fictitious well having flow rate of qmscb,bB replaces the flow term that represents

fluid transfer across a reservoir boundary between a boundary block and a block

exterior to the reservoir. The number of flow terms in the flow equation for an

interior gridblock equals the number of neighboring gridblocks (two, four, or six

terms for 1D-, 2-D, or 3-D reservoir, respectively). For the flow equation for a

boundary gridblock, the number of flow terms equals the number of existing

neighboring gridblocks in the reservoir and the number of fictitious wells equals

the number of reservoir boundaries adjacent to the boundary gridblock.

A general form of the flow equation that applies to boundary gridblocks and

interior gridblocks in 1-D, 2-D, or 3-D flow in both Cartesian and radial-

cylindrical coordinates can be expressed best using CVFD terminology. The

use of summation operators in CVFD terminology makes it flexible and suitable

for describing flow terms in the equation of any gridblock sharing none or any

number of boundaries with the reservoir. The general form for gridblock n can

be written as:X
l2ψn

Tm
l,n pml �pmn

� �� γml,n Zl�Znð Þ� �
+
X
l2ξn

qmscl,n + q
m
scn

¼ Vbn

αcΔt
ϕ

B

� �n+ 1

n

� ϕ

B

� �n

n

" #
(4.2a)

or, in terms of potentials, as
X
l2ψn

Tm
l,n Φm

l �Φm
n

� �
+
X
l2ξn

qmscl,n + q
m
scn

¼ Vbn

αcΔt
ϕ

B

� �n+ 1

n

� ϕ

B

� �n

n

" #
(4.2b)

where ψn¼ the set whose elements are the existing neighboring gridblocks in
the reservoir, ξn¼ the set whose elements are the reservoir boundaries (bL, bS,
bW, bE, bN, bU) that are shared by gridblock n, and qmscl,n ¼ flow rate of the fic-

titious well representing fluid transfer between reservoir boundary l and grid-

block n as a result of a boundary condition. For a 3-D reservoir, ξn is either

an empty set for interior gridblocks or a set that contains one element for grid-

blocks that fall on one reservoir boundary, two elements for gridblocks that fall

on two reservoir boundaries, or three elements for gridblocks that fall on three

reservoir boundaries. An empty set implies that the gridblock does not fall on

any reservoir boundary; that is, gridblock n is an interior gridblock and henceX
l2ξn

qmscl,n ¼ 0. In engineering notation, n� (i, j,k) and Eq. (4.2a) becomes:
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X
l2ψ i, j,k

Tm
l, i, j, kð Þ pml �pmi, j,k

	 

� γml, i, j, kð Þ Zl�Zi, j,k

� �h i
+

X
l2ξi, j,k

qmscl, i, j, kð Þ + q
m
sci, j,k

¼Vbi, j,k

αcΔt
ϕ

B

� �n+ 1

i, j,k

� ϕ

B

� �n

i, j,k

" #
(4.2c)

It must be mentioned that reservoir blocks have a three-dimensional shape
whether fluid flow is 1-D, 2-D, or 3-D. The number of existing neighboring

gridblocks and the number of reservoir boundaries shared by a reservoir grid-

block add up to six as is the case in 3-D flow. Existing neighboring gridblocks

contribute to flow to or from the gridblock, whereas reservoir boundaries may or

may not contribute to flow depending on the dimensionality of flow and the pre-

vailing boundary conditions. The dimensionality of flow implicitly defines

those reservoir boundaries that do not contribute to flow at all. In 1-D flow prob-

lems, all reservoir gridblocks have four reservoir boundaries that do not contrib-

ute to flow. In 1-D flow in the x-direction, the reservoir south, north, lower, and
upper boundaries do not contribute to flow to any reservoir gridblock, including

boundary gridblocks. These four reservoir boundaries (bL, bS, bN, bU) are dis-

carded as if they did not exist. As a result, an interior reservoir gridblock has two

neighboring gridblocks and no reservoir boundaries, whereas a boundary reser-

voir gridblock has one neighboring gridblock and one reservoir boundary. In 2-

D flow problems, all reservoir gridblocks have two reservoir boundaries that do

not contribute to flow at all. For example, in 2-D flow in the x-y plane, the res-
ervoir lower and upper boundaries do not contribute to flow to any reservoir

gridblock, including boundary gridblocks. These two reservoir boundaries

(bL, bU) are discarded as if they did not exist. As a result, an interior reservoir

gridblock has four neighboring gridblocks and no reservoir boundaries, a res-

ervoir gridblock that falls on one reservoir boundary has three neighboring grid-

blocks and one reservoir boundary, and a reservoir gridblock that falls on two

reservoir boundaries has two neighboring gridblocks and two reservoir bound-

aries. In 3-D flow problems, any of the six reservoir boundaries may contribute

to flow depending on the specified boundary condition. An interior gridblock

has six neighboring gridblocks. It does not share any of its boundaries with

any of the reservoir boundaries. A boundary gridblock may fall on one, two,

or three of the reservoir boundaries. Therefore, a boundary gridblock that falls

on one, two, or three reservoir boundaries has five, four, or three neighboring

gridblocks, respectively. The earlier discussion leads to a few conclusions

related to the number of elements contained in sets ψ and ξ.

(1) For an interior reservoir gridblock, set ψ contains two, four, or six elements

for a 1-D, 2-D, or 3-D flow problem, respectively, and set ξ contains no

elements or, in other words, is empty.

(2) For a boundary reservoir gridblock, set ψ contains less than two, four, or six

elements for a 1-D, 2-D, or 3-D flow problem, respectively, and set ξ is

not empty.
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(3) The sum of the number of elements in sets ψ and ξ for any reservoir grid-

block is a constant that depends on the dimensionality of flow. This sum is

two, four, or six for a 1-D, 2-D, or 3-D flow problem, respectively.

For 1-D reservoirs, the flow equation for interior gridblock i is given by

Eq. (2.32) or (2.33):

Tm
xi�1=2

Φm
i�1�Φm

i

� �
+ Tm

xi+ 1=2
Φm

i+ 1�Φm
i

� �
+ qmsci ¼

Vbi

αcΔt
ϕ

B

� �n+ 1

i

� ϕ

B

� �n

i

" #
(4.3)
The above flow equation can be obtained from Eq. (4.2b) for n¼ i, ψ i¼{i�1,

i+1}, and ξi¼{}, and by observing that
X
l2ξi

qmscl, i ¼ 0 for an interior gridblock

and Ti�1,i
m ¼Tm

xi�1/2
.

The flow equation for boundary gridblock 1, which falls on the reservoir

west boundary in Fig. 4.6, can be written as

Tm
x1�1=2

Φm
0 �Φm

1

� �
+ Tm

x1 + 1=2
Φm

2 �Φm
1

� �
+ qmsc1 ¼

Vb1

αcΔt
ϕ

B

� �n+ 1

1

� ϕ

B

� �n

1

" #

(4.4a)

The first term on the LHS of Eq. (4.4a) represents the rate of fluid flow
across the reservoir west boundary (bW). This term can be replaced with the flow

rate of a fictitious well (qmscbW ,1
) that transfers fluid across the reservoir west

boundary to gridblock 1; that is,

qmscbW ,1
¼ Tm

x1�1=2
Φm

0 �Φm
1

� �
(4.5a)

Substitution of Eq. (4.5a) into Eq. (4.4a) yields
qmscbW ,1
+ Tm

x1 + 1=2
Φm

2 �Φm
1

� �
+ qmsc1 ¼

Vb1

αcΔt
ϕ

B

� �n+ 1

1

� ϕ

B

� �n

1

" #
(4.4b)
The above flow equation can be obtained from Eq. (4.2b) for n¼1, ψ1¼{2},

and ξ1¼{bW}, and by observing that
X
l2ξ1

qmscl,1 ¼ qmscbW ,1
and T2, 1

m ¼Tmx1+1/2.
nx+1nx 1 2 3

Left boundary Right boundary

0

(1/2) Δx1 (1/2) Δxnx

FIG. 4.6 Boundary gridblocks at the left and right boundaries of a 1-D reservoir (dashed lines
represent fictitious reflective blocks).
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The flow equation for boundary gridblock nx, which falls on the reservoir

east boundary in Fig. 4.6, can be written as

Tm
xnx�1=2

Φm
nx�1�Φm

nx

	 

+ Tm

xnx + 1=2
Φm

nx + 1
�Φm

nx

	 

+ qmscnx

¼ Vbnx

αcΔt
ϕ

B

� �n+ 1

nx

� ϕ

B

� �n

nx

" #
(4.6a)

The second term on the LHS of Eq. (4.6a) represents the rate of fluid flow
across the reservoir east boundary (bE). This term can be replaced with the flow

rate of a fictitious well (qmscbE,nx
) that transfers fluid across the reservoir east

boundary to gridblock nx; that is,

qmscbE,nx
¼ Tm

xnx + 1=2
Φm

nx + 1
�Φm

nx

	 

(4.7a)

Substitution of Eq. (4.7a) into Eq. (4.6a) yields
Tm
xnx�1=2

Φm
nx�1�Φm

nx

	 

+ qmscbE,nx

+ qmscnx ¼
Vbnx

αcΔt
ϕ

B

� �n+ 1

nx

� ϕ

B

� �n

nx

" #
(4.6b)

The above flow equation can also be obtained from Eq. (4.2b) for n¼nx,X

ψnx¼{nx�1}, and ξnx¼{bE}, and by observing that

l2ξnx
qmscl,nx ¼ qmscbE,nx

and

Tmnx�1,nx¼Tm
xnx + 1=2

.

For 2-D reservoirs, the flow equation for interior gridblock (i, j) is given by

Eq. (2.37):

Tm
yi, j�1=2

Φm
i, j�1�Φm

i, j

	 

+ Tm

xi�1=2, j
Φm
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+Tm
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Vbi, j
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� ϕ

B
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" #
(4.8)

The above flow equation can be obtained from Eq. (4.2b) for n� (i, j),

ψ i,j¼{(i, j�1), (i�1, j), (i+1, j), (i, j+1)}, and ξi,j¼{}, and by observing

that
X
l2ξi, j

qmscl, i, jð Þ ¼ 0 for an interior gridblock, T(i,j�1),(i,j)
m ¼Tmyi,j�1/2

, and

Tm(i�1,j),(i,j)¼Tmxi�1/2,j
.

For a gridblock that falls on one reservoir boundary, like gridblock (3,1),

which falls on the reservoir south boundary in Fig. 4.3, the flow equation

can be written as

Tm
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+ Tm
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(4.9a)

The first term on the LHS of Eq. (4.9a) represents the rate of fluid flow
across the reservoir south boundary (bS). This term can be replaced with the
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flow rate of a fictitious well ðqmscbS, 3;1ð Þ Þ that transfers fluid across the reservoir

south boundary to gridblock (3,1); that is,

qmscbS, 3;1ð Þ ¼ Tm
y3,1�1=2

Φm
3,0�Φm

3,1

� �
(4.10)

Substitution of Eq. (4.10) into Eq. (4.9a) yields
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(4.9b)

The above flow equation can be obtained from Eq. (4.2b) for n� (3,1),
ψ3,1¼{(2,1), (4,1), (3,2)}, and ξ3,1¼{bS}, and by observing

that
X
l2ξ3,1

qmscl, 3;1ð Þ ¼ qmscbS, 3;1ð Þ , T(2,1),(3,1)
m ¼Tmx3�1/2,1

, T(4,1),(3,1)
m ¼Tmx3+1/2,1, and

T(3,2),(3,1)
m ¼Tmy3,1+1/2

.

For a gridblock that falls on two reservoir boundaries, like boundary grid-

block (1,1), which falls on the reservoir south and west boundaries in Fig. 4.3,

the flow equation can be written as

Tm
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(4.11a)

The first term on the LHS of Eq. (4.11a) represents fluid flow rate across the
reservoir south boundary (bS). This term can be replaced with the flow rate of a

fictitious well (qmscbS, 1;1ð Þ) that transfers fluid across the reservoir south boundary

to gridblock (1,1); that is,

qmscbS, 1;1ð Þ ¼ Tm
y1,1�1=2

Φm
1,0�Φm

1,1

� �
(4.12)

The second term on the LHS of Eq. (4.11a) represents fluid flow rate across
the reservoir west boundary (bW). This term can also be replaced with the flow

rate of another fictitious well (qmscbW , 1;1ð Þ ) that transfers fluid across the reservoir

west boundary to gridblock (1,1); that is,

qmscbW , 1;1ð Þ ¼ Tm
x1�1=2,1

Φm
0,1�Φm

1,1

� �
(4.13)

Substitution of Eqs. (4.12) and (4.13) into Eq. (4.11a) yields
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The earlier flow equation can also be obtained from Eq. (4.2b) for n� (1,1),
ψ1,1¼{(2, 1), (1,2)}, and ξ1,1¼{bS,bW}, and by observing thatX
l2ξ1,1

qmscl, 1;1ð Þ ¼ qmscbS, 1;1ð Þ + q
m
scbW , 1;1ð Þ , T(2,1),(1,1)

m ¼Tmx1+1/2,1, and T(1,2),(1,1)
m ¼Tmy1,1+1/2.

The following example demonstrates the use of the general equation,

Eq. (4.2a), to write the flow equations for interior gridblocks in a 1-D reservoir.

Example 4.2 For the 1-D reservoir described in Example 4.1, write the flow

equations for interior gridblocks 2, 3, and 4.

Solution

The flow equation for gridblock n, in a 1-D horizontal reservoir, is obtained

by neglecting the gravity term in Eq. (4.2a), yielding

X
l2ψn

Tm
l,n pml �pmn
� �

+
X
l2ξn

qmscl,n + q
m
scn

¼ Vbn

αcΔt
ϕ

B
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n

� ϕ

B

� �n

n

" #
(4.14)

For interior gridblocks n, ψn¼{n�1,n+1} and ξn¼{}. Therefore,X

l2ξn

qmscl,n ¼ 0. The gridblocks in this problem are equally spaced; therefore,

Tl,n
m ¼Tmxn�1/2

¼Tx
m, where

Tm
x ¼ βc

kxAx

μBΔx
¼ 0:001127�15� 1200�75ð Þ

10�1�1000
¼ 0:1521STB=D-psi (4.15)

X

For gridblock 2, n¼2, ψ2¼{1,3}, ξ2¼{},

l2ξ2
qmscl,2 ¼ 0, and qmsc2¼0. There-

fore, Eq. (4.14) becomes
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X

For gridblock 3, n¼3, ψ3¼{2,4}, ξ3¼{},

l2ξ3
qmscl,3 ¼ 0, and qmsc3¼0.

Therefore, Eq. (4.14) becomes
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X

For gridblock 4, n¼4, ψ4¼{3,5}, ξ4¼{},

l2ξ4
qmscl,4 ¼ 0, and qmsc4¼

�150 STB/D. Therefore, Eq. (4.14) becomes

0:1521ð Þ pm3 �pm4
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4.4 Treatment of boundary conditions

A reservoir boundary can be subject to one of four conditions: (1) no-flow bound-

ary, (2) constant-flow boundary, (3) constant pressure gradient boundary, and (4)

constant pressure boundary. In fact, the first three boundary conditions reduce to

the specified pressure gradient condition (the Neumann boundary condition), and

the fourth boundary condition is the Dirichlet boundary condition (constant pres-

sure value). This section presents in detail the treatment of boundary conditions for

1-D flowin thex-direction, followedbygeneralizations for the treatmentofbound-

ary conditions inmultidimensional reservoirs. In this section, we refer to reservoir

boundaries as left and right boundaries because the lower, south, and west bound-

aries can be considered left boundaries,while the east, north, and upper boundaries

can be considered right boundaries in 3-D reservoirs. The flow rate of the fictitious

well ðqmscb,bBÞ reflects fluid transfer between the boundary block (bB) (e.g., grid-

block 1 for the reservoir left boundary and gridblock nx for the reservoir right

boundary inFig. 4.1) and the reservoir boundary itself (b), orbetween theboundary
block and the block next to the reservoir boundary that falls outside the reservoir

(bB∗∗) (e.g., gridblock 0 for the reservoir left boundary and gridblock nx+1 for the
reservoir right boundary in Fig. 4.6). Eq. (4.4b) expresses the flow equation for

boundary gridblock 1, which falls on the reservoir left boundary, and Eq. (4.6b)

expresses the equation for boundary gridblock nx, which falls on the reservoir right
boundary.

For boundary gridblock 1, which falls on the reservoir left boundary, the rate

of fictitious well is expressed by Eq. (4.5a), which states

qmscbW ,1
¼ Tm

x1�1=2
Φm

0 �Φm
1

� �
(4.5a)

Since there is no geologic control for areas outside the reservoir, including
aquifers, it is not uncommon to assign reservoir rock properties to those areas in

the neighborhood of the reservoir under consideration. Therefore, we use the

reflection technique at left boundary of the reservoir, shown in Fig. 4.6, with

regard to transmissibility only (i.e., Tm0,bW¼TmbW,1) and evaluate Tmx1�1/2
in terms

of the transmissibilities between gridblock 0 and reservoir west boundary bW
and between gridblock 1 and reservoir west boundary bW. The result is:
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x1=2

¼ βc
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(4.19a)

or
Tm
0,bW

¼ Tm
bW ,1

¼ 2Tm
x1=2

(4.19b)

Substitution of Eq. (4.19b) into Eq. (4.5a) gives
qmscbW ,1
¼ 1

�
2T

m
bW ,1

Φm
0 �Φm

1

� �
(4.5b)
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FIG. 4.7 Definition of terminology used in Eq. (4.20).
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Similarly, for boundary gridblock nx, which falls on the reservoir right
boundary,

qmscbE,nx
¼ Tm

xnx + 1=2
Φm

nx + 1
�Φm

nx

	 

(4.7a)

and
qmscbE,nx
¼ 1

�
2T

m
bE,nx

Φm
nx + 1

�Φm
nx

	 

(4.7b)

In other words, the flow term between a boundary gridblock and the
gridblock located immediately on the other side of the reservoir boundary

can be replaced by a fictitious well having a flow rate qmscb,bB. The general form
for qmscb,bB is

qmscb,bB ¼ Tm
bB,bB∗∗ Φm

bB∗∗ �Φm
bB

� �
(4.20a)

or
qmscb,bB ¼ 1
�
2T

m
b,bB Φm

bB∗∗ �Φm
bB

� �
(4.20b)

where, as shown in Fig. 4.7, qmscb,bB¼ flow rate of a fictitious well representing
flow across reservoir boundary (b) between boundary block (bB) and the block
that is exterior to the reservoir and located immediately next to reservoir bound-

ary (bB∗∗), TbB, bB∗∗
m ¼ transmissibility between boundary gridblock bB and grid-

block bB∗∗, and Tb,bB
m ¼ transmissibility between reservoir boundary (b) and

boundary gridblock bB.
In the following sections, we derive expressions for qmscb,bB under various

boundary conditions for a block-centered grid in Cartesian coordinates. We

stress that this rate must produce the same effects as the specified boundary con-

dition. In Cartesian coordinates, real wells have radial flow, and fictitious wells

have linear flow, whereas in radial-cylindrical coordinates in single-well sim-

ulation both real wells and fictitious wells have radial flow. Therefore, in single-

well simulation, (1) the equations for the flow rate of real wells presented in

Sections 6.2.2 and 6.3.2 can be used to estimate the flow rate of fictitious wells

representing boundary conditions in the radial direction only, (2) the flow rate

equations of fictitious wells in the z-direction are similar to those presented next

in this section because flow in the vertical direction is linear, and (3) there are no

reservoir boundaries and hence no fictitious wells in the θ-direction. The flow
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FIG. 4.8 Specified pressure gradient condition at reservoir boundaries in a block-centered grid.
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rate of a fictitious well is positive for fluid gain (injection) or negative for fluid

loss (production) across a reservoir boundary.
4.4.1 Specified pressure gradient boundary condition

For boundary gridblock 1 shown in Fig. 4.8, which falls on the left boundary of

the reservoir, Eq. (4.20a) reduces to Eq. (4.5a) that can be rewritten as:

qmscbW ,1
¼ Tm

x1=2
Φm

0 �Φm
1

� �¼ βc
kxAx

μBΔx

� �m
1=2

Φm
0 �Φm

1

� �¼ βc
kxAx

μB

� �m
1=2

Φm
0 �Φm

1

� �
Δx1=2

ffi βc
kxAx

μB

� �m
1=2

�∂Φ
∂x






m

bW

" #
¼� βc

kxAx

μB

� �m
1=2

∂Φ
∂x






m

bW

¼� βc
kxAx

μB

� �m
1

∂Φ
∂x






m

bW

(4.21)

Note that in arriving at the above equation, we used the reflection technique
shown in Fig. 4.6 with respect to transmissibility and used the central-difference

approximation of first-order derivative of potential.

Similarly for gridblock nx, which falls on the reservoir right boundary,

Eq. (4.20a) reduces to Eq. (4.7a) that can be rewritten as

qmscbE,nx
¼ Tm

xnx + 1=2
Φm

nx + 1
�Φm

nx

	 

¼ βc

kxAx

μBΔx

� �m
nx + 1=2

Φm
nx + 1

�Φm
nx

	 


¼ βc
kxAx

μB

� �m
nx + 1=2

Φm
nx + 1

�Φm
nx

	 

Δxnx + 1=2

ffi βc
kxAx

μB

� �m
nx + 1=2

∂Φ
∂x






m

bE

" #

¼ βc
kxAx

μB

� �m
nx + 1=2

∂Φ
∂x






m

bE

¼ βc
kxAx

μB

� �m
nx

∂Φ
∂x






m

bE

(4.22)

Here again, we used the reflection technique shown in Fig. 4.6 with respect
to transmissibility and used the central-difference approximation of first-order

derivative of potential.

In general, for specified pressure gradient at the reservoir left (lower, south,

or west) boundary,

qmscb,bB ffi� βc
klAl

μB

� �m
bB

∂Φ
∂l






m

b

(4.23a)

or after combining with Eq. (2.10),



78 Petroleum reservoir simulation
qmscb,bB ffi� βc
klAl

μB

� �m
bB

∂p

∂l






m

b

� γmbB
∂Z

∂l






b

� �
(4.23b)

and at the reservoir right (east, north, or upper) boundary,
qmscb,bB ffi βc
klAl

μB

� �m
bB

∂Φ
∂l






m

b

(4.24a)

or after combining with Eq. (2.10),
qmscb,bB ffi βc
klAl

μB

� �m
bB

∂p

∂l






m

b

� γmbB
∂Z

∂l






b

� �
(4.24b)

where l is the direction normal to the boundary.
4.4.2 Specified flow rate boundary condition

The specified flow rate boundary condition arises when the reservoir near the

boundary has higher or lower potential than that of a neighboring reservoir or

aquifer. In this case, fluids move across the reservoir boundary.Methods such as

water influx calculations and classical material balance in reservoir engineering

can be used to estimate fluid flow rate, which we term here as specified (qspsc).
Therefore, Eq. (4.5a) for boundary gridblock 1 becomes

qmscbW ,1
¼ Tm

x1=2
Φm

0 �Φm
1

� �¼ qspsc (4.25)

and Eq. (4.7a) for boundary gridblock nx becomes
qmscbE,nx
¼ Tm

xnx + 1=2
Φm

nx + 1
�Φm

nx

	 

¼ qspsc (4.26)

In general, for a specified flow rate boundary condition, Eq. (4.20a)
becomes

qmscb,bB ¼ qspsc (4.27)

In multidimensional flow with qspsc specified for the whole reservoir bound-

ary, qmscb,bB for each boundary gridblock is obtained by prorating qspsc among all

boundary gridblocks that share that boundary; that is,

qmscb,bB ¼
Tm
b,bBX

l2ψb

Tm
b, l

qspsc (4.28)

where ψb is the set that contains all boundary gridblocks that share the reservoir
boundary in question; Tb,l¼ transmissibility between the reservoir boundary and

boundary gridblock l, which is a member of the set ψb, and Tb,bB
m is defined as

Tm
b,bB ¼ βc

klAl

μB Δl=2ð Þ
� �m

bB

(4.29)
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The length l and subscript l in Eq. (4.29) are replaced with x, y, or z depending on

the boundary face of boundary block. It should be mentioned that Eq. (4.28)

incorporates the assumption that the potential drops across the reservoir bound-

ary for all gridblocks sharing that boundary are equal.
4.4.3 No-flow boundary condition

The no-flow boundary condition results from vanishing permeability at a

reservoir boundary (e.g., Tmx1/2¼0 for the left boundary of gridblock 1 and

Tm
xnx + 1=2

¼0 for the right boundary of gridblock nx) or because of symmetry about

the reservoir boundary (e.g., Φ0
m¼Φ1

m for gridblock 1 and Φm
nx¼Φm

nx+1 for grid-

block nx). In either case, Eq. (4.5a) for boundary gridblock 1 reduces to

qmscbW ,1
¼ Tm

x1=2
Φm

0 �Φm
1

� �¼ 0 Φm
0 �Φm

1

� �¼ Tm
x1=2

0ð Þ¼ 0 (4.30)

and Eq. (4.7a) for boundary gridblock nx reduces to
qmscbE,nx
¼ Tm

xnx + 1=2
Φm

nx + 1
�Φm

nx

	 

¼ 0 Φm

nx + 1
�Φm

nx

	 

¼ Tm

xnx + 1=2
0ð Þ¼ 0 (4.31)

In general, for a reservoir no-flow boundary, Eq. (4.20a) becomes
qmscb,bB ¼ 0 (4.32)

For multidimensional flow, qmscb,bB is set to zero, as Eq. (4.32) implies, for
each boundary gridblock that falls on a no-flow boundary in the x-, y-, or z-
direction.
4.4.4 Specified boundary pressure condition

This condition arises when the reservoir is in communication with a strong

water aquifer or when wells on the other side of the reservoir boundary operate

to maintain voidage replacement and as a result keep boundary pressure (pb)
constant. Fig. 4.9 shows this boundary condition at the reservoir left and right

boundaries.

Eq. (4.5a) for boundary gridblock 1 can be rewritten as

qmscbW ,1
¼ Tm

x1=2
Φm

0 �Φm
1

� �¼ Tm
x1=2

Φm
0 �ΦbW +ΦbW �Φm

1

� �
¼ Tm

x1=2
Φm

0 �ΦbW

� �
+ ΦbW �Φm

1

� �� �¼ Tm
x1=2

Φm
0 �ΦbW

� �
+ Tm

x1=2
ΦbW �Φm

1

� �
(4.33)
1 2 3 nxnx –1

Right boundaryLeft boundary

p
bW

p
bE

FIG. 4.9 Specified pressure condition at reservoir boundaries in a block-centered grid.



80 Petroleum reservoir simulation
Combining the above equation and Eq. (4.19b) yields:
qmscbW ,1
¼ 1

�
2T

m
0,bW

Φm
0 �ΦbW

� �
+ 1

�
2T

m
bW ,1

ΦbW �Φm
1

� �
(4.34)

To keep the potential at the left boundary of gridblock 1 constant, the fluid
leaving the reservoir boundary to one side (point 1) has to be equal to the fluid

entering the reservoir boundary from the other side (point 0); see Fig. 4.6. That is,

Tm
0,bW

Φm
0 �ΦbW

� �¼ Tm
bW ,1

ΦbW �Φm
1

� �
(4.35)

Substitution of Eq. (4.35) into Eq. (4.34) and making use of Eq. (4.19b)
yield:

qmscbW ,1
¼ Tm

bW ,1
ΦbW �Φm

1

� �
(4.36)

Keeping the potential at any point constant implies the pressure is kept con-
stant because potential minus pressure is constant as required by Eq. (2.11).

In general, for a specified pressure boundary, Eq. (4.20a) becomes

qmscb,bB ¼ Tm
b,bB Φb�Φm

bB

� �
(4.37a)

Eq. (4.37a) can be rewritten in terms of pressure as
qmscb,bB ¼ Tm
b,bB pb�pmbB

� �� γmb,bB Zb�ZbBð Þ� �
(4.37b)

where γb,bB
m is nothing but fluid gravity in boundary block bB and Tb,bB

m ¼ trans-
missibility between the reservoir boundary and the point representing the

boundary gridblock and is given by Eq. (4.29):

Tm
b,bB ¼ βc

klAl

μB Δl=2ð Þ
� �m

bB

(4.29)

Combining Eqs. (4.29) and (4.37b) gives
qmscb,bB ¼ βc
klAl

μB Δl=2ð Þ
� �m

bB

pb�pmbB
� �� γmb,bB Zb�ZbBð Þ� �

(4.37c)

Substitution of Eq. (4.37c) in the flow equation for boundary gridblock bB

maintains a second-order correct finite-difference flow equation in the mathe-

matical approach (see Exercise 4.7). Abou-Kassem et al. (2007) proved that

such a treatment of this boundary condition is second-order correct. In multi-

dimensional flow, qmscb,bB for a boundary gridblock falling on a specified pressure
boundary in the x-, y-, or z-direction is estimated using Eq. (4.37c) with the cor-

responding x, y, or z replacing l.
4.4.5 Specified boundary block pressure

This condition arises if one makes the mathematical assumption that the bound-

ary pressure is displaced half a block to coincide with the center of the boundary
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gridblock; that is, p1ffipbW or pnxffipbE. This approximation is first-order correct

and produces results that are less accurate than the treatment that uses

Eq. (4.37c). Currently available books on reservoir simulation use this treatment

to deal with the specified boundary pressure condition. Following this treat-

ment, the problem reduces to finding the pressure of other gridblocks in the res-

ervoir as demonstrated in Example 7.2 in Chapter 7.

The following examples demonstrate the use of the general equation,

Eq. (4.2a), and the appropriate expressions for qmscb,bB to write the flow equations

for boundary gridblocks in 1-D and 2-D reservoirs that are subject to various

boundary conditions.

Example 4.3 For the 1D reservoir described in Example 4.1, the reservoir left

boundary is kept at a constant pressure of 5000psia, and the reservoir right

boundary is a no-flow (sealed) boundary as shown in Fig. 4.10. Write the flow

equations for boundary gridblocks 1 and 5.

Solution

The flow equation for gridblock n in a 1-D horizontal reservoir is obtained

from Eq. (4.2a) by neglecting the gravity term, resulting in

X
l2ψn

Tm
l,n pml �pmn
� �

+
X
l2ξn

qmscl,n + q
m
scn

¼ Vbn

αcΔt
ϕ

B

� �n + 1

n

� ϕ

B

� �n

n

" #
(4.14)

From Example 4.2, Tl,n
m ¼Tx

m¼0.1521 STB/D-psi. X

For boundary gridblock 1, n¼1, ψ1¼{2}, ξ1¼{bW},

l2ξ1
qmscl,1 ¼ qmscbW ,1

, and

qmsc1¼0.

Therefore, Eq. (4.14) becomes

0:1521 pm2 �pm1
� �

+ qmscbW ,1
¼ Vb1

αcΔt
ϕ

B

� �n + 1

1

� ϕ

B

� �n

1

" #
(4.38)

where the rate of flow across the reservoir left boundary is given by Eq. (4.37c):
qmscbW ,1
¼ βc

kxAx

μB Δx=2ð Þ
� �m

1

pbW �pm1
� �� γbW ,1 ZbW �Z1ð Þ� �

¼ 0:001127� 15� 1200�75ð Þ
10�1� 1000=2ð Þ 5000�pm1

� �� γbW ,1�0
� �

(4.39)
2 3 4 51 
75 ft

1000 ft1000 ft 1200 ft

x

y
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pbW
 = 5000 psia

No-flow boundary

FIG. 4.10 Discretized 1-D reservoir in Example 4.3.
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or
qmscbW ,1
¼ 0:3043ð Þ 5000�pm1

� �
(4.40)

Substitution of Eq. (4.40) into Eq. (4.38) results in the flow equation for
boundary gridblock 1:

0:1521ð Þ pm2 �pm1
� �

+ 0:3043ð Þ 5000�pm1
� �¼ Vb1

αcΔt
ϕ

B

� �n+ 1

1

� ϕ

B

� �n

1

" #

(4.41)X

For boundary gridblock 5, n¼5, ψ5¼{4}, ξ5¼{bE},

l2ξ5
qmscl,5 ¼ qmscbE,5

, and

qmsc5¼0. Therefore, Eq. (4.14) becomes

0:1521ð Þ pm4 �pm5
� �

+ qmscbE,5
¼ Vb5

αcΔt
ϕ

B

� �n+ 1

5

� ϕ

B

� �n

5

" #
(4.42)

where the flow rate across the reservoir right boundary (no-flow boundary) is
given by Eq. (4.32). For the reservoir right boundary, b�bE, bB�5, and

qmscbE,5
¼ 0 (4.43)

Substitution into Eq. (4.42) results in the flow equation for boundary grid-
block 5:

0:1521ð Þ pm4 �pm5
� �¼ Vb5

αcΔt
ϕ

B

� �n + 1

5

� ϕ

B

� �n

5

" #
(4.44)
Example 4.4 For the 1-D reservoir described in Example 4.1, the reservoir left

boundary is kept at a constant pressure gradient of �0.1psi/ft and the reservoir

right boundary is supplied with fluid at a rate of 50STB/D as shown in Fig. 4.11.

Write the flow equations for boundary gridblocks 1 and 5.

Solution

The flow equation for gridblock n in a 1-D horizontal reservoir is obtained

from Eq. (4.2a) by neglecting the gravity term, resulting in
2 3 4 51 
75 ft

1000 ft1000 ft 1200 ft

x

y

z

150 STB/D

dp  
dx bW

= –0.1 psi/ft

qscbE

 = 50 STB/D

FIG. 4.11 Discretized 1-D reservoir in Example 4.4.
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X
l2ψn

Tm
l,n pml �pmn
� �

+
X
l2ξn

qmscl,n + q
m
scn

¼ Vbn

αcΔt
ϕ

B

� �n + 1

n

� ϕ

B

� �n

n

" #
(4.14)

From Example 4.2, Tl,n
m ¼Tx

m¼0.1521 STB/D-psi. X

For boundary gridblock 1, n¼1, ψ1¼{2}, ξ1¼{bW},

l2ξ1
qmscl,1 ¼ qmscbW ,1

, and

qmsc1¼0. Therefore, Eq. (4.14) becomes

0:1521ð Þ pm2 �pm1
� �

+ qmscbW ,1
¼ Vb1

αcΔt
ϕ

B

� �n+ 1

1

� ϕ

B

� �n

1

" #
(4.38)

where the flow rate of a fictitious well for the specified pressure gradient at the
reservoir left boundary is estimated using Eq. (4.23b):


 
" #

qmscbW ,1

¼� βc
kxAx

μB

� �m
1

∂p

∂x





bW

� γm1
∂Z

∂x





bW

¼� 0:001127�15� 1200�75ð Þ
10�1

� �
�0:1�0½ � ¼�152:145� �0:1ð Þ

(4.45)

or
qmscbW ,1
¼ 15:2145 (4.46)

Substitution of Eq. (4.46) into Eq. (4.38) results in the flow equation for
boundary gridblock 1:

0:1521ð Þ pm2 �pm1
� �

+ 15:2145¼ Vb1

αcΔt
ϕ

B

� �n+ 1

1

� ϕ

B

� �n

1

" #
(4.47)

X

For boundary gridblock 5, n¼5, ψ5¼{4}, ξ5¼{bE},

l2ξ5
qmscl,5 ¼ qmscbE,5

, and

qmsc5¼0. Therefore, Eq. (4.14) becomes

0:1521ð Þ pm4 �pm5
� �

+ qmscbE,5
¼ Vb5

αcΔt
ϕ

B

� �n+ 1

5

� ϕ

B

� �n

5

" #
(4.42)

where the flow rate of a fictitious well for a specified rate boundary is estimated
using Eq. (4.27); that is,

qmscbE,5
¼ 50STB=D (4.48)

Substitution of Eq. (4.48) into Eq. (4.42) results in the flow equation for
boundary gridblock 5:

0:1521ð Þ pm4 �pm5
� �

+ 50¼ Vb5

αcΔt
ϕ

B

� �n+ 1

5

� ϕ

B

� �n

5

" #
(4.49)
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Example 4.5 Consider single-phase fluid flow in the 2-D horizontal reservoir

shown in Fig. 4.12. Awell located in gridblock 7 produces at a rate of 4000STB/

D. All gridblocks have Δx¼250 ft, Δy¼300 ft, h¼100 ft, kx¼270 md, and

ky¼220 md. The FVF and viscosity of the flowing fluid are 1.0RB/STB and

2cP, respectively. The reservoir south boundary is maintained at 3000psia,

the reservoir west boundary is sealed off to flow, the reservoir east boundary

is kept at a constant pressure gradient of 0.1psi/ft, and the reservoir loses fluid

across its north boundary at a rate of 500STB/D. Write the flow equations for

boundary gridblocks 2, 5, 8, and 11.

Solution

The general flow equation for a 2-D horizontal reservoir is obtained from

Eq. (4.2a) by neglecting the gravity term, resulting in

X
l2ψn

Tm
l,n pml �pmn
� �

+
X
l2ξn

qmscl,n + q
m
scn

¼ Vbn

αcΔt
ϕ

B

� �n+ 1

n

� ϕ

B

� �n

n

" #
(4.14)

Note that Δx¼250 ft, Δy¼300 ft, kx, ky, μ, and B are constant. Therefore,
Tm
x ¼ βc

kxAx

μBΔx
¼ 0:001127�270� 300�100ð Þ

2�1�250
¼ 18:2574 STB=D-psi (4.50)

and
Tm
y ¼ βc

kyAy

μBΔy
¼ 0:001127�220� 250�100ð Þ

2�1�300
¼ 10:3308 STB=D-psi (4.51)
For boundary gridblock 2, n¼2, ψ2¼{1,3,6}, ξ2¼{bS}, and qmsc2¼0.X
l2ξ2

qmscl,2 ¼ qmscbS,2
, where qmscbS,2

is obtained from Eq. (4.37c) after discarding

the gravity term, resulting in
1 2 3 4

5 6 7 8

9 10 11 12

300 ft

250 ft

x

y

No-flow boundary

qscbN

 = –500 STB/D

4000 STB/D

250 ft

300 ft

dp  
dx bE

= 0.1 psi/ft

pbS
 = 3000 psia

FIG. 4.12 Discretized 2-D reservoir in Examples 4.5 and 4.6.



qmscbS,2
¼ βc

kyAy

μB Δy=2ð Þ
� �m

2

pbS �pm2
� �

¼ 0:001127�220� 250�100ð Þ
2�1� 300=2ð Þ

� �
3000�pm2
� �

(4.52)

or
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qmscbS,2
¼ 20:6617ð Þ 3000�pm2

� �
(4.53)

Substitution into Eq. (4.14) results in the flow equation for boundary grid-
block 2,

18:2574ð Þ pm1 �pm2
� �

+ 18:2574ð Þ pm3 �pm2
� �

+ 10:3308ð Þ pm6 �pm2
� �

+ 20:6617ð Þ 3000�pm2
� �¼ Vb2

αcΔt
ϕ

B

� �n+ 1

2

� ϕ

B

� �n

2

" #
(4.54)

For boundary gridblock 5, n¼5, ψ5¼{1,6,9}, ξ5¼{bW}, and qmsc5¼0.X

l2ξ5

qmscl,5 ¼ qmscbW ,5
, where qmscbW ,5

is obtained from Eq. (4.32) for a no-flow

boundary; that is, qmscbW ,5
¼0.

Substitution into Eq. (4.14) results in the flow equation for boundary grid-

block 5,

10:3308ð Þ pm1 �pm5
� �

+ 18:2574ð Þ pm6 �pm5
� �

+ 10:3308ð Þ pm9 �pm5
� �

+ 0

¼ Vb5

αcΔt
ϕ

B

� �n+ 1

5

� ϕ

B

� �n

5

" #
(4.55)

For boundary gridblock 8, n¼8, ψ8¼{4,7,12}, ξ8¼{bE}, and qmsc8¼0.X

l2ξ8

qmscl,8 ¼ qmscbE,8
, where qmscbE,8

is estimated using Eq. (4.24b) for the reservoir

east boundary,

qmscbE ,8
¼ βc

kxAx

μB

� �m
8

∂p

∂x






m

bE

� γm8
∂Z

∂x






bE

" #
¼ 0:001127�270� 300�100ð Þ

2�1

� �
0:1�0½ �

¼ 4564:35� 0:1ð Þ¼ 456:435 (4.56)

Substitution into Eq. (4.14) results in the flow equation for boundary grid-
block 8,

10:3308ð Þ pm4 �pm8
� �

+ 18:2574ð Þ pm7 �pm8
� �

+ 10:3308ð Þ pm12�pm8
� �

+456:435¼ Vb8

αcΔt
ϕ

B

� �n+ 1

8

� ϕ

B

� �n

8

" #
(4.57)
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For boundary gridblock 11, n¼11, ψ11¼{7,10,12}, ξ11¼{bN}, andX

qmsc11¼0.

l2ξ11
qmscl,11 ¼ qmscbN ,11

, where qmscbN ,11
is estimated using Eq. (4.28) because

qspsc¼ �500 STB/D is specified for the whole reservoir north boundary. This

rate has to be prorated among all gridblocks sharing that boundary. Therefore,

qmscbN ,11
¼ Tm

bN ,11X
l2ψbN

Tm
bN , l

qspsc (4.58)

where ψbN¼{9,10,11,12}.
Using Eq. (4.29),

Tm
bN , l

¼ Tm
bN ,11

¼ βc
kyAy

μB Δy=2ð Þ
� �m

11

¼ 0:001127�220� 250�100ð Þ
2�1� 300=2ð Þ

� �

¼ 20:6616 (4.59)

for all values of l2ψbN
.

Substitution of Eq. (4.59) into Eq. (4.58) yields

qmscbN ,11
¼ 20:6616

4�20:6616
� �500ð Þ¼�125 STB=D (4.60)

Substitution into Eq. (4.14) results in the flow equation for boundary grid-
block 11:

10:3308ð Þ pm7 �pm11
� �

+ 18:2574ð Þ pm10�pm11
� �

+ 18:2574ð Þ pm12�pm11
� �

�125¼ Vb11

αcΔt
ϕ

B

� �n+ 1

11

� ϕ

B

� �n

11

" #
(4.61)
Example 4.6 Consider single-phase fluid flow in the 2-D horizontal reservoir

described in Example 4.5. Write the flow equations for gridblocks 1, 4, 9, and

12, where each gridblock falls on two reservoir boundaries.

Solution

The general flow equation for a 2-D horizontal reservoir is obtained from

Eq. (4.2a) by neglecting the gravity term, resulting in Eq. (4.14):

X
l2ψn

Tm
l,n pml �pmn
� �

+
X
l2ξn

qmscl,n + q
m
scn

¼ Vbn

αcΔt
ϕ

B

� �n+ 1

n

� ϕ

B

� �n

n

" #
(4.14)

The data necessary to write flow equations for any boundary gridblock were
calculated in Example 4.5. The following is a summary:

Tm
x ¼ 18:2574 STB=D-psi

Tm
y ¼ 10:3308 STB=D-psi

qmscbS,bB
¼ 20:6617ð Þ 3000�pmbB

� �
STB=D for bB¼ 1,2,3,4 (4.62)
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qmscbW ,bB
¼ 0 STB=D for bB¼ 1,5,9

qmscbE,bB
¼ 456:435 STB=D for bB¼ 4,8,12

and
qmscbN ,bB
¼�125 STB=D for bB¼ 9,10,11,12

For boundary gridblock 1, n¼1, ψ1¼{2,5}, ξ1¼{bS,bW}, q
m
sc1¼0, and
X

l2ξ1
qmscl,1 ¼ qmscbS,1

+ qmscbW ,1
¼ 20:6617ð Þ 3000�pm1

� �
+ 0

¼ 20:6617ð Þ 3000�pm1
� �

STB=D

Substitution into Eq. (4.14) results in the flow equation for boundary grid-
block 1,

18:2574ð Þ pm2 �pm1
� �

+ 10:3308ð Þ pm5 �pm1
� �

+ 20:6617ð Þ 3000�pm1
� �

¼ Vb1

αcΔt
ϕ

B

� �n+ 1

1

� ϕ

B

� �n

1

" #
(4.63)

For boundary gridblock 4, n¼4, ψ4¼{3,8}, ξ4¼{bS,bE}, q
m
sc4¼0, and
X

l2ξ4
qmscl,4 ¼ qmscbS,4

+ qmscbE,4
¼ 20:6617ð Þ 3000�pm4

� �
+ 456:435 STB=D

Substitution into Eq. (4.14) results in the flow equation for boundary grid-
block 4,

18:2574ð Þ pm3 �pm4
� �

+ 10:3308ð Þ pm8 �pm4
� �

+ 20:6617ð Þ 3000�pm4
� �

+ 456:435

¼ Vb4

αcΔt
ϕ

B

� �n+ 1

4

� ϕ

B

� �n

4

" #
(4.64)

For boundary gridblock 9, n¼9, ψ9¼{5,10}, ξ9¼{bW,bN}, q
m
sc9
¼0, and
X

l2ξ9
qmscl,9 ¼ qmscbW ,9

+ qmscbN ,9
¼ 0�125¼�125 STB=D

Substitution into Eq. (4.14) results in the flow equation for boundary grid-
block 9,

10:3308ð Þ pm5 �pm9
� �

+ 18:2574ð Þ pm10�pm9
� ��125¼ Vb9

αcΔt
ϕ

B

� �n+ 1

9

� ϕ

B

� �n

9

" #

(4.65)

For boundary gridblock 12, n¼12, ψ12¼{8,11}, ξ12¼{bE,bN}, qsc12
m ¼0,
and
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X
l2ξ12

qmscl,12 ¼ qmscbE,12
+ qmscbN ,12

¼ 456:435�125¼ 331:435 STB=D

Substitution into Eq. (4.14) results in the flow equation for boundary grid-
block 12:

10:3308ð Þ pm8 �pm12
� �

+ 18:2574ð Þ pm11�pm12
� �

+ 331:435

¼ Vb12

αcΔt
ϕ

B

� �n + 1

12

� ϕ

B

� �n

12

" #
(4.66)
4.5 Calculation of transmissibilities

Eq. (2.39) in Chapter 2 defines the transmissibilities in the flow equations in

Cartesian coordinates. The definitions of transmissibility in the x-, y-, and z-
directions are expressed as:

Txi�1=2, j,k ¼Gxi�1=2, j,k

1

μB

� �
xi�1=2, j,k

(4.67a)

Tyi, j�1=2,k ¼Gyi, j�1=2,k

1

μB

� �
yi, j�1=2,k

(4.67b)

and
Tzi, j,k�1=2
¼Gzi, j,k�1=2

1

μB

� �
zi, j,k�1=2

(4.67c)

where the geometric factors G for anisotropic porous media and irregular grid-
block distribution are given in Table 4.1 (Ertekin et al., 2001). The treatment of
TABLE 4.1 Geometric factors in rectangular grids (Ertekin et al., 2001)

Direction Geometric factor

x
Gxi�1=2, j,k ¼

2βc

Δxi, j,k
.

Axi, j,k kxi, j,k

	 

+Δxi�1, j,k

.
Axi�1, j,k kxi�1, j,k

	 


y
Gyi, j�1=2,k ¼

2βc

Δyi, j,k
.

Ayi, j,k kyi, j,k

	 

+Δyi, j�1,k

.
Ayi, j�1,k kyi, j�1,k

	 


z
Gzi, j,k�1=2

¼ 2βc

Δzi, j,k
.

Azi, j,k kzi, j,k

	 

+Δzi, j,k�1

.
Azi, j,k�1

kzi, j,k�1
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the pressure-dependent term (μB) in Eq. (4.67) is discussed in detail under lin-

earization in Chapter 8 (Section 8.4.1).

Example 4.7 Derive the equation for the geometric factor of transmissibility in

the x-direction between gridblocks i and i+1 in 1D flow using the following:

(1) Table 4.1

(2) Darcy’s law.

Solution

1. The geometric factor of transmissibility in the x-direction is given as

Gxi�1=2, j,k ¼
2βc

Δxi, j,k= Axi, j,k kxi, j,k
� �

+Δxi�1, j,k= Axi�1, j,k kxi�1, j,k

� � (4.68)

For flow between gridblocks i and i+1 in a 1-D reservoir, j¼1, and k¼1.
Discarding these subscripts and the negative sign in Eq. (4.68) that yields the

sought geometric factor,

Gxi+ 1=2 ¼
2βc

Δxi= Axikxið Þ+Δxi+ 1= Axi+ 1kxi+ 1ð Þ (4.69)
2. Consider the steady-state flow of incompressible fluid (B¼1 and

μ¼ constant) in incompressible porous media between gridblocks i and
i+1. Gridblock i has cross-sectional area Axi and permeability kxi, and grid-
block i+1 has cross-sectional area Axi+1 and permeability kxi+1. Boundary
i+½ between the two blocks is δxi+ away from point i and δxi+1� away from
point i+1 as shown in Fig. 4.13. Fluid flows from gridblock i to block

boundary i+½ and then from block boundary i+½ to gridblock i+1.
1+ii

Δxi,i+1

dxi+1–dxi+

Actual layer boundary Discretized block boundary

qi,i+1/2 qi+1/2,i+1

FIG. 4.13 Transmissibility between two adjacent blocks.
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The rate of fluid flow from the center of gridblock i to block boundary i+½
is given by Darcy’s law as

qi, i+ 1=2 ¼ βckxiAxi

Bμδx +

pi�pi+ 1=2
� �

(4.70)

i

Similarly, the rate of fluid flow from block boundary i+½ to the center of
gridblock i+1 is given by Darcy’s law as

qi+ 1=2, i+ 1 ¼ βckxi + 1Axi+ 1

Bμδxi+ 1�
pi+ 1=2�pi+ 1
� �

(4.71)

In this flow system, there is neither fluid accumulation nor fluid depletion.
Therefore, the rate of fluid leaving gridblock i (qi,i+1/2) has to be equal to the rate
of fluid entering gridblock i+1 (qi+1/2,i+1); that is,

qi, i+ 1=2 ¼ qi+ 1=2, i+ 1 ¼ qi, i+ 1 (4.72)

The rate of fluid flow between the centers of gridblocks i and i+1 is given by

Darcy’s law as

qi, i+ 1 ¼
Gxi+ 1=2

Bμ
pi�pi + 1ð Þ (4.73)

The pressure drop between the centers of gridblocks i and i+1 is equal to the

sum of the pressure drops between the block centers and the block boundary

between them; that is,

pi�pi+ 1ð Þ¼ pi�pi+ 1=2
� �

+ pi+ 1=2�pi+ 1
� �

(4.74)

Substituting for pressure drops in Eq. (4.74) using Eqs. (4.70), (4.71), and
(4.73) yields

qi, i+ 1Bμ

Gxi+ 1=2

¼ qi, i+ 1=2Bμδxi +

βckxiAxi

+
qi + 1=2, i + 1Bμδxi+ 1�

βckxi + 1Axi+ 1

(4.75)

Combining Eqs. (4.75) and (4.72) and dividing by flow rate, FVF, and vis-
cosity yields

1

Gxi + 1=2

¼ δxi +

βckxiAxi

+
δxi+ 1�

βckxi+ 1Axi + 1

(4.76)

Eq. (4.76) can be solved for Gxi+1/2
. The resulting equation is
Gxi+ 1=2 ¼
βc

δxi+= Axikxið Þ + δxi + 1�= Axi+ 1kxi+ 1ð Þ (4.77)

Observing that δxi+ ¼ 1
�
2Δxi and δxi + 1� ¼ 1

�
2Δxi+ 1 for a block-centered
grid, Eq. (4.77) becomes
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Gxi+ 1=2 ¼
2βc

Δxi= Axikxið Þ+Δxi+ 1= Axi+ 1kxi+ 1ð Þ (4.78)

Eqs. (4.69) and (4.78) are identical.
Eq. (2.69) in Chapter 2 defines the transmissibilities in the flow equations in

radial-cylindrical coordinates. The definitions of transmissibility in the r-, θ-,
and z-directions are expressed as

Tri�1=2, j,k ¼Gri�1=2, j,k

1

μB

� �
ri�1=2, j,k

(4.79a)

Tθi, j�1=2,k ¼Gθi, j�1=2,k

1

μB

� �
θi, j�1=2,k

(4.79b)

and
Tzi, j,k�1=2
¼Gzi, j,k�1=2

1

μB

� �
zi, j,k�1=2

(4.79c)

where the geometric factors G for anisotropic porous media and irregular grid-
block distribution are given in Table 4.2 (Farouq Ali, 1986). Note that in this

table, ri and ri�1/2 depend on the value of subscript i only for j¼1, 2, 3…nθ
and k¼1, 2, 3…nz, Δθj and Δθj�1/2 depend on the value of subscript j only
for i¼1, 2, 3…nr and k¼1, 2, 3…nz, and Δzk Δzk�1/2 depend on the value

of subscript k only for i¼1, 2, 3…nr and j¼1, 2, 3…nθ. The treatment of

the pressure-dependent term (μB) in Eq. (4.79) is discussed in detail under lin-

earization in Chapter 8 (Section 8.4.1).
TABLE 4.2 Geometric factors in cylindrical grids (Farouq Ali, 1986)

Direction Geometric factor

r
Gri�1=2, j,k ¼

βcΔθj

loge ri=r
L
i�1=2

	 
�
Δzi, j,kkri, j,k

	 

+ loge rL

i�1=2
=ri�1

	 
�
Δzi�1, j,kkri�1, j,k

	 


Gri +1=2, j,k ¼
βcΔθj

loge rL
i +1=2

=ri

	 
�
Δzi, j,kkri, j,k
	 


+ loge ri +1=r
L
i +1=2

	 
�
Δzi +1, j,kkri +1, j,k

	 


θ
Gθi, j�1=2,k

¼
2βc loge rL

i +1=2
=rL
i�1=2

	 


Δθj

�
Δzi, j,kkθi, j,k

	 

+Δθj�1

�
Δzi, j�1,kkθi, j�1,k

	 


z
Gzi, j,k�1=2

¼
2βc

1=2Δθj
	 


r2
i +1=2

� r2
i�1=2

	 

Δzi, j,k=kzi, j,k +Δzi, j,k�1=kzi, j,k�1
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Table 4.2 uses gridblock dimensions and block boundaries in the z-direction
as defined in Eq. (4.1), with z replacing x. Those in the θ-direction are defined in
a similar way. Specifically,

Xnθ
j¼1

Δθj ¼ 2π

Δθj+ 1=2 ¼ 1
�
2 Δθj+ 1 +Δθj
� �

, j¼ 1,2,3…nθ�1

θj + 1 ¼ θj +Δθj+ 1=2, j¼ 1,2,3…nθ�1, θ1 ¼ 1
�
2Δθ1 (4.80)

and
θj�1=2 ¼ θj� 1
�
2Δθj, i¼ 1,2,3…nθ

In the r-direction, however, the points representing gridblocks are spaced
such that the pressure drops between neighboring points are equal

(see Example 4.8). Block boundaries for transmissibility calculations are

spaced logarithmically in r to warrant that the radial flow rates between

neighboring points using the integrated continuous and discretized forms of

Darcy’s law are identical (see Example 4.9). Block boundaries for bulk vol-

ume calculations are spaced logarithmically in r2 to warrant that the actual and
discretized bulk volumes of gridblocks are equal. Therefore, the radii for

the pressure points (ri�1), transmissibility calculations (ri�1/2
L ), and bulk

volume calculations (ri�1/2) are as follows (Aziz and Settari, 1979; Ertekin

et al., 2001):

ri+ 1 ¼ αlgri for i¼ 1,2,3…nr�1 (4.81)

rLi+ 1=2 ¼
ri+ 1� ri

log e ri+ 1=rið Þ for i¼ 1,2,3…nr�1 (4.82a)

rLi�1=2 ¼
ri� ri�1

log e ri=ri�1ð Þ for i¼ 2,3…nr (4.83a)

r2i + 1=2 ¼
r2i+ 1� r2i

log e r2i+ 1=r
2
i

� � for i¼ 1,2,3…nr�1 (4.84a)

r2i�1=2 ¼
r2i � r2i�1

log e r2i =r
2
i�1

� � for i¼ 2,3…nr (4.85a)

where
αlg ¼ re
rw

� �1=nr

(4.86)

and
r1 ¼ αlg log e αlg
� �

= αlg�1
� �� �

rw (4.87)
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Note that the reservoir internal boundary (rw) and the reservoir external
boundary (re) through which fluid may enter or leave the reservoir are, respec-

tively, the internal boundary of gridblock 1 and the external boundary of grid-

block nr that are used to calculate transmissibility. That is to say, r1/2
L ¼ rw and

rLnr+1/2¼ re by definition for block-centered grid (Ertekin et al., 2001).

The bulk volume of gridblock (i, j,k) is calculated from

Vbi, j,k ¼ r2i+ 1=2� r2i�1=2

	 

1=2Δθj
� �

Δzi, j,k (4.88a)

for i¼1, 2, 3…nr�1, j¼1, 2, 3…nθ, k¼1, 2, 3…nz; and
Vbnr , j,k ¼ r2e � r2nr�1=2

	 

1=2Δθj
� �

Δznr , j,k (4.88c)

for j¼1, 2, 3…nθ, k¼1, 2, 3…nz.
Example 4.8 Prove that the grid spacing in the radial direction defined by

Eqs. (4.81) and (4.86) satisfies the condition of constant and equal pressure drops

between successive points in steady-state radial flow of incompressible fluid.

Solution

The steady-state flow of incompressible fluid toward a well with radius rw in
a horizontal reservoir with an external radius re is expressed by Darcy’s law:

q¼ �2πβckHh

Bμ log e
re
rw

� � pe�pwð Þ (4.89)

The pressure drop across the reservoir is obtained from Eq. (4.89) as
pe�pwð Þ¼
�qBμ log e

re
rw

� �

2πβckHh
(4.90)

Let the reservoir be divided into nr radial segments that are represented by
points i¼1, 2, 3…nr placed at r1, r2, r3, …ri�1, ri, ri+1, …rnr. The location of

these points will be determined later (Eq. 4.81). For steady-state radial flow

between points i+1 and i,

q¼ �2πβckHh

Bμ log e
ri+ 1
ri

� � pi + 1�pið Þ (4.91)

The pressure drop between points i+1 and i is obtained from Eq. (4.91) as
pi+ 1�pið Þ¼
�qBμ log e

ri+ 1
ri

� �

2πβckHh
(4.92)

If the pressure drop over each of the radial distances (ri+1� ri) for i¼1, 2,
3…nr�1 is chosen to be constant and equal, then
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pi+ 1�pið Þ¼ pe�pwð Þ
nr

(4.93)

for i¼1, 2, 3…nr�1.
Substituting Eqs. (4.90) and (4.92) into Eq. (4.93) yields

log e
ri+ 1
ri

� �
¼ 1

nr
log e

re
rw

� �
(4.94)

or
ri+ 1
ri

� �
¼ re

rw

� �1=nr

(4.95a)

for i¼1, 2, 3…nr�1.
For the convenience of manipulation, define

αlg ¼ re
rw

� �1=nr

(4.86)

then Eq. (4.95a) becomes
ri+ 1
ri

� �
¼ αlg (4.95b)

or
ri+ 1 ¼ αlgri (4.81)

for i¼1, 2, 3…nr�1.
Eq. (4.81) defines the locations of the points in the r-direction that result in

equal pressure drops between any two successive points.

Example 4.9 Show that the block boundaries defined by Eq. (4.82a) ensure that

the flow rate across a block boundary is identical to that obtained from

Darcy’s law.

Solution

From Example 4.8, for steady-state radial flow of incompressible fluid

between points i+1 and i,

q¼ �2πβckHh

Bμ log e
ri + 1
ri

� � pi+ 1�pið Þ (4.91)

The steady-state fluid flow rate across a block boundary is also expressed by
the differential form of Darcy’s law at block boundary ri+1/2
L ,

qrL
i + 1=2

¼�2πβckHhr
L
i + 1=2

Bμ

dp

dr






rL
i+ 1=2

(4.96)



Simulation with a block-centered grid Chapter 4 95
The pressure gradient at a block boundary can be approximated, using cen-
tral differencing, as

dp

dr






rL
i+ 1=2

ffi pi+ 1�pi
ri+ 1� ri

(4.97)

Substitution of Eq. (4.97) into Eq. (4.96) results in
qrL
i + 1=2

¼�2πβckHhr
L
i + 1=2

Bμ

ðpi+ 1�piÞ
ri+ 1� ri

(4.98)

If the flow rate calculated from Darcy’s law (Eq. 4.91) is identical to the
flow rate calculated from the discretized Darcy’s law (Eq. 4.98), then

�2πβckHh

Bμ log e
ri+ 1
ri

� � pi+ 1�pið Þ¼�2πβckHhr
L
i+ 1=2

Bμ

ðpi+ 1�piÞ
ri+ 1� ri

(4.99)

which simplifies to give
rLi+ 1=2 ¼
ri+ 1� ri

log e
ri+ 1
ri

� � (4.82a)
Eqs. (4.82a), (4.83a), (4.84a), (4.85a), (4.88a), and (4.88c) can be expressed

in terms of ri and αlg as:

rLi + 1=2 ¼ αlg�1
� �

= log e αlg
� �� �� �

ri (4.82b)

for i¼1, 2, 3…nr�1;
rLi�1=2 ¼ αlg�1
� �

= αlg log e αlg
� �� �� �

ri ¼ 1=αlg

	 

rLi+ 1=2 (4.83b)

for i¼2, 3…nr;
r2i+ 1=2 ¼ α2lg�1
	 


= log e α2lg

	 
h in o
r2i (4.84b)

for i¼1, 2, 3…nr�1;
r2i�1=2 ¼ α2lg�1
	 


= α2lg log e α2lg

	 
h in o
r2i ¼ 1=α2

lg

	 

r2i+ 1=2 (4.85b)

for i¼2, 3…nr;
Vbi, j,k ¼ α2lg�1
	 
2

= α2lg log e α2lg

	 
h i� �
r2i

1=2Δθj
� �

Δzi, j,k (4.88b)

for i¼1, 2, 3, …nr�1;and
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Vbnr , j,k ¼ 1� log e αlg
� �

= αlg�1
� �� �2

α2lg�1
	 


= α2lg log e α2lg

	 
h in o

r2e
1=2Δθj
� �

Δznr , j,k (4.88d)

for i¼nr.
Example 4.10 Prove that Eqs. (4.82b), (4.83b), (4.84b), (4.85b), and (4.88b) are

equivalent to Eqs. (4.82a), (4.83a), (4.84a), (4.85a), and (4.88a), respectively. In

addition, express the arguments of the log terms that appear in Table 4.2 and the

gridblock bulk volume in terms of αlg.
Solution

Using Eq. (4.81), we obtain

ri+ 1� ri ¼ αlgri� ri ¼ αlg�1
� �

ri (4.100)

and
ri+ 1=ri ¼ αlg (4.101)

Substitution of Eqs. (4.100) and (4.101) into Eq. (4.82a) yields
rLi+ 1=2 ¼
ri+ 1� ri

log e ri+ 1=rið Þ¼
αlg�1
� �

ri

log e αlg
� �

i

¼ αlg�1
� �

= log e αlg
� �� �

ri (4.102)

Eq. (4.102) can be rearranged to give
rLi+ 1=2=ri ¼ αlg�1
� �

= log e αlg
� �

(4.103)

from which
log e rLi+ 1=2=ri

	 

¼ log e αlg�1

� �
= log e αlg

� �� �
(4.104)

Eqs. (4.101) and (4.102) can be combined by eliminating ri, yielding
rLi+ 1=2 ¼
1

log e αlg
� � αlg�1

� �
ri+ 1=αlg
� �¼ αlg�1

� �
= αlg log e αlg

� �� �� �
ri+ 1 (4.105)

Eq. (4.105) can be rearranged to give
ri+ 1=r
L
i+ 1=2 ¼ αlg log e αlg

� �� �
= αlg�1
� �

(4.106)

from which
log e ri+ 1=r
L
i+ 1=2

	 

¼ log e αlg log e αlg

� �� �
= αlg�1
� �� �

(4.107)

Using Eq. (4.81) and replacing subscript i with i�1 yields
ri ¼ αlgri�1 (4.108)

and
ri=ri�1 ¼ αlg (4.109)
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Substitution of Eqs. (4.108) and (4.109) into Eq. (4.83a) yields
rLi�1=2 ¼
ri� ri�1

log e ri=ri�1ð Þ¼
ri� ri=αlg
log e αlg

� �¼ αlg�1
� �

= αlg log e αlg
� �� �� �

ri (4.110)

Eq. (4.110) can be rearranged to give
ri=r
L
i�1=2 ¼ αlg log e αlg

� �� �
= αlg�1
� �

(4.111)

from which
log e ri=r
L
i�1=2

	 

¼ log e αlg log e αlg

� �� �
= αlg�1
� �� �

(4.112)

Eqs. (4.108) and (4.110) can be combined by eliminating ri, yielding
rLi�1=2 ¼
1

log e αlg
� � αlg�1

� �
=αlg

� �
αlgri�1

� �¼ αlg�1
� �

= log e αlg
� �� �

ri�1

(4.113)

Eq. (4.113) can be rearranged to give
rLi�1=2=ri�1 ¼ αlg�1
� �

= log e αlg
� �

(4.114)

from which
log e rLi�1=2=ri�1

	 

¼ log e αlg�1

� �
= log e αlg

� �� �
(4.115)

Eqs. (4.102) and (4.110) are combined to get
rLi+ 1=2=r
L
i�1=2 ¼

αlg�1
� �

= log e αlg
� �� �

ri

αlg�1
� �

= αlg log e αlg
� �� �� �

ri
¼ αlg (4.116)

from which
log e rLi+ 1=2=r
L
i�1=2

	 

¼ log e αlg

� �
(4.117)

Substitution of Eqs. (4.81) and (4.101) into Eq. (4.84a) yields
r2i+ 1=2 ¼
r2i + 1� r2i

log e r2i+ 1=r
2
i

� �¼ α2lg�1
	 


r2i

log e α2lg

	 
 ¼ α2lg�1
	 
.

log e α2lg

	 
h i
r2i (4.118)

Substitution of Eqs. (4.108) and (4.109) into Eq. (4.85a) yields
r2i�1=2 ¼
r2i � r2i�1

log e r2i =r
2
i�1

� �¼ 1�1=α2lg

	 

r2i

log e α2lg

	 
 ¼ α2lg�1
	 
.

α2lg log e α2lg

	 
h in o
r2i

(4.119)
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Subtraction of Eq. (4.119) from Eq. (4.118) yields
r2i + 1=2� r2i�1=2 ¼
α2lg�1

	 


log e α2lg

	 
r2i �
α2lg�1

	 
.
α2lg

h i

log e α2lg

	 
 r2i

¼
α2lg�1

	 

1�1=α2lg

	 


log e α2lg

	 
 r2i ¼ α2lg�1
	 
2.

α2lg log e α2lg

	 
h i� �
r2i

(4.120)

Combining Eqs. (4.88a) and (4.120) yields
Vbi, j,k ¼ α2lg�1
	 
2.

α2lg log e α2lg

	 
h i� �
r2i

1=2Δθj
� �

Δzi, j,k (4.121)

Eq. (4.121) can be used to calculate bulk volumes of gridblocks other
than those that fall on the reservoir external boundary in the r-direction.
For blocks with i¼nr, Eq. (4.88d) is used and the proof is left as an exercise

(Exercise 4.13).

Example 4.10 demonstrates that quotients ri/ri�1/2
L , ri�1/2

L /ri�1, ri+1/2
L /ri,

ri+1/ri+1/2
L , and ri+1/2

L /ri�1/2
L are functions of the logarithmic spacing constant

αlg only as expressed in the following equations:

ri=r
L
i�1=2 ¼ αlg log e αlg

� �� �
= αlg�1
� �

(4.111)

rLi�1=2=ri�1 ¼ αlg�1
� �

= log e αlg
� �

(4.114)

rLi+ 1=2=ri ¼ αlg�1
� �

= log e αlg
� �

(4.103)

ri+ 1=r
L
i+ 1=2 ¼ αlg log e αlg

� �� �
= αlg�1
� �

(4.106)

rLi+ 1=2=r
L
i�1=2 ¼ αlg (4.116)

By substituting the above five equations into the equations in Table 4.2 and
observing that
1=2Δθj
� �

r2i + 1=2� r2i�1=2

	 

¼Vbi, j,k=Δzi, j,k using Eq. (4.88a), Table 4.3 is

obtained.

Now, the calculation of geometric factors and pore volumes can be simpli-

fied using the following algorithm.

1. Define

αlg ¼ re
rw

� �1=nr

(4.86)
2. Let

r1 ¼ αlg log e αlg
� �

= αlg�1
� �� �

rw (4.87)



TABLE 4.3 Geometric factors in cylindrical grids

Direction Geometric factor

r
Gri�1=2, j,k ¼

βcΔθjn
loge αlg loge αlg

� �
= αlg �1
� �� �

= Δzi, j,kkri, j,k
	 


+loge αlg �1
� �

= loge αlg
� �� �

= Δzi�1, j,kkri�1, j,k

	 
o

Gri +1=2, j,k ¼
βcΔθjn

loge αlg �1
� �

= loge αlg
� �� �

= Δzi, j,kkri, j,k
	 


+loge αlg loge αlg
� �

= αlg �1
� �� �

= Δzi +1, j,kkri + 1, j,k

	 
o

θ
Gθi, j�1=2,k ¼

2βc loge αlg
� �

Δθj= Δzi, j,kkθi, j,k
	 


+Δθj�1= Δzi, j�1,kkθi, j�1,k

	 


z

Gzi, j,k�1=2
¼

2βc Vbi, j,k =Δzi, j,k
	 


Δzi, j,k=kzi, j,k +Δzi, j,k�1=kzi, j,k�1
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3. Set

ri ¼ αi�1
lg r1 (4.122)

where i¼1, 2, 3, …nr.

4. For j¼1, 2, 3, …nθ and k¼1, 2, 3, …nz; set

Vbi, j,k ¼ α2lg�1
	 
2

= α2lg log e α2lg

	 
h i� �
r2i

1=2Δθj
� �

Δzi, j,k (4.88b)

for i¼1, 2, 3, …nr�1, and
Vbnr , j,k ¼ 1� log e αlg
� ��

αlg�1
� �� �2

α2lg�1
	 
�

α2lg log e α2lg

	 
h in o

r2e
1=2Δθj
� �

Δznr , j,k

(4.88d)

for i¼nr.

5. Estimate the geometric factors using the equations in Table 4.3. Note that in

the calculation ofGr1/2,j,k
,Grnr+1/2,j,k

,Gzi,j,1/2
, orGzi,j,nz+1/2

, terms that describe prop-

erties of blocks that fall outside the reservoir (i¼0, i¼nr+1, k¼0, and

k¼nz+1) are discarded.

Examples 4.11 and 4.12 show that reservoir discretization in the radial direction

can be accomplished using either the traditional equations reported in the pre-

vious literature (Eqs. 4.81, 4.82a, 4.83a, 4.84a, 4.85a, 4.86, 4.87, 4.88a, and

4.88c) or those reported in this book (Eqs. 4.81, 4.82b, 4.83b, 4.84b, 4.85b,

4.86, 4.87, 4.88b, and 4.88d) that led to Table 4.3. The equations reported in this

book, however, are easier and less confusing because they only use ri and αlg.
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In Example 4.13, we demonstrate how to use Eq. (4.2a) and the appropriate

expressions for qmscb,bB, along with Table 4.3, to write the flow equations for

boundary and interior gridblocks in a 2-D single-well simulation problem.

Example 4.11 Consider the simulation of a single well in 40-acre spacing.Well-

bore diameter is 0.5 ft. The reservoir thickness is 100ft. The reservoir can be sim-

ulated using a single layer discretized into five gridblocks in the radial direction.

1. Find the gridblock spacing in the r-direction.
2. Find the gridblock boundaries in the r-direction for transmissibility

calculations.

3. Calculate the arguments of the loge terms in Table 4.2.

4. Find the gridblock boundaries in the r-direction for bulk volume calcula-

tions and calculate bulk volumes.

Solution

1. The reservoir external radius can be estimated from well spacing

re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
43,560�40=π

p ¼ 744:73 ft, and well radius is given as rw¼0.25 ft.

First, estimate αlg using Eq. (4.86):

αlg ¼ re
rw

� �1=nr

¼ 744:73

0:25

� �1=5

¼ 4:9524

Second, let r1¼ [(4.9524)loge(4.9524)/(4.9524�1)](0.25)¼0.5012 ft
according to Eq. (4.87). Third, calculate the location of the gridblocks in the

r-direction using Eq. (4.122), ri¼αlg
i-1r1. For example, for i¼2,

r2¼ (4.9524)2�1�0.5012¼2.4819 ft. Table 4.4 shows the location of the other

gridblocks along the r-direction.

2. Block boundaries for transmissibility calculations (ri�1/2
L , ri+1/2

L ) are esti-

mated using Eqs. (4.82a) and (4.83a).

For i¼2,

rL2 + 1=2 ¼
r3� r2

log e r3=r2ð Þ¼
12:2914�2:4819

log e 12:2914=2:4819ð Þ¼ 6:1315ft (4.123)

and
rL2�1=2 ¼
r2� r1

log e r2=r1ð Þ¼
2:4819�0:5012

log e 2:4819=0:5012ð Þ¼ 1:2381ft (4.124)

Table 4.4 shows the boundaries for transmissibility calculations for other
gridblocks.

3. Table 4.4 Shows the calculated values for ri/ri�1/2
L , ri+1/ri+1/2

L , ri�1/2
L /ri�1,

ri+1/2
L /ri, and ri+1/2

L /ri�1/2
L , which appear in the argument of loge terms in

Table 4.2

4. The block boundaries for bulk volume calculations (ri�1/2, ri+1/2) are esti-

mated using Eqs. (4.84a) and (4.85a).



TABLE 4.4 ri, ri�1/2
L , and loge arguments in Table 4.2 for Example 4.11

i ri ri21/2
L ri+1/2

L ri=rL
i�1=2

ri +1=rL
i +1=2

rL
i�1=2

.
ri�1

rL
i +1=2

.
ri

rL
i +1=2

.
rL
i�1=2

1 0.5012 0.25a 1.2381 2.005 2.005 2.47 2.47 4.9528

2 2.4819 1.2381 6.1315 2.005 2.005 2.47 2.47 4.9524

3 12.2914 6.1315 30.3651 2.005 2.005 2.47 2.47 4.9524

4 60.8715 30.3651 150.379 2.005 2.005 2.47 2.47 4.9524

5 301.457 150.379 744.73b 2.005 2.005 2.47 2.47 –

a rL1�1/2¼ rw¼0.25.

b rL5+1/2¼ re¼744.73.

Sim
u
latio

n
w
ith

a
b
lo
ck-cen

tered
grid

C
h
a
p
te
r

4
1
0
1



102 Petroleum reservoir simulation
For i¼2,

r22 + 1=2 ¼
r23 � r22

log e r23=r
2
2

� �¼ 12:2914ð Þ2� 2:4819ð Þ2

log e 12:2914ð Þ2= 2:4819ð Þ2
h i¼ 45:2906ft2 (4.125)

and
r22�1=2 ¼
r22 � r21

log e r22=r
2
1

� �¼ 2:4819ð Þ2� 0:5012ð Þ2

log e 2:4819ð Þ2= 0:5012ð Þ2
h i¼ 1:8467ft2 (4.126)

Therefore, the gridblock boundaries for bulk volume calculations are
r2 + 1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
45:2906

p
¼ 6:7298ft

and
r2�1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:8467

p
¼ 1:3589ft

The bulk volume for the gridblocks can be calculated using Eqs.(4.88a), and
(4.88c).

For i¼2,

Vb2 ¼ r22 + 1=2� r22�1=2

	 

1=2Δθ
� �

Δz2

¼ 6:7299ð Þ2� 1:3589ð Þ2
h i

1=2�2π
� ��100¼ 13648:47 ft3

(4.127)

For i¼5,
Vb5 ¼ r2e � r25�1=2

	 

1=2Δθ
� �

Δz5

¼ 744:73ð Þ2� 165:056ð Þ2
h i

1=2�2π
� ��100¼ 165:68114�106 ft3

(4.128)

Table 4.5 shows the gridblock boundaries and the bulk volumes for other
gridblocks.

Example 4.12 Solve Example 4.11 again, this time using Eqs. (4.82b), (4.83b),

(4.84b), (4.85b), and (4.88d), which make use of ri, αlg, and Eq. (4.88d).

Solution

1. From Example 4.11, re¼744.73 ft, rw¼0.25 ft, r1¼0.5012 ft, and

αlg¼4.9524. In addition, Table 4.4 reports radii of points representing grid-

blocks (ri) calculated using Eq. (4.122).

2. Block boundaries for transmissibility calculations (ri�1/2
L , ri+1/2

L ) are esti-

mated using Eqs. (4.82b) and (4.83b), yielding

rLi+ 1=2 ¼ αlg�1
� �

= log e αlg
� �� �� �

ri ¼ 4:9524�1ð Þ= log e 4:9524ð Þ½ �f gri
¼ 2:47045ri (4.129)



TABLE 4.5 Gridblock boundaries and bulk volumes for gridblocks in

Example 4.11

i ri ri21/2 ri+1/2 Vbi

1 0.5012 0.2744 1.3589 556.4939

2 2.4819 1.3589 6.7299 13,648.47

3 12.2914 6.7299 33.3287 334,739.9

4 60.8715 33.3287 165.056 8,209,770

5 301.4573 165.056 744.73a 165,681,140

a r5+1/2¼ re¼744.73.
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and
i
rLi�1=2 ¼ αlg�1
� �

= αlg log e αlg
� �� �� �

ri ¼ 4:9524�1ð Þ= 4:9524log e 4:9524ð Þ½ �f gr
¼ 0:49884ri (4.130)

Substitution of the values of ri into Eqs. (4.129) and (4.130) produces the
results reported in Table 4.4.

3. The ratios ri/ri�1/2
L , ri+1/ri+1/2

L , ri�1/2
L /ri�1, ri+1/2

L /ri, and ri+1/2
L /ri�1/2

L as func-

tions of αlg were derived in Example 4.10 as Eqs. (4.111), (4.106),

(4.114), (4.103), and (4.116), respectively. Substitution of αlg¼4.9524 in

these equations, we obtain:

ri=r
L
i�1=2 ¼ αlg log e αlg

� �� �
= αlg�1
� �¼ 4:9524log e 4:9524ð Þ½ �= 4:9524�1ð Þ

¼ 2:005 (4.131)

ri+ 1=r
L
i + 1=2 ¼ αlg log e αlg

� �� �
= αlg�1
� �¼ 2:005 (4.132)

rLi�1=2=ri�1 ¼ αlg�1
� �

= log e αlg
� �¼ 4:9524�1ð Þ= log e 4:9524ð Þ¼ 2:470

(4.133)

rLi+ 1=2=ri ¼ αlg�1
� �

= log e αlg
� �¼ 2:470 (4.134)

rLi + 1=2=r
L
i�1=2 ¼ αlg ¼ 4:9524 (4.135)
Note that the values of the above ratios are the same as those reported in

Table 4.4.

4. Block boundaries for bulk volume calculations (ri�1/2, ri+1/2) are estimated

using Eqs. (4.84b) and (4.85b):
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r2
i+ 1=2

¼ α2lg�1
	 


= loge α2lg

	 
h in o
r2i ¼ 4:9524ð Þ2�1

� �
= loge 4:9524ð Þ2

� �� �� �
r2i

¼ 7:3525ð Þr2i (4.136)

and
r2i�1=2 ¼ α2lg�1
	 


= α2lg log e α2lg

	 
h in o
r2i ¼ 7:3525= 4:9524ð Þ2

n o
r2i

¼ 0:29978ð Þr2i (4.137)

Therefore,
ri + 1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7:3525ð Þr2i

q
¼ 2:7116ð Þri (4.138)

and
ri�1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:29978ð Þr2i

q
¼ 0:54752ð Þri (4.139)

The bulk volume associated with each gridblock can be calculated using
Eqs. (4.88b) and (4.88d).

For i¼1, 2, 3, 4;

Vbi ¼ α2lg�1
	 
2

= α2lg log e α2lg

	 
h i� �
r2i

1=2 2πð Þ� �
Δz

¼ 4:9524ð Þ2�1
h i2

= 4:9524ð Þ2 log e 4:9524ð Þ2
h i� �

r2i
1=2 2πð Þ� ��100¼ 2215:7r2i

(4.140)

For i¼5,
Vb5 ¼
n
1� loge 4:9524ð Þ= 4:9524�1ð Þ½ �2� 4:9524ð Þ2�1

h i.

4:9524ð Þ2� log e 4:9524ð Þ2
	 
h io

� 744:73ð Þ2 1=2�2π
� ��100

¼ 165:681284�106 (4.141)

Note that the values of estimated bulk volumes slightly differ from those
reported in Table 4.5 due to roundoff errors resulting from approximations in

the various stages of calculations.

Example 4.13 A 0.5-ft diameter water well is located in 20-acre spacing. The

reservoir thickness, horizontal permeability, and porosity are 30ft, 150md, and

0.23, respectively. The (kV/kH) for this reservoir is estimated from core data as

0.30. The flowing fluid has a density, FVF, and viscosity of 62.4 lbm/ft3,

1RB/B, and 0.5cP, respectively. The reservoir external boundary in the radial

direction is a no-flow boundary, and the well is completed in the top 20ft only



i = 1 i = 2 i = 3 i = 4

k = 1

k = 2

k = 3

r

z

1 2 3 4

5 6 7 8

910 11 12

2000 STB/D

No-flow boundary

30 ft

No-flow boundary

pbL
=4000 psia

FIG. 4.14 Discretized 2-D radial-cylindrical reservoir in Example 4.13.
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and produces at a rate of 2000B/D. The reservoir bottom boundary is subject to

influx such that the boundary is kept at 4000psia. The reservoir top boundary is

sealed to flow. Assuming the reservoir can be simulated using three equal grid-

blocks in the vertical direction and four gridblocks in the radial direction, as

shown in Fig. 4.14, write the flow equations for gridblocks 1, 3, 5, 7, and 11.

Solution

To write the flow equations, the gridblocks are first ordered using natural

ordering (n¼1, 2, 3, …10, 11, 12) as shown in Fig. 4.14, in addition to being

identified using the engineering notation along the radial direction (i¼1, 2, 3, 4)

and the vertical direction (k¼1, 2, 3). This is followed by the estimation of res-

ervoir rock and fluid property data, the determination of the location of points

representing gridblocks in the radial direction, and the calculation of gridblock

sizes and elevation in the vertical direction. Next, bulk volumes and transmis-

sibilities in the r- and z-directions are calculated and the contributions of the

gridblocks to well rates and fictitious well rates resulting from reservoir bound-

ary conditions are estimated.

Reservoir rock and fluid data are restated as follows, h¼30 ft, ϕ¼0.23,

kr¼kH¼150 md, kz¼kH(kV/kH)¼150�0.30¼45 md, B¼1 RB/B, μ¼0.5 cP,

γ¼ γcρg¼0.21584�10�3(62.4)(32.174)¼0.4333 psi/ft, rw¼0.25 ft, and the res-

ervoir external radius is estimated from well spacing as re¼ (20�43560/π)1/2

¼526.60 ft. The reservoir east (external) and upper (top) boundaries are no-

flowboundaries, the lower (bottom) boundary haspbL¼4000 psia, and the reservoir

west (internal) boundary has qspsc¼ �2000 B/D to reflect the effect of the produc-

tion well (i.e., the well is treated as a boundary condition).

For the block-centered grid shown in Fig. 4.14, nr¼4, nz¼3, and Δzk¼
h/nz¼30/3¼10 ft for k¼1, 2, 3; hence, Δzn¼10 ft for n¼1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 11, 12, andΔzk+1/2¼10 ft for k¼1, 2. Assuming the top of the reservoir
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as the reference level for elevation, Zn¼5 ft for n¼9, 10, 11, 12; Zn¼15 ft for

n¼5, 6, 7, 8; Zn¼25 ft for n¼1, 2, 3, 4; and ZbL¼30 ft.

The locations of gridblocks in the radial direction are calculated using

Eqs. (4.86), (4.87), and (4.122); that is,

αlg ¼ 526:60=0:25ð Þ1=4 ¼ 6:7746

r1 ¼ 6:7746ð Þ log e 6:7746ð Þ= 6:7746�1ð Þ½ ��0:25¼ 0:56112 ft

and
ri ¼ 6:7746ð Þ i�1ð Þ
0:56112ð Þ

for i¼2, 3, 4 or r2¼3.8014 ft, r3¼25.753 ft, and r4¼174.46 ft.
Eq. (4.88b) is used to calculate bulk volume for gridblocks that have

i¼1, 2, 3:

Vbi,k ¼ α2lg�1
	 
2

= α2lg log e α2lg

	 
h i� �
r2i

1=2Δθ
� �

Δzi,k

¼ 6:7746ð Þ2�1
h i2

= 6:7746ð Þ2 log e 6:7746ð Þ2
	 
h i� �

r2i
1=2�2π
� �

Δzk

¼ 36:0576ð Þr2i Δzk
and Eq. (4.88d) for gridblocks that have i¼nr¼4,
Vbnr ,k ¼ 1� loge αlg
	 


= αlg�1
	 
h i2

α2lg�1
	 


= α2lg loge α2lg

	 
h i� �
r2e

1=2Δθj
� �

Δznr ,k

¼ 1� loge 6:7746ð Þ= 6:7746�1ð Þ½ �2 6:7746ð Þ2�1
� �

=
�
6:7746ð Þ2 loge 6:7746ð Þ2� �� �g� 526:60ð Þ2 1=2�2π

� �
Δzk

¼ 0:846740�106
� �

Δzk

Eq. (4.79c) defines the transmissibility in the vertical direction, resulting in
Tzi,k�1=2
¼Gzi,k�1=2

1

μB

� �
¼Gzi,k�1=2

1

0:5�1

� �
¼ 2ð ÞGzi,k�1=2

(4.142)

where Gzi,k�1/2
is defined in Table 4.3 as
Gzi,k�1=2
¼ 2βc Vbi,k=Δzk

� �
Δzk=kzi,k +Δzk�1=kzi,k�1

(4.143)

For this problem, gridblock spacing, thickness, and permeability in the ver-
tical direction are constants. Therefore, Eq. (4.143) reduces to

Gzi,k�1=2
¼ βckz Vbi,k=Δzk

� �
Δzk
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or after substitution for values it becomes
Gzi,k�1=2
¼ 1:127�10�3
� �

45ð Þ 36:0576� r2i
� �

10
¼ 0:182866ð Þr2i (4.144a)

for i¼1, 2, 3 and k¼1, 2, 3.
Gzi,k�1=2
¼ 1:127�10�3
� �

45ð Þ 0:846740�106
� �

10
¼ 4294:242 (4.144b)

for i¼4 and k¼1, 2, 3.
Substituting Eq. (4.144) into Eq. (4.142) results in

Tzi,k�1=2
¼ 2 0:182866ð Þr2i ¼ 0:365732ð Þr2i (4.145a)

for i¼1, 2, 3 and k¼1, 2, 3; and
Tzi,k�1=2
¼ 2 4294:242ð Þ¼ 8588:484 (4.145b)

for i¼4 and k¼1, 2, 3.
Eq. (4.79a) defines the transmissibility in the r-direction, yielding

Tri�1=2,k ¼Gri�1=2,k

1

μB

� �
¼Gri�1=2,k

1

0:5�1

� �
¼ 2ð ÞGri�1=2,k (4.146)

where Gri�1/2,k
is defined in Table 4.3. With Δθ¼2π and constant radial perme-
ability, the equation for the geometric factor reduces to

Gri�1=2,k ¼
2πβckrΔzk

log e αlg log e αlg
� �

= αlg�1
� �� �� αlg�1

� �
= log e αlg

� �� �� �

¼ 2πβckrΔzk
log e αlg

� � ¼ 2π 0:001127ð Þ 150ð ÞΔzk
log e 6:7746ð Þ ¼ 0:5551868ð ÞΔzk (4.147)

Therefore, transmissibility in the radial direction can be estimated by
substituting Eq. (4.147) into Eq. (4.146):

Tri�1=2,k ¼ 2ð ÞGri�1=2,k ¼ 2ð Þ 0:5551868ð ÞΔzk ¼ 1:1103736ð ÞΔzk (4.148)

Table 4.6 lists the estimated transmissibilities in the radial and vertical direc-
tions and bulk volumes. Before writing the flow equation, the well production

rate (the specified rate for the reservoir west boundary) must be prorated

between gridblocks 5 and 9 using Eq. (4.28):

qmscb,bB ¼
Tm
b,bBX

l2ψb

Tm
b, l

qspsc (4.28)

where Tb,bB
m ¼ transmissibility in the radial direction between reservoir bound-
ary b and gridblock bB with the well-being the reservoir internal boundary and



TABLE 4.6 Gridblock location, bulk volume, and radial and vertical

transmissibilities for Example 4.13

n i k ri (ft)

Δzn
(ft)

Zn

(ft) Vbn
(ft3)

Tri�1/2,k

(B/D-

psi)

Tzi,k�1/2

(B/D-psi)

1 1 1 0.56112 10 25 113.5318 11.10374 0.115155

2 2 1 3.8014 10 25 5210.583 11.10374 5.285098

3 3 1 25.753 10 25 239,123.0 11.10374 242.5426

4 4 1 174.46 10 25 8,467,440 11.10374 8588.532

5 1 2 0.56112 10 15 113.5318 11.10374 0.115155

6 2 2 3.8014 10 15 5210.583 11.10374 5.285098

7 3 2 25.753 10 15 239,123.0 11.10374 242.5426

8 4 2 174.46 10 15 8,467,440 11.10374 8588.532

9 1 3 0.56112 10 5 113.5318 11.10374 0.115155

10 2 3 3.8014 10 5 5210.583 11.10374 5.285098

11 3 3 25.753 10 5 239,123.0 11.10374 242.5426

12 4 3 174.46 10 5 8,467,440 11.10374 8588.532
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ψb¼ψw¼{5,9}. Note that gridblock 1 has a no-flow boundary because it is not

penetrated by the well; that is, qmscbW ,1
¼0.

Applying the equation for Gri�1/2,1,k
in Table 4.3 for i¼1, j¼1, k¼2, 3 (i.e.,

n¼5, 9) gives

Gri�1=2,1,k ¼
2πβckrΔzk

log e αlg log e αlg
� �

= αlg�1
� �� �� �

¼ 2π 0:001127ð Þ 150ð Þ�Δzk
log e 6:7746� log e6:7746= 6:7746�1ð Þ½ � ¼ 1:3138�Δzk

Tm
bw,5

¼Gr1=2,1,2

μB
¼ 1:3138�10

0:5�1
¼ 26:276B=D-psi

and
Tm
bw,9

¼Gr1=2,1,3

μB
¼ 1:3138�10

0:5�1
¼ 26:276B=D-psi

The application of Eq. (4.28) results in
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qmscbW ,5
¼ 26:276

26:276 + 26:276
� �2000ð Þ¼�1000B=D

and
qmscbW ,9
¼ 26:276

26:276 + 26:276
� �2000ð Þ¼�1000B=D

Note that the well penetrating gridblocks 5 and 9 are treated as
fictitious well.

For the reservoir lower boundary, pbL¼4000 psia. The flow rates of the fic-

titious wells in gridblocks 1, 2, 3, and 4 are estimated using Eq. (4.37c), yielding

qmscbL ,n
¼ Tm

bL ,n
4000�pnð Þ� 0:4333ð Þ 30�25ð Þ½ � B=D (4.149)

where TnbL,n is estimated using Eq. (4.29) and Azn¼Vbn/Δzn
Tm
bL ,n

¼ βc
kznAzn

μB Δzn=2ð Þ¼ 0:001127� 45� Vbn=Δznð Þ
0:5�1� 10=2ð Þ

¼ 0:0020286ð ÞVbn (4.150)

For the reservoir east and upper (no-flow) boundaries, qmscbE,n
¼0 for n¼4, 8,
12 and qmscbU ,n
¼0 for n¼9, 10, 11, 12. Table 4.7 summarizes the contributions of

gridblocks to well rates and fictitious well rates.

The general form of the flow equation for gridblock n is obtained from

Eq. (4.2a): X
l2ψn

Tm
l,n pml �pmn

� �� γml,n Zl�Znð Þ� �
+
X
l2ξn

qmscl,n + q
m
scn

¼ Vbn

αcΔt
ϕ

B

� �n+ 1

n

� ϕ

B

� �n

n

" #
(4.2a)

For gridblock 1, n¼1, i¼1, k¼1, ψ1¼{2,5}, ξ1¼{bL,bW},X

and

l2ξ1
qmscl,1 ¼ qmscbL,1

+ qmscbW ,1
, where from Table 4.7, qmscbL ,1

¼ (0.23031)

[(4000�p1
m)� (0.4333)(30�25)] B/D and qmscbW ,1

¼0 and qmsc1¼0. Therefore,

substitution into Eq. (4.2a) yields

11:10374ð Þ pm2 �pm1

	 

� 0:4333ð Þ 25�25ð Þ

h i

+ 0:115155ð Þ pm
5
�pm

1

	 

� 0:4333ð Þ 15�25ð Þ

h i

+ 0:23031ð Þ 4000�pm1

	 

� 0:4333ð Þ 30�25ð Þ

h i
+ 0 + 0¼ 113:5318

αcΔt
ϕ

B

� �n+ 1

1
� ϕ

B

� �n

1

" #

(4.151)

For gridblock 3, n¼3, i¼3, k¼1, ψ3¼{2,4,7}, ξ3¼{bL}, andX

l2ξ3

qmscl,3 ¼ qmscbL,3
, where from Table 4.7, qmscbL,3

¼ (485.085)[(4000�p3
m)



TABLE 4.7 Contribution of gridblocks to well rates and fictitious well rates

n i k

qm
scn

(B/D) qmscbL,n (B/D)

qm
scbW,n

(B/D)

qmscbE,n
(B/D)

qmscbU,n
(B/D)

1 1 1 0 (0.23031)
[(4000�p1

m)� (0.4333)
(30�25)]

0

2 2 1 0 (10.5702)
[(4000�p2

m)� (0.4333)
(30�25)]

3 3 1 0 (485.085)
[(4000�p3

m)� (0.4333)
(30�25)]

4 4 1 0 (17177.1)
[(4000�p4

m)� (0.4333)
(30�25)]

0

5 1 2 0 �1000

6 2 2 0

7 3 2 0

8 4 2 0 0

9 1 3 0 �1000 0

10 2 3 0 0

11 3 3 0 0

12 4 3 0 0 0
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�(0.4333)(30�25)] B/D and qmsc3¼0 (no wells). Therefore, substitution into

Eq. (4.2a) yields

11:10374ð Þ pm2 �pm3
� �� 0:4333ð Þ 25�25ð Þ� �

+ 11:10374ð Þ pm4 �pm3
� �� 0:4333ð Þ 25�25ð Þ� �

+ 242:5426ð Þ pm7 �pm3
� �� 0:4333ð Þ 15�25ð Þ� �

+ 485:0852ð Þ 4000�pm3
� �� 0:4333ð Þ 30�25ð Þ� �

+ 0¼ 239123:0

αcΔt
ϕ

B

� �n+ 1

3

� ϕ

B

� �n

3

" #

(4.152)

For gridblock 5, n¼5, i¼1, k¼2, ψ5¼{1,6,9}, ξ5¼{bW}, andX

l2ξ5

qmscl,5 ¼ qmscbW ,5
, where from Table 4.7, qmscbW ,5

¼ �1000 B/D and qmsc5¼0
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(the well is treated as a boundary condition). Therefore, substitution into

Eq. (4.2a) yields

0:115155ð Þ pm
1
�pm

5

	 

� 0:4333ð Þ 25�15ð Þ

h i

+ 11:10374ð Þ pm
6
�pm

5

	 

� 0:4333ð Þ 15�15ð Þ

h i

+ 0:115155ð Þ pm9 �pm
5

	 

� 0:4333ð Þ 5�15ð Þ

h i
�1000 + 0¼ 113:5318

αcΔt
ϕ

B

� �n+ 1

5
� ϕ

B

� �n

5

" #

(4.153)

X

For gridblock 7, n¼7, i¼3, k¼2, ψ7¼{3,6,8,11}, ξ7¼{},

l2ξ7
qmscl,7 ¼ 0

(interior gridblock), and qmsc7¼0 (no wells). Therefore, substitution into

Eq. (4.2a) yields

242:5426ð Þ pm3 �pm7
� �� 0:4333ð Þ 25�15ð Þ� �

+ 11:10374ð Þ pm6 �pm7
� �� 0:4333ð Þ 15�15ð Þ� �

+ 11:10374ð Þ pm8 �pm7
� �� 0:4333ð Þ 15�15ð Þ� �

+ 242:5426ð Þ pm11�pm7
� �� 0:4333ð Þ 5�15ð Þ� �

+ 0+ 0¼ 239123:0

αcΔt
ϕ

B

� �n+ 1

7

� ϕ

B

� �n

7

" #

(4.154)

For gridblock 11, n¼11, i¼3, k¼3, ψ11¼{7,10,12}, ξ11¼{bU},X

l2ξ11

qmscl,11 ¼ qmscbU ,11
, qmscbU ,11

¼0 (no-flow boundary), and qmsc11¼0 (no wells).

Therefore, substitution into Eq. (4.2a) yields

242:5426ð Þ pm7 �pm11
� �� 0:4333ð Þ 15�5ð Þ� �

+ 11:10374ð Þ pm10�pm11
� �� 0:4333ð Þ 5�5ð Þ� �

+ 11:10374ð Þ pm12�pm11
� �� 0:4333ð Þ 5�5ð Þ� �

+ 0+ 0¼ 239123:0

αcΔt
ϕ

B

� �n+ 1

11

� ϕ

B

� �n

11

" #

(4.155)
4.6 Symmetry and its use in solving practical problems

Reservoir rock properties are heterogeneous, and reservoir fluids and fluid-rock
properties vary from one region to another within the same reservoir. In other

words, it is rare to find a petroleum reservoir that has constant properties. The

literature, however, is rich in study cases in which homogeneous reservoirs were

modeled to study flood patterns such as five-spot and nine-spot patterns. In

teaching reservoir simulation, educators and textbooks in this area make use

of homogeneous reservoirs most of the time. If reservoir properties vary spa-

tially region wise, then symmetry may exist. The use of symmetry reduces

the efforts to solve a problem by solving a modified problem for one element

of symmetry in the reservoir, usually the smallest element of symmetry
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(Abou-Kassem et al., 1991). The smallest element of symmetry is a segment of

the reservoir that is a mirror image of the rest of reservoir segments. Before

solving the modified problem for one element of symmetry, however, symme-

try must first be established. For symmetry to exist about a plane, there must be

symmetry with regard to (1) the number of gridblocks and gridblock dimen-

sions, (2) reservoir rock properties, (3) physical wells, (4) reservoir boundaries,

and (5) initial conditions. Gridblock dimensions deal with gridblock size (Δx,
Δy, and Δz) and gridblock elevation (Z). Reservoir rock properties deal with

gridblock porosity (ϕ) and permeability in the various directions (kx, ky, and
kz). Wells deal with well location, well type (injection or production), and well

operating condition. Reservoir boundaries deal with the geometry of boundaries

and boundary conditions. Initial conditions deal with initial pressure and fluid

saturation distributions in the reservoir. Failing to satisfy symmetry with respect

to any of the items mentioned earlier means there is no symmetry about that

plane. The formulation of the modified problem for the smallest element of

symmetry involves replacing each plane of symmetry with a no-flow boundary

and determining the new interblock geometric factors, bulk volume, wellblock

rate, and wellblock geometric factor for those gridblocks that share their bound-

aries with the planes of symmetry. To elaborate on this point, we present a few

possible cases. In the following discussion, we use bold numbers to identify the

gridblocks that require determining new values for their bulk volume, wellblock

rate, wellblock geometric factor, and interblock geometric factors in the ele-

ment of symmetry.

The first two examples show planes of symmetry that coincide with the

boundaries between gridblocks. Fig. 4.15a presents a 1-D flow problem in

which the plane of symmetry A-A, which is normal to the flow direction

(x-direction) and coincides with the boundary between gridblocks 3 and 4,

and divides the reservoir into two symmetrical elements. Consequently,
1 2 3

x

A

A

(a)

(b)

4 5 6

1 2 3

A

A
x

No-flow boundary

FIG. 4.15 Reservoir with even gridblocks exhibiting a vertical plane of symmetry. (a) Whole res-

ervoir and plane of symmetry and (b) Boundary conditions at the plane of symmetry.
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p1¼p6, p2¼p5, and p3¼p4. The modified problem is represented by the ele-

ment of symmetry shown in Fig. 4.15b, with the plane of symmetry being

replaced with a no-flow boundary.

Fig. 4.16a presents a 2-D horizontal reservoir with two vertical planes of

symmetry A-A and B-B. Plane of symmetry A-A is normal to the x-direction
and coincides with the boundaries between gridblocks 2, 6, 10, and 14 on

one side and gridblocks 3, 7, 11, and 15 on the other side. Plane of symmetry

B-B is normal to the y-direction and coincides with the boundaries between

gridblocks 5, 6, 7, and 8 on one side and gridblocks 9, 10, 11, and 12 on

the other side. The two planes of symmetry divide the reservoir into four

symmetrical elements. Consequently, p1¼p4¼p13¼p16, p2¼p3¼p14¼p15,
p5¼p8¼p9¼p12, and p6¼p7¼p10¼p11. The modified problem is represented

by the smallest element of symmetry shown in Fig. 4.16b, with each plane of

symmetry being replaced with a no-flow boundary.

The second two examples show planes of symmetry that pass through the

centers of gridblocks. Fig. 4.17a presents a 1-D flow problem where the plane

of symmetry A-A, which is normal to the flow direction (x-direction) and passes
through the center of gridblock 3, and divides the reservoir into two symmet-

rical elements. Consequently, p1¼p5 and p2¼p4. The modified problem is

represented by the element of symmetry shown in Fig. 4.17b, with the plane
1 2

x

y

A

BB

3 4

5 6

A

7 8

9 10 11 12

13 14 15 16

A

No-flow boundary

No-flow boundary

1 2

x

y

A

BB
5 6

(a)

(b)
FIG. 4.16 Reservoir with even gridblocks in the x- and y-directions exhibiting two vertical planes

of symmetry. (a) Whole reservoir and planes of symmetry and (b) Boundary conditions at the sym-

metry interface.



1 2 3

x

A

A

4 5

1 2 3
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No-flow boundary
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(b)
FIG. 4.17 Reservoir with odd gridblocks exhibiting a vertical plane of symmetry. (a) Whole res-

ervoir and plane of symmetry and (b) Boundary conditions at the symmetry interface.
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of symmetry being replaced with a no-flow boundary. This plane of symmetry

bisects the gridblock bulk volume, wellblock rate, and wellblock geometric fac-

tor for gridblock 3 in Fig. 4.17a. Therefore, for gridblock 3 in Fig. 4.17b,

Vb3 ¼ 1
2
Vb3 , qsc3 ¼ 1

2
qsc3 , andGw3

¼ 1
2
Gw3

. Note that the interblock geometric fac-

tor in the direction normal to the plane of symmetry (Gx2,3) is not affected.

Fig. 4.18a presents a 2-D horizontal reservoir with two vertical planes of

symmetry A-A and B-B. Plane A-A is a vertical plane of symmetry that is par-

allel to the y-z plane (normal to the x-direction) and passes through the centers of
gridblocks 2, 5, and 8. Note that gridblocks 1, 4, and 7 are mirror images of

gridblocks 3, 6, and 9. Plane B-B is a vertical plane of symmetry that is parallel

to the x-z plane (normal to the y-direction) and passes through the centers of

gridblocks 4, 5, and 6. Note that gridblocks 1, 2, and 3 are mirror images of

gridblocks 7, 8, and 9. The two planes of symmetry divide the reservoir into

four symmetrical elements. Consequently, p1¼p3¼p7¼p9, p4¼p6, and

p2¼p8. The modified problem is represented by the smallest element of sym-

metry shown in Fig. 4.18b, with each plane of symmetry being replaced with a

no-flow boundary. Each plane of symmetry bisects the block bulk volume, well-

block rate, and wellblock geometric factor of the gridblock it passes through and

bisects the interblock geometric factors in the directions that are parallel to

the plane of symmetry. Therefore, Vb2 ¼ 1
2
Vb2 , qsc2 ¼ 1

2
qsc2 , and Gw2

¼ 1
2
Gw2

;

Vb4 ¼ 1
2
Vb4 , qsc4 ¼ 1

2
qsc4 , and Gw4

¼ 1
2
Gw4

; Vb5 ¼ 1
4
Vb5 , qsc5 ¼ 1

4
qsc5 , and

Gw5
¼ 1

4
Gw5

; Gy2,5 ¼ 1
2
Gy2,5 ; and Gx4,5 ¼ 1

2
Gx4,5 . Because gridblocks 2, 4, and 5

fall on the boundaries of the element of symmetry, they can be looked at as

if they were gridpoints as in Chapter 5, and the same bulk volumes, wellblock

rates, wellblock geometric factors, and interblock geometric factors will be cal-

culated as those reported earlier. Note also that a plane of symmetry passing

through the center of a gridblock results in a factor of 1
2
, as in gridblocks 2
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and 4. Two planes of symmetry passing through the center of a gridblock result

in a factor of 1
2
� 1

2
¼ 1

4
, as in gridblock 5.

The third example presents two planes of symmetry, one coinciding with the

boundaries between the gridblocks and the other passing through the centers of

the gridblocks. Fig. 4.19a presents a 2-D horizontal reservoir with two vertical

planes of symmetry A-A and B-B.

Plane A-A is a vertical plane of symmetry that is parallel to the y-z plane
(normal to the x-direction) and passes through the centers of gridblocks 2, 5,

8, and 11. Note that gridblocks 1, 4, 7, and 10 are mirror images of gridblocks

3, 6, 9, and 12. Plane B-B is a vertical plane of symmetry that is parallel to the x-
z plane (normal to the y-direction) and coincides with the boundaries between

gridblocks 4, 5, and 6 on one side and gridblocks 7, 8, and 9 on the other side.

Note that gridblocks 1, 2, and 3 are mirror images of gridblocks 10, 11, and 12.

Additionally, gridblocks 4, 5, and 6 are mirror images of gridblocks 7, 8, and 9.

The two planes of symmetry divide the reservoir into four symmetrical ele-

ments. Consequently, p1¼p3¼p10¼p12, p4¼p6¼p7¼p9, p2¼p11, and

p5¼p8. The modified problem is represented by the smallest element of sym-

metry shown in Fig. 4.19b, with each plane of symmetry being replaced with a

no-flow boundary. Plane of symmetry A-A bisects the block bulk volume, well-

block rate, and wellblock geometric factor of the gridblocks it passes through

and bisects the interblock geometric factors in the directions that are parallel to

the plane of symmetry (y-direction in this case). Therefore, Vb2 ¼ 1
2
Vb2 ,

qsc2 ¼ 1
2
qsc2 , and Gw2

¼ 1
2
Gw2

; Vb5 ¼ 1
2
Vb5 , qsc5 ¼ 1

2
qsc5 , and Gw5

¼ 1
2
Gw5

;

Vb8 ¼ 1
2
Vb8 , qsc8 ¼ 1

2
qsc8 , and Gw8

¼ 1
2
Gw8

; Vb11 ¼ 1
2
Vb11 , qsc11 ¼ 1

2
qsc11 , and

Gw11
¼ 1

2
Gw11

; Gy2,5 ¼ 1
2
Gy2,5 ; Gy5,8 ¼ 1

2
Gy5,8 ; and Gy8,11 ¼ 1

2
Gy8,11 . Because grid-

blocks 2, 5, 8, and 11 fall on the boundaries of the element of symmetry, they

can be looked at as if they were gridpoints as in Chapter 5, and the same bulk

volumes, wellblock rates, wellblock geometric factors, and interblock geomet-

ric factors will be calculated as those reported earlier. Note also that a plane of

symmetry passing through the center of a gridblock results in a factor of 1
2
, as in

gridblocks 2, 5, 8, and 11 in Fig. 4.19a.

The fourth set of examples show oblique planes of symmetry. Fig. 4.20a

shows a reservoir similar to that depicted in Fig. 4.16a, but the present reservoir

has two additional planes of symmetry C-C and D-D. The four planes of sym-

metry divide the reservoir into eight symmetrical elements, each with a trian-

gular shape as shown in Fig. 4.20b. Consequently, p1¼p4¼p13¼p16,
p6¼p7¼p10¼p11, and p2¼p3¼p14 ¼p15¼p5¼p8¼p9¼p12. The modified

problem is represented by the smallest element of symmetry shown in

Fig. 4.20b, with each plane of symmetry being replaced with a no-flow

boundary.

Fig. 4.21a shows a reservoir similar to that depicted in Fig. 4.18a, but the

present reservoir has two additional planes of symmetry C-C and D-D. The four

planes of symmetry divide the reservoir into eight symmetrical elements, each
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FIG. 4.18 Reservoir with odd gridblocks in the x- and y-directions exhibiting two vertical planes
of symmetry. (a) Whole reservoir and planes of symmetry and (b) Boundary conditions at the sym-

metry interfaces.
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FIG. 4.19 Reservoir with even gridblocks in the y-direction and odd gridblocks in the x-direction

exhibiting two vertical planes of symmetry. (a) Whole reservoir and planes of symmetry and (b)

Boundary conditions at the symmetry interfaces.
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with a triangular shape as shown in Fig. 4.21b. Consequently, p1¼p3¼p7¼p9
and p4¼p6¼p2¼p8. The modified problem is represented by the smallest ele-

ment of symmetry shown in Fig. 4.21b, with each plane of symmetry being

replaced with a no-flow boundary. A vertical plane of symmetry C-C or D-D

that passes through the center of a gridblock but is neither parallel to the x-axis
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FIG. 4.20 Reservoir with even gridblocks in the x- and y-directions exhibiting four vertical planes

of symmetry. (a) Whole reservoir and planes of symmetry and (b) Boundary conditions at the sym-

metry interfaces.
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nor the y-axis (oblique plane), as shown in Figs. 4.20a and 4.21a, bisects the

gridblock bulk volume, wellblock rate, and wellblock geometric factor of the

gridblock it passes through. An oblique plane does not affect the interblock geo-

metric factors in the x-axis or the y-axis. In reference to gridblocks 1, 6, and 5 in
Figs. 4.20b and 4.21b, Vb1 ¼ 1

2
Vb1 , qsc1 ¼ 1

2
qsc1 , and Gw1

¼ 1
2
Gw1

; Vb6 ¼ 1
2
Vb6 ,

qsc6 ¼ 1
2
qsc6 , and Gw6

¼ 1
2
Gw6

; Vb5 ¼ 1
8
Vb5 , qsc5 ¼ 1

8
qsc5 , and Gw5

¼ 1
8
Gw5

;

Gy2,5 ¼ 1
2
Gy2,5 ; and Gx2,6

¼Gx2,6
. Note that the four planes of symmetry (A-A,

B-B, C-C, and D-D) passing through the center of gridblock 5 in Fig. 4.21a

result in the factor of 1
4
� 1

2
¼ 1

8
used to calculate the actual bulk volume, well-

block rate, and wellblock geometric factor for gridblock 5 in Fig. 4.21b. That

is to say, the modifying factor equals 1
nvsp

� 1
2
, where nvsp is the number of vertical

planes of symmetry passing through the center of a gridblock.
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FIG. 4.21 Reservoir with odd gridblocks in the x- and y-directions exhibiting four vertical planes
of symmetry. (a) Whole reservoir and planes of symmetry and (b) Boundary conditions at the sym-

metry interfaces.

118 Petroleum reservoir simulation
It should be mentioned that set ξn for gridblocks in the modified problem

might include new elements such as bSW, bNW, bSE, bNE that reflect oblique

boundaries such as plane C-C or D-D. The flow rates across such boundaries

(qmscl,n) are set to zero because these boundaries represent no-flow boundaries.

4.7 Summary

This chapter presents reservoir discretization in Cartesian and radial–cylindrical
coordinates using a block-centered grid. For the Cartesian coordinate system,

equations similar to those represented by Eq. (4.1) define gridblock locations

and the relationships between gridblock sizes, gridblock boundaries, and dis-

tances between points representing gridblocks in the x-, y-, and z-directions,
and Table 4.1 presents equations for the calculation of the transmissibility

geometric factors in the three directions. For the radial-cylindrical coordinate
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system used for single-well simulation, the equations that define block locations

and the relationships between gridblock sizes, gridblock boundaries, and dis-

tances between points representing blocks in the r-direction are given by

Eqs. (4.81) through (4.88), Eq. (4.80) in the θ-direction, and an equation similar

to Eq. (4.1) for the z-direction. The equations in either Table 4.2 or Table 4.3 can
be used to calculate transmissibility geometric factors in the r-, θ-, and z-direc-
tions. Eq. (4.2) expresses the general form of the flow equation that applies to

boundary gridblocks and interior gridblocks in 1-D, 2-D, or 3-D flow in both Car-

tesian and radial-cylindrical coordinates. The flow equation for any gridblock has

flow terms equal to the number of existing neighboring gridblocks and fictitious

wells equal to the number of boundary conditions. Each fictitious well represents

a boundary condition. The flow rate of a fictitious well is given by Eq. (4.24b),

(4.27), (4.32), or (4.37b) for a specified pressure gradient, specified flow rate,

no-flow, or specified pressure boundary condition, respectively.

If reservoir symmetry exists, it can be exploited to define the smallest ele-

ment of symmetry. Planes of symmetry may pass along gridblock boundaries or

through gridblock centers. To simulate the smallest element of symmetry,

planes of symmetry are replaced with no-flow boundaries and new interblock

geometric factors, bulk volume, wellblock rate, and wellblock geometric factors

for boundary gridblocks are calculated prior to simulation.

4.8 Exercises

4.1. What is the meaning of reservoir discretization into gridblocks?

4.2. Using your own words, describe how you discretize a reservoir of length

Lx along the x-direction using n gridblocks.

4.3. Fig. 4.5 shows a reservoir with regular boundaries.
a. Howmany boundaries does this reservoir have along the x-direction?
Identify and name these boundaries.

b. Howmany boundaries does this reservoir have along the y-direction?
Identify and name these boundaries.

c. How many boundaries does this reservoir have along the z-direction?
Identify and name these boundaries.

d. How many boundaries does this reservoir have along all directions?
4.4. Consider the 2-D reservoir described in Example 4.5 and shown in

Fig. 4.12.
a. Identify the interior and boundary gridblocks in the reservoir.

b. Write the set of neighboring gridblocks (ψn) for each gridblock in the

reservoir.

c. Write the set of reservoir boundaries (ξn) for each gridblock in the

reservoir.

d. Howmany boundary conditions does each boundary gridblock have?

How many fictitious wells does each boundary gridblock have?

Write the terminology for the flow rate of each fictitious well.
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e. How many flow terms does each boundary gridblock have?

f. Add the number of flow terms and number of fictitious wells for each

boundary gridblock.Do they add up to four for each boundary gridblock?

g. How many flow terms does each interior gridblock have?

h. What can you conclude from your results of (f) and (g) earlier?
4.5. Consider fluid flow in the 1-D horizontal reservoir shown in Fig. 4.22.
a. Write the appropriate flow equation for gridblock n in this reservoir.

b. Write the flow equation for gridblock 1 by finding ψ1 and ξ1 and then
use them to expand the equation in (a).

c. Write the flow equation for gridblock 2 by finding ψ2 and ξ2 and then
use them to expand the equation in (a).

d. Write the flow equation for gridblock 3 by finding ψ3 and ξ3 and then
use them to expand the equation in (a).
1 2 3

x

pbw
 = 2000 psia qscbE

 = −100 STB/D

2 1-D reservoir in Exercise 4.5.
4.6. Consider fluid flow in the 2-D horizontal reservoir shown in Fig. 4.23.
a. Write the appropriate flow equation for gridblock n in this reservoir.

b. Write the flow equation for gridblock 1 by finding ψ1 and ξ1 and then
use them to expand the equation in (a).

c. Write the flow equation for gridblock 3 by finding ψ3 and ξ3 and then
use them to expand the equation in (a).

d. Write the flow equation for gridblock 5 by finding ψ5 and ξ5 and then
use them to expand the equation in (a).

e. Write the flow equation for gridblock 9 by finding ψ9 and ξ9 and then
use them to expand the equation in (a).
1 2 3 4

5 6

9 10

7 8

No-flow boundary

x

y

dp  
dx bE

= –2 psi/ft

pbS
 = 3000 psia

pbw
 = 3000 psia

8

32 4

6 7

10

No-flow boundary

3 2-D reservoir for Exercise 4.6.
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4.7. Consider single-phase flow in a homogeneous, 1-D reservoir with constant

pressure specification at the reservoir left boundary. The reservoir is dis-

cretized using a regular grid. Write the flow equation for gridblock 1,

which shares its left boundary with the reservoir, and prove that

pb ¼ 1
�
2 3p1�p2ð Þ. Aziz and Settari (1979) claim that the earlier equation

represents a second-order correct approximation for boundary pressure.

4.8. A single-phase oil reservoir is described by four equal gridblocks as

shown in Fig. 4.24. The reservoir is horizontal and has k¼25 md. Grid-

block dimensions are Δx¼500, Δy¼700, and h¼60 ft. Oil properties

are B¼1 RB/STB and μ¼0.5 cP. The reservoir left boundary is main-

tained at constant pressure of 2500psia, and the reservoir right boundary

is sealed off to flow. A well in gridblock 3 produces 80STB/D of oil.

Assuming that the reservoir rock and oil are incompressible, calculate

the pressure distribution in the reservoir.
2 3 41 
60 ft

500 ft   700 ft

x

y

z 80 STB/D

pbW
 = 2500 psia

No-flow boundary

FIG. 4.24 Discretized 1D reservoir in Exercise 4.8.
4.9. A 1-D horizontal oil reservoir shown in Fig. 4.25 is described by four

equal gridblocks. Reservoir blocks have k¼90 md, Δx¼300 ft,

Δy¼250 ft, and h¼45 ft. Oil FVF and viscosity are 1RB/STB and

2cP, respectively. The reservoir left boundary is maintained at constant

pressure of 2000 psia, and the reservoir right boundary has a constant

influx of oil at a rate of 80STB/D. A well in gridblock 3 produces

175STB/D of oil. Assuming that the reservoir rock and oil are incom-

pressible, calculate the pressure distribution in the reservoir.
2 3 41 
45 ft

300 ft   250 ft

x

y

z 175 STB/D

pbW
 = 2000 psia

qscbE

 = 80 STB/D

FIG. 4.25 Discretized 1D reservoir in Exercise 4.9.
4.10. A 1-D horizontal oil reservoir shown in Fig. 4.26 is described by four

equal gridblocks. Reservoir blocks have k¼120 md, Δx¼500 ft,
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Δy¼450 ft, and h¼30 ft. Oil FVF and viscosity are 1RB/STB and

3.7cP, respectively. The reservoir left boundary is subject to a constant

pressure gradient of �0.2psi/ft, and the reservoir right boundary is a no-

flow boundary. A well in gridblock 3 produces oil at a rate such that the

pressure of gridblock 3 is maintained at 1500psia. Assuming that the res-

ervoir rock and oil are incompressible, calculate the pressure distribution

in the reservoir. Then, estimate the well production rate.
2 3 41 
30 ft

500 ft   450 ft

x

y

z

No-flow boundarydp  
dx bW

= –0.2 psi/ft

qsc3
  = ? STB/D

p3 = 1500 psia

FIG. 4.26 Discretized 1-D reservoir in Exercise 4.10.
4.11. A 1-D horizontal oil reservoir shown in Fig. 4.27 is described by four

equal gridblocks. Reservoir blocks have k¼70 md, Δx¼400 ft,

Δy¼660 ft, and h¼10 ft. Oil FVF and viscosity are 1RB/STB and

1.5cP, respectively. The reservoir left boundary is maintained at con-

stant pressure of 2700, while the boundary condition at the reservoir right

boundary is not known, the pressure of gridblock 4 is maintained at

1900psia. A well in gridblock 3 produces 150STB/D of oil. Assuming

that the reservoir rock and oil are incompressible, calculate the pressure

distribution in the reservoir. Estimate the rate of oil that crosses the res-

ervoir right boundary.
2 3 41 
10 ft

400 ft   660 ft

x

y

z 150 STB/D

pbW
 = 2700 psia

p4 = 1900 psia

FIG. 4.27 Discretized 1-D reservoir in Exercise 4.11.
4.12. Consider the 2-D horizontal oil reservoir shown in Fig. 4.28. The reser-

voir is described using a regular grid. Reservoir gridblocks have

Δx¼350 ft, Δy¼300 ft, h¼35 ft, kx¼160 md, and ky¼190 md. Oil

FVF and viscosity are 1RB/STB and 4.0cP, respectively. Boundary con-

ditions are specified as shown in the figure. A well in gridblock 5 pro-

duces oil at a rate of 2000STB/D. Assume that the reservoir rock and oil

are incompressible. Write the flow equations for all gridblocks. Do not

solve the equations.
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qsc5 
= –2000 STB/D

dp  
dx bW

= 0.10 psi/ft

pbS
 = 3200 psia

FIG. 4.28 Discretized 2-D reservoir in Exercise 4.12.
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4.13. Starting with Eq. (4.88c), which expresses the bulk volume of gridblock

(nr, j,k) in terms of re and rnr�1/2, derive Eq. (4.88d), which expresses the

bulk volume in terms of αlg and re.

4.14. A 6-in. vertical well producing 500STB/D of oil is located in 16-acre

spacing. The reservoir is 30 ft thick and has horizontal permeability of

50md. The oil FVF and viscosity are 1RB/B and 3.5cP, respectively.

The reservoir external boundaries are no-flow boundaries. The reservoir

is simulated using four gridblocks in the radial direction as shown in

Fig. 4.29. Write the flow equations for all gridblocks. Do not substitute

for values on the RHS of equations.
i = 1 i = 2 i = 3 i = 4

r

z

1 2  3  4

No-flow boundary

500 STB/D

No-flow boundary

30 ft

No-flow boundary

FIG. 4.29 Discretized reservoir in Exercise 4.14.
4.15. A 9⅝-in vertical well is located in 12-acre spacing. The reservoir thick-

ness is 50 ft. Horizontal and vertical reservoir permeabilities are 70 md

and 40md, respectively. The flowing fluid has a density, FVF, and viscos-

ity of 62.4 lbm/ft3, 1RB/B, and 0.7cP, respectively. The reservoir
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external boundary in the radial direction is a no-flow boundary, and the

well is completed in the top 20ft only and produces at a rate of 1000B/

D. The reservoir bottom boundary is subject to influx such that the bound-

ary is maintained at 3000psia. The reservoir top boundary is sealed to

flow. Assuming the reservoir can be simulated using two gridblocks in

the vertical direction and four gridblocks in the radial direction as shown

in Fig. 4.30, write the flow equations for all gridblocks in this reservoir.
i = 1 i = 2 i = 3 i = 4

k = 1

k = 2

r

z

1 2 3 4

No-flow boundary

1000 STB/D

30 ft

No-flow boundary

20 ft

pbL
=3000 psia

5 6 7 8

FIG. 4.30 Discretized 2-D radial-cylindrical reservoir in Exercise 4.15.
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5.1 Introduction

Discretization process creates inherent challenges involving proper representa-

tion of natural processes. The problem is accentuated by boundaries, which cre-

ate discontinuities—an absurd condition for natural systems. Historically, the

petroleum engineers have identified these problems and have attempted to

address many problems that emerge from discretization and boundary condi-

tions, which must be addressed separately. Few, however, have recognized that

the engineering approach keeps the process transparent and enables modelers to

remedy with physically realistic solutions. This chapter presents discretization

of 1-D, 2-D, and 3-D reservoirs using point-distributed grids in Cartesian and

radial-cylindrical coordinate systems. This chapter describes the construction

of a point-distributed grid for a reservoir and the relationships between the

distances separating gridpoints, block boundaries, and sizes of the blocks

represented by the gridpoints. The resulting gridpoints can be classified into

interior and boundary gridpoints. While Chapter 2 derives the flow equations

for interior gridpoints, the boundary gridpoints are subject to boundary con-

ditions and thus require special treatment. This chapter presents the treatment
19150-7.00005-0

125
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FIG. 5.1 Discretization of a 1-D reservoir using a point-distributed grid.
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of various boundary conditions and introduces a general flow equation that is

applicable to interior gridpoints and boundary gridpoints. This chapter also

presents the equations for directional transmissibilities in both Cartesian

and radial-cylindrical coordinate systems and discusses the use of symmetry

in reservoir simulation.

There are three important differences between the block-centered grid dis-

cussed in Chapter 4 and the point-distributed grid discussed in this chapter.

First, the boundary gridpoints for a point-distributed grid fall on reservoir

boundaries, not inside reservoir boundaries as in the case of a block-centered

grid. Second, the actual bulk volume and actual well rate of boundary gridpoints

are a half, a quarter, or an eighth of those of whole blocks if they fall on one, two,

or three reservoir boundaries, respectively. Third, the transmissibility parallel to

the reservoir boundary for a boundary gridpoint has half of that of the whole

block. These points are taken into consideration in developing the general flow

equation for a point-distributed grid.
5.2 Reservoir discretization

As described in Chapter 4, reservoir discretization involves the assigning a set

of gridpoints that represent blocks that are well defined in terms of properties,

dimensions, boundaries, and locations in the reservoir. Fig. 5.1 shows a point-

distributed grid for a 1-D reservoir in the direction of the x-axis. The point-

distributed grid is constructed by choosing nx gridpoints that span the entire res-
ervoir length in the x-direction. In other words, the first gridpoint is placed at

one reservoir boundary, and the last gridpoint is placed at the other reservoir

boundary. The distances between gridpoints are assigned predetermined values

(Δxi+1/2, i ¼ 1, 2, 3… nx�1) that are not necessarily equal. Each gridpoint rep-

resents a block whose boundaries are placed halfway between the gridpoint and

its neighboring gridpoints.

Fig. 5.2 focuses on gridpoint i and its neighboring gridpoints. It shows how
these gridpoints are related to each other. In addition, the figure shows block

dimensions (Δxi�1, Δxi, Δxi+1), block boundaries (xi�1/2, xi+1/2), distances
between gridpoint i and block boundaries (δxi�, δxi+), and distances between

gridpoints (Δxi�1/2, Δxi+1/2). Block dimensions, block boundaries, and grid-

point locations satisfy the following relationships:
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x1 ¼ 0, xnx ¼ Lx, i:e:, xnx � x1 ¼ Lxð Þ,
δxi� ¼ 1

�
2Δxi�1=2, i¼ 2,3…nx,

δxi+ ¼ 1
�
2Δxi + 1=2, i¼ 1,2,3…nx�1,

xi+ 1 ¼ xi +Δxi+ 1=2, i¼ 1,2,3…nx�1,

xi�1=2 ¼ xi�δxi� ¼ xi� 1
�
2Δxi�1=2, i¼ 2,3…nx,

xi + 1=2 ¼ xi + δxi+ ¼ xi +
1
�
2Δxi+ 1=2, i¼ 1,2,3…nx�1,

Δxi ¼ δxi� + δxi+ ¼ 1
�
2 Δxi�1=2 +Δxi+ 1=2
� �

, i¼ 2,3…nx�1,

Δx1 ¼ δx1+ ¼ 1
�
2Δx1 + 1=2,

and

Δxnx ¼ δxnx� ¼ 1
�
2Δxnx�1=2:

(5.1)
Fig. 5.3 shows the discretization of a 2-D reservoir into a 5�4 irregular grid.
An irregular grid implies that the distances between the gridpoints in the direc-

tion of the x-axis (Δxi�1/2) and the y-axis (Δyj�1/2) are neither equal nor con-

stant. Discretization using a regular grid means that distances between

gridpoints in the x-direction and those in the y-direction are constant but not

necessarily equal in both directions. The discretization in the x-direction uses

the procedure just mentioned and the relationships presented in Eq. (5.1). Dis-

cretization in the y-direction uses a procedure and relationships similar to those

for the x-direction, and the same can be said of the z-direction for a 3-D
Δx11/2

Δy11/2

Δy21/2

Δx21/2
Δx31/2

Δy31/2

Δx41/2

)1,3()1,1(

)3,3()3,1(

FIG. 5.3 Discretization of a 2-D reservoir using a point-distributed grid.
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i – 1

Δxi + 1

x i + 1

i + 1

xi

i

Δxi

Δxi + 1/2

xi + 1/2

dxi+dxi–

FIG. 5.2 Gridpoint i and its neighboring gridpoints in the x-direction.
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reservoir. Inspection of Figs. 5.1 and 5.3 shows that the boundary gridpoints fall

on the boundaries of the reservoir. In addition, they are not completely enclosed

by the blocks they represent.

Example 5.1 A 5000ft�1200ft�75ft horizontal reservoir contains oil that

flows along its length. The reservoir rock porosity and permeability are 0.18

and 15md, respectively. The oil FVF and viscosity are 1RB/STB and 10cP,

respectively. The reservoir has a well located at 4000ft from the reservoir left

boundary and produces oil at a rate of 150STB/D. Discretize the reservoir into

six equally spaced gridpoints using a point-distributed grid and assign proper-

ties to the gridpoints comprising this reservoir.

Solution

Using a point-distributed grid, the reservoir is divided along its length into

six equally spaced gridpoints with gridpoints 1 and 6 being placed on the res-

ervoir left and right boundaries, respectively. Each gridpoint represents a block

whose boundaries are placed halfway between gridpoints. Therefore, nx¼6 and

Δxi�1/2¼Lx/(nx�1)¼ 5000/5¼1000ft. Gridpoints are numbered from 1 to 6 as

shown in Fig. 5.4.

Now, the reservoir is described through assigning properties to its six grid-

points (i¼1, 2, 3, 4, 5, 6). All gridpoints have the same elevation because the

reservoir is horizontal. The blocks that are represented by the gridpoints have

the dimensions of Δy¼1200 ft and Δz¼75 ft and properties of kx¼15 md and

ϕ¼0.18. The blocks for gridpoints 2, 3, 4, and 5 have Δx¼1000 ft, whereas

those for gridpoints 1 and 6 have Δx¼500 ft. The distances between neighbor-

ing gridpoints are equal; that is, Δxi�1/2¼1000 ft and Axi�1/2
¼Ax¼Δy�Δz¼

1200�75¼90, 000 ft2. Gridpoint 1 falls on the reservoir west boundary, grid-

point 6 falls on the reservoir east boundary, and gridpoints 2, 3, 4, and 5 are

interior gridpoints. In addition, the block enclosing gridpoint 5 hosts a well with

qsc5¼ �150 STB/D. Fluid properties are B¼1 RB/STB and μ¼10 cP.

5.3 Flow equation for boundary gridpoints

In this section, we present a form of the flow equation that applies to interior

gridpoints and boundary gridpoints. That is to say, the proposed flow equation

reduces to the flow equations presented in Chapters 2 and 3 for interior grid-

points, but it also includes the effects of boundary conditions for boundary
3 4 5 62 
75 ft

1000 ft1000 ft 1200 ft

x

y

z
150 STB/D

1 

FIG. 5.4 Discretized 1-D reservoir in Example 5.1.
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gridpoints. Fig. 5.1 shows a discretized 1-D reservoir in the direction of the x-
axis. Gridpoints 2, 3,… nx�1 are interior gridpoints, whereas gridpoints 1 and

nx are boundary gridpoints that each falls on one reservoir boundary. Fig. 5.3

shows a discretized 2-D reservoir. The figure highlights an interior gridpoint,

gridpoint (3,3); two boundary gridpoints that each falls on one reservoir bound-

ary, gridpoints (1,3) and (3,1); and a gridpoint that falls at the intersection of two

reservoir boundaries, gridpoint (1,1). Therefore, one can conclude that not all

gridpoints fall inside reservoir boundaries, and the boundary gridpoints have

incomplete blocks. As discussed in the previous chapter, there are interior grid-

points and boundary gridpoints, which may fall on one, two, or three reservoir

boundaries. The terminology in this discussion has been presented in Chapter 4.

This terminology is repeated in Fig. 5.5. Reservoir boundaries along the x-axis
are termed reservoir west boundary (bW) and reservoir east boundary (bE), and
those along the y-axis are termed reservoir south boundary (bS) and reservoir

north boundary (bN). Reservoir boundaries along the z-axis are termed reservoir

lower boundary (bL) and reservoir upper boundary (bU).
The flow equations for both interior and boundary gridpoints have a produc-

tion (injection) term and an accumulation term. The treatment of a boundary

condition by the engineering approach involves replacing the boundary condi-

tion with a no-flow boundary plus a fictitious well having flow rate of qscb,bP that
reflects fluid transfer between the gridpoint that is exterior to the reservoir and

the reservoir boundary itself (b) or the boundary gridpoint (bP). The flow equa-

tion for an interior gridpoint has a number of flow terms that equals the number

of neighboring gridpoints (two, four, or six terms for a 1-D, 2-D, or 3-D reser-

voir, respectively). The flow equation for a boundary gridpoint has a number of

flow terms that equals the number of existing neighboring gridpoints in the res-

ervoir and a number of fictitious wells that equals the number of reservoir

boundaries the boundary gridpoint falls on.

A general form of the flow equation that applies to boundary gridpoints and

interior gridpoints in 1-D, 2-D, or 3-D flow in both Cartesian and radial-

cylindrical coordinates can be expressed best using CVFD terminology. The

use of summation operators in CVFD terminology makes it flexible and suitable

for describing flow terms in the equation of any gridpoint that may or may not
bL

bN bEbU

bS

bW

E
x

yz

U

S

L

W

N

FIG. 5.5 Definition of the reservoir left and right boundaries in 3-D reservoirs.
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be on a reservoir boundary. The general form of the flow equation for gridpoint

n can be written asX
l2ψn

Tm
l,n pml �pmn

� �� γml,n Zl�Znð Þ� �
+
X
l2ξn

qmscl,n

+ qmscn ¼
Vbn

αcΔt
ϕ

B

� �n+ 1

n

� ϕ

B

� �n

n

" #
(5.2a)

or, in terms of potentials, as
X
l2ψn

Tm
l,n Φm

l �Φm
n

� �
+
X
l2ξn

qmscl,n + q
m
scn

¼ Vbn

αcΔt
ϕ

B

� �n + 1

n

� ϕ

B

� �n

n

" #
(5.2b)

where ψn¼ the set whose elements are the existing neighboring gridpoints in
the reservoir, ξn¼ the set whose elements are the reservoir boundaries (bL,
bS, bW, bE, bN, bU) that are shared by gridpoint n, and qm

scl,n
¼ flow rate of the

fictitious well representing fluid transfer between reservoir boundary l and grid-
point n as a result of a boundary condition. For a 3-D reservoir, ξn is either an
empty set for interior gridpoints or a set that contains one element for boundary

gridpoints that fall on one reservoir boundary, two elements for boundary grid-

points that fall on two reservoir boundaries, or three elements for boundary grid-

points that fall on three reservoir boundaries. An empty set implies that the

gridpoint does not fall on any reservoir boundary; that is, gridpoint n is an inte-

rior gridpoint, and hence,
X
l2ξn

qmscl,n ¼ 0. In engineering notation, n� (i, j,k), and

Eq. (5.2a) becomes

X
l2ψ i, j,k

Tm
l, i, j,kð Þ pml �pmi, j,k

	 

� γml, i, j,kð Þ Zl�Zi, j,k

� �h i
+

X
l2ξi, j,k

qmscl, i, j,kð Þ + q
m
sci, j,k

¼Vbi, j,k

αcΔt
ϕ

B

� �n+ 1

i, j,k

� ϕ

B

� �n

i, j,k

" #
(5.2c)

It is important to recognize that the flow equations for interior gridpoints in a
point-distributed grid and those for interior gridblocks in a block-centered grid are

the same because interior gridpoints represent the whole blocks. The flow equa-

tions for boundary blocks and boundary gridpoints, however, are different

because of the way the two grids are constructed. To incorporate boundary con-

ditions appropriately in the flow equation of a boundary gridpoint, we must write

the flow equation for the whole block, which completely encloses the boundary

gridpoint, in terms of the properties of the actual block and note that the whole

block and the actual block are represented by the same boundary gridpoint.

It must be mentioned that reservoir blocks have a three-dimensional shape

whether fluid flow is 1-D, 2-D, or 3-D. The number of existing neighboring

gridpoints and the number of reservoir boundaries shared by a reservoir
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gridpoint add up to six as the case in 3-D flow. Existing neighboring gridpoints

contribute to flow to or from the gridpoint, whereas reservoir boundaries may or

may not contribute to flow depending on the dimensionality of flow and the pre-

vailing boundary conditions. The dimensionality of flow implicitly defines

those reservoir boundaries that do not contribute to flow at all. In 1-D flow prob-

lems, all reservoir gridpoints have four reservoir boundaries that do not contrib-

ute to flow. In 1-D flow in the x-direction, the reservoir south, north, lower, and
upper boundaries do not contribute to flow to any reservoir gridpoint, including

boundary gridpoints. These four reservoir boundaries (bL, bS, bN, bU) are dis-

carded as if they did not exist. As a result, an interior reservoir gridpoint has

two neighboring gridpoints and no reservoir boundaries, whereas a boundary

gridpoint has one neighboring gridpoint and one reservoir boundary. In 2-D

flow problems, all reservoir gridpoints have two reservoir boundaries that do

not contribute to flow. For example, in 2-D flow in the x-y plane, the reservoir
lower and upper boundaries do not contribute to flow to any reservoir gridpoint,

including boundary gridpoints. These two reservoir boundaries (bL, bU) are dis-
carded as if they did not exist. As a result, an interior reservoir gridpoint has four

neighboring gridpoints and no reservoir boundaries, a reservoir gridpoint that

falls on one reservoir boundary has three neighboring gridpoints and one reser-

voir boundary, and a reservoir gridpoint that falls on two reservoir boundaries

has two neighboring gridpoints and two reservoir boundaries. In 3-D flow prob-

lems, any of the six reservoir boundaries may contribute to flow depending on

the specified boundary condition. An interior gridpoint has six neighboring

gridpoints. It does not share any of its boundaries with any of the reservoir

boundaries. A boundary gridpoint may fall on one, two, or three of the reservoir

boundaries. Therefore, a boundary gridpoint that falls on one, two, or three res-

ervoir boundaries has five, four, or three neighboring gridpoints, respectively.

The earlier discussion leads to a few conclusions related to the number of ele-

ments contained in sets ψ and ξ.

(1) For an interior reservoir gridpoint, set ψ contains two, four, or six elements

for a 1-D, 2-D, or 3-D flow problem, respectively, and set ξ contains no

elements or, in other words, is empty.

(2) For a boundary reservoir gridpoint, set ψ contains less than two, four, or six

elements for a 1-D, 2-D, or 3-D flow problem, respectively, and set ξ is

not empty.

(3) The sum of the number of elements in sets ψ and ξ for any reservoir grid-

point is a constant that depends on the dimensionality of flow. This sum is

two, four, or six for a 1-D, 2-D, or 3-D flow problem, respectively.

For 1-D reservoirs, the flow equation for interior gridpoint i in Fig. 5.6 is given
by Eq. (2.32):

Tm
xi�1=2

Φm
i�1�Φm

i

� �
+ Tm

xi+ 1=2
Φm

i+ 1�Φm
i

� �
+ qmsci ¼

Vbi

αcΔt
ϕ

B

� �n+ 1

i

� ϕ

B

� �n

i

" #

(5.3)
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FIG. 5.6 Boundary gridpoints at the left and right boundaries of a 1-D reservoir.
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The aforementioned flow equation can be obtained from Eq. (5.2b) for n¼ i,X

ψ i¼{i�1, i+1}, and ξi¼{} and by observing that

l2ξi
qmscl, i ¼ 0 for an interior

gridpoint and Tm
i�1,i¼Tm

xi�1/2
.

To write the flow equation for boundary gridpoint 1, which falls on the res-

ervoir west boundary in Fig. 5.6, we write the flow equation for the whole block

of boundary gridpoint 1:

Tm
x1�1=2

Φm
0 �Φm

1

� �
+ Tm

x1 + 1=2
Φm

2 �Φm
1

� �
+ 2qmsc1 ¼

2Vb1

αcΔt
ϕ

B

� �n+ 1

1

� ϕ

B

� �n

1

" #

(5.4)

Note that the properties of the whole block in Eq. (5.4) are expressed in
terms of those of the actual block; that is, Vb¼2Vb1
and qsc¼2qsc1. Adding

and subtracting the flow term Tm
x1+1/2

(Φ2
m�Φ1

m) to the LHS of the aforementioned

equation gives

Tm
x1�1=2

Φm
0 �Φm

1

� ��Tm
x1 + 1=2

Φm
2 �Φm

1

� �
+ 2Tm

x1 + 1=2
Φm

2 �Φm
1

� �
+ 2qmsc1

¼ 2Vb1

αcΔt
ϕ

B

� �n+ 1

1

� ϕ

B

� �n

1

" #
(5.5)

Multiplying Eq. (5.5) by half results in the flow equation for the actual block
represented by boundary gridpoint 1,

1
�
2 Tm

x1�1=2
Φm

0 �Φm
1

� ��Tm
x1 + 1=2

Φm
2 �Φm

1

� �h i
+ Tm

x1 + 1=2
Φm

2 �Φm
1

� �
+ qmsc1

¼ Vb1

αcΔt
ϕ

B

� �n+ 1

1

� ϕ

B

� �n

1

" #
(5.6a)

The first term on the LHS of Eq. (5.6a) represents the rate of fluid flow
across the reservoir west boundary (bW). This term can be replaced with the flow

rate of a fictitious well (qmscbW ,1
) that transfers fluid through the reservoir west

boundary to gridpoint 1; that is,

qmscbW ,1
¼ 1

�
2 Tm

x1�1=2
Φm

0 �Φm
1

� ��Tm
x1 + 1=2

Φm
2 �Φm

1

� �h i
(5.7)

Substitution of Eq. (5.7) into Eq. (5.6a) yields
qmscbW ,1
+ Tm

x1 + 1=2
Φm

2 �Φm
1

� �
+ qmsc1 ¼

Vb1

αcΔt
ϕ

B

� �n+ 1

1

� ϕ

B

� �n

1

" #
(5.6b)
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The aforementioned flow equation can be obtained from Eq. (5.2b) for n¼1,X

ψ1¼{2}, and ξ1¼{bW} and by observing that

l2ξ1
qmscl,1 ¼ qmscbW ,1

and T2,1
m ¼Tm

x1+1/2
.

To write the flow equation for boundary gridpoint nx, which falls on the

reservoir east boundary in Fig. 5.6, we write the flow equation for the whole

block of boundary gridpoint nx:

Tm
xnx�1=2

Φm
nx�1�Φm

nx

	 

+ Tm

xnx + 1=2
Φm

nx + 1
�Φm

nx

	 

+ 2qmscnx

¼ 2Vbnx

αcΔt
ϕ

B

� �n+ 1

nx

� ϕ

B

� �n

nx

" #
(5.8)

Here again, note that the properties of the whole block in Eq. (5.8) are
expressed in terms of those of the actual block; that is, Vb¼2Vbnx and

qsc¼2qscnx . The aforementioned equation can be manipulated as was done

for gridpoint 1 to obtain the flow equation for the actual block represented

by boundary gridpoint nx:

Tm
xnx�1=2

Φm
nx�1�Φm

nx

	 

+ 1

�
2 Tm

xnx + 1=2
Φm

nx + 1
�Φm

nx

	 

�Tm

xnx�1=2
Φm

nx�1�Φm
nx

	 
h i

+qmscnx ¼
Vbnx

αcΔt
ϕ

B

� �n+ 1

nx

� ϕ

B

� �n

nx

" #
(5.9a)

The second term on the LHS of Eq. (5.9a) represents the rate of fluid flow
across the reservoir east boundary (bE). This term can be replaced with the flow

rate of a fictitious well qmscbE,nx

	 

that transfers fluid through the reservoir east

boundary to gridpoint nx; that is,

qmscbE,nx
¼ 1

�
2 Tm

xnx + 1=2
Φm

nx + 1
�Φm

nx

	 

�Tm

xnx�1=2
Φm

nx�1�Φm
nx

	 
h i
(5.10)

Substitution of Eq. (5.10) into Eq. (5.9a) yields
Tm
xnx�1=2

Φm
nx�1�Φm

nx

	 

+ qmscbE,nx

+ qmscnx ¼
Vbnx

αcΔt
ϕ

B

� �n+ 1

nx

� ϕ

B

� �n

nx

" #
(5.9b)

The aforementioned flow equation can be obtained from Eq. (5.2b)
for n¼nx, ψnx
¼{nx�1}, and ξnx¼{bE} and by observing thatX

l2ξnx
qmscl,nx ¼ qmscbE,nx

and Tm
nx�1,nx

¼Tm
xnx�1=2

.

For 2-D reservoirs, the flow equation for interior gridpoint (i, j) is given by

Eq. (2.37):

Tm
yi, j�1=2

Φm
i, j�1�Φm

i, j

	 

+ Tm

xi�1=2, j
Φm

i�1, j�Φm
i, j

	 

+ Tm

xi + 1=2, j
Φm

i+ 1, j�Φm
i, j

	 


+Tm
yi, j+ 1=2

Φm
i, j + 1�Φm

i, j

	 

+ qmsci, j ¼

Vbi, j

αcΔt
ϕ

B

� �n+ 1

i, j

� ϕ

B

� �n

i, j

" #

(5.11)
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The aforementioned flow equation can be obtained from Eq. (5.2b) for
n� (i, j), ψ i,j¼{(i, j�1), (i�1, j), (i+1, j), (i, j+1)}, and ξi,j¼{} and by

observing that
X
l2ξi, j

qmscl, i, jð Þ ¼ 0 for an interior gridpoint, Tm
(i,j�1),(i,j)¼Tm

yi,j�1/2
,

and Tm
(i�1,j),(i,j)¼Tm

xi�1/2,j
.

For a gridpoint that falls on one reservoir boundary, like gridpoint (3,1),

which falls on the reservoir south boundary in Fig. 5.3, the bulk volume, well

rate, and transmissibility in the x-direction for the whole block are twice the

bulk volume, well rate, and transmissibility in the x-direction for the actual

block represented by gridpoint (3,1). However, the transmissibility in the y-
direction is the same for the whole and actual blocks. Therefore, the flow equa-

tion for the whole block expressed in terms of the properties of the actual block

can be written as

Tm
y3,1�1=2

Φm
3,0�Φm

3,1

� �
+ 2Tm

x3�1=2,1
Φm

2,1�Φm
3,1

� �
+ 2Tm

x3 + 1=2,1
Φm

4,1�Φm
3,1

� �

+Tm
y3,1 + 1=2

Φm
3,2�Φm

3,1

� �
+ 2qmsc3,1 ¼

2Vb3,1

αcΔt
ϕ

B

� �n+ 1

3,1

� ϕ

B

� �n

3,1

" #
(5.12)

Adding and subtracting the flow term Tm
y3,1+1/2(Φ3,2

m �Φ3,1
m ) to the LHS of the
aforementioned equation gives

Tm
y3,1�1=2

Φm
3,0�Φm

3,1

� ��Tm
y3,1 + 1=2

Φm
3,2�Φm

3,1

� �h i
+ 2Tm

x3�1=2,1
Φm

2,1�Φm
3,1

� �
+2Tm

x3 + 1=2,1
Φm

4,1�Φm
3,1

� �
+ 2Tm

y3,1 + 1=2
Φm

3,2�Φm
3,1

� �

+2qmsc3,1 ¼
2Vb3,1

αcΔt
ϕ

B

� �n+ 1

3,1

� ϕ

B

� �n

3,1

" #

(5.13)

Multiplying Eq. (5.13) by half results in the flow equation for the actual
block represented by boundary gridpoint (3,1):

1
�
2 Tm

y3,1�1=2
Φm
3,0�Φm

3,1

	 

�Tmy3,1 + 1=2 Φm

3,2�Φm
3,1

	 
h i
+ Tm

x3�1=2,1
Φm
2,1�Φm

3,1

	 


+Tm
x3 + 1=2,1

Φm
4,1�Φm

3,1

	 

+ Tmy3,1 + 1=2 Φm

3,2�Φm
3,1

	 

+ qmsc3,1 ¼

Vb3,1

αcΔt
ϕ

B

� �n+ 1

3,1

� ϕ

B

� �n

3,1

" #

(5.14a)

The first term on the LHS of Eq. (5.14a) represents the rate of fluid flow
across the reservoir south boundary (bS). This term can be replaced with the

flow rate of a fictitious well
�
qmscbS, 3,1ð Þ

�
that transfers fluid through the reservoir

south boundary to boundary gridpoint (3,1); that is,

qscbS, 3, 1ð Þ ¼ 1
�
2 Tm

y3,1�1=2
Φm

3,0�Φm
3,1

� ��Tm
y3,1 + 1=2

Φm
3,2�Φm

3,1

� �h i
(5.15)
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Substitution of Eq. (5.15) into Eq. (5.14a) yields
qmscbS, 3, 1ð Þ + T
m
x3�1=2,1

Φm
2,1�Φm

3,1

� �
+ Tm

x3 + 1=2,1
Φm

4,1�Φm
3,1

� �

+Tm
y3,1 + 1=2

Φm
3,2�Φm

3,1

� �
+ qmsc3,1 ¼

Vb3,1

αcΔt
ϕ

B

� �n+ 1

3,1

� ϕ

B

� �n

3,1

" #
(5.14b)

The aforementioned flow equation can be obtained from Eq. (5.2) for
n� (3,1), ψ3,1¼{(2,1), (4,1), (3,2)}, and ξ3,1¼{bS} and by observing thatX
l2ξ3,1

qmscl, 3;1ð Þ ¼ qmscbS, 3;1ð Þ , T(2,1),(3,1)
m ¼Tm

x3�1/2,1
, T(4,1),(3,1)

m ¼Tm
x3+1/2,1, and T(3,2),(3,1)

m ¼

Tmy3,1+1/2.
Another example is gridpoint (1,3), which falls on the reservoir west bound-

ary in the 2-D reservoir shown in Fig. 5.3. In this case, the bulk volume, well

rate, and transmissibility in the y-direction for the whole block are twice the

bulk volume, well rate, and transmissibility in the y-direction for the actual

block represented by gridpoint (1,3). However, the transmissibility in the x-
direction is the same for the whole and actual blocks. Similarly, the flow equa-

tion for the actual block represented by gridpoint (1,3) can be expressed as

Tm
y1,3�1=2

Φm
1,2�Φm

1,3

� �
+ qmscbW , 1;3ð Þ + T

m
x1 + 1=2,3

Φm
2,3�Φm

1,3

� �

+Tm
y1,3 + 1=2

Φm
1,4�Φm

1,3

� �
+ qmsc1,3 ¼

Vb1,3

αcΔt
ϕ

B

� �n+ 1

1,3

� ϕ

B

� �n

1,3

" #
(5.16)

where h i

qscbW , 1;3ð Þ ¼ 1

�
2 Tm

x1�1=2,3
Φm

0,3�Φm
1,3

� ��Tm
x1 + 1=2,3

Φm
2,3�Φm

1,3

� �
(5.17)

The flow equation given by Eq. (5.16) can be obtained from Eq. (5.2b) for
n� (1,3), ψ1,3¼{(1,2), (2,3), (1,4)}, and ξ1,3¼{bW} and by observing thatX
l2ξ1,3

qmscl, 1;3ð Þ ¼ qmscbW , 1;3ð Þ , T(1,2),(1,3)
m ¼Tm

y1,3�1/2
, T(1,4),(1,3)

m ¼Tm
y1,3+1/2, and Tm

(2,3),(1,3)¼

Tmx1+1/2,3.
Now, consider a gridpoint that falls on two reservoir boundaries, like boundary

gridpoint (1,1), which falls on the reservoir south and west boundaries in Fig. 5.3.

In this case, the bulk volume and well rate for the whole block are four times the

bulk volume and well rate for the actual block represented by gridpoint (1,1).

However, the transmissibilities in the x- and y-directions for the whole

block are only twice the transmissibilities in the x- and y-directions for the

actual block represented by gridpoint (3,1). Therefore, the flow equation for

the whole block in terms of the properties of the actual block can be written as

2Tm
y1,1�1=2

Φm
1,0�Φm

1,1

� �
+ 2Tm

x1�1=2,1
Φm

0,1�Φm
1,1

� �
+ 2Tm

x1 + 1=2,1
Φm

2,1�Φm
1,1

� �

+2Tm
y1,1 + 1=2

Φm
1,2�Φm

1,1

� �
+ 4qmsc1,1 ¼

4Vb1,1

αcΔt
ϕ

B

� �n+ 1

1,1

� ϕ

B

� �n

1,1

" #

(5.18)
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Adding and subtracting 2Tm
x1+1/2,1(Φ2,1

m �Φ1,1
m )+2Tm

y1,1+1/2(Φ1,2
m �Φ1,1

m ) to the
LHS of the aforementioned equation gives

2 Tm
y1,1�1=2

Φm
1,0�Φm

1,1

� ��Tm
y1,1 + 1=2

Φm
1,2�Φm

1,1

� �h i
+2 Tm

x1�1=2,1
Φm

0,1�Φm
1,1

� ��Tm
x1 + 1=2,1

Φm
2,1�Φm

1,1

� �h i
+4Tm

x1 + 1=2,1
Φm

2,1�Φm
1,1

� �
+ 4Tm

y1,1 + 1=2
Φm

1,2�Φm
1,1

� �

+4qmsc1,1 ¼
4Vb1,1

αcΔt
ϕ

B

� �n+ 1

1,1

� ϕ

B

� �n

1,1

" # (5.19)

Dividing the aforementioned equation by four results in the flow equation
for the actual block represented by boundary gridpoint (1,1) results in

1
�
2 Tm

y1,1�1=2
Φm
1,0�Φm

1,1

	 

�Tmy1,1 + 1=2 Φm

1,2�Φm
1,1

	 
h i

+1
�
2 Tm

x1�1=2,1
Φm
0,1�Φm

1,1

	 

�Tmx1 + 1=2,1 Φm

2,1�Φm
1,1

	 
h i

+Tm
x1 + 1=2,1

Φm
2,1�Φm

1,1

	 

+ Tmy1,1 + 1=2 Φm

1,2�Φm
1,1

	 

+ qmsc1,1 ¼

Vb1,1

αcΔt
ϕ

B

� �n+ 1

1,1

� ϕ

B

� �n

1,1

" #

(5.20a)

The aforementioned equation can be rewritten as
qmscbS, 1;1ð Þ + q
m
scbW , 1;1ð Þ + T

m
x1 + 1=2,1

Φm
2,1�Φm

1,1

� �
+ Tm

y1,1 + 1=2
Φm

1,2�Φm
1,1

� �
+ qmsc1,1

¼ Vb1,1

αcΔt
ϕ

B

� �n + 1

1,1

� ϕ

B

� �n

1,1

" #

(5.20b)

where
qscbS, 1;1ð Þ ¼ 1
�
2 Tm

y1,1�1=2
Φm

1,0�Φm
1,1

� ��Tm
y1,1 + 1=2

Φm
1,2�Φm

1,1

� �h i
(5.21)

and
qscbW , 1;1ð Þ ¼ 1
�
2 Tm

x1�1=2,1
Φm

0,1�Φm
1,1

� ��Tm
x1 + 1=2,1

Φm
2,1�Φm

1,1

� �h i
(5.22)

Eq. (5.20b) can be obtained fromEq. (5.2b) for n� (1,1),ψ1,1¼{(2,1), (1,2)},X

and ξ1,1¼{bS,bW} and by observing that

l2ξ1,1
qmscl, 1;1ð Þ ¼ qmscbS, 1;1ð Þ + q

m
scbW , 1;1ð Þ ,

T(2,1),(1,1)
m ¼Tmx1+1/2,1, and T(1,2),(1,1)

m ¼Tmy1,1+1/2.
The following example demonstrates the use of the general equation,

Eq. (5.2a), to write the flow equations for interior gridpoints in a 1-D reservoir.

Example 5.2 For the 1-D reservoir described in Example 5.1, write the flow

equations for interior gridpoints 2, 3, 4, and 5.

Solution

The flow equation for gridpoint n in a 1-D horizontal reservoir is obtained

from Eq. (5.2a) by discarding the gravity term,
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X
l2ψn

Tm
l,n pml �pmn
� �

+
X
l2ξn

qmscl,n + q
m
scn

¼ Vbn

αcΔt
ϕ

B

� �n + 1

n

� ϕ

B

� �n

n

" #
(5.23)

For interior gridpoints, ψn¼{n�1,n+1}, and ξn¼{}. Therefore,X

l2ξn

qmscl,n ¼ 0. The gridpoints in this problem are equally spaced (Δxi�1/2¼

Δx¼1000 ft) and have the same cross-sectional area (Δy�h¼1200�75 ft2),

permeability (kx¼15 md), and constants μ and B. Therefore,

Tm
x ¼ βc

kxAx

μBΔx¼ 0:001127� 15� 1200�75ð Þ
10�1�1000

¼ 0:1521 STB/D-psi. In addition,

T1,2
m ¼T2,3

m ¼T3,4
m ¼T4,5

m ¼T5,6
m ¼Tx

m¼0.1521 STB/D-psi.

For gridpoint 2, n¼2, ψ2¼{1, 3}, ξ2¼{},
X
l2ξ2

qmscl,2 ¼ 0, and qm
sc2

¼0.

Therefore, substitution into Eq. (5.23) yields

0:1521ð Þ pm1 �pm2
� �

+ 0:1521ð Þ pm3 �pm2
� �¼ Vb2

αcΔt
ϕ

B

� �n+ 1

2

� ϕ

B

� �n

2

" #
(5.24)

For gridpoint 3, n¼3, ψ3¼{2, 4}, ξ3¼{},
X

qmscl,3 ¼ 0, and qm
sc3

¼0.

l2ξ3

Therefore, substitution into Eq. (5.23) yields

0:1521ð Þ pm2 �pm3
� �

+ 0:1521ð Þ pm4 �pm3
� �¼ Vb3

αcΔt
ϕ

B

� �n+ 1

3

� ϕ

B

� �n

3

" #
(5.25)

For gridpoint 4, n¼4, ψ4¼{3, 5}, ξ4¼{},
X

qmscl,4 ¼ 0, and qm
sc4

¼0.

l2ξ4

Therefore, substitution into Eq. (5.23) yields

0:1521ð Þ pm3 �pm4
� �

+ 0:1521ð Þ pm5 �pm4
� �¼ Vb4

αcΔt
ϕ

B

� �n+ 1

4

� ϕ

B

� �n

4

" #
(5.26)

For gridpoint 5, n¼5, ψ5¼{4,6}, ξ5¼{},
X

qmscl,5 ¼ 0, and qmsc5¼ �150

l2ξ5

STB/D. Therefore, substitution into Eq. (5.23) yields

0:1521ð Þ pm4 �pm5
� �

+ 0:1521ð Þ pm6 �pm5
� ��150¼ Vb5

αcΔt
ϕ

B

� �n+ 1

5

� ϕ

B

� �n

5

" #

(5.27)
5.4 Treatment of boundary conditions

A reservoir boundary can be subject to one of four conditions: (1) no-flow

boundary, (2) constant flow boundary, (3) constant pressure gradient boundary,

and (4) constant pressure boundary. They have been discussed in Chapter 4.

Block-centered grid and point-distributed grid are the most widely used grids

to describe a petroleum reservoir as units in reservoir simulation. In the
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point-distributed grid, the boundary grid point falls on the boundary, whereas

the point that represents the boundary grid block is half a block away from

the boundary. As a result, the point-distributed grid gives an accurate represen-

tation of constant pressure boundary condition. In the block-centered grid, the

approximation of a constant pressure boundary is implemented by assuming the

boundary pressure being displaced half a block coincides with the point that rep-

resents the boundary grid block and by assigning boundary pressure to boundary

grid block pressure. This is a first-order approximation. A second-order approx-

imation was suggested, but it has not been used because it requires the addition

of an extra equation for each reservoir boundary of a boundary grid block. Fur-

thermore, the extra equations do not have the form of a flow equation. Abou-

Kassem and Osman (2008) presented the engineering approach for the represen-

tation of a constant pressure boundary condition in a block-centered grid. The

new approach involves adding a fictitious well term per boundary to the flow

equation of a boundary grid block. This treatment is valid in both rectangular

and radial-cylindrical grids. The flow toward a fictitious well is linear in rect-

angular coordinates and radial in radial-cylindrical coordinates. The flow rate

equations for fictitious wells were derived from the interblock flow rate term

between a boundary grid block and the grid block that falls immediately outside

reservoir boundary. With the new treatment, both block-centered grid and

point-distributed grid produce pressure profiles with comparable accuracy. In

other words, the use of the point-distributed grid does not offer any advantage

over the block-centered grid in rectangular and radial-cylindrical coordinates

for the case of constant pressure boundaries.

The general form for the flow rate of the fictitious wells presented by

Eqs. (5.7), (5.10), (5.15), (5.17), (5.21), and (5.22) can be expressed as

qmscb,bP ¼ 1
�
2 Tm

b,bP** Φm
bP** �Φm

bP

	 

�Tm

b,bP* Φm
bP* �Φm

bP

	 
h i
(5.28a)

where, as shown in Fig. 5.7, qm
scb,bP

¼ flow rate of a fictitious well representing
flow across reservoir boundary (b) into the actual block represented by bound-

ary gridpoint bP, Tb,bP∗∗¼ transmissibility between reservoir boundary b (or

boundary gridpoint bP) and the gridpoint that is exterior to the reservoir

and located immediately next to the reservoir boundary (gridpoint bP∗∗), and

Tb,bP∗¼ transmissibility between reservoir boundary b (or boundary gridpoint

bP) and the gridpoint that is in the reservoir and located immediately next to

the reservoir boundary (gridpoint bP∗). Since there is no geologic control for

areas outside the reservoir (e.g., aquifers), it is not uncommon to assign reser-

voir rock properties to those areas in the neighborhood of the reservoir under

consideration. Similar to Chapter 4, we use the reflection technique about

the reservoir boundary, shown in Fig. 5.7, with regard to transmissibility only

(i.e., Tm
b,bP∗∗¼Tmb,bP∗):

Tm
b,bP∗∗ ¼ βc

klAl

μBΔl

� �m
bP,bP∗∗

¼ βc
klAl

μBΔl

� �m
bP,bP∗

¼ Tm
b,bP∗ (5.29a)
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FIG. 5.7 Definition of the terminology used in Eq. (5.28).
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where l is the direction normal to reservoir boundary (b). Substituting
Eq. (5.29a) into Eq. (5.28a) results in

qmscb,bP ¼ 1
�
2T

m
b,bP∗ Φm

bP∗∗ �Φm
bP∗

	 

(5.28b)

In the following sections, we derive expressions for qm
scb,bP

under various
boundary conditions for a point-distributed grid in Cartesian coordinates and

stress that this rate must produce the same effects as the specified boundary con-

dition. In Cartesian coordinates, real wells have radial flow, and fictitious wells

have linear flow, whereas in radial-cylindrical coordinates in single-well sim-

ulation, both real wells and fictitious wells have radial flow. Therefore, in

single-well simulation, (1) the equations for the flow rate of real wells presented

in Sections 6.2.2 and 6.3.2 can be used to estimate the flow rate of fictitious

wells representing boundary conditions in the radial direction only, (2) the flow

rate equations of fictitious wells in the z-direction are similar to those presented

next in this section because flow in the vertical direction is linear, and (3) there

are no reservoir boundaries and hence fictitious wells in the θ-direction. The
flow rate of a fictitious well is positive for fluid gain (injection) or negative

for fluid loss (production) across a reservoir boundary.

5.4.1 Specified pressure gradient boundary condition

For the reservoir left (lower, south, or west) boundary, like boundary gridpoint 1

shown in Fig. 5.8, Eq. (5.28b) becomes

qmscbW ,1
¼ 1

�
2 Tm

x1 + 1=2
Φm

0 �Φm
2

� �h i
¼ 1

�
2 βc

kxAx

μBΔx

� �m

1 + 1=2

Φm
0 �Φm

2

� �" #

¼ βc
kxAx

μB

� �m
1 + 1=2

Φm
0 �Φm

2

� �
2Δx1 + 1=2

¼� βc
kxAx

μB

� �m
1 + 1=2

∂Φ
∂x






m

bW

¼� βc
kxAx

μB

� �m
1,2

∂Φ
∂x






m

bW

(5.30)

Note that to arrive at the aforementioned equation, the first-order derivative
of potential was approximated by its central difference; that is,

�∂Φ
∂x



m
bW

ffi Φm
0 �Φm

2ð Þ
2Δx1 + 1=2

(see Fig. 5.6). Substituting Eq. (2.10), which relates potential

gradient to pressure gradient, into Eq. (5.30) gives:



1 2 3 nxnx–1

Right boundaryLeft boundary

dp
dx bE

dp
dx bW

FIG. 5.8 Specified pressure gradient condition at reservoir boundaries in a point-distributed grid.
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qmscbW ,1
¼� βc

kxAx

μB

� �m
1,2

∂Φ
∂x






m

bW

¼� βc
kxAx

μB

� �m
1,2

∂p

∂x






m

bW

� γm1,2
∂Z

∂x






bW

" #
(5.31)

Similar steps can be carried out for the reservoir right (east, north, or upper)
boundary. For example, Eq. (5.28b) for boundary gridpoint nx on the reservoir

east boundary becomes

qmscbE,nx
¼ βc

kxAx

μB

� �m
nx,nx�1

∂Φ
∂x






m

bE

¼ βc
kxAx

μB

� �m
nx,nx�1

∂p

∂x






m

bE

� γmnx,nx�1

∂Z

∂x






bE

" #

(5.32)

In general, for a specified pressure gradient at the reservoir left (lower,
south, or west) boundary,

qmscb,bP ¼� βc
klAl

μB

� �m
bP,bP∗

∂p

∂l






m

b

� γmbP,bP∗

∂Z

∂l






b

� �
(5.33a)

and at the reservoir right (east, north, or upper) boundary,
qmscb,bP ¼ βc
klAl

μB

� �m
bP,bP∗

∂p

∂l






m

b

� γmbP,bP∗

∂Z

∂l






b

� �
(5.33b)

where l is the direction normal to the reservoir boundary.
5.4.2 Specified flow rate boundary condition

This condition arises when the reservoir near the boundary has higher or lower

potential than that of a neighboring reservoir or aquifer. In this case, fluids move

across the reservoir boundary. Methods such as water influx calculations and

classical material balance in reservoir engineering can be used to estimate fluid

flow rate, which we term here as specified flow rate (qspsc). Therefore, for
boundary gridpoint 1,

qmscbW ,1
¼ qspsc (5.34)

and for boundary gridpoint nx,
qmscbE,nx
¼ qspsc (5.35)

In general, for a specified flow rate boundary condition, Eq. (5.28b) becomes
qscb,bP ¼ qspsc (5.36)
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In multidimensional flow with qspsc specified for the whole reservoir bound-

ary, qm

scb,bP for each boundary gridpoint that falls on that boundary is obtained by

prorating qspsc among all boundary gridpoints that fall on that boundary; that is,

qmscb,bP ¼
Tm
bP,bP∗X

l2ψb

Tm
l, l∗

qspsc (5.37)

where ψb¼ the set that contains all boundary gridpoints that fall on the reservoir
boundary in question and Tm
l, l∗ ¼ transmissibility between boundary gridpoint l

(or reservoir boundary b) and gridpoint l∗, which falls inside the reservoir and is
located immediately next to the reservoir boundary in a direction normal to it

(see Fig. 5.7). Tm
bP,bP∗ is defined as given in Eq. (5.29a):

Tm
bP,bP∗ ¼ βc

klAl

μBΔl

� �m
bP,bP∗

(5.29b)

Subscript l in Eq. (4.29b) is replaced with x, y, or z depending on the bound-

ary face of boundary block. It should be mentioned that Eq. (5.37) incorporates

the assumption that the potential drops across the boundary for all gridpoints

falling on the reservoir boundary are equal.
5.4.3 No-flow boundary condition

The no-flow boundary condition results from vanishing permeability at a

reservoir boundary (e.g., Tm
x1/2

¼0 for the left boundary of gridpoint 1, and

Tmxnx+1/2¼0 for the right boundary of gridpoint nx) or because of symmetry

about the reservoir boundary in Fig. 5.6 (Φ0
m¼Φ2

m for gridpoint 1 and

Φm
nx�1¼Φm

nx+1 for gridpoint nx). In either case, Eq. (5.28b) for boundary

gridpoint 1 reduces to

qmscbW ,1
¼ 1

�
2T

m
x1=2

Φm
0 �Φm

2

� �¼ 1
�
2 0ð Þ Φm

0 �Φm
2

� �¼ 1
�
2T

m
x1=2

0ð Þ¼ 0 (5.38)

and for boundary gridpoint nx, it reduces to
qmscbE,nx
¼ 1

�
2T

m
xnx + 1=2

Φm
nx + 1

�Φm
nx�1

	 

¼ 1

�
2 0ð Þ Φm

nx + 1
�Φm

nx�1

	 

¼ 1

�
2T

m
xnx + 1=2

0ð Þ¼ 0 (5.39)

In general, for a reservoir no-flow boundary, Eq. (5.28b) becomes
qmscb,bP ¼ 0 (5.40)

For multidimensional flow, qm
scb,bP for each boundary gridpoint that falls on a
no-flow boundary in the x-, y-, or z-direction is set to zero as Eq. (5.40) implies.
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FIG. 5.9 Specified pressure condition at reservoir boundaries for a point-distributed grid.
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5.4.4 Specified boundary pressure condition

The specified boundary pressure condition arises when the reservoir is in com-

munication with a strong water aquifer or when wells on the other side of the

reservoir boundary operate to maintain voidage replacement and as a result keep

the reservoir boundary pressure (pb) constant. Fig. 5.9 shows this boundary con-
dition at the reservoir left and right boundaries.

For a point-distributed grid, boundary gridpoint 1 falls on the reservoir left

boundary (bW); therefore, p1¼pbW, and pnx¼pbE for gridpoint nx, which falls on
the reservoir right boundary. The specified boundary pressure is used in the flow

equation for gridpoint bP∗ (e.g., gridpoint 2 and gridpoint nx�1 in Fig. 5.9).

The flow equation for gridpoint 2 can be written as

Tm
x1 + 1=2

pbW �pm2
� �� γm

1 + 1=2 Z1�Z2ð Þ
h i

+ Tm
x2 + 1=2

pm3 �pm2
� �� γm

2 + 1=2 Z3�Z2ð Þ
h i

+qmsc2 ¼
Vb2

αcΔt
ϕ

B

� �n+ 1

2

� ϕ

B

� �n

2

" #

(5.41a)

Similarly, the flow equation for gridpoint nx�1 can be written as
Tmxnx�3=2
pmnx�2�pmnx�1

	 

� γm

nx�3=2
Znx�2�Znx�1

� �h i

+Tmxnx�1=2
pbE �pmnx�1

	 

� γm

nx�1=2
Znx �Znx�1

� �h i
+ qmscnx�1

¼Vbnx�1

αcΔt
ϕ

B

� �n+ 1

nx�1
� ϕ

B

� �n

nx�1

" #

(5.42a)

The condition that is responsible for maintaining the pressure of boundary
gridpoint 1 constant at pbW can be obtained from Eq. (5.7):

qmscbW ,1
¼ 1

�
2 Tm

x1�1=2
Φm

0 �Φm
1

� ��Tm
x1 + 1=2

Φm
2 �Φm

1

� �h i
(5.7)

To keep the pressure at the reservoir west boundary constant, the rate of fluid
entering the boundary, Tm
x1�1/2

(Φ0
m�Φ1

m), must equal the rate of fluid leaving the

boundary, Tm
x1+1/2(Φ1

m�Φ2
m); that is,

Tm
x1�1=2

Φm
0 �Φm

1

� �¼ Tm
x1 + 1=2

Φm
1 �Φm

2

� �
(5.43)

Substituting Eq. (5.43) into Eq. (5.7) gives
qmscbW ,1
¼ 1

�
2 �Tm

x1 + 1=2
Φm

2 �Φm
1

� ��Tm
x1 + 1=2

Φm
2 �Φm

1

� �h i
¼�Tm

x1 + 1=2
Φm

2 �Φm
1

� �
¼ Tm

x1 + 1=2
Φm

1 �Φm
2

� �
(5.44a)
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or
qmscbW ,1
¼ Tm

x1 + 1=2
pm1 �pm2
� �� γm1 + 1=2 Z1�Z2ð Þ
h i

(5.44b)

with p1¼pbW.

Note that Eq. (5.44b) can be derived from Eq. (5.2a) for n¼1, ψ1¼{2}, and

ξ1¼{bW} and by observing that
X
l2ξ1

qmscl,1 ¼ qmscbW ,1
, T2,1

m ¼Tmx1+1/2, and the RHS of

Eq. (5.2a) vanishes because p1¼pbW at all times.

Similarly, for boundary gridpoint nx,

qmscbE,nx
¼ Tm

xnx�1=2
Φm

nx
�Φm

nx�1

	 

(5.45a)

or
qmscbE,nx
¼ Tm

xnx�1=2
pmnx �pmnx�1

	 

� γmnx�1=2 Znx �Znx�1ð Þ

h i
(5.45b)

with pnx¼pbE.

The general equation becomes

qmscb,bP ¼ Tm
b,bP∗ Φm

bP�Φm
bP∗

� �
(5.46a)

or
qmscb,bP ¼ Tm
b,bP∗ pmbP�pmbP∗

� �� γmb,bP∗ ZbP�ZbP∗ð Þ� �
(5.46b)

where
Tm
bP,bP∗ ¼ βc

klAl

μBΔl

� �m
bP,bP∗

(5.29b)

γb,bP∗ ¼ fluid gravity between boundary gridpoint bP and gridpoint bP∗, and
pbP¼pb.
Combining Eqs. (5.46b) and (5.29b) gives

qmscb,bP ¼ βc
klAl

μBΔl

� �m
bP,bP∗

pmbP�pmbP∗

� �� γmb,bP∗ ZbP�ZbP∗ð Þ� �
(5.46c)

In multidimensional flow, qscb,bP for a boundary gridpoint that falls on a spec-

ified pressure boundary in the x-, y-, or z-direction is estimated using Eq. (5.46c)

with the corresponding x, y, or z replacing l.

5.4.5 Specified boundary gridpoint pressure

The specification of pressure at a reservoir boundary in a point-distributed grid

results in the specification of the pressure of the boundary gridpoints that fall

on that boundary as discussed in Section 5.4.4. This results in p1ffipbW for grid-
point 1 and pnxffipbE for gridpoint nx for the reservoir presented in Fig. 5.9. One
way to implement this boundary condition is to write the flow equation for
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gridpoint bP∗ (i.e., gridpoint 2 and gridpoint nx�1 in Fig. 5.9) and substitute for

the pressure of boundary gridpoint bP (i.e., p1ffipbW and pnxffipbE) as has been
mentioned in Section 5.4.4. The resulting flow equation is given for gridpoint 2

as

Tm
x1 + 1=2

pbW �pm2
� �� γm

1 + 1=2 Z1�Z2ð Þ
h i

+ Tm
x2 + 1=2

pm3 �pm2
� �� γm

2 + 1=2 Z3�Z2ð Þ
h i

+qmsc2 ¼
Vb2

αcΔt
ϕ

B

� �n+ 1

2

� ϕ

B

� �n

2

" #

(5.41a)

and that for gridpoint nx�1 as
#
Tmxnx�3=2
pmnx�2�pmnx�1

	 

� γm

nx�3=2
Znx�2�Znx�1

� �h i

+Tmxnx�1=2
pbE �pmnx�1

	 

� γm

nx�1=2
Znx �Znx�1

� �h i
+ qmscnx�1

¼Vbnx�1

αcΔt
ϕ

B

� �n+ 1

nx�1

� ϕ

B

� �n

nx�1

"

(5.42a)

Another way to implement this boundary condition is to assume that the
block boundary between gridpoints bP∗ and bP is a reservoir boundary with

gridpoint bP falling outside the new reservoir description. Therefore,

Eq. (5.41a) for gridpoint 2 becomes

Tm
x2 + 1=2

pm3 �pm2
� �� γm2 + 1=2 Z3�Z2ð Þ
h i

+ qmscbW ,2
+ qmsc2 ¼

Vb2

αcΔt
ϕ

B

� �n+ 1

2

� ϕ

B

� �n

2

" #

(5.41b)

where qm
scbW,2

¼qmscbW ,1
¼Tmx1+1/2[(pbW�p2

m)� γ1+1/2
m (Z1�Z2)], and Eq. (5.42a) for
gridpoint nx�1 becomes

Tm
xnx�3=2

pmnx�2�pmnx�1

	 

� γmnx�3=2 Znx�2�Znx�1ð Þ

h i

+qmscbE,nx�1
+ qmscnx�1

¼Vbnx�1

αcΔt
ϕ

B

� �n+ 1

nx�1

� ϕ

B

� �n

nx�1

" #
(5.42b)

where qmscbE,nx�1
¼qm

scbE,nx
¼Tm

xnx�1/2
[(pbW�pmnx�1)� γ mnx�1/2(Znx�Znx�1)].
The following examples demonstrate the use of the general equation,

Eq. (5.2a), and the appropriate expressions for qmscb,bP to write the flow equations

for boundary gridpoints in 1-D and 2-D reservoirs that are subject to various

boundary conditions.

Example 5.3 For the 1-D reservoir described in Example 5.1, the reservoir left

boundary is kept at a constant pressure of 5000psia, and the reservoir right

boundary is a no-flow (sealed) boundary as shown in Fig. 5.10. Write the flow

equations for boundary gridpoints 1 and 6.
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FIG. 5.10 Discretized 1-D reservoir in Example 5.3.
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Solution

The flow equation for gridpoint n in a 1-D horizontal reservoir that is

obtained from Eq. (5.2a) by discarding the gravity term yields:

X
l2ψn

Tm
l,n pml �pmn
� �

+
X
l2ξn

qmscl,n + q
m
scn

¼ Vbn

αcΔt
ϕ

B

� �n + 1

n

� ϕ

B

� �n

n

" #
(5.23)

For boundary gridpoint 1, n¼1, and p1¼pbW¼5000 psia because this grid-
point falls on the reservoir left boundary. Therefore, there is no need to write the

flow equation for gridpoint 1. However, for the sake of generalization, let us

proceed and write the flow equation. For n¼1, ψ1¼{2}, ξ1¼{bW},X
l2ξ1

qmscl,1 ¼ qmscbW ,1
, and qmsc1¼0. In addition, T1,2

m ¼0.1521 STB/D-psi from

Example 5.2. Therefore, substitution into Eq. (5.23) yields

0:1521ð Þ pm2 �pm1
� �

+ qmscbW ,1
¼ Vb1

αcΔt
ϕ

B

� �n+ 1

1

� ϕ

B

� �n

1

" #
(5.47)

Furthermore, the RHS of Eq. (5.47) vanishes, resulting in
Vb1

αcΔt
ϕ

B

� �n+ 1

1

� ϕ

B

� �n

1

" #
¼ 0 (5.48)

because p1
n+1¼p1

n¼pbW¼5000 psia.
Combining Eqs. (5.47) and (5.48) and solving for qmscbW,1
yields

qmscbW ,1
¼ 0:1521ð Þ 5000�pm2

� �
(5.49)

Note that Eq. (5.46c) also gives an estimate for qmscbW,1
:

qmscbW ,1
¼ βc

kxAx

μBΔx

� �m
1,2

pm1 �pm2
� �¼ 0:001127� 15� 1200�75ð Þ

10�1� 1000=2ð Þ 5000�pm2
� �

¼ 0:1521ð Þ 5000�pm2
� �

(5.50)

Eqs. (5.49) and (5.50) give identical estimates for the flow rate of a fictitious
well resulting from constant pressure boundary specification. Therefore,

Eq. (5.46c) produces a result consistent with that obtained using the general

flow equation for a boundary gridpoint.
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FIG. 5.11 Discretized 1-D reservoir in Example 5.4.
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For boundary gridpoint 6, n¼6, ψ6¼{5}, ξ6¼{bE},
X
l2ξ6

qmscl,6 ¼ qmscbE,6
, and

qmsc6¼0. In addition, T5,6
m ¼0.1521 STB/D-psi from Example 5.2. Therefore,

substitution into Eq. (5.23) yields

0:1521ð Þ pm5 �pm6
� �

+ qmscbE,6
¼ Vb6

αcΔt
ϕ

B

� �n+ 1

6

� ϕ

B

� �n

6

" #
(5.51)

where the flow rate of a fictitious well for a no-flow boundary is given by
Eq. (5.40). For the reservoir east boundary, reservoir boundary b�bE, gridpoint
bP�6, and qmscbE,6

¼0.

Substitution into Eq. (5.51) results in the flow equation for boundary grid-

point 6,

0:1521ð Þ pm5 �pm6
� �

+ 0¼ Vb6

αcΔt
ϕ

B

� �n+ 1

6

� ϕ

B

� �n

6

" #
(5.52)
Example 5.4 For the 1-D reservoir described in Example 5.1, the reservoir left

boundary is kept at a constant pressure gradient of �0.1psi/ft, and the reservoir

right boundary is supplied with fluid at a rate of 50STB/D as shown in Fig. 5.11.

Write the flow equations for boundary gridpoints 1 and 6.

Solution

The flow equation for gridpoint n in a 1-D horizontal reservoir is obtained

from Eq. (5.2a) by discarding the gravity term, yielding

X
l2ψn

Tm
l,n pml �pmn
� �

+
X
l2ξn

qmscl,n + q
m
scn

¼ Vbn

αcΔt
ϕ

B

� �n+ 1

n

� ϕ

B

� �n

n

" #
(5.23)

X

For boundary gridpoint 1, n¼1, ψ1¼{2}, ξ1¼{bW},

l2ξ1
qmscl,1 ¼ qmscbW ,1

, and

qmsc1¼0. In addition, T1,2
m ¼0.1521 STB/D-psi from Example 5.2. Therefore,

substitution into Eq. (5.23) yields

0:1521ð Þ pm2 �pm1
� �

+ qmscbW ,1
¼ Vb1

αcΔt
ϕ

B

� �n+ 1

1

� ϕ

B

� �n

1

" #
(5.53)
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where the flow rate of a fictitious well for specified pressure gradient at the res-
ervoir left boundary is estimated using Eq. (5.33a):

qmscbW ,1
¼� βc

kxAx

μB

� �m
1,2

∂p

∂x






m

bW

� γm1,2
∂Z

∂x






bW

" #

¼� 0:001127�15� 1200�75ð Þ
10�1

� �
�0:1�0½ � ¼�152:15� �0:1ð Þ¼ 15:215

(5.54)

Substitution into Eq. (5.53) results in the flow equation for boundary grid-
point 1:

0:1521ð Þ pm2 �pm1
� �

+ 15:215¼ Vb1

αcΔt
ϕ

B

� �n+ 1

1

� ϕ

B

� �n

1

" #
(5.55)

For boundary gridpoint 6, n¼6, ψ6¼{5}, ξ6¼{bE},
X

qmscl,6 ¼ qmscbE,6
, and
l2ξ6
qmsc6¼0. In addition, T5,6

m ¼0.1521 STB/D-psi from Example 5.2. Therefore,

substitution into Eq. (5.23) yields

0:1521ð Þ pm5 �pm6
� �

+ qmscbE,6
¼ Vb6

αcΔt
ϕ

B

� �n+ 1

6

� ϕ

B

� �n

6

" #
(5.56)

where the flow rate of fictitious well for a specified rate boundary is estimated
using Eq. (5.36); that is, qmscbE,6
¼50 STB/D.

Substitution into Eq. (5.56) results in the flow equation for boundary grid-

point 6:

0:1521ð Þ pm5 �pm6
� �

+ 50¼ Vb6

αcΔt
ϕ

B

� �n+ 1

6

� ϕ

B

� �n

6

" #
(5.57)
Example 5.5 Consider single-phase fluid flow in the 2-D horizontal reservoir

shown in Fig. 5.12.
dp  
dx bE

2 3 4 5

7 8 9
10

12 13 14
15

300 ft

250 ft

x

y

pbS
 = 3000 psia

17 18 19 20
No-flow boundary

No-flow boundary

= 0.1 psi/ft

4000 STB/D

1

6

11

16

300 ft

250 ftqscbN

 = –500 STB/D

FIG. 5.12 Discretized 2-D reservoir in Examples 5.5 and 5.6.
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A well located in gridpoint 9 produces at a rate of 4000STB/D. All grid-

points have Δxi�1/2¼250 ft, Δyj�1/2¼300 ft, h¼100 ft, kx¼270 md, and

ky¼220 md. The FVF and viscosity of the flowing fluid are 1.0RB/STB and

2cP, respectively. The reservoir south boundary is maintained at 3000psia,

the reservoir west boundary is sealed off to flow, the reservoir east boundary

is kept at constant pressure gradient of 0.1psi/ft, and the reservoir loses fluid

across its north boundary at a rate of 500STB/D. Write the flow equations

for gridpoints 2, 6, 10, and 18 that fall on one reservoir boundary.

Solution

The general flow equation for gridpoint n, in a 2-D horizontal reservoir that

is obtained from Eq. (5.2a) by discarding the gravity term yields:

X
l2ψn

Tm
l,n pml �pmn
� �

+
X
l2ξn

qmscl,n + q
m
scn

¼ Vbn

αcΔt
ϕ

B

� �n+ 1

n

� ϕ

B

� �n

n

" #
(5.23)

Before writing any flow equation, we calculate the transmissibilities in
the x- and y-directions. The gridpoints in the x-direction are equally spaced

(Δxi�1/2,j¼Δx¼250 ft) and have the same cross-sectional area

(Ax¼Δy�h¼300�100 ft2) and permeability in the x-direction

(kx¼270 md), μ¼2 cP and B¼1 RB/STB. Therefore, Tm
x ¼ βc

kxAx

μBΔx¼
0:001127� 270� 300�100ð Þ

2�1�250
¼ 18:2574 STB/D-psi. The gridpoints in the y-direction

are also equally spaced (i.e., Δyi,j�1/2¼Δy¼300 ft) and have the same cross-

sectional area of Ay¼Δx�h¼250�100 ft2, permeability ky¼220 md, constant

viscosity of 2cP, and FVF of 1RB/STB. Therefore,

Tm
y ¼ βc

kyAy

μBΔy
¼ 0:001127�220� 250�100ð Þ

2�1�300
¼ 10:3308STB=D-psi

In addition,
Tm
6,7 ¼ Tm

7,8 ¼ Tm
8,9 ¼ Tm

9,10 ¼ Tm
11,12 ¼ Tm

12,13 ¼ Tm
13,14 ¼ Tm

14,15 ¼ Tm
x

¼ 18:2574STB=D-psi

because the gridpoints in the second and third rows have
Ax ¼Δy�h¼ 300�100ft2

However, Tm
1,2 ¼ Tm

2,3 ¼ Tm
3,4 ¼ Tm

4,5 ¼ Tm
16,17 ¼ Tm

17,18 ¼ Tm
18,19 ¼ Tm

19,20 ¼�

1

2T
m
x ¼ 9:1287 STB/D-psi because the gridpoints in the first and last

rows have Ax¼ (Δy/2)�h¼150�100ft2. Similarly,

T2,7
m ¼T7,12

m ¼T12,17
m ¼T3,8

m ¼T8,13
m ¼T13,18

m ¼T4,9
m ¼T9,14

m ¼Tm14,19¼Ty
m¼10.3308

STB/D-psi because the gridpoints in the second, third, and fourth

columns have
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Ay¼Δx�h¼250�100ft2, but

Tm
1,6¼ Tm

6,11 ¼ Tm11,16 ¼ Tm5,10 ¼ Tm
10,15 ¼Tm

15,20 ¼ 1
�
2T

m
y ¼ 5:1654STB=D-psi

because the gridpoints in the first and last columns have

Ay ¼ Δx=2ð Þ�h¼ 125�100ft2

For boundary gridpoint 2, n¼2, ψ2¼{1,3,7}, ξ2¼{bS}, and qmsc2¼0.X

l2ξ2

qmscl,2 ¼ qmscbS,2
, where qmscbS,2 is obtained using Eq. (5.46c) by discarding

the gravity term, resulting in

qmscbS,2
¼ βc

kyAy

μBΔy

� �m
2,7

pbS �pm7
� �¼ 0:001127�220� 250�100ð Þ

2�1� 300ð Þ
� �

3000�pm7
� �

¼ 10:3308ð Þ 3000�pm7
� �

(5.58)

In addition, Tm
1,2 ¼ Tm

2,3 ¼ 1⁄2Tm
x ¼ 9:1287 STB/D-psi, T2,7

m ¼Ty
m¼
10.3308 STB/D-psi, and Vb2¼250� (300/2)�100 ft3. Substitution into

Eq. (5.23) results in the flow equation for boundary gridpoint 2:

9:1287ð Þ pm1 �pm2
� �

+ 9:1287ð Þ pm3 �pm2
� �

+ 10:3308ð Þ pm7 �pm2
� �

+ 10:3308ð Þ 3000�pm7
� �

+ 0¼ Vb2

αcΔt
ϕ

B

� �n+ 1

2

� ϕ

B

� �n

2

" #
(5.59)

The aforementioned equation reduces to identity equation
because p1
m¼p2

m¼p3
m¼3000 psia, and the RHS vanishes because

p2
n¼p2

n+1¼pbS¼3000 psia. In other words, Eq. (5.59) does not introduce new

information, but it confirms that Eq. (5.46c) produces the correct fluid flow rate

estimate across the constant pressure south boundary of gridpoint 2.

For boundary gridpoint 6, n¼6, ψ6¼{1,7,11}, ξ6¼{bW}, and qmsc6¼0.X
l2ξ6

qmscl,6 ¼ qmscbW ,6
, where qmscbW ,6

is obtained using Eq. (5.40) for the no-flow

boundary; that is, qmscbW ,6
¼0. In addition, T7,6

m ¼Tx
m¼18.2574 STB/D-psi,

Tm
1,6 ¼ Tm

11,6 ¼ 1
�
2T

m
y ¼ 5:1654 STB/D-psi, and Vb6

¼ (250/2)�300�100 ft3.

Substitution into Eq. (5.23) results in the flow equation for boundary

gridpoint 6:

5:1654ð Þ pm1 �pm6
� �

+ 18:2574ð Þ pm7 �pm6
� �

+ 5:1654ð Þ pm11�pm6
� �

+0 + 0¼ Vb6

αcΔt
ϕ

B

� �n+ 1

6

� ϕ

B

� �n

6

" #
(5.60)

For boundary gridpoint 10, n¼10, ψ10¼{5,9,15}, ξ10¼{bE}, and q
m
sc10¼0.X
l2ξ10
qmscl,10 ¼ qmscbE,10

, where qmscbE,10
is estimated using Eq. (5.33b) for the reservoir

east boundary:
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qmscbE,10
¼ βc

kxAx

μB

� �m
10,9

∂p

∂x






m

bE

� γm10,9
∂Z

∂x






bE

" #

¼ 0:001127�270� 300�100ð Þ
2�1

� �
0:1�0½ � ¼ 4564:35� 0:1ð Þ

¼ 456:435STB=D (5.61)

In addition, T9,10
m ¼Tx

m¼18.2574 STB/D-psi, Tm
5,10 ¼ Tm

10,15 ¼�

1

2T
m
y ¼ 5:1654 STB/D-psi, and Vb10¼ (250/2)�300�100 ft3. Substitution

into Eq. (5.23) results in the flow equation for boundary gridpoint 10,

5:1654ð Þ pm5 �pm10
� �

+ 18:2574ð Þ pm9 �pm10
� �

+ 5:1654ð Þ pm15�pm10
� �

+456:435 + 0¼ Vb10

αcΔt
ϕ

B

� �n+ 1

10

� ϕ

B

� �n

10

" #
(5.62)

For boundary gridpoint 18, n¼18, ψ18¼{13,17,19}, ξ18¼{bN}, andX

qmsc18¼0.

l2ξ18
qmscl,18 ¼ qmscbN ,18

, where qmscbN ,18
is estimated using Eq. (5.37) because

qspsc¼ �500 STB/D is specified for the whole reservoir north boundary. This

rate has to be prorated among all gridpoints falling on that boundary. Therefore,

using Eq. (5.37),

qmscbN ,18
¼ Tm

18,13X
l2ψbN

Tm
l, l∗

qspsc (5.63)

where ψbN¼{16,17,18,19,20}. Note that, using Eq. (5.29b),
Tm
18,13 ¼ βc

kyAy

μBΔy

� �m
18,13

¼ 0:001127�220� 250�100ð Þ
2�1�300

� �

¼ 10:3308STB=D-psi (5.64)

Also, T17,12
m ¼T18,13

m ¼T19,14
m ¼10.3308 STB/D-psi, and T16,11

m ¼T20,15
m ¼5.1654
STB/D-psi. Substitution into Eq. (5.37) yields.

qmscbN ,18
¼ 10:3308

5:1654 + 3�10:3308 + 5:1654
� �500ð Þ¼�125STB=D-psi (5.65)

In addition, Tm
17,18 ¼ Tm

19,18 ¼ 1
�
2T

m
x ¼ 9:1287 STB/D-psi, T13,18

m ¼Ty
m¼
10.3308, and Vb18¼250� (300/2)�100 ft3. Substitution into Eq. (5.23) results

in the flow equation for boundary gridpoint 18:

10:3308ð Þ pm13�pm18
� �

+ 9:1287ð Þ pm17�pm18
� �

+ 9:1287ð Þ pm19�pm18
� �

�125 + 0¼ Vb18

αcΔt
ϕ

B

� �n+ 1

18

� ϕ

B

� �n

18

" #
(5.66)



Simulation with a point-distributed grid Chapter 5 151
Example 5.6 Consider single-phase fluid flow in the 2-D horizontal reservoir

described in Example 5.5. Write the flow equations for gridpoints 1, 5, 16, and

20, which fall on two reservoir boundaries.

Solution

The general flow equation for gridpoint n in a 2-D horizontal reservoir that is

obtained from Eq. (5.2a) by discarding the gravity term yields:

X
l2ψn

Tm
l,n pml �pmn
� �

+
X
l2ξn

qmscl,n + q
m
scn

¼ Vbn

αcΔt
ϕ

B

� �n + 1

n

� ϕ

B

� �n

n

" #
(5.23)

The data necessary to write flow equations for any boundary gridpoint were
calculated in Example 5.5. The following is a summary:

Tm
x ¼ 18:2574STB=D-psi

Tm
y ¼ 10:3308STB=D-psi

Tm
6,7 ¼ Tm

7,8 ¼ Tm
8,9 ¼ Tm

9,10 ¼ Tm
11,12 ¼ Tm

12,13 ¼ Tm
13,14 ¼ Tm

14,15 ¼ Tm
x

¼ 18:2574STB=D-psi

Tm
1,2 ¼ Tm

2,3 ¼ Tm
3,4 ¼ Tm

4,5 ¼ Tm
16,17 ¼ Tm

17,18 ¼ Tm
18,19 ¼ Tm

19,20 ¼ 1
�
2T

m
x

¼ 9:1287STB=D-psi

Tm
2,7 ¼ Tm

7,12 ¼ Tm
12,17 ¼ Tm

3,8 ¼ Tm
8,13 ¼ Tm

13,18 ¼ Tm
4,9 ¼ Tm

9,14 ¼ Tm
14,19 ¼ Tm

y

¼ 10:3308STB=D-psi

Tm
1,6 ¼ Tm

6,11 ¼ Tm
11,16 ¼ Tm

5,10 ¼ Tm
10,15 ¼ Tm

15,20 ¼ 1
�
2T

m
y ¼ 5:1654STB=D-psi

qmscbS,bP
¼ (10.3308)(3000�pmbP∗) STB/D for bP¼2, 3, 4, where 2∗¼7,
3∗¼8, and 4∗¼9; or more explicitly,

qmscbS,2
¼ 10:3308ð Þ 3000�pm7

� �

qmscbS,3
¼ 10:3308ð Þ 3000�pm8

� �

qmscbS,4
¼ 10:3308ð Þ 3000�pm9

� �
qmscbW ,bP

¼ 0STB=D for bP¼ 6,11

qmscbE,bP
¼ 456:435STB=D for bP¼ 10,15

and
qmscbE,bP
¼�125STB=D for bP¼ 17,18,19

For corner gridpoints, the areas open to flow in the x- and y-directions are

half the size of those of the other gridpoints that fall on the same reservoir

boundary; thus,
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qmscbS,bP
¼ (5.1654)(3000�pbP

m
∗) STB/D for bP¼1, 5, where 1∗¼6 and

5∗¼10 or more explicitly,

qmscbS,1
¼ 5:1654ð Þ 3000�pm6

� �
and
qmscbS,5
¼ 5:1654ð Þ 3000�pm10

� �
qmscbW ,bP

¼ 0STB=D for bP¼ 1,16

qmscbE,5
¼ 0STB=D

qmscbE,20
¼ 228:2175STB=D

and
qmscbN ,bP
¼�62:5STB=D for bP¼ 16,20

For boundary gridpoint 1, n¼1, ψ1¼{2,6}, ξ1¼{bS,bW}, q
m
sc1¼0, andX � �
l2ξ1
qmscl,1 ¼ qmscbS,1

+ qmscbW ,1
¼ 5:1654ð Þ 3000�pm6 + 0 STB/D.

In addition, Tm
1,2 ¼ 1

�
2T

m
x ¼ 9:1287 STB/D-psi, Tm

1,6 ¼ 1
�
2T

m
y ¼

5:1654 STB/D-psi, and Vb1
¼ (250/2)� (300/2)�100 ft3. Substitution into

Eq. (5.23) results in the flow equation for boundary gridpoint 1:

9:1287ð Þ pm2 �pm1
� �

+ 5:1654ð Þ pm6 �pm1
� �

+ 5:1654ð Þ 3000�pm6
� �

+ 0 + 0

¼ Vb1

αcΔt
ϕ

B

� �n+ 1

1

� ϕ

B

� �n

1

" #

(5.67)

For boundary gridpoint 5, n¼5, ψ5¼{4,10}, ξ5¼{bS,bE}, q
m
sc5

¼0, andX � � � �

l2ξ5

qmscl,5 ¼ qmscbS ,5
+ qmscbE ,5

¼ 5:1654ð Þ 3000�pm10 + 0¼ 5:1654ð Þ 3000�pm10 STB=D

In addition, Tm
4,5 ¼ 1

�
2T

m
x ¼ 9:1287 STB/D-psi, Tm

10,5 ¼ 1
�
2T

m
y ¼ 5:1654 STB/

D-psi, and Vb5¼ (250/2)� (300/2)�100 ft3.

Substitution into Eq. (5.23) results in the flow equation for boundary grid-

point 5,

9:1287ð Þ pm4 �pm5
� �

+ 5:1654ð Þ pm10�pm5
� �

+ 5:1654ð Þ 3000�pm10
� �

+ 0

¼ Vb5

αcΔt
ϕ

B

� �n+ 1

5

� ϕ

B

� �n

5

" #
(5.68)

For boundary gridpoint 16, n¼16, ψ16¼{11,17}, ξ16¼{bW,bN}, q
m
sc16

¼0,X

and

l2ξ16
qmscl,16 ¼ qmscbW ,16

+ qmscbN ,16
¼ 0�62:5 STB/D.

In addition, Tm
17,16 ¼ 1

�
2T

m
x ¼ 9:1287 STB/D-psi, Tm

11,16 ¼ 1
�
2T

m
y ¼

5:1654 STB/D-psi, and Vb16¼ (250/2)� (300/2)�100 ft3.
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Substitution into Eq. (5.23) results in the flow equation for boundary grid-

point 16:

5:1654ð Þ pm11�pm16
� �

+ 9:1287ð Þ pm17�pm16
� �

+ 0�62:5 + 0

¼ Vb16

αcΔt
ϕ

B

� �n+ 1

16

� ϕ

B

� �n

16

" #
(5.69)

For boundary gridpoint 20, n¼20, ψ20¼{15,19}, ξ20¼{bE,bN}, q
m
sc20

¼0,X

and

l2ξ20
qmscl,20 ¼ qmscbE,20

+ qmscbN ,20
¼ 228:2175�62:5 STB/D.

In addition, Tm
19,20 ¼ 1

�
2T

m
x ¼ 9:1287 STB/D-psi, Tm

15,20 ¼ 1
�
2T

m
y ¼

5:1654 STB/D-psi, and Vb20
¼ (250/2)� (300/2)�100 ft3.

Substitution into Eq. (5.23) results in the flow equation for boundary grid-

point 20:

5:1654ð Þ pm15�pm20
� �

+ 9:1287ð Þ pm19�pm20
� �

+ 228:2175�62:5 + 0

¼ Vb20

αcΔt
ϕ

B

� �n+ 1

20

� ϕ

B

� �n

20

" #
(5.70)
5.5 Calculation of transmissibilities

The flow equations in Cartesian coordinates have transmissibilities in the x-, y-,
and z-directions that are defined by Eq. (2.39) in Chapter 2:

Txi�1=2, j,k ¼Gxi�1=2, j,k

1

μB

� �
xi�1=2, j,k

(5.71a)

Tyi, j�1=2,k ¼Gyi, j�1=2,k

1

μB

� �
yi, j�1=2,k

(5.71b)

and
Tzi, j,k�1=2
¼Gzi, j,k�1=2

1

μB

� �
zi, j,k�1=2

(5.71c)

where the geometric factors G for anisotropic porous media and irregular grid-
point distribution are given in Table 5.1 (Ertekin et al., 2001). The treatment of

the pressure-dependent term μB in Eq. (5.71) is discussed in detail under line-

arization in Chapter 8 (Section 8.4.1).The equations for geometric factors in

Table 5.1 can be derived using the procedure followed in Example 4.7. For

example, the derivation of Gxi+1/2
for 1-D flow in the x-direction is the same

as that presented in Example 4.7 except that δxi+ ¼ δxi + 1� ¼ 1
�
2Δxi+ 1=2 for a

point-distributed grid.

The flow equations in radial-cylindrical coordinates have transmissibility in

the r-, θ-, and z-directions that are defined by Eq. (2.69) in Chapter 2:



TABLE 5.1 Geometric factors in rectangular grids (Ertekin et al., 2001).

Direction Geometric factor

x
Gxi�1=2, j,k ¼

2βc

Δxi�1=2, j,k= Axi, j,k kxi, j,k

	 

+Δxi�1=2, j,k= Axi�1, j,k kxi�1, j,k

	 


y
Gyi, j�1=2,k ¼

2βc

Δyi, j�1=2,k= Ayi, j,k kyi, j,k

	 

+Δyi, j�1=2,k= Ayi, j�1,k kyi, j�1,k

	 


z
Gzi, j,k�1=2

¼ 2βc

Δzi, j,k�1=2= Azi, j,k kzi, j,k

	 

+Δzi, j,k�1=2= Azi, j,k�1

kzi, j,k�1
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Tri�1=2, j,k ¼Gri�1=2, j,k

1

μB

� �
ri�1=2, j,k

(5.72a)

Tθi, j�1=2,k ¼Gθi, j�1=2,k

1

μB

� �
θi, j�1=2,k

(5.72b)

and
Tzi, j,k�1=2
¼Gzi, j,k�1=2

1

μB

� �
zi, j,k�1=2

(5.72c)

where the geometric factors G for anisotropic porous media and irregular grid-
point distribution are given in Table 5.2 (Pedrosa Jr. and Aziz, 1986). Note that

for gridpoint (i, j,k), ri and ri�1/2 depend on the value of subscript i only,Δθj and
Δθj�1/2 depend on the value of subscript j only, and Δzk and Δzk�1/2 depend on

the value of subscript k only. The treatment of the pressure-dependent term μB
in Eq. (5.72) is discussed in detail under linearization in Chapter 8

(Section 8.4.1).

In Table 5.2, gridpoint spacing and block boundaries in the z-direction are

defined as in Eq. (5.1), with z replacing x. Those in the θ-direction are defined in
a similar way. Specifically,

θ1 ¼ 0,θnθ ¼ 2π, i:e:, θnθ �θ1 ¼ 2πð Þ
θj+ 1 ¼ θj +Δθj+ 1=2, j¼ 1,2,3…nθ�1

θj+ 1=2 ¼ θj +
1
�
2Δθj+ 1=2, j¼ 1,2,3…nθ�1

Δθj ¼ θj+ 1=2�θj�1=2, j¼ 1,2,3…nθ
θ1=2 ¼ θ1, and θnθ + 1=2 ¼ θnθ

(5.73)

In the r-direction, however, gridpoints are spaced such that pressure drops
between neighboring gridpoints are equal (see Example 4.8 and note that in this

case, there are nr�1 spacings separating the nr gridpoints). Additionally, block
boundaries for transmissibility calculations are spaced logarithmically in r to



TABLE 5.2 Geometric factors in cylindrical grids (Pedrosa Jr. and Aziz, 1986).

Direction Geometric factor

r
Gri�1=2, j,k ¼

βcΔθjΔzk
loge ri=rLi�1=2

	 

=kri, j,k + loge rLi�1=2=ri�1

	 

=kri�1, j,k

Gri +1=2, j,k ¼
βcΔθjΔzk

loge rLi +1=2=ri
	 


=kri, j,k + loge ri +1=rLi +1=2

	 

=kri +1, j,k

θ

Gθi, j�1=2,k ¼
2βc loge rLi +1=2=r

L
i�1=2

	 

Δzk

Δθj�1=2=kθi, j,k +Δθj�1=2=kθi, j�1,k

z

Gzi, j,k�1=2
¼

2βc
1⁄2Δθj
� �

r2i +1=2� r2i�1=2

	 

Δzk�1=2=kzi, j,k +Δzk�1=2=kzi, j,k�1
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warrant that the radial flow rates between neighboring gridpoints using the con-

tinuous and discretized forms of Darcy’s law are identical (see Example 4.9),

and block boundaries for bulk volume calculations are spaced logarithmically in

r2 to warrant that the actual and discretized bulk volumes of gridblocks are

equal. Therefore, the radii for the pressure points (ri�1), transmissibility calcu-

lations (ri�1/2
L ), and bulk volume calculations (ri�1/2) that appear in Table 5.2,

are as follows (Aziz and Settari, 1979; Ertekin et al., 2001):

ri+ 1 ¼ αlgri (5.74)

rLi+ 1=2 ¼
ri+ 1� ri

log e ri+ 1=rið Þ (5.75a)

rLi�1=2 ¼
ri� ri�1

log e ri=ri�1ð Þ (5.76a)

and
r2i+ 1=2 ¼
r2i + 1� r2i

log e r2i+ 1=r
2
i

� � (5.77a)

r2i�1=2 ¼
r2i � r2i�1

log e r2i =r
2
i�1

� � (5.78a)

where
αlg ¼ re
rw

� �1= nr�1ð Þ
(5.79)

and
r1 ¼ rw (5.80)
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Note that gridpoint 1 falls on the reservoir internal boundary (rw) and grid-
point nr falls on the reservoir external boundary (re); therefore, r1¼ rw
and rnr¼ re by definition for a point-distributed grid. Furthermore, r1�1/2¼ rw
and rnr+1/2¼ re define the internal boundary for gridpoint 1 and the external

boundary for gridpoint nr that are used to calculate block bulk volumes.

The bulk volume of gridpoint (i, j,k) is calculated from

Vbi, j,k ¼ r2i + 1=2� r2i�1=2

	 

1=2Δθj
� �

Δzk (5.81a)

Note that ri�1/2
2 ¼ rw

2 for i¼1 and ri+1/2
2 ¼ re

2 for i¼nr.

It should be mentioned that the geometric factors in the r-direction given in

Tables 4.2 and 5.2, Gri�1/2,j,k
, differ only in the handling of block thickness. The

block thickness in Table 5.2 is constant for all gridpoints in layer k, whereas in
Table 4.2, it may assume different values for the gridblocks in layer k. This
difference is a result of grid construction in block-centered and point-

distributed grids.

Eqs. (5.75) through (5.78) and Eq. (5.81a) can be expressed in terms of ri and
αlg (see Example 4.10), resulting in

rLi+ 1=2 ¼ αlg�1
� �

= log e αlg
� �� �� �

ri (5.75b)

rLi�1=2 ¼ αlg�1
� �

= αlg log e αlg
� �� �� �

ri ¼
�
1
�
αlg

�
rLi+ 1=2 (5.76b)

r2i + 1=2 ¼ α2lg�1
	 


= log e α2lg

	 
h in o
r2i (5.77b)

r2i�1=2 ¼ α2lg�1
	 


= α2lg log e α2lg

	 
h in o
r2i ¼ 1=α2

lg

	 

r2i+ 1=2 (5.78b)

and
Vbi, j,k ¼ α2lg�1
	 
2

= α2lg log e α2lg

	 
h i� �
r2i

1=2Δθj
� �

Δzk for i¼ 2,3,…nr�1

(5.81b)

Example 4.10 demonstrates that quotients ri/ri�1/2
L , ri�1/2

L /ri�1, ri+1/2
L /ri, ri+1/
ri+1/2
L , and ri+1/2

L /ri�1/2
L are functions of the logarithmic spacing constant αlg only

as given by Eqs. (4.111), (4.114), (4.103), (4.106), and (4.116), respectively.

By substituting these equations, or Eqs. (5.82), (5.75b), (5.76b), (5.77b), and

(5.78b), into Table 5.2 and observing that 1=2Δθj
� �

r2i+ 1=2� r2i�1=2

	 

¼

Vbi, j,k=Δzk using Eq. (5.81a), we obtain Table 5.3.

Now, the calculation of geometric factors and pore volumes can be simpli-

fied using the following algorithm:

1. Define

αlg ¼ re
rw

� �1= nr�1ð Þ
(5.79)



TABLE 5.3 Geometric factors in cylindrical grids.

Direction Geometric factor

r
Gri�1=2, j,k ¼

βcΔθjΔzk

loge αlg loge αlg

	 

= αlg �1
	 
h i

=kri, j,k + loge αlg �1
	 


= loge αlg

	 
h i
=kri�1, j,k

Gri +1=2, j,k ¼
βcΔθjΔzk

loge αlg �1
	 


= loge αlg

	 
h i
=kri, j,k + loge αlg loge αlg

	 

= αlg �1
	 
h i

=kri +1, j,k

θ
Gθi, j�1=2,k

¼
2βc loge αlg

	 

Δzk

Δθj�1=2=kθi, j,k +Δθj�1=2=kθi, j�1,k

z
Gzi, j,k�1=2

¼
2βc Vbi, j,k =Δzk

	 

Δzk�1=2=kzi, j,k +Δzk�1=2=kzi, j,k�1
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2. Let

r1 ¼ rw (5.80)
3. Set

ri ¼ αi�1
lg r1 (5.82)

where i¼1, 2, 3, …nr

4. For j¼1, 2, 3, …nθ and k¼1, 2, 3, …nz, set

Vbi, j,k ¼ α2lg�1
	 
2

= α2lg log e α2lg

	 
h i� �
r2i

1=2Δθj
� �

Δzk (5.81b)

for i¼2, 3, …nr�1
Vb1, j,k ¼ α2lg�1
	 


= log e α2lg

	 
h i
�1

n o
r2w

1=2Δθj
� �

Δzk (5.81c)

for i¼1; and
Vbnr , j,k ¼ 1� α2lg�1
	 


= α2lg log e α2lg

	 
h in o
r2e

1=2Δθj
� �

Δzk (5.81d)

for i¼nr. Note that Eq. (5.81b) is used to calculate bulk volumes of grid-
points other than those falling on the reservoir internal and external bound-

aries in the r-direction (see Example 5.7). For i¼1 and i¼nr, Eqs. (5.81c)
and (5.81d) are used.
5. Estimate the geometric factors using the equations in Table 5.3. Note that in

the calculation of Gzi,j,1/2 or Gzi,j,nz + 1/2
, terms that describe properties of blocks

that fall outside the reservoir (k¼0 and k¼nz+1) are discarded.

Examples 5.7 and 5.8 show that reservoir discretization in the radial direction

can be accomplished using either the traditional equations reported in the
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previous literature (Eqs. 5.74, 5.75a, 5.76a, 5.77a, 5.78a, 5.79, 5.80, and 5.81a)

or those reported in this book (Eqs. 7.74, 5.75b, 5.76b, 5.77b, 5.78b, 5.79, 5.80,

5.81b, 5.81c, and 5.81d) that led to Table 5.3. The equations reported in this

book, however, are easier and less confusing because they use ri and αlg only.
In Example 5.9, we demonstrate how to use Eq. (5.2a) and the appropriate

expressions for qmscb,bP, along with Table 5.3, to write the flow equations for

boundary and interior gridpoints in a 2-D single-well simulation problem.

Example 5.7 Consider the simulationof a single-well in40-acre spacing.Wellbore

diameter is0.5ft, and the reservoir thickness is100ft.Thereservoircanbesimulated

using a single layer discretized into six gridpoints in the radial direction.

1. Find gridpoint spacing in the r-direction.
2. Find the gridpoint block boundaries in the r-direction for transmissibility

calculations.

3. Calculate the arguments of the loge terms in Table 5.2.

4. Find the gridpoint block boundaries in the r-direction for bulk volume

calculations and calculate the bulk volumes.

Solution

1. The external reservoir radius can be estimated from well spacing,

re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
43,560�40=π

p ¼ 744:73 ft, and well radius, rw¼0.25 ft.
First, estimate αlgusing Eq. (5.79):
αlg ¼ re
rw

� �1= nr�1ð Þ
¼ 744:73

0:25

� �1= 6�1ð Þ
¼ 4:9524

Second, according to Eq. (5.80), let r1¼ rw¼0.25 ft. Third, calculate the
location of the gridpoints in the r-direction using Eq. (5.82), ri¼αlg
i-1r1. For

example, for i¼2, r2¼ (4.9524)2�1�0.25¼1.2381 ft. Table 5.4 shows the

location of the other gridpoints along the r-direction.

2. Block boundaries for transmissibility calculations (ri�1/2

L , ri+1/2
L ) are esti-

mated using Eqs. (5.75a) and (5.76a).
For i¼2,
rL2 + 1=2 ¼
r3� r2

log e r3=r2ð Þ¼
6:1316�1:2381

log e 6:1316=1:2381ð Þ¼ 3:0587ft

and
rL2�1=2 ¼
r2� r1

log e r2=r1ð Þ¼
1:2381�0:25

log e 1:2381=0:25ð Þ¼ 0:6176ft

Table 5.4 shows the block boundaries for transmissibility calculations
for the other gridpoints.
3. Table 5.4 Shows the calculated values for ri/ri�1/2
L , ri+1/ri+1/2

L , ri�1/2
L /ri�1,

ri+1/2
L /ri, and ri+1/2

L /ri�1/2
L , which appear in the argument of loge terms in

Table 5.2



TABLE 5.4 ri, ri�1/2
L , and loge arguments in Table 5.2 for Example 5.7.

i ri ri21/2
L ri+1/2

L ri=rL
i�1=2

ri +1=rL
i +1=2

rL
i�1=2

.
ri�1

rL
i +1=2

.
ri

rL
i +1=2

.
rL
i +1=2

1 0.25 – 0.6176 – 2.005 2.470 2.470 –

2 1.2381 0.6176 3.0587 2.005 2.005 2.470 2.470 4.9524

3 6.1316 3.0587 15.148 2.005 2.005 2.470 2.470 4.9524

4 30.366 15.148 75.018 2.005 2.005 2.470 2.470 4.9524

5 150.38 75.016 371.51 2.005 2.005 2.470 2.470 4.9524

6 744.73 371.51 – 2.005 2.005 – – –

Sim
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4. The block boundaries for bulk volume calculations (ri�1/2, ri+1/2) are esti-

mated using Eqs. (5.77a) and (5.78a).
For i¼2,
r22 + 1=2 ¼
r23 � r22

log e r23=r
2
2

� �¼ 6:1316ð Þ2� 1:2381ð Þ2

log e 6:1316ð Þ2= 1:2381ð Þ2
h i¼ 11:2707ft2

and
r22�1=2 ¼
r22 � r21

log e r22=r
2
1

� �¼ 1:2381ð Þ2� 0:25ð Þ2

log e 1:2381ð Þ2= 0:25ð Þ2
h i¼ 0:4595ft2

Therefore, the block boundaries for bulk volume calculations are
r2 + 1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11:2707

p
¼ 3:3572ft

and
r1 + 1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:4595

p
¼ 0:6779ft
The bulk volume for gridpoints can be calculated using Eq. (5.81a).

For i¼2,

Vb2 ¼ 3:3572ð Þ2� 0:6779ð Þ2
h i

1=2�2π
� ��100¼ 3396:45ft3

For i¼1,
Vb1 ¼ 1:3558ð Þ2� 0:25ð Þ2
h i

1=2�2π
� ��100¼ 124:73ft3

For i¼6,
Vb6 ¼ 744:73ð Þ2� 407:77ð Þ2
h i

1=2�2π
� ��100¼ 122:003�106 ft3

Table 5.5 shows the block boundaries and bulk volumes of blocks for the
other gridpoints.

Example 5.8 Solve Example 5.7 again, this time using Eqs. (5.75b), (5.76b),

(5.77b), (5.78b), and (5.81b), which make use of ri and αlg, and Eqs. (5.81c)

and (5.81d).

Solution

1. From Example 5.7, re¼744.73 ft., r1¼ rw¼0.25 ft, and αlg¼4.9524. In

addition, the radii of gridpoints are calculated using Eq. (5.82), ri¼αlg
i-1r1,

as shown in Example 5.7.

2. The block boundaries for transmissibility calculations (ri�1/2
L , ri+1/2

L ),

estimated using Eqs. (5.75b) and (5.76b), are

rLi+ 1=2 ¼ αlg�1
� �

= log e αlg
� �� �� �

ri ¼ 4:9524�1ð Þ= log e 4:9524ð Þ½ �f gri
¼ 2:47045ri

(5.83)



TABLE 5.5 Gridpoint boundaries and bulk volumes for gridpoints

in Example 5.7.

i ri ri21/2 ri+1/2 Vbi

1 0.25 0.25a 0.6779 124.73

2 1.2381 0.6779 3.3572 3396.5

3 6.1316 3.3572 16.626 83,300.3

4 30.366 16.626 82.337 2.04�106

5 150.38 82.337 407.77 50.1�106

6 744.73 407.77 744.73b 122�106

ar1�1/2¼ rw¼0.25.
br6+1/2¼ re¼744.73.
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and
rLi�1=2 ¼ αlg�1
� �

= αlg log e αlg
� �� �� �

ri

¼ 4:9524�1ð Þ= 4:9524log e 4:9524ð Þ½ �f gri ¼ 0:49884ri (5.84)

Substitution of values of ri into Eqs. (5.83) and (5.84) produces the
results reported in Table 5.4.
3. Example 4.10 derives the ratios ri/ri�1/2
L , ri+1/ri+1/2

L , ri�1/2
L /ri�1, ri+1/2

L /ri, and
ri+1/2
L /ri�1/2

L as functions of αlg as Eqs. (4.111), (4.106), (4.114), (4.103),

and (4.116), respectively. Substituting of αlg¼4.9524 in these equations,

one obtains

ri=r
L
i�1=2 ¼ αlg log e αlg

� �� �
= αlg�1
� �¼ 4:9524log e 4:9524ð Þ½ �= 4:9524�1ð Þ

¼ 2:005

(5.85)

ri+ 1=r
L
i + 1=2 ¼ αlg log e αlg

� �� �
= αlg�1
� �¼ 2:005 (5.86)

rLi�1=2=ri�1 ¼ αlg�1
� �

= log e αlg
� �

¼ 4:9524�1ð Þ= log e 4:9524ð Þ¼ 2:470 (5.87)

rLi+ 1=2=ri ¼ αlg�1
� �

= log e αlg
� �¼ 2:470 (5.88)

and
rLi + 1=2=r
L
i�1=2 ¼ αlg ¼ 4:9524 (5.89)

Note that the values of the aforementioned ratios are the same as those
reported in Table 5.4.
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4. The block boundaries for bulk volume calculations (ri�1/2, ri+1/2) are esti-

mated using Eqs. (5.77b) and (5.78b), yielding

r2i + 1=2 ¼ α2lg�1
	 


= log e α2lg

	 
h in o
r2i

¼ 4:9524ð Þ2�1
	 


= log e 4:9524ð Þ2
	 
h in o

r2i ¼ 7:3525ð Þr2i (5.90)

and
r2i�1=2 ¼ α2lg�1
	 


= α2lg log e α2lg

	 
h in o
r2i ¼ 7:3525= 4:9524ð Þ2

n o
r2i

¼ 0:29978ð Þr2i (5.91)

Therefore,
ri + 1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7:3525ð Þr2i

q
¼ 2:7116ð Þri (5.92)

and
ri�1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:29978ð Þr2i

q
¼ 0:54752ð Þri (5.93)

The bulk volume associated with each gridpoint can be calculated using
Eqs. (5.81b), (5.81c), and (5.81d), yielding
Vbi ¼ α2lg�1
	 
2

= α2lg loge α2lg

	 
h i� �
r2i

1=2 2πð Þ� �
Δz

¼ 4:9524ð Þ2�1
� �2

= 4:9524ð Þ2 loge 4:9524ð Þ2� �� �n o
r2i

1=2 2πð Þ� ��100¼ 2215:7r2i

(5.94)

for i¼2, 3, 4, 5.
Vb1 ¼ α2lg�1
	 


= loge α2lg

	 
h i
�1

n o
r2w

1=2Δθ
� �

Δz

¼ 4:9524ð Þ2�1
	 


= log e 4:9524ð Þ2
	 
h i

�1
n o

0:25ð Þ2 1=2 2πð Þ� ��100¼ 124:73ft3

(5.95)

and
Vb6 ¼ 1� α2lg�1
	 


= α2lg loge α2lg

	 
h in o
r2e

1=2Δθ
� �

Δz

¼ 1� 4:9524ð Þ2�1
� �

= 4:9524ð Þ2 loge 4:9524ð Þ2� �� �� �
744:73ð Þ2 1=2 2πð Þ� ��100

¼ 122:006�106ft3

(5.96)

Note that the values of the estimated bulk volumes slightly differ from
those reported in Table 5.5 because of round-off errors resulting from

approximations in the various stages of calculations.



Simulation with a point-distributed grid Chapter 5 163
Example 5.9 A 0.5-ft diameter water well is located in 20-acre spacing. The

reservoir thickness, horizontal permeability, and porosity are 30ft, 150md,

and 0.23, respectively. The (kV/kH) for this reservoir is estimated from core data

as 0.30. The flowing fluid has a density, FVF, and viscosity of 62.4 lbm/ft3,

1 RB/B, and 0.5cP, respectively. The reservoir external boundary in the radial

direction is a no-flow boundary, and the well is completed in the top 22.5 ft only

and produces at a rate of 2000B/D. The reservoir bottom boundary is subject to

influx such that the boundary is kept at 4000psia. The reservoir top boundary is

sealed to flow. Assuming the reservoir can be simulated using three equispaced

gridpoints in the vertical direction and four gridpoints in the radial direction, as

shown in Fig. 5.13, write the flow equations for gridpoints 1, 3, 5, 7, and 11.

Solution

To write flow equations, the gridpoints are first ordered using natural order-

ing (n¼1, 2, 3, ...10, 11, 12), as shown in Fig. 5.13, in addition to being iden-

tified using the engineering notation along the radial direction (i¼1, 2, 3, 4)

and the vertical direction (k¼1, 2, 3). This step is followed by the determination

of the location of the gridpoints in the radial direction and the calculation of

the gridpoints separation and elevation in the vertical direction, Next, the bulk

volumes and transmissibilities in the r- and z-directions are calculated. We

demonstrate in this example that block boundaries for transmissibility calcula-

tions and block boundaries for bulk volume calculations are not needed if we

use Eqs. (5.81b), (5.81c), and (5.81d) for bulk volume calculations and

Table 5.3. Making use of the aforementioned information, we estimate the con-

tributions of the gridpoints to the well rates and the fictitious well rates resulting

from reservoir boundary conditions.

The reservoir rock and fluid data are restated as follows: h¼30ft, ϕ¼0.23,

kr¼kH¼150 md, kz¼kH(kV/kH)¼150�0.30¼45 md, B¼1 RB/B, μ¼0.5 cP,

γ¼ γcρg¼0.21584�10�3(62.4)(32.174)¼0.4333 psi/ft, rw¼0.25 ft, and the
i = 1

k = 1

k = 2

k = 3

r

z

1 2 3 4

5 6 7
8

910 11 12

2000 STB/D

No-flow boundary

pbL
= 4000 psia

i = 2 i = 3 i = 4

30 ft

No-flow boundary

FIG. 5.13 Discretized 2-D radial-cylindrical reservoir in Example 5.9.
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reservoir external radius is estimated fromwell spacing as re¼ (20�43560/π)1/2¼
526.60 ft. The reservoir east (external) and upper (top) boundaries are no-flow

boundaries, the reservoir lower (bottom) boundary has pbL¼4000 psia, and the res-

ervoir west (internal) boundary has qspsc¼ �2000 B/D to reflect the effect of the

production well (i.e., the well is treated as a boundary condition).

For the point-distributed grid shown in Fig. 5.13, nr¼4, nz¼3, and Δzk+1/2 ¼
h/(nz�1)¼30/(3�1)¼15 ft for k¼1, 2; hence, Δzn¼15/2¼7.5 ft for n¼1, 2,

3, 4; Δzn¼15 ft for n¼5, 6, 7, 8; and Δzn¼15/2¼7.5 ft for n¼9, 10, 11, 12.

Assuming the top of the reservoir as the reference level for elevation, Zn¼0 ft

for n¼9, 10, 11, 12; Zn¼15 ft for n¼5, 6, 7, 8; Zn¼30 ft for n¼1, 2, 3, 4; and

ZbL¼30 ft. The locations of thegridpoints in the radial direction are calculatedusing

Eqs. (5.79), (5.80), and (5.82), yielding αlg¼ (526.60/0.25)1/(4�1)¼12.8188;

r1¼ rw¼0.25 ft; and ri¼ (12.8188)(i�1)(0.25) for i¼2, 3, 4 or r2¼3.2047 ft,

r3¼41.080 ft, and r4¼526.60 ft.

The bulk volumes associated with the gridpoints are listed in Table 5.6.

They are calculated using Eqs. (5.81b), (5.81c), and (5.81d). Note that subscript

j is discarded and Δθ¼2π.

Vb1,k ¼ α2lg�1
	 


= log e α2lg

	 
h i
�1

n o
r2w

1=2Δθ
� �

Δzk

¼ 12:8188ð Þ2�1
	 


= log e 12:8188ð Þ2
	 
h i

�1
n o

0:25ð Þ2 1=2�2π
� �

Δzk

¼ 6:0892685ð ÞΔzk
TABLE 5.6 Gridpoint locations, bulk volumes, and radial and vertical

transmissibilities for Example 5.9.

n i k ri (ft)

Δzn
(ft)

Zn

(ft) Vbn
(ft3)

Tri�1/2,k

(B/D-psi)

Tzi,k�1/2

(B/D-psi)

1 1 1 0.25 7.5 30 45.66941 6.245838 0.041176

2 2 1 3.2047 7.5 30 7699.337 6.245838 6.941719

3 3 1 41.080 7.5 30 1,265,140 6.245838 1140.650

4 4 1 526.60 7.5 30 5,261,005 6.245838 4743.320

5 1 2 0.25 15 15 91.33882 12.49168 0.041176

6 2 2 3.2047 15 15 15,398.67 12.49168 6.941719

7 3 2 41.080 15 15 2,530,280 12.49168 1140.650

8 4 2 526.60 15 15 10,522,011 12.49168 4743.320

9 1 3 0.25 7.5 0 45.66941 6.245838 0.041176

10 2 3 3.2047 7.5 0 7699.337 6.245838 6.941719

11 3 3 41.080 7.5 0 1,265,140 6.245838 1140.650

12 4 3 526.60 7.5 0 5,261,005 6.245838 4743.320
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Vbi,k ¼ α2lg�1
	 
2

= α2lg log e α2lg

	 
h i� �
r2i

1=2Δθ
� �

Δzk

¼ 12:8188ð Þ2�1
	 
2

= 12:8188ð Þ2 log e 12:8188ð Þ2
	 
h i� �

r2i
1=2�2π
� �

Δzk

¼ 99:957858ð Þr2i Δzk

for i¼2, 3, and
Vb4,k ¼ 1� α2lg�1
	 


= α2lg loge α2lg

	 
h in o
r2e

1=2Δθ
� �

Δzk

¼ 1� 12:8188ð Þ2�1
� �

= 12:8188ð Þ2 loge 12:8188ð Þ2� �� �� �
526:60ð Þ2 1=2�2π

� �
Δzk

¼ 701466:65ð ÞΔzk

The transmissibility in the r-direction is defined by Eq. (5.72a), yielding
Tri�1=2,k ¼Gri�1=2,k

1

μB

� �
¼Gri�1=2,k

1

0:5�1

� �
¼ 2ð ÞGri�1=2,k (5.97)

where Gri�1/2, k
is defined in Table 5.3. With Δθ¼2π and constant radial perme-
ability, the equations for the geometric factor reduce to

Gri�1=2,k ¼
2πβckrΔzk

log e αlg log e αlg
� �

= αlg�1
� �� �

+ log e αlg�1
� �

= log e αlg
� �� �

¼ 2πβckrΔzk
log e αlg

� � ¼ 2π 0:001127ð Þ 150ð ÞΔzk
log e 12:8188ð Þ ¼ 0:4163892ð ÞΔzk

(5.98)

Therefore, the transmissibility in the radial direction can be estimated by
substituting Eq. (5.98) into Eq. (5.97), resulting in

Tri�1=2,k ¼ 2ð ÞGri�1=2,k ¼ 2ð Þ 0:4163892ð ÞΔzk ¼ 0:8327784ð ÞΔzk (5.99)

The transmissibility in the vertical direction is defined by Eq. (5.72c),
yielding

Tzi,k�1=2
¼Gzi,k�1=2

1

μB

� �
¼Gzi,k�1=2

1

0:5�1

� �
¼ 2ð ÞGzi,k�1=2

(5.100)

where Gzi,k�1/2
is defined in Table 5.3 as
Gzi,k�1=2
¼ 2βc Vbi,k=Δzk

� �
Δzk�1=2=kzi,k +Δzk�1=2=kzi,k�1

(5.101)

For this problem, gridpoint spacing and vertical permeability are constants;
therefore, the equation for the geometric factor reduces to

Gzi,k�1=2
¼ 2βckz Vbi,k=Δzk

� �
2Δzk�1=2

¼ βckz Vbi,k=Δzk
� �
Δzk�1=2

¼ 0:001127ð Þ 45ð Þ Vbi,k=Δzk
� �

15
¼ 0:003381ð Þ Vbi,k=Δzk

� � (5.102)
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Substituting Eq. (5.102) into Eq. (5.100) results in
Tzi,k�1=2
¼ 2ð ÞGzi,k�1=2

¼ 2ð Þ 0:003381ð Þ Vbi,k=Δzk
� �¼ 0:006762ð Þ Vbi,k=Δzk

� �
(5.103)

The estimated transmissibilities in the radial and vertical directions are
listed in Table 5.6.

Before writing the flow equations, the well production rate (specified rate

for the reservoir west boundary) must be prorated between gridpoints 5 and

9 using

qmscb,bP ¼
Tm
bP,bP∗X

l2ψb

Tm
l, l∗

qspsc (5.37)

where Tmb,bP∗ ¼ transmissibility in the radial direction between gridpoints bP and
bP∗ with the well being the reservoir internal boundary and ψb¼ψw¼{5,9}.

Note that gridpoint 1 has a no-flow boundary because it is not penetrated by

the well; that is, qmscbW,1
¼0. Note also that 5∗¼6 and 9∗¼10 according to the

terminology in Fig. 5.7. From Table 5.6,

Tm
bW ,6

¼ Tm
r5,6

¼ 12:49168B=D-psi

and
Tm
bW ,10

¼ Tm
r9,10

¼ 6:245838B=D-psi

The application of Eq. (5.37) results in
qmscbW ,9
¼ 6:245838

6:245838 + 12:49168
� �2000ð Þ¼�666:67B=D

and
qmscbW ,5
¼ 12:49168

6:245838 + 12:49168
� �2000ð Þ¼�1333:33B=D

With this treatment of the production well, qmscn¼0 for each gridpoint
(including 1, 5, and 9).

For the reservoir lower boundary, p1
m¼p2

m¼p3
m¼p4

m¼pbL¼4000 psia.

The flow rates of the fictitious wells in boundary gridpoints 1, 2, 3, and 4

are estimated using Eq. (5.46c), yielding.

qmscbL,bP
¼ Tm

zi,k + 1=2
4000�pbP∗ð Þ� 0:4333ð Þ 30�15ð Þ½ �B=D (5.104)

where according to Fig. 5.13 and our terminology in Fig. 5.7, 1∗¼5, 2∗¼6,
3∗¼7, and 4∗¼8. For the reservoir east and upper (no-flow) boundaries,

qmscbE,n
¼0 for n¼4, 8, 12 and qmscbU,n

¼0 for n¼9, 10, 11, 12. The contributions

of gridpoints to the well rates and the fictitious well rates are summarized in

Table 5.7.



TABLE 5.7 Contribution of gridpoints to well rates and fictitious well rates

for Example 5.9.

n i k

qm
scn

(B/D) qm
scb

L
,n
(B/D)

qm
scb

W
,n

(B/D)

qm
scb

E
,n

(B/D)

qm
scb

U
,n

(B/D)

1 1 1 0 (0.041176)
[(4000�p5

m)� (0.4333)
(30�15)]

0

2 2 1 0 (6.941719)
[(4000�p6

m)� (0.4333)
(30�15)]

3 3 1 0 (1140.650)
[(4000�p7

m)� (0.4333)
(30�15)]

4 4 1 0 (4743.320)
[(4000�p8

m)� (0.4333)
(30�15)]

0

5 1 2 0 �1333.33

6 2 2 0

7 3 2 0

8 4 2 0 0

9 1 3 0 �666.67 0

10 2 3 0 0

11 3 3 0 0

12 4 3 0 0 0
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The general form of the flow equation for gridpoint n is written as:

X
l2ψn

Tml,n pml �pmn
� �� γml,n Zl�Znð Þ
h i

+
X
l2ξn

qmscl,n + q
m
scn

¼ Vbn

αcΔt
ϕ

B

� �n+ 1

n
� ϕ

B

� �n

n

" #

(5.2a)

For gridpoint 1, p1
m¼4000 psia because gridpoint 1 falls on the constant

pressure boundary. Let us write the flow equation for this gridpoint. For

gridpoint 1, n¼1, i¼1, k¼1, ψ1¼{2,5}, ξ1¼{bL,bW}, andX
l2ξ1

qmscl,1 ¼ qmscbL ,1
+ qmscbW ,1

, where from Table 5.7, qmscbL,1
¼ (0.041176)[(4000�

p5
m)� (0.4333)(30�15)] B/D, qmscbW,1

¼0, and qmsc1¼0. Therefore, substitution

into Eq. (5.2a) yields
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6:245838ð Þ pm2 �pm1
� �� 0:4333ð Þ 30�30ð Þ� �

+ 0:041176ð Þ pm5 �pm1
� �� 0:4333ð Þ 15�30ð Þ� �

+ 0:041176ð Þ 4000�pm5
� �� 0:4333ð Þ 30�15ð Þ� �

+ 0 + 0

¼ 45:66941

αcΔt
ϕ

B

� �n + 1

1

� ϕ

B

� �n

1

" # (5.105)

where p1
m¼4000 psia. Note that the accumulation term vanishes because the
gridpoint pressure is constant. Therefore, Eq. (5.105) after simplification

becomes

6:245838ð Þ pm1 �pm2
� �� 0:4333ð Þ 30�30ð Þ� �¼ 0 (5.106)

or
pm1 ¼ pm2 (5.107)

Eq. (5.107) does not introduce new knowledge because both gridpoints fall
on the constant pressure bottom boundary, but it confirms that the flow equation

for gridpoint 1, as expressed by Eq. (5.105), is correct.

For gridpoint 3, p3
m¼4000 psia because gridpoint 3 falls on the constant

pressure boundary. Again, let us write the flow equation for this gridpoint.

For gridpoint 3, n¼3, i¼3, k¼1, ψ3¼{2,4,7}, ξ3¼{bL}, andX
l2ξ3

qmscl,3 ¼ qmscbL ,3
, where from Table 5.7, qmscbL ,3

¼ (1140.650)[(4000�pm
7
)

�(0.4333)(30�15)] B/D and qmsc3¼0 (no wells).

Therefore, substitution into Eq. (5.2a) yields

6:245838ð Þ pm2 �pm3
� �� 0:4333ð Þ 30�30ð Þ� �

+ 6:245838ð Þ pm4 �pm3
� �� 0:4333ð Þ 30�30ð Þ� �

+ 1140:650ð Þ pm7 �pm3
� �� 0:4333ð Þ 15�30ð Þ� �

+ 1140:650ð Þ 4000�pm7
� �� 0:4333ð Þ 30�15ð Þ� �

+ 0¼ 1265140

αcΔt
ϕ

B

� �n+ 1

3

� ϕ

B

� �n

3

" #

(5.108)

where p3
m¼4000 psia. Note that the accumulation term vanishes because the
gridpoint pressure is constant. Therefore, Eq. (5.108) after simplification

becomes

6:245838ð Þ pm2 �pm3
� �� 0:4333ð Þ 30�30ð Þ� �

+ 6:245838ð Þ pm4 �pm3
� �� 0:4333ð Þ 30�30ð Þ� �¼ 0

(5.109)

or
pm3 ¼ 1
�
2 pm2 + pm4
� �

(5.110)



Simulation with a point-distributed grid Chapter 5 169
Eq. (5.110) does not introduce new knowledge because gridpoints 2, 3, and 4
fall on the constant pressure bottom boundary, but it confirms that the flow

equation for gridpoint 3, as expressed by Eq. (5.108), is correct.

For gridpoint 5, n¼5, i¼1, k¼2, ψ5¼{1,6,9}, ξ5¼{bW},X
l2ξ5

qmscl,5 ¼ qmscbW ,5
¼�1333:33 B/D, and qmsc5¼0 (the well is treated as a bound-

ary condition). Therefore, substitution into Eq. (5.2a) yields

0:041176ð Þ pm1 �pm5
� �� 0:4333ð Þ 30�15ð Þ� �

+ 12:49168ð Þ pm6 �pm5
� �� 0:4333ð Þ 15�15ð Þ� �

+ 0:041176ð Þ pm9 �pm5
� �� 0:4333ð Þ 0�15ð Þ� ��1333:33 + 0

¼ 91:33882

αcΔt
ϕ

B

� �n+ 1

5

� ϕ

B

� �n

5

" # (5.111)

In Eq. (5.111), the well is treated as a fictitious well. This treatment (or
the substitution of well by a fictitious well and vice versa) is valid only in

single-well simulation because, contrary to the situation in Cartesian coordi-

nates, in cylindrical coordinates, both the well and the fictitious well have

radial flow.

For gridpoint 7, n¼7, i¼3, k¼2, ψ7¼{3,6,8,11}, ξ7¼{},
X
l2ξ7

qmscl,7 ¼ 0

(interior gridpoint), and qmsc7¼0 (no wells). Therefore, substitution into

Eq. (5.2a) yields

1140:650ð Þ pm3 �pm7
� �� 0:4333ð Þ 30�15ð Þ� �

+ 12:49168ð Þ pm6 �pm7
� �� 0:4333ð Þ 15�15ð Þ� �

+ 12:49168ð Þ pm8 �pm7
� �� 0:4333ð Þ 15�15ð Þ� �

+ 1140:650ð Þ pm11�pm7
� �� 0:4333ð Þ 0�15ð Þ� �

+ 0 + 0¼ 2530280

αcΔt
ϕ

B

� �n+ 1

7

� ϕ

B

� �n

7

" #

(5.112)

For gridpoint 11, n¼11, i¼3, k¼3, ψ11¼{7,10,12}, ξ11¼{bU},X

l2ξ11

qmscl,11 ¼ qmscbU ,11
and qmscbU ,11

¼0 (no-flow boundary), and qmsc11¼0 (no wells).

Therefore, substitution into Eq. (5.2a) yields

1140:650ð Þ pm7 �pm11
� �� 0:4333ð Þ 15�0ð Þ� �

+ 6:245838ð Þ pm10�pm11
� �� 0:4333ð Þ 0�0ð Þ� �

+ 6:245838ð Þ pm12�pm11
� �� 0:4333ð Þ 0�0ð Þ� �

+ 0 + 0¼ 1265140

αcΔt
ϕ

B

� �n+ 1

11

� ϕ

B

� �n

11

" #

(5.113)
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5.6 Symmetry and its use in solving practical problems

The use of symmetry in solving practical problems has been discussed in

Chapter 4. In most cases, the use of symmetry is justified if a pattern is found

in the reservoir properties. The use of symmetry reduces the efforts to solve a

problem by considering solving a modified problem for one element of symme-

try in the reservoir, usually the smallest element of symmetry (Abou-Kassem

et al., 1991). The smallest element of symmetry is a segment of the reservoir

that is a mirror image of the rest of reservoir segments. Before solving the mod-

ified problem for one element of symmetry, however, symmetry must first

be established. For symmetry to exist about a plane, there must be symmetry

with regard to (1) the number of gridpoints and gridpoints spacing, (2) reservoir

rock properties, (3) physical wells, (4) reservoir boundaries, and (5) initial

conditions. Gridpoint spacing deals with the separation between gridpoints

(Δxi�1/2, Δyj�1/2, Δzk�1/2) and gridpoint elevation (Z). Reservoir rock proper-

ties deal with gridpoint porosity (ϕ) and permeability in the various directions

(kx, ky, kz). Wells deal with well location, well type (injection or production),

and well operating condition. Reservoir boundaries deal with the geometry

of boundaries and boundary conditions. Initial conditions deal with initial

pressure and fluid saturation distributions in the reservoir. Failing to satisfy

symmetry with respect to any of the items mentioned earlier means there is

no symmetry about that plane. The formulation of the modified problem for

the smallest element of symmetry involves replacing each plane of symmetry

with a no-flow boundary and determining the new interblock geometric factors,

bulk volume, wellblock rate, and wellblock geometric factor for those grid-

points that share their boundaries with the planes of symmetry. To elaborate

on this point, we present a few possible cases. In the following discussion,

we use bold numbers to identify the gridpoints that require determining new

values for their bulk volume, wellblock rate, wellblock geometric factor, and

interblock geometric factors in the element of symmetry.

The first two examples show planes of symmetry that coincide with the

boundaries between gridpoints. Fig. 5.14a presents a 1-D flow problem in which

the plane of symmetry A-A, which is normal to the flow direction (x-direction)
and coincides with the block boundary halfway between gridpoints 3 and 4,

divides the reservoir into two symmetrical elements. Consequently, p1¼p6,
p2¼p5, and p3¼p4. The modified problem is represented by the element of

symmetry shown in Fig. 5.14b, with the plane of symmetry being replaced with

a no-flow boundary. Fig. 5.15a presents a 2-D horizontal reservoir with two

vertical planes of symmetry A-A and B-B. Plane of symmetry A-A is normal

to the x-direction and coincides with the block boundaries halfway between grid-
points 2, 6, 10, and 14 on one side and gridpoints 3, 7, 11, and 15 on the other side.

Plane of symmetry B-B is normal to the y-direction and coincides with the

block boundaries halfway between gridpoints 5, 6, 7, and 8 on one side and grid-

points 9, 10, 11, and 12 on the other side. The two planes of symmetry divide

the reservoir into four symmetrical elements. Consequently, p1¼p4¼p13¼p16,
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FIG. 5.14 1-D reservoir with even gridpoints exhibiting a vertical plane of symmetry. (a) Whole

reservoir and planes of symmetry and (b) smallest element of symmetry.
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p2¼p3¼p14¼p15, p5¼p8¼p9¼p12, and p6¼p7¼p10¼p11. The modified

problem is represented by the smallest element of symmetry shown in

Fig. 5.15b, with each plane of symmetry being replaced with a no-flow boundary.

The second two examples show planes of symmetry that pass through grid-

points. Fig. 5.16a presents a 1-D flow problem in which the plane of symmetry
1 2

A
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3 4

5 6
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7 8

9 10 11 12

13 14 15 16

x

y
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(b)
FIG. 5.15 2-D reservoir with even gridpoints in the x- and y-directions exhibiting two vertical

planes of symmetry. (a) Whole reservoir and planes of symmetry and (b) smallest element of

symmetry.
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FIG. 5.16 1-D reservoir with odd gridpoints exhibiting a vertical plane of symmetry. (a) Whole

reservoir and planes of symmetry and (b) smallest element of symmetry.
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A-A, which is normal to the flow direction (x-direction) and passes through

gridpoint 3, divides the reservoir into two symmetrical elements. Consequently,

p1¼p5 and p2¼p4. Themodified problem is represented by the element of sym-

metry shown in Fig. 5.16b, with the plane of symmetry being replaced with a

no-flow boundary. This plane of symmetry bisects the gridpoint bulk volume,

wellblock rate, and wellblock geometric factor for gridpoint 3 in Fig. 5.16a.

Therefore, for gridpoint 3, Vb3 ¼ 1
2
Vb3 , qsc3 ¼ 1

2
qsc3 , and Gw3

¼ 1
2
Gw3

. Note that

the interblock geometric factor in the direction normal to the plane of symmetry

(Gx2,3
) is not affected. Fig. 5.17a presents a 2-D horizontal reservoir with two

vertical planes of symmetry A-A and B-B. Plane A-A is a vertical plane of sym-

metry that is parallel to the y-z plane (normal to the x-direction) and passes

through gridpoints 2, 5, and 8. Note that gridpoints 1, 4, and 7 are mirror images

of gridpoints 3, 6, and 9. Plane B-B is a vertical plane of symmetry that is par-

allel to the x-z plane (normal to the y-direction) and passes through gridpoints 4,
5, and 6. Note that gridpoints 1, 2, and 3 are mirror images of gridpoints 7, 8,

and 9. The two planes of symmetry divide the reservoir into four symmetrical

elements. Consequently, p1¼p3¼p7¼p9, p4¼p6, and p2¼p8. The modified

problem is represented by the smallest element of symmetry shown in

Fig. 5.17b, with each plane of symmetry being replaced with a no-flow bound-

ary. Each plane of symmetry bisects the gridpoint bulk volume, wellblock rate,

and wellblock geometric factor of the gridpoint it passes through and bisects the

interblock geometric factors in the directions that are parallel to the plane of

symmetry. Therefore, Vb2 ¼ 1
2
Vb2 , qsc2 ¼ 1

2
qsc2 , Gw2

¼ 1
2
Gw2

; Vb4 ¼ 1
2
Vb4 ,

qsc4 ¼ 1
2
qsc4 , Gw4

¼ 1
2
Gw4

; Vb5 ¼ 1
4
Vb5 , qsc5 ¼ 1

4
qsc5 , Gw5

¼ 1
4
Gw5

; Gy2,5 ¼ 1
2
Gy2,5 ;

and Gx4,5 ¼ 1
2
Gx4,5 . Note that a plane of symmetry passing through a gridpoint
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results in a factor of 1
2
as in gridpoints 2 and 4. Two planes of symmetry passing

through a gridpoint result in a factor of 1
2
� 1

2
¼ 1

4
as in gridpoint 5.

The third example presents two vertical planes of symmetry, one coinciding

with the boundaries between gridpoints and the other passing through the grid-

points. Fig. 5.18a presents a 2-D horizontal reservoir with two vertical planes of

symmetry A-A and B-B. Plane A-A is a vertical plane of symmetry that is par-

allel to the y-z plane (normal to the x-direction) and passes through gridpoints 2,
5, 8, and 11. Note that gridpoints 1, 4, 7, and 10 are mirror images of gridpoints

3, 6, 9, and 12. Plane B-B is a vertical plane of symmetry that is parallel to the

x-z plane (normal to the y-direction) and coincides with the boundaries between
gridpoints 4, 5, and 6 on one side and gridpoints 7, 8, and 9 on the other side.

Note that gridpoints 1, 2, and 3 are mirror images of gridpoints 10, 11, and 12

and gridpoints 4, 5, and 6 are mirror images of gridpoints 7, 8, and 9. The two

planes of symmetry divide the reservoir into four symmetrical elements.

Consequently, p1¼p3¼p10¼p12, p4¼p6¼p7¼p9, p2¼p11, and p5¼p8. The
modified problem is represented by the smallest element of symmetry shown

in Fig. 4.18b, with each plane of symmetry being replaced with a no-flow

boundary. Plane of symmetry A-A bisects the block bulk volume, wellblock

rate, and wellblock geometric factor of the gridpoints it passes through and

bisects the interblock geometric factors in the directions that are parallel to

the plane of symmetry (y-direction in this case). Therefore, Vb2 ¼ 1
2
Vb2 ,

qsc2 ¼ 1
2
qsc2 , Gw2

¼ 1
2
Gw2

; Vb5 ¼ 1
2
Vb5 , qsc5 ¼ 1

2
qsc5 , Gw5

¼ 1
2
Gw5

; Vb8 ¼ 1
2
Vb8 ,

qsc8 ¼ 1
2
qsc8 , Gw8

¼ 1
2
Gw8

; Vb11 ¼ 1
2
Vb11 , qsc11 ¼ 1

2
qsc11 , Gw11

¼ 1
2
Gw11

;

Gy2,5 ¼ 1
2
Gy2,5 ;Gy5,8 ¼ 1

2
Gy5,8 ; and Gy8,11 ¼ 1

2
Gy8,11 . Note also a plane of symmetry

passing through a gridpoint results in a factor of 1
2
as in gridpoints 2, 5, 8, and 11

in Fig. 5.18a.

The fourth two examples show oblique planes of symmetry. Fig. 5.19a

shows a reservoir similar to that depicted in Fig. 5.15a, but the present reservoir

has two additional planes of symmetry C-C and D-D. The four planes of sym-

metry divide the reservoir into eight symmetrical elements, each with a trian-

gular shape as shown in Fig. 5.19b. Consequently, p1¼p4¼p13¼p16, p2¼p3¼
p14¼p15¼p5¼p8¼p9¼p12, p6¼p7¼p10¼p11, and p2¼p3¼p14¼ p15¼p5¼
p8¼p9¼p12. The modified problem is represented by the smallest element of

symmetry shown in Fig. 5.19b, with each plane of symmetry being replaced

with a no-flow boundary. Fig. 5.20a shows a reservoir similar to that depicted

in Fig. 5.17a, but the present reservoir has two additional planes of symmetry

C-C and D-D. The four planes of symmetry divide the reservoir into eight

symmetrical elements, each with a triangular shape as shown in Fig. 5.20b.

Consequently, p1¼p3¼p7¼p9, and p4¼p6¼p2¼p8. The modified problem

is represented by the smallest element of symmetry shown in Fig. 5.20b, with

each plane of symmetry being replaced with a no-flow boundary. A vertical

plane of symmetry C-C or D-D that passes through a gridpoint but is neither
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parallel to the x-axis nor the y-axis (oblique plane), as shown in Figs. 5.19a and
5.20a, bisects the gridpoint bulk volume, wellblock rate, and wellblock geomet-

ric factor of the gridpoint it passes through. An oblique plane does not affect the

interblock geometric factors in the x-axis or the y-axis. In reference to gridpoints

1, 6, and 5 in Figs. 5.19b and 5.20b, Vb1 ¼ 1
2
Vb1 , qsc1 ¼ 1

2
qsc1 , Gw1

¼ 1
2
Gw1

;

Vb6 ¼ 1
2
Vb6 , qsc6 ¼ 1

2
qsc6 , Gw6

¼ 1
2
Gw6

; Vb5 ¼ 1
8
Vb5 , qsc5 ¼ 1

8
qsc5 , Gw5

¼ 1
8
Gw5

;

Gy1,2
¼Gy1,2

; Gy2,5 ¼ 1
2
Gy2,5 ; and Gx2,6

¼Gx2,6
. Note that the four planes of symme-

try (A-A, B-B, C-C, and D-D) passing through gridpoint 5 in Fig. 5.20a result in

the factor of 1
4
� 1

2
¼ 1

8
used to calculate the actual gridpoint bulk volume, well-

block rate, and wellblock geometric factor for gridpoint 5 in Fig. 5.20b. That is

to say, the modifying factor equals 1
nvsp

� 1
2
where nvsp is the number of vertical

planes of symmetry passing through a gridpoint.

It should be mentioned that set ξn for gridblocks in the modified problem

might include new elements such as bSW, bNW, bSE, bNE that reflect oblique

boundaries such as plane C-C or D-D. The flow rates across such boundaries

(qmscl,n) are set to zero because these boundaries represent no-flow

boundaries.
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FIG. 5.19 Reservoir with even gridpoints in the x- and y-directions exhibiting four vertical planes
of symmetry. (a) Whole reservoir and planes of symmetry and (b) smallest element of symmetry.
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FIG. 5.20 Reservoir with odd gridpoints in the x- and y-directions exhibiting four vertical planes
of symmetry. (a) Whole reservoir and planes of symmetry and (b) smallest element of symmetry.
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5.7 Summary

This chapter presents reservoir discretization in Cartesian and radial-cylindrical

coordinates using point-distributed grids. For the Cartesian coordinate system,

equations similar to those represented by Eq. (5.1) define gridpoint locations

and the relationships between the distances separating gridpoints, block bound-

aries, and sizes of the blocks represented by the gridpoints in the x-, y-,
and z-directions. Table 5.1 presents equations for the calculation of the trans-

missibility geometric factors in the three directions. For the radial-cylindrical

coordinate system used for single-well simulation, the equations that define

gridpoint locations and the relationships between the distances separating grid-

points, block boundaries, and sizes of the blocks represented by the gridpoints in

the r-direction are given by Eqs. (5.74) through (5.81), Eq. (5.73) in the θ-direc-
tion, and an equation similar to Eq. (5.1) for the z-direction. The equations in
either Table 5.2 or 5.3 can be used to calculate the transmissibility geometric
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factors in the r-, θ-, and z-directions. Eq. (5.2) expresses the general form of the

flow equation that applies to boundary gridpoints and interior gridpoints in 1-D,

2-D,or3-DflowinbothCartesianandradial-cylindrical coordinates.The flowequa-

tion for any gridpoint has flow terms equal to the number of existing neighboring

gridpoints and fictitiouswells equal to the number of boundary conditions. Each fic-

titiouswell represents aboundarycondition.The flowrateofa fictitiouswell isgiven

byEq. (5.33), (5.36), (5.40),or (5.46) foraspecifiedpressuregradient, specified flow

rate, no-flow, or specified pressure boundary condition, respectively.

If reservoir symmetry exists, it can be exploited to define the smallest ele-

ment of symmetry. Planes of symmetry may pass through gridpoints or along

block boundaries. To simulate the smallest element of symmetry, planes of

symmetry are replaced with no-flow boundaries, and new interblock geometric

factors, bulk volume, wellblock rate, and wellblock geometric factors for

boundary gridpoints are calculated prior to simulation.
5.8 Exercises

5.1 What is the meaning of reservoir discretization into gridpoints?

5.2 Using your own words, describe how you discretize a reservoir of length

Lx along the x-direction using n gridpoints.

5.3 Fig. 5.5 shows a reservoir with regular boundaries.
a. How many boundaries does this reservoir have along the x-direction?
Identify and name these boundaries.

b. How many boundaries does this reservoir have along the y-direction?
Identify and name these boundaries.

c. How many boundaries does this reservoir have along the z-direction?
Identify and name these boundaries.

d. How many boundaries does this reservoir have along all directions?
5.4 Consider the 2-D reservoir described in Example 5.5 and shown in

Fig. 5.12.
a. Identify the interior and boundary gridpoints in the reservoir.

b. Write the set of neighboring gridpoints (ψn) for each gridpoint in the

reservoir.

c. Write the set of reservoir boundaries (ξn) for each gridpoint in the

reservoir.

d. How many boundary conditions does each boundary gridpoint have?

How many fictitious wells does each boundary gridpoint have? Write

the terminology for the flow rate of each fictitious well.

e. How many flow terms does each boundary gridpoint have?

f. Add the number of flow terms and number of fictitious wells for each

boundarygridpoint.Do theyaddup to four for eachboundarygridpoint?

g. How many flow terms does each interior gridpoint have?

h. What can you conclude from your results of (f) and (g) earlier?
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5.5 Consider fluid flow in the 1-D horizontal reservoir shown in Fig. 5.21.
FIG. 5

FIG. 5
a. Write the appropriate flow equation for gridpoint n in this reservoir.

b. Write the flow equation for gridpoint 1 by finding ψ1 and ξ1 and then
use them to expand the equation in (a).

c. Write the flow equation for gridpoint 2 by finding ψ2 and ξ2 and then
use them to expand the equation in (a).

d. Write the flow equation for gridpoint 3 by finding ψ3 and ξ3 and then
use them to expand the equation in (a).
1 2 3

x

pbw
 = 2000 psia qscbE

 = –100 STB/D

.21 1-D reservoir in Exercise 5.5.
5.6 Consider fluid flow in the 2-D horizontal reservoir shown in Fig. 5.22.
a. Write the appropriate flow equation for gridpoint n in this reservoir.

b. Write the flow equation for gridpoint 1 by finding ψ1 and ξ1 and then
use them to expand the equation in (a).

c. Write the flow equation for gridpoint 7 by finding ψ7 and ξ7 and then
use them to expand the equation in (a).

d. Write the flow equation for gridpoint 15 by finding ψ15 and ξ15 and
then use them to expand the equation in (a).

e. Write the flow equation for gridpoint 19 by finding ψ19 and ξ19 and
then use them to expand the equation in (a).
1

6

16 17 18

19 20 21

7 8 9 10

11 12
13 14 15

No-flow boundary

x

y

dp  
dx bE

= –2 psi/ft

pbS
 = 3000 psia

pbw
 = 3000 psia

2 3 4 5

No-flow boundary

.22 1-D reservoir for Exercise 5.6.
5.7 Single-phase oil reservoir is described by four equally spaced gridpoints as

shown in Fig. 5.23. The reservoir is horizontal and has k¼25 md. Gridpoint

spacing is Δx¼500 ft, Δy¼700 ft, and h¼60 ft. Oil properties are

B¼1 RB/STB and μ¼0.5 cP. The reservoir left boundary is kept at constant

pressureof2500psia, and thereservoir rightboundary is sealed to flow.Awell

in gridpoint 3 produces 80STB/Dof oil.Assuming that the reservoir rock and

oil are incompressible, calculate the pressure distribution in the reservoir.



2 3 4
60 ft

500 ft 700 ft

x

y

z 80 STB/D

1 
No-flow boundarypbW

 = 2500 psia

FIG. 5.23 Discretized 1-D reservoir in Exercise 5.7.
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5.8 The 1-D horizontal oil reservoir shown in Fig. 5.24 is described by four

equally spaced gridpoints. Reservoir gridpoints have k¼90 md,

Δx¼300 ft, Δy¼250 ft, and h¼45 ft. Oil FVF and viscosity are 1RB/

STB and 2cP, respectively. The reservoir left boundary is maintained

at constant pressure of 2000psia, and the reservoir right boundary has

constant influx of oil at a rate of 80STB/D. Awell in gridpoint 3 produces

175STB/D of oil. Assuming that the reservoir rock and oil are incom-

pressible, calculate the pressure distribution in the reservoir.
qscbE

 = 80 STB/D

2 3 4
45 ft

300 ft 250 ft

x

y

z 175 STB/D

1 
pbW

 = 2500 psia

FIG. 5.24 Discretized 1-D reservoir in Exercise 5.8.
5.9 The 1-D horizontal oil reservoir shown in Fig. 5.25 is described by four

equally spaced gridpoints. Reservoir gridpoints have k¼120 md,

Δx¼500 ft, Δy¼450 ft, and h¼30 ft. Oil FVF and viscosity are 1RB/

STB and 3.7cP, respectively. The reservoir left boundary is subject to

constant pressure gradient of�0.2psi/ft, and the reservoir right boundary

is a no-flow boundary. A well in gridpoint 3 produces oil at a rate such
qsc3
  = ? STB/D

No-flow boundarydp  
dx bW

= –0.2 psi/ft
2 3 4

30 ft

500 ft 450 ft

x

y

z

1 

p3 = 1500 psia

FIG. 5.25 Discretized 1-D reservoir in Exercise 5.9.
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that the pressure of gridpoint 3 is maintained at 1500psia. Assuming that

the reservoir rock and oil are incompressible, calculate the pressure dis-

tribution in the reservoir. Then estimate well production rate.

5.10 The 1-D horizontal oil reservoir shown in Fig. 5.26 is described by

four equally spaced gridpoints. Reservoir gridpoints have k¼70 md,

Δx¼400 ft, Δy¼660 ft, and h¼10 ft. Oil FVF and viscosity are 1RB/

STB and 1.5cP, respectively. The reservoir left boundary is maintained

at constant pressure of 2700, and while the boundary condition at the res-

ervoir right boundary is not known, the pressure of gridpoint 4 is main-

tained at 1900psia. A well in gridpoint 3 produces 150STB/D of oil.

Assuming that the reservoir rock and oil are incompressible, calculate

the pressure distribution in the reservoir. Estimate the rate of oil that

crosses the reservoir right boundary.
p4 = 1900 psia

2 3 4
10 ft

400 ft 660 ft

150 STB/D

1 
pbW

 = 2700 psia

x

y

z

FIG. 5.26 Discretized 1-D reservoir in Exercise 5.10.
5.11 Consider the 2-D horizontal oil reservoir shown in Fig. 5.27. The reser-

voir is described using regular grid. Reservoir gridpoints have

Δx¼350 ft, Δy¼300 ft, h¼35 ft, kx¼160 md, and ky¼190 md. Oil

FVF and viscosity are 1RB/STB and 4.0cP, respectively. Boundary
No-flow boundary

Influx
bN

 = 0.02 STB/D-ft2

qsc5 
= –2000 STB/D

dp  
dx bW

= 0.10 psi/ft

2 3

 5
 6

300 ft

350 ft
x

y

pbS
 = 3200 psia

 8  9

1

 4

 7

No-flow boundary

FIG. 5.27 Discretized 2-D reservoir in Exercise 5.11.
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conditions are specified as shown in the figure. A well in gridpoint 5 pro-

duces oil at a rate of 2000STB/D. Assume that the reservoir rock and oil

are incompressible, and write the flow equations for gridpoints 4, 5, 6, 7,

8, and 9. Do not solve the equations.

5.12 Starting with Eq. (5.81a), which expresses the bulk volume of gridpoint

(i, j,k), derive Eq. (5.81c) for gridpoint (1, j,k) and Eq. (5.81d) for grid-

point (nr, j,k).

5.13 A 6-in. vertical well producing 500STB/D of oil is located in 16-acre

spacing. The reservoir is 30-ft thick and has a horizontal permeability

of 50md. The oil FVF and viscosity are 1RB/B and 3.5cP, respectively.

The reservoir external boundaries are no-flow boundaries. The reservoir

is simulated using four gridpoints in the radial direction as shown in

Fig. 5.28. Write the flow equations for all gridpoints. Do not substitute

for values on the RHS of equations.
i = 4i = 3i = 2i = 1

r

z

1 2  3  4

500 STB/D

No-flow boundary

No-flow boundary

30 ft

No-flow boundary

FIG. 5.28 Discretized reservoir in Exercise 5.13.
5.14 A 9⅝-in vertical well is located in 12-acre spacing. The reservoir thick-

ness is 50 ft. The horizontal and vertical reservoir permeabilities are 70

and 40md, respectively. The flowing fluid has a density, FVF, and vis-

cosity of 62.4 lbm/ft3, 1RB/B, and 0.7cP, respectively. The reservoir

external boundary in the radial direction is no-flow boundary, and the

well is completed in the top 25ft only and produces at a rate of

1000B/D. The reservoir bottom boundary is subject to influx such that

the reservoir boundary is maintained at 3000psia. The reservoir top

boundary is sealed to flow. Assuming the reservoir can be simulated

using two gridpoints in the vertical direction and four gridpoints in the

radial direction, as shown in Fig. 5.29, write the flow equations for all

gridpoints in this reservoir.



i = 4i = 3i = 2i = 1

k = 1

k = 2
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FIG. 5.29 Discretized 2-D radial-cylindrical reservoir in Exercise 5.14.

182 Petroleum reservoir simulation



Chapter 6
Well representation in
simulators
Petr

© 2
Chapter outline
6.1 Introduction 183

6.2 Single-block wells 184
oleum

020 El
6.2.1 Treatment of wells

in 1-D linear flow 184

6.2.2 Treatment of wells

in 1-D radial flow 186

6.2.3 Treatment of wells

in 2-D areal flow 187
6.3 Multiblock wells 194
6.3.1 Vertical effects

(flow within

wellbore) 194
Reservoir Simulation. https://doi.org/10.1016/B978-0-12-8

sevier Inc. All rights reserved.
6.3.2 Wellblock contribution

to well rate 194

6.3.3 Estimation of the

wellblock geometric

factor 198

6.3.4 Estimation of well

rate and FBHP 204
6.4 Practical considerations

dealing with modeling well

operating conditions 204

6.5 Summary 206

6.6 Exercises 207
6.1 Introduction

Wells in reservoir simulation are the most astute form of discontinuity. As such,

the difficulties encountered due to boundary conditions are accentuated by the

presence of wells. Yet, wells are paramount to reservoir evaluation because of

the fact that engineering is all about optimizing well performance. In general,

the contribution of any reservoir block penetrated by a well to the well flow rate

is independent of the flow equation for that block. Such contribution has to be

estimated separately from and then substituted into the flow equation for the

wellblock. Fluid flow toward a well in a wellblock is radial regardless of the

dimensionality of the flow problem. A well is modeled as a line source/sink

term. In this chapter, the emphasis in 1-D and 2-D flow problems is on the esti-

mation of the well geometric factor, while in 3-D flow problems, the focus is on

the distribution of the well rate among the different blocks that are penetrated by

the well. The estimation of the wellblock geometric factor is presented for a well

hosted by one block and falling inside block boundaries and a well hosted by

one block and falling on one or two of block boundaries (in 1-D and 2-D flow)

that are reservoir boundaries. We present the production rate equation for

a wellblock and the equations necessary for the estimation of the production rate

or flowing bottom-hole pressure (FBHP) for wells operating under different
19150-7.00006-2
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conditions, which include (1) a shut-in well, (2) a specified well production rate,

(3) a specified well pressure gradient, and (4) a specified well FBHP.

The production rate equation for a wellblock has the form of

qsci ¼�Gwi

Biμi
pi�pwf i
� �

(6.1)

where qsci, Gwi
, and pi¼ production rate, geometric factor, and pressure for
wellblock i, respectively; pwfi¼ well pressure opposite wellblock i; and Bi

and μi¼ fluid FVF and viscosity at the pressure of wellblock i. Eq. (6.1) is
consistent with the sign convention of negative flow rate for production and

positive flow rate for injection.
6.2 Single-block wells

In this section, we present the treatment of a well that penetrates a single block.

Wells in 1-D linear flow, 1-D radial flow, and 2-D areal flow fall into this

category.
6.2.1 Treatment of wells in 1-D linear flow

Fig. 6.1 depicts fluid flow in a 1-D linear flow problem. Fluid transfer into or out

of a reservoir block has two components, global fluid transfer, and local fluid

transfer. The global fluid transfer is linear and moves fluid from one block to

another, and the local fluid transfer is radial and moves fluid within the block to

a production well (or from an injection well). Although this treatment of wells is

new for 1-D flow problems, it is consistent with and widely accepted in model-

ing fluid flow in 2-D, single-layer reservoirs. For a boundary gridblock

(Fig. 6.2) or a boundary gridpoint (Fig. 6.3) in 1-D flow problems, it is important

to differentiate between the source term that represents a real (or physical) well

and the source term that represents a fictitious well (or boundary condition).

This differentiation is crucial because flow resulting from a boundary condition

is always linear, whereas flow to or from a real well is always radial (see

Example 7.6). For example, the fluid that crosses the reservoir right boundary

(gridblock 5 in Fig. 6.2 or gridpoint 5 in Fig. 6.3) is estimated from the specific
2 3 4 51 

x

y

6

Local flow around a production well

Global flow between blocks
Local flow around an injection well

FIG. 6.1 Global flow and local flow around wells in 1-D reservoirs.
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Radial flow due to well Linear flow due to boundary condition

FIG. 6.2 Well at a boundary block in a block-centered grid.

2 3 4 51 

x

y

Radial flow due to well Linear flow due to boundary condition

FIG. 6.3 Well at a boundary block in a point-distributed grid.
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boundary conditions, the list of which was given in Chapters 4 and 5. However,

the fluid that enters or leaves the block (gridblock 1 in Fig. 6.2 or gridpoint 1 in

Fig. 6.3) at any point, including the boundary point, through a well is estimated

from the radial flow equation of a real well given by Eq. (6.1). It must be men-

tioned; however, that modeling linear-flood experiments should use boundary

conditions to represent injection and production at core end points. The logic

behind this choice is that the injection and production ends of a core flood

are designed such that the end effect is minimized and, consequently, linear

flow near core end points is realized using end stems. An end stem (or end plug)

is a thin cylinder that has a number of concentric grooves intersected by a num-

ber of radial grooves on the side adjacent to the core. The injected fluid enters

through a hole at the center on the other side of the end stem and flows into the

grooves making a uniform distribution of fluid across the face of the core

adjacent to the grooves. This design of end stems results in linear flow of fluid

along the axis of the core.

For a real well, the following equations apply.

Shut-in well
qsci ¼ 0 (6.2)

Specified well production rate
qsci ¼ qspsc (6.3)

Specified well pressure gradient
qsci ¼�2πβcrwkHi
hi

Biμi

∂p

∂r

����
rw

(6.4)

Specified well FBHP
qsci ¼�Gwi

Biμi
pi�pwf i
� �

(6.1)
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where Gwi
is estimated using Eq. (6.12) in Section 6.2.3. The dimensions and
rock properties of wellblock i are dealt with as explained for 2-D areal flow

in Section 6.2.3.

6.2.2 Treatment of wells in 1-D radial flow

In1-D radial flow in a single-well simulation, thewell is hosted by the inner ringlike

blocks termed here block 1 (i¼1). Traditionally, wells in radial flow (single-well

simulation) are treated as boundary conditions (Aziz and Settari, 1979; Ertekin

et al., 2001). In the engineering approach, suchwells can be treated as either source

terms (real wells) or fictitious wells (boundary conditions) because in cylindrical

coordinates, both real wells and fictitious wells have radial flow. Chapters 4 and 5

present equations for the flow rate of fictitious wells. In this section, we present

equations for the flow rate ofwells as a source term. Thewell production rate equa-

tions for block 1, under various well operating conditions, are given as follows:

Shut-in well
qsc1 ¼ 0 (6.5)

Specified well production rate

qsc1 ¼ qspsc (6.6)

Well FBHP can be estimated from Eq. (6.9), with qspsc replacing qsc1.

Specified well pressure gradient

qsc1 ¼�2πβcrwkH1
h1

B1μ1

∂p

∂r

����
rw

(6.7)

Specified well FBHP

Darcy’s law for radial flow applies; that is,

qsc ¼� 2πβckHh

Bμ log e re=rwð Þ pe�pwf
� �

(6.8)

For a block-centered grid, consider the flow of fluid in the radial segment
enclosed between the external radius r1 (the point representing gridblock 1)

and the well radius rw (the internal radius of gridblock 1). In this case, re¼ r1,
pe¼p1, and qsc¼qsc1. Therefore, Eq. (6.8) becomes:

qsc1 ¼� 2πβckH1
h1

B1μ1 log e r1=rwð Þ p1�pwf
� �

(6.9a)

from which
Gw1
¼ 2πβckH1

h1
log e r1=rwð Þ (6.10a)

Eq. (6.10a) can also be obtained by finding Gri�1/2
for i¼1 in Table 4.2
or Table 4.3, discarding the second term in the denominator that corresponds

to the nonexistent gridblock 0 and observing that, for a block-centered grid,
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r L1/2¼ rw by definition if Table 4.2 is used or (r1/rw)¼ [αlgloge(αlg)/(αlg�1)], as

given by Eq. (4.87), if Table 4.3 is used.

For a point-distributed grid, consider the flow of fluid between gridpoints

1 and 2. These two gridpoints can be looked at as the internal and external

boundaries of a radial reservoir segment. The application of Darcy’s law for

radial flow gives

qsc1 ¼�2πβc kHh=Bμð Þ1,2
log e r2=rwð Þ p2�p1ð Þ (6.9b)

because pe¼p2, pwf¼p1, re¼ r2, and r1¼ rw. Eq. (6.9b) is in the form of
Eq. (6.8), where

Gw1
¼ 2πβc kHhð Þ1,2

log e r2=rwð Þ (6.10b)

Eq. (6.10b) can also be obtained by finding Gri+1/2 for i¼1 in Table 5.2 or
Table 5.3 and observing that for a point-distributed grid, r1¼ rw by definition

and (r2/r1)¼αlg as given by Eq. (5.74). Note that for constant permeability

(k1¼k2¼kH) and constant thickness (h1¼h2¼h), (kHh)1,2¼kHh¼kH1
h1.

You will notice that in a point-distributed grid, there is no need to write the

flow equation for gridpoint 1 because the pressure of gridpoint 1 is known

(p1¼pwf). In fact, this equation is nothing but Eq. (6.9b), which gives an esti-

mate of the flow rate of wellblock 1 (refer to Exercise 6.7). The pressure of grid-

point 1 (p1¼pwf); however, is substituted in the flow equation for gridpoint 2.
6.2.3 Treatment of wells in 2-D areal flow

The wellblock pressure (p) and FBHP (pwf) of a vertical well hosted by a well-

block in a single-layer reservoir are related through the inflow performance

relationship (IPR) equation (Peaceman, 1983):

qsc ¼�Gw

Bμ
p�pwf
� �

(6.11)

where
Gw ¼ 2πβckHh

log e req=rw
� �

+ s
� � (6.12)

For anisotropic wellblock properties, kH is estimated from the geometric mean
permeability,

kH ¼ kxky
� �0:5

(6.13)

The equivalent wellblock radius, for a well located at the center of a
rectangular wellblock having anisotropic permeability as shown in Fig. 6.4,

is given by
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FIG. 6.4 Equivalent wellblock radius in a rectangular block showing anisotropy.
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req ¼ 0:28
ky=kx
� �0:5 Δxð Þ2 + kx=ky

� �0:5 Δyð Þ2
h i0:5

ky=kx
� �0:25

+ kx=ky
� �0:25h i (6.14)

For isotropic permeability in the horizontal plane (kx¼ky) and a rectangular
wellblock, Eq. (6.14) reduces to

req ¼ 0:14 Δxð Þ2 + Δyð Þ2
h i0:5

(6.15)

For isotropic permeability and a square wellblock (Δx¼Δy), Eq. (6.15)
becomes

req ¼ 0:198Δx (6.16)

Eqs. (6.14) through (6.16) apply to both block-centered and point-distributed
grids. These equations, however, assume that the vertical well coincides with

the center of the block hosting the well. They also have no provisions for the

departure of the well axis from the block center. Therefore, the closer the well

to the wellblock center, the better the representation of pressure distribution

around the well. For centered wells in regularly distributed grids, the application

of these equations is equally good for both grids, but the block-centered grid is

preferred in an irregularly distributed grid because the wellblock center always

coincides with the well. For wells that fall on reservoir boundaries (see

Section 6.3.3); however, the point-distributed grid is preferred because the well

and the gridpoint coincide.

For horizontal wells, Eq. (6.11) applies but with an appropriate definition of

Gw. Further details on the estimation of Gw for horizontal wells can be found

elsewhere (Babu and Odeh, 1989; Ertekin et al., 2001).

Examples 6.1 and 6.2 demonstrate the estimation of the wellblock geometric

factor in square and rectangular blocks, isotropic and anisotropic permeability,

and wells with and without skin. Examples 6.3 through 6.6 demonstrate the esti-

mations of the well production rate and obtain the wellblock production rate

equation under various well operating conditions.



TABLE 6.1 Dimensions, permeabilities, and skin factors of wellblocks.

Well ID Wellblock

Δx (ft) Δy (ft) h (ft) kx (md) ky (md) s

W-1 208 832 30 100 225 0

W-2 208 832 30 150 150 0

W-3 416 416 30 100 225 0

W-4 416 416 30 150 150 0
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Example 6.1 A single-phase oil reservoir, consisting of a horizontal layer, has

many vertical production wells. Table 6.1 identifies four of these wells and the

dimensions, permeabilities, and skin factors of their wellblocks. Each well is

located at the center of the wellblock and fully penetrates the layer. The oil

FVF and viscosity are 1RB/STB and 2cP, respectively. Well diameter is

7 in. Calculate the wellblock geometric factors for the wells given in Table 6.1.

Solution

Well W-1
The wellblock has kx 6¼ky andΔx 6¼Δy. Therefore, Eqs. (6.14) and (6.13) can

be used to estimate the equivalent wellblock radius and horizontal permeability,

respectively:

req ¼ 0:28
225=100ð Þ0:5 208ð Þ2 + 100=225ð Þ0:5 832ð Þ2

h i0:5
225=100ð Þ0:25 + 100=225ð Þ0:25

h i ¼ 99:521 ft

and
kH ¼ 100�225½ �0:5 ¼ 150md

The wellblock geometric factor is estimated using Eq. (6.12):
Gw ¼ 2π�0:001127�150�30

log e 99:521= 3:5=12ð Þ½ �+ 0f g¼ 5:463RB-cP=D-psi

Well W-2

The wellblock has kx¼ky, but Δx 6¼Δy. Therefore, Eq. (6.15) can be used to

estimate the equivalent wellblock radius:

req ¼ 0:14� 208ð Þ2 + 832ð Þ2
h i0:5

¼ 120:065 ft

and
kH ¼ kx ¼ ky ¼ 150md
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The wellblock geometric factor is estimated by substituting values into
Eq. (6.12), yielding

Gw ¼ 2π�0:001127�150�30

log e 120:065= 3:5=12ð Þ½ �+ 0f g¼ 5:293RB-cP=D-psi

Well W-3

The wellblock has kx 6¼ky, but Δx¼Δy. Therefore, Eqs. (6.14) and (6.13)

can be used to estimate the wellblock equivalent radius and horizontal

permeability:

req ¼ 0:28
225=100ð Þ0:5 416ð Þ2 + 100=225ð Þ0:5 416ð Þ2

h i0:5
225=100ð Þ0:25 + 100=225ð Þ0:25

h i ¼ 83:995 ft

and
kH ¼ 100�225½ �0:5 ¼ 150md

The wellblock geometric factor is estimated by substituting values into
Eq. (6.12), yielding

Gw ¼ 2π�0:001127�150�30

log e 83:995= 3:5=12ð Þ½ �+ 0f g¼ 5:627RB-cP=D-psi

Well W-4

The wellblock has kx¼ky and Δx¼Δy. Therefore, Eq. (6.16) can be used to

estimate the equivalent wellblock radius:

req ¼ 0:198�416¼ 82:364 ft

and
kH ¼ 150md

The wellblock geometric factor is estimated by substituting values into
Eq. (6.12), yielding

Gw ¼ 2π�0:001127�150�30

log e 82:364= 3:5=12ð Þ½ �+ 0f g¼ 5:647RB-cP=D-psi

It should be noted that even though all four wellblocks have the same thick-

ness of 30 ft, area of 173,056 ft2, and horizontal permeability of 150md, the well

geometric factors are different because of heterogeneity and/or wellblock

dimensions.

Example 6.2 Consider well W-1 in Example 6.1 and estimate the well geomet-

ric factors for the following cases: (1) no mechanical well damage; that is, s¼0;

(2) well damage resulting in s¼ +1; and (3) well stimulation resulting in

s¼ �1.
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Solution

The wellblock of well W-1 has kx 6¼ky and Δx 6¼Δy. Therefore, Eqs. (6.14)
and (6.13) can be used to estimate the equivalent wellblock radius and horizon-

tal permeability:

req ¼ 0:28
225=100ð Þ0:5 208ð Þ2 + 100=225ð Þ0:5 832ð Þ2

h i0:5
225=100ð Þ0:25 + 100=225ð Þ0:25

h i ¼ 99:521 ft

and
kH ¼ 100�225½ �0:5 ¼ 150md

The wellblock geometric factor is estimated using Eq. (6.12):

1. For s¼0 (zero skin)

Gw ¼ 2π�0:001127�150�30

log e 99:521= 3:5=12ð Þ½ �+ 0f g¼ 5:463RB-cP=D-psi

2. For s¼ +1 (positive skin)

Gw ¼ 2π�0:001127�150�30

log e 99:521= 3:5=12ð Þ½ �+ 1f g¼ 4:664RB-cP=D-psi

3. For s¼ �1 (negative skin)

Gw ¼ 2π�0:001127�150�30

log e 99:521= 3:5=12ð Þ½ ��1f g¼ 6:594RB-cP=D-psi

This example demonstrates the effect of well damage and stimulation on the

well geometric factor and, in turn, on the well production rate. The reported

damage in this well reduces the well geometric factor by 14.6%, where as

the reported stimulation increases, the well geometric factor by 20.7%.

Example 6.3 Consider well W-1 in Example 6.1 and estimate the well produc-

tion rate for the following possible operating conditions: (1) Well is closed,

(2) has constant production rate of 3000STB/D, and (3) has pressure gradient

at sandface of 300psi/ft, and (4) wellblock pressure is po, and FBHP is kept at

2000psia.

Solution

For well W-1, req¼99.521 ft, kH¼150 md, and Gw¼5.463 RB-cP/D-psi

from Example 6.1.

1. For a closed well, Eq. (6.2) applies. Therefore, qsc1¼0 STB/D.

2. For a specified production rate, Eq. (6.3) applies. Therefore, qsc1¼ �3000

STB/D.

3. For a specified pressure gradient, Eq. (6.4) applies. Therefore,



192 Petroleum reservoir simulation
qsc1 ¼�2π�0:001127� 3:5=12ð Þ�150�30

1�2
�300¼�1394:1STB=D
4. For a specified FBHP, Eq. (6.1) applies. Therefore,

qsc1 ¼�5:463

1�2
po�2000ð Þ

or
qsc1 ¼�2:7315 po�2000ð Þ STB=D (6.17)

If, for example, the wellblock pressure is 3000psia, then Eq. (6.17)
predicts
qsc1 ¼�2:7315 3000�2000ð Þ¼�2731:5STB=D:
Example 6.4 Estimate the FBHP of the well hosted by gridblock 4 in Example

4.1. The wellbore diameter is 7 in., and the well has zero skin.

Solution

FromExample 4.1, gridblock 4 has the following dimensions and properties:

Δx¼1000 ft,Δy¼1200 ft, h¼Δz¼75 ft, and kx¼15 md; the flowing fluid has

B¼1 RB/STB and μ¼10 cP. The well in gridblock 4 has qsc4¼ �150 STB/D.

The local flow of fluid toward this well is radial. The equivalent wellblock

radius can be estimated using Eq. (6.15):

req ¼ 0:14� 1000ð Þ2 + 1200ð Þ2
h i0:5

¼ 218:687 ft

and
kH ¼ kx ¼ 15md

The wellblock geometric factor is estimated by substituting values into
Eq. (6.12), yielding

Gw ¼ 2π�0:001127�15�75

log e 218:687= 3:5=12ð Þ½ �+ 0f g¼ 1:203RB-cP=D-psi

Applying Eq. (6.1) gives

�150¼� 1:203

1�10
p4�pwf 4
� �

from which the FBHP of the well in Example 4.1, where qsc4¼ �150 STB/D,
can be estimated as a function of the pressure of gridblock 4 as

pwf 4 ¼ p4�1246:9psia (6.18)
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Example 6.5 Consider the single-well simulation in Example 4.11. Write the

production rate equation for the well in gridblock 1 for each of the following

well operating conditions: (1) The pressure gradient at sandface is specified

at 200psi/ft, and (2) the FBHP at the middle of formation is kept constant at

2000psia. Rock and fluid properties are as follows: kH¼233 md, B¼1 RB/

STB, and μ¼1.5 cP.

Solution

The following data are taken from Example 4.11: re¼744.73 ft, rw¼0.25 ft,

and h¼100 ft. In addition, discretization in the radial direction results in

r1¼0.5012 ft, r2¼2.4819 ft, r3¼12.2914 ft, r4¼60.8715 ft, and r5¼301.457 ft.

1. For a specified pressure gradient, Eq. (6.7) applies. Therefore

qsc1 ¼�2π�0:001127�0:25�233�100

1�1:5
�200¼�5499:7STB=D
2. For a specified FBHP, Eq. (6.9a) applies. Therefore

qsc1 ¼� 2π�0:001127�233�100

1�1:5� log e 0:5012=0:25ð Þ p1�2000ð Þ

or
qsc1 ¼ 158:1407 p1�2000ð ÞSTB=D (6.19)

If, for example, the wellblock pressure is 2050psia, then Eq. (6.19)
predicts
qsc1 ¼�158:1407 2050�2000ð Þ¼�7907:0STB=D:
Example 6.6 Write the production rate equation for the well in gridpoint 9 in

Example 5.5, and then estimate the FBHP of the well. The wellbore diameter is

7 in., and the wellblock has zero skin.

Solution
From Example 5.5, the block represented by gridpoint 9 has the following

dimensions and properties: Δx¼250 ft, Δy¼300 ft, h¼100 ft, kx¼270 md,

and ky¼220 md; the flowing fluid has B¼1 RB/STB and μ¼2 cP. The well

(or wellblock 9) production rate is specified at qsc9¼ �4000 STB/D.

The equivalent wellblock radius and horizontal permeability can be esti-

mated using Eqs. (6.14) and (6.13), yielding

req ¼ 0:28
220=270ð Þ0:5 250ð Þ2 + 270=220ð Þ0:5 300ð Þ2

h i0:5
220=270ð Þ0:25 + 270=220ð Þ0:25

h i ¼ 55:245 ft
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and
kH ¼ 270�220½ �0:5 ¼ 243:72md

The wellblock geometric factor is estimated by substituting values into
Eq. (6.12), resulting in

Gw ¼ 2π�0:001127�243:72�100

log e 55:245= 3:5=12ð Þ½ �+ 0f g ¼ 32:911RB-cP=D-psi

Applying Eq. (6.1) gives
qsc9 ¼�32:911

1�2
p9�pwf 9
� �¼�16:456 p9�pwf 9

� �
STB=D

from which the FBHP of the well in Example 5.5, where qsc9¼ �4000 STB/D,
can be estimated as a function of the pressure of gridpoint 9 as

pwf 9 ¼ p9�243:1psia (6.20)
6.3 Multiblock wells

In this section, we present treatments of pressure variations within the wellbore,

allocation of the well production rate among all layers penetrated by the well,

and the treatment of the flow between hosting block and well, especially for

wells that fall on reservoir boundaries sealed off to flow.

6.3.1 Vertical effects (flow within wellbore)

Pressures within the wellbore, opposite wellblocks, differ because of hydro-

static pressure, frictional loss due to flow, and kinetic energy. For vertical wells,

the latter two factors can be neglected; therefore, pressure variation in the well-

bore resulting from hydrostatic pressure can be expressed as.

pwf i ¼ pwf ref + γwb Zi�Zref
� �

(6.21)

where
γwb ¼ γcρwbg (6.22)

and
ρwb ¼
ρsc
B

(6.23)

Average FBHP can be used to obtain an estimate for B.
6.3.2 Wellblock contribution to well rate

In this case, the vertical well penetrates several blocks. Fig. 6.5 shows a well

that penetrates wellblocks located in different layers; that is, the wellblocks



Δzn3

Δzn2

Δzn1
pwfn1

pwfn2

pwfn3

Zn1

Zn2

Zn3

pwfref

qsc

Zref

Yw = {n1 ,n2 ,n3 }

qscn1

qscn2

qscn3

FIG. 6.5 Cross section showing pressures within vertical wellbore.

Well representation in simulators Chapter 6 195
are vertically stacked. The concern here is to estimate the production rate of

wellblock i, where wellblock i is a member of the set of all blocks that are pen-

etrated by the well; that is, i2ψw. The equations in this section also apply to the

well in single-well simulation if the appropriate wellblock geometric factors

are used.

Shut-in well
qsci ¼ 0 (6.2)

Specified well production rate

The contribution of wellblock i to the well production rate is given by

Eq. (6.1):

qsci ¼�Gwi

Biμi
pi�pwf i
� �

(6.1)

where pwfi is given by Eq. (6.21).
Combining Eqs. (6.1) and (6.21) yields

qsci ¼�Gwi

Biμi
pi�pwf ref � γwb Zi�Zref

� �h i
(6.24)

The sum of the production rates of all wellblocks must add up to the

specified well production rate; that is,

qspsc ¼
X
i2ψw

qsci (6.25)
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The FBHP of the well (pwfref) can be estimated by combining Eqs. (6.24) and
(6.25), yielding

pwf ref ¼

X
i2ψw

Gw

Bμ

� �
i

pi� γwb Zi�Zref
� �� �	 


+ qspsc

X
i2ψw

Gw

Bμ

� �
i

(6.26)

For a specified well production rate, Eq. (6.26) is used to estimate pwfref, and

this estimate is subsequently used in Eq. (6.24) to calculate the wellblock pro-

duction rate. The use of Eq. (6.26), however, requires the knowledge of the

unknown pressure values of all wellblocks. An implicit treatment of pwfref solves
the problem, but such treatment leads to complications (e.g., construction and

solution of the resulting matrix equation) that are beyond the scope of this intro-

ductory book. Ertekin et al. (2001) presented the details of the implicit treatment

of pwfref. One solution is to estimate pwfref at the beginning of each time step (old

time level n); another solution is to assume that all vertically stacked wellblocks

have the same pressure drop (pi�pwfi¼Δp). Solving Eq. (6.26) for Δp and

substituting the result into Eq. (6.1) yields.

qsci ¼
Gw

Bμ

� �
iX

l2ψw

Gw

Bμ

� �
l

qspsc (6.27)

Furthermore, if fluid properties are not sensitive to small pressure variations
and all vertically stacked wellblocks are assumed to have the same equivalent

well radius and skin factor, the aforementioned equation can be simplified to.

qsci ¼
kHhð ÞiX

l2ψw

kHhð Þl
qspsc (6.28)

Eq. (6.28) prorates the well production rate among vertically stacked well-
blocks according to their capacities (kHh)i. In addition, if the horizontal perme-

ability of various layers is the same, then the well production rate is prorated

according to wellblock thickness:

qsci ¼
hiX

l2ψw

hl
qspsc (6.29)

Specified well pressure gradient

For a specified well pressure gradient, the contribution of wellblock i to the

well production rate is given by.

qsci ¼�2πFiβcrwkHi
hi

Biμi

∂p

∂r

����
rw

(6.30)
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where Fi¼ ratio of wellblock i area to the theoretical area from which the well
withdraws its fluid (see Section 6.3.3).

Specified well FBHP
The contribution of wellblock i to the well production rate is given by

Eq. (6.24):

qsci ¼�Gwi

Biμi
pi�pwf ref � γwb Zi�Zref

� �h i
(6.24)

The following example demonstrates the estimation of the production rate of
individual wellblocks that are penetrated by the same well and the estimation of

FBHP of the well.

Example 6.7 Consider the well in Example 5.9. The well production rate

is specified at 2000B/D of water. (1) Prorate the well production rate

between wellblocks 5 and 9. (2) Estimate the FBHP of the well at the for-

mation top if the pressure of gridpoints 5 and 9 are 3812.5 and 3789.7psia,

respectively. (3) Prorate the well production rate between wellblocks 5 and 9

if the pressure of gridpoints 5 and 9 is known a priori as given earlier.

Assume that the well fully penetrates both wellblocks and uses open well

completion.

Solution

The following data are taken from Example 5.9: re¼526.6 ft, rw¼0.25 ft,

kH¼150 md, B¼1 RB/STB, μ¼0.5 cP, and γ¼0.4333 psi/ft. In addition, dis-

cretization in the radial direction results in r1¼ rw¼0.25 ft, r2¼3.2047 ft,

r3¼41.080 ft, and r4¼526.60 ft; discretization in the vertical direction results

in h5¼15, Z5¼15, h9¼7.5, and Z9¼0 ft. The FBHP is to be reported at the

elevation of the formation top; that is, Zref¼0 ft.

1. The well in this problem is completed in wellblocks 5 and 9; that is,

ψw¼{5,9}. For a point-distributed grid, the wellblock geometric factors

for wellblocks 5 and 9 are estimated using Eq. (6.10b), yielding

Gw5
¼ 2πβckH5

h5
log e r2=rwð Þ¼

2π�0:001127�150�15

log e 3:2047=0:25ð Þ ¼ 6:2458B-cP=D-psi

and
Gw9
¼ 2πβckH9

h9
log e r2=rwð Þ¼

2π�0:001127�150�7:5

log e 3:2047=0:25ð Þ ¼ 3:1229B-cP=D-psi
Eq. (6.27) can be used to prorate well rate among wellblocks, resulting in
qsc5 ¼
Gw

Bμ

� �
5

Gw

Bμ

� �
5

+
Gw

Bμ

� �
9

qspsc ¼
6:2458

1�0:5

� �

6:2458

1�0:5

� �
+

3:1229

1�0:5

� ��2000¼ 1333:33B=D



198 Petroleum reservoir simulation
and
qsc9 ¼
Gw

Bμ

� �
9

Gw

Bμ

� �
5

+
Gw

Bμ

� �
9

qspsc ¼
3:12299

1�0:5

� �

6:24588

1�0:5

� �
+

3:12299

1�0:5

� ��2000

¼ 666:67B=D

Note that in this case, the wellblock rates can be prorated according to
thickness using Eq. (6.29) because the FVF, viscosity, and horizontal per-

meability are constant.
2. The FBHP at the reference depth can be estimated using Eq. (6.26):

pwf ref ¼
6:2458

1�0:5

� �
3812:5�0:4333 15�0ð Þ½ � + 3:1229

1�0:5

� �
3789:7�0:4333 0�0ð Þ½ ��2000

6:2458

1�0:5
+
3:1229

1�0:5

or
pwf ref ¼ 3693:8psia (6.31)

3. The first step involves the estimation of the FBHP at the reference depth as

shown in the previous step (2). The result is given by Eq. (6.31) as

pwfref¼3693.8 psia. The second step involves applying Eq. (6.24) for each

wellblock, yielding

qsc5 ¼
6:2458

1�0:5

� �
3812:5�3693:8�0:4333 15�0ð Þ½ � ¼ 1401:56B=D:

and
qsc9 ¼
3:1229

1�0:5

� �
3789:7�3693:8�0:4333 0�0ð Þ½ � ¼ 598:97B=D
6.3.3 Estimation of the wellblock geometric factor

In general, the geometric factor for wellblock i (Gwi
) is a fraction of the

theoretical well geometric factor (G∗
wi
):

Gwi
¼Fi�G∗

wi
(6.32)

where Fi¼ ratio of wellblock area to the theoretical area from which the well
withdraws its fluid. The geometric factor depends on well location in the well-

block and whether or not it falls on no-flow reservoir boundaries.

Fig. 6.6 shows a discretized reservoir surrounded by no-flow boundaries

and penetrated by a few vertical wells. Two of these wells fall at the center

of wellblocks (W-A and W-K), four fall on one reservoir boundary (wells
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W-B, W-C, W-D, and W-E), and five fall at the intersection of two reservoir

boundaries (W-F, W-G, W-H, W-I, and W-J). Fi¼1 if the well falls within

the boundaries of a wellblock, Fi ¼ 1⁄2 if the well falls on one reservoir boundary,

and Fi ¼ 1⁄4 if the well falls at the intersection of two reservoir boundaries. The

theoretical well geometric factor depends on well location, well radius, and

the dimensions and permeabilities of the wellblock. To estimate the geometric

factor for wellblock i, the dimensions of the area from which the well

withdraws its fluid (Δx�Δy) are first determined. This is followed by using

Eq. (6.13) to estimate the horizontal permeability for wellblock i; Eq. (6.33),
(6.34), or (6.35) to estimate the theoretical equivalent wellblock radius for

block-centered grid; and Eq. (6.12) to estimate the theoretical well geometric

factor (G∗
wi
). Finally, Eq. (6.32) is used to estimate the geometric factor for well-

block i (Gwi
).

For vertically stacked wellblocks such as those shown in Fig. 6.5, Fi¼1,

Δx¼Δxi, and Δy¼Δyi. Therefore, the theoretical well geometric factor and

the geometric factor for wellblock i are identical; that is, Gwi
¼G∗

wi
. In this

section, we present configurations in which the well is located on one and

two reservoir boundaries sealed off to flow. We consider wells that are located

at no-flow reservoir boundaries and that each produce from a single block
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(W-B, W-C, W-D, W-E, and W-F). There are three possible configurations.

The wellblock geometric factor in each configuration is estimated as follows

(Peaceman, 1987).

Configuration 1 Fig. 6.7a presents a well located at the south boundary of a

boundary wellblock that falls on the reservoir south boundary (W-B, hosted by

block 2 in Fig. 6.6). Fig. 6.7b depicts the theoretical area from which the well

withdraws fluid that is twice the area of the hosting wellblock. Fi ¼ 1⁄2 as

shown in Fig. 6.7c and reqi and G
∗
wi
are calculated using Eqs. (6.33) and (6.12):

reqi ¼ 0:1403694 Δx2 +Δy2
� �0:5

exp Δy=Δxð Þ tan�1 Δx=Δyð Þ� �
(6.33)

A well that is located at the north boundary of a boundary wellblock (well
W-C, hosted by block 35 in Fig. 6.6) receives similar treatment.

Configuration 2 Fig. 6.8a presents a well located at the east boundary of a

boundary wellblock that falls on the reservoir east boundary (W-D, hosted

by block 18 in Fig. 6.6). Fig. 6.8b depicts the theoretical area from which

the well withdraws fluid that is twice the area of the hosting wellblock.

Fi ¼ 1⁄2 as shown in Fig. 6.8c and reqi and G∗
wi
are calculated using Eqs. (6.34)

and (6.12):

reqi ¼ 0:1403694 Δx2 +Δy2
� �0:5

exp Δx=Δyð Þ tan�1 Δy=Δxð Þ� �
(6.34)

A well that is located at the west boundary of a boundary wellblock (W-E,
hosted by block 19 in Fig. 6.6) receives similar treatment.

Configuration 3 Fig. 6.9a presents a well located at the intersection of the south

and east boundaries of a wellblock that falls on the reservoir south and east

boundaries (W-F, hosted by block 6 in Fig. 6.6). Fig. 6.9b depicts the theoretical

area from which the well withdraws fluid that is four times the area of the
x
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hosting wellblock. Fi ¼ 1
�
4 as shown in Fig. 6.9c and reqi and G

∗
wi
are calculated

using Eqs. (6.35) and (6.12):

reqi ¼ Δx2 +Δy2
� �0:5

0:3816 +
0:2520

Δy=Δxð Þ0:9401 + Δx=Δyð Þ0:9401
" #

(6.35)

A well that is located at the intersection of the south and west (W-J), west
and north (W-H and W-I), or east and north (W-G) boundaries of the reservoir

receives similar treatment.

Example 6.8 The single-phase oil, heterogeneous, anisotropic reservoir

shown in Fig. 6.6 has many vertical production wells. The reservoir consists

of a 40-ft-thick horizontal layer and has no-flow boundaries. Table 6.2 lists

the identification of a few of these wells and the dimensions and permeabilities

of the wellblocks. Each well fully penetrates the layer, and all wells were drilled

with a 7-in. bit and have open-hole completion. Calculate the wellblock

geometric factors for the wells given in Table 6.2. Assume zero skin factors.

Solution

Well W-A



TABLE 6.2 Wells and their wellblock dimensions and properties for Example

6.8.

Well ID

Wellblock

order

Wellblock dimensions

Wellblock

permeabilities

Δx (ft) Δy (ft) h (ft) kx (md) ky (md)

W-A 20 300 200 40 86 142

W-B 2 300 250 40 86 65

W-D 18 400 450 40 156 117

W-F 6 400 250 40 156 65
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Wellblock 20 totally hosts well W-A, which falls at its center or inside

the gridblock boundaries. Therefore, Fi¼1, Δx¼Δxi¼300 ft, and Δy¼
Δyi¼200 ft. Wellblock 20 has kx¼86 md and ky¼142 md. Eqs. (6.14) and

(6.13) are used to estimate the equivalent wellblock radius and horizontal

permeability, yielding

req20 ¼ 0:28
142=86ð Þ0:5 300ð Þ2 + 86=142ð Þ0:5 200ð Þ2

h i0:5
142=86ð Þ0:25 + 86=142ð Þ0:25

h i ¼ 53:217 ft

and
kH20
¼ 86�142½ �0:5 ¼ 110:51md

The well geometric factor specific to wellblock 20 is estimated by substitut-
ing values into Eq. (6.12), resulting in

G∗
w20

¼ 2π�0:001127�110:51�40

log e 53:217= 3:5=12ð Þ½ �+ 0f g ¼ 6:012RB-cP=D-psi

The geometric factor for wellblock 20 is obtained using Eq. (6.32), yielding
Gw20
¼ 1�6:012¼ 6:012RB-cP=D-psi

Well W-B

Wellblock 2 hosts well W-B, which falls at the south gridblock boundary

(Configuration 1). Therefore, Fi ¼ 1⁄2, Δx¼Δxi¼300 ft, and Δy¼Δyi¼
250 ft. Wellblock 2 has kx¼86 md and ky¼65 md. Eqs. (6.33) and (6.13) are

used to estimate the equivalent wellblock radius and horizontal permeability,

yielding
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req2 ¼ 0:1403694 300ð Þ2 + 250ð Þ2
h i0:5

exp 300=250ð Þ tan�1 250=300ð Þ� �
¼ 126:175 ft

and
kH2
¼ 86�65½ �0:5 ¼ 74:766md

The well geometric factor specific to wellblock 2 is estimated by substitut-
ing values into Eq. (6.12), resulting in

G∗
w2
¼ 2π�0:001127�74:766�40

log e 126:175= 3:5=12ð Þ½ �+ 0f g¼ 3:489RB-cP=D-psi

The geometric factor for Wellblock 2 is obtained using Eq. (6.32), yielding
Gw2
¼ 1⁄2�3:489¼ 1:744RB-cP=D-psi

Well W-D

Wellblock 18 hosts well W-D, which falls at the east gridblock boundary

(Configuration 2). Therefore, Fi ¼ 1
�
2, Δx¼Δxi¼400 ft, and Δy¼Δyi¼

450 ft. Wellblock 18 has kx¼156 md and ky¼117 md. Eqs. (6.34) and (6.13)

are used to estimate the equivalent wellblock radius and horizontal perme-

ability, yielding

req18 ¼ 0:1403694 400ð Þ2 + 450ð Þ2
h i0:5

exp 400=450ð Þ tan�1 450=400ð Þ� �
¼ 178:97 ft

and
kH18
¼ 156�117½ �0:5 ¼ 135:10md

The well geometric factor specific to wellblock 18 is estimated by substitut-
ing values into Eq. (6.12), resulting in

G∗
w18

¼ 2π�0:001127�135:10�40

log e 178:97= 3:5=12ð Þ½ �+ 0f g ¼ 5:961RB-cP=D-psi

The geometric factor for wellblock 18 is obtained using Eq. (6.32), yielding

Gw18
¼ 1⁄2�5:961¼ 2:981RB-cP=D-psi

Well W-F

Wellblock 6 hosts well W-F, which falls at gridblock south and east bound-

aries (Configuration 3). Therefore, Fi ¼ 1⁄4, Δx¼Δxi¼400 ft, and Δy¼Δyi¼
250 ft. Wellblock 6 has kx¼156 md and ky¼65 md. Eqs. (6.35) and (6.13)

are used to estimate the equivalent wellblock radius and horizontal permeabil-

ity, yielding
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req6 ¼ 400ð Þ2 + 250ð Þ2
h i0:5

0:3816 +
0:2520

250=400ð Þ0:9401 + 400=250ð Þ0:9401
" #

¼ 234:1 ft

and
kH6
¼ 156�65½ �0:5 ¼ 100:70md

The well geometric factor specific to wellblock 6 is estimated by substitut-
ing values into Eq. (6.12), resulting in

G∗
w6
¼ 2π�0:001127�100:70�40

log e 234:1= 3:5=12ð Þ½ �+ 0f g ¼ 4:265RB-cP=D-psi

The geometric factor for wellblock 6 is obtained using Eq. (6.32), yielding
Gw6
¼ 1⁄4�4:265¼ 1:066RB-cP=D-psi

Table 6.3 shows the summary of intermediate and final results.
6.3.4 Estimation of well rate and FBHP

If the FBHP of a well (pwfref) is specified, then the well production rate can be

estimated as the sum of production rates from all wellblocks that are vertically

penetrated by the well; that is,

qsc ¼
X
i2ψw

qsci (6.36)

If, on the other hand, the well production rate is specified, then the FBHP of
the well (pwfref) can be estimated using Eq. (6.26):

pwf ref ¼

X
i2ψw

Gw

Bμ

� �
i

pi� γwb Zi�Zref
� �� �	 


+ qspsc

X
i2ψw

Gw

Bμ

� �
i

(6.26)

Eqs. (6.26) and (6.36) apply to vertical wells that are completed through ver-
tically stacked wellblocks.
6.4 Practical considerations dealing with modeling well
operating conditions

It is important for a reservoir model to represent the basic features of well per-

formance. For example, a production well may not produce fluids at a constant

rate indefinitely. We usually specify a desired constant rate for a well (qspsc) and
place a constraint on the FBHP of the well (pwfsp). The specified FBHP must be



TABLE 6.3 Estimated properties of theoretical wells and wellblock geometric factors.

Well ID Wellblock i

Configuation

#

Theoretical well Wellblock

Δx (ft) Δy (ft) kx (md) ky (md) kHi
(md) reqi

(ft) G∗
wi

Fi Gwi

W-A 20 300 200 86 142 110.51 53.220 6.012 1 6.012

W-B 2 1 300 250 86 65 74.766 126.17 3.489 1/2 1.744

W-D 18 2 400 450 156 117 135.10 178.97 5.961 1/2 2.981

W-F 6 3 400 250 156 65 100.70 234.1 4.265 1/4 1.066
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sufficient to transport fluid from the bottom hole to the wellhead and maybe

even to fluid treatment facilities. Additionally, an injection well may not inject

fluid at a constant rate indefinitely. We usually specify a desired constant rate

for a well (qspsc) that is consistent with the availability of injected fluid and place
a constraint on the FBHP of the well (pwfsp) that is consistent with the maximum

pressure of the used pump or compressor (Abou-Kassem, 1996). The specified

FBHP plus frictional loss in the injection well and the surface lines minus fluid

head in the well must be less than or equal to the maximum pressure for the

injection pump or compressor. To include the aforementioned practical features

in a simulator, the following logic must be implemented in the developed sim-

ulator: (1) set pwfref¼pwfsp; (2) estimate the well FBHP (pwfest) that corresponds to
the specified desired production (or injection) well rate using Eq. (6.26); and (3)

use qspsc for the well rate as long as pwfest�pwfsp for a production well or

pwfest�pwfsp for an injection well, and distribute the well rate accordingly among

the wellblocks (qsci) as outlined in the text. Otherwise, (1) set pwfest¼pwfref, (2)
estimate the wellblock rate (qsci) for each wellblock in the well using Eq. (6.24),
and (3) estimate the resulting well rate for multiblock wells using Eq. (6.36).

These three steps are executed every iteration in every time step. A similar treat-

ment is followed if the well pressure gradient at sandface is specified instead of

the well rate. In this case, the desired wellblock rate is calculated using Eq. (6.4).

If we neglect implementing provisions for the treatment of the aforementioned

practical considerations in a simulator, the continuous withdrawal of fluids may

result in negative simulated pressures, and the continuous injection of fluids

may result in infinitely large simulated pressures. All reservoir simulators used

by the petroleum industry, however, include logic for handling varying degrees

of complicated well operating conditions.
6.5 Summary

Wells can be completed in a single block in 1-D and 2-D single-layer reservoirs

or in multiblocks in multilayer reservoirs. Wells can be shut in or operated with

a specified production rate, pressure gradient, or bottom-hole pressure. Shut-in

wells have zero flow rates, and Eq. (6.2) defines the production rate of shut-in

wells completed in wellblocks. Eq. (6.1) represents the IPR equation for a well-

block, and this equation can be used to estimate the production rate from the

wellblock or the flowing bottom-hole pressure of the well in the wellblock.

In single-well simulation, wells are incorporated in the flow equation as line

source terms using Eq. (6.9). The wellblock geometric factor in a rectangular

wellblock is estimated using Eq. (6.12). Eq. (6.4) can be used to estimate the

wellblock production rate for a well operating with a specified pressure gradi-

ent, whereas Eq. (6.1) is used for a well operating with specified flowing

bottom-hole pressure. In multiblock wells, proration of the well production rate

among wellblocks can be achieved using Eq. (6.26) to estimate pwfref followed
by Eq. (6.24) with wellblock geometric factor being estimated using Eq. (6.32).
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6.6 Exercises

6.1 A well penetrates the whole thickness of a single layer. Does fluid flow

toward (or away from) the well linearly, radially, or spherically?

6.2 In reservoir simulation, a well is represented as a source/sink line in the

wellblock.
a. What is the fluid flow geometry within a wellblock in a 1-D reservoir?

b. What is the fluid flow geometry within a wellblock in a 2-D reservoir?

c. What is the fluid flow geometry within a wellblock in a 3-D reservoir?
6.3 You develop a model to simulate a 1-D, linear-flood experiment. Do you

use fictitious wells or physical wells to reflect fluid input in the first block

and fluid output out of the last block? Justify your answers.

6.4 You develop a single-well model. Justify why it is possible to use either a

fictitious well or a physical well to describe the well rate in this case.

6.5 What are the different well operating conditions? Write the well produc-

tion rate equation for each well operating condition.

6.6 Prove that Eq. (6.9a) is nothing but the flow rate of the fictitious well

resulting from flow across the inner boundary of gridblock 1 in radial-

cylindrical flow, which is equivalent to the flow term between the left

boundary and the block center of gridblock 1; that is,

qsc1 ¼
Gr1�1=2

B1μ1
p0�p1ð Þ, where Gr1�1/2

is given in Table 4.3 in Chapter 4

and p0¼pwf.

6.7 Prove that Eq. (6.9b) can be derived from the steady-state flow equation

for gridpoint 1 in radial-cylindrical flow and by using the definition of geo-

metric factors given in Table 5.3 in Chapter 5.

6.8 Consider the reservoir presented in Example 6.8. Fig. 6.6 shows the block

dimensions and permeabilities. Calculate the wellblock geometric factors

for those penetrated by the wells identified asW-C,W-E,W-G,W-H,W-I,

W-J, and W-K. All aforementioned wells have open-hole completion and

were drilled with a 5-in. bit.
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7.1 Introduction

The single-phase, multidimensional flow equation for a reservoir block was

derived in Chapter 2. In Chapter 3, this flow equation was rewritten using

CVFD terminology for a reservoir block identified by engineering notation

or block order. Chapters 4 and 5 presented the treatment of blocks that fall

on reservoir boundaries using fictitious wells. In Chapter 6, the wellblock pro-

duction rate equation was derived for various well operating conditions. In this

chapter, the single-phase, multidimensional flow equation that incorporates the

wellblock production rate and boundary conditions is presented for various

fluids, including incompressible, slightly compressible, and compressible

fluids. These fluids differ from each other by the pressure dependence of their

densities, formation volume factors (FVFs), and viscosities. The presentation

includes the flow equation for an incompressible system (rock and fluid) and

the explicit, implicit, and Crank-Nicolson equations for slightly compressible

and compressible fluids. The flow equations for block-centered grids and

point-distributed grids have the same general form. The differences between

the two grid systems lie in the construction of the grid, the treatment of bound-

ary conditions, and the treatment of the wellblock production rate as was dis-

cussed in Chapters 4–6. The presentation in this chapter uses CVFD

terminology to express the flow equation in a multidimensional domain.
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7.2 Pressure dependence of fluid and rock properties

The pressure-dependent properties that are important in this chapter include

those properties that appear in transmissibility, potential, production, and accu-

mulation term, namely, fluid density, FVF, fluid viscosity, and rock porosity.

Fluid density is needed for the estimation of fluid gravity using

γ¼ γcρg (7.1)

The equations used for the estimation of these properties for various fluids
and rock porosity are presented next.

7.2.1 Incompressible fluid

This type of fluid is an idealization of gas-free oil and water. An incompressible

fluid has zero compressibility; therefore, regardless of pressure, it has a constant

density, FVF, and viscosity. Mathematically,

ρ 6¼ f pð Þ¼ constant (7.2)

B 6¼ f pð Þ¼B° ffi 1 (7.3)

and
μ 6¼ f pð Þ¼ constant (7.4)
7.2.2 Slightly compressible fluid

A slightly compressible fluid has a small but constant compressibility (c) that
usually ranges from 10�5 to 10�6 psi�1. Gas-free oil, water, and oil above

bubble-point pressure are examples of slightly compressible fluids. The pres-

sure dependence of the density, FVF, and viscosity for slightly compressible

fluids is expressed as

ρ¼ ρ° 1 + c p�p°
� �� �

(7.5)

B¼ B°

1 + c p�p°ð Þ½ � (7.6)

and
μ¼ μ°

1� cμ p�p°ð Þ� � (7.7)

where ρ°, B°, and μ° are fluid density, FVF, and viscosity, respectively, at ref-
erence pressure (p°) and reservoir temperature and cμ is the fractional change of
viscosity with pressure change. Oil above its bubble-point pressure can be trea-

ted as a slightly compressible fluid with the reference pressure being the oil

bubble-point pressure, and in this case, ρ°, B°, and μ° are the oil-saturated prop-
erties at the oil bubble-point pressure.
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7.2.3 Compressible fluid

A compressible fluid has orders of magnitude higher compressibility than that

of a slightly compressible fluid, usually 10�2 to 10�4 psi�1 depending on pres-

sure. The density and viscosity of a compressible fluid increase as pressure

increases but tend to level off at high pressures. The FVF decreases orders of

magnitude as the pressure increases from atmospheric pressure to high

pressure. Natural gas is a good example of a compressible fluid. The

pressure dependencies of the density, FVF, and viscosity of natural gas are

expressed as

ρg ¼
pM

zRT
(7.8)

Bg ¼
ρgsc
αcρg

¼ psc
αcTsc

T
z

p
(7.9)

and
μg ¼ f T, p,Mð Þ (7.10)

The equations presented by Lee et al. (1966) and Dranchuk et al. (1986)
are two forms of f(T,p,M) in Eq. (7.10). Although these gas properties can

be estimated using Eqs. (7.8) through (7.10), these equations are used, external

to a simulator, to calculate the density, FVF, and viscosity as functions of

pressure over the pressure range of interest at reservoir temperature. The calcu-

lated FVF and viscosity are then supplied to the simulator in tabular form as

functions of pressure. In addition, the gas density at standard conditions is sup-

plied to calculate the gas density that corresponds to the gas FVF at any

pressure.
7.2.4 Rock porosity

Porosity depends on reservoir pressure because of the combined compressibility

of rock and pore. Porosity increases as reservoir pressure (pressure of the fluid

contained in the pores) increases. This relationship can be expressed as

ϕ¼ϕ° 1 + cϕ p�p°
� �� �

(7.11)

where ϕ° is the porosity at the reference pressure (p°) and cϕ is the porosity com-
pressibility. If the reference pressure is chosen as the initial reservoir pressure,

then ϕ° may incorporate the effect of overburden on porosity.
7.3 General single-phase flow equation in multidimensions

The single-phase, multidimensional flow equation for Block (gridblock or grid-

point) n that incorporates boundary conditions is presented using CVFD termi-

nology as in Eq. (4.2) (or Eq. 5.2)
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X
l2ψn

Tm
l,n pml �pmn
� �� γml,n Zl�Znð Þ� �

+
X
l2ξn

qmscl,n + q
m
scn

¼ Vbn

αcΔt
ϕ

B

� �n + 1

n

� ϕ

B

� �n

n

" #
(7.12)

whereψn¼ the set whose elements are the existing neighboring blocks in the res-
ervoir, ξn¼ the setwhose elements are the reservoir boundaries (bL,bS,bW,bE,bN,
bU) that are shared by block n, and q

m
scl,n

¼ the flow rate of the fictitiouswell repre-

senting fluid transfer between reservoir boundary l and block n as a result of a

boundary condition. For a 3-D reservoir, ξn is either an empty set for interior

blocks or a set that contains one element for boundary blocks that fall on

one reservoir boundary, two elements for boundary blocks that fall on two res-

ervoir boundaries, or three elements for boundary blocks that fall on three reser-

voir boundaries.An empty set implies that the blockdoes not fall on any reservoir

boundary; that is, block n is an interior block, and hence
X
l2ξn

qmscl,n ¼ 0. Chapter 6

discusses the estimation of the production rate equation for a wellblock (qm
scn)

with the well producing (or injecting) fluid under a given operating condition.

The accumulation term, represented by the RHS of Eq. (7.12), is presented for

each type of fluid separately in Sections 7.3.1–7.3.3. In engineering notation,

block order n is replaced with (i, j,k), and Eq. (7.12) becomes

X
l2ψ i, j,k

Tm
l, i, j, kð Þ pml �pmi, j,k

� 	
� γml, i, j, kð Þ Zl�Zi, j,k

� �h i
+
X
l2ξi, j,k

qmscl, i, j, kð Þ + q
m
sci, j,k

¼Vbi, j,k

αcΔt
ϕ
B

� �n + 1
i, j,k

� ϕ
B

� �n
i, j,k

h i

(7.13)
7.3.1 Incompressible fluid flow equation

The density, FVF, and viscosity of an incompressible fluid are constant inde-

pendent of pressure (Eqs. 7.2 through 7.4). Therefore, the accumulation term

for an incompressible fluid (c¼0) but a compressible porous medium

reduces to

Vbn

αcΔt
ϕ

B

� �n + 1

n

� ϕ

B

� �n

n

" #
¼Vbnϕ

°
ncϕ

αcB°Δt
pn + 1n �pnn
� �

(7.14)

with B¼B°ffi1 for negligible fluid thermal expansion. If, in addition, the porous
medium is treated as incompressible (cϕ¼0), the accumulation term expressed

by Eq. (7.14) becomes zero; that is,

Vbn

αcΔt
ϕ

B

� �n+ 1

n

� ϕ

B

� �n

n

" #
¼ 0 (7.15)
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Substituting Eq. (7.15) into Eq. (7.12) yields the flow equation for incom-
pressible systems:X
l2ψn

Tl,n pl�pnð Þ� γl,n Zl�Znð Þ� �
+
X
l2ξn

qscl,n + qscn ¼ 0 (7.16a)

or
X
l2ψ i, j,k

Tl, i, j, kð Þ pl�pi, j,k
� �� γl, i, j, kð Þ Zl�Zi, j,k

� �h i
+
X
l2ξi, j,k

qscl, i, j, kð Þ + qsci, j,k ¼ 0

(7.16b)

The superscript m in Eq. (7.16) is dropped because none of the pressures
depend on time, in addition to the condition that the wellblock production rate

and boundary conditions do not change with time. Therefore, the pressure dis-

tribution for incompressible flow systems does not change with time.
7.3.1.1 Algorithm for obtaining the pressure solution

The pressure distribution for an incompressible flow problem is obtained using

the following steps:

1. Calculate the interblock transmissibilities for all reservoir blocks.

2. Estimate the production rate (or write the production rate equation) for each

wellblock in the reservoir as discussed in Chapter 6.

3. Estimate the flow rate (or write the flow rate equation) for each fictitious

well in the reservoir as discussed in Chapter 4 (or Chapter 5); that is, esti-

mate the flow rates resulting from the boundary conditions.

4. For every gridblock (or gridpoint) in the reservoir, define the set of existing

neighboring reservoir blocks (ψn) and the set of reservoir boundaries that are

block boundaries (ξn), expand the summation terms in the flow equation

(Eq. 7.16 in this case), and substitute for the wellblock production rate

obtained in (2) and the fictitious well rates obtained in (3).

5. Factorize, order, and place the unknown pressures on the LHS and place the

known quantities on the RHS of each flow equation.

6. Solve the resulting set of equations for the unknown pressures using a linear

equation solver such as those presented in Chapter 9.

7. Estimate the wellblock production rates and fictitious well rates if necessary

using the flow rate equations obtained in (2) and (3).

8. Perform a material balance check.
7.3.1.2 Material balance check for an incompressible
fluid flow problem

For an incompressible fluid flow problem (constant ϕ and B), there is no accu-

mulation of mass in any reservoir block. Therefore, the sum of fluids entering
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and leaving the reservoir boundaries including wells must add up to zero (or a

small number to account for round-off errors); that is,

XN
n¼1

qscn +
X
l2ξn

qscl,n

 !
¼ 0 (7.17a)

where N is the total number of blocks in the reservoir. The production (or injec-
tion) rate is set to zero for any reservoir block that is not penetrated by a well.

The second term in the parentheses in Eq. (7.17a) takes care of fluid flow across

reservoir boundaries resulting from boundary conditions. If reservoir blocks are

identified using engineering notation, subscript n and summation
PN
n¼1

in

Eq. (7.17a) are replaced with subscripts (i, j,k) and
Pnx
i¼1

Pny
j¼1

Pnz
k¼1

, respectively.

The resulting equation is

Xnx
i¼1

Xny
j¼1

Xnz
k¼1

qsci, j,k +
X
l2ξi, j,k

qscl, i, j, kð Þ

0
@

1
A¼ 0 (7.17b)

The material balance check that is expressed by Eq. (7.17) can be derived by
writing Eq. (7.16) for each block in the system (n¼1, 2, 3…N) and then sum-

ming up all N equations. All interblock flow terms in the resulting equation can-

cel out, leading to Eq. (7.17). It is customary to perform a material balance

check after solving any simulation problem. An unsatisfactory material balance

check implies an incorrect pressure solution for the problem. A satisfactory

material balance check; however, does not necessarily imply a correct pressure

solution. If the material balance check is unsatisfactory, the flow equation and

all of its elements (transmissibilities, well production rate, fictitious well

rates, ψn, ξn,…etc.) for every gridblock (gridpoint) in the reservoir and the solu-

tion of the algebraic equationsmust be carefully investigated to find the cause of

the error.

Examples 7.1 through 7.6 present the solutions for several variations of the

1-D flow problem. The variations include different boundary conditions, well

operating conditions, and well location within the reservoir block. Example 7.1

demonstrates the application of the algorithm presented in this section to obtain

the pressure solution. Example 7.2 presents an approximate solution method

used by other reservoir simulation books when dealing with a constant pressure

boundary in a block-centered grid. In Example 7.3, the well produces oil with a

constant FBHP specification instead of a constant well production rate. In

Example 7.4, the reservoir right boundary is specified as a constant pressure

gradient boundary instead of a no-flow boundary. In Example 7.5, the reservoir

is an inclined reservoir instead of horizontal. In Example 7.6, the well is relo-

cated at a reservoir boundary, and the effect of treating it as a boundary condi-

tion is demonstrated. Example 7.7 presents a 2-D reservoir with anisotropic
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FIG. 7.1 Discretized 1-D reservoir in Example 7.1.
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permeability. Example 7.8 presents a 2-D homogeneous and isotropic reservoir

showing symmetry.

Example 7.1 A single-phase fluid reservoir is described by four equal blocks as

shown in Fig. 7.1. The reservoir is horizontal and has homogeneous and isotropic

rock properties, k¼270 md and ϕ¼0.27. The gridblock dimensions are

Δx¼300 ft, Δy¼350 ft, and h¼40 ft. The reservoir fluid properties are

B¼B∘¼1 RB/STB, ρ¼50 lbm/ft3, and μ¼0.5 cP. The reservoir left boundary

is kept at constant pressure of 4000psia, and the reservoir right boundary is sealed

off to flow. A 7-in vertical well was drilled at the center of gridblock 4. The well

produces 600STB/D of fluid and has a skin factor of 1.5. Assuming that the

reservoir rock and fluid are incompressible, find the pressure distribution in

the reservoir and the FBHP of the well. Perform a material balance check.

Solution

The gridblocks have the same dimensions and rock properties.

Therefore, T1,2¼T2,3¼T3,4¼Tx, where Tx ¼ βc
Axkx
μBΔx¼ 0:001127� 350�40ð Þ�270

0:5�1�300

¼ 28:4004 STB/D-psi. There is a production well in gridblock 4 only.

Therefore, qsc4¼ �600 STB/D. In addition, for the other gridblocks,

qsc1¼qsc2¼qsc3¼0.

Gridblock 1 falls on the reservoir west boundary, which is kept at a constant

pressure of 4000psia. Therefore, Eq. (4.37c) can be used, yielding

qscbW ,1 ¼ βc
kxAx

μB Δx=2ð Þ

 �

1

pbW �p1ð Þ� γ ZbW �Z1ð Þ½ �

¼ 0:001127� 270� 350�40ð Þ
0:5�1� 300=2ð Þ


 �
4000�p1ð Þ� γ�0½ �

or
qscbW ,1 ¼ 56:8008 4000�p1ð ÞSTB=D (7.18)

Gridblock 4 falls on the reservoir east boundary, which is a no-flow bound-
ary. Therefore, Eq. (4.32) applies giving qscbE,4
¼0 STB/D.

The general flow equation for this 1-D horizontal reservoir is obtained from

Eq. (7.16a) by discarding the gravity term, yieldingX
l2ψn

Tl,n pl�pnð Þ+
X
l2ξn

qscl,n + qscn ¼ 0 (7.19)
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For gridblock 1, n¼1, ψ1¼{2}, and ξ1¼{bW}. Therefore,
X

qscl,1 ¼

l2ξ1qscbW ,1 , and Eq. (7.19) becomes

T1,2 p2�p1ð Þ+ qscbW ,1 + qsc1 ¼ 0 (7.20)

Substitution of the values in this equation gives
28:4004 p2�p1ð Þ+ 56:8008 4000�p1ð Þ+ 0¼ 0

or after factorizing and ordering the unknowns,
�85:2012p1 + 28:4004p2 ¼�227203:2 (7.21)

For gridblock 2, n¼2, ψ2¼{1,3}, and ξ2¼{}. Therefore,
X

qscl,2 ¼ 0, and

l2ξ2Eq. (7.19) becomes

T1,2 p1�p2ð Þ+ T2,3 p3�p2ð Þ + qsc2 ¼ 0 (7.22)

Substitution of the values in this equation gives
28:4004 p1�p2ð Þ + 28:4004 p3�p2ð Þ+ 0¼ 0

or after factorizing and ordering the unknowns,
28:4004p1�56:8008p2 + 28:4004p3 ¼ 0 (7.23)

For gridblock 3, n¼3, ψ3¼{2,4}, and ξ3¼{}. Therefore,
X

qscl,3 ¼ 0, and

l2ξ3Eq. (7.19) becomes

T2,3 p2�p3ð Þ+ T3,4 p4�p3ð Þ + qsc3 ¼ 0 (7.24)

Substitution of the values in this equation gives
28:4004 p2�p3ð Þ + 28:4004 p4�p3ð Þ+ 0¼ 0

or after factorizing and ordering the unknowns,
28:4004p2�56:8008p3 + 28:4004p4 ¼ 0 (7.25)

For gridblock 4, n¼4, ψ4¼{3}, and ξ4¼{bE}. Therefore,
X

qscl,4 ¼ qscbE,4 ,

l2ξ4and Eq. (7.19) becomes

T3,4 p3�p4ð Þ+ qscbE,4 + qsc4 ¼ 0 (7.26)

Substitution of the values in this equation gives
28:4004 p3�p4ð Þ+ 0 + �600ð Þ¼ 0

or after the ordering of the unknowns,
28:4004p3�28:4004p4 ¼ 600 (7.27)

The results of solving Eqs. (7.21), (7.23), (7.25), and (7.27) for the unknown
pressures are p1¼3989.44 psia, p2¼3968.31 psia, p3¼3947.18 psia, and

p4¼3926.06 psia.
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Next, the flow rate across the reservoir left boundary (qscbW,1
) is estimated

using Eq. (7.18), yielding.

qscbW ,1 ¼ 56:8008 4000�p1ð Þ¼ 56:8008 4000�3989:44ð Þ¼ 599:816STB=D

The FBHP of the well in gridblock 4 is estimated using Eq. (6.1). First, how-
ever, the equivalent wellblock radius using Eq. (6.15) followed by the wellblock

geometric factor using Eq. (6.12) must be calculated, yielding

req ¼ 0:14 300ð Þ2 + 350ð Þ2
h i0:5

¼ 64:537 ft

Gw ¼ 2π�0:001127�270�40

log e 64:537= 3:5=12ð Þ½ �+ 1:5¼ 11:0845RB-cP=D-psi

and
�600¼�11:0845

1�0:5
3926:06�pwf 4
� �

from which
pwf 4 ¼ 3899:00psia

The material balance for an incompressible fluid and rock system is checked
by substituting the values for the well production rates and fictitious well rates

on the LHS of Eq. (7.17a), yielding

XN
n¼1

qscn +
X
l2ξn

qscl,n

 !
¼ðqsc1 + qscbW ,1Þ+ qsc2 + 0ð Þ+ qsc3 + 0ð Þ+ ðqsc4 + qscbE,4Þ

¼ 0 + 599:816ð Þ+ 0 + 0ð Þ+ 0 + 0ð Þ+ �600 + 0ð Þ
¼�0:184

Therefore, the material balance check is satisfied, and a small error
of 0.184STB/D is observed because of rounding off during calculations.

Example 7.2 Find the pressure distribution in the reservoir presented in

Example 7.1, but this time, assume that the boundary pressure is displaced

half a block to coincide with the center of boundary gridblock 1. In other

words, the pressure of gridblock 1 is kept constant at 4000psia as shown in

Fig. 7.2.

Solution

For gridblock 1,

p1 ffi pbW ¼ 4000 psia (7.28)

What remains is to find the pressure of gridblocks 2, 3, and 4. The flow equa-
tions for these three blocks are obtained from Eqs. (7.23), (7.25), and (7.27) in

Example 7.1.
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For gridblock 2,

28:4004p1�56:8008p2 + 28:4004p3 ¼ 0 (7.23)

For gridblock 3,
28:4004p2�56:8008p3 + 28:4004p4 ¼ 0 (7.25)

For gridblock 4,
28:4004p3�28:4004p4 ¼ 600 (7.27)

Substitution of Eq. (7.28) into Eq. (7.23) yields
28:4004�4000�56:8008p2 + 28:4004p3 ¼ 0

or the flow equation for gridblock 2 becomes
�56:8008p2 + 28:4004p3 ¼�113601:6 (7.29)

The results of solving Eqs. (7.25), (7.27), and (7.29) for the unknown pres-
sures are p2¼3978.87 psia, p3¼3957.75 psia, and p4¼3936.62 psia.

The flow rate across reservoir the left boundary (qscbW,1
) can be estimated

using the flow equation for gridblock 1, Eq. (7.20) obtained in Example 7.1,

yielding

T1,2 p2�p1ð Þ+ qscbW ,1 + qsc1 ¼ 0 (7.20)

Substitution of the values of the gridblock pressures in this equation gives
28:4004 3978:87�4000ð Þ+ qscbW ,1 + 0¼ 0

or
qscbW ,1 ¼ 600:100STB=D

The approximation presented by Eq. (7.28) results in p1¼4000 psia, com-
pared with p1¼3989.44 psia using Eq. (4.37c) in Example 7.1. This approxima-

tion has been used in currently available books on reservoir simulation to obtain

a solution for problems involving a specified pressure boundary condition in a

block-centered grid. Such an approximation; however, is first-order correct and
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produces results that are less accurate than the treatment that uses Eq. (4.37c)

and was demonstrated in Example 7.1.

Example 7.3 Consider the reservoir described in Example 7.1, but this time the

well in gridblock 4 produces under a constant FBHP of 3899psia as shown in

Fig. 7.3. Find the pressure distribution in the reservoir. In addition, find the well

production rate and flow rate across the reservoir west boundary.

Solution

From Example 7.1, the transmissibility and the flow rate across the reservoir

left boundary are obtained as Tx¼28.4004 STB/D-psi and

qscbW ,1 ¼ 56:8008 4000�p1ð ÞSTB=D (7.18)

respectively.
The flow equations for the first three gridblocks are obtained as in

Example 7.1.

For gridblock 1,

�85:2012p1 + 28:4004p2 ¼�227203:2 (7.21)

For gridblock 2,
28:4004p1�56:8008p2 + 28:4004p3 ¼ 0 (7.23)

For gridblock 3,
28:4004p2�56:8008p3 + 28:4004p4 ¼ 0 (7.25)

In addition, for the well in gridblock 4, req¼64.537 ft, and
Gw¼11.0845 RB-cP/D-psi.

The rate of production from the well in gridblock 4 can estimated using

Eq. (6.1) for a constant FBHP specification, yielding

qsc4 ¼�11:0845

1�0:5
p4�3899ð Þ¼�22:1690 p4�3899ð Þ (7.30)

For gridblock 4, the flow equation is obtained from Eq. (7.26) in
Example 7.1:

T3,4 p3�p4ð Þ + qscbE,4 + qsc4 ¼ 0 (7.26)
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Substitution of transmissibility and Eq. (7.30) into Eq. (7.26) yields
28:4004 p3�p4ð Þ+ 0 + �22:1690 p4�3899ð Þ½ � ¼ 0

or after factorizing and ordering the unknowns,
28:4004p3�50:5694p4 ¼�86436:93: (7.31)

The results of solving Eqs. (7.21), (7.23), (7.25), and (7.31) for the unknown
pressures are p1¼3989.44 psia, p2¼3968.31 psia, p3¼3947.19 psia, and

p4¼3926.06 psia.

Substitution for pressures in the equations for qsc4 (Eq. 7.30) and qscbW,1

(Eq. 7.18) yields

qsc4 ¼�22:1690 p4�3899ð Þ¼�22:1690 3926:06�3899ð Þ
¼�599:893STB=D

and
qscbW ,1 ¼ 56:8008 4000�p1ð Þ¼ 56:8008 4000�3989:44ð Þ¼ 599:816STB=D
Example 7.4 Find the pressure distribution in the reservoir presented in

Example 7.1, but this time, a pressure gradient of �0.2psi/ft is specified at

the reservoir right boundary as shown in Fig. 7.4.

Solution

From Example 7.1, the transmissibility and the flow rate across the reservoir

west boundary are obtained as Tx¼28.4004 STB/D-psi and

qscbW ,1 ¼ 56:8008 4000�p1ð ÞSTB=D (7.18)

respectively.
The flow rate across the reservoir east boundary is estimated using

Eq. (4.24b), yielding

qscbE,4 ¼ βc
kxAx

μB


 �
4

∂p

∂x

����
bE

� γ
∂Z

∂x

����
bE

" #

¼ 0:001127�270� 350�40ð Þ
0:5�1

�0:2� γ�0½ �
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or
qscbE,4 ¼�1704:024STB=D

The flow equations for the first three gridblocks are obtained as in
Example 7.1.

For gridblock 1,

�85:2012p1 + 28:4004p2 ¼�227203:2 (7.21)

For gridblock 2,
28:4004p1�56:8008p2 + 28:4004p3 ¼ 0 (7.23)

For gridblock 3,
28:4004p2�56:8008p3 + 28:4004p4 ¼ 0 (7.25)

For gridblock 4, the flow equation is obtained from Eq. (7.26) in
Example 7.1, yielding

T3,4 p3�p4ð Þ + qscbE,4 + qsc4 ¼ 0 (7.26)

Substitution of values in Eq. (7.26) gives
28:4004 p3�p4ð Þ + �1704:024ð Þ+ �600ð Þ¼ 0

or after the ordering of the unknowns,
28:4004p3�28:4004p4 ¼ 2304:024 (7.32)

The results of solving Eqs. (7.21), (7.23), (7.25), and (7.32) for the unknown
pressures are p1¼3959.44 psia, p2¼3878.31 psia, p3¼3797.18 psia, and

p4¼3716.06 psia.

Substitution for the pressures in the equation for qscbW,1
(Eq. 7.18) yields

qscbW ,1 ¼ 56:8008 4000�p1ð Þ¼ 56:8008 4000�3959:44ð Þ¼ 2304:024STB=D
Example 7.5 Consider the reservoir shown in Fig. 7.5. The reservoir has the

same description as that presented in Example 7.1, with the exception that this

reservoir is inclined along the formation dip. The elevations of the center of

gridblocks 1, 2, 3, and 4 are, respectively, 3182.34, 3121.56, 3060.78, and

3000 ft below sea level. The centers of the reservoir west and east boundaries

are, respectively, 3212.73 and 2969.62 ft below sea level. Assuming that the res-

ervoir rock and fluid are incompressible, find the pressure distribution in the

reservoir and the FBHP of the well in gridblock 4. Perform a material

balance check.

Solution
The gridblocks have the same dimensions and rock properties. Therefore,

T1,2 ¼ T2,3 ¼ T3,4 ¼ Tx ¼ βc
Axkx
μBΔx¼ 0:001127� 350�40ð Þ�270

0:5�1�300
¼ 28:4004 STB/D-psi.

The fluid gravity is estimated using Eq. (7.1), yielding
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γ¼ γcρg¼ 0:21584�10�3
� ��50�32:174¼ 0:34722psi=ft

There is a productionwell in gridblock 4 only. Therefore, qsc4¼ �600 STB/D.
In addition, for the other gridblocks, qsc1¼qsc2¼qsc3¼0.

Gridblock 1 falls on the reservoir west boundary, which is kept at a constant

pressure of 4000psia. Therefore, qscbW,1
can be estimated using Eq. (4.37c),

which yields

qscbW ,1 ¼ βc
kxAx

μB Δx=2ð Þ

 �

1

pbW �p1
� �� γ ZbW �Z1

� �� �

¼ 0:001127� 270� 350�40ð Þ
0:5�1� 300=2ð Þ


 �
4000�p1ð Þ�0:34722� 3212:73�3182:34ð Þ½ �

or

qscbW ,1 ¼ 56:8008 3989:448�p1ð ÞSTB=D ð7:33Þ

Gridblock 4 falls on the reservoir east boundary, which is a no-flow bound-
ary. Therefore, Eq. (4.32) applies, giving qscbE,4
¼0 STB/D.

The general flow equation for gridblock n in this 1-D inclined reservoir is

expressed by Eq. (7.16a):X
l2ψn

Tl,n pl�pnð Þ� γl,n Zl�Znð Þ� �
+
X
l2ξn

qscl,n + qscn ¼ 0 (7.16a)

For gridblock 1, n¼1, ψ1¼{2}, and ξ1¼{bW}. Therefore,
X

qscl,1 ¼

l2ξ1qscbW ,1 , and Eq. (7.16a) becomes

T1,2 p2�p1ð Þ� γ Z2�Z1ð Þ½ �+ qscbW ,1 + qsc1 ¼ 0 (7.34)



Single-phase flow equation for various fluids Chapter 7 223
Substitution of Eq. (7.33) and the values into Eq. (7.34) gives 28.4004�
[(p2�p1)�0.34722� (3121.56�3182.34)]+56.8008(3989.448�p1)+0¼0,

or after factorizing and ordering the unknowns,

�85:2012p1 + 28:4004p2 ¼�227203:2 (7.35)

For gridblock 2, n¼2, ψ2¼{1,3}, and ξ2¼{}. Therefore,
X

qscl,2 ¼ 0, and

l2ξ2Eq. (7.16a) becomes

T1,2 p1�p2ð Þ� γ Z1�Z2ð Þ½ �+ T2,3 p3�p2ð Þ� γ Z3�Z2ð Þ½ �+ qsc2 ¼ 0 (7.36)

Substitution of the values in this equation gives
28:4004 p1�p2ð Þ�0:34722� 3182:34�3121:56ð Þ½ �
+28:4004 p3�p2ð Þ�0:34722� 3060:78�3121:56ð Þ½ �+ 0¼ 0

or after factorizing and ordering the unknowns,
28:4004p1�56:8008p2 + 28:4004p3 ¼ 0 (7.37)

For gridblock 3, n¼3, ψ3¼{2,4}, and ξ3¼{}. Therefore,
X

qscl,3 ¼ 0, and

l2ξ3Eq. (7.16a) becomes

T2,3 p2�p3ð Þ� γ Z2�Z3ð Þ½ �+ T3,4 p4�p3ð Þ� γ Z4�Z3ð Þ½ �+ qsc3 ¼ 0 (7.38)

Substitution of the values in this equation gives
28:4004 p2�p3ð Þ�0:34722� 3121:56�3060:78ð Þ½ �
+28:4004 p4�p3ð Þ�0:34722� 3000�3060:78ð Þ½ �+ 0¼ 0

or after factorizing and ordering the unknowns,
28:4004p2�56:8008p3 + 28:4004p4 ¼ 0 (7.39)

For gridblock 4, n¼4, ψ4¼{3}, and ξ4¼{bE}. Therefore,
X

qscl,4 ¼ qscbE,4 ,

l2ξ4and Eq. (7.16a) becomes

T3,4 p3�p4ð Þ� γ Z3�Z4ð Þ½ �+ qscbE,4 + qsc4 ¼ 0 (7.40)

Substitution of the values in this equation gives
28:4004 p3�p4ð Þ�0:34722� 3060:78�3000ð Þ½ �+ 0 + �600ð Þ¼ 0

or after ordering the unknowns,
28:4004p3�28:4004p4 ¼ 1199:366 (7.41)

The results of solving Eqs. (7.35), (7.37), (7.39), and (7.41) for the unknown
pressures are p1¼3978.88 psia, p2¼3936.65 psia, p3¼3894.42 psia, and

p4¼3852.19 psia.

Next, the flow rate across the reservoir left boundary (qscbW,1
) is estimated

using Eq. (7.33), yielding
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qscbW ,1 ¼ 56:8008 3989:448�p1ð Þ¼ 56:8008 3989:448�3978:88ð Þ
¼ 600:271STB=D

The FBHP of the well in gridblock 4 is estimated using Eq. (6.1), but first,
the equivalent wellblock radius using Eq. (6.15) followed by the wellblock geo-

metric factor using Eq. (6.12) must be calculated, giving

req ¼ 0:14 300ð Þ2 + 350ð Þ2
h i0:5

¼ 64:537 ft

Gw ¼ 2π�0:001127�270�40

log e 64:537= 3:5=12ð Þ½ �+ 1:5¼ 11:0845RB-cP=D-psi

and
�600¼�11:0845

1�0:5
3852:19�pwf 4
� �

from which
pwf 4 ¼ 3825:13psia

The material balance for an incompressible fluid and rock system is checked
by substituting the values for the well production rates and the rates across res-

ervoir boundaries on the LHS of Eq. (7.17a), which yields

XN
n¼1

qscn +
X
l2ξn

qscl,n

 !
¼ðqsc1 + qscbW ,1Þ+ qsc2 + 0ð Þ + qsc3 + 0ð Þ+ ðqsc4 + qscbE,4Þ

¼ 0 + 600:271ð Þ+ 0 + 0ð Þ+ 0 + 0ð Þ+ �600 + 0ð Þ
¼ + 0:271

Therefore, the material balance check is satisfied, and a small error of
0.271STB/D is observed because of rounding off during calculations.

Example 7.6 Find the equation for the well production rate and pressure distri-

bution in the reservoir presented in Example 7.1 if the vertical well is operated

with a constant FBHP of 3850psia for the following three cases:

1. The well is located at the center of gridblock 4.

2. The well is located at the east boundary of gridblock 4.

3. The well is treated as a boundary condition with the reservoir boundary

pressure equal to 3850psia.

Solution

From Example 7.1, the transmissibility and the flow rate across the reservoir

west boundary are obtained as Tx¼28.4004 STB/D-psi and

qscbW ,1 ¼ 56:8008 4000�p1ð ÞSTB=D (7.18)

respectively.
The flow equations for the first three gridblocks are obtained as in

Example 7.1.
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For gridblock 1,

�85:2012p1 + 28:4004p2 ¼�227203:2 (7.21)

For gridblock 2,
28:4004p1�56:8008p2 + 28:4004p3 ¼ 0 (7.23)

For gridblock 3,
28:4004p2�56:8008p3 + 28:4004p4 ¼ 0 (7.25)

For gridblock 4, n¼4, ψ4¼{3}, and ξ4¼{bE}. Therefore,
X

qscl,4 ¼ qscbE,4 ,

l2ξ4and Eq. (7.16a) for a horizontal reservoir becomes

T3,4 p3�p4ð Þ + qscbE,4 + qsc4 ¼ 0 (7.26)
1. The well is located at center of gridblock 4. The equation for the well pro-

duction rate is obtained using Eq. (6.15) for req, Eq. (6.12) for Gw, and

Eq. (6.1) for qsc4 (see Fig. 7.6a), yielding
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FIG. 7.6 Well location and treatment in Example 7.6. (a) Well is located at center of gridblock 4,

(b) well is located at east boundary of gridblock 4, (c) well is replaced with a boundary condition at

east boundary of gridblock 4.
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req ¼ 0:14 300ð Þ2 + 350ð Þ2
h i0:5

¼ 64:537 ft

Gw ¼ 2π�0:001127�270�40

log e 64:537= 3:5=12ð Þ½ �+ 1:5¼ 11:0845RB-cP=D-psi

and
qsc4 ¼�11:0845

1�0:5
p4�3850ð Þ

or
qsc4 ¼�22:1690 p4�3850ð ÞSTB=D (7.42)

Substitution of the transmissibility and Eq. (7.42) into Eq. (7.26) gives
28:4004 p3�p4ð Þ+ 0 + �22:1690 p4�3850ð Þ½ � ¼ 0

or after factorizing and ordering the unknowns,
28:4004p3�50:5694p4 ¼�85350:65 (7.43)

The results of solving Eqs. (7.21), (7.23), (7.25), and (7.43) for the unknown
pressures are p1¼3984.31 psia, p2¼3952.94 psia, p3¼3921.56 psia, and

p4¼3890.19 psia.

Substitution for p4¼3890.19 into Eq. (7.42) yields

qsc4 ¼�22:169 p4�3850ð Þ¼�22:169 3890:19�3850ð Þ¼�890:972STB=D

(7.44)
2. The well is located at the east boundary of gridblock 4. The equation for the

well production rate is obtained using Eq. (6.34) for req, Eq. (6.32) for Gw,

and Eq. (6.1) for qsc4. Note that the well at the block boundary withdraws

only half of its fluid production potential from gridblock 4, as shown in

Fig. 7.6b (i.e., F4 ¼ 1


2, configuration 2 in Chapter 6). The geometric factor

of wellblock 4 is half of that for the whole well. Therefore,

req4 ¼ 0:1403684 300ð Þ2 + 350ð Þ2
h i0:5

exp 300=350ð Þ tan�1 350=300ð Þ� �
¼ 135:487 ft

G∗
w4
¼ 2π�0:001127�270�40

log e 135:487= 3:5=12ð Þ½ �+ 1:5¼ 10:009RB-cp=D-psi

Gw4
¼ 1


2G∗

w4
¼ 1


2 10:009ð Þ¼ 5:0045RB-cp=D-psi

and
qsc4 ¼�5:0045

1�0:5
p4�3850ð Þ

or
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qsc4 ¼�10:009 p4�3850ð ÞSTB=D (7.45)

Substitution of the transmissibility and Eq. (7.45) into Eq. (7.26) gives
28:4004 p3�p4ð Þ+ 0 + �10:009 p4�3850ð Þ½ � ¼ 0

or after factorizing and ordering the unknowns,
28:4004p3�38:4094p4 ¼�38534:65 (7.46)

The results of solving Eqs. (7.21), (7.23), (7.25), and (7.46)
for the unknown pressures are p1¼3988.17 psia, p2¼3964.50 psia,

p3¼ 3940.83 psia, and p4¼3917.16 psia. Substitution for p4¼3917.16

into Eq. (7.45) yields
qsc4 ¼�10:009 p4�3850ð Þ¼�10:009 3917:16�3850ð Þ¼�672:20STB=D

(7.47)
3. The well is treated as a boundary condition with the reservoir east boundary

pressure equal to 3850psia as shown in Fig. 7.6c. Therefore, the flow rate of

the fictitious well can be estimated using Eq. (4.37c) for a constant pressure

boundary condition, whose application gives

qscbE,4 ¼ βc
kxAx

μB Δx=2ð Þ

 �

4

pbE �p4ð Þ� γ ZbE �Z4ð Þ½ �

¼ 0:001127� 270� 350�40ð Þ
0:5�1� 300=2ð Þ


 �
3850�p4ð Þ� γ�0½ �

or
qscbE,4 ¼ 56:8008 3850�p4ð ÞSTB=D (7.48)

Substitution of Eq. (7.48) and the values into Eq. (7.26) gives
28:4004 p3�p4ð Þ + 56:8008 3850�p4ð Þ+ 0¼ 0

or after factorizing and ordering the unknowns,
28:4004p3�85:2012p4 ¼�218683:08 (7.49)

The results of solving Eqs. (7.21), (7.23), (7.25), and (7.49) for
the unknown pressures are p1¼3981.25 psia, p2¼3943.75 psia,

p3¼ 3906.25 psia, and p4¼3868.75 psia.

Substitution for p4¼3868.75 into Eq. (7.48) yields the rate of flow

across the reservoir east boundary. Therefore,
qsc4 ¼ qscbE,4 ¼ 56:8008 3850�p4ð Þ¼ 56:8008 3850�3868:75ð Þ
or
qsc4 ¼�1065:015STB=D (7.50)



30
 ft

FIG
cond

228 Petroleum reservoir simulation
The predicted well production rates given by Eqs. (7.44), (7.47), and

(7.50) demonstrate that even for 1-D flow, it is not appropriate to treat wells

at reservoir ends as boundary conditions; that it is important to differentiate

between physical wells and fictitious wells as discussed in Chapter 6; and

that well performance and pressure distribution are affected by well location

(within a block or on a no-flow reservoir boundary).
Example 7.7 A 2-D oil reservoir is described by four equal blocks as shown in

Fig. 7.7a. The reservoir is horizontal and has ϕ¼0.27 and anisotropic perme-

ability, kx¼150 md and ky¼100 md. The gridblock dimensions are

Δx¼350 ft, Δy¼250 ft, and h¼30 ft. The reservoir fluid properties are

B¼B∘¼1 RB/STB and μ¼3.5 cP. The reservoir boundaries are subject to

the conditions shown in Fig. 7.7b. A vertical well in gridblock 2 produces oil

with a constant FBHP of 2000psia, and another vertical well in gridblock 3 pro-

duces 600STB/D of oil. The wells have a 3-in radius. Assuming that the reser-

voir rock and fluid are incompressible, find the pressure distribution in the

reservoir. Find the rate of production of the well in gridblock 2 and the FBHP

of the well in gridblock 3. Find oil flow rates across the reservoir boundaries.

Perform a material balance check.

Solution

The gridblocks have the same dimensions and rock properties. Therefore,

T1,2 ¼ T3,4 ¼ Tx ¼ βc
Axkx
μBΔx¼ 0:001127� 250�30ð Þ�150

3:5�1�350
¼ 1:0350 STB/D-psi.

T1,3 ¼ T2,4 ¼ Ty ¼ βc
Ayky
μBΔy

¼ 0:001127� 350�30ð Þ�100

3:5�1�250
¼ 1:3524STB=D-psi
1 2

3 4

No-flow boundaries

dp
  

dx
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. 7.7 Discretized 2-D reservoir in Example 7.7. (a) Gridblocks and wells and (b) boundary

itions.
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There are two production wells in gridblock 2 and gridblock 3. For both

wells, we use Eqs. (6.13), (6.14), and (6.12) to estimate kH, req, and Gw,

respectively.

kH ¼ 150�100½ �0:5 ¼ 122:474md

req ¼ 0:28
100=150ð Þ0:5 350ð Þ2 + 150=100ð Þ0:5 250ð Þ2

h i0:5
100=150ð Þ0:25 + 150=100ð Þ0:25

h i ¼ 58:527 ft

Gw ¼ 2π�0:001127�122:474�30

log e 58:527= 3=12ð Þ½ �+ 0f g ¼ 4:7688RB-cp=D-psi

For the well in gridblock 2, we apply Eq. (6.11), yielding
qsc2 ¼�4:7688

1�3:5
p2�2000ð Þ¼�1:3625 p2�2000ð ÞSTB=D (7.51)

For the well in gridblock 3, qsc3¼ �600 STB/D. In addition, for the other
gridblocks, qsc1¼qsc4¼0.

Gridblock 1 falls on the reservoir south and west boundaries. The reservoir

south boundary is kept at a constant pressure of 4000psia. Therefore, the flow

rate of the fictitious well can be estimated using Eq. (4.37c), whose application

gives

qscbS,1 ¼ βc
kyAy

μB Δy=2ð Þ

 �

1

pbS �p1ð Þ� γ ZbS �Z1ð Þ½ �

¼ 0:001127� 100� 350�30ð Þ
3:5�1� 250=2ð Þ


 �
4000�p1ð Þ� γ�0½ �

or
qscbS,1 ¼ 2:7048 4000�p1ð ÞSTB=D (7.52)

The reservoir west boundary is a constant rate boundary supplying fluid to
gridblock 1. Therefore, qscbW,1
¼500 STB/D.

Gridblock 2 falls on the reservoir south and east boundaries. The reservoir

south boundary is kept at a constant pressure of 4000psia. Therefore, using

Eq. (4.37c),

qscbS,2 ¼ 0:001127� 100� 350�30ð Þ
3:5�1� 250=2ð Þ


 �
4000�p2ð Þ� γ�0½ �

or
qscbS,2 ¼ 2:7048 4000�p2ð ÞSTB=D (7.53)

The reservoir east boundary is a constant pressure gradient boundary. There-
fore, using Eq. (4.24b),
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qscbE,2 ¼ βc
kxAx

μB


 �
2

∂p

∂x

����
bE

� γ
∂Z

∂x

����
bE

" #

¼ 0:001127�150� 250�30ð Þ
3:5�1

�0:3� γ�0½ �

or
qscbE,2 ¼�108:675STB=D

Gridblock 3 falls on the reservoir west and north boundaries. Both reservoir
boundaries are no-flow boundaries. Therefore, qscbW,3
¼qscbN,3¼0.

Gridblock 4 falls on the reservoir east and north boundaries. The reservoir

east boundary is a constant pressure gradient boundary. Therefore, using

Eq. (4.24b),

qscbE,4 ¼ βc
kxAx

μB


 �
4

∂p

∂x

����
bE

� γ
∂Z

∂x

����
bE

" #

¼ 0:001127�150� 250�30ð Þ
3:5�1

�0:3� γ�0½ �

or
qscbE,4 ¼�108:675STB=D

The reservoir north boundary is a constant rate boundary withdrawing fluid
from gridblock 4. Therefore, qscbN,4
¼ �200 STB/D.

The general flow equation for gridblock n in this 2-D horizontal reservoir

can be obtained from Eq. (7.16a) by discarding the gravity term, yieldingX
l2ψn

Tl,n pl�pnð Þ+
X
l2ξn

qscl,n + qscn ¼ 0 (7.19)

For gridblock 1, n¼1, ψ1¼{2,3}, and ξ1¼{bS,bW}. Therefore,X

l2ξ1

qscl,1 ¼ qscbS,1 + qscbW ,1 , and Eq. (7.19) becomes

T1,2 p2�p1ð Þ+ T1,3 p3�p1ð Þ+ qscbS,1 + qscbW ,1 + qsc1 ¼ 0 (7.54)

Upon substitution of the corresponding values, this equation becomes
1:0350 p2�p1ð Þ + 1:3524 p3�p1ð Þ+ 2:7048 4000�p1ð Þ + 500 + 0¼ 0

or after factorizing and ordering the unknowns,
�5:0922p1 + 1:0350p2 + 1:3524p3 ¼�11319:20 (7.55)

For gridblock 2, n¼2, ψ2¼{1,4}, and ξ2¼{bS,bE}. Therefore,X

l2ξ2

qscl,2 ¼ qscbS,2 + qscbE,2 , and Eq. (7.19) becomes

T1,2 p1�p2ð Þ+ T2,4 p4�p2ð Þ+ qscbS,2 + qscbE,2 + qsc2 ¼ 0 (7.56)
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Upon substitution of the corresponding values, this equation becomes
1:0350 p1�p2ð Þ+ 1:3524 p4�p2ð Þ+ 2:7048 4000�p2ð Þ
�108:675�1:3625 p2�2000ð Þ¼ 0

After factorizing and ordering the unknowns, the equation becomes
1:0350p1�6:4547p2 + 1:3524p4 ¼�13435:554 (7.57)

For gridblock 3, n¼3, ψ3¼{1,4}, and ξ3¼{bW,bN}. Therefore,X

l2ξ3

qscl,3 ¼ qscbW ,3 + qscbN ,3 , and Eq. (7.19) becomes

T1,3 p1�p3ð Þ+ T3,4 p4�p3ð Þ+ qscbW ,3 + qscbN ,3 + qsc3 ¼ 0 (7.58)

Upon substitution of the corresponding values, this equation becomes
1:3524 p1�p3ð Þ+ 1:0350 p4�p3ð Þ+ 0 + 0�600¼ 0

After factorizing and ordering the unknowns, the equation becomes
1:3524p1�2:3874p3 + 1:0350p4 ¼ 600 (7.59)

For gridblock 4, n¼4, ψ4¼{2,3}, and ξ4¼{bE,bN}. Therefore,X

l2ξ4

qscl,4 ¼ qscbE,4 + qscbN ,4 , and Eq. (7.19) becomes

T2,4 p2�p4ð Þ+ T3,4 p3�p4ð Þ+ qscbE,4 + qscbN ,4 + qsc4 ¼ 0 (7.60)

Upon substitution of the corresponding values, this equation becomes
1:3524 p2�p4ð Þ+ 1:0350 p3�p4ð Þ�108:675�200 + 0¼ 0

After factorizing and ordering the unknowns, the equation becomes
1:3524p2 + 1:0350p3�2:3874p4 ¼ 308:675 (7.61)

The results of solving Eqs. (7.55), (7.57), (7.59), and (7.61) for the unknown
pressures are p1¼3772.36 psia, p2¼3354.20 psia, p3¼3267.39 psia, and

p4¼3187.27 psia. The flow rates across the reservoir boundaries are estimated

by substituting for the pressures in Eqs. (7.52) and (7.53), yielding

qscbS,1 ¼ 2:7048 4000�p1ð Þ¼ 2:7048 4000�3772:36ð Þ¼ 615:721STB=D

and
qscbS,2 ¼ 2:7048 4000�p2ð Þ¼ 2:7048 4000�3354:20ð Þ¼ 1746:787STB=D

The production rate for the well in gridblock 2 is obtained by substituting for
gridblock pressure in Eq. (7.51), which gives

qsc2 ¼�1:3625 p2�2000ð Þ¼�1:3625 3354:20�2000ð Þ¼�1845:12STB=D

The FBHP of the well in gridblock 3 is estimated using Eq. (6.11), yielding
�600¼�4:7688

1�3:5
3267:36�pwf 3
� �
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from which
pwf 3 ¼ 2827:00psia

The material balance for an incompressible fluid and rock system is checked
by substituting values for the well production rates and fictitious well rates on

the LHS of Eq. (7.17a), resulting in

XN
n¼1

qscn +
X
l2ξn

qscl,n

 !
¼

qsc1 + qscbS,1 + qscbW ,1

� 	
+ qsc2 + qscbS,2 + qscbE,2

� 	

+ qsc3 + qscbW ,3 + qscbN ,3

� 	
+ qsc4 + qscbE,4 + qscbN ,4

� 	
2
64

3
75

¼ 0 + 615:721 + 500ð Þ+ �1845:12 + 1746:787�108:675ð Þ
+ �600 + 0 + 0ð Þ+ 0�108:675�200ð Þ


 �

¼ 0:038

Therefore, the material balance check is satisfied, and a small error of
0.038STB/D is observed because of rounding off during calculations.

Example 7.8 Find the pressure distribution in the 2-D horizontal reservoir

shown in Fig. 7.8. The reservoir rock properties are homogeneous and isotropic:

ϕ¼0.19 and kx¼ky¼200 md. Gridblocks have Δx¼Δy¼400 ft and h¼50 ft,

and fluid properties are BffiB∘¼1 RB/STB, ρ¼55 lbm/ft3, and μ¼3 cP. The

reservoir has no-flow boundaries, and there are three wells in this reservoir.

The well in gridblock 7 produces fluid at a constant rate of 1000STB/D. Each

of the two wells in gridblocks 2 and 6 injects fluid with a constant FBHP of

3500psia. The wells have a diameter of 6 in. Assume that reservoir rock and

fluid are incompressible.
x

y

y 2

4 5 6

87

No-flow boundaries
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87
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pwf6
 = 3500 psia

FIG. 7.8 Discretized 2-D reservoir in Example 7.8. (a) Gridblocks and wells and (b) boundary

conditions.
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Solution

The gridblocks have the same dimensions and rock properties. Therefore,

T4,5¼T5,6¼T7,8¼Tx¼T2, 5¼T4,7¼T5,8¼Ty¼T where

T¼ βc
Axkx
μBΔx

¼ 0:001127� 400�50ð Þ�200

3�1�400
¼ 3:7567STB=D-psi

For each of the three wells, we use Eqs. (6.13), (6.16), (6.12), and (6.1) for
kH, req, Gw, and qsc, respectively:

kH ¼ 200md

req ¼ 0:198�400¼ 79:200 ft

and
Gw ¼ 2π�0:001127�200�50

log e 79:200= 3=12ð Þ½ �+ 0f g¼ 12:2974RB-cp=D-psi

The application of Eq. (6.1) gives
�1000¼�12:2974

1�3
p7�pwf 7
� �

or
pwf 7 ¼ p7�243:954 psia (7.62)for wellblock 7,
qsc2 ¼�12:2974

1�3
p2�3500ð Þ

or
qsc2 ¼�4:0991 p2�3500ð ÞSTB=D (7.63)for wellblock 2,
qsc6 ¼�4:0991 p6�3500ð ÞSTB=D: (7.64)and for wellblock 6,
In addition, qsc4¼qsc5¼qsc8¼0.

For no-flow boundary conditions and interior blocks,
X
l2ξn

qscl,n ¼ 0

for n¼2, 4, 5, 6, 7, 8.

The general flow equation for gridblock n in this 2-D horizontal

reservoir can be obtained from Eq. (7.16a) by discarding the gravity term,

yielding X
l2ψn

Tl,n pl�pnð Þ+
X
l2ξn

qscl,n + qscn ¼ 0 (7.19)
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For no-flow boundaries
X

qscl,n ¼ 0 , Eq. (7.19) reduces to

l2ξn

 !

X
l2ψn

Tl,n pl�pnð Þ+ qscn ¼ 0 (7.65)

For gridblock 2, n¼2, and ψ2¼{5}. Therefore, applying Eq. (7.65) gives
T2,5 p5�p2ð Þ+ qsc2 ¼ 0 (7.66)

Upon substitution of the corresponding values, this equation becomes
3:7567 p5�p2ð Þ�4:0991 p2�3500ð Þ¼ 0

After factorizing and ordering the unknowns, the equation becomes
�7:8558p2 + 3:7567p5 ¼�14346:97 (7.67)

For gridblock 4, n¼4, and ψ4¼{5,7}. Therefore, applying Eq. (7.65)
gives

T4,5 p5�p4ð Þ+ T4,7 p7�p4ð Þ + qsc4 ¼ 0 (7.68)

Upon substitution of the corresponding values, this equation becomes
3:7567 p5�p4ð Þ + 3:7567 p7�p4ð Þ+ 0¼ 0

or after factorizing and ordering the unknowns,
�7:5134p4 + 3:7567p5 + 3:7567p7 ¼ 0 (7.69)

For gridblock 5, n¼5, and ψ5¼{2,4,6,8}. Therefore, applying Eq. (7.65)
gives

T2,5 p2�p5ð Þ + T4,5 p4�p5ð Þ+ T5,6 p6�p5ð Þ+ T5,8 p8�p5ð Þ+ qsc5 ¼ 0 (7.70)

Upon substitution of the corresponding values, this equation becomes
3:7567 p2�p5ð Þ+ 3:7567 p4�p5ð Þ + 3:7567 p6�p5ð Þ+ 3:7567 p8�p5ð Þ+ 0¼ 0

After factorizing and ordering the unknowns, the equation becomes
3:7567p2 + 3:7567p4�15:0268p5 + 3:7567p6 + 3:7567p8 ¼ 0 (7.71)

For gridblock 6, n¼6, and ψ6¼{5}. Therefore, applying Eq. (7.65)
gives

T5,6 p5�p6ð Þ+ qsc6 ¼ 0 (7.72)

Upon substitution of the corresponding values, this equation becomes
3:7567 p5�p6ð Þ�4:0991 p6�3500ð Þ¼ 0

After factorizing and ordering the unknowns, the equation becomes
3:7567p5�7:8558p6 ¼�14346:97 (7.73)
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For gridblock 7, n¼7, and ψ7¼{4,8}. Therefore, applying Eq. (7.65)
gives

T4,7 p4�p7ð Þ+ T7,8 p8�p7ð Þ+ qsc7 ¼ 0 (7.74)

Upon substitution of the corresponding values, this equation becomes
3:7567 p4�p7ð Þ+ 3:7567 p8�p7ð Þ�1000¼ 0

After factorizing and ordering the unknowns, the equation becomes
3:7567p4�7:5134p7 + 3:7567p8 ¼ 1000 (7.75)

For gridblock 8, n¼8, and ψ8¼{5,7}. Therefore, applying Eq. (7.65)
gives

T5,8 p5�p8ð Þ+ T7,8 p7�p8ð Þ+ qsc8 ¼ 0 (7.76)

Upon substitution of the corresponding values, this equation becomes
3:7567 p5�p8ð Þ+ 3:7567 p7�p8ð Þ+ 0¼ 0

or after factorizing and ordering the unknowns,
3:7567p5 + 3:7567p7�7:5134p8 ¼ 0 (7.77)

The results of solving Eqs. (7.67), (7.69), (7.71), (7.73), (7.75), and (7.77)
for the unknown pressures are p2¼3378.02 psia, p4¼3111.83 psia,

p5¼3244.93 psia, p6¼3378.02 psia, p7¼2978.73 psia, and p8¼3111.83 psia.

Note the symmetry about the vertical plane that passes through the centers of

gridblocks 5 and 7 (see Section 4.6). We could have made use of this symmetry

and, accordingly, set p2¼p6 and p4¼p8; write the flow equations for gridblocks

2, 4, 5, and 7; and finally solve the resulting four equations for the unknowns p2,
p4, p5, and p7.

Next, the production rate for the wells in gridblocks 2 and 6 are estimated by

substituting for gridblock pressures in Eqs. (7.63) and (7.64), yielding

qsc2 ¼�4:0991 p2�3500ð Þ¼�4:0991 3378:02�3500ð Þ¼ 500:008STB=D

and
qsc6 ¼�4:0991 p6�3500ð Þ¼�4:0991 3378:02�3500ð Þ¼ 500:008STB=D

The FBHP of the well in gridblock 7 is estimated using Eq. (7.62), which
gives

pwf 7 ¼ p7�243:954¼ 2978:73�243:954¼ 2734:8psia

The material balance for an incompressible fluid and rock system is checked
by substituting the values for the well production rates and fictitious well rates

on the LHS of Eq. (7.17a). For no-flow boundaries, the LHS of Eq. (7.17b)

reduces to
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X8
n¼2

qscn +
X
l2ξn

qscl,n

 !
¼
X8
n¼2

qscn + 0ð Þ¼
X8
n¼2

qscn

¼ 500:008 + 0 + 0 + 500:008�1000 + 0¼ 0:016

Therefore, the material balance check is satisfied, and a small error of
0.016STB/D is observed because of rounding off during calculations.
7.3.2 Slightly compressible fluid flow equation

The density, FVF, and viscosity of slightly compressible fluids at reservoir tem-

perature are functions of pressure. Such dependence; however, is weak. In this

context, the FVF, viscosity, and density that appear on the LHS of a flow equa-

tion (Eq. 7.12) can be assumed constant. The accumulation term can be

expressed in terms of pressure changes over a time step by substituting for B
and ϕ (using Eqs. 7.6 and 7.11) into the RHS of Eq. (7.12). The resulting accu-

mulation term is

Vbn

αcΔt
ϕ

B

� �n+ 1

n

� ϕ

B

� �n

n

" #
ffi Vbn

αcΔt
ϕ°
n

B° c+ cϕ
� �

pn+ 1n �pnn
� �

(7.78)

Note that Eq. (7.78) reduces to Eq. (7.14) for an incompressible fluid where
c¼0. Substitution of Eq. (7.78) into Eq. (7.12) yields the flow equation for

slightly compressible fluids:X
l2ψn

Tm
l,n pml �pmn
� �� γml,n Zl�Znð Þ� �

+
X
l2ξn

qmscl,n + q
m
scn

¼Vbnϕ
°
n c + cϕ
� �

αcB°Δt
pn+ 1n �pnn
� �

(7.79)
7.3.2.1 Formulations of the slightly compressible fluid flow
equation

The time level m in Eq. (7.79) is approximated in reservoir simulation in one of

three ways (tn, tn+1, or tn+1/2) as mentioned in Chapter 2. The resulting equation

is commonly known as the explicit formulation of the flow equation (or the

forward-central-difference equation), the implicit formulation of the flow equa-

tion (or the backward-central-difference equation), and the Crank-Nicolson

formulation of the flow equation (or the second-order-central-difference equa-

tion). The terminology in the parentheses above is usually used in the mathe-

matical approach to reservoir simulation. It originates from the way the

partial differential equation (PDE) describing the problem is approximated to

give the finite-difference equation (or flow equation in algebraic form). The for-

ward, backward, or second-order descriptor refers to the approximation of the
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time derivative (or accumulation) term with reference to the time level at which

the PDE is written. The central-difference descriptor refers to using a second-

order approximation of (interblock) flow terms in the PDE.
Explicit formulation of the flow equation

The explicit formulation of the flow equation can be obtained from Eq. (7.79) if

the argument Fm (defined in Section 2.6.3) is dated at old time level tn; that is,
tmffi tn, and as a result, FmffiFn. Therefore, Eq. (7.79) becomes

X
l2ψn

Tn
l,n pnl �pnn
� �� γnl,n Zl�Znð Þ� �

+
X
l2ξn

qnscl,n + q
n
scn

ffiVbnϕ
°
n c+ cϕ
� �

αcB°Δt
pn + 1n �pnn
� �

(7.80a)

or
X
l2ψ i, j,k

Tn
l, i, j, kð Þ pnl �pni, j,k

� 	
� γnl, i, j, kð Þ Zl�Zi, j,k

� �h i
+
X
l2ξi, j,k

qnscl, i, j, kð Þ + q
n
sci, j,k

ffiVbi, j,kϕ
°
i, j,k c+ cϕ
� �

αcB°Δt
pn+ 1i, j,k �pni, j,k

h i

(7.80b)

Inspection of Eq. (7.80a) reveals that it has one unknown pressure, namely,
pn
n+1, and that all the neighboring blocks (nodes) have known pressures at the old

time level. Therefore, the pressure solution at time level n+1 is obtained by

solving Eq. (7.80a) for pn
n+1 for block n independent of the flow equations of

the other blocks. Stability analysis performed in the mathematical approach

(Ertekin et al., 2001) concludes that Eq. (7.80) is conditionally stable; that is,

the use of Eq. (7.80) gives numerically stable pressure solutions for small time

steps only (see Fig. 7.9). In other words, the allowable time step is quite small,

and the amount of computational effort required to obtain the solution to prac-

tical problems at a given time level is prohibitive. Consequently, this formula-

tion is not used in reservoir simulation. The explicit formulation is only of

academic interest to mathematicians, and it is not pursued further in this book.
Implicit formulation of the flow equation

The implicit formulation of the flow equation can be obtained from Eq. (7.79) if

the argument Fm (defined in Section 2.6.3) is dated at new time level tn+1; that is,
tmffi tn+1, and as a result, FmffiFn+1. Therefore, Eq. (7.79) becomesX

l2ψn

Tn+ 1
l,n pn+ 1l �pn+ 1n

� �� γnl,n Zl�Znð Þ� �
+
X
l2ξn

qn+ 1scl,n
+ qn+ 1scn

ffiVbnϕ
°
n c+ cϕ
� �

αcB°Δt
pn+ 1n �pnn
� �

(7.81a)
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or
X
l2ψ i, j,k

Tn+ 1
l, i, j, kð Þ pn+ 1l �pn+ 1i, j,k

� 	
� γnl, i, j, kð Þ Zl�Zi, j,k

� �h i

+
X
l2ξi, j,k

qn+ 1scl, i, j, kð Þ + q
n+ 1
sci, j,k

ffiVbi, j,kϕ
°
i, j,k c+ cϕ
� �

αcB°Δt
pn+ 1i, j,k �pni, j,k

h i (7.81b)

In this equation, dating fluid gravity at old time level n instead of new time
level n+1 does not introduce any noticeable errors (Coats et al., 1974). This

approximation will be used throughout this book. Inspection of Eq. (7.81a)

reveals that block n and all its neighboring blocks (nodes) have unknown pres-

sures at the current time level. Therefore, the pressure solution at current time

level n+1 is obtained by solving simultaneously the system of equations, which

result from writing Eq. (7.81a) for all blocks (nodes) in the reservoir. Stability

analysis performed in the mathematical approach (Ertekin et al., 2001) con-

cludes that Eq. (7.81) is unconditionally stable because of the linearity of this

equation; that is, Eq. (7.81) gives numerically stable pressure solutions with no

limits on the allowable time step. However, there has to be a limit on the time

step to obtain an accurate solution, but this is not a stability consideration. The

property of unconditional stability of the implicit formulation method makes it

attractive in spite of the extra computational effort required per time step. The

solution at a given simulation time can be obtained with much less computa-

tional effort by taking large time steps. The time step is limited only by accuracy

requirements. Consequently, the implicit formulation method is commonly

used in reservoir simulation.
Crank-Nicolson formulation of the flow equation

The Crank-Nicolson formulation of the flow equation can be obtained

from Eq. (7.79) if the argument Fm (defined in Section 2.6.3) is dated at
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time tn+1/2. In the mathematical approach, this time level was chosen to make

the RHS of Eq. (7.79) a second-order approximation in time. In the engineer-

ing approach; however, the argument Fm can be approximated as

Fm ffiFn + 1=2 ¼ 1


2 Fn +Fn+ 1ð Þ. Therefore, Eq. (7.79) becomes

1


2

X
l2ψn

Tn
l,n pnl �pnn
� �� γnl,n Zl�Znð Þ� �

+1


2

X
l2ψn

Tn+ 1
l,n pn+ 1l �pn+ 1n

� �� γnl,n Zl�Znð Þ� �
+ 1


2

X
l2ξn

qnscl,n +
X
l2ξn

qn+ 1scl,n

 !

+1


2 qnscn + q

n+ 1
scn

� 	
ffiVbnϕ

°
n c+ cϕ
� �

αcB°Δt
pn+ 1n �pnn
� �

(7.82a)

Eq. (7.82a) can be rewritten in the form of Eq. (7.81a) as
X
l2ψn

Tn + 1
l,n pn+ 1l �pn+ 1n

� �� γnl,n Zl�Znð Þ� �

+
X
l2ξn

qn+ 1scl,n
+ qn+ 1scn

ffiVbnϕ
°
n c+ cϕ
� �

αcB° Δt=2ð Þ pn+ 1n �pnn
� �

�
X
l2ψn

Tn
l,n pnl �pnn
� �� γnl,n Zl�Znð Þ� �

+
X
l2ξn

qnscl,n + q
n
scn

( ) (7.82b)

Like Eq. (7.81), the pressure solution at current time level n+1 is obtained
by solving simultaneously the system of equations, which result from writing

Eq. (7.82b) for all blocks (nodes) in the reservoir. The Crank-Nicolson formu-

lation is unconditionally stable, and the time step is limited only by accuracy

requirements. The advantage of the Crank-Nicolson formulation over the

implicit formulation is a more accurate solution for the same time step or larger

time steps for the same accuracy (Hoffman, 1992). This gain in accuracy is

obtained at no extra computational cost because the terms in the braces {}

on the RHS of Eq. (7.82b) are calculated at the end of the previous time step.

The drawback of the Crank-Nicolson formulation is that the numerical solution

may exhibit overshoot and oscillations for some problems. Such oscillations are

not due to instability but rather to an inherent feature of the Crank-Nicolson for-

mulation (Hoffman, 1992). This formulation method finds infrequent use in res-

ervoir simulation perhaps because of this drawback and the problems that may

arise because of specifying a pressure gradient at reservoir boundaries (Keast

and Mitchell, 1966).
7.3.2.2 Advancing the pressure solution in time

The pressure distribution in a slightly compressible flow problem changes with

time. This means that the flow problem must be solved in its unsteady-state

form. At time t0¼0, all reservoir block pressures (pn
0, n¼1, 2, 3…N) must

be specified. Initially, a fluid in the reservoir is in hydrodynamic equilibrium.
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Therefore, it is sufficient to specify the pressure at one point in the reservoir, and

the initial pressure of any block in the reservoir can be estimated from hydro-

static pressure considerations. Then, the procedure entails finding the pressure

solution at discrete times (t1, t2, t3, t4, …etc.) by marching the latest value of

pressure in time using time steps (Δt1, Δt2, Δt3, Δt4,…etc.). The pressure solu-

tion is advanced from initial conditions at t0¼0 (time level n) to t1¼ t0+Δt1
(time level n+1). The solution then is advanced in time from t1 (time level

n) to t2¼ t1+Δt2 (time level n+1), from t2 to t3¼ t2+Δt3, and from t3 to

t4¼ t3+Δt4, and the process is repeated as many times as necessary until the

desired simulation time is reached. To obtain the pressure solution at time level

n+1, we assign the pressure solution just obtained as pressures at time level n,
write the flow equation for every block (node) in the discretized reservoir, and

solve the resulting set of linear equations for the set of unknown pressures.

For the explicit formulation, the calculation procedure within each time step

follows:

1. Calculate the interblock transmissibilities and the coefficient of (pn
n+1�pn

n),

and define the pressure at the old time level for all reservoir blocks.

2. Estimate the production rate at time level n for each wellblock in the reser-

voir as discussed in Chapter 6.

3. Estimate the flow rate at time level n for each fictitious well in the reservoir
as discussed in Chapter 4 (or Chapter 5); that is, estimate the flow rates

resulting from boundary conditions.

4. For every gridblock (or gridpoint) in the reservoir, define the set of existing

reservoir neighboring blocks (ψn) and the set of reservoir boundaries that are

block boundaries (ξn), expand the summation terms in the flow equation

(Eq. 7.80 in this case), and substitute for the wellblock production rate

obtained in (2) and fictitious well rates obtained in (3).

5. Solve the flow equation of each reservoir block (node) for its unknown pres-

sure independent of the other flow equations because each flow equation in

the explicit formulation has only one unknown pressure.

6. Perform incremental and cumulative material balance checks.

For the implicit and the Crank-Nicolson formulations, the calculation procedure

within each time step follows:

1. Calculate the interblock transmissibilities and the coefficient of (pn
n+1�pn

n),

and define pressure at the old time level for all reservoir blocks.

2. Estimate the production rate (or write the production rate equation) at time

level n+1 for each wellblock in the reservoir as discussed in Chapter 6.

3. Estimate the flow rate (or write the flow rate equation) at time level n+1 for
each fictitious well in the reservoir as discussed in Chapter 4 (or Chapter 5);

that is, estimate the flow rates resulting from boundary conditions.

4. For every gridblock (or gridpoint) in the reservoir, define the set of existing

reservoir neighboring blocks (ψn) and the set of reservoir boundaries that are
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block boundaries (ξn), expand the summation terms in the flow equation

(Eq. 7.81 or 7.82b), and substitute for the wellblock production rate obtained

in (2) and fictitious well rates obtained in (3).

5. Factorize, order, and place the unknown pressures (at time level n+1) on the
LHS and place known quantities on the RHS of each flow equaton.

6. Solve the resulting set of equations for the set of unknown pressures (at time

level n+1) using a linear equation solver such as those presented in

Chapter 9.

7. Estimate the wellblock production rates and fictitious well rates at time level

n+1 if necessary by substituting the values of pressures obtained in (6) into
the flow rate equations obtained in (2) and (3).

8. Perform incremental and cumulative material balance checks.
7.3.2.3 Material balance check for a slightly compressible fluid
flow problem

For slightly compressible fluid flow problems, there are usually two material

balance checks. The first is called the incremental material balance check

(IMB) and is used to check the material balance over a time step. The second

is called the cumulative material balance check (CMB) and is used to check

the material balance from the initial conditions up to the current time step.

The latter check tends to smooth errors that occur over all the previous time

steps; therefore, it provides a less accurate check than the first check. In reser-

voir simulation, a material balance check is defined as the ratio of the accumu-

lated mass to the net mass entering and leaving reservoir boundaries, including

wells. If reservoir blocks are identified using block order and the implicit for-

mulation is used, the equations for material balance checks are

IMB ¼

XN
n¼1

Vbn

αcΔt
ϕ

B

� �n+ 1

n

� ϕ

B

� �n

n

" #

XN
n¼1

qn+ 1scn
+
X
l2ξn

qn+ 1scl,n

 ! (7.83)

and
CMB ¼

XN
n¼1

Vbn

αc

ϕ

B

� �n+ 1

n

� ϕ

B

� �0

n

" #

Xn+ 1
m¼1

Δtm
XN
n¼1

qmscn +
X
l2ξn

qmscl,n

 ! (7.84)

where N is the total number of blocks in the reservoir, subscript n is block num-
ber, and superscript n is old time level. In Eqs. (7.83) and (7.84), the production

(or injection) rate is set to zero for any reservoir block that is not penetrated by a
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well. In addition, Eq. (7.11) defines rock porosity, and Eq. (7.6) defines FVF

for slightly compressible fluid. Alternatively, we can substitute Eq. (7.78) for

a slightly compressible fluid and porosity into Eqs. (7.83) and (7.84). The mate-

rial balance checks become

IMB ¼

XN
n¼1

Vbnϕ
°
n c+ cϕ
� �

αcB°Δt
pn+ 1n �pnn
� �

XN
n¼1

qn+ 1scn
+
X
l2ξn

qn+ 1scl,n

 ! (7.85)

and
CMB ¼

XN
n¼1

Vbnϕ
°
n c+ cϕ
� �

αcB° pn+ 1n �p0n
� �

Xn+ 1
m¼1

Δtm
XN
n¼1

qmscn +
X
l2ξn

qmscl,n

 ! (7.86)

The second term in the parentheses in the denominator of Eqs. (7.85) and
(7.86) takes care of fluid flow across reservoir boundaries. The numerical value

of both IMB and CMB checks should be close to one. A value of 0.995–1.005 or

better is acceptable for solving problems using handheld calculators, compared

with 0.999995–1.000005 used in numerical simulators.

The incremental material balance check at time level n+1, which is

expressed by Eq. (7.85), can be derived by writing Eq. (7.81a) for each block

in the system (n¼1, 2, 3…N) and then summing up all n equations. The result-
ing equation is

XN
n¼1

X
l2ψn

Tn+ 1
l,n pn+ 1l �pn+ 1n

� �� γnl,n Zl�Znð Þ� �( )
+
XN
n¼1

X
l2ξn

qn+ 1scl,n
+ qn+ 1scn

 !

¼
XN
n¼1

Vbnϕ
°
n c+ cϕ
� �

αcB°Δt
pn+ 1n �pnn
� �

(7.87)

The sum of all interblock terms in the reservoir, which are expressed by the
first term on the LHS of Eq. (7.87), adds up to zero, while the second term on the

LHS represents the algebraic sum of all production rates through wells

PN
n¼1

qn+ 1scn

� �
and those across reservoir boundaries

PN
n¼1

X
l2ξn

qn+ 1scl,n

 !
. The RHS

of this equation represents the sum of the accumulation terms in all blocks in

the reservoir. Therefore, Eq. (7.87) becomes

XN
n¼1

X
l2ξn

qn+ 1scl,n
+ qn+ 1scn

 !
¼
XN
n¼1

Vbnϕ
°
n c+ cϕ
� �

αcB°Δt
pn+ 1n �pnn
� �

(7.88)
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Dividing this equation by the term on the LHS yields
1¼

XN
n¼1

Vbnϕ
°
n c + cϕ
� �

αcB°Δt
pn+ 1n �pnn
� �

XN
n¼1

qn+ 1scn
+
X
l2ξn

qn+ 1scl,n

 ! (7.89)

Comparing Eqs. (7.85) and (7.89) dictates that IMB must be equal or close to
1 to preserve the material balance. The equation for the cumulative material bal-

ance check is obtained by writing Eq. (7.88) for all time steps (m¼1, 2, 3…

n+1), observing that Δtm¼ tm+1� tm replaces Δt, and summing up all resulting

equations. It should be mentioned that for the explicit formulation, the denom-

inator of Eq. (7.89) is replaced with
PN
n¼1

qnscn +
X
l2ξn

qnscl,n

 !
. For the Crank-

Nicolson formulation, the denominator of Eq. (7.89) becomes

PN
n¼1

1=2 qn + 1scn
+ qnscn

� 	
+
X
l2ξn

1=2 qn+ 1scl,n
+ qnscl,n

� 	" #

Both Examples 7.9 and 7.10 demonstrate the application of the solution

algorithm presented in this section to advance the pressure solution from one

time step to another. The reservoir is discretized using a block-centered grid

in Example 7.9, whereas a point-distributed grid is used in Example 7.10.

Example 7.11 presents the simulation of a heterogeneous 1-D reservoir.

Example 7.12 demonstrates the advancement of the pressure solution in time

in single-well simulation.

Example 7.9A single-phase fluid reservoir is described by four equal blocks as

shown in Fig. 7.10. The reservoir is horizontal and has homogeneous rock prop-

erties, k¼270 md, ϕ¼0.27, and cϕ¼1�10�6 psi�1. Initially, the reservoir

pressure is 4000psia. Gridblock dimensions are Δx¼300 ft, Δy¼350 ft, and

h¼40 ft. Reservoir fluid properties are B¼B∘¼1 RB/STB, ρ¼50 lbm/ft3,

μ¼0.5 cP, and c¼1�10�5 psi�1. The reservoir left boundary is kept at a con-

stant pressure of 4000psia, and the reservoir right boundary is sealed off to flow.

A 7-in vertical well was drilled at the center of gridblock 4. The well produces
2 3 41 
40 ft

300 ft 300 ft 350 ft

x

y

No-flow boundarypbW
 = 4000 psia

qsc4
 = −600 STB/D

FIG. 7.10 Discretized 1-D reservoir in Example 7.9.
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600STB/D of fluid and has a skin factor of 1.5. Find the pressure distribution in

the reservoir after 1day and 2days using the implicit formulation. Take time

steps of 1day. Perform a material balance check. This problem is the same

as that presented in Example 7.1, except both the fluid and rock are slightly

compressible.

Solution

The gridblocks have the same dimensions and rock properties. Therefore,

T1,2 ¼ T2,3 ¼ T3,4 ¼ Tx ¼ βc
Axkx
μBΔx¼ 0:001127� 350�40ð Þ�270

0:5�1�300
¼ 28:4004 STB/D-psi

and

Vbnϕ
°
n c + cϕ
� �

αcB°Δt
¼ 300�350�40ð Þ�0:27� 1�10�5 + 1�10�6

� �
5:614583�1�1

¼ 2:2217 for n¼ 1,2,3,4

There is a production well in gridblock 4 only. Therefore, qn+1
sc1

¼

qn+1
sc2

¼qn+1
sc3

¼0 and qn+1
sc4

¼ �600 STB/D.

Gridblock 1 falls on the reservoir west boundary, which is kept at a constant

pressure of 4000psia. Therefore, qn+1
scbW,1

can be estimated using Eq. (4.37c),

whose application gives

qn+ 1scbW ,1
¼ βc

kxAx

μB Δx=2ð Þ

 �

1

pbW �pn + 11

� �� γ ZbW �Z1ð Þ� �

¼ 0:001127� 270� 350�40ð Þ
0:5�1� 300=2ð Þ


 �
4000�pn+ 11

� �� γ�0
� � (7.90)

or
qn + 1scbW ,1
¼ 56:8008 4000�pn+ 11

� �
STB=D (7.91)

Gridblock 4 falls on the reservoir east boundary, which is a no-flow bound-
ary. Therefore, Eq. (4.32) applies, giving qn+1
scbE,4

¼0 STB/D.

1. First time step calculations (n¼0, tn+1¼1 day, and Δt¼1 day)

Assign p1
n¼p2

n¼p3
n¼p4

n¼pin¼4000 psia.

The general flow equation for gridblock n in this 1-D horizontal reservoir is

obtained from Eq. (7.81a) by discarding the gravity term, yielding

X
l2ψn

Tn+ 1
l,n pn+ 1l �pn+ 1n

� �
+
X
l2ξn

qn+ 1scl,n
+ qn+ 1scn

ffiVbnϕ
°
n c + cϕ
� �

αcB°Δt
pn+ 1n �pnn
� �

(7.92)

For gridblock 1, n¼1, ψ1¼{2}, and ξ1¼{bW}. Therefore,X

l2ξ1

qn+ 1scl,1
¼ qn+ 1scbW ,1

, and Eq. (7.92) becomes

T1,2 pn+ 12 �pn+ 11

� �
+ qn+ 1scbW ,1

+ qn+ 1sc1
¼Vb1ϕ

°
1 c+ cϕ
� �

αcB°Δt
pn+ 11 �pn1
� �

(7.93)
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Substitution of the values in this equation gives
28:4004 pn+ 12 �pn+ 11

� �
+ 56:8008 4000�pn+ 11

� �
+ 0¼ 2:2217 pn+ 11 �4000

� �
or after factorizing and ordering the unknowns,
�87:4229pn+ 11 + 28:4004pn+ 12 ¼�236090:06 (7.94)

For gridblock 2, n¼2, ψ2¼{1,3}, and ξ2¼{}. Therefore,
X

qn+ 1scl,2
¼ 0, and
l2ξ2Eq. (7.92) becomes

T1,2 pn+ 11 �pn+ 12

� �
+ T2,3 pn+ 13 �pn+ 12

� �
+ 0 + qn+ 1sc2

¼Vb2ϕ
°
2 c + cϕ
� �

αcB°Δt
pn+ 12 �pn2
� �

(7.95)

Substitution of the values in this equation gives
28:4004 pn+ 11 �pn+ 12

� �
+ 28:4004 pn+ 13 �pn+ 12

� �
+ 0 + 0¼ 2:2217 pn+ 12 �4000

� �

or after factorizing and ordering the unknowns,
28:4004pn+ 11 �59:0225pn + 12 + 28:4004pn+ 13 ¼�8886:86 (7.96)

For gridblock 3, n¼3, ψ3¼{2,4}, and ξ3¼{}. Therefore,
X

qn+ 1scl,3
¼ 0, and
l2ξ3Eq. (7.92) becomes

T2,3 pn+ 12 �pn+ 13

� �
+ T3,4 pn+ 14 �pn+ 13

� �
+ 0 + qn+ 1sc3

¼Vb3ϕ
°
3 c + cϕ
� �

αcB°Δt
pn+ 13 �pn3
� �

(7.97)

Substitution of the values in this equation gives
28:4004 pn+ 12 �pn+ 13

� �
+ 28:4004 pn+ 14 �pn+ 13

� �
+ 0 + 0¼ 2:2217 pn+ 13 �4000

� �

or after factorizing and ordering the unknowns,
28:4004pn+ 12 �59:0225pn + 13 + 28:4004pn+ 14 ¼�8886:86 (7.98)

For gridblock 4, n¼4, ψ4¼{3}, and ξ4¼{bE}. Therefore,
X

qn+ 1scl,4
¼ qn+ 1scbE,4

,

l2ξ4and Eq. (7.92) becomes

T3,4 pn+ 13 �pn+ 14

� �
+ qn+ 1scbE,4

+ qn+ 1sc4
¼Vb4ϕ

°
4 c+ cϕ
� �

αcB°Δt
pn+ 14 �pn4
� �

(7.99)

Substitution of the values in this equation gives
28:4004 pn+ 13 �pn+ 14

� �
+ 0�600¼ 2:2217 pn+ 14 �4000

� �
or after factorizing and ordering the unknowns,
28:4004pn+ 13 �30:6221pn+ 14 ¼�8286:86 (7.100)
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The results of solving Eqs. (7.94), (7.96), (7.98), and (7.100) for the
unknown pressures are p1
n+1¼3993.75 psia, p2

n+1¼3980.75 psia, p3
n+1¼

3966.24 psia, and p4
n+1¼3949.10 psia

Next, the flow rate across the reservoir left boundary (qn+1
scbW,1

) is estimated

using Eq. (7.91), which gives

qn+ 1scbW ,1
¼ 56:8008 4000�pn+ 11

� �¼ 56:8008 4000�3993:75ð Þ
¼ 355:005STB=D

The material balance for a slightly compressible fluid and rock system is
checked using Eq. (7.85), yielding

IMB ¼

XN
n¼1

Vbnϕ
°
n c+ cϕ
� �

αcB°Δt
pn+ 1n �pnn
� �

XN
n¼1

qn+ 1scn
+
X
l2ξn

qn+ 1scl,n

0
@

1
A

¼

Vbϕ
∘ c + cϕ
� �

αcB°Δt

X4
n¼1

pn+ 1n �pnn
� �

X4
n¼1

qn+ 1scn
+
X4
n¼1

X
l2ξn

qn+ 1scl,n

¼ 2:2217 3993:75�4000ð Þ + 3980:75�4000ð Þ+ 3966:24�4000ð Þ + 3949:10�4000ð Þ½ �
0 + 0 + 0�600½ � + 355:005 + 0 + 0 + 0½ �

¼�2:2217�110:16

�244:995
¼ 0:99897

Therefore, the material balance check is satisfied.
2. Second time step calculations (n¼1, tn+1¼2 day, and Δt¼1 day)

Assign p1
n¼3993.75 psia, p2

n¼3980.75 psia, p3
n¼3966.24 psia, and p4

n¼
3949.10 psia. Because Δt is constant, the flow equation for each gridblock in

the second and succeeding time steps is obtained in a way similar to that used

in the first time step, except the newly assigned pn
n is used to replace the old pn

n in

the accumulation term. For example, pn
n on the RHS of Eqs. (7.93), (7.95),

(7.97), and (7.99) for this time step is replaced with 3993.75, 3980.75,

3966.24, and 3949.10, respectively.

For gridblock 1,

28:4004 pn+ 12 �pn+ 11

� �
+ 56:8008 4000�pn+ 11

� �
+ 0¼ 2:2217 pn+ 11 �3993:75

� �

or after factorizing and ordering the unknowns,
�87:4229pn+ 11 + 28:4004pn+ 12 ¼�236076:16 (7.101)

For gridblock 2,
28:4004 pn + 11 �pn + 12

� �
+ 28:4004 pn+ 13 �pn+ 12

� �
+ 0 + 0

¼ 2:2217 pn+ 12 �3980:75
� �
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or after factorizing and ordering the unknowns,
28:4004pn+ 11 �59:0225pn + 12 + 28:4004pn+ 13 ¼�8844:08 (7.102)

For gridblock 3,
28:4004 pn+ 12 �pn+ 13

� �
+ 28:4004 pn+ 14 �pn+ 13

� �
+ 0 + 0

¼ 2:2217 pn+ 13 �3966:24
� �

or after factorizing and ordering the unknowns,
28:4004pn+ 12 �59:0225pn + 13 + 28:4004pn+ 14 ¼�8811:86 (7.103)

For gridblock 4,
28:4004 pn+ 13 �pn+ 14

� �
+ 0�600¼ 2:2217 pn+ 14 �3949:10

� �
or after factorizing and ordering the unknowns,
28:4004pn+ 13 �30:6221pn+ 14 ¼�8173:77 (7.104)

The results of solving Eqs. (7.101) through (7.104) for the unknown
pressures are p1
n+1¼3990.95 psia, p2

n+1¼3972.64 psia, p3
n+1¼3953.70 psia,

and p4
n+1¼3933.77 psia.

Next, the flow rate across the reservoir left boundary (qn+1
scbW,1

) is estimated

using Eq. (7.91), which gives

qn+ 1scbW ,1
¼ 56:8008 4000�pn+ 11

� �¼ 56:8008 4000�3990:95ð Þ
¼ 514:047STB=D

The material balance is checked using Eq. (7.85), yielding
IMB ¼

Vbϕ
∘ c+ cϕ
� �

αcB°Δt

X4
n¼1

pn + 1n �pnn
� �

X4
n¼1

qn+ 1scn
+
X4
n¼1

X
l2ξn

qn+ 1scl,n

¼
2:2217

3990:95�3993:75ð Þ+ 3972:64�3980:75ð Þ
+ 3953:70�3966:24ð Þ + 3933:77�3949:10ð Þ

" #( )

0 + 0 + 0�600½ �+ 514:047 + 0 + 0 + 0½ �

¼�2:2217�38:78

�85:953
¼ 1:00238
Example 7.10 Consider the problem presented in Example 7.9, but this time,

the reservoir is described by five equally spaced gridpoints using a point-

distributed grid as shown in Fig. 7.11.
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FIG. 7.11 Discretized 1-D reservoir in Example 7.10.
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The problem is restated as follows. The reservoir length along the

x-direction is 1200ft, Δy¼350 ft, and h¼40 ft. The reservoir is horizontal

and has homogeneous rock properties, k¼270 md, ϕ¼0.27, and

cϕ¼1�10�6 psi�1. Initially, the reservoir pressure is 4000 psia. Reservoir

fluid properties are B¼B∘¼1 RB/STB, ρ¼50 lbm/ft3, μ¼0.5 cP, and

c¼1�10�5 psi�1. The reservoir left boundary is kept constant at 4000 psia,

and the reservoir right boundary is sealed off to flow. A 7-in vertical well

was drilled at the center of gridblock 5. The well produces 600STB/D of fluid

and has a skin factor of 1.5. Find the pressure distribution in the reservoir after

1day and 2days using the implicit formulation. Take time steps of 1day.

Perform a material balance check.

Solution

The reservoir is discretized into five gridpoints, nx¼5. The distance

between the gridpoints isΔxi+1/2¼1200/(5�1)¼300 ft for i¼1, 2, 3, 4. There-

fore, block sizes in the x-direction are Δx1¼Δx5¼300/2¼150 ft and

Δx2¼Δx3¼Δx4¼300 ft. Blocks represented by the various gridpoints have

the same rock properties. Therefore,

T1,2 ¼ T2,3 ¼ T3,4 ¼ T4,5 ¼ Tx ¼ βc
Axkx

μBΔxi+ 1=2
¼ 0:001127� 350�40ð Þ�270

0:5�1�300

¼ 28:4004STB=D-psi

Vbnϕ
°
n c + cϕ
� �

αcB°Δt
¼ 300�350�40ð Þ�0:27� 1�10�5 + 1�10�6

� �
5:614583�1�1

¼ 2:2217 for n¼ 2,3,4

Additionally,
Vbnϕ
°
n c + cϕ
� �

αcB°Δt
¼ 150�350�40ð Þ�0:27� 1�10�5 + 1�10�6

� �
5:614583�1�1

¼ 1:11085 for n¼ 1,5
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There is a production well in gridpoint 5 only. Therefore, qn+1sc1 ¼ qn+1
sc2 ¼
qn+1sc3 ¼qn+1sc4 ¼0, and qn+1sc5 ¼ �600 STB/D.

Gridpoint 1 falls on the reservoir west boundary, which is kept at a constant

pressure of 4000psia. Therefore,

pn+ 11 ¼ pbW
¼ 4000 psia (7.105)

In addition, qn+1
scbW,1

can be estimated using Eq. (5.46c), whose application
gives

qn+ 1scbW ,1
¼ βc

kxAx

μBΔx


 �
1,2

p
bW

�pn+ 12

� 	
� γ ZbW �Z2ð Þ

h i

¼ 0:001127�270� 350�40ð Þ
0:5�1�300


 �
4000�pn + 12

� �� γ�0
� � (7.106)

or
qn+ 1scbW ,1
¼ 28:4004 4000�pn+ 12

� �
STB=D (7.107)

Gridpoint 5 falls on the reservoir east boundary, which is a no-flow bound-
ary. Therefore, Eq. (5.40) applies, giving qn+1
scbE,5

¼0 STB/D.

1. First time step calculations (n¼0, tn+1¼1 day, and Δt¼1 day)

Assign p1
n¼p2

n¼p3
n¼p4

n¼p5
n¼pin¼4000 psia.

The general flow equation for gridpoint n in this 1-D horizontal reservoir is

obtained from Eq. (7.81a) by discarding the gravity term, yielding

X
l2ψn

Tn+ 1
l,n pn + 1l �pn + 1n

� �
+
X
l2ξn

qn+ 1scl,n
+ qn+ 1scn

ffiVbnϕ
°
n c+ cϕ
� �

αcB°Δt
pn + 1n �pnn
� �

(7.92)

For gridpoint 1, n¼1,ψ1¼{2}, and ξ1¼{bW}. Therefore,
X

qn+ 1scl,1
¼ qn+ 1scbW ,1

,

l2ξ1and Eq. (7.92) becomes

T1,2 pn+ 12 �pn+ 11

� �
+ qn+ 1scbW ,1

+ qn+ 1sc1
¼Vb1ϕ

°
1 c + cϕ
� �

αcB°Δt
pn+ 11 �pn1
� �

(7.93)

In reality, we do not need to write or make use of the flow equation for
gridpoint 1 because p1
n+1¼4000 psia is defined by Eq. (7.105); however,

Eq. (7.93) can be used to estimate qn+1
scbW,1

. Substitution of values in Eq. (7.93)

gives

28:4004 pn+ 12 �4000
� �

+ qn+ 1scbW ,1
+ 0¼ 1:11085 4000�4000½ �

which when solved for qn+1
scbW,1

results in Eq. (7.107). Therefore, wemay conclude
for the case of a specified pressure boundary in a point-distributed grid that the
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rate of fluid flow across a reservoir boundary can be obtained by either using

Eq. (5.46c) or writing the flow equation for the boundary gridpoint and making

use of p
bP

n+1¼p
bP

n ¼p
b
.

For gridpoint 2, n¼2, ψ2¼{1,3}, and ξ2¼{}. Therefore,
X
l2ξ2

qn + 1scl,2
¼ 0, and

Eq. (7.92) becomes

T1,2 pn+ 11 �pn+ 12

� �
+ T2,3 pn+ 13 �pn+ 12

� �

+ 0 + qn+ 1sc2
¼Vb2ϕ

°
2 c+ cϕ
� �

αcB°Δt
pn+ 12 �pn2
� �

(7.95)

Substitution of the values in this equation gives
28:4004 4000�pn+ 12

� �
+ 28:4004 pn+ 13 �pn+ 12

� �
+ 0 + 0¼ 2:2217 pn+ 12 �4000

� �
or after factorizing and ordering the unknowns,
�59:0225pn+ 12 + 28:4004pn+ 13 ¼�122488:46 (7.108)

For gridblock 3, n¼3, ψ3¼{2,4}, and ξ3¼{}. Therefore,
X

qn+ 1scl,3
¼ 0, and
l2ξ3Eq. (7.92) becomes

T2,3 pn+ 12 �pn+ 13

� �
+ T3,4 pn+ 14 �pn+ 13

� �
+ 0 + qn+ 1sc3

¼Vb3ϕ
°
3 c+ cϕ
� �

αcB°Δt
pn+ 13 �pn3
� �

(7.97)

Substitution of the values in this equation gives
28:4004 pn+ 12 �pn+ 13

� �
+ 28:4004 pn+ 14 �pn+ 13

� �
+ 0 + 0¼ 2:2217 pn+ 13 �4000

� �
or after factorizing and ordering the unknowns,
28:4004pn+ 12 �59:0225pn+ 13 + 28:4004pn+ 14 ¼�8886:86 (7.98)

For gridblock 4, n¼4, ψ4¼{3,5}, and ξ4¼{}. Therefore,
X

qn+ 1scl,4
¼ 0, and
l2ξ4Eq. (7.92) becomes

T3,4 pn+ 13 �pn+ 14

� �
+ T4,5 pn+ 15 �pn+ 14

� �
+ 0 + qn+ 1sc4

¼Vb4ϕ
°
4 c+ cϕ
� �

αcB°Δt
pn+ 14 �pn4
� �

(7.109)

Substitution of the values in this equation gives
28:4004 pn+ 13 �pn+ 14

� �
+ 28:4004 pn+ 15 �pn+ 14

� �
+ 0 + 0¼ 2:2217 pn+ 14 �4000

� �
or after factorizing and ordering the unknowns,
28:4004pn+ 13 �59:0225pn+ 14 + 28:4004pn+ 15 ¼�8886:86 (7.110)
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For gridblock 5, n¼5, ψ5¼{4}, and ξ5¼{bE}. Therefore,
X

qn+ 1scl,5
¼ qn+ 1scbE,5

,

l2ξ5and Eq. (7.92) becomes

T4,5 pn+ 14 �pn+ 15

� �
+ qn+ 1scbE,5

+ qn+ 1sc5
¼Vb5ϕ

°
5 c+ cϕ
� �

αcB°Δt
pn+ 15 �pn5
� �

(7.111)

Substitution of the values in this equation gives
28:4004 pn+ 14 �pn+ 15

� �
+ 0�600¼ 1:11085 pn+ 15 �4000

� �
or after the factorizing and the ordering of unknowns,
28:4004pn+ 14 �29:51125pn+ 15 ¼�3843:4288 (7.112)

The results of solving Eqs. (7.108), (7.98), (7.110), and (7.112) for
the unknown pressures are p2
n+1¼3987.49 psia, p3

n+1¼3974.00 psia,

p4
n+1¼3958.48 psia, and p5

n+1¼3939.72 psia.

Next, the flow rate across the reservoir left boundary (qn+1
scbW,1

) is estimated

using Eq. (7.107), which yields

qn+ 1scbW ,1
¼ 28:4004 4000�pn+ 12

� �¼ 28:4004 4000�3987:49ð Þ
¼ 355:289STB=D

The material balance for a slightly compressible fluid and rock system is
checked using Eq. (7.85):

IMB¼

XN
n¼1

Vbnϕ
°
n c + cϕ

� 	
αcB°Δt

pn+ 1n �pnn
� �

XN
n¼1

qn+ 1scn +
X
l2ξn

qn+ 1scl,n

0
@

1
A

¼

X5
n¼1

Vbnϕ
°
n c + cϕ

� 	
αcB°Δt

pn+ 1n �pnn
� �

X5
n¼1

qn+ 1scn +
X5
n¼1

X
l2ξn

qn+ 1scl,n

¼

1:11085� 4000�4000ð Þ + 2:2217� 3987:49�4000ð Þ + 2:2217� 3974:00�4000ð Þ
+2:2217� 3958:48�4000ð Þ+ 1:11085� 3939:72�4000ð Þ

" #

0 + 0 + 0 + 0�600ð Þ + 355:289 + 0 + 0 + 0 + 0ð Þ½ �
¼�244:765

�244:711
¼ 1:00022

Therefore, the material balance check is satisfied.
2. Second time step calculations (n¼1, tn+1¼2 day, and Δt¼1 day)

Assign p2
n¼3987.49 psia, p3

n¼3974.00 psia, p4
n¼3958.48 psia, and

p5
n¼ 3939.72 psia. Note that p1

n+1¼4000 psia.

Because Δt is constant, the flow equation for each gridblock in the second

and succeeding time steps is obtained in a way similar to that used in the first
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time step, except the newly assigned pn
n is used to replace the old pn

n in the accu-

mulation term, as mentioned in Example 7.9. For example, pn
n on the RHS of

Eqs. (7.95), (7.97), (7.109), and (7.111) for the present time step is replaced with

3987.49, 3974.00, 3958.48, and 3939.72, respectively.

For gridblock 2,

28:4004 4000�pn+ 12

� �
+ 28:4004 pn+ 13 �pn+ 12

� �
+ 0 + 0

¼ 2:2217 pn+ 12 �3987:49
� �

or after factorizing and ordering the unknowns,
�59:0225pn+ 12 + 28:4004pn+ 13 ¼�122460:667 (7.113)

For gridblock 3,
28:4004 pn + 12 �pn + 13

� �
+ 28:4004 pn+ 14 �pn+ 13

� �
+ 0 + 0

¼ 2:2217 pn+ 13 �3974:00
� �

or after factorizing and ordering the unknowns,
28:4004pn+ 12 �59:0225pn+ 13 + 28:4004pn + 14 ¼�8829:1026 (7.114)

For gridblock 4,
28:4004 pn + 13 �pn + 14

� �
+ 28:4004 pn+ 15 �pn+ 14

� �
+ 0 + 0

¼ 2:2217 pn+ 14 �3958:48
� �

or after factorizing and ordering the unknowns,
28:4004pn+ 13 �59:0225pn+ 14 + 28:4004pn + 15 ¼�8794:6200 (7.115)

For gridblock 5,
28:4004 pn+ 14 �pn+ 15

� �
+ 0�600¼ 1:11085 pn + 15 �3939:72

� �
or after factorizing and ordering the unknowns,
28:4004pn + 14 �29:51125pn+ 15 ¼�3776:4609 (7.116)

The results of solving Eqs. (7.113), (7.114), (7.115), and (7.116) for
the unknown pressures are p2
n+1¼3981.91 psia, p3

n+1¼3963.38 psia, p4
n+1¼

3944.02 psia, and p5
n+1¼3923.52 psia.

The flow rate across the reservoir left boundary (qn+1
scbW,1

) is estimated next

using Eq. (7.107), yielding

qn+ 1scbW ,1
¼ 28:4004 4000�pn+ 12

� �¼ 28:4004 4000�3981:91ð Þ
¼ 513:763STB=D

The application of Eq. (7.85) to check the material balance for the second
time step gives
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IMB ¼

X5
n¼1

Vbnϕ
°
n c+ cϕ
� �

αcB°Δt
pn+ 1n �pnn
� �

X5
n¼1

qn + 1scn
+
X5
n¼1

X
l2ξn

qn+ 1scl,n

¼

1:11085� 4000�4000ð Þ+ 2:2217� 3981:91�3987:49ð Þ
+2:2217� 3963:38�3974:00ð Þ+ 2:2217� 3944:02�3958:48ð Þ
+1:11085� 3923:52�3939:72ð Þ

2
64

3
75

0 + 0 + 0 + 0�600ð Þ+ 513:763 + 0 + 0 + 0 + 0ð Þ½ �
¼�86:103

�86:237
¼ 0:99845

Therefore, the material balance check is satisfied.
Example 7.11 A 1-D, horizontal, heterogeneous reservoir is discretized as

shown in Fig. 7.12. The reservoir is described by five gridblocks whose dimen-

sions and rock properties are shown in the figure. Reservoir fluid properties are

B¼B∘¼1 RB/STB, μ¼1.5 cP, and c¼2.5�10�5 psi�1. Initially, reservoir

pressure is 3000psia. The reservoir left and right boundaries are sealed off to

flow. A 6-in vertical well was drilled at the center of gridblock 4. The well pro-

duces 400STB/D of fluid and has zero skin. The well is switched to a constant

FBHP of 1500psia if the reservoir cannot sustain the specified production rate.

Find the pressure distribution in the reservoir after 5days and 10days using the

implicit formulation. Take time steps of 5days. Tabulate reservoir pressure ver-

sus time until reservoir depletion.

Solution

The general flow equation for gridblock n in this 1-D horizontal reservoir is

obtained from Eq. (7.81a) by discarding the gravity term, yielding
1 2 3 4 5

   0.21

273 md

  0.17

248 md

 0.10

127 md

  0.25

333 md

No-flow boundaryNo-flow boundary

400 f t 300 f t 150 f t 200 f t 250 ft

50
0 

ft50
 ft

f

k

    0.13

198 md

qsc4
 = −400 STB/D

FIG. 7.12 Discretized 1-D reservoir in Example 7.11.
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X
l2ψn

Tn+ 1
l,n pn+ 1l �pn+ 1n

� �
+
X
l2ξn

qn+ 1scl,n
+ qn+ 1scn

ffiVbnϕ
°
n c + cϕ
� �

αcB°Δt
pn+ 1n �pnn
� �

(7.92)

Interblock transmissibilities can be calculated using Eq. (4.67a) with the
geometric factors in the x-direction obtained from Table 4.1 because the grid-

blocks have an irregular grid size distribution and heterogeneous rock proper-

ties, resulting in

Tn,n�1 ¼ Txi�1=2
¼Gxi�1=2

1

μB

� �
xi�1=2

¼ 1

μB
� 2βc
Δxi= Axikxið Þ+Δxi�1= Axi�1

kxi�1

� �
(7.117)

Therefore,
T1,2 ¼ 1

1:5�1
� 2�0:001127

400= 500�50ð Þ�273½ �+ 300= 500�50ð Þ�248½ �
¼ 14:0442STB=D-psi:

Similarly, T2,3¼15.7131 STB/D-psi, T3,4¼21.0847 STB/D-psi, and
T4,5¼20.1622 STB/D-psi.

Vb1ϕ
°
1 c+ cϕ
� �

αcB°Δt
¼ 400�500�50ð Þ�0:21� 2:5�10�5 + 0

� �
5:614583�1�5

¼ 1:87013STB=D-psi

Similarly,
Vb2

ϕ°
2 c + cϕð Þ

αcB°Δt ¼ 1:13544 STB/D-psi,
Vb3

ϕ°
3 c+ cϕð Þ

αcB°Δt ¼ 0:333952 STB/
D-psi,
Vb4

ϕ°
4 c+ cϕð Þ

αcB°Δt ¼ 1:11317 STB/D-psi, and
Vb5

ϕ°
5 c+ cϕð Þ

αcB°Δt ¼ 0:723562 STB/

D-psi.

There is a production well in gridblock 4 only. Therefore, qn+1
sc4

¼
�400 STB/D and qn+1

sc1 ¼qn+1
sc2 ¼qn+1

sc3 ¼qn+1
sc5 ¼0. No-flow boundary conditions

imply qn+1
scbW,1

¼0 and qn+1
scbE,5

¼0.

For no-flow boundaries, Eq. (7.92) reduces to

X
l2ψn

Tn+ 1
l,n pn + 1l �pn + 1n

� �
+ qn+ 1scn

ffiVbnϕ
°
n c+ cϕ
� �

αcB°Δt
pn+ 1n �pnn
� �

(7.118)
1. First time step calculations (n¼0, tn+1¼5 days, and Δt¼5 days)

Assign p1
n¼p2

n¼p3
n¼p4

n¼p5
n¼pin¼3000 psia.

For gridblock 1, n¼1, and ψ1¼{2}. Therefore, Eq. (7.118) becomes

T1,2 pn+ 12 �pn+ 11

� �
+ qn+ 1sc1

¼Vb1ϕ
°
1 c+ cϕ
� �

αcB°Δt
pn+ 11 �pn1
� �

(7.119)

Substitution of the values in this equation gives
14:0442 pn + 12 �pn+ 11

� �
+ 0¼ 1:87013 pn+ 11 �3000

� �
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or after factorizing and ordering the unknowns,
�15:9143pn+ 11 + 14:0442pn+ 12 ¼�5610:39 (7.120)

For gridblock 2, n¼2, and ψ2¼{1,3}. Therefore, Eq. (7.118) becomes
T1,2 pn + 11 �pn+ 12

� �
+ T2,3 pn + 13 �pn + 12

� �
+ qn+ 1sc2

¼Vb2ϕ
°
2 c+ cϕ
� �

αcB°Δt
pn+ 12 �pn2
� �

(7.121)

Substitution of the values in this equation gives
14:0442 pn+ 11 �pn+ 12

� �
+ 15:7131 pn+ 13 �pn + 12

� �
+ 0¼ 1:13544 pn+ 12 �3000

� �
or after factorizing and ordering the unknowns,
14:0442pn+ 11 �30:8927pn + 12 + 15:7131pn+ 13 ¼�3406:32 (7.122)

For gridblock 3, n¼3, and ψ3¼{2,4}. Therefore, Eq. (7.118) becomes
T2,3 pn + 12 �pn+ 13

� �
+ T3,4 pn + 14 �pn + 13

� �
+ qn+ 1sc3

¼Vb3ϕ
°
3 c+ cϕ
� �

αcB°Δt
pn+ 13 �pn3
� �

(7.123)

Substitution of the values in this equation gives
15:7131 pn+ 12 �pn+ 13

� �
+ 21:0847 pn + 14 �pn + 13

� �
+ 0¼ 0:333952 pn+ 13 �3000

� �

or after factorizing and ordering the unknowns,
15:7131pn+ 12 �37:1318pn + 13 + 21:0847pn+ 14 ¼�1001:856 (7.124)

For gridblock 4, n¼4, and ψ4¼{3,5}. Therefore, Eq. (7.118) becomes
T3,4 pn + 13 �pn+ 14

� �
+ T4,5 pn + 15 �pn + 14

� �
+ qn+ 1sc4

¼Vb4ϕ
°
4 c+ cϕ
� �

αcB°Δt
pn+ 14 �pn4
� �

(7.125)

Substitution of the values in this equation gives
21:0847 pn + 13 �pn+ 14

� �
+ 20:1622 pn+ 15 �pn+ 14

� ��400¼ 1:11317 pn+ 14 �3000
� �

or after factorizing and ordering the unknowns,
21:0847pn+ 13 �42:3601pn + 14 + 20:1622pn+ 15 ¼�2939:510 (7.126)

For gridblock 5, n¼5, and ψ5¼{4}. Therefore, Eq. (7.118) becomes
T4,5 pn+ 14 �pn+ 15

� �
+ qn+ 1sc5

¼Vb5ϕ
°
5 c+ cϕ
� �

αcB°Δt
pn + 15 �pn5
� �

(7.127)
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Substitution of the values in this equation gives
20:1622 pn + 14 �pn+ 15

� �
+ 0¼ 0:723562 pn+ 15 �3000

� �
or after factorizing and ordering the unknowns,
20:1622pn + 14 �20:8857pn+ 15 ¼�2170:686 (7.128)

The results of solving Eqs. (7.120), (7.122), (7.124), (7.126), and (7.128)
for the unknown pressures are p1
n+1¼2936.80 psia, p2

n+1¼2928.38 psia,

p3
n+1¼2915.68 psia, p4

n+1¼2904.88 psia, and p5
n+1¼2908.18 psia.

2. Second time step calculations (n¼1, tn+1¼10 days, and Δt¼5 days)

Assign p1
n¼2936.80 psia, p2

n¼2928.38 psia, p3
n¼2915.68 psia, p4

n¼2904.88

psia, and p5
n¼2908.18 psia. Because Δt is constant, the flow equation for each

gridblock in the second and succeeding time steps is obtained in a way similar to

that used in the first time step, except the newly assigned pn
n is used to replace

the old pn
n in the accumulation term. In fact, for horizontal reservoirs having

no-flow boundaries and constant production wells and simulated using a con-

stant time step, only the RHSs of the final equations for the first time step

change. The new value for the RHS of the equation for gridblock n is

[�qn+ 1scn
� Vbnϕ

°
n c + cϕð Þ

αcB°Δt pnn].

For gridblock 1,

14:0442 pn+ 12 �pn+ 11

� �
+ 0¼ 1:87013 pn+ 11 �2936:80

� �
(7.129)

or after factorizing and ordering the unknowns,
�15:9143pn+ 11 + 14:0442pn+ 12 ¼�5492:20 (7.130)

For gridblock 2,
14:0442 pn+ 11 �pn + 12

� �
+ 15:7131 pn+ 13 �pn+ 12

� �
+ 0

¼ 1:13544 pn+ 12 �2928:38
� �

(7.131)

or after factorizing and ordering the unknowns,
14:0442pn+ 11 �30:8927pn+ 12 + 15:7131pn+ 13 ¼�3325:00 (7.132)

For gridblock 3,
15:7131 pn+ 12 �pn + 13

� �
+ 21:0847 pn+ 14 �pn+ 13

� �
+ 0

¼ 0:333952 pn+ 13 �2915:68
� �

(7.133)

or after factorizing and ordering the unknowns,
15:7131pn+ 12 �37:1318pn+ 13 + 21:0847pn+ 14 ¼�973:6972 (7.134)
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For gridblock 4,
21:0847 pn+ 13 �pn+ 14

� �
+ 20:1622 pn+ 15 �pn+ 14

� ��400¼ 1:11317 pn+ 14 �2904:88
� �

(7.135)

or after factorizing and ordering the unknowns,
21:0847pn+ 13 �42:3601pn + 14 + 20:1622pn+ 15 ¼�2833:63 (7.136)

For gridblock 5,
20:1622 pn+ 14 �pn+ 15

� �
+ 0¼ 0:723562 pn+ 15 �2908:180

� �
(7.137)

or after factorizing and ordering the unknowns,
20:1622pn+ 14 �20:8857pn+ 15 ¼�2104:248 (7.138)

The results of solving Eqs. (7.130), (7.132), (7.134), (7.136), and (7.138)
for the unknown pressures are p1
n+1¼2861.76 psia, p2

n+1¼2851.77 psia,

p3
n+1¼2837.30 psia, p4

n+1¼2825.28 psia, and p5
n+1¼2828.15 psia.

Table 7.1 shows gridblock pressures, the well production rate, and the FBHP

of the well as time progresses. Note that the reservoir produces at a constant

rate for the first 90days, after which the reservoir does not have the capacity

to produce fluid at the specified rate and the well is switched to operation

under a constant FBHP of 1500psia. Observe also that reservoir pressure

declines steadily from the initial condition of 3000psia to ultimately 1500psia

at abandonment. The estimated pwf4 reported in Table 7.1 used kH¼333 md,

re¼75.392 ft, and Gw4
¼20.652 RB-cp/D-psi, which were based on the proper-

ties of wellblock 4 and the hosted well.

Example 7.12 A 0.5-ft-diameter water well is located in 20-acre spacing. The

reservoir thickness, horizontal permeability, and porosity are 30ft, 150md, and

0.23, respectively. The flowing fluid has FVF, compressibility, and viscosity of

1RB/B, 1�10�5 psi�1, and 0.5cP, respectively. The reservoir external bound-

aries are no-flow boundaries. The well has open-well completion and is placed

on production at a rate of 2000B/D. Initial reservoir pressure is 4000psia. The

reservoir can be simulated using five gridblocks in the radial direction as shown

in Fig. 7.13. Find the pressure distribution in the reservoir after 1day and 3days,

and check the material balance each time step. Use single time steps to advance

the solution from one time to another.

Solution

The reservoir external radius is estimated from well spacing as

re¼ (20�43560/π)1/2¼526.6040 ft. The well in wellblock 1 has rw¼0.25 ft.

Therefore, using Eq. (4.86) yields αlg¼ (526.6040/0.25)1/5¼4.6207112.

The location of gridblock 1 in the radial direction is calculated using

Eq. (4.87), which yields

r1 ¼ 4:6207112ð Þ log e 4:6207112ð Þ= 4:6207112�1ð Þ½ ��0:25¼ 0:4883173 ft



TABLE 7.1 Performance of the reservoir described in Example 7.11.

Time

(day)

p1
(psia)

p2
(psia)

p3
(psia)

p4
(psia)

p5
(psia)

qsc4
(STB/D)

pwf4

(psia)

0 3000 3000 3000 3000 3000 0 3000

5 2936.80 2928.38 2915.68 2904.88 2908.18 �400 2875.83

10 2861.76 2851.77 2837.30 2825.28 2828.15 �400 2796.23

15 2784.83 2774.59 2759.86 2747.65 2750.44 �400 2718.60

20 2707.61 2697.33 2682.56 2670.32 2673.10 �400 2641.27

25 2630.34 2620.06 2605.28 2593.04 2595.81 �400 2563.98

30 2553.07 2542.78 2528.00 2515.76 2518.53 �400 2486.71

35 2475.79 2465.50 2450.72 2438.48 2441.26 �400 2409.43

40 2398.52 2388.23 2373.45 2361.21 2363.98 �400 2332.15

45 2321.24 2310.95 2296.17 2283.93 2286.71 �400 2254.88

50 2243.97 2233.68 2218.90 2206.66 2209.43 �400 2177.60

55 2166.69 2156.40 2141.62 2129.38 2132.15 �400 2100.33

60 2089.41 2079.12 2064.34 2052.10 2054.88 �400 2023.05

65 2012.14 2001.85 1987.07 1974.83 1977.60 �400 1945.78

70 1934.86 1924.57 1909.79 1897.55 1900.33 �400 1868.50

75 1857.59 1847.30 1832.52 1820.28 1823.05 �400 1791.22

80 1780.31 1770.02 1755.24 1743.00 1745.77 �400 1713.95

85 1703.03 1692.74 1677.96 1665.72 1668.50 �400 1636.67

90 1625.76 1615.47 1600.69 1588.45 1591.22 �400 1559.40

95 1557.58 1548.51 1535.55 1524.87 1527.17 �342.399 1500.00

100 1524.61 1520.22 1514.26 1509.47 1510.08 �130.389 1500.00

105 1510.35 1508.46 1505.91 1503.88 1504.09 �53.378 1500.00

110 1504.34 1503.54 1502.47 1501.61 1501.70 �22.229 1500.00

115 1501.82 1501.48 1501.03 1500.68 1500.71 �9.294 1500.00

120 1500.76 1500.62 1500.43 1500.28 1500.30 �3.890 1500.00

125 1500.32 1500.26 1500.18 1500.12 1500.12 �1.628 1500.00

130 1500.13 1500.11 1500.08 1500.05 1500.05 �0.682 1500.00

135 1500.06 1500.05 1500.03 1500.02 1500.02 �0.285 1500.00
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FIG. 7.13 Discretized 1-D reservoir in Example 7.12.

Single-phase flow equation for various fluids Chapter 7 259
The locations of gridblocks 2, 3, 4, and 5 in the radial direction are calcu-
lated using Eq. (4.122), which gives

ri ¼ 4:6207112ð Þ i�1ð Þ
0:4883173ð Þ (7.139)

for i¼2, 3, 4, 5 or r2¼2.2564 ft, r3¼10.4260 ft, r4¼48.1758 ft, and
r5¼222.6063 ft.

The gridblock bulk volumes are calculated using Eq. (4.88b), yielding

Vbi ¼ 4:62071122�1
� �2

= 4:62071122 log e 4:62071122
� �� �n o

r2i
1=2�2π
� ��30

¼ 597:2369ð Þr2i
(7.140a)

for i¼1, 2, 3, 4 and Eq. (4.88d) for i¼5 is
Vb5 ¼
n
1� log e 4:6207112ð Þ= 4:6207112�1ð Þ½ �2 4:62071122�1

� �
=

4:6207112ð Þ2 log e 4:62071122
� �h io

526:6040ð Þ2 1=2�2π
� ��30

¼ 0:24681778�108

(7.140b)

Table 7.2 lists gridblock bulk volumes.
The transmissibility in the r direction is defined by Eq. (4.79a), which gives

Tri�1=2
¼Gri�1=2

1

μB

� �
¼Gri�1=2

1

0:5�1

� �
¼ 2ð ÞGri�1=2

(7.141)



TABLE 7.2 Gridblock bulk volumes and coefficients of the

accumulation term.

n i ri (ft) Vbn
(ft3)

Vbn
ϕ°
n c+ cϕ
� �

αcB°Δtn

Δt151 day Δt252 days

1 1 0.4883 142.41339 58.339292�10�6 29.169646�10�6

2 2 2.2564 3040.6644 0.00124560063 0.62280032�10�3

3 3 10.4260 64,921.142 0.026594785 0.01329739

4 4 48.1758 1,386,129.5 0.56782451 0.28391226

5 5 222.6063 24,681,778 10.110829 5.0554145
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where Gri�1/2
is defined in Table 4.3. With Δθ¼2π and constant radial perme-
ability, the equation for the geometric factor reduces to

Gri�1=2
¼ 2πβckrΔz

log e αlg log e αlg
� �

= αlg�1
� �� �� αlg�1

� �
= log e αlg

� �� �� �

¼ 2πβckrΔz
log e αlg

� �¼ 2π 0:001127ð Þ 150ð Þ 30ð Þ
log e 4:6207112ð Þ ¼ 20:819446

(7.142)

for all values of i.

Therefore, transmissibility in the radial direction can be estimated by

substituting Eq. (7.142) into Eq. (7.141), yielding

Tri�1=2
¼ 2ð ÞGri�1=2

¼ 2ð Þ 20:819446ð Þ¼ 41:6388914 (7.143)

for all values of i, or
T1,2 ¼ T2,3 ¼ T3,4 ¼ T4,5 ¼ T¼ 41:6388914B=D-psi (7.144)

Note that gridblocks 2, 3, and 4 are interior gridblocks and gridblocks
1 and 5 have no-flow boundaries; that is, qn+1
scbW,1

¼0 and qn+1
scbE,5

¼0.

Therefore,
X
l2ξn

qn+ 1scl,n
¼ 0 for all gridblocks. There is a well in wellblock 1;

that is, qn+1
sc1 ¼ �2000 B/D and qn+1

sc2 ¼qn+1
sc3 ¼qn+1

sc4 ¼qn+1
sc5 ¼0.

The general form of the flow equation for gridblock n in this 1-D reservoir is

obtained from Eq. (7.81a) by discarding the gravity term and noting thatX
l2ξn

qn+ 1scl,n
¼ 0 for all gridblocks, resulting in

X
l2ψn

Tn+ 1
l,n pn + 1l �pn + 1n

� �
+ qn+ 1scn

ffiVbnϕ
°
n c+ cϕ
� �

αcB°Δt
pn+ 1n �pnn
� �

(7.118)



Single-phase flow equation for various fluids Chapter 7 261
1. First time step calculations (n¼0, tn+1¼1 day, and Δt¼Δt1¼1 day)

Assign p1
n¼p2

n¼p3
n¼p4

n¼p5
n¼pin¼4000 psia.

Vb1ϕ
°
1 c+ cϕ
� �

αcB°Δt1
¼ 142:41339�0:23� 1�10�5 + 0

� �
5:614583�1�1

¼ 58:339292�10�6 STB=D-psi

The calculated values of
Vbnϕ

°
n c+ cϕð Þ

αcB°Δt1 for n¼1, 2, 3, 4, 5 are reported in
Table 7.2.

For gridblock 1, n¼1, and ψ1¼{2}. Therefore, Eq. (7.118) becomes

T1,2 pn+ 12 �pn+ 11

� �
+ qn+ 1sc1

¼Vb1ϕ
°
1 c+ cϕ
� �

αcB°Δt
pn + 11 �pn1
� �

(7.119)

Substitution of the values in this equation gives
41:6388914 pn+ 12 �pn+ 11

� ��2000¼ 58:339292�10�6 pn + 11 �4000
� �

or after factorizing and ordering the unknowns,
�41:6389497pn+ 11 + 41:6388914pn+ 12 ¼ 1999:76664 (7.145)

For gridblock 2, n¼2, and ψ2¼{1,3}. Therefore, Eq. (7.118) becomes
T1,2 pn + 11 �pn+ 12

� �
+ T2,3 pn + 13 �pn + 12

� �
+ qn+ 1sc2

¼Vb2ϕ
°
2 c+ cϕ
� �

αcB°Δt
pn+ 12 �pn2
� �

(7.121)

Substitution of the values in this equation gives
41:6388914 pn+ 11 �pn+ 12

� �
+ 41:6388914 pn+ 13 �pn+ 12

� �
+ 0

¼ 1:24560063�10�3 pn+ 12 �4000
� �

or after factorizing and ordering the unknowns,
41:6388914pn+ 11 �83:2790283pn+ 12 + 41:6388914pn+ 13 ¼�4:98240254

(7.146)

For gridblock 3, n¼3, and ψ3¼{2,4}. Therefore, Eq. (7.118) becomes
T2,3 pn + 12 �pn+ 13

� �
+ T3,4 pn + 14 �pn + 13

� �
+ qn+ 1sc3

¼Vb3ϕ
°
3 c+ cϕ
� �

αcB°Δt
pn+ 13 �pn3
� �

(7.123)

Substitution of the values in this equation gives
41:6388914 pn+ 12 �pn+ 13

� �
+ 41:6388914 pn+ 14 �pn+ 13

� �
+ 0

¼ 0:026594785 pn+ 13 �4000
� �
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or after factorizing and ordering the unknowns,
41:6388914pn + 12 �83:3043775pn + 13 + 41:6388914pn + 14 ¼�106:379139

(7.147)

For gridblock 4, n¼4, and ψ4¼{3,5}. Therefore, Eq. (7.118) becomes
T3,4 pn+ 13 �pn+ 14

� �
+ T4,5 pn+ 15 �pn+ 14

� �
+ qn + 1sc4

¼Vb4ϕ
°
4 c+ cϕ
� �

αcB°Δt
pn+ 14 �pn4
� �

(7.125)

Substitution of the values in this equation gives
41:6388914 pn+ 13 �pn+ 14

� �
+ 41:6388914 pn+ 15 �pn+ 14

� �
+ 0¼ 0:56782451 pn+ 14 �4000

� �

or after factorizing and ordering the unknowns,
41:6388914pn + 13 �83:8456072pn + 14 + 41:6388914pn + 15 ¼�2271:29805

(7.148)

For gridblock 5, n¼5, and ψ5¼{4}. Therefore, Eq. (7.118) becomes
T4,5 pn+ 14 �pn+ 15

� �
+ qn+ 1sc5

¼Vb5ϕ
°
5 c+ cϕ
� �

αcB°Δt
pn+ 15 �pn5
� �

(7.127)

Substitution of the values in this equation gives
41:6388914 pn + 14 �pn + 15

� �
+ 0¼ 10:110829 pn+ 15 �4000

� �
or after factorizing and ordering the unknowns,
41:6388914pn+ 14 �51:7497205pn+ 15 ¼�40443:3168 (7.149)

The results of solving Eqs. (7.145), (7.146), (7.147), (7.148), and (7.149)
for the unknown pressures are p1
n+1¼3627.20 psia, p2

n+1¼3675.23 psia,

pn+13 ¼3723.25 psia, p4
n+1¼3771.09 psia, and p5

n+1¼3815.82 psia.

We apply Eq. (7.85) to check the material balance for the first time step:

IMB ¼

X5
n¼1

Vbnϕ
°
n c+ cϕ

� 	
αcB°Δt

pn + 1n �pnn
� �

X5
n¼1

qn+ 1scn +
X5
n¼1

X
l2ξn

qn+ 1scl,n

¼

58:339292�10�6� 3627:20�4000ð Þ+ 1:24560063�10�3� 3675:23�4000ð Þ
+0:026594785� 3723:25�4000ð Þ+ 0:56782451� 3771:09�4000ð Þ
+10:110829� 3815:82�4000ð Þ

2
664

3
775

0 + 0 + 0 + 0�2000ð Þ+ 0 + 0 + 0 + 0 + 0ð Þ½ �
¼�1999:9796

�2000
¼ 0:999990

Therefore, the material balance is satisfied.



Single-phase flow equation for various fluids Chapter 7 263
2. Second time step calculations (n¼1, tn+1¼3 days, and Δt¼Δt2¼2 days)

Assign p1
n¼3627.20 psia, p2

n¼3675.23 psia, p3
n¼3723.25 psia, p4

n¼3771.09

psia, and p5
n¼3815.82 psia.

Vb1ϕ
°
1 c+ cϕ
� �

αcB°Δt2
¼ 142:41339�0:23� 1�10�5 + 0

� �
5:614583�1�2

¼ 29:169646�10�6 STB=D-psi

The calculated values of
Vbi

ϕ°
i c + cϕð Þ

αcB°Δt2 for i¼1, 2, 3, 4, 5 are reported in
Table 7.2.

The gridblock flow equations for the second time step are obtained by apply-

ing Eq. (7.118).

For gridblock 1,

41:6388914 pn+ 12 �pn+ 11

� ��2000¼ 29:169646�10�6 pn+ 11 �3627:20
� �

or after factorizing and ordering the unknowns,
�41:6389205pn+ 11 + 41:6388914pn+ 12 ¼ 1999:89420 (7.150)

For gridblock 2,
41:6388914 pn+ 11 �pn+ 12

� �
+ 41:6388914 pn+ 13 �pn+ 12

� �
+ 0

¼ 0:62280032�10�3 pn+ 12 �3675:23
� �

or after factorizing and ordering the unknowns,
41:6388914pn+ 11 �83:2784055pn+ 12 + 41:6388914pn+ 13 ¼�2:28893284

(7.151)

For gridblock 3,
41:6388914 pn+ 12 �pn+ 13

� �
+ 41:6388914 pn+ 14 �pn+ 13

� �
+ 0

¼ 0:01329739 pn+ 13 �3723:25
� �

or after factorizing and ordering the unknowns,
41:6388914pn+ 12 �83:2910801pn+ 13 + 41:6388914pn+ 14 ¼�49:5095063

(7.152)

For gridblock 4,
41:6388914 pn+ 13 �pn+ 14

� �
+ 41:6388914 pn+ 15 �pn+ 14

� �
+ 0

¼ 0:28391226 pn+ 14 �3771:09
� �

or after factorizing and ordering the unknowns,
41:6388914pn+ 13 �83:561695pn+ 14 + 41:6388914pn+ 15 ¼�1070:65989

(7.153)
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For gridblock 5,
41:6388914 pn+ 14 �pn+ 15

� �
+ 0¼ 5:0554145 pn+ 15 �3815:82

� �
or after factorizing and ordering the unknowns,
41:6388914pn+ 14 �46:6943060pn+ 15 ¼�19290:5407 (7.154)

The results of solving Eqs. (7.150), (7.151), (7.152), (7.153), and (7.154)
for the unknown pressures are p1
n+1¼3252.93 psia, p2

n+1¼3300.96 psia,

p3
n+1¼3348.99 psia, p4

n+1¼3396.89 psia, and p5
n+1¼3442.25 psia.

We apply Eq. (7.85) to check the material balance for the second time step:

IMB¼

X5
n¼1

Vbnϕ
°
n c+ cϕ

� 	
αcB°Δt

pn+ 1n �pnn
� �

X5
n¼1

qn+ 1scn +
X5
n¼1

X
l2ξn

qn+ 1scl,n

¼

29:169646�10�6� 3252:93�3627:20ð Þ + 0:62280032�10�3� 3300:96�3675:23ð Þ
+0:01329739� 3348:99�3723:25ð Þ + 0:28391226� 3396:89�3771:09ð Þ
+5:0554145� 3442:25�3815:82ð Þ

2
664

3
775

0 + 0 + 0 + 0�2000ð Þ + 0+ 0 + 0+ 0 + 0ð Þ½ �
¼�2000:0119

�2000
¼ 1:000006

Therefore, the material balance is satisfied.
7.3.3 Compressible fluid flow equation

The density, FVF, and viscosity of compressible fluids at reservoir temperature

are functions of pressure. Such dependence, however, is not as weak as the case

in slightly compressible fluids. In this context, the FVF, viscosity, and density

that appear on the LHS of the flow equation (Eq. 7.12) can be assumed constant

but are updated at least once at the beginning of every time step. The accumu-

lation term is expressed in terms of pressure change over a time step such that

the material balance is preserved. The following expansion preserves material

balance:

Vbn

αcΔt
ϕ

B

� �n+ 1

n

� ϕ

B

� �n

n

" #
¼ Vbn

αcΔt
ϕ

Bg

� �0

n

pn+ 1n �pnn
� �

(7.155a)

where ϕ
� 	0

is the chord slope of
ϕ

� �
between the new pressure (pn+1) and
Bg n Bg n

n

the old pressure (pn
n). This chord slope is evaluated at the current time level but is

one iteration lagging behind; that is,

ϕ

Bg

� �0

n

¼ ϕ

B

� �n+ 1
νð Þ

n

� ϕ

B

� �n

n

2
4

3
5= pn+ 1

νð Þ

n �pnn


 �
(7.156a)
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As shown in Section 10.4.1, the RHS of Eq. (7.156a) can be expanded as
ϕ

Bg

� �0

n

¼ϕn+ 1
νð Þ

n

1

Bgn

� �0
+

1

Bn
gn

ϕ0
n (7.156b)

1
� �0

0
where again
Bgn

and ϕn are defined as the chord slopes estimated between

values at the current time level at old iteration n + 1
νð Þ

and old time level n,

1

Bgn

� �0
¼ 1

Bn+ 1
vð Þ

gn

� 1

Bn
gn

0
@

1
A= pn+ 1

vð Þ

n �pnn

� �
(7.157)

and
ϕ0
n ¼ ϕn + 1

vð Þ

n �ϕn
n

� �
= pn+ 1

vð Þ

n �pnn

� �
¼ϕ°

ncϕ (7.158)

Alternatively, the accumulation term can be expressed in terms of pressure
change over a time step using Eq. (7.9) and by observing that the contribution of

rock compressibility is negligible compared with that of gas compressibility,

resulting in

Vbn

αcΔt
ϕ

B

� �n+ 1

n

� ϕ

B

� �n

n

" #
¼Vbnϕ

°
n

αcΔt
1

Bn+ 1
gn

� 1

Bn
gn

" #

¼Vbnϕ
°
n

αcΔt
αcTsc
pscT

� �
pn + 1n

zn + 1n

�pnn
znn


 �
¼Vbnϕ

°
nTsc

pscTΔt
pn+ 1n

zn+ 1n

�pnn
znn


 �
(7.155b)

If we adopted the approximation given by Eq. (7.155b), then the flow equa-
tion for compressible fluids becomes

X
l2ψn

Tm
l,n pml �pmn
� �� γnl,n Zl�Znð Þ� �

+
X
l2ξn

qmscl,n + q
m
scn

¼Vbnϕ
°
nTsc

pscTΔt
pn+ 1n

zn+ 1n

�pnn
znn


 �

(7.159)

In this book, however, we adopt the approximation given by Eq. (7.155a),
which is consistent with the treatment of multiphase flow in Chapter 10. The

resulting flow equation for compressible fluids becomes

X
l2ψn

Tm
l,n pml �pmn
� �� γnl,n Zl�Znð Þ� �

+
X
l2ξn

qmscl,n + q
m
scn

¼ Vbn

αcΔt
ϕ

Bg

� �0

n

pn+ 1n �pnn
� �

(7.160)
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where ϕ
Bg

0

n
is defined by Eq. (7.156b).
� 	

7.3.3.1 Formulations of compressible fluid flow equation

The time level m in Eq. (7.160) is approximated in reservoir simulation in one

of three ways, like in the case for slightly compressible fluids. The resulting

equation is commonly known as the explicit formulation of the flow equation

(or forward-central-difference equation), the implicit formulation of the flow

equation (or backward-central-difference equation), and the Crank-Nicolson

formulation of the flow equation (or second-order-central-difference

equation).

Explicit formulation of the flow equation

The explicit formulation of the flow equation can be obtained from Eq. (7.160)

if the argument Fm (defined in Section 2.6.3) is dated at old time level tn; that is,
tmffi tn, and as a result, FmffiFn. Therefore, Eq. (7.160) reduces to

X
l2ψn

Tn
l,n pnl �pnn
� �� γnl,n Zl�Znð Þ� �

+
X
l2ξn

qnscl,n + q
n
scn

ffi Vbn

αcΔt
ϕ

Bg

� �0

n

pn+ 1n �pnn
� �

(7.161a)

or
X
l2ψ i, j,k

Tn
l, i, j,kð Þ pnl �pni, j,k

� 	
� γnl, i, j,kð Þ Zl�Zi, j,k

� �h i
+
X
l2ξi, j,k

qnscl, i, j,kð Þ + q
n
sci, j,k

ffiVbi, j,k

αcΔt
ϕ

Bg

� �0

i, j,k

pn+ 1i, j,k �pni, j,k

h i

(7.161b)

In addition to the remarks related to the explicit formulation method men-
tioned in Section 7.3.2.1, the solution of Eq. (7.161) requires iterations to

remove the nonlinearity of the equation exhibited by Bn+ 1
vð Þ

gn
in the definition of

ϕ
Bg

� 	0
n
on the RHS of the equation.

Implicit formulation of the flow equation

The implicit formulation of the flow equation can be obtained from Eq. (7.160)

if the argument Fm (defined in Section 2.6.3) is dated at new time level tn+1; that
is, tmffi tn+1, and as a result, FmffiFn+1. Therefore, Eq. (7.160) reduces toX

l2ψn

Tn+ 1
l,n pn+ 1l �pn+ 1n

� �� γnl,n Zl�Znð Þ� �
+
X
l2ξn

qn+ 1scl,n
+ qn+ 1scn

ffi Vbn

αcΔt
ϕ

Bg

� �0

n

pn + 1n �pnn
� �

(7.162a)
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or

X
l2ψ i, j,k

Tn+ 1
l, i, j,kð Þ pn+ 1l �pn+ 1i, j,k

� 	
� γnl, i, j,kð Þ Zl�Zi, j,k

� �h i
+
X
l2ξi, j,k

qn+ 1scl, i, j,kð Þ + q
n+ 1
sci, j,k

ffiVbi, j,k

αcΔt
ϕ

Bg

� �0

i, j,k

pn+ 1i, j,k �pni, j,k

h i

(7.162b)

In this equation, dating fluid gravity at old time level n instead of time level
n+1 does not introduce any noticeable errors (Coats et al., 1974). Unlike

Eq. (7.81) for slightly compressible fluids, Eq. (7.162) is a nonlinear equation

due to the dependence of transmissibility (Tl,n
n+1) and ϕ

Bg

� 	0
n
on the pressure solu-

tion. These nonlinear terms present a serious numerical problem. Chapter 8 dis-

cusses the linearization of these terms in space and time. The time linearization;

however, introduces additional truncation errors that depend on time steps.

Thus, time linearization reduces the accuracy of solution and generally restricts

time step. This leads to the erasing of the advantage of unconditional stability

associated with the implicit formulation method mentioned in Section 7.3.2.1.
Crank-Nicolson formulation of the flow equation

The Crank-Nicolson formulation of the flow equation can be obtained

from Eq. (7.160) if the argument Fm (defined in Section 2.6.3) is dated at time

tn+1/2. In the mathematical approach, this time level was selected to make the

RHS of Eq. (7.160) a second-order approximation in time. In the engineering

approach; however, the argument Fm can be approximated as

Fm ffiFn + 1=2 ¼ 1


2 Fn +Fn+ 1ð Þ. Therefore, Eq. (7.160) becomes

½
X
l2ψn

Tn
l,n pnl �pnn
� �� γnl,n Zl�Znð Þ
h i

+½
X
l2ψn

Tn+ 1
l,n pn+ 1l �pn+ 1n

� �� γnl,n Zl�Znð Þ
h i

+½
X
l2ξn

qnscl,n +
X
l2ξn

qn + 1scl,n

0
@

1
A+½ qnscn + q

n+ 1
scn

� 	
ffi Vbn

αcΔt
ϕ

Bg

� �0

n

pn+ 1n �pnn
� �

(7.163a)

Eq. (7.163a) can be rewritten in the form of Eq. (7.162) as
X
l2ψn

Tn+ 1
l,n pn+ 1l �pn+ 1n

� �� γnl,n Zl�Znð Þ� �
+
X
l2ξn

qn+ 1scl,n
+ qn+ 1scn

ffi Vbn

αc Δt=2ð Þ
ϕ

Bg

� �0

n

pn+ 1n �pnn
� �

�
X
l2ψn

Tn
l,n pnl �pnn
� �� γnl,n Zl�Znð Þ� �

+
X
l2ξn

qnscl,n + q
n
scn

( ) (7.163b)
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7.3.3.2 Advancing the pressure solution in time

The pressure distribution in a compressible flow problem changes with time,

as is the case with slightly compressible fluid flow. Therefore, a compressible

fluid flow problem has an unsteady-state solution, and the pressure solution is

obtained in the same way as that for slightly compressible fluid flow discussed

in Section 7.3.2.2, with a few exceptions. These include the following: (1) Ini-

tialization may require iteration because gas gravity is a function of pressure;

(2) transmissibilities in step 1 are not kept constant but rather are calculated

at the upstream blocks and updated at the beginning of each time step;

(3) Eq. (7.161), (7.162), or (7.163) is used instead of Eq. (7.80), (7.81), or

(7.82) in step 4; (4) an additional step immediately before step 5 is added to

linearize the flow equations for compressible fluid (discussed in Chapter 8);

and (5) obtaining the pressure solution may require iterations because the flow

equation for compressible fluid is nonlinear compared with the almost-linear

flow equation for slightly compressible fluid.
7.3.3.3 Material balance check for a compressible fluid flow
problem

For the implicit formulation, the incremental and cumulative material balance

checks for compressible fluid flow problems are given by Eqs. (7.83) and

(7.84), where the rock porosity is defined by Eq. (7.11) and FVF is for natural

gas, yielding

IMB ¼

XN
n¼1

Vbn

αcΔt
ϕ

Bg

� �n+ 1

n

� ϕ

Bg

� �n

n

" #

XN
n¼1

qn+ 1scn
+
X
l2ξn

qn+ 1scl,n

 ! (7.164)

and
CMB ¼

XN
n¼1

Vbn

αc

ϕ

Bg

� �n + 1

n

� ϕ

Bg

� �0

n

" #

Xn+ 1
m¼1

Δtm
XN
n¼1

qmscn +
X
l2ξn

qmscl,n

 ! (7.165)

where N is the total number of blocks in the reservoir.
The following example presents a single-well simulation of a natural gas

reservoir. It demonstrates the iterative nature of the solutionmethod within indi-

vidual time steps and the progression of the solution in time.

Example 7.13 A vertical well is drilled on 20-acre spacing in a natural gas res-

ervoir. The reservoir is described by four gridblocks in the radial direction as

shown in Fig. 7.14. The reservoir is horizontal and has 30ft net thickness
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FIG. 7.14 Discretized 1-D reservoir in Example 7.13.
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and homogeneous and isotropic rock properties with k¼15 md and ϕ¼0.13.

Initially, reservoir pressure is 4015psia. Gas FVF and viscosity dependence

on pressure are presented in Table 7.3. The reservoir external boundaries are

sealed off to fluid flow. Well diameter is 6 in. The well produces 1MMscf/D

with a minimum FBHP of 515psia. Find the pressure distribution in the reser-

voir every month (30.42days) for 2years. Take time steps of 30.42days.

Solution

The interblock geometric factors in the radial direction and the gridblock

bulk volumes can be calculated exactly as in Example 7.12. Alternatively, grid-

block boundaries are estimated using Eqs. (4.82a), (4.83a), (4.84a), and (4.85a),

followed by estimating interblock geometric factors using Table 4.2 and grid-

block bulk volumes using Eqs. (4.88a) and (4.88c). The gridblock boundaries,

bulk volume, and geometric factors are presented in Table 7.4.

For single-well simulation in a horizontal reservoir (Zn¼ constant) with

no-flow boundaries

�X
l2ξn

qn + 1scl,n
¼ 0

�
, Eq. (7.162a) reduces to

X
l2ψn

Tn+ 1
l,n pn+ 1l �pn+ 1n

� �� �
+ qn+ 1scn

¼ Vbn

αcΔt
ϕ

Bg

� �0

n

pn+ 1n �pnn
� �

(7.166a)

The gas in this reservoir flows toward the well in gridblock 1. Therefore,
gridblock 4 is upstream to gridblock 3, gridblock 3 is upstream to gridblock

2, and gridblock 2 is upstream to gridblock 1. In solving this problem, we

use the implicit formulation with simple iteration (Section 8.4.1.2) and

upstream weighting (Section 8.4.1.1) of the pressure-dependent terms in trans-

missibility. Placing the iteration level, Eq. (6.166a) becomes

X
l2ψn

Tn+ 1
νð Þ

l,n pn + 1
ν + 1ð Þ

l �pn+ 1
ν + 1ð Þ

n

� �
 �
+ qn+ 1

ν + 1ð Þ

scn
¼ Vbn

αcΔt
ϕ

Bg

� �0

n

pn + 1
ν + 1ð Þ

n �pnn


 �
(7.166b)



TABLE 7.3 Gas FVF and viscosity for Example 7.13.

Pressure (psia) GFVF (RB/scf) Gas viscosity (cP)

215.00 0.016654 0.0126

415.00 0.008141 0.0129

615.00 0.005371 0.0132

815.00 0.003956 0.0135

1015.00 0.003114 0.0138

1215.00 0.002544 0.0143

1415.00 0.002149 0.0147

1615.00 0.001857 0.0152

1815.00 0.001630 0.0156

2015.00 0.001459 0.0161

2215.00 0.001318 0.0167

2415.00 0.001201 0.0173

2615.00 0.001109 0.0180

2815.00 0.001032 0.0186

3015.00 0.000972 0.0192

3215.00 0.000922 0.0198

3415.00 0.000878 0.0204

3615.00 0.000840 0.0211

3815.00 0.000808 0.0217

4015.00 0.000779 0.0223

TABLE 7.4 Gridblock locations, boundaries, bulk volumes, and interblock

geometric factors for Example 7.13.

i n ri (ft) ri21/2
L (ft) ri+1/2

L (ft) ri21/2 (ft) ri+1/2 (ft)

Gri+1/2

(RB-cP/D-psi) Vbn
(ft3)

1 1 0.5611 0.2500 1.6937 0.2837 1.9221 1.6655557 340.59522

2 2 3.8014 1.6937 11.4739 1.9221 13.0213 1.6655557 15,631.859

3 3 25.7532 11.4739 77.7317 13.0213 88.2144 1.6655557 717,435.23

4 4 174.4683 77.7317 526.6040 88.2144 526.6040 1.6655557 25,402,604
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1. First time step calculations (n¼0, tn+1¼30.42 days, and Δt¼30.42 days)

Assign p1
n¼p2

n¼p3
n¼p4

n¼pin¼4015 psia.

For the first iteration (v¼0), assume pn+ 1
vð Þ

n ¼ pnn ¼ 4015 psia for n¼1, 2, 3, 4.

Table 7.5 presents the estimated values of FVF and viscosity using linear inter-

polation within table entries, chord slope ϕ
Bg

� 	0
n
, and

Vbn

αcΔt
ϕ
Bg

� 	0
n
for all grid

blocks. It should be mentioned; however, that the calculation of ϕ
Bg

� 	0
n
used a

perturbed value of pn+ 1
vð Þ

n ¼ pnn� ε¼ pnn�1¼ 4015�1¼ 4014 psia for n¼1, 2,

3, 4 only for the first iteration.

For example, for gridblock 1,

ϕ

Bg

� �0

1

¼
ϕ

B

� �n+ 1
vð Þ

1

� ϕ

B

� �n

1

pn+ 1
vð Þ

1 �pn1

¼
0:13

0:00077914

� �
� 0:13

0:000779

� �

4014�4015
¼ 0:03105672

Vb1

αcΔt
ϕ

Bg

� �0

1

¼ 340:59522�0:03105672

5:614583�30:42
¼ 0:06193233

and
Tn+ 1
νð Þ

r1,2
¼ Tn+ 1

νð Þ

r1,2

����
2

¼Gr1 + 1=2

1

μB

� �n+ 1
νð Þ

2

¼ 1:6655557� 1

0:0223000�0:00077900

� �

¼ 95877:5281

for upstream weighting of transmissibility.� � �

Therefore, Tn+ 1

νð Þ

r1,2

���
2

¼ Tn+ 1
νð Þ

r2,3

���
3

¼ Tn+ 1
νð Þ

r3,4

���
4

¼ 95877:5281 scf/D-psi. Note that

upstream weighting is not evident for the first iteration in the first time step

because all gridblock pressures are assumed equal.
TABLE 7.5 Estimated gridblock FVF, viscosity, and chord slope at old

iteration ν50.

Block n pn+1
0ð Þ

n (psia) Bg (RB/scf) μg (cP)
ϕ
Bg

� 	0
n

Vbn

αcΔt
ϕ
Bg

� 	0
n

1 4015 0.00077900 0.0223000 0.03105672 0.06193233

2 4015 0.00077900 0.0223000 0.03105672 2.842428

3 4015 0.00077900 0.0223000 0.03105672 130.4553

4 4015 0.00077900 0.0223000 0.03105672 4619.097
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For gridblock 1, n¼1, and ψ1¼{2}. Therefore, Eq. (7.166b) becomes

Tn+ 1
νð Þ

2,1

����
2

pn+ 1
ν + 1ð Þ

2 �pn + 1
ν + 1ð Þ

1

� �
+ qn+ 1sc1

¼ Vb1

αcΔt
ϕ

Bg

� �0

1

pn+ 1
ν + 1ð Þ

1 �pn1


 �
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Substitution of the values in this equation gives
95877:5281 pn+ 1
ν + 1ð Þ

2 �pn+ 1
ν+ 1ð Þ

1

� �
�106 ¼ 0:06193233 pn+ 1

ν + 1ð Þ

1 �4015


 �

or after factorizing and ordering the unknowns,
�95877:5900pn+ 1
ν + 1ð Þ

1 + 95877:5281pn+ 1
ν + 1ð Þ

2 ¼ 999751:1342 (7.168)

For gridblock 2, n¼2, and ψ2¼{1,3}. Therefore, Eq. (7.166b) becomes
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����
2
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1 �pn + 1
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¼ Vb2

αcΔt
ϕ

Bg
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2

pn+ 1
ν + 1ð Þ

2 �pn2
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Substitution of the values in this equation gives
95877:5281 pn + 1
ν + 1ð Þ

1 �pn+ 1
ν + 1ð Þ

2

� �
+ 95877:5281 pn + 1

ν + 1ð Þ

3 �pn+ 1
ν+ 1ð Þ

2

� �
+ 0

¼ 2:842428 pn+ 1
ν+ 1ð Þ

2 �4015


 �

or after factorizing and ordering the unknowns,
95877:5281pn + 1
ν + 1ð Þ

1 �191757:899pn+ 1
ν+ 1ð Þ

2 + 95877:5281pn+ 1
ν + 1ð Þ

3 ¼�11412:3496

(7.170)

For gridblock 3, n¼3, and ψ3¼{2,4}. Therefore, Eq. (7.166b) becomes
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Substitution of the values in this equation gives
95877:5281 pn + 1
ν + 1ð Þ

2 �pn+ 1
ν + 1ð Þ

3

� �
+ 95877:5281 pn + 1

ν + 1ð Þ

4 �pn+ 1
ν+ 1ð Þ

3

� �
+ 0

¼ 130:4553 pn+ 1
ν+ 1ð Þ

3 �4015


 �
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or after factorizing and ordering the unknowns,
95877:5281pn+ 1
ν + 1ð Þ

2 �191885:511pn+ 1
ν + 1ð Þ

3 + 95877:5281pn+ 1
ν + 1ð Þ

4 ¼�523777:862

(7.172)

For gridblock 4, n¼4, and ψ4¼{3}. Therefore, Eq. (7.166b) becomes
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3 �pn+ 1
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ν+ 1ð Þ

4 �pn4
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Substitution of the values in this equation gives
95877:5281 pn+ 1
ν+ 1ð Þ

3 �pn+ 1
ν + 1ð Þ

4

� �
+ 0¼ 4619:097 pn+ 1

ν + 1ð Þ

4 �4015


 �

or after factorizing and ordering the unknowns,
95877:5281pn+ 1
ν + 1ð Þ

3 �100496:626pn + 1
ν + 1ð Þ

4 ¼�18545676:2 (7.174)

The results of solving Eqs. (7.168), (7.170), (7.172), and (7.174) for the
unknown pressures are pn+ 1
1ð Þ

1 ¼ 3773:90 psia, pn+ 1
1ð Þ

2 ¼ 3784:33 psia,

pn + 1
1ð Þ

3 ¼ 3794:75 psia, and pn+ 1
1ð Þ

4 ¼ 3804:87 psia.

For the second iteration (v¼1), we use pn+ 1
1ð Þ

n to estimate the values of FVF

and viscosity using linear interpolation within table entries, chord slope ϕ
Bg

� 	0
n
,

and
Vbn

αcΔt
ϕ
Bg

� 	0
n
for gridblock n. Table 7.6 lists these values. For example, for

gridblock 1,

ϕ

Bg

� �0

1

¼
ϕ

B

� �n+ 1
νð Þ

1

� ϕ

B

� �n

1

pn+ 1
vð Þ

1 �pn1

¼
0:13

0:00081458

� �
� 0:13

0:000779

� �

3773:90�4015
¼ 0:03022975
TABLE 7.6 Estimated gridblock FVF, viscosity, and chord slope at old

iteration ν51.

Block n pn+1
1ð Þ

n (psia) Bg (RB/scf) μg (cP)
ϕ
Bg

� 	0
n

Vbn

αcΔt
ϕ
Bg

� 	0
n

1 3773.90 0.00081458 0.0215767 0.03022975 0.0602832

2 3784.33 0.00081291 0.0216080 0.03017631 2.761849

3 3794.75 0.00081124 0.0216392 0.03011173 126.4858

4 3804.87 0.00080962 0.0216696 0.03003771 4467.390
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Vb1

αcΔt
ϕ

Bg

� �0

1

¼ 340:59522�0:03022975

5:614583�30:42
¼ 0:0602832

and
Tn+ 1
νð Þ

r2,1
¼ Tn + 1

νð Þ

r2,1

����
2

¼Gr1 + 1=2

1

μB

� �n+ 1
νð Þ

2

¼ 1:6655557� 1

0:0216080�0:00081291

� �
¼ 94820:8191

for upstream weighting of transmissibility.� �

Similarly, Tn+ 1

νð Þ

r3,2

���
3

¼ 94878:4477 scf/D-psi and Tn+ 1
νð Þ

r4,3

���
4

¼ 94935:0267
scf/D-psi.

For gridblock 1, n¼1. Substituting the values in Eq. (7.167) gives

94820:8191 pn+ 1
ν + 1ð Þ

2 �pn+ 1
ν + 1ð Þ

1

� �
�106 ¼ 0:0602832 pn + 1

ν + 1ð Þ

1 �4015


 �

or after factorizing and ordering the unknowns,
�94820:8794pn+ 1
ν + 1ð Þ

1 + 94820:8191pn+ 1
ν + 1ð Þ

2 ¼ 999757:963 (7.175)

For gridblock 2, n¼2. Substituting the values in Eq. (7.169) gives
94820:8191 pn+ 1
ν + 1ð Þ

1 �pn + 1
ν + 1ð Þ

2

� �
+ 94878:4477 pn + 1

ν+ 1ð Þ

3 �pn+ 1
ν + 1ð Þ

2

� �
+ 0

¼ 2:761849 pn+ 1
ν + 1ð Þ

2 �4015


 �

or after factorizing and ordering the unknowns,
94820:8191pn+ 1
ν + 1ð Þ

1 �189702:029pn+ 1
ν + 1ð Þ

2 + 94878:4477pn+ 1
ν+ 1ð Þ

3 ¼�11088:8252

(7.176)

For gridblock 3, n¼3. Substituting the values in Eq. (7.171) gives
94878:4477 pn+ 1
ν + 1ð Þ

2 �pn + 1
ν + 1ð Þ

3

� �
+ 94935:0267 pn + 1

ν+ 1ð Þ

4 �pn+ 1
ν + 1ð Þ

3

� �
+ 0

¼ 126:4858 pn+ 1
ν + 1ð Þ

3 �4015


 �

or after factorizing and ordering the unknowns,
94878:4477pn+ 1
ν + 1ð Þ

2 �189939:960pn+ 1
ν + 1ð Þ

3 + 94935:0267pn+ 1
ν+ 1ð Þ

4 ¼�507840:406

(7.177)



TABLE 7.7 The pressure solution at tn+1530.42 days for successive

iterations.

ν p1
n+1 (psia) p2

n+1 (psia) p3
n+1 (psia) p4

n+1 (psia)

1 3773.90 3784.33 3794.75 3804.87

2 3766.44 3776.99 3787.52 3797.75

3 3766.82 3777.37 3787.91 3798.14
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For gridblock 4, n¼4. Substituting the values in Eq. (7.173) gives
94935:0267 pn+ 1
ν + 1ð Þ

3 �pn+ 1
ν + 1ð Þ

4

� �
+ 0¼ 4467:390 pn+ 1

ν+ 1ð Þ

4 �4015


 �

or after factorizing and ordering the unknowns,
94935:0267pn+ 1
ν + 1ð Þ

3 �99402:4167pn + 1
ν + 1ð Þ

4 ¼�17936570:6 (7.178)

The results of solving Eqs. (7.175), (7.176), (7.177), and (7.178) for the
unknown pressures are pn+ 1
2ð Þ

1 ¼ 3766:44 psia, pn+ 1
2ð Þ

2 ¼ 3776:99 psia,

pn + 1
2ð Þ

3 ¼ 3787:52 psia, and pn+ 1
2ð Þ

4 ¼ 3797:75 psia.

The iterations continue until the convergence criterion is satisfied. The suc-

cessive iterations for the first time step are shown in Table 7.7. It can be seen

that it took three iterations to converge. The convergence criterion was set as

max
1�n�N

pn+ 1
ν + 1ð Þ

n �pn+ 1
νð Þ

n

pn+ 1
νð Þ

n

������
������� 0:001 (7.179)

After reaching convergence, time is incremented by Δt¼30.42 days. and
the above procedure is repeated. The converged solutions at various times up

to 2years of simulation time are shown in Table 7.8. Inspection of the simula-

tion results reported in Table 7.8 reveals that the well switched to a constant

FBHP of 500psia after 21months because the reservoir does not have the capac-

ity to produce gas at the specified rate of 1MMscf/D.
7.4 Summary

Reservoir fluids are incompressible, slightly compressible, or compressible.

The flow equation for an incompressible fluid in incompressible porous

media is described by Eq. (7.16). Reservoir pressure in this case has steady-state

behavior and can be obtained using the algorithm presented in Section 7.3.1.1.



TABLE 7.8 The converged pressure solution and gas production at various times.

n+1 Time (day) ν p1
n+1 (psia) p2

n+1 (psia) p3
n+1 (psia) p4

n+1 (psia) pn+1
wf1 (psia) qgsc

n+1 (MMscf/D) Cumulative production (MMMscf)

1 30.42 3 3766.82 3777.37 3787.91 3798.14 3762.36 �1.000000 �0.0304200

2 60.84 3 3556.34 3567.01 3577.67 3588.02 3551.82 �1.000000 �0.0608400

3 91.26 3 3362.00 3372.80 3383.58 3394.05 3357.43 �1.000000 �0.0912600

4 121.68 3 3176.08 3187.08 3198.06 3208.72 3171.43 �1.000000 �0.121680

5 152.10 3 2995.56 3006.78 3017.97 3028.85 2990.81 �1.000000 �0.152100

6 182.52 3 2827.23 2838.72 2850.18 2861.32 2822.36 �1.000000 �0.182520

7 212.94 3 2673.43 2685.26 2697.06 2708.50 2668.42 �1.000000 �0.212940

8 243.36 2 2524.28 2536.47 2548.62 2560.41 2519.12 �1.000000 �0.243360

9 273.78 3 2375.01 2387.59 2400.12 2412.25 2369.67 �1.000000 �0.273780

10 304.20 3 2241.26 2254.33 2267.35 2279.97 2235.71 �1.000000 �0.304200

11 334.62 3 2103.68 2117.34 2130.93 2144.09 2097.88 �1.000000 �0.334620

12 365.04 3 1961.05 1975.39 1989.65 2003.42 1954.95 �1.000000 �0.365040

13 395.46 3 1821.72 1836.86 1851.91 1866.47 1815.29 �1.000000 �0.395460

14 425.88 3 1684.94 1701.18 1717.27 1732.78 1678.02 �1.000000 �0.425880

15 456.30 3 1543.26 1560.78 1578.11 1594.79 1535.78 �1.000000 �0.456300

16 486.72 4 1403.75 1422.64 1441.34 1459.36 1395.67 �1.000000 �0.486720

17 517.14 3 1263.19 1284.07 1304.65 1324.36 1254.24 �1.000000 �0.517140

18 547.56 3 1114.51 1137.93 1160.87 1182.74 1104.42 �1.000000 �0.547560

19 577.98 4 964.49 991.04 1016.79 1041.39 952.91 �1.000000 �0.577980

20 608.40 4 812.91 844.10 874.32 902.83 799.30 �1.000000 �0.608400

21 638.82 3 645.89 684.85 721.84 755.98 628.58 �1.000000 �0.638820

22 669.24 4 531.46 567.57 601.01 631.84 515.00 �0.759957 �0.661938

23 699.66 4 523.60 543.17 561.98 579.67 515.00 �0.391107 �0.673835

24 730.08 3 519.68 530.53 541.13 551.32 515.00 �0.211379 �0.680266
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For a slightly compressible fluid, the flow equation can be expressed using

explicit formulation (Eq. 7.80), implicit formulation (Eq. 7.81), or the

Crank-Nicolson formulation (Eq. 7.82). For a compressible fluid (natural

gas), the flow equation can be expressed using explicit formulation

(Eq. 7.161), implicit formulation (Eq. 7.162), or the Crank-Nicolson formula-

tion (Eq. 7.163). Reservoir pressure for slightly compressible and compressible

fluids has unsteady-state behavior. The pressure solution is obtained by march-

ing in time from the initial conditions to the desired time using time steps.

Advancing the pressure solution one time step is obtained using the algorithms

presented in Section 7.3.2.2 for a slightly compressible fluid or that presented in

Section 7.3.3.2 for a compressible fluid. Material balance is checked every time

a pressure solution is obtained. Eq. (7.17) applies to incompressible fluid flow.

Eqs. (7.83) and (7.84) (or Eqs. 7.85 and 7.86) apply to slightly compressible

fluid flow, and Eqs. (7.164) and (7.165) apply to compressible fluid flow.

The incremental material balance checks, however, are more accurate than

the cumulative material balance checks.
7.5 Exercises

7.1 Examine the various terms in Eq. (7.16a) for incompressible fluid flow

and then give justification for describing it as a linear equation.

7.2 Examine Eq. (7.81a) for a slightly compressible fluid and then give jus-

tification and conditions under which it can be considered a linear

equation.

7.3 Examine Eq. (7.162a) for a compressible fluid and then give justification

for describing it as a nonlinear equation.

7.4 Explain why Eq. (7.80a) is explicit, whereas Eq. (7.81a) is implicit.

7.5 A 1-D reservoir consists of four gridblocks (N¼4) and contains an

incompressible fluid. The reservoir boundaries can be subject to any con-

dition. Write the flow equation for each individual gridblock. Add up all

flow equations and prove that the material balance for this reservoir is

given by Eq. (7.17a) for N¼4.

7.6 Repeat the procedure in Exercise 7.5 and prove that the incremental mate-

rial balance for this reservoir is given by Eq. (7.85) for a slightly com-

pressible fluid using the implicit formulation.

7.7 In order, list all the steps necessary to advance the pressure solution in

time for compressible fluid flow in reservoirs.

7.8 Start with Eq. (7.88) and derive Eq. (7.86) as outlined in the text.
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7.9 The estimation of transmissibility in incompressible fluid flow and in

slightly compressible fluid flow, as presented in this chapter, does not

mention or make use of upstream weighting. Explain why weighting (or

upstream weighting) of transmissibility is not needed in these two cases.

7.10 Consider the single-phase flow of slightly compressible oil in the 2-D

horizontal homogeneous reservoir shown in Fig. 7.15a. The reservoir

is volumetric; that is, it has no-flow boundaries. Initial reservoir pressure

is 4000psia. Gridblock 5 houses a 7-in well at its center, which produces

at a constant rate of 50STB/D. Gridblock dimensions and properties are

Δx¼Δy¼350 ft, h¼20 ft, kx¼ky¼120 md, and ϕ¼0.25 Oil properties

are Bo¼Bo
∘¼1 RB/STB, co¼7�10�6 psi�1, μo¼6 cP, and cμ¼0 psi�1.

Using the single-phase simulator, report the pressure distribution in the

reservoir shown in Fig. 7.15a and the well FBHP at 10, 20, and 50days.

Use single time steps to advance the solution from one time to the next.
Δx

Δy

h

1 2

5

1 2 3

5

1 2

54
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(a)

(b) (c) (d)
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7 8 9

y
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FIG. 7.15 2-D reservoir and elements of symmetry in Exercises 7.10 through 7.13. (a) Discretized

2-D reservoir in Exercise 7.10, (b) Element of symmetry in Exercise 7.11, (c) Element of symmetry

in Exercise 7.12, and (d) Element of symmetry in Exercise 7.13.
7.11 Consider the flow problem presented in Exercise 7.10. In addition, con-

sider symmetry about the two vertical planes passing through the center

of gridblock 5 and perpendicular to either the x-axis or y-axis. Using the

element of symmetry shown in Fig. 7.15b, estimate the pressure distribu-

tion in the reservoir and the well FBHP at 10, 20, and 50days.



Single-phase flow equation for various fluids Chapter 7 279
7.12 Consider the fluid flow problem described in Exercise 7.10. This time

consider symmetry only about the two diagonal planes passing through

the center of gridblock 5. Using the element of symmetry shown in

Fig. 7.15c, estimate the pressure distribution in the reservoir and the well

FBHP at 10, 20, and 50days.

7.13 Consider the fluid flow problem described in Exercise 7.10. This time

consider symmetry about all four planes passing through the center of

gridblock 5. Using the smallest element of symmetry shown in

Fig. 7.15d, estimate the pressure distribution in the reservoir and the well

FBHP at 10, 20, and 50days.

7.14 A single-phase fluid reservoir is described by three equal gridblocks as

shown in Fig. 7.16. The reservoir is horizontal and has homogeneous

and isotropic rock properties, k¼270 md and ϕ¼0.27. Gridblock dimen-

sions are Δx¼400 ft, Δy¼650 ft, and h¼60 ft. Reservoir fluid proper-

ties are B¼1 RB/STB and μ¼1 cP. The reservoir left boundary is kept

constant at 3000psia, and the reservoir right boundary is kept at a pressure

gradient of �0.2psi/ft. Two 7-in vertical wells were drilled at the centers

of gridblocks 1 and 3. The well in gridblock 1 injects 300STB/D of fluid,

and the well in gridblock 3 produces 600STB/D of fluid. Both wells have

zero skin. Assume that the reservoir rock and fluid are incompressible.

Find the pressure distribution in the reservoir.
2 31 
60 ft

400 ft 400 ft 650 ft

x

y

= −0.2 psi/ft

qsc3
 = −600 STB/D

qsc1
 = 300 STB/D

dp  
dx bE

pbW
 = 3000 psia

FIG. 7.16 Discretized 1-D reservoir in Exercise 7.14.
7.15 A 0.5-ft-diameter oil well is drilled on 10-acre spacing. The reservoir

thickness, horizontal permeability, and porosity are 50ft, 200md, and

0.15, respectively. The oil has FVF, compressibility, and viscosity of

1RB/STB, 5�10�6 psi�1, and 3cP, respectively. The reservoir external

boundaries are no-flow boundaries. The well has open-well completion

and is placed on production at a rate of 100STB/D. Initial reservoir pres-

sure is 4000psia. The reservoir can be simulated using three gridblocks in

the radial direction as shown in Fig. 7.17.
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FIG. 7.17 Discretized 1-D reservoir in Exercise 7.15.
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Use single time steps to advance the solution from one time to

another. Find the pressure distribution in the reservoir and the FBHP

of the well after 5days. Check the material balance. Write the final form

of the flow equations for this reservoir after 10days.
7.16 A 0.5-ft-diameter oil well is drilled on 30-acre spacing. The reservoir

thickness, horizontal permeability, and porosity are 50ft, 210md, and

0.17, respectively. The oil has FVF, compressibility, and viscosity of

1RB/STB, 5�10�6 psi�1, and 5cP, respectively. The reservoir external

boundaries are no-flow boundaries. The well has open-well completion

and is placed on production at a rate of 1500STB/D. Initial reservoir pres-

sure is 3500psia. The reservoir can be simulated using four gridblocks in

the radial direction as shown in Fig. 7.18. Use single time steps to advance

the solution from one time to another. Find the pressure distribution in the

reservoir and the FBHP of the well after 1day and 3days. Check the mate-

rial balance.
1 2 3

1500 STB/D

50 ft
4

1 2 3
50 ft

4

r

z
rerw

.18 Discretized 1-D reservoir in Exercise 7.16.
7.17 A single-phase fluid reservoir is discretized into four equal gridblocks as

shown in Fig. 7.19. The reservoir is horizontal and has k¼70 md.
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Gridblock dimensions are Δx¼400 ft, Δy¼900 ft, and h¼25 ft. Reser-

voir fluid properties are B¼1 RB/STB and μ¼1.5 cP. The reservoir left

boundary is kept at a constant pressure of 2600psia, and the reservoir

right boundary is kept at a constant pressure gradient of �0.2psi/ft. A

6-in vertical well located at the center of gridblocks 3 produces fluid

under a constant FBHP of 1000psia. Assuming that the reservoir rock

and fluid are incompressible, calculate the pressure distribution in the res-

ervoir. Estimate the well production rate and the rates of fluid crossing the

reservoir external boundaries. Perform a material balance check.
2 3 41 
25 ft

400 ft 900 ft

x

y

dp  
dx

= 0.1 psi/ftpbW
 = 2600 psia

pwf = 1000 psia

bE

FIG. 7.19 Discretized 1-D reservoir in Exercise 7.17.
7.18 Consider the reservoir shown in Fig. 7.20. The reservoir is discretized

into four equal gridblocks with Δx¼300 ft, Δy¼600 ft, h¼30 ft, and

k¼180 md. The elevations of the center of gridblocks 1, 2, 3, and 4

are respectively 3532.34, 3471.56, 3410.78, and 3350.56 ft below sea

level. The fluid FVF, viscosity, and density are 1RB/STB, 2.4cP, and

45 lbm/ft3, respectively. The centers of the reservoir west and east bound-

aries are respectively 3562.73 and 3319.62 ft below sea level. The west

boundary is sealed off to flow, and the east boundary is prescribed at a

constant pressure gradient of 0.2psi/ft. The reservoir has two 6-in wells.

The first well is located at the center of gridblock 1 and injects fluid at a

rate of 320STB/D. The second well is located at the center of gridblocks 3

and produces fluid under a constant FBHP of 1200psia. Assuming that

the reservoir rock and fluid are incompressible, calculate the reservoir

pressure distribution, the FBHP of the well in gridblock 1, and the pro-

duction rate of the well in gridblock 3. Perform a material balance check.
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qsc1
 = 320 STB/D

pwf 
= 1200 psia

FIG. 7.20 Discretized 1-D reservoir in Exercise 7.18.



282 Petroleum reservoir simulation
7.19 Perform a single-well simulation of the reservoir described in Exercise

7.16 assuming that the reservoir can be described using four gridpoints.

7.20 Consider the 2-D single-phase flow of incompressible oil taking place in

the inclined, homogeneous reservoir shown in Fig. 7.21. The reservoir

east and north external boundaries receive a constant influx of

0.02STB/D-ft2 from a neighboring reservoir. The reservoir west and south

external boundaries are no-flow boundaries. The elevation below sea level

of the center of gridblocks 1, 2, 3, and 4 are, respectively, 2000, 1700,

1700, and 1400ft. The pressure of gridblock 1 is kept at 1000psia. The

gridblock properties areΔx¼Δy¼600 ft, h¼40 ft, and kx¼ky¼500 md.

Oil density and viscosity are 37 lbm/ft3 and 4cP, respectively. Calculate

the pressure of gridblocks 2, 3, and 4. Then, estimate the production rate

of the well using the flow equation for gridblock 1, carry out a material

balance check for your results, and estimate the FBHP of the well given

that thewell radius is 6 in. Consider symmetry about the vertical plane that

passes through the centers of gridblocks 1 and 4.
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4
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FIG. 7.21 Discretized 2-D reservoir in Exercise 7.20.
7.21 Consider the 1-D inclined reservoir shown in Fig. 7.22. The reservoir is

volumetric and homogeneous. The reservoir contains a production well

located in gridblock 2. At the time of discovery (t¼0), the fluids were

in hydrodynamic equilibrium, and the pressure of gridblock 2 was

3000psia. All gridblocks have Δx¼400 ft, Δy¼200 ft, h¼80 ft,

k¼222 md, and ϕ¼0.20. The well in gridblock 2 is produced at a rate

of 200STB/D, and fluid properties are μo¼2 cP, Bo¼Bo
∘¼1 RB/STB,

ρo¼45 lbm/ft3, and co¼5�10�5 psi�1. Estimate the initial pressure dis-

tribution in the reservoir. Find the well FBHP and pressure distribution in

the system at 50 and 100days using the implicit formulation. Check the

material balance every time step.
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FIG. 7.22 Discretized 1-D reservoir in Exercise 7.21.
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7.22 Consider the single-well simulation problem presented in Example 7.13.

Solve the problem again, but this time, the reservoir is discretized into

four gridpoints in the radial direction as shown in Fig. 7.23.
1 MMscf/D

i = 1 i = 2 i = 3 i = 4

r

z

1 2 3  4

No-flow boundary

30 ft

No-flow boundary

FIG. 7.23 Discretized reservoir in Exercise 7.22.
7.23 If the reservoir described in Exercise 7.21 is horizontal as shown in

Fig. 7.24, observe and use the symmetry about the vertical plane that

passes through the center of gridblock 2 and solve the problem.
1 2 3
x

y

No-flow boundaryNo-flow boundary

80 ft

400 ft 200 ft

200 STB/D

FIG. 7.24 Discretized 1-D reservoir in Exercise 7.23.
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8.1 Introduction

The flow equations presented in Chapter 7 are generally nonlinear. Even if

solved implicitly, the nonlinearity comes in boundary conditions and wells,

which invoke discontinuities. Solving nonlinear algebraic equations is limited

to trivial ones. All other forms have to be linearized before they are amenable

to solutions. Only recently, some progress has been made for solving flow

equations in their nonlinear forms (Mustafiz et al., 2008a,b). These solutions

are extremely cumbersome to obtain and often result in hitting spurious solu-

tions. Fortunately, such rigorous treatment is not necessary for most practical

applications, for which a priori linearization suffices. To obtain the pressure

distribution in the reservoir, these equations are linearized to use linear

equation solvers. In this chapter, we aim at obtaining the linearized flow equa-

tion for an arbitrary gridblock (or gridpoint). To achieve this objective, we

identify the nonlinear terms in the flow equations, present methods of linear-

izing these terms in space and time, and subsequently present the linearized
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flow equation for single-phase flow problems. To simplify the presentation

of concepts, we use the implicit formulation of the 1-D flow equation in

the x-direction and use a block-centered grid in discretizing the reservoir.

We first discuss the incompressible fluid flow equation that exhibits linearity,

then the implicit formulation for the slightly compressible fluid flow equation

that exhibits very weak nonlinearity, and finally the implicit formulation

for the compressible fluid flow equation that exhibits a higher degree of

nonlinearity. Although single-phase flow equations exhibit different degrees

of nonlinearity, these equations are usually classified as having weak

nonlinearities.
8.2 Nonlinear terms in flow equations

The terms composing any flow equation include interblock flow terms, the

accumulation term, the well production rate term, and fictitious well rate terms

reflecting flow across reservoir boundaries for boundary blocks. The number of

interblock flow terms equals the number of all the existing neighboring blocks.

The number of fictitious well rate terms equals the number of block boundaries

that fall on reservoir boundaries. For any boundary block, the number of exist-

ing neighboring blocks and the number of fictitious wells always add up to two,

four, or six for 1-D, 2-D, or 3-D flow, respectively. In single-phase flow prob-

lems, if the coefficients of unknown block pressures in the flow equation depend

on block pressure, the algebraic equation is termed nonlinear; otherwise, the

equation is linear. Therefore, the terms that may exhibit pressure dependence

include transmissibilities, the well production rate, fictitious well rates, and

the coefficient of block pressure difference in the accumulation term. This is

true for equations in the mathematical approach. In the engineering approach;

however, interblock flow terms, the well production rate, and fictitious well

rates receive the same treatment; that is, block pressures contributing to flow

potential (the pressure difference) in any term are treated implicitly as demon-

strated in Chapter 7. Therefore, the nonlinear terms include transmissibilities in

interblock flow terms and fictitious well rates, the coefficient of pressure drop

in the well production rate term, and the coefficient of block pressure difference

in the accumulation term.
8.3 Nonlinearity of flow equations for various fluids

In this section, we examine the nonlinearity of the flow equations for slightly

compressible and compressible fluids. The flow equation for incompressible

fluids is linear. We examine the pressure dependence of the various terms in

a flow equation, namely, the interblock flow terms, the accumulation term,

the well production rate term, and the fictitious well rate terms.
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8.3.1 Linearity of the incompressible fluid flow equation

The 1-D flow equation in the x-direction for an incompressible fluid can be

obtained from Eq. (7.16a), which statesX
l2ψn

Tl,n pl�pnð Þ� γl,n Zl�Znð Þ� �
+
X
l2ξn

qscl,n + qscn ¼ 0 (8.1)

where ψn¼{n�1,n+1}, ξn¼{}, {bW}, or {bE}, and n¼1, 2, 3, …nx.

For gridblock 1,

Tx1 + 1=2 p2�p1ð Þ� γ1 + 1=2 Z2�Z1ð Þ
h i

+ qscbW ,1 + qsc1 ¼ 0 (8.2a)

For gridblock i¼2, 3, …nx�1,
Txi�1=2
pi�1�pið Þ� γi�1=2 Zi�1�Zið Þ

h i

+ Txi + 1=2 pi+ 1�pið Þ� γi + 1=2 Zi+ 1�Zið Þ
h i

+ qsci ¼ 0
(8.2b)

For gridblock nx,
Txnx�1=2
pnx�1�pnxð Þ� γnx�1=2 Znx�1�Znxð Þ

h i
+ qscbE,nx + qscnx ¼ 0 (8.2c)

Transmissibility Txi�1/2
is expressed as Eq. (2.39a):
Txi�1=2
¼ βc

kxAx

μBΔx

!����
xi�1=2

¼Gxi�1=2

1

μB

� �
xi�1=2

 
(8.3a)

Geometric factor Gxi�1/2
is defined in Table 4.1 for a block-centered grid,
Gxi�1=2
¼ 2βc
Δxi= Axikxið Þ+Δxi�1= Axi�1

kxi�1

� � (8.4)

The well production rate (qsci) is estimated according to the well operating	 


condition as discussed in Chapter 6, and fictitious well rates qscbW ,1, qscbE,nx

are estimated according to the type of boundary condition as discussed in

Chapter 4. Note that Txi�1/2
and Gxi�1/2

are functions of the space between grid-

blocks i and i�1 only. It should bementioned that a numerical value for the well

production rate could be calculated for well operating conditions other than a

specified FBHP. Similarly, a numerical value for a fictitious well flow rate

can be calculated for boundary conditions other than a specified pressure bound-

ary. In such cases, both thewell production rate and fictitiouswell rate are known

quantities and, as a result, can bemoved to theRHSof the flowequation (Eq. 8.2).

Otherwise, the well production rate and fictitious well rate are functions of block

pressure (pi), and as a result, part of the rate equations appears in the coefficient of
pi, and the other part has to be moved to the RHS of the flow equation (Eq. 8.2).

The FVF, viscosity, and gravity of an incompressible fluid are not functions of
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pressure. Therefore, transmissibilities and gravity are not functions of pressure;

consequently, Eq. (8.2) represents a system of nx linear algebraic equations.

This system of linear equations can be solved for the unknown pressures

(p1, p2, p3,…pnx) by the algorithm presented in Section 7.3.1.1.

8.3.2 Nonlinearity of the slightly compressible fluid flow equation

The implicit flow equation for a slightly compressible fluid is expressed as

Eq. (7.81a):

X
l2ψn

Tn+ 1
l,n pn+ 1l �pn+ 1n

� �� γnl,n Zl�Znð Þ� �
+
X
l2ξn

qn+ 1scl,n
+ qn+ 1scn

¼Vbnϕ
°
n c + cϕ
� �

αcB°Δt
pn+ 1n �pnn
� � (8.5)

where the FVF, viscosity, and density are described by Eqs. (7.5) through (7.7):
B¼ B°

1 + c p�p°ð Þ½ � (8.6)

μ¼ μ°

1� cμ p�p°ð Þ� � (8.7)

and
ρ¼ ρ° 1 + c p�p°
� �� �

(8.8)

The numerical values of c and cμ for slightly compressible fluids are in the
order of magnitude of 10�6 to 10�5. Consequently, the effect of pressure var-

iation on the FVF, viscosity, and gravity can be neglected without introducing

noticeable errors. Simply statedBffiB∘, μffiμ∘, and ρffiρ∘, and in turn, transmis-

sibilities and gravity are independent of pressure (i.e., Tl,n
n+1ffiTl,n and γl,n

n ffi γl,n).
Therefore, Eq. (8.5) simplifies toX

l2ψn

Tl,n pn+ 1l �pn+ 1n

� �� γl,n Zl�Znð Þ� �
+
X
l2ξn

qn + 1scl,n
+ qn + 1scn

¼Vbnϕ
°
n c+ cϕ
� �

αcB°Δt
pn+ 1n �pnn
� � (8.9)

Eq. (8.9) is a linear algebraic equation because the coefficients of the
unknown pressures at time level n+1 are independent of pressure.

The 1-D flow equation in the x-direction for a slightly compressible fluid is

obtained from Eq. (8.9) in the same way that was described in the previous

section.
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For gridblock 1,

Tx1 + 1=2 pn+ 12 �pn+ 11

� �� γ1 + 1=2 Z2�Z1ð Þ
h i

+ qn+ 1scbW ,1
+ qn+ 1sc1

¼Vb1ϕ
°
1 c+ cϕ
� �

αcB°Δt
pn+ 11 �pn1
� � (8.10a)

For gridblock i¼2,3,…nx�1,
Txi�1=2
pn + 1i�1 �pn+ 1i

� �� γi�1=2 Zi�1�Zið Þ
h i

+Txi+ 1=2 pn+ 1i+ 1 �pn+ 1i

� �� γi+ 1=2 Zi + 1�Zið Þ
h i

+ qn+ 1sci
¼Vbiϕ

°
i c + cϕ
� �

αcB°Δt
pn + 1i �pni
� �

(8.10b)

For gridblock nx,
Txnx�1=2
pn+ 1nx�1�pn+ 1nx

	 

� γnx�1=2 Znx�1�Znxð Þ

h i
+ qn + 1scbE,nx

+ qn+ 1scnx

¼Vbnxϕ
°
nx

c+ cϕ
� �

αcB°Δt
pn+ 1nx

�pnnx

h i (8.10c)

In the aforementioned equation, Txi�1/2
and Gxi�1/2

for a block-centered grid
are defined by Eqs. (8.3a) and (8.4):

Txi�1=2
¼ βc

kxAx

μBΔx

�����
xi�1=2

¼Gxi�1=2

1

μB

� �
xi�1=2

 
(8.3a)

and
Gxi�1=2
¼ 2βc
Δxi= Axikxið Þ+Δxi�1= Axi�1

kxi�1

� � (8.4)

Here again, the well production rate (qsci
n+1) and fictitious well rates	 

qn+ 1scbW ,1
, qn+ 1scbE,nx

are handled in exactly the sameway as discussed in the previous

section. The resulting set of nx linear algebraic equations can be solved for the

unknown pressures (p1
n+1, p2

n+1, p3
n+1, … pnx

n+1) by the algorithm presented in

Section 7.3.2.2.

Although eachofEqs. (8.2) and (8.10) represents a set of linear algebraic equa-

tions, there is a basic difference between them. In Eq. (8.2), the reservoir pressure

dependsonspace (location)only,whereas inEq. (8.10), reservoirpressuredepends

on both space and time. The implication of this difference is that the flow equation

for an incompressible fluid (Eq. 8.2) has a steady-state solution (i.e., a solution that

is independent of time),whereas the flowequation for a slightly compressible fluid

(Eq. 8.10) has anunsteady-state solution (i.e., a solution that is dependent on time).

It should be mentioned that the pressure solution for Eq. (8.10) at any time step is

obtained without iteration because the equation is linear.
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Wemust reiterate that the linearity of Eq. (8.9) is the result of neglecting the

pressure dependence of FVF and viscosity in transmissibility, the well produc-

tion rate, and the fictitious well rates on the LHS of Eq. (8.5). If Eqs. (8.6) and

(8.7) are used to reflect such pressure dependence, the resulting flow equation

becomes nonlinear. In conclusion, understanding the behavior of fluid proper-

ties has led to devising a practical way of linearizing the flow equation for a

slightly compressible fluid.
8.3.3 Nonlinearity of the compressible fluid flow equation

The implicit flow equation for a compressible fluid is expressed as Eq. (7.162a):X
l2ψn

Tn+ 1
l,n pn+ 1l �pn+ 1n

� �� γnl,n Zl�Znð Þ� �
+
X
l2ξn

qn+ 1scl,n
+ qn+ 1scn

¼ Vbn

αcΔt
ϕ

Bg

� �0

n

pn+ 1n �pnn
� � (8.11)

The pressure dependence of density is expressed as Eq. (7.9):
ρg ¼
ρgsc
αcBg

(8.12)

In addition, gas FVF and viscosity are presented in a tabular form as func-
tions of pressure at reservoir temperature:

Bg ¼ f pð Þ (8.13)

and
μg ¼ f pð Þ (8.14)

As mentioned in Chapter 7, the density and viscosity of a compressible fluid
increase as pressure increases but tend to level off at high pressures. The FVF

decreases orders of magnitude as the pressure increases from low pressure to

high pressure. Consequently, interblock transmissibilities, gas gravity, the coef-

ficient of pressure difference in accumulation term, well production, and trans-

missibility in fictitious well terms are all functions of unknown block pressures.

Therefore, Eq. (8.11) is nonlinear. The solution of this equation requires line-

arization of nonlinear terms in both space and time.

The 1-D flow equation in the x-direction for a compressible fluid can be

obtained from Eq. (8.11) in the same way that was described in Section 8.3.1.

For gridblock 1,

Tn+ 1
x1 + 1=2

pn + 12 �pn + 11

� �� γn
1 + 1=2 Z2�Z1ð Þ

h i
+ qn+ 1scbW ,1

+ qn+ 1sc1

¼ Vb1

αcΔt
ϕ

Bg

� �0

1

pn+ 11 �pn1
� � (8.15a)
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For gridblock i¼2, 3, …nx�1,
Tn+ 1
xi�1=2

pn+ 1i�1 �pn+ 1i

� �� γni�1=2 Zi�1�Zið Þ
h i

+ Tn+ 1
xi + 1=2

pn+ 1i+ 1 �pn+ 1i

� �� γni + 1=2 Zi+ 1�Zið Þ
h i

+ qn+ 1sci
¼ Vbi

αcΔt
ϕ

Bg

� �0

i

pn+ 1i �pni
� �

(8.15b)

For gridblock nx,
Tn+ 1
xnx�1=2

pn+ 1nx�1�pn+ 1nx

	 

� γnnx�1=2 Znx�1�Znxð Þ

h i
+ qn + 1scbE,nx

+ qn+ 1scnx

¼ Vbnx

αcΔt
ϕ

Bg

� �0

nx

pn+ 1nx
�pnnx

h i (8.15c)

In the aforementioned equation, Txi�1/2

n+1 and Gxi�1/2
for a block-centered grid
are defined by Eqs. (8.3b) and (8.4):

Tn+ 1
xi�1=2

¼ βc
kxAx

μBΔx

�� ����
n + 1

xi�1=2

¼Gxi�1=2

1

μB

� �n+ 1

xi�1=2

(8.3b)

and
Gxi�1=2
¼ 2βc
Δxi= Axikxið Þ+Δxi�1= Axi�1

kxi�1

� � (8.4)

where B and μ stand for Bg and μg, respectively.

Here again, the well production rate (qsci

n+1) and fictitious well rates

qn+ 1scbW ,1
, qn+ 1scbE,nx

	 

are handled in exactly the same way as discussed in

Section 8.3.1. In addition, interblock transmissibility (Eq. 8.3b) is a function

of the space between gridblocks i and i�1 and time. The resulting set of nx non-
linear algebraic equations has to be linearized prior to being solved for the

unknown pressures (p1
n+1, p2

n+1, p3
n+1,…pnx

n+1). The algorithm outlined in

Section 7.3.3.2 uses explicit transmissibility to linearize flow equations. This

essentially involves transmissibility values being used from nth time step.

The following section presents other methods of linearization. It should be men-

tioned that even though the solutions of Eqs. (8.10) and (8.15) are time depen-

dent, the solution of Eq. (8.10) requires no iteration because of the linearity of

the equation, while the solution of Eq. (8.15) requires iteration to remove the

nonlinearity due to time. In addition, while the pressure coefficients in

Eq. (8.10) are constant (i.e., they do not change from one time step to another),

the pressure coefficients in Eq. (8.15) are not constant and need to be updated at

least once at the beginning of each time step.
8.4 Linearization of nonlinear terms

In this section, we present the various methods used to treat nonlinearities.

Although the methods of linearization presented here may not be required
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because nonlinearities in single-phase flow are weak, these linearization

methods are needed for the simulation of multiphase flow in petroleum reser-

voirs that is presented in Chapter 11. Nonlinear terms have to be approximated

in both space and time. Linearization in space defines the location where the

nonlinearity is to be evaluated and which reservoir blocks should be used in

its estimation. Linearization in time implies how the term is approximated to

reflect its value at the current time level where the pressure solution is unknown.

Fig. 8.1 sketches three commonly used linearization methods as they apply to a

nonlinearity ( f ) that is a function of one variable (p): (a) the explicit method

(Fig. 8.1a), (b) the simple iteration method (Fig. 8.1b), and (c) the fully implicit

method (Fig. 8.1c).

Each figure shows the improvements in the linearized value of the nonli-

nearity as iteration progresses from the first iteration (ν¼0) to the second iter-

ation (ν¼1) and so on until the pressure converges to pn+1. Iteration on pressure
in the case of a compressible fluid only is necessary to satisfy material balance

and remove the nonlinearity of the accumulation term due to time. In Fig. 8.1,

the value of the nonlinearity at time level n (the beginning of the time step) is

represented by an empty circle, its value at time level n+1 (after reaching con-
vergence) is represented by a solid circle, and its value at any iteration is repre-

sented by an empty square at that iteration. Note that the explicit method,

sketched in Fig. 8.1a, does not provide for any improvement in the value of

the nonlinearity as iteration progresses. The simple iteration method, sketched

in Fig. 8.1b, provides for improvement in the value of the nonlinearity in step-

wise fashion. In the fully implicit treatment, presented Fig. 8.1c, the improved

value of the nonlinearity, as iteration progresses, falls on the tangent of the non-

linearity at the previous iteration. Other linearization methods, such as the lin-

earized implicit method (MacDonald and Coats, 1970) and the semi-implicit

method of Nolen and Berry (1972), are not applicable to single-phase flow.

They are used in multiphase flow to deal with nonlinearities due to fluid satu-

ration only. The treatments of the various nonlinear terms that appear in single-

phase flow equations are presented in Sections 8.4.1–8.4.4.
8.4.1 Linearization of transmissibilities

Transmissibilities at time level n+1 are expressed by Eq. (8.3b):

Tn + 1
xi�1=2

¼ βc
kxAx

μBΔx

�� ����
n+ 1

xi�1=2

¼Gxi�1=2

1

μB

� �n+ 1

xi�1=2

¼Gxi�1=2
f n+ 1pi�1=2

(8.16)

where Gxi�1/2
is defined by Eq. (8.4) for a block-centered grid and fpi�1/2

n+1 is
defined as

f n+ 1pi�1=2
¼ 1

μB

� �n+ 1

xi�1=2

(8.17)
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FIG. 8.1 Convergence of different methods of linearization. (a) Explicit linearization, (b) Simple-

iteration linearization, and (c) Fully implicit linearization.
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Therefore, linearization of transmissibility reduces to linearization of fpi�1/2

n+1 .
The function fp is evaluated between the corresponding two blocks (termed here

as block boundaries xi�1/2) and at time level n+1, where the pressure solution is
not known. Therefore, fp needs to be expressed as a function of the pressure of

the blocks on both sides of the specific block boundary and at some known time.

These approximations are termed linearization in space and linearization

in time.
8.4.1.1 Linearization of fp in space

There are several methods used to approximate fp in space.

With single-point upstream weighting,

fpi�1=2
¼ fpi (8.18a)

if block i is upstream to block i�1 or
fpi�1=2
¼ fpi�1

(8.18b)

if block i is downstream to block i�1. The potential difference between blocks
i and i�1 is used to determine the upstream and downstream blocks.

With average function value weighting,

fpi�1=2
¼ �f ¼ 1=2 fpi + fpi�1

� �
(8.19)

With average pressure value weighting,
fpi�1=2
¼ f pð Þ¼ 1=μ pð ÞB pð Þ (8.20)

where
p¼ 1=2 pi + pi�1ð Þ (8.21)

With average function components value weighting,
fpi�1=2
¼ f pð Þ¼ 1=μB (8.22)

where
μ¼ μ pið Þ+ μ pi�1ð Þ
2

(8.23)

and
B¼B pið Þ +B pi�1ð Þ
2

(8.24)

Once fp is linearized in space as in Eqs. (8.18) through (8.24), then the space-

linearized transmissibility is obtained by applying Eq. (8.16):

Txi�1=2
¼Gxi�1=2

fpi�1=2
(8.25)
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8.4.1.2 Linearization of fp in time

The effect of the nonlinearity of fp on the stability of the solution depends on the
magnitude of the pressure change over a time step. The methods of time line-

arization presented earlier in Fig. 8.1 may be used to approximate fp in time.

Note that fp is a function of the pressures of the blocks that surround a block

boundary as mentioned in the previous section; that is, fp¼ f(pi,pi�1).

With the explicit method (see Fig. 8.1a), the nonlinearity is evaluated at the

beginning of the time step (at time level n) as

f n+ 1pi�1=2
ffi f npi�1=2

¼ f pni , p
n
i�1

	 

(8.26)

With the simple iteration method (see Fig. 8.1b), the nonlinearity is evalu-
ated one iteration behind the pressure solution

f n+ 1pi�1=2
ffi f n+ 1

νð Þ

pi�1=2
¼ f pn+ 1

νð Þ

i , pn+ 1
νð Þ

i�1

� �
(8.27)

With the fully implicit method (see Fig. 8.1c), the nonlinearity is approxi-
mated by its value at iteration level (ν) plus a term that depends on the rate of

change of pressure over iteration,

f n+ 1pi�1=2
ffi f n+ 1

ν + 1ð Þ

pi�1=2
ffi f pn+ 1

νð Þ

i , pn + 1
νð Þ

i�1

� �
+
∂f pi, pi�1ð Þ

∂pi

����
n+ 1

νð Þ

pn+ 1
ν + 1ð Þ

i �pn+ 1
νð Þ

i

� �

+
∂f pi, pi�1ð Þ

∂pi�1

����
n+ 1

νð Þ

pn+ 1
ν + 1ð Þ

i�1 �pn+ 1
νð Þ

i�1

� �
(8.28)

Once fp is linearized in time as in Eq. (8.26), (8.27), or (8.28), then the time-
linearized transmissibility is obtained by applying Eq. (8.16):

Tn+ 1
xi�1=2

¼Gxi�1=2
f n+ 1pi�1=2

(8.29)
8.4.2 Linearization of well rates

Awellblock production (injection) rate is evaluated in space at the gridblock (or

gridpoint) for which the flow equation is written. Linearization in time of the

wellblock production rate involves first linearizing the wellblock production

(injection) rate equation and then substituting the result in the linearized flow

equation for the wellblock. This method of linearization, which is usually used

in reservoir simulation, parallels the linearization of interblock transmissibility.

The following methods may be used to approximate a wellblock rate in time.

For wells operating with specified bottom-hole pressure condition, the non-

linearity involves the term Gwi
1
Bμ

	 
n+ 1
i

.
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Explicit transmissibility method:

qn+ 1sci
ffi�Gwi

1

Bμ

� �n

i

pn + 1i �pwf i
� �

(8.30)

Simple iteration on transmissibility method:
qn+ 1sci
ffi�Gwi

1

Bμ

� �n+ 1
υð Þ

i

pn+ 1i �pwf i
� �

(8.31)

Fully implicit method:
qn+ 1sci
ffi qn + 1

ν+ 1ð Þ

sci
ffi qn + 1

νð Þ

sci
+
dqsci
dpi

����
n+ 1

νð Þ

pn+ 1
ν + 1ð Þ

i �pn+ 1
νð Þ

i

� �
(8.32)

For wells operating with specified pressure gradient condition, nonlinearity	 


involves the term 2πβcrw khð Þi 1

Bμ

n+ 1

i
. Linearization in space involves evalu-

ating this term for wellblock. Linearization of the term 1
Bμ

	 
n+ 1
i

in time parallels

the time linearization of fp in transmissibility. In this case fp ¼ 1
Bμ

	 

i
.

Explicit transmissibility method:

qn+ 1sci
ffi 2πβcrw khð Þi

1

Bμ

� �n

i

dp

dr

����
rw

(8.33)

Simple iteration on transmissibility method:
qn+ 1sci
ffi 2πβcrw khð Þi

1

Bμ

� �n+ 1
υð Þ

i

dp

dr

����
rw

(8.34)

Fully implicit method:
qn+ 1sci
ffi qn+ 1

ν + 1ð Þ

sci
ffi qn+ 1

νð Þ

sci
+
dqsci
dpi

����
n+ 1

νð Þ

pn + 1
ν + 1ð Þ

i �pn+ 1
νð Þ

i

� �
(8.32)

where
dqsci
dpi

����
n+ 1

νð Þ

¼ 2πβcrw khð Þi
dp

dr

����
rw

d 1=Bμð Þ
dp

����
n+ 1

υð Þ

i

(8.35)
8.4.3 Linearization of fictitious well rates

The fictitious well rate in point-distrusted grid, presented in Chapter 5, is the

interblock flow term between the boundary gridpoint and the neighboring
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reservoir grid point. Therefore, the linearization, in space and time, of fictitious

well rate is similar to the linearization of interblock flow terms. For a block-

centered grid, presented in Chapter 4, the fictitious well rate is nothing but

the flow term within the gridblock between the gridblock boundary and the

point that represents the gridblock. Therefore, a fictitious well rate can be lin-

earized, in space and time, the same way as that of a physical well rate.
8.4.4 Linearization of coefficients in accumulation term

The coefficient of pressure change in the accumulation term exhibits nonlinear-

ity for a compressible fluid only (Eq. 8.11). This nonlinearity results from the

pressure dependence ofBn+ 1
vð Þ

gn
in Eq. (7.157) that is used in the definition of ϕ

Bg

	 
0
n

given by Eq. (7.156a). Linearization in space involves evaluating Bn+ 1
vð Þ

gn
and

hence ϕ
Bg

	 
0
n
at the pressure of the gridblock (or gridpoint) for which the flow

equation is written (gridblock n). Linearization in time uses simple iteration;

that is, Bn+ 1
vð Þ

gn
is evaluated at the current block pressure with one iteration

lagging behind.
8.5 Linearized flow equations in time

As mentioned earlier in this chapter, the flow equation for a compressible

fluid exhibits the highest degree of nonlinearity among single-phase flow

equations. Eq. (8.15b) for an interior block in 1-D flow having a well operating

with specified bottom-hole pressure (Eq. 6.11) is used to demonstrate the

various methods of linearizing flow equations. The flow equation considered

here is

Tn+ 1
xi�1=2

pn+ 1i�1 �pn+ 1i

� �� γni�1=2 Zi�1�Zið Þ
h i

+ Tn+ 1
xi + 1=2

pn+ 1i+ 1 �pn+ 1i

� �� γni+ 1=2 Zi+ 1�Zið Þ
h i

� Gwi

1

Bμ

� �n+1

i

pn+ 1i �pwf i
� �

¼ Vbi

αcΔt
ϕ

Bg

� �0

i

pn+ 1i �pni
� �

(8.36)

where qn+ 1sci
¼�Gwi

1
Bμ

	 
n+1
pn + 1i �pwf i
� �
i

The final form of the linearized flow equation for a boundary block must be

modified to include fictitious wells (boundary conditions).
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8.5.1 Explicit transmissibility method

In the explicit transmissibility method, transmissibility of interblock flow and

coefficient of pressure drop in well rate equation are dated at old time level

(time level n). One still has to iterate on ϕ
Bg

	 
0
i
. Eq. (8.36) becomes

Tn
xi�1=2

pn+ 1i�1 �pn+ 1i

� �� γni�1=2 Zi�1�Zið Þ
h i

+ Tn
xi + 1=2

pn+ 1i+ 1 �pn+ 1i

� �� γni+ 1=2 Zi+ 1�Zið Þ
h i

�Gwi

1

Bμ

� �n

i

pn+ 1i �pwf i
� �

¼ Vbi

αcΔt
ϕ

Bg

� �0

i

pn+ 1i �pni
� �

(8.37)

By placing the iteration level and rearranging the terms, we obtain the final
form of the flow equation for interior block i:

Tn
xi�1=2

pn+ 1
ν + 1ð Þ

i�1 � Tn
xi�1=2

+ Tn
xi+ 1=2

+
Vbi

αcΔt
ϕ

Bg

� �0

i

+Gwi

1

Bμ

� �n

i

� �
pn+ 1

ν+ 1ð Þ

i

+Tn
xi+ 1=2

pn+ 1
ν + 1ð Þ

i+ 1 ¼ Tn
xi�1=2

γni�1=2 Zi�1�Zið Þ+ Tn
xi + 1=2

γni+ 1=2 Zi+ 1�Zið Þ
h i

�Gwi

1

Bμ

� �n

i

pwf i �
Vbi

αcΔt
ϕ

Bg

� �0

i

pni

(8.38)

The unknowns in Eq. (8.38) are the pressures of blocks i�1, i, and i+1 at
time level n+1 and current iteration (ν+1), pn+ 1
ν + 1ð Þ

i�1 , p
n + 1
ν + 1ð Þ

i , and pn + 1
ν+ 1ð Þ

i + 1 .

The general flow equation for interior block n in multidimensional flow

using explicit transmissibility can be expressed as

X
l2ψn

Tn
l,np

n+ 1
ν + 1ð Þ

l �
X
l2ψn

Tn
l,n +

Vbn

αcΔt
ϕ

Bg

� �0

n

+Gwn

1

Bμ

� �n

n

" #
pn+ 1

ν + 1ð Þ

n

¼
X
l2ψn

Tn
l,nγ

n
l,n Zl�Znð Þ�Gwn

1

Bμ

� �n

n

pwf n �
Vbn

αcΔt
ϕ

Bg

� �0

n

pnn

(8.39)
8.5.2 Simple iteration on transmissibility method

In the simple iteration on transmissibility method, transmissibilities and the

coefficient of pressure drop in well flow rate are dated at the current time

level (n+1) with one iteration lagging behind (ν). Gravities are dated at
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the old time level as mentioned in Chapter 7. We still have to iterate on

ϕ
Bg

	 
0
i
. Eq. (8.36) becomes

Tn+ 1
νð Þ

xi�1=2
pn+ 1

ν + 1ð Þ

i�1 �pn+ 1
ν + 1ð Þ

i

� �
� γni�1=2 Zi�1�Zið Þ

� �

+ Tn+ 1
νð Þ

xi+ 1=2
pn+ 1

ν + 1ð Þ

i+ 1 �pn+ 1
ν + 1ð Þ

i

� �
� γni + 1=2 Zi+ 1�Zið Þ

� �

�Gwi

1

Bμ

� �n+ 1
νð Þ

i

pn + 1
ν + 1ð Þ

i �pwf i

� �
¼ Vbi

αcΔt
ϕ

Bg

� �0
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pn+ 1
ν + 1ð Þ

i �pni

� �
(8.40)

The final form of the flow equation for interior block i is obtained by re-
arranging the terms, yielding

Tn+ 1
νð Þ

xi�1=2
pn+ 1

ν + 1ð Þ

i�1 � Tn+ 1
νð Þ

xi�1=2
+ Tn+ 1

νð Þ

xi + 1=2
+

Vbi

αcΔt
ϕ

Bg

� �0

i

+Gwi

1

Bμ

� �n+ 1
νð Þ

i

2
4

3
5pn+ 1ν + 1ð Þ

i

+ Tn + 1
νð Þ

xi+ 1=2
pn+ 1

ν + 1ð Þ

i+ 1 ¼ Tn+ 1
νð Þ

xi�1=2
γni�1=2 Zi�1�Zið Þ + Tn+ 1

νð Þ

xi + 1=2
γni+ 1=2 Zi+ 1�Zið Þ

� �

�Gwi

1

Bμ

� �n+ 1
νð Þ

i

pwf i �
Vbi

αcΔt
ϕ

Bg

� �0

i

pni

(8.41)

The unknowns in Eq. (8.41) are the pressures of blocks i�1, i, and i+1 at
time level n+1 and current iteration (ν+1), pn+ 1
ν + 1ð Þ

i�1 , p
n+ 1
ν + 1ð Þ

i , and pn+ 1
ν + 1ð Þ

i+ 1 .

The general flow equation for interior block n in multidimensional flow

using simple iteration on transmissibility can be expressed as

X
l2ψn

Tn+ 1
νð Þ

l,n pn+ 1
ν + 1ð Þ

l �
X
l2ψn

Tn+ 1
νð Þ
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� �0
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� �n+ 1
νð Þ

n

2
4

3
5pn+ 1ν + 1ð Þ

n

¼
X
l2ψn

Tn+ 1
νð Þ

l,n γnl,n Zl�Znð Þ�Gwn

1

Bμ

� �n+ 1
νð Þ

n

pwf n �
Vbn

αcΔt
ϕ

Bg

� �0

n

pnn

(8.42)
8.5.3 Fully implicit (Newton’s iteration) method

In the fully implicit method, transmissibility, well production rate, and fictitious

well rates if present are dated at the current time level (n+1). Gravities are dated
at the old time level as mentioned in Chapter 7. By dating nonlinear terms and

unknown pressures at the current time level and current iteration and using the

previous iteration in calculating ϕ
Bg

	 
0
i
, Eq. (8.36) becomes
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Tn+ 1
v+ 1ð Þ

xi�1=2
pn + 1

v + 1ð Þ

i�1 �pn+ 1
v+ 1ð Þ

i

� �
� γn
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Zi�1�Zið Þ

� �

+ Tn+ 1
v+ 1ð Þ

xi + 1=2
pn+ 1

v+ 1ð Þ

i+ 1 �pn+ 1
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i

� �
� γn

i + 1=2
Zi+ 1�Zið Þ

� �
+ qn+ 1

v+ 1ð Þ

sci
¼ Vbi

αcΔt
ϕ

Bg

� �0

i

pn+ 1
v+ 1ð Þ

i �pni

� �

(8.43)

The first, second, and third terms on the LHS of Eq. (8.43) can be approx-
imated using the fully implicit method as

Tn+ 1
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� �
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(8.44)

and
qn+ 1
v+ 1ð Þ

sci
ffi qn+ 1

νð Þ

sci
+
dqsci
dpi

����
n+ 1

νð Þ

pn+ 1
ν + 1ð Þ

i �pn + 1
νð Þ

i

� �
(8.32)

The RHS of Eq. (8.43) can be rewritten as
Vbi

αcΔt
ϕ

Bg

� �0

i

pn + 1
v + 1ð Þ

i �pni

� �
¼ Vbi

αcΔt
ϕ
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� �0

i

pn+ 1
v+ 1ð Þ

i �pn+ 1
νð Þ

i

� �
+ pn+ 1

νð Þ

i �pni

� �� �

(8.45)

Substitution of Eqs. (8.32), (8.44), and (8.45) into Eq. (8.43) and collecting
terms yields the final form for the fully implicit flow equation for interior grid-

block i,

Tn+ 1
vð Þ

xi�1=2
+ pn+ 1

νð Þ

i�1�pn+ 1
νð Þ

i

� �
� γni�1=2 Zi�1�Zið Þ

� �
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∂pi�1

����
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νð Þ8<
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9=
;δpn+ 1
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i�1

�
(
Tn+ 1

vð Þ

xi�1=2
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νð Þ

i�1�pn+ 1
νð Þ

i

� �
� γni�1=2 Zi�1�Zið Þ

� �
∂Txi�1=2

∂pi

����
n+ 1

νð Þ

+ Tn+ 1
vð Þ

xi + 1=2

� pn+ 1
νð Þ

i+ 1�pn+ 1
νð Þ

i

� �
� γni + 1=2 Zi+ 1�Zið Þ

� �
∂Txi + 1=2
∂pi

����
n+ 1

νð Þ
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�dqsci
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����
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+
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� �0

i
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i

+ Tn+ 1
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xi + 1=2
+ pn+ 1

νð Þ

i+ 1�pn+ 1
νð Þ

i
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� γni+ 1=2 Zi+ 1�Zið Þ
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����
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� �
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�
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� �
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(8.46)

The unknowns in Eq. (8.46), which reflects the fully implicit treatment of
nonlinearities in the flow equation for interior block i, are the pressure changes

over an iteration in blocks i�1, i, and i+1,

�
pn +1

ν +1ð Þ

i�1 � pn +1
νð Þ

i�1

�
,

�
pn +1

ν +1ð Þ

i � pn +1
νð Þ

i

�
,

and

�
pn +1

ν +1ð Þ

i +1 � pn +1
νð Þ

i +1

�
: Note that for the first iteration (ν¼0), pn +1

0ð Þ

i ¼ pni for

i¼1, 2, 3,…nx and the first-order derivatives are evaluated at old time level n.
The fully implicit method general equation for block n has the form

X
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(8.47a)

P ∂q
�n +1

νð Þ
Note that the summation term
m2ξn

scm, n
∂pl

�� in Eq. (8.47a) contributes a

maximum of one term for neighboring block l if and only if block n is a bound-

ary block and block l falls next to reservoir boundary m. In addition,
∂qscm,n
∂pl

and
∂qscm,n
∂pn

are obtained from the flow rate equation of the fictitious well, which

depends on the prevailing boundary condition. Note also that Eq. (8.47a) does

not produce a symmetric matrix because of the term

pn+ 1
νð Þ

l �pn+ 1
νð Þ

n

� �
� γnl,n Zl�Znð Þ

� �
∂Tl,n
∂pn

����
n+ 1

νð Þ



302 Petroleum reservoir simulation
Coats et al. (1977) derived the fully implicit equations for their steam model
without conservative expansions of the accumulation terms. Although their equa-

tions do not conserve thematerial balance during iterations, they preserve it at con-

vergence. Their method of obtaining the fully implicit iterative equation is applied

here for the compressible fluid described by the implicit form of Eq. (7.12). This

equation is written in a residual from at time level n+1; that is, all terms are placed

on one side of the equation and the other side is zero.Each term at time level n+1 in
the resulting equation is approximated by its value at the current iteration level

(ν+1), which in turn can be approximated by its value at the last iteration level

(ν), plus a linear combination of the unknowns arising from partial differentiation

with respect to all unknown pressures. The unknown quantities in the resulting

equation are the changes over an iteration of all the unknown pressures in the orig-

inal equation. The resulting fully implicit iterative equation for block n is

X
l2ψn

Tn+ 1
νð Þ

l,n + pn+ 1
νð Þ

l �pn+ 1
νð Þ
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� �
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(8.47b)

l2ξn

scl,n scn αcΔt Bg n Bg n

Eq. (8.47b) is similar to Eq. (8.47a) with three exceptions that are related to
the accumulation term. First, while Eq. (8.47a) preserves material balance at

every current iteration, Eq. (8.47b) preserves material balance only at conver-

gence. Second, the term ϕ
Bg

	 
0
n
in Eq. (8.47a) represents the chord slope that

results from a conservative expansion, whereas the term
ϕ

Bg

� �0

n

����
n + 1
νð Þ

in

Eq. (8.47b) represents the slope of
ϕ

Bg

� �
n

, both terms being evaluated at last

iteration level ν. Third, the last term on the RHS of Eq. (8.47a),

Vbn

αcΔt
ϕ
Bg

	 
0
n

pn+ 1
νð Þ

n �pnn

� �
, is replaced with

Vbn

αcΔt
ϕ
Bg

	 
n+ 1νð Þ

n
� ϕ

Bg

	 
n
n

" #
in Eq. (8.47b).

For single-phase flow, where the accumulation term is a function of pressure

only, these two terms are equal because both represent the accumulation term

evaluated at the last iteration.

The next set of examples demonstrates the mechanics of implementing the

explicit transmissibility method, simple iteration on transmissibility method,

and fully implicit method of linearization in solving the equations for single-
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well simulation. It should be noted that the simple iteration on transmissibility

and fully implicit methods produce close results because, contrary to the

explicit transmissibility method, the transmissibility in both methods is

updated every iteration. All methods in this problem show the same conver-

gence property for a time step of 1month because, over the pressure range

1515–4015psia, the product μB is approximately straight line having small

slope (�4.5�10�6 cP-RB/scf-psi).

Example 8.1 Consider the reservoir described in Example 7.13, where a 6-in

vertical well is drilled on 20-acre spacing in a natural gas reservoir. The reser-

voir is described by four gridblocks in the radial direction as shown in Fig. 8.2.

The reservoir is horizontal and has 30-ft net thickness and homogeneous and

isotropic rock properties with k¼15 md and ϕ¼0.13.

Initially, reservoir pressure is 4015psia. Table 8.1 presents gas FVF and vis-

cosity dependence on pressure. The external reservoir boundaries are sealed to

fluid flow. Let the well produce with a FBHP of 1515psia. Find the pressure

distribution in the reservoir after 1month (30.42days) using a single time step.

Solve the problem using the implicit formulation with the explicit transmissi-

bility method of linearization and present the simulation results up to 6months.

Solution

Gridblock locations, bulk volumes, and geometric factors in the radial direc-

tion are calculated in exactly the same way as in Example 7.13. The results are

presented in Table 8.2.

For single-well simulation in a horizontal reservoir (Zn¼ constant) with

no-flow boundaries

�P
l2ξn

qn +1
scl, n ¼ 0

�
, the implicit flow equation with explicit

transmissibility is obtained from Eq. (8.39). For gridblock n with a well oper-

ating under a specified FBHP,

X
l2ψn

Tn
l,np

n+ 1
ν + 1ð Þ

l �
X
l2ψn

Tn
l,n +

Vbn

αcΔt
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Bg
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n

+Gwn

1

Bμ
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¼�Gwn

1
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n

pwf n �
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pnn (8.48a)
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FIG. 8.2 Discretized 1-D reservoir in Example 8.1.



TABLE 8.1 Gas FVF and viscosity in Example 8.1.

Pressure (psia) GFVF (RB/scf) Gas viscosity (cP)

215.00 0.016654 0.0126

415.00 0.008141 0.0129

615.00 0.005371 0.0132

815.00 0.003956 0.0135

1015.00 0.003114 0.0138

1215.00 0.002544 0.0143

1415.00 0.002149 0.0147

1615.00 0.001857 0.0152

1815.00 0.001630 0.0156

2015.00 0.001459 0.0161

2215.00 0.001318 0.0167

2415.00 0.001201 0.0173

2615.00 0.001109 0.0180

2815.00 0.001032 0.0186

3015.00 0.000972 0.0192

3215.00 0.000922 0.0198

3415.00 0.000878 0.0204

3615.00 0.000840 0.0211

3815.00 0.000808 0.0217

4015.00 0.000779 0.0223
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For gridblock n without a well,
X
l2ψn

Tn
l,np

n+ 1
ν + 1ð Þ

l �
X
l2ψn

Tn
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Vbn
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n

pnn (8.48b)

The gas in this reservoir flows toward the well in gridblock 1. Therefore,
gridblock 4 is upstream to gridblock 3, gridblock 3 is upstream to gridblock

2, and gridblock 2 is upstream to gridblock 1. In solving this problem, we

use upstream weighting (Section 8.4.1.1) of the pressure-dependent terms in

transmissibility.



TABLE 8.2 Gridblock locations, bulk volumes, and geometric factors.

n i ri (ft) Gri+1/2 (RB-cP/D-psi) Vbn
(ft3)

1 1 0.5611 1.6655557 340.59522

2 2 3.8014 1.6655557 15,631.859

3 3 25.7532 1.6655557 717,435.23

4 4 174.4683 1.6655557 25,402,604

TABLE 8.3 Estimated gridblock FVF, viscosity, and chord slope at old

iteration ν50.

Block n pn+1
0ð Þ

n (psia) Bg (RB/scf) μg (cP) (ϕ/Bg)n0
Vbn

αcΔt
ϕ
Bg

	 
0
n

1 4015 0.00077900 0.0223000 0.0310567 0.0619323

2 4015 0.00077900 0.0223000 0.0310567 2.84243

3 4015 0.00077900 0.0223000 0.0310567 130.455

4 4015 0.00077900 0.0223000 0.0310567 4619.10
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First time step calculations (n¼0, tn+1¼30.42 days, and Δt¼30.42 days).

Assign p1
n¼p2

n¼p3
n¼p4

n¼pin¼4015 psia.

For the first iteration (v¼0), assume pn+ 1
vð Þ

n ¼ pnn ¼ 4015 psia for n¼1, 2, 3, 4 In

addition, we estimate ϕ
Bg

	 
0
n
between pn

n and pn
n�ε where ε¼1 psi. Table 8.3

presents the estimated values of the FVF and viscosity using linear interpolation

within table entries, chord slope ϕ
Bg

	 
0
n
, and

Vbn

αcΔt
ϕ
Bg

	 
0
n
for all grid blocks at

the first iteration. Note that at p¼4014 psia, Bg¼0.00077914 RB/scf and

μg¼0.0222970 cP. For example, for gridblock 1,

ϕ

Bg

� �0

1

¼
ϕ

B

� �n+ 1
νð Þ

1

� ϕ

B

� �n

1

pn+ 1
vð Þ

1 �pn1

¼
0:13

0:00077914

� �
� 0:13

0:000779

� �

4014�4015
¼ 0:0310567

Vb1

αcΔt
ϕ

Bg

� �0

1

¼ 340:59522�0:0310567

5:614583�30:42
¼ 0:0619323
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and
Tn
r2,1

���
2
¼ Tn

r1,2

���
2
¼Gr1 + 1=2

1

μB

� �n

2

¼ 1:6655557� 1

0:0223000�0:00077900

� �

¼ 95877:5281

for upstream weighting of transmissibility.
In addition, for the production well in wellblock 1, Gw1
is calculated using

Eq. (6.10a), yielding

Gw1
¼ 2�π�0:001127�15�30

log e 0:5611=0:25ð Þ ¼ 3:941572

Gw1

1

μB

� �n

1

¼ 3:941572� 1

0:0223000�0:00077900

� �

¼ 226896:16scf=D-psi

Therefore, Tr1,2
n j2¼Tr2,3

n j3¼Tr3,4
n j4¼95877.5281 scf/D-psi. Note also that
Trl,n
n ¼Trn,l

n .

For gridblock 1, n¼1 and ψ1¼{2}. Therefore, Eq. (8.48a) becomes

� Tn
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2
+
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αcΔt
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� �0

1
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Bg
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1
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(8.49)

Substitution of the values in this equation gives
� 95877:5281 + 0:0619323 + 226896:16½ �pn+ 1
ν + 1ð Þ

1 + 95877:5281pn+ 1
ν+ 1ð Þ

2

¼�226896:16�1515�0:0619323�4015

or after simplification,
�322773:749pn + 1
ν + 1ð Þ

1 + 95877:5281pn+ 1
ν + 1ð Þ

2 ¼�343747929 (8.50)

For gridblock 2, n¼2 and ψ2¼{1,3}. Therefore, Eq. (8.48b) becomes
Tn
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��
2
pn+ 1

ν + 1ð Þ

1 � Tn
1,2

��
2
+ Tn
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��
3
+

Vb2
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��
3
pn+ 1

ν + 1ð Þ
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¼� Vb2

αcΔt
ϕ

Bg

� �0

2

pn2

(8.51)

Substitution of the values in this equation gives
95877:5281pn+ 1
ν + 1ð Þ

1 � 95877:5281 + 95877:5281 + 2:84243½ �pn+ 1
ν + 1ð Þ

2

+ 95877:5281pn+ 1
ν + 1ð Þ

3 ¼�2:84243�4015
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or after simplification,
95877:5281pn+ 1
ν + 1ð Þ

1 �191757:899pn + 1
ν + 1ð Þ

2 + 95877:5281pn+ 1
ν + 1ð Þ¼�11412:3496
3 (8.52)

For gridblock 3, n¼3 and ψ3¼{2,4}. Therefore, Eq. (8.48b) becomes
Tn
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��
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��
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+ Tn
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+
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αcΔt
ϕ

Bg
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pn3

(8.53)

Substitution of the values in this equation gives
95877:5281pn+ 1
ν + 1ð Þ

2 � 95877:5281 + 95877:5281 + 130:455½ �pn + 1
ν + 1ð Þ

3

+ 95877:5281pn+ 1
ν+ 1ð Þ

4 ¼�130:455�4015

or after simplification,
95877:5281pn+ 1
ν + 1ð Þ

2 �191885:511pn+ 1
ν + 1ð Þ

3 + 95877:5281pn+ 1
ν + 1ð Þ

4 ¼�523777:862

(8.54)

For gridblock 4, n¼4 and ψ4¼{3}. Therefore, Eq. (8.48b) becomes
Tn
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��
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��
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+
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ϕ

Bg
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4

pn4 (8.55)

Substitution of the values in this equation gives
95877:5281pn+ 1
ν + 1ð Þ

3 � 95877:5281 + 4619:10½ �pn+ 1
ν + 1ð Þ

4 ¼�4619:10�4015

or after simplification,
95877:5281pn+ 1
ν + 1ð Þ

3 �100496:6251pn+ 1
ν + 1ð Þ

4 ¼�18545676:2 (8.56)

The results of solving Eqs. (8.50), (8.52), (8.54), and (8.56) for the unknown
pressures are pn+ 1
1ð Þ

1 ¼ 1559:88 psia, pn+ 1
1ð Þ

2 ¼ 1666:08 psia, pn+ 1
1ð Þ

3 ¼ 1772:22 psia,

and pn+ 1
1ð Þ

4 ¼ 1875:30 psia.

For the second iteration (v¼1), we use pn+ 1
1ð Þ

n to estimate the values of FVF to

estimate chord slope ϕ
Bg

	 
0
n
and

Vbn

αcΔt
ϕ
Bg

	 
0
n
for gridblock n. Table 8.4 lists these

values. For example, for gridblock 1,

ϕ

Bg

� �0

1

¼
ϕ

B

� �n+ 1
νð Þ

1

� ϕ

B

� �n

1

pn+ 1
vð Þ

1 �pn1

¼
0:13

0:0019375

� �
� 0:13

0:000779000

� �

1559:88�4015
¼ 0:0406428



TABLE 8.4 Estimated gridblock FVF and chord slope at old iteration ν51.

Block n pn+ 1
1ð Þ

n (psia) Bn+ 1
1ð Þ

gn
(RB/scf) (ϕ/Bg)n

0 Vbn

αcΔt
ϕ
Bg

	 
0
n

1 1559.88 0.0019375 0.0406428 0.0810486

2 1666.08 0.0017990 0.0402820 3.68676

3 1772.22 0.0016786 0.0398760 167.501

4 1875.30 0.0015784 0.0395013 5875.07
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Vb1

αcΔt
ϕ

Bg

� �0

1

¼ 340:59522�0:0406428

5:614583�30:42
¼ 0:0810486

Note that for the explicit transmissibility treatment, Tr1,2
n j2¼Tr2,3

n j3¼	 


Tr3,4
n j4¼95877.5281 scf/D-psi and Gw1

1
μB

n

1
¼ 226896:16 scf/D-psi for all

iterations.

For gridblock 1, n¼1. Substitution of the values in Eq. (8.49) gives

� 95877:5281 + 0:0810486 + 226896:16½ �pn+ 1
ν + 1ð Þ

1 + 95877:5281pn+ 1
ν+ 1ð Þ

2

¼�226896:16�1515�0:0810486�4015

or after simplification,
�322773:768pn + 1
ν + 1ð Þ

1 + 95877:5281pn+ 1
ν + 1ð Þ

2 ¼�343748006 (8.57)

For gridblock 2, n¼2. Substitution of the values in Eq. (8.51) gives
95877:5281pn+ 1
ν + 1ð Þ

1 � 95877:5281 + 95877:5281 + 3:68676½ �pn+ 1
ν + 1ð Þ

2

+ 95877:5281pn+ 1
ν + 1ð Þ

3 ¼�3:68676�4015

or after simplification,
95877:5281pn+ 1
ν + 1ð Þ

1 �191758:743pn+ 1
ν + 1ð Þ

2 + 95877:5281pn+ 1
ν+ 1ð Þ

3 ¼�14802:3438

(8.58)

For gridblock 3, n¼3. Substitution of the values in Eq. (8.53) gives
95877:5281pn+ 1
ν + 1ð Þ

2 � 95877:5281 + 95877:5281 + 167:501½ �pn+ 1
ν + 1ð Þ

3

+ 95877:5281pn+ 1
ν + 1ð Þ

4 ¼�167:501�4015
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or after simplification,
95877:5281pn+ 1
ν + 1ð Þ

2 �191922:557pn+ 1
ν + 1ð Þ

3 + 95877:5281pn+ 1
ν + 1ð Þ

4 ¼�672516:495

(8.59)

For gridblock 4, n¼4. Substitution of the values in Eq. (8.55) gives
95877:5281pn+ 1
ν + 1ð Þ

3 � 95877:5281 + 5875:07½ �pn+ 1
ν + 1ð Þ

4 ¼�5875:07�4015

or after simplification,
95877:5281pn+ 1
ν + 1ð Þ

3 �101752:599pn+ 1
ν + 1ð Þ

4 ¼�23588411:0 (8.60)

The results of solving Eqs. (8.57), (8.58), (8.59), and (8.60) for the unknown
pressures are pn+ 1
2ð Þ

1 ¼ 1569:96 psia, pn+ 1
2ð Þ

2 ¼ 1700:03 psia, pn+ 1
2ð Þ

3 ¼ 1830:00 psia,

and pn+ 1
2ð Þ

4 ¼ 1956:16 psia. Iterations continue until the convergence criterion is

satisfied. Table 8.5 shows the successive iterations for the first time step. Note

that it took four iterations to converge. The convergence criterion was set as

given by Eq. (7.179); that is,

max
1�n�N

pn+ 1
ν + 1ð Þ

n �pn+ 1
νð Þ

n

pn+ 1
νð Þ

n

������
������� 0:001 (8.61)

After reaching convergence, the time is incremented by Δt¼30.42 days,
and the earlier procedure is repeated. Table 8.6 shows the converged solutions

at various times up to 6months of simulation time.

Example 8.2 Consider the problem described in Example 8.1. Apply the simple

iteration on transmissibility method to find the pressure distribution in the res-

ervoir after 1month (30.42days) using a single time step. Present the simulation

results up to 6months.
TABLE 8.5 Pressure solution at tn+1530.42 days for successive iterations.

ν+1 pn +1
ν +1ð Þ

1 (psia) pn +1
ν +1ð Þ

2 (psia) pn +1
ν +1ð Þ

3 (psia) pn +1
ν +1ð Þ

4 (psia)

0 4015.00 4015.00 4015.00 4015.00

1 1559.88 1666.08 1772.22 1875.30

2 1569.96 1700.03 1830.00 1956.16

3 1569.64 1698.94 1828.15 1953.57

4 1569.65 1698.98 1828.23 1953.68



TABLE 8.6 Converged pressure solution and gas production at various times.

n+1 Time (day) ν p1
n+1 (psia) p2

n+1 (psia) p3
n+1 (psia) p4

n+1 (psia) qgsc
n+1 (MMscf/D)

Cumulative

production

(MMMscf)

1 30.42 4 1569.65 1698.98 1828.23 1953.68 �12.4003 �0.377217

2 60.84 3 1531.85 1569.07 1603.85 1636.31 �2.28961 �0.446867

3 91.26 3 1519.81 1530.96 1541.87 1552.37 �0.639629 �0.466324

4 121.68 2 1516.45 1519.88 1523.27 1526.58 �0.191978 �0.472164

5 152.10 2 1515.44 1516.49 1517.53 1518.55 �0.058311 �0.473938

6 182.52 2 1515.13 1515.45 1515.77 1516.09 �0.017769 �0.474478
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Solution

Table 8.2 reports the gridblock locations, bulk volumes, and geometric fac-

tors in the radial direction. For single-well simulation in a horizontal reservoir

(Zn¼ constant) with no-flow boundaries

�P
l2ξn

qn+ 1scl,n
¼ 0

�
, the implicit flow

equation with simple iteration on transmissibility is obtained from Eq. (8.42).

For gridblock n with a well operating under a specified FBHP,

X
l2ψn

Tn+ 1
νð Þ

l,n pn+ 1
ν + 1ð Þ

l �
X
l2ψn

Tn+ 1
νð Þ

l,n +
Vbn

αcΔt
ϕ

Bg

� �0

n

+Gwn

1

Bμ

� �n+ 1
νð Þ

n

2
4

3
5pn + 1ν + 1ð Þ

n

¼�Gwn

1

Bμ

� �n+ 1
νð Þ

n

pwf n �
Vbn

αcΔt
ϕ

Bg

� �0

n

pnn (8.62a)

For gridblock n without a well,
X
l2ψn

Tn+ 1
νð Þ

l,n pn+ 1
ν + 1ð Þ

l �
X
l2ψn

Tn+ 1
νð Þ

l,n +
Vbn

αcΔt
ϕ

Bg

� �0

n

" #
pn + 1

ν + 1ð Þ

n ¼� Vbn

αcΔt
ϕ

Bg

� �0

n

pnn (8.62b)

As mentioned in Example 8.1, the gas in this reservoir flows toward the well
in gridblock 1, gridblock 4 is upstream to gridblock 3, gridblock 3 is upstream to

gridblock 2, and gridblock 2 is upstream to gridblock 1. In solving this problem,

we use upstream weighting (Section 8.4.1.1) of the pressure-dependent terms in

transmissibility.

First time step calculations (n¼0, tn+1¼30.42 days, and Δt¼30.42 days).

For the first iteration (v¼0), assume pn+ 1
vð Þ

n ¼ pnn ¼ 4015 psia for n¼1, 2, 3, 4.

Therefore, Gw1

1
μB

	 
n+ 10ð Þ

1
¼Gw1

1
μB

	 
n
1
¼ 226896:16 scf/D-psi and Tn+ 1

0ð Þ

rl,n
¼ Tn

rl,n
, or

more explicitly,

Tn+ 1
0ð Þ

r1,2
j
2
¼ Tn+ 1

0ð Þ

r2,3
j
3
¼ Tn+ 1

0ð Þ

r3,4
j
4
¼ 95877:5281 scf/D-psi.Consequently, theequations

for gridblocks 1, 2, 3, and 4 are given by Eqs. (8.50), (8.52), (8.54), and

(8.56), respectively, and the unknown pressures are pn+ 1
1ð Þ

1 ¼ 1559:88 psia,

pn + 1
1ð Þ

2 ¼ 1666:08 psia, pn+ 1
1ð Þ

3 ¼ 1772:22 psia, and pn+ 1
1ð Þ

4 ¼ 1875:30 psia.

For the second iteration (v¼1), we use pn+ 1
1ð Þ

n to estimate the values of FVF, gas

viscosity, and chord slope ϕ
Bg

	 
0
n
and calculate

Vbn

αcΔt
ϕ
Bg

	 
0
n
for gridblock n.

Table 8.7 lists these values in addition to the upstream value of interblock trans-

missibility

�
Tn+ 1

νð Þ

rn,n + 1

�
. For example, for gridblock 1,

ϕ

Bg

� �0

1

¼
ϕ

B

� �n+ 1
νð Þ

1

� ϕ

B

� �n

1

pn+ 1
vð Þ

1 �pn1

¼
0:13

0:0019375

� �
� 0:13

0:000779000

� �

1559:88�4015
¼ 0:0406428



TABLE 8.7 Estimated gridblock FVF and chord slope at old iteration ν51.

Block n pn+1
1ð Þ

n (psia) Bn+1
1ð Þ

gn
(RB/scf) μn+1

1ð Þ

gn
(cP)

Tn+1
νð Þ

rn,n+1

����
n+1 (ϕ/Bg)n0

Vbn

αcΔt
ϕ
Bg

	 
0
n

1 1559.88 0.0019375 0.0150622 60,502.0907 0.0406428 0.0810486

2 1666.08 0.0017990 0.0153022 63,956.9105 0.0402820 3.68676

3 1772.22 0.0016786 0.0155144 66,993.0320 0.0398760 167.501

4 1875.30 0.0015784 0.0157508 – 0.0395013 5875.07
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Vb1

αcΔt
ϕ

Bg

� �0

1

¼ 340:59522�0:0406428

5:614583�30:42
¼ 0:0810486

and
Tn+ 1
νð Þ

r1,2
j
2
¼ Tn+ 1

νð Þ

r2,1
j
2
¼Gr1 + 1=2

1

μB

� �n+ 1
νð Þ

2

¼ 1:6655557� 1

0:0153022�0:0017990

� �

¼ 60502:0907

for upstream weighting of transmissibility. In addition, for the production well
in wellblock 1,

Gw1

1

μB

� �n+ 1
νð Þ

1

¼ 3:941572� 1

0:01506220�0:00193748

� �
¼ 135065:6

For gridblock 1, n¼1 and ψ1¼{2}. Therefore, Eq. (8.62a) becomes
� Tn+ 1
νð Þ

2,1

����
2

+
Vb1

αcΔt
ϕ

Bg

� �0

1

+Gw1

1

Bμ

� �n+ 1
νð Þ

1

2
4

3
5pn+ 1ν + 1ð Þ

1 + Tn+ 1
νð Þ

2,1

����
2

pn+ 1
ν + 1ð Þ

2

¼�Gw1

1

Bμ

� �n+ 1
νð Þ

1

pnwf 1 �
Vb1

αcΔt
ϕ

Bg

� �0

1

pn1

(8.63)

Substitution of the values in this equation gives
� 60502:0907 + 0:0810486 + 135065:6½ �pn+ 1
ν + 1ð Þ

1 + 60502:0907pn+ 1
ν + 1ð Þ

2

¼�135065:6�1515�0:0810486�4015

or after simplification,
�195567:739pn+ 1
ν + 1ð Þ

1 + 60502:0907pn + 1
ν + 1ð Þ

2 ¼�204624660 (8.64)

For gridblock 2, n¼2 and ψ2¼{1,3}. Therefore, Eq. (8.62b) becomes
Tn + 1
νð Þ

1,2

����
2

pn+ 1
ν + 1ð Þ

1 � Tn+ 1
νð Þ

1,2

����
2

+ Tn+ 1
νð Þ

3,2

����
3

+
Vb2

αcΔt
ϕ

Bg

� �0

2

� �
pn+ 1

ν + 1ð Þ

2

+ Tn+ 1
νð Þ

3,2

����
3

pn+ 1
ν + 1ð Þ

3 ¼� Vb2

αcΔt
ϕ

Bg

� �0

2

pn2 (8.65)

Substitution of the values in this equation gives
60502:0907pn+ 1
ν + 1ð Þ

1 � 60502:0907 + 63956:9105 + 3:68676½ �pn + 1
ν + 1ð Þ

2

+ 63956:9105pn+ 1
ν + 1ð Þ

3 ¼�3:68676�4015



314 Petroleum reservoir simulation
or after simplification,
60502:0907pn+ 1
ν + 1ð Þ

1 �124462:688pn+ 1
ν + 1ð Þ

2 + 63956:9105pn+ 1
ν+ 1ð Þ

3 ¼�14802:3438

(8.66)

For gridblock 3, n¼3 and ψ3¼{2,4}. Therefore, Eq. (8.62b) becomes
Tn+ 1
νð Þ

2,3

����
3

pn+ 1
ν + 1ð Þ

2 � Tn+ 1
νð Þ

2,3

����
3

+ Tn+ 1
νð Þ

4,3

����
4

+
Vb3

αcΔt
ϕ

Bg

� �0

3

� �
pn+ 1

ν + 1ð Þ

3 + Tn+ 1
νð Þ

4,3

����
4

pn+ 1
ν + 1ð Þ

4

¼� Vb3

αcΔt
ϕ

Bg

� �0

3

pn3 (8.67)

Substitution of the values in this equation gives
63956:9105pn+ 1
ν + 1ð Þ

2 � 63956:9105 + 66993:0320 + 167:501½ �pn+ 1
ν + 1ð Þ

3

+ 66993:0320pn+ 1
ν + 1ð Þ

4 ¼�167:501�4015

or after simplification,
63956:9105pn+ 1
ν + 1ð Þ

2 �131117:443pn+ 1
ν + 1ð Þ

3 + 66993:0320pn+ 1
ν+ 1ð Þ

4 ¼�672516:495

(8.68)

For gridblock 4, n¼4 and ψ4¼{3}. Therefore, Eq. (8.62b) becomes
Tn + 1
νð Þ

3,4

����
4

pn+ 1
ν + 1ð Þ

3 �
�
Tn+ 1

νð Þ

3,4 j4 +
Vb4

αcΔt
ϕ
Bg

	 
0
4

�
pn+ 1

ν + 1ð Þ

4 ¼� Vb4

αcΔt
ϕ

Bg

� �0

4

pn4 (8.69)

Substitution of the values in this equation gives
66993:0320pn + 1
ν + 1ð Þ

3 � 66993:0320 + 5875:07½ �pn+ 1
ν+ 1ð Þ

4 ¼�5875:07�4015

or after simplification,
66993:0320pn+ 1
ν + 1ð Þ

3 �72868:1032pn + 1
ν + 1ð Þ

4 ¼�23588411:0 (8.70)

The results of solving Eqs. (8.64), (8.66), (8.68), and (8.70) for the unknown
pressures are pn+ 1
2ð Þ

1 ¼ 1599.52 psia, pn+ 1
2ð Þ

2 ¼1788.20 psia, pn+ 1
2ð Þ

3 ¼1966.57 psia,

and pn+ 1
2ð Þ

4 ¼ 2131.72 psia.

Iterations continue until the convergence criterion is satisfied. Table 8.8

shows the successive iterations for the first time step. Note that it took five iter-

ations to converge. The convergence criterion was set as given by Eq. (8.61).

After reaching convergence, the time is incremented by Δt¼30.42 days, and



TABLE 8.8 Pressure solution at tn+1530.42 days for successive iterations.

ν+1 pn +1
ν +1ð Þ

1 (psia) pn +1
ν +1ð Þ

2 (psia) pn +1
ν +1ð Þ

3 (psia) pn +1
ν +1ð Þ

4 (psia)

0 4015.00 4015.00 4015.00 4015.00

1 1559.88 1666.08 1772.22 1875.30

2 1599.52 1788.20 1966.57 2131.72

3 1597.28 1773.65 1937.34 2087.32

4 1597.54 1775.64 1941.60 2094.01

5 1597.51 1775.38 1941.02 2093.08
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the aforementioned procedure is repeated. Table 8.9 shows the converged solu-

tions at various times up to 6months of simulation time.

Example 8.3 Consider the problem described in Example 8.1. Apply Newton’s

iteration method to find the pressure distribution in the reservoir after 1month

(30.42days) using a single time step, and present the simulation results up to

6months.

Solution

Table 8.2 reports the gridblock locations, bulk volumes, and geometric fac-

tors in the radial direction. For single-well simulation in a horizontal reservoir

(Zn¼ constant) with no-flow boundaries

�P
l2ξn

qn+ 1scl,n
¼ 0

�
, the implicit flow

equation with implicit transmissibility is obtained from Eq. (8.47a).

For gridblock n with a well operating under a specified FBHP,

X
l2ψn

Tn +1
νð Þ

l, n + pn +1
νð Þ

l � pn +1
νð Þ

n

� �
∂Tl, n
∂pl

����
n +1

νð Þ
8><
>:

9>=
>;δpn +1

ν +1ð Þ

l

�
X
l2ψn

Tn +1
νð Þ

l, n � pn +1
νð Þ

l � pn +1
νð Þ

n

� �
∂Tl, n
∂pn

����
n +1

νð Þ2
64

3
75� dqscn

dpn

����
n +1

νð Þ

+
Vbn

αcΔt
ϕ
Bg

� �0

n

8><
>:

9>=
>;δpn +1

ν +1ð Þ

n

¼ �
X
l2ψn

Tn +1
νð Þ

l, n pn +1
νð Þ

l � pn +1
νð Þ

n

� �
+ qn +1

νð Þ

scn
� Vbn

αcΔt
ϕ
Bg

� �0

n

pn +1
νð Þ

n � pnn

� �8<
:

9=
;

(8.71a)



TABLE 8.9 Converged pressure solution and gas production at various times.

n+1 Time (day) ν p1
n+1 (psia) p2

n+1 (psia) p3
n+1 (psia) p4

n+1 (psia) qgsc
n+1 (MMscf/D)

Cumulative

production (MMMscf)

1 30.42 5 1597.51 1775.38 1941.02 2093.08 �11.3980 �0.346727

2 60.84 3 1537.18 1588.10 1637.63 1685.01 �2.95585 �0.436644

3 91.26 3 1521.54 1536.87 1552.07 1566.82 �0.863641 �0.462916

4 121.68 2 1517.03 1521.84 1526.63 1531.31 �0.268151 �0.471073

5 152.10 2 1515.62 1517.10 1518.58 1520.02 �0.082278 �0.473576

6 182.52 2 1515.19 1515.64 1516.09 1516.54 �0.025150 �0.474341
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For gridblock n without a well,
X
l2ψn

Tn +1
νð Þ

l, n + pn +1
νð Þ

l � pn +1
νð Þ

n

� �
∂Tl, n
∂pl

����
n +1

νð Þ
8><
>:

9>=
>;δpn +1

ν +1ð Þ

l

�
(X

l2ψn

Tn +1
νð Þ

l, n � pn +1
νð Þ

l � pn +1
νð Þ

n

� �
∂Tl, n
∂pn

����
n +1

νð Þ
2
64

3
75 +

Vbn

αcΔt
ϕ
Bg

� �0

n

)
δpn +1

ν +1ð Þ

n

¼ �
X
l2ψn

Tn +1
νð Þ

l, n pn +1
νð Þ

l � pn +1
νð Þ

n

� �
� Vbn

αcΔt
ϕ
Bg

� �0

n

pn +1
νð Þ

n � pnn

� �( )

(8.71b)

As mentioned in Example 8.1, gridblock 4 is upstream to gridblock 3, grid-
block 3 is upstream to gridblock 2, and gridblock 2 is upstream to gridblock 1.

Upstream weighting of the pressure-dependent terms in transmissibility is used.

First time step calculations (n¼0, tn+1¼30.42 days, and Δt¼30.42 days).

For the first iteration (v¼0), assume pn +1
0ð Þ

n ¼ pnn ¼ 4015 psia for n¼1, 2, 3, 4.

Consequently, Tn, n +1

��n +1
0ð Þ

n
¼ 95877:5281 for all gridblocks, pn +1

0ð Þ

l � pn

� �
∂Tl, n
∂pl

���n +1
νð Þ

¼ 0 for all values of l and n, and Vbn

αcΔt
ϕ
Bg

	 
0
n
is obtained as shown in Table 8.3.

For wellblock 1, d
dp

1
μB

	 
���n +1
0ð Þ

1
¼ 2:970747

qn +1
0ð Þ

sc1
¼ �Gw1

1

μB

� �n +1
0ð Þ

1

pn +1
0ð Þ

1 � pwf 1

� �

¼ �3:941572� 1

0:0223000� 0:0007790

	 

� 4015 � 1515ð Þ

¼ �567240397

and
dqsc1
dp1

����
n +1

0ð Þ

¼ �Gw1

1

μB

� �n +1
0ð Þ

1

+
d

dp
1

μB

� �����
n +1

0ð Þ

1

pn +1
0ð Þ

1 � pwf 1

� �2
64

3
75

¼ �3:941572� 1

0:0223000� 0:0007790

	 

+2:970747� 4015� 1515ð Þ

h i
¼ �256169:692

In addition, the flow equation for gridblock n with a well (Eq. 8.71a)
reduces to

X
l2ψn

Tn +1
0ð Þ

l, n δpn +1
1ð Þ

l �
X
l2ψn

Tn +1
0ð Þ

l, n � dqscn
dpn

����
n +1

0ð Þ

+
Vbn

αcΔt
ϕ
Bg

� �0

n

8><
>:

9>=
>;δpn +1

1ð Þ

n ¼ �qn +1
0ð Þ

scn

(8.72a)



318 Petroleum reservoir simulation
and that for gridblock n without a well (Eq. 8.71b) reduces to
X
l2ψn

Tn +1
0ð Þ

l, n δpn +1
1ð Þ

l �
X
l2ψn

Tn +1
0ð Þ

l, n +
Vbn

αcΔt
ϕ
Bg

� �0

n

( )
δpn +1

1ð Þ

n ¼ 0 (8.72b)

For gridblock 1, n¼1 and ψ1¼{2}. Substitution of the relevant values in
Eq. (8.72a) yields

� 95877:5281� �256169:692ð Þ + 0:06193233f g � δpn +1
1ð Þ

1 + 95877:5281� δpn +1
1ð Þ

2

¼ � �567240397ð Þ

or
�352047:281� δpn +1
1ð Þ

1 +95877:5281� δpn +1
1ð Þ

2 ¼ 567240397 (8.73)

For gridblock 2, n¼2 and ψ2¼{1,3}. Substitution of the relevant values in
Eq. (8.72b) results in

95877:5281 � δpn +1
1ð Þ

1 + 95877:5281� δpn +1
1ð Þ

3

� 95877:5281 + 95877:5281 + 2:842428f g � δpn +1
1ð Þ

2 ¼ 0

or
95877:5281� δpn +1
1ð Þ

1 � 191757:899� δpn +1
1ð Þ

2 + 95877:5281� δpn +1
1ð Þ

3 ¼ 0

(8.74)

For gridblock 3, n¼3 and ψ3¼{2,4}. Substitution of the relevant values in
Eq. (8.72b) results in

95877:5281 � δpn +1
1ð Þ

2 + 95877:5281� δpn +1
1ð Þ

4

� 95877:5281 + 95877:5281 + 130:4553f g � δpn +1
1ð Þ

3 ¼ 0

or
95877:5281� δpn +1
1ð Þ

2 � 191885:511� δpn +1
1ð Þ

3 +95877:5281� δpn +1
1ð Þ

4 ¼ 0

(8.75)

For gridblock 4, n¼4 and ψ4¼{3}. Substitution of the relevant values in
Eq. (8.72b) results in

95877:5281� δpn +1
1ð Þ

3 � 95877:5281 + 4619:097f g � δpn +1
1ð Þ

4 ¼ 0
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or
95877:5281� δpn +1
1ð Þ

3 � 100496:626� δpn +1
1ð Þ

4 ¼ 0 (8.76)

The results of solving Eqs. (8.73) through (8.76) for the pressure change
over the first iteration are δpn +1
1ð Þ

1 ¼ �2179:03, δpn +1
1ð Þ

2 ¼ �2084:77, δpn +1
1ð Þ

3 ¼
�1990:57, and δpn +1

1ð Þ

4 ¼ �1899:08: Therefore, pn +1
1ð Þ

1 ¼ 1835:97 psia, pn +1
1ð Þ

2 ¼
1930:23 psia, pn +1

1ð Þ

3 ¼ 2024:43 psia, and pn +1
1ð Þ

4 ¼ 2115:92 psia.

For second iteration (v¼1), we use pn +1
1ð Þ

n to estimate values of FVF, gas

viscosity, ϕ
Bg

	 
0
n
,
Vbn

αcΔt
ϕ
Bg

	 
0
n
, and transmissibility and its derivative with respect

to block pressure. Table 8.10 lists these values. For example, for gridblock 1,

ϕ
Bg

� �0

1

¼
ϕ
B

� �n +1
νð Þ

1
� ϕ

B

� �n
1

pn +1
νð Þ

1 � pn1

¼
0:13

0:00161207

� �� 0:13
0:000779

� �
1835:97� 4015

¼ 0:03957679

Vb1

αcΔt
ϕ
Bg

� �0

1

¼ 340:59522�0:03957679
5:614583�30:42

¼ 0:07892278

Tn+1
νð Þ

r1,2 ¼ T1,2
��n+1νð Þ

2
¼Gr1 +1=2

1

μB

� �n+1
νð Þ

2

¼ 1:6655557� 1

0:01588807�0:00153148

	 

¼ 68450:4979

∂T1,2
∂p1

����
n+1
νð Þ

2

¼ 0, and
∂T1,2
∂p2

����
n+1
νð Þ

2

¼Gr1 +1=2

d

dp
1

μB

� �����
n+1
νð Þ

2

¼ 1:6655557�16:47741

¼ 27:444044

for upstream weighting of transmissibility. In addition, for the production well
in wellblock 1,

qn +1
νð Þ

sc1
¼ �Gw1

1

μB

� �n +1
νð Þ

1

pn +1
νð Þ

1 � pwf 1

� �

¼ �3:941572 � 1

0:01565241� 0:00161207

	 

� 1835:97� 1515ð Þ

¼ �50137330

dqsc1
dp1

����
n +1

νð Þ

¼ �Gw1

1

μB

� �n +1
νð Þ

1

+
d

dp
1

μB

� �����
n +1

νð Þ

1

pn +1
νð Þ

1 � pwf 1

� �2
64

3
75



TABLE 8.10 Estimated gridblock functions at old iteration ν51.

n pn +1
1ð Þ

n (psia) Bn +1
1ð Þ

gn
(RB/scf) μn +1

1ð Þ

gn
(cP) (ϕ/Bg)n0

Vbn

αcΔt
ϕ
Bg

	 
0
n

d
dp

1
μB

	 
���n +1
νð Þ

n

∂Tn,n +1

∂pn

���n +1
νð Þ

n
Tn,n +1

��n +1
νð Þ

n

1 1835.97 0.00161207 0.01565241 0.03957679 0.07892278 14.68929 24.465831 66,007.6163

2 1930.23 0.00153148 0.01588807 0.03933064 3.599688 16.47741 27.444044 68,450.4979

3 2024.43 0.00145235 0.01612828 0.03886858 163.2694 12.78223 21.289516 71,104.7736

4 2115.92 0.00138785 0.01640276 0.03855058 5733.667 14.28023 23.784518 73,164.3131
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2
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or
dqsc1
dp1

����
n +1

νð Þ

¼ �3:941572� 1

0:01565241� 0:00161207

	 
h

+ 14:68929� 1835:97� 1515ð Þ
i
¼ �174791:4

For gridblock 1, n¼1 and ψ1¼{2}. Therefore, Eq. (8.71a) becomes
� T1, 2
��n +1

νð Þ

2
� pn +1

νð Þ

2 � pn +1
νð Þ

1

� �
∂T1, 2
∂p1

����
n +1

νð Þ

2

� dqsc1
dp1

����
n +1

νð Þ

+
Vb1

αcΔt
ϕ
Bg

� �0

1

2
64

3
75δpn +1

ν +1ð Þ

1

+ T1, 2
��n +1

νð Þ

2
+ pn +1

νð Þ

2 � pn +1
νð Þ

1

� �
∂T1, 2
∂p2

����
n +1

νð Þ

2

2
64

3
75δpn +1

ν +1ð Þ

2

¼ � T1, 2
��n +1

νð Þ

2
pn +1

νð Þ

2 � pn +1
νð Þ

1

� �
+ qn +1

νð Þ

sc1
� Vb1

αcΔt
ϕ
Bg

� �0

1

pn +1
νð Þ

1 � pn1

� �( )

(8.77)

Substitution of the values in Eq. (8.77) gives
� 68450:4979� 1930:23� 1835:97ð Þ � 0� �174791:4ð Þ + 0:07892278½ �δpn +1
ν +1ð Þ

1

+ 68450:4979 + 1930:23� 1835:97ð Þ � 27:444044½ �δpn +1
ν +1ð Þ

2

¼ � 68450:4979� 1930:23� 1835:97ð Þ + �50137330ð Þ � 0:07892278f
� 1835:97� 4015ð Þg

After simplification, the equation becomes
�243242:024� δpn +1
ν +1ð Þ

1 +71037:4371� δpn +1
ν +1ð Þ

2 ¼ 43684856:7 (8.78)

For gridblock 2, n¼2 and ψ2¼{1,3}. Therefore, Eq. (8.71b) becomes
T1, 2

����
n +1

νð Þ

2
+ pn +1

νð Þ

1 � pn +1
νð Þ

2

 !
∂T1, 2
∂p1

����
n +1

νð Þ

2

2
64

3
75δpn +1

ν +1ð Þ

1

� T1, 2

����
n +1

νð Þ

2
� pn +1

νð Þ

1 � pn +1
νð Þ

2

 !
∂T1, 2
∂p2

����
n +1

νð Þ

2
+T3, 2

����
n +1

νð Þ

3
� pn +1

νð Þ

3 � pn +1
νð Þ

2

 !
∂T3, 2
∂p2

����
n +1

νð Þ

3

2
64

+
Vb2
αcΔt

ϕ
Bg

� �0

2

3
5δpn +1

ν +1ð Þ

2 + T3, 2

����
n +1

νð Þ

3
+ pn +1

νð Þ

3 � pn +1
νð Þ

2

 !
∂T3, 2
∂p3

����
n +1

νð Þ

3

2
64

3
75δpn +1

ν +1ð Þ

3

¼ � T1, 2

����
n +1

νð Þ

2
pn +1

νð Þ

1 � pn +1
νð Þ

2

 !
+T3, 2

����
n +1

νð Þ

3
pn +1

νð Þ

3 � pn +1
νð Þ

2

 !2
64

3
75� Vb2

αcΔt
ϕ
Bg

� �0

2

pn +1
νð Þ

2 � pn2

 !8><
>:

9>=
>;

(8.79)
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In the earlier equation,
Tn +1
νð Þ

r3, 2 ¼ T3, 2
��n +1

νð Þ

3
¼ Gr2 +1=2

1

μB

� �n +1
νð Þ

3

¼ 1:6655557� 1

0:01612828� 0:00145235

	 

¼ 71104:7736

∂T3, 2
∂p2

����
n +1

νð Þ

3

¼ 0, and
∂T3, 2
∂p3

����
n +1

νð Þ

3

¼ Gr2 +1=2

d

dp
1

μB

� �����
n +1

νð Þ

3

¼ 1:6655557� 12:78223 ¼ 21:289516

Substitution of these values in Eq. (8.79) gives
68450:4979 + 1835:97� 1930:23ð Þ � 0½ �δpn +1
ν +1ð Þ

1

� 68450:4979� 1835:97� 1930:23ð Þ � 27:444044 +71104:7736½

� 2024:43� 1930:23ð Þ � 0 +3:599688�δpn +1
ν +1ð Þ

2

+ 71104:7736 + 2024:43� 1930:23ð Þ � 21:289516½ �δpn +1
ν +1ð Þ

3

¼ �f 68450:4979� 1835:97� 1930:23ð Þ½
+ 71104:7736� 2024:43� 1930:23ð Þ��3:599688� 1930:23� 4015ð Þg

or after simplification,
68450:4979� δpn +1
ν +1ð Þ

1 � 142145:810� δpn +1
ν +1ð Þ

2 +73110:2577� δpn +1
ν +1ð Þ

3

¼ �253308:066 (8.80)

For gridblock 3, n¼3 and ψ3¼{2,4}. Therefore, Eq. (8.71b) becomes
T2, 3

����
n +1

νð Þ

3
+ pn +1

νð Þ

2 � pn +1
νð Þ

3

 !
∂T2, 3
∂p2

����
n +1

νð Þ

3

2
64

3
75δpn +1

ν +1ð Þ

2 � T2, 3

����
n +1

νð Þ

3
� pn +1

νð Þ

2 � pn +1
νð Þ

3

 !
∂T2, 3
∂p3

����
n +1

νð Þ

3

2
64

+T4, 3

����
n +1

νð Þ

4
� pn +1

νð Þ

4 � pn +1
νð Þ

3

 !
∂T4, 3
∂p3

����
n +1

νð Þ

4
+
Vb3
αcΔt

ϕ
Bg

� �0

3

3
5δpn +1

ν +1ð Þ

3

+ T4, 3

����
n +1

νð Þ

4
+ pn +1

νð Þ

4 � pn +1
νð Þ

3

 !
∂T4, 3
∂p4

����
n +1

νð Þ

4

2
64

3
75δpn +1

ν +1ð Þ

4

¼ � T2, 3

����
n +1

νð Þ

3
pn +1

νð Þ

2 � pn +1
νð Þ

3

 !
+ T4, 3

����
n +1

νð Þ

4
pn +1

νð Þ

4 � pn +1
νð Þ

3

 !2
64

3
75� Vb3

αcΔt
ϕ
Bg

� �0

3

pn +1
νð Þ

3 � pn3

 !8><
>:

9>=
>;

(8.81)
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where
Tn +1
νð Þ

r4, 3 ¼ T4, 3
��n +1

νð Þ

4
¼ Gr3 +1=2

1

μB

� �n +1
νð Þ

4

¼ 1:6655557� 1

0:01640276� 0:00138785

	 

¼ 73164:3131

∂T4, 3
∂p3

����
n +1

νð Þ

4

¼ 0, and
∂T4, 3
∂p4

����
n +1

νð Þ

4

¼ Gr3 +1=2

d

dp
1

μB

� �����
n +1

νð Þ

4

¼ 1:6655557� 14:28023 ¼ 23:784518

Substitution of these values in Eq. (8.81) gives
71104:7736 + 1930:23� 2024:43ð Þ � 0½ �δpn +1
ν +1ð Þ

2

� 71104:7736� 1930:23� 2024:43ð Þ�21:289516 + 73164:3131½

� 2115:92� 2024:43ð Þ � 0 + 163:2694�δpn +1
ν +1ð Þ

3

+ 73164:3131 + 2115:92� 2024:43ð Þ � 23:784518½ �δpn +1
ν +1ð Þ

4

¼ �f 71104:7736� 1930:23� 2024:43ð Þ + 73164:3131½
� 2115:92� 2024:43ð Þ� � 163:2694� 2024:43� 4015ð Þg
After simplification, the equation becomes
71104:7736� δpn +1
ν +1ð Þ

2 � 146437:840� δpn +1
ν +1ð Þ

3 +75340:4074� δpn +1
ν +1ð Þ

4

¼ �320846:394 (8.82)

For gridblock 4, n¼4 and ψ4¼{3}. Therefore, Eq. (8.71b) becomes
T3, 4

���n +1
νð Þ

4
+ pn +1

νð Þ

3 � pn +1
νð Þ

4

� �
∂T3, 4
∂p3

����
n +1

νð Þ

4

2
64

3
75δpn +1

ν +1ð Þ

3

� T3, 4

���n +1
νð Þ

4
� pn +1

νð Þ

3 � pn +1
νð Þ

4

� �
∂T3, 4
∂p4

����
n +1

νð Þ

4

+
Vb4

αcΔt
ϕ
Bg

� �0

4

2
64

3
75δpn +1

ν +1ð Þ

4

¼ � T3, 4

���n +1
νð Þ

4
pn +1

νð Þ

3 � pn +1
νð Þ

4

� �2
4

3
5� Vb4

αcΔt
ϕ
Bg

� �0

4

pn +1
νð Þ

4 � pn4

� �8<
:

9=
;

(8.83)

Substitution of the values in Eq. (8.83) gives
73164:3131 + 2024:43� 2115:92ð Þ � 0½ �δpn +1
ν +1ð Þ

3

� 73164:3131� 2024:43� 2115:92ð Þ � 23:784518 +5733:667½ �δpn +1
ν +1ð Þ

4

¼ � 73164:3131� 2024:43� 2115:92ð Þ½ � � 5733:667� 2115:92� 4015ð Þf g



TABLE 8.11 Pressure solution at tn+1530.42 days for successive iterations.

ν+1 pn +1
ν +1ð Þ

1 (psia) pn +1
ν +1ð Þ

2 (psia) pn +1
ν +1ð Þ

3 (psia) pn +1
ν +1ð Þ

4 (psia)

0 4015.00 4015.00 4015.00 4015.00

1 1835.97 1930.23 2024.43 2115.92

2 1614.00 1785.15 1946.71 2097.52

3 1597.65 1775.45 1941.04 2093.09

4 1597.51 1775.42 1941.09 2093.20
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After simplification, the equation becomes
73164:3131� δpn +1
ν +1ð Þ

3 � 81074:0745� δpn +1
ν +1ð Þ

4 ¼ �4194735:68 (8.84)

The results of solving Eqs. (8.78), (8.80), (8.82), and (8.84) for the pressure
change over the second iteration are δpn +1
2ð Þ

1 ¼ �221:97, δpn +1
2ð Þ

2 ¼ �145:08,

δpn +1
2ð Þ

3 ¼ �77:72, and δpn +1
2ð Þ

4 ¼ �18:40: Therefore, pn +1
2ð Þ

1 ¼ 1614:00 psia,

pn +1
2ð Þ

2 ¼ 1785:15 psia, pn +1
2ð Þ

3 ¼ 1946:71 psia, and pn +1
2ð Þ

4 ¼ 2097:52 psia. Itera-

tions continue until the convergence criterion is satisfied. Table 8.11 shows

the successive iterations for the first time step. As can be seen, it took four iter-

ations to converge. The convergence criterion was set as given by Eq. (8.61).

After reaching convergence, time is incremented by Δt¼30.42 days, and the

aforementioned procedure is repeated. Table 8.12 shows the converged solu-

tions at various times up to 6months of simulation time.
8.6 Summary

The flow equation for an incompressible fluid (Eq. 8.1) is linear. The flow equa-

tion for a slightly compressible fluid has very weak nonlinearity caused by the

product μB that appears in the interblock flow terms, fictitious well flow rate,

and well production rate. This product can be assumed constant without intro-

ducing noticeable errors; hence, the flow equation for a slightly compressible

fluid becomes linear (Eq. 8.9). The flow equation for a compressible fluid

has weak nonlinearity, but it needs to be linearized. Linearization involves treat-

ment in both space and time of the transmissibilities, well production rate, fic-

titious well flow rate, and coefficient of pressure in the accumulation term.

Linearization of transmissibility in space and time is accomplished by any of

the methods mentioned in Section 8.4.1. In the engineering approach, the flow



TABLE 8.12 Converged pressure solution and gas production at various times.

n+1 Time (day) ν p1
n+1 (psia) p2

n+1 (psia) p3
n+1 (psia) p4

n+1 (psia) qgsc
n+1 (MMscf/D)

Cumulative

production (MMMscf)

1 30.42 4 1597.51 1775.42 1941.09 2093.20 �11.3984 �0.346740

2 60.84 3 1537.18 1588.11 1637.66 1685.05 �2.95637 �0.436673

3 91.26 3 1521.54 1536.88 1552.08 1566.84 �0.863862 �0.462951

4 121.68 2 1517.04 1521.84 1526.63 1531.32 �0.268285 �0.471113

5 152.10 2 1515.63 1517.10 1518.58 1520.03 �0.082326 �0.473617

6 182.52 2 1515.19 1515.64 1516.10 1516.54 �0.025165 �0.474382
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equation or any of its components (interblock flow term, well rate, fictitious

well rate) can be linearized in time by the explicit transmissibility method, sim-

ple iteration on transmissibility method, or fully implicit method. Section 8.4.2

presented linearization of the physical well rates, Section 8.4.3 presented linear-

ization of fictitious well rates, and Section 8.4.4 presented linearization of the

coefficient of pressure change in the accumulation term. The linearized flow

equation is obtained by substituting the linearized terms in the flow equation.
8.7 Exercises

8.1 Define the linearity of Eq. (8.1) by examining the various terms in the

equation.

8.2 Define the linearity of Eq. (8.9) by examining the various terms in the

equation.

8.3 Explain why Eq. (8.5) can be looked at as a nonlinear equation.

8.4 Explain why Eq. (8.11) is a nonlinear equation.

8.5 Examine Eq. (8.30), used for the linearization of the well production rate,

and point out the differences between the explicit method and the explicit

transmissibility method (Eq. 8.30).

8.6 Examine Eq. (8.31), used for the linearization of the well production rate,

and point out the differences between the simple iteration method and the

simple iteration on transmissibility method (Eq. 8.31).

8.7 Consider the 1-D, inclined reservoir shown in Fig. 8.3. The reservoir is

volumetric and homogeneous. The reservoir contains a production well

located in gridblock 2. At the time of discovery (t¼0), fluids were in

hydrodynamic equilibrium, and the pressure of gridblock 2 was 3000psia.

All gridblocks have Δx¼400 ft, w¼200 ft, h¼80 ft, k¼222 md, and

ϕ¼0.20. The well in gridblock 2 produces fluid at a rate of 106 scf/D.

Table 8.1 gives the gas FVF and viscosity. Gas density at standard
2 
3

1 

80 ft

400 ft
200 ft

x

z

No-flow boundary

Z3 = 3500 ft

Z2 = 3700 ft

Z1 = 3900 ft

y

1 MMscf/D

No-flow boundary

FIG. 8.3 Discretized 1-D reservoir in Exercise 8.7.
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conditions is 0.05343lbm/ft3. Estimate the initial pressure distribution in

the reservoir. Find the well FBHP and pressure distribution in the system

at 50 and 100days. Use the implicit formulation with the explicit transmis-

sibility method.

8.8 Consider the 1-D flow problem described in Exercise 8.7. Find the pres-

sure distribution in the reservoir at 50 and 100days. Use the implicit for-

mulation with the simple iteration on transmissibility method.

8.9 Consider the 1-D flow problem described in Exercise 8.7. Find the pres-

sure distribution in the reservoir at 50 and 100days. Use the implicit for-

mulation with the fully implicit method.

8.10 A vertical well is drilled on 16-acre spacing in a natural gas reservoir. The

reservoir is described by four gridpoints in the radial direction as shown in

Fig. 8.4. The reservoir is horizontal and has 20-ft net thickness and homo-

geneous and isotropic rock properties with k¼10 md and ϕ¼0.13. Ini-

tially, reservoir pressure is 3015psia. Table 8.1 presents the gas FVF

and viscosity dependence on pressure. The external reservoir boundaries

are sealed to fluid flow. Well diameter is 6 in. The well produces under a

constant FBHP of 2015psia. Find the pressure distribution in the reservoir

every month (30.42days) for 2months. Take time steps of 30.42days.

Use the implicit formulation with the explicit transmissibility method.
r

z
No-flow boundary

No-flow boundary

20 ft

No-flow boundary

i = 1 i = 2 i = 3 i = 4

1 2 3  4

pwf1
 = 2015 psia

FIG. 8.4 Discretized reservoir in Exercise 8.10.
8.11 Consider the single-well simulation problem presented in Exercise 8.10.

Find the pressure distribution in the reservoir at 1 and 2months. Use the

implicit formulation with the simple iteration on transmissibility method.

8.12 Consider the single-well simulation problem presented in Exercise 8.10.

Find the pressure distribution in the reservoir at 1 and 2months. Use the

implicit formulation with the fully implicit transmissibility method.

8.13 Consider the 2-D single-phase flow of natural gas taking place in the

horizontal, homogeneous reservoir shown in Fig. 8.5. The external



Δx

Δy

h

1 2

3 4

y

x

FIG. 8.5 Discretized 2-D reservoir in Exercise 8.13.
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reservoir boundaries are sealed off to fluid flow. Gridblock properties

are Δx¼Δy¼1000 ft, h¼25 ft, kx¼ky¼20 md, and ϕ¼0.12. Initially,

reservoir pressure is 4015psia. Table 8.1 presents the gas FVF and vis-

cosity dependence on pressure. The well in gridblock 1 produces gas at a

rate of 106 scf/D. Well diameter is 6 in. Find the pressure distribution in

the reservoir and the FBHP of the well every month (30.42days) for

2months. Check the material balance every time step. Use the implicit

formulation with the explicit transmissibility method. Observe symme-

try and take time steps of 30.42days.

8.14 Consider the 2-D flow problem described in Exercise 8.13. Find the pres-

sure distribution in the reservoir and the FBHP of the well at 1 and

2months. Check the material balance every time step. Use the implicit

formulation with the simple iteration on transmissibility method.

8.15 Consider the 2-D flow problem described in Exercise 8.13. Find the pres-

sure distribution in the reservoir and the FBHP of the well at 1 and

2months. Check the material balance every time step. Use the implicit

formulation with the fully implicit transmissibility method.

8.16 Derive Eq. (8.47b) that represents the fully implicit equation without con-

servative expansion of accumulation term for compressible fluid, using

the method of Coats et al. (1977) as outlined in the text.

8.17 What would be a rigorous treatment of nonlinear equations? What hap-

pens if multiple solutions emerge?
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9.1 Introduction

Today, practically all aspects of reservoir engineering problems are solved with

a reservoir simulator. The use of the simulators is so extensive that it will be no

exaggeration to describe them as “the standard.” The simulators enable us to

predict reservoir performance, although this task becomes immensely difficult

when dealing with complex reservoirs. The complexity can arise from variation

in formation and fluid properties. The complexity of the reservoirs has always

been handled with increasingly advanced approaches. Mustafiz and Islam

(2008) reviewed latest advancements in petroleum reservoir simulation. Also,

they discussed the framework of a futuristic reservoir simulator. They predicted

that in the near future, the coupling of 3-D imaging with comprehensive reser-

voir models will enable one to use drilling data as input information for the

simulator creating a real-time reservoir monitoring system. At the same time,

coupling of ultrafast data acquisition system with digital/analog converters

transforming signals into tangible sensations will make use of the capability

of virtual reality incorporated into the state-of-the-art reservoir models. The

basis of all these, however, is the formulation presented in this book. The res-

ervoir was discretized into gridblocks in Chapter 4 and gridpoints in Chapter 5.

These chapters demonstrated the flow equation for a general block while
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incorporating the boundary conditions into the flow equation. Chapter 6 pre-

sented the well production rates. The resulting flow equation is either linear

(incompressible fluid and slightly compressible fluid) or nonlinear (compress-

ible fluid). Chapter 8 presented the linearization of a nonlinear flow equation.

What remains is to write the linearized flow equation for each gridblock (or

gridpoint) in the reservoir and solve the resulting set of linear equations. These

tasks are the focus of this chapter. Linear equations can be solved using either

direct or iterative methods. We restrict our discussion in this chapter to basic

solution methods of both categories and present their application to 1-D,

2-D, and 3-D flow problems. The objective here is to introduce the reader to

the mechanics of the basic methods of solution for linear equations of the form

A½ � x!¼d
!

(9.1)

where [A]¼ square coefficient matrix, x
!¼ vector of unknowns, and d

!¼ vector
of known values.

9.2 Direct solution methods

The direct solution methods are characterized by their capacity to produce the

solution vector for a given system of linear equations after a fixed number of

operations. Direct solution methods not only require storing the information

contained in the coefficient matrix [A] and the known vector d
!
but also suffer

from an accumulation of roundoff errors that occur during computations. In the

following sections, we discuss methods such as Thomas’ algorithm and Tang’s

algorithm, which are used for 1-D flow problems, and the g-band algorithm,

which is used for 1-D, 2-D, or 3-D flow problems. These algorithms are based

on the LU factorization of the coefficient matrix (i.e., [A]¼ [L][U]).

9.2.1 1-D rectangular or radial flow problems (Thomas’ algorithm)

This algorithm is applicable for a reservoir where flow takes place in the

x-direction in rectangular flow problems, as shown in Fig. 9.1a, or in the

r-direction in radial flow problems, as shown in Fig. 9.1b. In other words, there

is one row of blocks arranged along a line (with N¼nx or N¼nr).
The equation for the first block (i¼1) has the form

c1x1 + e1x2 ¼ d1 (9.2a)

because block 1 falls on the reservoir west boundary.
The equation for interior blocks i¼2, 3, …, N�1 has the form

wixi�1 + cixi + eixi+ 1 ¼ di (9.2b)

The equation for the last block (i¼N) has the form
wNxN�1 + cNxN ¼ dN (9.2c)

because block N falls on the reservoir east boundary.
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FIG. 9.1 Types of 1-D flow problems. (a) 1-D linear flow in x-direction, (b) 1-D radial flow in

r-direction, and (c) 1-D tangential flow in θ-direction.
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Inspection of Eq. (9.2) reveals that ci is the coefficient of the unknown for

block i (the center block), the block for which the flow equation is written, wi is

the coefficient of the unknown for neighboring block i�1 (the west block), and

ei is the coefficient of the unknown for neighboring block i+1 (the east block).
The known RHS of the flow equation for block i is di. Consider Eq. (8.2b) for
the flow of an incompressible fluid. This equation can be rewritten as

Txi�1=2
pi�1� Txi�1=2

+ Txi + 1=2

h i
pi + Txi+ 1=2pi+ 1

¼ Txi�1=2
γi�1=2 Zi�1�Zið Þ+ Txi+ 1=2γi+ 1=2 Zi+ 1�Zið Þ

h i
�qsci (9.3)

This equation has the form of Eq. (9.2b) with the unknowns pi�1, pi, and pi+1;

the coefficients wi¼Txi�1/2

, ci¼ � [Txi�1/2
+Txi+1/2], and ei¼Txi+1/2; and the known

RHS di¼ [Txi�1/2
γi�1/2(Zi�1�Zi)+Txi+1/2γi+1/2(Zi+1�Zi)]�qsci. If we consider

Eq. (8.10b) for the flow of a slightly compressible fluid and assume the well

production rate is specified (say, qsci
n+1¼qspsci), then we obtain

Txi�1=2
pn+ 1i�1 � Txi�1=2

+ Txi+ 1=2 +
Vbiϕ

°
i c+ cϕ
� �

αcB°Δt

" #
pn+ 1i + Txi + 1=2p

n+ 1
i+ 1

¼ Txi�1=2
γi�1=2 Zi�1�Zið Þ+ Txi+ 1=2γi+ 1=2 Zi + 1�Zið Þ�qspsci �

Vbiϕ
°
i c+ cϕ
� �

αcB°Δt
pni

(9.4)

The unknowns in Eq. (9.4) are pi�1
n+1, pi

n+1, and pi+1
n+1; the coefficients� �
are wi¼Txi�1/2
, ci ¼� Txi�1=2

+ Txi + 1=2 +
Vbi

ϕ°
i c + cϕð Þ

αcB°Δt , and ei¼Txi+1/2; and
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the known RHS is di ¼ Txi�1=2
γi�1=2 Zi�1�Zið Þ+ Txi+ 1=2γi+ 1=2 Zi + 1�Zið Þ�

qspsci �
Vbi

ϕ°
i c+ cϕð Þ

αcB°Δt pni . In either case, block 1 does not have coefficient w1,

and block N does not have coefficient eN because these blocks are boundary

blocks. Depending on the boundary condition specification, its effects are

embedded in di and ci for boundary gridblocks (see Section 4.4) and in

di, ci, and wi or ei for boundary gridpoints (see Section 5.4).

The set of N equations expressed by Eq. (9.2) can be written in a matrix

form as

c1 e1
w2 c2 e2

… … …

… … …

wN�1 cN�1 eN�1

wN cN

2
6666664

3
7777775

x1
x2
…

…

xN�1

xN

2
6666664

3
7777775
¼

d1
d2
…

…

dN�1

dN

2
6666664

3
7777775

(9.5)

The matrix in Eq. (9.5) is called a tridiagonal matrix. This matrix equation
can be solved using Thomas’ algorithm. Thomas’ algorithm is nothing more

than an efficient procedure to solve a tridiagonal matrix equation (Eq. 9.5)

through matrix factorization into lower [L] and upper [U] triangular matrices

(Aziz and Settari, 1979). In addition, we do not have to store the whole matrix.

Instead, it is sufficient to store four vectors (w
!
, c
!
, e
!
, and d

!
) of dimension N to

store all information contained in Eq. (9.5). Thomas’ algorithm is executed in

two major steps that require the creation of two more vectors (u
!

and g
!
) of

dimension N. The two major steps are the forward solution and the backward

solution.
9.2.1.1 Forward solution

Set u1 ¼ e1
c1

(9.6)

and
g1 ¼ d1
c1

(9.7)

For i¼2, 3…N�1,
ui ¼ ei
ci�wiui�1ð Þ (9.8)

and for i¼2, 3…N,
gi ¼ di�wigi�1

ci�wiui�1ð Þ (9.9)
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9.2.1.2 Backward solution

Set xN ¼ gN (9.10)

For i¼N�1, N�2, …, 3, 2, 1;
xi ¼ gi�uixi+ 1 (9.11)

The following example demonstrates the application of Thomas’ algorithm
to the equations of a 1-D reservoir.

Example 9.1 The following equations were obtained for the 1-D reservoir in

Example 7.1:

�85:2012p1 + 28:4004p2 ¼�227203:2 (9.12)

28:4004p1�56:8008p2 + 28:4004p3 ¼ 0 (9.13)

28:4004p2�56:8008p3 + 28:4004p4 ¼ 0 (9.14)

and
28:4004p3�28:4004p4 ¼ 600 (9.15)

Solve these equations using Thomas’ algorithm.
Solution

The first step is to calculate u1 and g1 using Eqs. (9.6) and (9.7), yielding

u1 ¼ e1=c1 ¼ 28:4004=�85:2012¼�0:333333

and
g1 ¼¼ d1=c1 ¼�227203:2=�85:2012¼ 2666:667

Then, u2 and u3 are calculated in that order using Eq. (9.8), which gives
u2 ¼ e2= c2�w2u1ð Þ¼ 28:4004= �56:8008�28:4004� �0:333333ð Þ½ �
¼�0:600000

and
u3 ¼ e3= c3�w3u2ð Þ¼ 28:4004= �56:8008�28:4004� �0:600000ð Þ½ �
¼�0:714286

This is followed by calculating g2, g3, and g4 in that order using Eq. (9.9),
resulting in

g2 ¼ d2�w2g1ð Þ
c2�w2u1ð Þ ¼

0�28:4004�2666:667ð Þ
�56:8008�28:4004� �0:333333ð Þ½ � ¼ 1600:000

g3 ¼ d3�w3g2ð Þ
c3�w3u2ð Þ ¼

0�28:4004�1600:000ð Þ
�56:8008�28:4004� �0:600000ð Þ½ � ¼ 1142:857
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and
g4 ¼ d4�w4g3ð Þ
c4�w4u3ð Þ ¼

600�28:4004�1142:857ð Þ
�28:4004�28:4004� �0:714286ð Þ½ � ¼ 3926:06

Then x4¼g4 is set according to Eq. (9.10), yielding
x4 ¼ g4 ¼ 3929:06

This is followed by calculating x3, x2, and x1 in that order using Eq. (9.11),
which gives

x3 ¼ g3�u3x4 ¼ 1142:857� �0:714286ð Þ�3926:06¼ 3947:18

x2 ¼ g2�u2x3 ¼ 1600:000� �0:600000ð Þ�3947:18¼ 3968:31

and
x1 ¼ g1�u1x2 ¼ 2666:667� �0:333333ð Þ�3968:31¼ 3989:44

Table 9.1 shows the results of the calculations as outlined here. The solution
vector given in the last column in Table 9.1 is

x
!¼

x1
x2
x3
x4

2
664

3
775¼

3989:44
3968:31
3947:18
3926:06

2
664

3
775 (9.16)

Therefore, the pressure solution of the set of equations in this example is
p1¼3989.44 psia, p2¼3968.31 psia, p3¼3947.18 psia, and p4¼3926.06 psia.
9.2.2 1-D tangential flow problem (Tang’s algorithm)

This algorithm is applicable when flow takes place only in the θ direction; that

is, there is one row of blocks arranged in a circle as shown in Fig. 9.1c (with

N¼nθ). This is a 1-D flow problem that results in equations similar in form

to those given by Eq. (9.2b) for a 1-D rectangular flow problem.

The equation for the first block (i¼1) has the form

w1xN + c1x1 + e1x2 ¼ d1 (9.17a)

The equation for blocks i¼2, 3, …, N�1 has the form
wixi�1 + cixi + eixi+ 1 ¼ di (9.17b)

The equation for the last block (i¼N) has the form
wNxN�1 + cNxN + eNx1 ¼ dN (9.17c)

Note that Eqs. (9.17a) and (9.17c) have coefficients w1 and eN, respectively,

because in this flow problem, blocks 1 and N are neighbors as shown in

Fig. 9.1c.



TABLE 9.1 Use of Thomas’ algorithm to solve the equations of Example 9.1.

i wi ci ei di ui gi xi

1 – �85.2012 28.4004 �227,203.2 �0.333333 2666.667 3989.44

2 28.4004 �56.8008 28.4004 0 �0.600000 1600.000 3968.31

3 28.4004 �56.8008 28.4004 0 �0.714286 1142.857 3947.18

4 28.4004 �28.4004 – 600 – 3926.057 3926.06
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The set of N equations expressed by Eq. (9.17) can be written in a matrix

form as

c1 e1 w1

w2 c2 e2
… … …

… … …

wN�1 cN�1 eN�1

eN wN cN

2
6666664

3
7777775

x1
x2
…

…

xN�1

xN

2
6666664

3
7777775
¼

d1
d2
…

…

dN�1

dN

2
6666664

3
7777775

(9.18)

Tang (1969) presented the following algorithm for the solution of this matrix
equation. As in Thomas’ algorithm, this algorithm is based on LU matrix fac-

torization. Here again, the solution is obtained in two major steps.
9.2.2.1 Forward solution

Set ζ1 ¼ 0 (9.19)

β1 ¼�1 (9.20)

and
γ1 ¼ 0 (9.21)

Set ζ2 ¼
d1
e1

(9.22)

β2 ¼
c1
e1

(9.23)

and
γ2 ¼
w1

e1
(9.24)

For i¼2, 3…N�1,
ζi + 1 ¼�ciζi +wiζi�1�di
ei

(9.25)

βi+ 1 ¼�ciβi +wiβi�1

ei
(9.26)

and
γi+ 1 ¼�ciγi +wiγi�1

ei
(9.27)



Methods of solution of linear equations Chapter 9 337
9.2.2.2 Backward solution

First, calculate

A¼ ζN
1 + γN

(9.28)

B¼ βN
1 + γN

(9.29)

C¼ dN�wNζN�1

cN�wNγN�1

(9.30)

and
D¼ eN�wNβN�1

cN �wNγN�1

(9.31)

Second, calculate the value of the first unknown (x1) and the value of the last

unknown (xN) of the solution vector,

x1 ¼ A�C

B�D
(9.32)

and
xN ¼BC�AD

B�D
(9.33)

Third, calculate the value of the other unknowns of the solution vector. For
i¼2, 3…N�1,

xi ¼ ζi�βix1� γixN (9.34)

The next example demonstrates the application of Tang’s algorithm to solve
the equations of a ring-like 1-D reservoir.

Example 9.2 Using Tang’s algorithm, solve the following set of equations:

2:84004x4�5:68008x1 + 2:84004x2 ¼ 0 (9.35)

2:84004x1�8:52012x2 + 2:84004x3 ¼�22720:32 (9.36)

2:84004x2�5:68008x3 + 2:84004x4 ¼ 0 (9.37)

and
2:84004x3�5:680084x4 + 2:84004x1 ¼ 600 (9.38)

Solution
The first step for the forward solution is to set ζ1¼0, β1¼ �1, and γ1¼0,

according to Eqs. (9.19) through (9.21), and then to calculate ζ2, β2, and γ2 using
Eqs. (9.22), (9.23), and (9.24), which give
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ζ2 ¼ d1=e1 ¼ 0=2:84004¼ 0

β2 ¼ c1=e1 ¼�5:68008=2:84004¼�2

and
γ2 ¼w1=e1 ¼ 2:84004=2:84004¼ 1

The next step is to calculate ζ3 and ζ4 using Eq. (9.25), β3 and β4 using
Eq. (9.26) and γ3 and γ4 using Eq. (9.27), yielding

ζ3 ¼�c2ζ2 +w2ζ1�d2
e2

¼��8:52012�0 + 2:84004�0� �22720:32ð Þ
2:84004

¼�8000

ζ4 ¼�c3ζ3 +w3ζ2�d3
e3

¼��5:68008� �8000ð Þ+ 2:84004�0�0

2:84004
¼�16000

β3 ¼�c2β2 +w2β1
e2

¼��8:52012� �2ð Þ+ 2:84004� �1ð Þ
2:84004

¼�5

β4 ¼�c3β3 +w3β2
e3

¼��5:68008� �5ð Þ+ 2:84004� �2ð Þ
2:84004

¼�8

γ3 ¼�c2γ2 +w2γ1
e2

¼��8:52012�1 + 2:84004�0

2:84004
¼ 3

and
γ4 ¼�c3γ3 +w3γ2
e3

¼��5:68008�3 + 2:84004�1

2:84004
¼ 5

Table 9.2 shows the results of the calculations as outlined here. The forward
substitution step is followed by the backward substitution step, which involves

calculating A, B, C, and D using Eqs. (9.28) through (9.31), resulting in

A¼ ζ4
1 + γ4

¼�16000

1 + 5
¼�2666:667
TABLE 9.2 Use of Tang’s algorithm to solve the equations of Example 9.2.

i wi ci ei di ζ i βi γi

1 2.84004 �5.68008 2.84004 0 0 �1 0

2 2.84004 �8.52012 2.84004 �22,720.32 0 �2 1

3 2.84004 �5.68008 2.84004 0 �8000 �5 3

4 2.84004 �5.68008 2.84004 600 �16,000 �8 5
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B¼ β4
1 + γ4

¼ �8

1 + 5
¼�1:33333

C¼ d4�w4ζ3
c4�w4γ3

¼ 600�2:84004� �8000ð Þ
�5:68008�2:84004�3

¼�1642:253

and
D¼ e4�w4β3
c4�w4γ3

¼ 2:84004�2:84004� �5ð Þ
�5:68008�2:84004�3

¼�1:2

calculating x1 and x4 using Eqs. (9.32) and (9.33), yielding
x1 ¼ A�C

B�D
¼�2666:667� �1642:253ð Þ

�1:33333� �1:2ð Þ ¼ 7683:30

and
x4 ¼BC�AD

B�D
¼�1:33333� �1642:253ð Þ� �2666:667ð Þ� �1:2ð Þ

�1:33333� �1:2ð Þ
¼ 7577:70

and finally calculating x2 and x3 using Eq. (9.34) successively, which gives
x2 ¼ ζ2�β2x1� γ2x4 ¼ 0� �2ð Þ 7683:30ð Þ� 1ð Þ 7577:70ð Þ¼ 7788:90

and
x3 ¼ ζ3�β3x1� γ3x4 ¼�8000� �5ð Þ 7683:30ð Þ� 3ð Þ 7577:70ð Þ¼ 7683:40

Therefore, the solution vector is
x
!¼

x1
x2
x3
x4

2
664

3
775¼

7683:30
7788:90
7683:40
7577:70

2
664

3
775 (9.39)
9.2.3 2-D and 3-D flow problems (sparse matrices)

The linear equations for 2-D and 3-D flow problems can be obtained by (1)

writing the flow equation using the CVFD method, (2) writing the definition

of set ψn for block n in 2-D or 3-D, using Fig. 3.1 for engineering notation

of block identification or Fig. 3.3 for natural ordering of blocks, as explained

in Sections 3.2.1 and 3.2.2, and the definition of set ξn for block n, and (3) writ-
ing the flow equation in an expanded form. For example, we use Eq. (8.1) in step

1 for 3-D flow of an incompressible fluid, yieldingX
l2ψn

Tl,n pl�pnð Þ� γl,n Zl�Znð Þ� �
+
X
l2ξn

qscl,n + qscn ¼ 0 (9.40)
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If the reservoir has no-flow boundaries (ξn¼{} and as a result
X

qscl,n ¼ 0

l2ξn

for all values of n) and if the wells have specified flow rates, Eq. (9.40) can be

rearranged as

X
l2ψn

Tl,npl�
X
l2ψn

Tl,n

 !
pn ¼

X
l2ψn

Tl,nγl,n Zl�Znð Þ��qscn (9.41)

In step 2, we define block n as a block in 3-D space [n� (i, j,k)]. Accord-

ingly, ψn is given as in Fig. 3.3c:

ψn ¼ψ i, j,k ¼ n�nxny
� �

, n�nxð Þ, n�1ð Þ, n+ 1ð Þ, n+ nxð Þ, n+ nxny
� �� 	

(9.42)

provided that the reservoir blocks are ordered using natural ordering, with the
blocks ordered in the i direction, the j direction, and finally the k direction. Now,
Eq. (9.41) and the new definition of ψn given by Eq. (9.42) provide the sought

equation.

In step 3, we expand Eq. (9.41) as

Tn,n�nxnypn�nxny + Tn,n�nxpn�nx + Tn,n�1pn�1 + Tn,n+ 1pn+ 1 + Tn,n+ nxpn+ nx

+ Tn,n+ nxnypn + nxny � Tn,n�nxny + Tn,n�nx + Tn,n�1 + Tn,n+ 1 + Tn,n+ nx + Tn,n+ nxny
� �

pn

¼ ½ Tγð Þn,n�nxny
Zn�nxny �Zn
� �

+ Tγð Þn,n�nx
Zn�nx �Znð Þ+ Tγð Þn,n�1 Zn�1�Znð Þ

+ Tγð Þn,n+ 1 Zn + 1�Znð Þ+ Tγð Þn,n + nx Zn + nx�Znð Þ+ Tγð Þn,n+ nxny Zn+ nxny�Zn
� ���qscn

(9.43)

The unknown pressures in Eq. (9.43) are rearranged in the order shown in
Fig. 9.2, yielding

Tn,n�nxnypn�nxny + Tn,n�nxpn�nx + Tn,n�1pn�1

� Tn,n�nxny + Tn,n�nx + Tn,n�1 + Tn,n+ 1 + Tn,n+ nx + Tn,n+ nxny
� �

pn
+Tn,n + 1pn+ 1 + Tn,n+ nxpn+ nx + Tn,n + nxnypn+ nxny
¼ ½ Tγð Þn,n�nxny

Zn�nxny �Zn
� �

+ Tγð Þn,n�nx
Zn�nx �Znð Þ+ Tγð Þn,n�1 Zn�1�Znð Þ

+ Tγð Þn,n+ 1 Zn+ 1�Znð Þ+ Tγð Þn,n+ nx Zn+ nx�Znð Þ+ Tγð Þn,n+ nxny Zn+ nxny�Zn
� ���qscn

(9.44)
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FIG. 9.2 Ordering of unknowns of neighboring blocks in flow equations.
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Eq. (9.44) is the linear equation for 3-D flow of an incompressible fluid. The
unknowns in this equation are pn�nxny, pn�nx, pn�1, pn, pn+1, pn+nx, and pn+nxny.
Eq. (9.44) can be expressed as

bnxn�nxny + snxn�nx +wnxn�1 + cnxn + enxn+ 1 + nnxn+ nx + anxn+ nxny ¼ dn (9.45)

where
bn ¼ Tn,n�nxny ¼ Tzi, j,k�1=2
(9.46a)

sn ¼ Tn,n�nx ¼ Tyi, j�1=2,k (9.46b)

wn ¼ Tn,n�1 ¼ Txi�1=2, j,k (9.46c)

en ¼ Tn,n+ 1 ¼ Txi+ 1=2, j,k (9.46d)

nn ¼ Tn,n+ nx ¼ Tyi, j + 1=2,k (9.46e)

an ¼ Tn,n+ nxny ¼ Tzi, j,k + 1=2 (9.46f)

cn ¼� bn + sn +wn + en + nn + anð Þ (9.46g)

and
dn ¼ ½ bγð Þn Zn�nxny �Zn
� �

+ sγð Þn Zn�nx �Znð Þ+ wγð Þn Zn�1�Znð Þ
+ eγð Þn Zn+ 1�Znð Þ+ nγð Þn Zn+ nx �Znð Þ+ aγð Þn Zn+ nxny �Zn

� ���qscn
(9.46h)

If Eq. (9.45) is written for each block n¼1, 2, 3…, N where N¼nx�ny�nz

in a rectangular reservoir, the matrix equation will have seven diagonals

(a heptadiagonal coefficient matrix) as shown in Fig. 9.3c. Fluid flow in a

2-D reservoir (bn¼an¼0) with regular boundaries results in a matrix equation

with five diagonals (a pentadiagonal coefficient matrix) as shown in Fig. 9.3b.

Fluid flow in a 1-D reservoir (bn¼ sn¼nn¼an¼0) results in a matrix equation

with three diagonals (a tridiagonal coefficient matrix) as shown in Fig. 9.3a.
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FIG. 9.3 Coefficient matrices in 1-D, 2-D, and 3-D flow problems. (a) Tridiagonal matrix,

(b) Pentadiagonal matrix, and (c) Heptadiagonal matrix.
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The solutions of these matrix equations can be obtained using a g-band

matrix solver. Such a solver is nothing more than Gaussian elimination using

LU factorization, which operates only on elements within the outermost bands

of the sparse matrix. Zeros outside the outermost bands are not operated on. The

number of row (or column) elements within the outermost bands is called the

bandwidth (2bw+1), where bw¼1 for 1-D flow problems, bw¼nx for 2-D flow

problems, and bw¼nx�ny for 3-D flow problems as shown in Fig. 9.3. The fol-

lowing algorithm is a g-band algorithm. The g-band algorithm is executed in

three major steps: the initialization step, the forward elimination step, and

the back substitution step.
9.2.3.1 Initialization step

For i¼1, 2, …N, set

d
0ð Þ
i ¼ di (9.47)

jmin ¼ max 1, i�bwð Þ (9.48a)

jmax ¼ min i + bw, Nð Þ (9.48b)

and
a
0ð Þ
i, j ¼ ai, j (9.49)

for j¼ jmin, jmin+1, … jmax.
9.2.3.2 Forward elimination step

For i¼1, 2, …N, set

d
ið Þ
i ¼ d

i�1ð Þ
i

a
i�1ð Þ
i, i

(9.50)

jmax ¼ min i + bw, Nð Þ (9.48b)

a
ið Þ
i, j ¼

a
i�1ð Þ
i, j

a
i�1ð Þ
i, i

(9.51a)

for j¼ i, i+1, … jmax, and
a
ið Þ
i, i ¼ 1 (9.51b)

For k¼ i+1, i+2, … jmax, set
d
ið Þ
k ¼ d

i�1ð Þ
k �d

ið Þ
i a

i�1ð Þ
k, i (9.52)

a
ið Þ
k, j ¼ a

i�1ð Þ
k, j �a

ið Þ
i, ja

i�1ð Þ
k, i (9.53a)
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for j¼ i, i+1, … jmax, and
a
ið Þ
k, i ¼ 0 (9.53b)
9.2.3.3 Back substitution step

Set xN ¼ d
Nð Þ
N (9.54)

For i¼N�1, N�2, …2, 1, set
jmax ¼ min i + bw, Nð Þ (9.48b)

and
xi ¼ d
Nð Þ
i �

Xjmax

j¼i+ 1

a
Nð Þ
i, j xj (9.55)

The FORTRAN computer codes that use this algorithm are available in the
literature (Aziz and Settari, 1979; Abou-Kassem and Ertekin, 1992). Such pro-

grams require storing matrix elements within the outermost bands row-wise in

a vector (a one-dimensional matrix).

9.3 Iterative solution methods

Iterative solution methods produce the solution vector for a given system of

equations as the limit of a sequence of intermediate vectors that progressively

converge toward the solution. Iterative solution methods do not require storing

the coefficient matrix [A] as in the direct solution methods. In addition, these

methods do not suffer from the accumulation of roundoff errors that occur dur-

ing computations. In iterative methods, the reservoir blocks are usually ordered

using natural ordering. In the following presentation, the blocks are ordered

along the x-direction, then along the y-direction, and finally along the z-direc-
tion. We discuss basic iterative methods such as the point iterative methods

[Jacobi, Gauss-Seidel, or point successive overrelaxation (PSOR)] that are most

useful in solving equations for 1-D problems, line SOR (LSOR), and block SOR

(BSOR) methods and alternating direction implicit procedure (ADIP) that are

useful in solving equations for 2-D and 3-D problems. Although these methods

are practically unused in today’s simulators because of the development of

advanced and more powerful iterative methods, they are sufficient for single-

phase flow problems. We will use Eq. (9.45) to demonstrate the application

of the various iterative solution methods for 1-D, 2-D, and 3-D problems. Ini-

tiation of the iterative methods requires the assignment of initial guesses for all

the unknowns. For flow problems involving an incompressible fluid, the initial

guess for unknown xn is taken as zero; that is, xn
(0)¼0. For flow problems involv-

ing slightly compressible and compressible fluids, the initial guess for unknown

xn for the first outer iteration (k¼1) is taken as the value of the unknown at the
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old time level (pn
n); that is, xn

(0)¼pn
n. However, for the second (k¼2), third (k¼3),

and higher (k¼4, 5,…) outer iterations, the initial guess for unknown xn is taken

as the value of the unknown at the latest outer iteration; that is, x(0)n ¼pn
n+1
(k�1)

. Outer

iterations refer to the iterations used to linearize the equations in the process of

advancing the pressure solution from old time level n to new time level n+1.
9.3.1 Point iterative methods

Point iterative methods include the point Jacobi, point Gauss-Seidel, and point

successive overrelaxation (PSOR) methods. In these methods, the solution, at

any iteration level (v+1), is obtained by solving for one unknown using one

equation at a time. They start with the equation for block 1, followed by the

equation for block 2, and proceed block by block (or point by point) to the last

block (block N). Though these methods can be used for multidimensional prob-

lems, their use is recommended for 1-D problems because of their extremely

slow convergence.
9.3.1.1 Point Jacobi method

To write the point Jacobi iterative equation for 1-D problems, we have to solve

for the unknown of a general block n (xn in this case) using the linear equation

for the same block (Eq. 9.45 with bn¼ sn¼nn¼an¼0); that is,

xn ¼ 1

cn
dn�wnxn�1� enxn+ 1ð Þ (9.56)

The unknown for block n on the LHS of the resulting equation (Eq. 9.56) is
assigned current iteration level (v+1), whereas all other unknowns on the RHS
of Eq. (9.56) are assigned old iteration level (ν). The point Jacobi iterative

scheme becomes

x ν + 1ð Þ
n ¼ 1

cn
dn�wnx

νð Þ
n�1� enx

νð Þ
n+ 1


 �
(9.57)

where n¼1, 2, …N and v¼0, 1, 2, …
The iteration process starts from ν¼0 and uses initial guess values for all

unknowns (say, x
! 0ð Þ ¼0

!
for incompressible flow problems or the old time value,

x
! 0ð Þ ¼ x

!n for slightly compressible and compressible flow problems as men-

tioned earlier in the introduction in Section 9.3).We start with block 1, then block

2, …, until block N and estimate the results of the first iteration (x
! 1ð Þ). The

process is repeated for ν¼1, and second iteration estimates for all unknowns

are obtained (x
! 2ð Þ). Iterations continue until a specified convergence criterion

is satisfied. One form of convergence criterion is related to themaximum absolute

difference between the successive iterations among all blocks; that is,
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d ν+ 1ð Þ
max � ε (9.58)

where
d ν+ 1ð Þ
max ¼ max

1�n�N
x ν + 1ð Þ
n � x νð Þ

n

�� �� (9.59)

and ε is some acceptable tolerance.
A better convergence criterion is related to the residual (rn) of the linear

equation (Aziz and Settari, 1979):

max
1�n�N

r ν+ 1ð Þ
n

�� ��� ε (9.60)

The residual of Eq. (9.45) is defined as
rn ¼ bnxn�nxny + snxn�nx +wnxn�1 + cnxn + enxn+ 1 + nnxn+ nx + anxn+ nxny �dn

(9.61)

Fig. 9.4 shows the iteration level of the unknowns of the neighboring blocks
that usually appear in iterative equations of the point Jacobi method in multi-

dimensional problems. Fig. 9.5 illustrates the application of the method in a 2-D

reservoir. It should be noted that the point Jacobi method requires storing the old

iterate values of all unknowns. In addition, the convergence of this method is

extremely slow. In Example 9.3, we apply the point Jacobi iterative method

to solve the equations of a 1-D reservoir.

Example 9.3 The following equations were obtained for the 1-D reservoir in

Example 7.1 and were solved in Example 9.1:

�85:2012p1 + 28:4004p2 ¼�227203:2 (9.12)

28:4004p1�56:8008p2 + 28:4004p3 ¼ 0 (9.13)

28:4004p2�56:8008p3 + 28:4004p4 ¼ 0 (9.14)
x
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FIG. 9.4 Iteration level of the unknowns of the neighboring blocks in the point Jacobi method.
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and
28:4004p3�28:4004p4 ¼ 600 (9.15)

Solve these equations using the point Jacobi iterative method.
Solution

First, we solve for p1 using Eq. (9.12), p2 using Eq. (9.13), p3 using

Eq. (9.14), and p4 using Eq. (9.15):

p1 ¼ 2666:6667 + 0:33333333p2 (9.62)

p2 ¼ 0:5 p1 + p3ð Þ (9.63)

p3 ¼ 0:5 p2 + p4ð Þ (9.64)

and
p4 ¼�21:126463 + p3 (9.65)

Second, the Jacobi iterative equations are obtained by placing levels of iter-
ation according to Eq. (9.57),

p
v+ 1ð Þ
1 ¼ 2666:6667 + 0:33333333p

vð Þ
2 (9.66)

p
v+ 1ð Þ
2 ¼ 0:5 p

vð Þ
1 + p

vð Þ
3


 �
(9.67)

p
v+ 1ð Þ
3 ¼ 0:5 p

vð Þ
2 + p

vð Þ
4


 �
(9.68)

and
p
v + 1ð Þ
4 ¼�21:126463 + p

vð Þ
3 (9.69)
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With an initial guess of 0 for all unknowns, the Jacobi iterative equations for
the first iteration (ν¼0) predict

p
1ð Þ
1 ¼ 2666:6667 + 0:33333333p

0ð Þ
2 ¼ 2666:6667 + 0:33333333 0ð Þ

¼ 2666:6667

p
1ð Þ
2 ¼ 0:5 p

0ð Þ
1 + p

0ð Þ
3


 �
¼ 0:5 0 + 0ð Þ¼ 0

p
1ð Þ
3 ¼ 0:5 p

0ð Þ
2 + p

0ð Þ
4


 �
¼ 0:5 0 + 0ð Þ¼ 0

and
p
1ð Þ
4 ¼�21:126463 + p

0ð Þ
3 ¼�21:126463 + 0¼�21:126463

For the second iteration (ν¼1), the Jacobi iterative equations predict
p
2ð Þ
1 ¼ 2666:6667 + 0:33333333p

1ð Þ
2 ¼ 2666:6667 + 0:33333333 0ð Þ

¼ 2666:6667

p
2ð Þ
2 ¼ 0:5 p

1ð Þ
1 + p

1ð Þ
3


 �
¼ 0:5 2666:6667 + 0ð Þ¼ 1333:33335

p
2ð Þ
3 ¼ 0:5 p

1ð Þ
2 + p

1ð Þ
4


 �
¼ 0:5 0�21:126463ð Þ¼�10:5632315

and
p
2ð Þ
4 ¼�21:126463 + p

1ð Þ
3 ¼�21:126463 + 0¼�21:126463

The procedure continues until the convergence criterion is satisfied. The
convergence criterion set for this problem is ε�0.0001. Table 9.3 presents

the solution within the specified tolerance obtained after 159 iterations. At con-

vergence, the maximum absolute difference calculated using Eq. (9.59) was

0.0000841.
9.3.1.2 Point Gauss-Seidel method

The point Gauss-Seidel method differs from the point Jacobi method in that it

uses the latest available iterates of the unknowns in computing the unknown for

block n at the current iteration (xn
(ν+1)). When we obtain the current iteration

value for the unknown for block n, we already have obtained the current iter-

ation values for the unknowns for blocks 1, 2,…, and n�1 that precede block n.
The unknowns for blocks n+1, n+2, …, and N still have their latest iteration

value at iteration level v. Therefore, the point Gauss-Seidel iterative equation

for block n in 1-D problems is

x ν+ 1ð Þ
n ¼ 1

cn
dn�wnx

ν+ 1ð Þ
n�1 � enx

νð Þ
n + 1


 �
(9.70)



TABLE 9.3 Jacobi iteration for Example 9.3.

ν+1 p1 p2 p3 p4 dmax
(ν+1)

0 0 0 0 –

1 2666.67 0.00 0.00 �21.13 2666.6667

2 2666.67 1333.33 �10.56 �21.13 1333.3333

3 3111.11 1328.05 656.10 �31.69 666.6667

4 3109.35 1883.61 648.18 634.98 666.6667

5 3294.54 1878.77 1259.29 627.05 611.1111

6 3292.92 2276.91 1252.91 1238.17 611.1111

7 3425.64 2272.92 1757.54 1231.78 504.6296

… … … … … …

21 3855.62 3565.91 3427.17 3285.97 120.0747

22 3855.30 3641.40 3425.94 3406.05 120.0747

23 3880.47 3640.62 3523.72 3404.81 97.7808

24 3880.21 3702.09 3522.72 3502.60 97.7808

… … … … … …

45 3978.06 3934.09 3902.96 3871.62 10.2113

46 3978.03 3940.51 3902.86 3881.84 10.2113

47 3980.17 3940.44 3911.17 3881.73 8.3154

48 3980.15 3945.67 3911.09 3890.05 8.3154

… … … … … …

67 3988.25 3964.74 3942.57 3920.37 1.0664

68 3988.25 3965.41 3942.55 3921.44 1.0664

69 3988.47 3965.40 3943.42 3921.43 0.8684

70 3988.47 3965.95 3943.41 3922.30 0.8684

… … … … … …

90 3989.31 3968.01 3946.70 3925.58 0.1114

91 3989.34 3968.01 3946.79 3925.57 0.0907

92 3989.34 3968.06 3946.79 3925.66 0.0907

93 3989.35 3968.06 3946.86 3925.66 0.0738

… … … … … …

112 3989.42 3968.28 3947.13 3926.01 0.0116

113 3989.43 3968.28 3947.14 3926.01 0.0095

… … … … … …

158 3989.44 3968.31 3947.18 3926.06 0.0001

159 3989.44 3968.31 3947.18 3926.06 0.0001
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It should be mentioned that not only does the point Gauss-Seidel method not
require storing the old iterate value of the unknowns but also it is easier to pro-

gram and converges twice as fast as the point Jacobi method. Fig. 9.6 shows the

iteration level of the unknowns of the neighboring blocks that usually appear in

iterative equations in multidimensional problems. Fig. 9.7 illustrates the appli-

cation of the method in a 2-D reservoir. Example 9.4 demonstrates the applica-

tion of this iterative method to solve the equations presented in Example 9.3.

Observe the improvement in the rate of convergence over that of the point

Jacobi method.

Example 9.4 The following equations were obtained for the 1-D reservoir in

Example 7.1:

�85:2012p1 + 28:4004p2 ¼�227203:2 (9.12)
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28:4004p1�56:8008p2 + 28:4004p3 ¼ 0 (9.13)

28:4004p2�56:8008p3 + 28:4004p4 ¼ 0 (9.14)

and
28:4004p3�28:4004p4 ¼ 600 (9.15)

Solve these equations using the point Gauss-Seidel iterative method.
Solution

First, we solve for p1 using Eq. (9.12), p2 using Eq. (9.13), p3 using

Eq. (9.14), and p4 using Eq. (9.15) as in Example 9.3:

p1 ¼ 2666:6667 + 0:33333333p2 (9.62)

p2 ¼ 0:5 p1 + p3ð Þ (9.63)

p3 ¼ 0:5 p2 + p4ð Þ (9.64)

and
p4 ¼�21:126463 + p3 (9.65)

Second, the Gauss-Seidel iterative equations are obtained by placing levels
of iteration according to Eq. (9.70):

p
v+ 1ð Þ
1 ¼ 2666:6667 + 0:33333333p

vð Þ
2 (9.71)

p
v+ 1ð Þ
2 ¼ 0:5 p

v + 1ð Þ
1 + p

vð Þ
3


 �
(9.72)

p
v+ 1ð Þ
3 ¼ 0:5 p

v + 1ð Þ
2 + p

vð Þ
4


 �
(9.73)

and
p
v + 1ð Þ
4 ¼�21:126463 + p

v + 1ð Þ
3 (9.74)

With an initial guess of 0 for all unknowns, the Gauss-Seidel iterative equa-
tions for the first iteration (ν¼0) predict

p
1ð Þ
1 ¼ 2666:6667 + 0:33333333p

0ð Þ
2 ¼ 2666:6667 + 0:33333333 0ð Þ

¼ 2666:6667

p
1ð Þ
2 ¼ 0:5 p

1ð Þ
1 + p

0ð Þ
3


 �
¼ 0:5 2666:6667 + 0ð Þ¼ 1333:33335

p
1ð Þ
3 ¼ 0:5 p

1ð Þ
2 + p

0ð Þ
4


 �
¼ 0:5 1333:33335 + 0ð Þ¼ 666:66668

and
p
1ð Þ
4 ¼�21:126463 + p

1ð Þ
3 ¼�21:126463 + 666:66668¼ 645:54021
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For the second iteration (ν¼1), the Gauss-Seidel iterative equations predict
p
2ð Þ
1 ¼ 2666:6667 + 0:33333333 p

1ð Þ
2 ¼ 2666:6667 + 0:33333333 1333:33335ð Þ

¼ 3111:11115

p
2ð Þ
2 ¼ 0:5 p

2ð Þ
1 + p

1ð Þ
3


 �
¼ 0:5 3111:11115 + 666:66668ð Þ¼ 1888:88889

p
2ð Þ
3 ¼ 0:5 p

2ð Þ
2 + p

1ð Þ
4


 �
¼ 0:5 1888:88889 + 645:54021ð Þ¼ 1267:21455

and
p
2ð Þ
4 ¼�21:126463 + p

2ð Þ
3 ¼�21:126463 + 1267:21455¼ 1246:08809

The procedure continues until the convergence criterion is satisfied. The
convergence criterion set for this problem is ε�0.0001. Table 9.4 presents

the solution within the specified tolerance obtained after 79 iterations. At con-

vergence, the maximum absolute difference calculated using Eq. (9.59) was

0.0000828.
TABLE 9.4 Gauss-Seidel iteration for Example 9.4.

ν+1 p1 p2 p3 p4 dmax
(ν+1)

0 0 0 0 –

1 2666.67 1333.33 666.67 645.54 2666.6667

2 3111.11 1888.89 1267.21 1246.09 600.5479

3 3296.30 2281.76 1763.92 1742.80 496.7072

4 3427.25 2595.59 2169.19 2148.06 405.2693

5 3531.86 2850.53 2499.30 2478.17 330.1046

6 3616.84 3058.07 2768.12 2746.99 268.8234

7 3686.02 3227.07 2987.03 2965.91 218.9128

8 3742.36 3364.69 3165.30 3144.17 178.2681

9 3788.23 3476.77 3310.47 3289.34 145.1697

10 3825.59 3568.03 3428.69 3407.56 118.2165

11 3856.01 3642.35 3524.95 3503.83 96.2677

12 3880.78 3702.87 3603.35 3582.22 78.3940

… … … … … …

21 3972.33 3926.51 3893.04 3871.91 12.3454

22 3975.50 3934.27 3903.09 3881.96 10.0532

23 3978.09 3940.59 3911.28 3890.15 8.1867

Continued



TABLE 9.4 Gauss-Seidel iteration for Example 9.4.—cont’d

ν+1 p1 p2 p3 p4 dmax
(ν+1)

… … … … … …

32 3987.65 3963.94 3941.53 3920.40 1.2892

33 3987.98 3964.76 3942.58 3921.45 1.0499

34 3988.25 3965.42 3943.43 3922.31 0.8549

… … … … … …

42 3989.21 3967.75 3946.46 3925.33 0.1653

43 3989.25 3967.85 3946.59 3925.47 0.1346

44 3989.28 3967.94 3946.70 3925.58 0.1096

45 3989.31 3968.01 3946.79 3925.67 0.0893

46 3989.34 3968.06 3946.86 3925.74 0.0727

… … … … … …

78 3989.44 3968.31 3947.18 3926.06 0.0001

79 3989.44 3968.31 3947.18 3926.06 0.0001
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9.3.1.3 Point SOR method

The point SOR (PSOR) method offers improvements in convergence over the

point Gauss-Seidel method by making use of the latest iterate value of the

unknown (xn
(ν)) and introducing a parameter (ω) that accelerates convergence.

Starting with the Gauss-Seidel method for 1-D problems, an intermediated

value is estimated:

x∗ ν+ 1ð Þ
n ¼ 1

cn
dn�wnx

ν+ 1ð Þ
n�1 � enx

νð Þ
n + 1


 �
(9.75)

Fig. 9.8 shows the iteration level of the unknowns of the neighboring blocks
that are used to estimate the intermediate value of the unknown of block

n (xn
∗(v+1)). Fig. 9.9 illustrates the application of this step of the method in a

2-D reservoir. This intermediate value is improved and accelerated to obtain

the current iterate value of the unknown before moving on to the next block:

x ν+ 1ð Þ
n ¼ 1�ωð Þx νð Þ

n +ωx∗ ν+ 1ð Þ
n (9.76)

where 1�ω�2. The acceleration parameter has an optimum value that is called
the optimum overrelaxation parameter (ωopt). The use of this optimum value

improves the convergence of the PSOR method that is roughly twice the
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convergence rate of the point Gauss-Seidel method. The optimum overrelaxa-

tion parameter is estimated using

ωopt ¼ 2

1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρGS

p (9.77)

where
ρGS ¼
d

ν+ 1ð Þ
max

d
νð Þ
max

(9.78)

is obtained from the Gauss-Seidel method for sufficiently large values of ν. This

means that the overrelaxation parameter (ωopt) is estimated by solving
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Eqs. (9.75) and (9.76) withω¼1 until ρGS, estimated using Eq. (9.78), stabilizes

(converges within 0.2%); then Eq. (9.77) is used. For 2-D and 3-D problems,

Eq. (9.75) is replaced with the appropriate equation. Example 9.5 demonstrates

the application of this iterative method to solve the equations presented in

Example 9.3. Observe the improvement in the rate of convergence over that

of the Gauss-Seidel method.

Example 9.5 The following equations were obtained for the 1-D reservoir in

Example 7.1:

�85:2012p1 + 28:4004p2 ¼�227203:2 (9.12)

28:4004p1�56:8008p2 + 28:4004p3 ¼ 0 (9.13)

28:4004p2�56:8008p3 + 28:4004p4 ¼ 0 (9.14)

and
28:4004p3�28:4004p4 ¼ 600 (9.15)

Solve these equations using the PSOR iterative method.
Solution

First, we estimate the optimum overrelaxation parameter (ωopt) using

Eq. (9.77). This equation requires an estimate of the spectral radius that can

be obtained by applying Eq. (9.78) and the Gauss-Seidel iteration as in

Example 9.4. Table 9.5 shows that the spectral radius converges to 0.814531

within 0.15% after five iterations. Now, we can estimate ωopt from Eq. (9.77) as

ωopt ¼ 2

1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�0:814531

p ¼ 1:397955

To write the PSOR iterative equations, we first write the Gauss-Seidel iter-

ative equations as in Example 9.4:

p
v+ 1ð Þ
1 ¼ 2666:6667 + 0:33333333p

vð Þ
2 (9.71)
TABLE 9.5 Determination of spectral radius for Example 9.5.

ν+1 p1 p2 p3 p4 dmax
(ν+1) ρGS

0 0 0 0 – –

1 2666.67 1333.33 666.67 645.54 2666.6667 –

2 3111.11 1888.89 1267.21 1246.09 600.5479 0.225205

3 3296.30 2281.76 1763.92 1742.80 496.7072 0.827090

4 3427.25 2595.59 2169.19 2148.06 405.2693 0.815912

5 3531.86 2850.53 2499.30 2478.17 330.1046 0.814531
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p
v+ 1ð Þ
2 ¼ 0:5 p

v + 1ð Þ
1 + p

vð Þ
3


 �
(9.72)

p
v+ 1ð Þ
3 ¼ 0:5 p

v + 1ð Þ
2 + p

vð Þ
4


 �
(9.73)

and
p
v+ 1ð Þ
4 ¼�21:126463 + p

v + 1ð Þ
3 (9.74)

Then, applying Eq. (9.76), the PSOR iterative equations become
p
v + 1ð Þ
1 ¼ 1�ωopt

� �
p

vð Þ
1 +ωopt 2666:6667 + 0:33333333p

vð Þ
2

h i
(9.79)

p
v+ 1ð Þ
2 ¼ 1�ωopt

� �
p

vð Þ
2 +ωopt 0:5 p

v+ 1ð Þ
1 + p

vð Þ
3


 �h i
(9.80)

p
v+ 1ð Þ
3 ¼ 1�ωopt

� �
p

vð Þ
3 +ωopt 0:5 p

v+ 1ð Þ
2 + p

vð Þ
4


 �h i
(9.81)

and
p
v+ 1ð Þ
4 ¼ 1�ωopt

� �
p

vð Þ
4 +ωopt �21:126463 + p

v+ 1ð Þ
3

h i
(9.82)

We continue the solution process with the PSOR iterative equations using
ωopt¼1.397955 and starting with the results of the last Gauss-Seidel iteration,

shown as the fifth iteration in Table 9.5, as an initial guess. The PSOR iterative

equations for the first iteration (ν¼0) predict

p
1ð Þ
1 ¼ 1�ωopt

� �
p

0ð Þ
1 +ωopt 2666:6667 + 0:33333333p

0ð Þ
2

h i
¼ 1�1:397955ð Þ 3531:86ð Þ+ 1:397955ð Þ 2666:6667 + 0:33333333�2850:53½ �
¼ 3650:66047

p
1ð Þ
2 ¼ 1�ωopt

� �
p

0ð Þ
2 +ωopt 0:5 p

1ð Þ
1 + p

0ð Þ
3


 �h i
¼ 1�1:397955ð Þ 2850:53ð Þ+ 1:397955ð Þ 0:5 3650:66047 + 2499:30ð Þ½ �
¼ 3164:29973

p
1ð Þ
3 ¼ 1�ωopt

� �
p

0ð Þ
3 +ωopt 0:5 p

1ð Þ
2 + p

0ð Þ
4


 �h i
¼ 1�1:397955ð Þ 2499:30ð Þ+ 1:397955ð Þ 0:5 3164:29973 + 2478:17ð Þ½ �
¼ 2949:35180

and
p
1ð Þ
4 ¼ 1�ωopt

� �
p

0ð Þ
4 +ωopt �21:126463 + p

1ð Þ
3

h i
¼ 1�1:397955ð Þ 2478:17ð Þ+ 1:397955ð Þ �21:126463 + 2949:35180½ �
¼ 3107:32771

We continue with the second iteration using Eqs. (9.79) through (9.82), fol-
lowed by the third iteration, and the iteration process is repeated until the



TABLE 9.6 PSOR iteration for Example 9.5.

ν+1 p1 p2 p3 p4 dmax
(ν+1)

3531.86 2850.53 2499.30 2478.17 –

1 3650.66 3164.30 2949.35 3107.33 629.1586

2 3749.60 3423.17 3390.96 3474.30 441.6074

3 3830.85 3685.62 3655.17 3697.62 264.2122

4 3920.82 3828.73 3806.16 3819.82 150.9853

5 3951.70 3898.91 3880.53 3875.16 74.3782

6 3972.11 3937.23 3916.41 3903.29 38.3272

7 3981.85 3953.87 3933.42 3915.88 17.0095

8 3985.72 3961.84 3941.03 3921.50 7.97870

9 3987.90 3965.51 3944.49 3924.10 3.66090

10 3988.74 3967.06 3946.01 3925.20 1.5505

11 3989.13 3967.78 3946.68 3925.69 0.7205

12 3989.31 3968.08 3946.97 3925.90 0.3034

13 3989.38 3968.21 3947.09 3925.99 0.1311

14 3989.41 3968.27 3947.14 3926.03 0.0578

15 3989.43 3968.29 3947.17 3926.05 0.0237

16 3989.43 3968.30 3947.18 3926.05 0.0104

17 3989.44 3968.31 3947.18 3926.06 0.0043

18 3989.44 3968.31 3947.18 3926.06 0.0018

19 3989.44 3968.31 3947.18 3926.06 0.0008

20 3989.44 3968.31 3947.18 3926.06 0.0003

21 3989.44 3968.31 3947.18 3926.06 0.0001

22 3989.44 3968.31 3947.18 3926.06 0.0001
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convergence criterion is satisfied. The convergence criterion set for this prob-

lem is ε�0.0001. Table 9.6 presents the solution within the specified tolerance

obtained after 22 iterations. The total number of iterations, including the Gauss-

Seidel iterations necessary to estimate the optimum relaxation parameter, is 27.

At convergence, the maximum absolute difference calculated using Eq. (9.59)

was 0.00006.
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9.3.2 Line and block SOR methods

Although point iterative methods can be used to solve equations for 2-D and 3-D

problems, they are inefficient because of their extremely slow convergence. The

line SOR (LSOR) and block SOR (BSOR) methods are more efficient in solving

equations for these problems. The overrelaxation parameter (ωopt) is estimated

using the point Gauss-Seidel method until ρGS stabilizes and then using

Eq. (9.77) as mentioned in Section 9.3.1.3.

9.3.2.1 Line SOR method

In the LSOR method, the reservoir is looked at as consisting of group of lines.

These lines are usually aligned with the direction of highest transmissibility

(Aziz and Settari, 1979) and are taken in order, one line at a time. For example,

for a 2-D reservoir having the highest transmissibility along the x-direction,
the lines are chosen parallel to the x-axis. Then, the lines are taken in order,

one at a time for j¼1, 2, 3, …, ny. In other words, the lines are swept in the

y-direction. First, the equations for all blocks in a given line (line j) are written.
In writing the equations for the current line (line j), the unknowns for the pre-
ceding line (line j �1) are assigned current iteration level ν+1, and those for

the succeeding line (line j+1) are assigned old iteration level ν as shown in

Fig. 9.10a. In addition, the unknowns for the current line are assigned current

iteration level ν+1.
First, the equations for line j are written

wnx
ν+ 1ð Þ
n�1 + cnx

ν+ 1ð Þ
n + enx

ν+ 1ð Þ
n+ 1 ¼ dn� snx

ν+ 1ð Þ
n�nx

�nnx
νð Þ
n+ nx (9.83)

for n¼ i+(j�1)�nx; i¼1, 2, …, nx.

Second, the resulting nx equations for the current line (line j) are solved

simultaneously, using Thomas’ algorithm, for the intermediate values of the

unknowns for the current line (line j) at current iteration level ν+1 (e.g., line

j¼3 in Fig. 9.10a):

wnx∗
ν+ 1ð Þ

n�1 + cnx∗
ν+ 1ð Þ

n + enx∗
ν+ 1ð Þ

n+ 1 ¼ dn� snx
ν+ 1ð Þ
n�nx

�nnx
νð Þ
n+ nx (9.84)

for n¼ i+(j�1)�nx; i¼1, 2, …, nx.

Third, the intermediate solution for the current line (line j) is accelerated,

using the acceleration parameter, to obtain the current iterate values of the

unknowns for line j:

x ν+ 1ð Þ
n ¼ 1�ωð Þx νð Þ

n +ωx∗ ν+ 1ð Þ
n (9.85)

for n¼ i+(j�1)�nx; i¼1, 2, …, nx.

It should be mentioned that the improvement in the convergence of the

LSOR method over the PSOR method is achieved because more unknowns

are solved simultaneously at current iteration level ν+1.
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LSOR method. (a) y-direction sweep and (b) x-direction sweep.
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If lines are swept in the x-direction as shown in Fig. 9.10b, they are taken in
order one at a time for i¼1, 2, 3,…, nx, and Eqs. (9.84) and (9.85) are replaced
with Eqs. (9.86) and (9.87):

snx∗
ν+ 1ð Þ

n�nx
+ + cnx∗

ν+ 1ð Þ
n + nnx∗

ν+ 1ð Þ
n+ nx ¼ dn�wnx

ν+ 1ð Þ
n�1 + � enx

νð Þ
n + 1 (9.86)

for n¼ i+(j�1)�nx; j¼1, 2, …, ny and
x ν+ 1ð Þ
n ¼ 1�ωð Þx νð Þ

n +ωx∗ ν+ 1ð Þ
n (9.87)

for n¼ i+(j�1)�nx; j¼1, 2, …, ny.

Eq. (9.86) assumes that the block ordering has not changed, that is, the

blocks are ordered along the ith direction followed by the jth direction. The

application of the LSOR method is presented in the next example.

Example 9.6 The following equations were obtained for the 2-D reservoir in

Example 7.8 and shown in Fig. 9.11:

�7:8558p2 + 3:7567p5 ¼�14346:97 (9.88)
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�7:5134p4 + 3:7567p5 + 3:7567p7 ¼ 0 (9.89)

3:7567p2 + 3:7567p4�15:0268p5 + 3:7567p6 + 3:7567p8 ¼ 0 (9.90)

3:7567p5�7:8558p6 ¼�14346:97 (9.91)

3:7567p4�7:5134p7 + 3:7567p8 ¼ 1000 (9.92)

and
3:7567p5 + 3:7567p7�7:5134p8 ¼ 0 (9.93)

Solve these equations using the LSOR iterative method by sweeping the
lines in the y-direction.

Solution

For the y-direction sweep, Eq. (9.84) is applied to lines j¼1, 2, …ny. To
obtain the LSOR equations for line j, the equation for each gridblock on

that line is rearranged as follows. The unknowns on line j are assigned iter-

ation level ∗(ν+1) and kept on the LHS of equation, the unknowns on line

j�1 are assigned iteration level ν+1 and moved to the RHS of equation,

and those on line j+1 are assigned iteration level ν and moved to the RHS

of equation. For the problem at hand, only gridblock 2 falls on line j¼1;

gridblocks 4, 5, and 6 fall on line j¼2; and gridblocks 7 and 8 fall on line

j¼3.

The LSOR equations for line j¼1 are obtained by considering Eq. (9.88):

�7:8558p∗
ν + 1ð Þ

2 ¼�14346:97�3:7567p
νð Þ
5 (9.94)
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After solving Eq. (9.94) for p2
∗(ν+1), Eq. (9.85) is applied to accelerate the
solution, yielding

p
ν + 1ð Þ
2 ¼ 1�ωopt

� �
p

νð Þ
2 +ωoptp∗

ν + 1ð Þ
2 (9.95)

The LSOR equations for line j¼2 are obtained by considering Eqs. (9.89),
(9.90), and (9.91), which state

�7:5134p∗
ν + 1ð Þ

4 + 3:7567p∗
ν+ 1ð Þ

5 ¼�3:7567p
νð Þ
7 (9.96)

3:7567p∗
ν+ 1ð Þ

4 �15:0268p∗
ν + 1ð Þ

5 + 3:7567p∗
ν+ 1ð Þ

6 ¼�3:7567p
ν + 1ð Þ
2 �3:7567p

νð Þ
8

(9.97)

and
3:7567p∗
ν+ 1ð Þ

5 �7:8558p∗
ν + 1ð Þ

6 ¼�14346:97 (9.98)

After solving Eqs. (9.96), (9.97), and (9.98) for p4
∗(ν+1), p5

∗(ν+1), and p6
∗(ν+1)
using Thomas’ algorithm, Eq. (9.85) is applied to accelerate the solution,

yielding

p ν + 1ð Þ
n ¼ 1�ωopt

� �
p νð Þ
n +ωoptp∗

ν + 1ð Þ
n (9.99)

for n¼4, 5, 6.
The LSOR equations for line j¼3 are obtained by considering Eqs. (9.92)

and (9.93), which state

�7:5134p∗
ν+ 1ð Þ

7 + 3:7567p∗
ν+ 1ð Þ

8 ¼ 1000�3:7567p
ν+ 1ð Þ
4 (9.100)

and
3:7567p∗
ν+ 1ð Þ

7 �7:5134p∗
ν+ 1ð Þ

8 ¼�3:7567p
ν+ 1ð Þ
5 (9.101)

After solving Eqs. (9.100) and (9.101) for p7
∗(ν+1) and p8

∗(ν+1), Eq. (9.85) is
applied to accelerate the solution, yielding

p ν + 1ð Þ
n ¼ 1�ωopt

� �
p νð Þ
n +ωoptp∗

ν + 1ð Þ
n (9.102)

for n¼7 and 8.
Before applying the procedure given in Eqs. (9.94) through (9.102), we need

to estimate the value of the optimum overrelaxation parameter ωopt that must be

estimated. The spectral radius for the system of Eqs. (9.88) through (9.93) is

estimated using the point Gauss-Seidel iterative method, as in Example 9.5.

Table 9.7 displays the results, which show that the spectral radius converges

to 0.848526 within 0.22% after seven iterations. Now, we can calculate ωopt

from Eq. (9.77) as

ωopt ¼ 2

1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�0:848526

p ¼ 1:439681



TABLE 9.7 Determination of spectral radius for Example 9.6.

ν+1 p2 p4 p5 p6 p7 p8 dmax
(ν+1) ρGS

0 0 0 0 0 0 – –

1 1826.26 0.00 456.57 2044.60 �133.10 161.73 2044.5959 –

2 2044.60 161.73 1103.17 2353.81 28.64 565.90 646.5998 0.316248

3 2353.81 565.90 1459.85 2524.38 432.80 946.33 404.1670 0.625065

4 2524.38 946.33 1735.35 2656.13 813.23 1274.29 380.4281 0.941265

5 2656.13 1274.29 1965.21 2766.05 1141.20 1553.20 327.9642 0.862092

6 2766.05 1553.20 2159.63 2859.02 1420.11 1789.87 278.9100 0.850428

7 2859.02 1789.87 2324.44 2937.84 1656.77 1990.61 236.6624 0.848526
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For the first iteration (ν¼0) of the LSOR method, the initial guess used is
the pressure solution obtained at the seventh Gauss-Seidel iteration, which is

shown in Table 9.7.

For ν¼0, the LSOR equations for line j¼1 become

�7:8558p∗
1ð Þ

2 ¼�14346:97�3:7567p
0ð Þ
5 (9.103a)

After substitution for p5
(0)¼2324.44, this equation becomes
�7:8558p∗
1ð Þ

2 ¼�14346:97�3:7567�2324:44 (9.103b)

The solution is p2
∗(1)¼2937.8351.
The accelerated solution is

p
1ð Þ
2 ¼ 1�ωopt

� �
p

0ð Þ
2 +ωoptp∗

1ð Þ
2

¼ 1�1:439681ð Þ�2859:02 + 1:439681�2937:835

¼ 2972:4896

(9.104)

For ν¼0, the LSOR equations for line j¼2 become
�7:5134p∗
1ð Þ

4 + 3:7567p∗
1ð Þ

5 ¼�3:7567p
0ð Þ
7 (9.105a)

3:7567p∗
1ð Þ

4 �15:0268p∗
1ð Þ

5 + 3:7567p∗
1ð Þ

6 ¼�3:7567p
1ð Þ
2 �3:7567p

0ð Þ
8

(9.106a)

and
3:7567p∗
1ð Þ

5 �7:8558p∗
1ð Þ

6 ¼�14346:97 (9.107a)

After substitution for p7
(0)¼1656.77, p2

(1)¼2972.4896, and p8
(0)¼1990.61,
these three equations become

�7:5134p∗
1ð Þ

4 + 3:7567p∗
1ð Þ

5 ¼�6223:9300 (9.105b)

3:7567p∗
1ð Þ

4 �15:0268p∗
1ð Þ

5 + 3:7567p∗
1ð Þ

6 ¼�18644:694 (9.106b)

and
3:7567p∗
1ð Þ

5 �7:8558p∗
1ð Þ

6 ¼�14346:97 (9.107b)

The solution for these three equations is p4
∗(1)¼2088.8534, p5

∗(1)¼

2520.9375, and p6

∗(1)¼3031.8015.

Next, the solution is accelerated, giving

p
1ð Þ
4 ¼ 1�ωopt

� �
p

0ð Þ
4 +ωoptp∗

1ð Þ
4

¼ 1�1:439681ð Þ�1789:87 + 1:439681�2088:8534

¼ 2220:3125

(9.108)
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p
1ð Þ
5 ¼ 1�ωopt

� �
p

0ð Þ
5 +ωoptp∗

1ð Þ
5

¼ 1�1:439681ð Þ�2324:44 + 1:439681�2520:9375

¼ 2607:3329

(9.109)

and
p
1ð Þ
6 ¼ 1�ωopt

� �
p

0ð Þ
6 +ωoptp∗

1ð Þ
6

¼ 1�1:439681ð Þ�2937:84 + 1:439681�3031:8015

¼ 3073:1167

(9.110)

For ν¼0, the LSOR equations for line j¼3 become
�7:5134p∗
1ð Þ

7 + 3:7567p∗
1ð Þ

8 ¼ 1000�3:7567p
1ð Þ
4 (9.111a)

and
3:7567p∗
1ð Þ

7 �7:5134p∗
1ð Þ

8 ¼�3:7567p
1ð Þ
5 (9.112a)

After substitution for p4
(1)¼2220.3125 and p5

(1)¼2607.3329, these two
equations become

�7:5134p∗
1ð Þ

7 + 3:7567p∗
1ð Þ

8 ¼�7340:9740 9.111b)

and
3:7567p∗
1ð Þ

7 �7:5134p∗
1ð Þ

8 ¼�9794:8807 (9.112b)

The solution for these two equations is p7
∗(1)¼2171.8570 and
p8
∗(1)¼2389.5950.

Next, the solution is accelerated, giving

p
1ð Þ
7 ¼ 1�ωopt

� �
p

0ð Þ
7 +ωoptp∗

1ð Þ
7

¼ 1�1:439681ð Þ�1656:77 + 1:439681�2171:8570

¼ 2398:3313

(9.113)

and
p
1ð Þ
8 ¼ 1�ωopt

� �
p

0ð Þ
8 +ωoptp∗

1ð Þ
8

¼ 1�1:439681ð Þ�1990:61 + 1:439681�2389:5950

¼ 2565:0230

(9.114)

This completes the first LSOR iteration. Table 9.8 shows the results of this
iteration. We perform calculations for the second iteration (ν¼1) and so on

until convergence is reached. Table 9.8 shows the results of all LSOR itera-

tions until the converged solution is obtained. The convergence criterion

for this problem is set at a tolerance of ε�0.0001. The solution to the given

system of equations is reached after 20 iterations. The results of solving



TABLE 9.8 LSOR iteration for Example 9.6.

ν+1 p2 p4 p5 p6 p7 p8 dmax
(ν+1)

2859.02 1789.87 2324.44 2937.84 1656.77 1990.61 –

1 2972.49 2220.31 2607.33 3073.12 2398.33 2565.02 741.5620

2 3117.36 2824.53 3002.30 3261.99 2841.74 2981.51 604.2200

3 3325.58 3079.68 3231.90 3371.79 3001.86 3141.20 255.1517

4 3392.11 3155.72 3276.87 3393.29 3026.01 3150.63 76.0318

5 3393.82 3145.21 3268.16 3389.13 3001.13 3133.08 24.8878

6 3387.07 3123.16 3254.48 3382.59 2984.35 3117.09 22.0462

7 3380.62 3113.43 3245.81 3378.44 2978.22 3111.13 9.7293

8 3377.48 3110.40 3243.83 3377.49 2977.06 3110.40 3.1368

9 3377.50 3110.59 3244.08 3377.62 2977.87 3111.05 0.8096

10 3377.67 3111.38 3244.55 3377.84 2978.50 3111.60 0.7935

11 3377.92 3111.75 3244.87 3378.00 2978.74 3111.84 0.3718

12 3378.03 3111.87 3244.96 3378.04 2978.79 3111.87 0.1189

13 3378.04 3111.87 3244.95 3378.03 2978.76 3111.86 0.0253

14 3378.03 3111.84 3244.94 3378.03 2978.74 3111.83 0.0281

15 3378.02 3111.83 3244.92 3378.02 2978.73 3111.83 0.0142

16 3378.02 3111.83 3244.92 3378.02 2978.73 3111.82 0.0049

17 3378.02 3111.83 3244.92 3378.02 2978.73 3111.83 0.0007

18 3378.02 3111.83 3244.92 3378.02 2978.73 3111.83 0.0010

19 3378.02 3111.83 3244.92 3378.02 2978.73 3111.83 0.0005

20 3378.02 3111.83 3244.92 3378.02 2978.73 3111.83 0.0002
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Eqs. (9.88) through (9.93) for the unknown pressures are p2¼3378.02 psia,

p4¼3111.83 psia, p5¼3244.92 psia, p6¼3378.02 psia, p7¼2978.73 psia,

and p8¼3111.83 psia.
9.3.2.2 Block SOR method

The block SOR (BSOR) method is a generalization of the LSOR method in that

it treats any group of blocks instead of a line of blocks. The most commonly

used group of blocks is a (horizontal) plane or a (vertical) slice. The following

steps for obtaining the solution are similar to those for the LSOR method. Here

again, planes (or slices) should be aligned with the direction of highest trans-

missibility and are taken in order, one plane (or slice) at a time. For example,

for a 3-D reservoir having the highest transmissibility along the z-direction,
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slices are chosen parallel to the z-axis. Then, the slices are taken in order and

one slice at a time for i¼1, 2, 3,…, nx. In other words, the slices are swept in the
x-direction.

First, the equations for slice i are written. In writing the equations for the

current slice (slice i), the unknowns for the preceding slices (slice i-1) are

assigned current iteration level ν+1 and those for the succeeding slices (slice

i+1) are assigned old iteration level ν. In addition, the unknowns in the current
slice are assigned current iteration level ν+1:

bnx
ν+ 1ð Þ
n�nxny

+ snx
ν+ 1ð Þ
n�nx

+ cnx
ν+ 1ð Þ
n + nnx

ν+ 1ð Þ
n+ nx + anx

ν+ 1ð Þ
n+ nxny ¼ dn�wnx

ν + 1ð Þ
n�1 + enx

νð Þ
n+ 1

(9.115)

for n¼ i+(j�1)�nx+(k�1)�nxny; j¼1, 2, …, ny; k¼1, 2, …, nz.

Second, the resulting nynz equations for the current slice (slice i) are solved

simultaneously, using algorithms for sparse matrices, for the intermediate

values of the unknowns of the current slice (slice i) at iteration level ∗(ν+1):

bnx∗
ν + 1ð Þ

n�nxny
+ snx∗

ν+ 1ð Þ
n�nx

+ cnx∗
ν+ 1ð Þ

n + nnx∗
ν+ 1ð Þ

n+ nx + anx∗
ν+ 1ð Þ

n+ nxny ¼ dn�wnx
ν+ 1ð Þ
n�1 + enx

νð Þ
n+ 1

(9.116)

for n¼ i+(j�1)�nx+(k�1)�nxny; j¼1, 2, …, ny; k¼1, 2, …, nz.

Fig. 9.12a schematically shows slice SOR for slice i¼2 and the iteration

level for the unknowns of the blocks in preceding and succeeding slices.

Third, the intermediate solution for the current slice (slice i) is accelerated
using acceleration parameter:

x ν+ 1ð Þ
n ¼ 1�ωð Þx νð Þ

n +ωx∗ ν+ 1ð Þ
n (9.117)

for n¼ i+(j�1)�nx+(k�1)�nxny; j¼1, 2, …, ny; k¼1, 2, …, nz.

It should be mentioned that the improvement in the convergence of the

BSOR method over the LSOR method is achieved because more unknowns

are solved simultaneously at iteration level ν+1.
If the blocks are swept in the z-direction (i.e., plane SOR) as shown in

Fig. 9.12b, the planes are taken in order, one at a time for k¼1, 2, 3, …, nz,
and Eqs. (9.116) and (9.117) are replaced with Eqs. (9.118) and (9.119), which

state

snx∗
ν+ 1ð Þ

n�nx
+wnx∗

ν+ 1ð Þ
n�1 + cnx∗

ν+ 1ð Þ
n + enx∗

ν+ 1ð Þ
n+ 1 + nnx∗

ν+ 1ð Þ
n+ nx

¼ dn�bnx
ν+ 1ð Þ
n�nxny

�anx
νð Þ
n+ nxny

(9.118)

for n¼ i+(j�1)�nx+(k�1)�nxny; i¼1, 2, …, nx; j¼1, 2, …, ny; and
x ν+ 1ð Þ
n ¼ 1�ωð Þx νð Þ

n +ωx∗ ν+ 1ð Þ
n (9.119)

for n¼ i+(j�1)�nx+(k�1)�nxny; i¼1, 2, …, nx; j¼1, 2, …, ny.

Eqs. (9.118) and (9.119) assume that the block ordering has not changed,

that is, blocks are ordered along the ith direction, followed by the jth direction,
and finally along the kth direction.
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FIG. 9.12 Slice and plane sweeps in the BSOR method. (a) Slice sweep in BSOR and (b) Plane

sweep in BSOR.
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9.3.3 Alternating-direction implicit procedure

The alternating direction implicit procedure(ADIP) aims at replacing a 2-D or

3-D problemwith two or three sets of 1-D problems in the x-, y-, and z-directions
that are solved consecutively. This method was introduced by Peaceman and
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Rachford (1955). In this section, we apply the method to a slightly compressible

fluid flow problem in a 2-D parallelepiped reservoir (nx�ny). The equation for
block n in a 2-D problem is obtained from Eq. (9.45) as

snxn�nx +wnxn�1 + cnxn + enxn+ 1 + nnxn + nx ¼ dn (9.120a)

for n¼ i+(j�1)�nx; i¼1, 2,…, nx; and j¼1, 2,…, ny,where sn, wn, en, and nn

are given by Eqs. (9.46b) through (9.46e), yielding

cn ¼� sn +wn + en + nn +
Vbnϕ

°
n c+ cϕ
� �

αcB°Δt

" #
(9.120b)

Dn ¼ ½ sγð Þn Zn�nx �Znð Þ+ wγð Þn Zn�1�Znð Þ
+ eγð Þn Zn+ 1�Znð Þ+ nγð Þn Zn+ nx �Znð Þ��qscn

(9.120c)

and
dn ¼Dn�
Vbnϕ

°
n c+ cϕ
� �

αcB°Δt
xnn (9.120d)

and the unknown x stands for pressure. The solution of this equation is obtained

by finding the solutions of two sets of 1-D problems, one in the x-direction and

the other in the y-direction as outlined in the succeeding text.
9.3.3.1 Set of 1-D problems in the x-direction

For each line j¼1, 2, …, ny solve

wnx∗n�1 + c
∗
nx

∗
n + enx

∗
n+ 1 ¼ d∗n (9.121a)

for n¼ i+(j�1)�nx, i¼1, 2, …, nx, where
c∗n ¼� wn + en +
Vbnϕ

°
n c+ cϕ
� �

αcB° Δt=2ð Þ

" #
(9.121b)

and
d∗n ¼Dn�
Vbnϕ

°
n c+ cϕ
� �

αcB° Δt=2ð Þ xnn� sn xnn�nx
� xnn


 �
+ nn xnn + nx � xnn


 �h i
(9.121c)

Each set of equations represented by Eq. (9.121a) consists of nx linear equa-

tions that can be solved simultaneously using Thomas’ algorithm or iteratively

using the PSOR method.
9.3.3.2 Set of 1-D problems in the y-direction

For each line i¼1, 2, …, nx solve

snx
n + 1
n�nx

+ c∗∗n xn+ 1n + nnx
n+ 1
n+ nx

¼ d∗∗n (9.122a)
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for n¼ i+(j�1)�nx, j¼1, 2, …, ny, where
c∗∗n ¼� sn + nn +
Vbnϕ

°
n c+ cϕ
� �

αcB° Δt=2ð Þ

" #
(9.122b)

and
d∗∗n ¼Dn�
Vbnϕ

°
n c+ cϕ
� �

αcB° Δt=2ð Þ x∗n� wn x∗n�1� x∗n
� �

+ en x∗n+ 1� x∗n
� �� �

(9.122c)

Each set of equations represented by Eq. (9.122a) consists of ny linear equa-

tions that can be solved simultaneously using Thomas’ algorithm or iteratively

using the PSOR method.

While the ADIP just presented is a noniterative version of the method, other

literature presents an iterative version that has better convergence (Ertekin

et al., 2001). For 2-D problems, the ADIP is unconditionally stable. However,

a direct extension of the ADIP presented here to 3-D problems is conditionally

stable. Aziz and Settari (1979) reviewed unconditionally stable extensions of

ADIP for 3-D problems.

9.3.4 Advanced iterative methods

As mentioned in the introduction, we restricted our discussion in this chapter to

basic solution methods. The objective in this chapter was to introduce the

mechanics of the basic methods of solution, although many of these iterative

methods are not used in today’s simulators. However, the algorithms for

advanced iterative methods of solving systems of linear equations, such as con-

jugate gradient methods, the block iterative method, the nested factorization

method, and Orthomin are beyond the scope of this book and can be found else-

where (Ertekin et al., 2001; Behie and Vinsome, 1982; Appleyard and Cheshire,

1983; Vinsome, 1976). Such methods are very efficient for solving systems of

linear equations for multiphase flow, compositional, and thermal simulation.

9.4 Summary

Systems of linear equations can be solved using direct solvers or iterative

solvers. The methods presented in this chapter are basic methods that aim at

introducing the mechanics of solving sets of linear equations resulting from res-

ervoir simulation. Direct solvers include methods that use variations of LU fac-

torization of the coefficient matrix [A]. These include Thomas’ algorithm and

Tang’s algorithm for 1-D flow problems and the g-band matrix solver for 2-D

and 3-D flow problems. Iterative solvers include point Jacobi, point Gauss-

Seidel, and PSORmethods mainly for 1-D flow problems, the LSOR and BSOR

methods for 2-D and 3-D flow problems, and the ADIP method for 2-D flow

problems. The important issue in this chapter is how to relate the coefficients

of matrix [A] to the linearized flow equation. The unknowns in the linearized
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equation for a general block n are placed on the LHS of equation, factorized, and
ordered in ascending order; that is, they are ordered as shown in Fig. 9.2. Sub-

sequently, the coefficients bn, sn, wn, cn, en, nn, and an correspond to locations 1,
2, 3, 4, 5, 6, and 7 in Fig. 9.2. The RHS of equation corresponds to dn.

9.5 Exercises

9.1 Define a direct solution method. Name any two methods under this

category.

9.2 Define an iterative solution method. Name any two methods under this

category.

9.3 What is the difference between the iteration level and the time level?

When do you use each?

9.4 The following equations were obtained for the 1-D reservoir problem

described in Example 7.2 and Fig. 7.2:

�56:8008p2 + 28:4004p3 ¼�113601:6

28:4004p2�56:8008p3 + 28:4004p4 ¼ 0

and
28:4004p3�28:4004p4 ¼ 600

Solve these three equations for the unknowns p2, p3, and p4 using the
following:

a. Thomas’ algorithm

b. Jacobi iterative method

c. Gauss-Seidel iterative method

d. PSOR method

For iterative methods, start with an initial guess of zero for all the

unknowns and use a convergence tolerance of 1psi (for hand calculations).
9.5 The following equations were obtained for the 1-D reservoir problem

described in Example 7.5 and Fig. 7.5:

�85:2012p1 + 28:4004p2 ¼�227203:2

28:4004p1�56:8008p2 + 28:4004p3 ¼ 0

28:4004p2�56:8008p3 + 28:4004p4 ¼ 0

and
28:4004p3�28:4004p4 ¼ 1199:366

Solve these four equations for the unknowns p1, p2, p3, and p4 using

the following:

a. Thomas’ algorithm

b. Jacobi iterative method
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c. Gauss-Seidel iterative method

d. PSOR method

For iterative methods, start with an initial guess of zero for all the

unknowns and use a convergence tolerance of 5psi (for hand calculations).
9.6 The following equations were obtained for the 2-D reservoir problem

described in Example 7.7 and Fig. 7.7:

�5:0922p1 + 1:0350p2 + 1:3524p3 ¼�11319:20

1:0350p1�6:4547p2 + 1:3524p4 ¼�13435:554

1:3524p1�2:3874p3 + 1:0350p4 ¼ 600

and
1:3524p2 + 1:0350p3�2:3874p4 ¼ 308:675

Solve these four equations for the unknowns p1, p2, p3, and p4 using

the following:

a. Gaussian elimination

b. Jacobi iterative method

c. Gauss-Seidel iterative method

d. PSOR method

e. LSOR method

For iterative methods, start with an initial guess of zero for all the

unknowns and use a convergence tolerance of 1psi (for hand

calculations).
9.7 The following equations were obtained for the 2-D reservoir problem

described in Example 7.8 and Fig. 7.8:

�7:8558p2 + 3:7567p5 ¼�14346:97

�7:5134p4 + 3:7567p5 + 3:7567p7 ¼ 0

3:7567p2 + 3:7567p4�15:0268p5 + 3:7567p6 + 3:7567p8 ¼ 0

3:7567p5�7:8558p6 ¼�14346:97

3:7567p4�7:5134p7 + 3:7567p8 ¼ 1000

and
3:7567p5 + 3:7567p7�7:5134p8 ¼ 0

Solve these six equations for the unknowns p2, p4, p5, p6, p7, and p8

using the following:

a. Jacobi iterative method

b. Gauss-Seidel iterative method

c. PSOR iterative method

d. LSOR iterative method by sweeping lines in the x-direction
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For iterative methods, start with an initial guess of zero for all the

unknowns and use a convergence tolerance of 10psi (for hand

calculations).
9.8 Consider the 1-D flow problem presented in Example 7.11 and Fig. 7.12.

Solve this problem for the first two time steps using the following:
a. Thomas’ algorithm

b. Jacobi iterative method

c. Gauss-Seidel iterative method

d. PSOR iterative method

For iterative methods, take the pressures at the old time level as the

initial guess and use a convergence tolerance of 1psi (for hand

calculations).
9.9 Consider the 1-D flow problem presented in Example 7.10 and Fig. 7.11.

Solve this problem for the first two time steps using the following:
a. Thomas’ algorithm

b. Jacobi iterative method

c. Gauss-Seidel iterative method

d. PSOR iterative method

For iterative methods, take the pressures at the old time level as the

initial guess and use a convergence tolerance of 0.1psi (for hand

calculations).
9.10 Consider the 1-D single-well simulation problem presented in Exercise

7.16 and Fig. 7.18. Solve this problem using the following:
a. Thomas’ algorithm

b. Jacobi iterative method

c. Gauss-Seidel iterative method

d. PSOR iterative method

For iterative methods, take the pressures at the old time level as the

initial guess and use a convergence tolerance of 1psi (for hand

calculations).
9.11 Consider the 2-D flow problem presented in Exercise 7.10 and Fig. 7.15a.

Solve this problem for the first time step using
a. Gauss-Seidel iterative method

b. PSOR iterative method

c. LSOR iterative method by sweeping lines in the y-direction
d. LSOR iterative method by sweeping lines in the x-direction
e. ADIP

For iterative methods, take the pressures at the old time level as the

initial guess and use a convergence tolerance of 1psi (for hand

calculations).
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10.1 Introduction

Traditionally, the steps involved in the development of a simulator include the

following: (1) derivation of the partial differential equations (PDEs) describing

the recovery process through formulation, (2) discretization of the PDEs in

space and time to obtain the nonlinear algebraic equations, (3) linearization

of resulting algebraic equations, (4) solving the linearized algebraic equations

numerically, and (5) validation of the simulator. The mathematical approach

refers to the first three steps. The engineering approach independently derives

the same finite-difference equations, as special cases of approximating the inte-

gral equation in the engineering approach, without going through the rigor of

PDEs and discretization. The two approaches, however, have a few differences

in treating nonlinearities and boundary conditions. The objective in this chapter

is to highlight the similarities and differences between the two approaches.
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10.2 Derivation of fluid flow equations in discretized form

The fluid flow equations in discretized form (nonlinear algebraic equations) can

be obtained by either the traditional mathematical approach or the engineering

approach. Both of these approaches make use of the same basic principles and

both approaches discretize the reservoir into gridblocks (or gridpoints). Both

approaches yield the same discretized flow equations for modeling any reser-

voir fluid system (multiphase, multicomponent, thermal, and heterogeneous

reservoir) using any coordinate system (Cartesian, cylindrical, and spherical)

in one-dimensional (1-D), two-dimensional (2-D), or three-dimensional (3-

D) reservoirs (Abou-Kassem, 2006). Therefore, the presentation here will be

for modeling the flow of single-phase, compressible fluid in horizontal, 1-D res-

ervoir using irregular block size distribution in rectangular coordinates. We will

take advantage of this simple case to demonstrate the capacity of the engineer-

ing approach to give independent verification for the discretization methods

used in the mathematical approach.

10.2.1 Basic principles

The basic principles include mass conservation, equation of state, and constitu-

tive equation. The principle of mass conservation states that the total mass of

fluid entering and leaving a volume element of the reservoir must equal the

net increase in the mass of the fluid in the reservoir element:

mi�mo +ms ¼ma (10.1)

An equation of state describes the density of fluid as a function of pressure
and temperature:

B¼ ρsc=ρ (10.2)

A constitutive equation describes the rate of fluid movement into (or out of)
the reservoir element. In reservoir simulation, Darcy’s law is used to relate fluid

flow rate to potential gradient. The differential form of Darcy’s law for a hor-

izontal reservoir is

ux ¼ qx=Ax ¼�βc
kx
μ

∂p

∂x
(10.3)
10.2.2 Reservoir discretization

Reservoir discretization means that the reservoir is described by a set of grid-

blocks (or gridpoints) whose properties, dimensions, boundaries, and locations

in the reservoir are well defined. Fig. 10.1 shows reservoir discretization in the

x-direction for both block-centered and point-distributed grids in rectangular
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FIG. 10.1 Reservoir discretization. (a) Point-distributed grid and (b) block-centered grid.
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coordinates as one focuses on gridblock i or gridpoint i. The figure shows how
the blocks are related to each other [block i and its neighboring blocks (blocks

i�1 and i+1)], block dimensions (Δxi, Δxi�1, Δxi+1), block boundaries (xi�1/2,

xi+1/2), distances between the point that represents the block and block bound-

aries (δxi�, δxi+), and distances between the gridpoints or points representing the
blocks (Δxi�1/2, Δxi+1/2). In addition, each gridblock or gridpoint is assigned

elevation and rock properties such as porosity and permeability.

In block-centered grid system, the grid is constructed by choosing nx grid-
blocks that span the entire reservoir length in the x-direction. The gridblocks are
assigned predetermined dimensions (Δxi, i¼1, 2, 3… nx) that are not necessar-
ily equal. Then, the point that represents a gridblock is consequently located at

the center of the gridblock. In point-distributed grid system, the grid is con-

structed by choosing nx gridpoints that span the entire reservoir length in the

x-direction. In other words, the first gridpoint is placed at one reservoir bound-

ary and the last gridpoint is placed at the other reservoir boundary. The distances

between gridpoints are assigned predetermined values (Δxi+1/2, i¼1, 2, 3…

nx�1) that are not necessarily equal. Each gridpoint represents a gridblock

whose boundaries are placed halfway between the gridpoint and its neighboring

gridpoints.
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10.2.3 The mathematical approach

In the mathematical approach, the algebraic flow equations are derived in

three consecutive steps: (1) derivation of the PDE describing fluid flow in

reservoir using basic principles, (2) discretization of reservoir into grid-

blocks or gridpoints, and (3) discretization of the resulting PDE in space

and time.
10.2.3.1 Derivation of PDE

Fig. 10.2 shows a finite control volume with a cross-sectional area Ax perpen-

dicular to the direction of flow, length Δx in the direction of flow, and

volume Vb¼AxΔx. Point x represents control volume and falls at its center

for block-centered grid. The fluid enters the control volume across its surface

at x�Δx/2 and leaves across its surface at x+Δx/2 at mass rates of wx jx�Δx/2
and wx jx+Δx/2, respectively. The fluid also enters the control volume through a

well at a mass rate of qm. The mass of fluid in the control volume per unit vol-

ume of rock ismv. Therefore, the material balance equation written over a time

step Δt as expressed by Eq. (10.1) becomes

mijx�Δx=2�mojx +Δx=2 +ms ¼ma (10.4)

or
wxjx�Δx=2Δt�wxjx+Δx=2Δt+ qmΔt¼ma (10.5)

where mass flow rate (wx) and mass flux ( _mx) are related through
wx ¼ _mxAx (10.6)

In addition, mass accumulation is defined as
ma ¼Δt Vbmvð Þ¼Vb mvjt+Δt�mvjt
� �¼Vb mn+ 1

v �mn
v

� �
(10.7)

Substitution of Eqs. (10.6) and (10.7) into Eq. (10.5) yields
_mxAxÞjx�Δx=2Δt� _mxAxð Þjx+Δx=2Δt+ qmΔt¼Vb mvjt+Δt�mvjt
� ��

(10.8)
Well

tuowolFniwolF

qm

x – Dx/2 x +Dx/2
x

FIG. 10.2 Control volume in 1-D traditionally used for writing material balance.
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Dividing Eq. (10.8) by VbΔt, observing that Vb¼AxΔx, and rearranging
results in

� _mxjx+Δx=2� _mxjx�Δx=2

� �
=Δx

h i
+
qm
Vb

¼ mvjt+Δt�mvjt
� �

=Δt
� �

(10.9)

The limits of the terms in brackets in Eq. (10.9) as Δx and Δt approach zero

(i.e., asΔx!0 andΔt!0) become first-order partial derivatives and the result-

ing equation becomes

�∂ _mx

∂x
+
qm
Vb

¼ ∂mv

∂t
(10.10)

Mass flux ( _mx) can be stated in terms of fluid density (ρ) and volumetric
velocity (ux) as

_mx ¼ αcρux (10.11)

mv can be expressed in terms of fluid density and porosity (ϕ) as
mv ¼ϕρ (10.12)

and qm can be expressed in terms of well volumetric rate (q) and fluid density as
qm ¼ αcρq (10.13)

Substituting Eqs. (10.11) through (10.13) into Eq. (10.10) results in the con-
tinuity equation:

�∂ ρuxð Þ
∂x

+
ρq

Vb
¼ 1

αc

∂ ρϕð Þ
∂t

(10.14)

The flow equation can be obtained by combining the continuity equation
(Eq. 10.14), the equation of state (Eq. 10.2), and Darcy’s law (Eq. 10.3), and

noting that q/B¼qsc. The resulting flow equation for single-phase flow is

∂

∂x
βc

kx
μB

∂p

∂x

� 	
+
qsc
Vb

¼ 1

αc

∂

∂t

ϕ

B

� 	
(10.15)

The above equation is the PDE that describes single-phase flow in 1-D rect-
angular coordinates.
10.2.3.2 Discretization of PDE in space and time

First, the reservoir is discretized as mentioned earlier. Second, Eq. (10.15) is

rewritten in another form, to take care of variations of cross-sectional area

through multiplying by Vb¼AxΔx, as

∂

∂x
βc
kxAx

μB

∂p

∂x

� 	
Δx+ qsc ¼Vb

αc

∂

∂t

ϕ

B

� 	
(10.16)
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Eq. (10.16) is then written for gridblock i:
∂

∂x
βc
kxAx

μB

∂p

∂x

� 	
i

Δxi + qsci ¼
Vbi

αc

∂

∂t

ϕ

B

� 	
i

(10.17)

Space discretization

The second-order derivative w.r.t. x at Point i appearing on the LHS of

Eq. (10.17) is approximated using second-order central differencing. The result-

ing approximation can be written as

∂

∂x
βc
kxAx

μB

∂p

∂x

� 	
i

Δxi ffi Txi�1=2
pi�1�pið Þ+ Txi+ 1=2 pi+ 1�pið Þ (10.18)

with transmissibility Txi�1/2
being defined as
Txi�1=2
¼ βc

kxAx

μBΔx

� 	
i�1=2

(10.19)

The process of the approximation leading to Eq. (10.18) can be looked at as
follows. Using the definition of central-difference approximation to the first-

order derivative evaluated at Point i (see Fig. 10.1), one can write

∂

∂x
βc
kxAx

μB

∂p

∂x

� 	
i

ffi βc
kxAx

μB

∂p

∂x

� 	
i + 1=2

� βc
kxAx

μB

∂p

∂x

� 	
i�1=2

" #
=Δxi (10.20)

� 	

Use of central differencing again to approximate

∂p

∂x i�1=2

yields

∂p

∂x

� 	
i+ 1=2

ffi pi+ 1�pið Þ= xi+ 1� xið Þ¼ pi+ 1�pið Þ=Δxi+ 1=2 (10.21)

and
∂p

∂x

� 	
i�1=2

ffi pi�pi�1ð Þ= xi� xi�1ð Þ¼ pi�pi�1ð Þ=Δxi�1=2 (10.22)

Substitution of Eqs. (10.21) and (10.22) into Eq. (10.20) and rearranging
results in

∂

∂x
βc

kxAx

μB

∂p

∂x

� 	
i

Δxi ffi βc
kxAx

μBΔx

� 	
i+ 1=2

pi+ 1�pið Þ� βc
kxAx

μBΔx

� 	
i�1=2

pi�pi�1ð Þ
" #

(10.23)

or
∂

∂x
βc

kxAx

μB

∂p

∂x

� 	
i

Δxi ffi βc
kxAx

μBΔx

� 	
i+ 1=2

pi+ 1�pið Þ+ βc
kxAx

μBΔx

� 	
i�1=2

pi�1�pið Þ
" #

(10.24)
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Eq. (10.18) results from the substitution of Txi�1/2
given by Eq. (10.19) into

Eq. (10.24).

Substitution of Eq. (10.18) into the PDE given by Eq. (10.17) yields an equa-

tion that is discrete in space but continuous in time:

Txi�1=2
pi�1�pið Þ+ Txi+ 1=2 pi+ 1�pið Þ + qsci ffi

Vbi

αc

∂

∂t

ϕ

B

� 	
i

(10.25)
Time discretization

The discretization of Eq. (10.25) in time is accomplished by approximating the

first-order derivative appearing on the RHS of the equation. We will consider

here the forward-difference, backward-difference, and central-difference

approximations. All three approximations can be written as

∂

∂t

ϕ

B

� 	
i

ffi 1

Δt
ϕ

B

� 	n+ 1

i

� ϕ

B

� 	n

i

" #
(10.26)
Forward-difference discretization In the forward-difference discretization,

one writes Eq. (10.25) at time level n (old time level tn):

Txi�1=2
pi�1�pið Þ+ Txi+ 1=2 pi+ 1�pið Þ+ qsci

h in
ffiVbi

αc

∂

∂t

ϕ

B

� 	
i


 �n
(10.27)

In this case, it can be looked at Eq. (10.26) as forward difference of the first-
order derivative w.r.t. time at time level n. The discretized flow equation is

called a forward-difference equation:

Tn
xi�1=2

pni�1�pni
� �

+ Tn
xi + 1=2

pni+ 1�pni
� �

+ qnsci ffi
Vbi

αcΔt
ϕ

B

� 	n+ 1

i

� ϕ

B

� 	n

i

" #

(10.28)

The RHS of Eq. (10.28) can be expressed in terms of the pressure of grid-
block i such that material balance is preserved. The resulting equation is

Tn
xi�1=2

pni�1�pni
� �

+ Tn
xi+ 1=2

pni+ 1�pni
� �

+ qnsci ffi
Vbi

αcΔt
ϕ

B

� 	0

i

pn+ 1i �pni
� �

(10.29)

where the derivative ϕ
B

� �0
i
is defined as the chord; that is,
ϕ

B

� 	0

i

¼ ϕ

B

� 	n+ 1

i

� ϕ

B

� 	n

i

" #
= pn+ 1i �pni
� �

(10.30)
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Backward-difference discretization In the backward-difference discretiza-

tion, one writes Eq. (10.25) at time level n+1 (current time level tn+1):

Txi�1=2
pi�1�pið Þ+ Txi+ 1=2 pi+ 1�pið Þ+ qsci

h in+ 1
ffiVbi

αc

∂

∂t

ϕ

B

� 	
i


 �n+ 1
(10.31)

In this case, it can be looked at Eq. (10.26) as backward-difference of the
first-order derivative w.r.t. time at time level n+1. The discretized flow equa-

tion is called a backward-difference equation:

Tn+ 1
xi�1=2

pn+ 1i�1 �pn+ 1i

� �
+ Tn+ 1

xi+ 1=2
pn+ 1i+ 1 �pn+ 1i

� �
+ qn+ 1sci

ffi Vbi

αcΔt
ϕ

B

� 	n+ 1

i

� ϕ

B

� 	n

i

" #

(10.32)

The equation that corresponds to Eq. (10.29) is
Tn+ 1
xi�1=2

pn+ 1i�1 �pn+ 1i

� �
+ Tn+ 1

xi+ 1=2
pn+ 1i+ 1 �pn+ 1i

� �
+ qn+ 1sci

ffi Vbi

αcΔt
ϕ

B

� 	0

i

pn+ 1i �pni
� �

(10.33)
Central-difference discretization In the central-difference discretization,

one writes Eq. (10.25) at time level n+1/2 (time level tn+1/2):

Txi�1=2
pi�1�pið Þ+ Txi+ 1=2 pi+ 1�pið Þ+ qsci

h in+ 1=2
ffiVbi

αc

∂

∂t

ϕ

B

� 	
i


 �n+ 1=2

(10.34)

In this case, it can be looked at Eq. (10.26) as central-difference of the first-
order derivative w.r.t. time at time level n+1/2. In addition, the flow terms at

time level n+1/2 are approximated by the average values at time level n+1 and
time level n. The discretized flow equation in this case is the Crank-Nicholson

approximation:

1=2ð Þ Tn
xi�1=2

pni�1�pni
� �

+ Tn
xi + 1=2

pni+ 1�pni
� �h i

+ 1=2ð Þ Tn+ 1
xi�1=2

pn+ 1i�1 �pn+ 1i

� �
+ Tn+ 1

xi + 1=2
pn+ 1i+ 1 �pn+ 1i

� �h i

+ 1=2ð Þ qnsci + q
n + 1
sci

h i
ffi Vbi

αcΔt
ϕ
B

� �n+ 1
i

� ϕ
B

� �n
i

h i (10.35)

The equation that corresponds to Eq. (10.29) is
1=2ð Þ Tn
xi�1=2

pni�1�pni
� �

+ Tn
xi + 1=2

pni+ 1�pni
� �h i

+ 1=2ð Þ Tn+ 1
xi�1=2

pn+ 1i�1 �pn+ 1i

� �
+ Tn+ 1

xi+ 1=2
pn+ 1i+ 1 �pn+ 1i

� �h i

+ 1=2ð Þ qnsci + q
n + 1
sci

h i
ffi Vbi

αcΔt
ϕ

B

� 	0

i

pn + 1i �pni
� �

(10.36)
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10.2.3.3 Observations on the derivation of the mathematical
approach

1. For heterogeneous block permeability distribution and irregular grid blocks

(neither constant nor equal Δx), note that for a discretized reservoir, blocks

have defined dimensions and permeabilities; therefore, interblock geomet-

ric factor


�
βc
kxAx

Δx

	
jxi�1=2

�
is constant, independent of space and time. In

addition, the pressure-dependent term (μB)jxi�1/2
of transmissibility uses

some average viscosity and formation volume factor (FVF) of the fluid con-

tained in block i and neighboring blocks i�1 or some weight (upstream

weighting or average weighting) at any instant of time t. In other words,

the term (μB)jxi�1/2
is not a function of space, but it is a function of time

as block pressures change with time. Similarly, for multiphase flow, the rel-

ative permeability of phase p¼o, w, g between block i and neighboring

blocks i�1 at any instant of time t (krp jxi�1/2
) uses upstream value or two-

point upstream value of block i and neighboring blocks i�1 that are already

fixed in space. In other words, the term krp jxi�1/2
is not a function of space but

it is a function of time as block saturations change with time. Hence, trans-

missibility Txi�1/2
between block i and its neighboring blocks i�1 is a func-

tion of time only; it does not depend on space at any instant of time.

2. A close inspection of the flow terms on the LHS of the discretized flow

equation expressed by Eq. (10.25) reveals that these terms are nothing

but Darcy’s law describing volumetric flow rates at standard conditions

(qsci�1/2
) between gridblock i and its neighboring gridblocks i�1 in the x-

direction, that is,

Txi�1=2
pi�1�pið Þ¼ βc

kxAx

μBΔx

� 	
i�1=2

pi�1�pið Þ¼ qsci�1=2
(10.37)
3. Interblock flow terms and production/injection rates that appear on the LHS

of the discretized flow equations (Eqs. 10.29, 10.33, and 10.36) are dated at

time level n for explicit flow equation, time level n+1 for implicit flow

equation or time level n+1/2 for the Crank-Nicolson flow equation. In

all cases, the RHS of the flow equations represent accumulation over a time

step Δt. In other words, the accumulation term does not take into consider-

ation the variation of interblock flow terms and production/injection rate

(source/sink term) with time within a time step.
10.2.4 The engineering approach

In the engineering approach, the derivation of the algebraic flow equation is

straightforward. It is accomplished in three consecutive steps: (1) discretization

of reservoir into gridblocks (or gridpoints) as shown earlier to remove the effect
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of space variable as mentioned in Observation 1 earlier, (2) derivation of the

algebraic flow equation for gridblock i (or gridpoint i) using the three basic prin-
ciples mentioned earlier taking into consideration the variation of interblock

flow terms and source/sink term with time within a time step, and (3) approx-

imation of the time integrals in the resulting flow equation to produce the non-

linear algebraic flow equations.
10.2.4.1 Derivation of the algebraic flow equations

In the first step, the reservoir is discretized as mentioned earlier. Fig. 10.3 shows

gridblock i (or gridpoint i) and its neighboring gridblocks in the x-direction
(gridblock i�1 and gridblock i+1). At any instant in time, fluid enters grid-

block i, coming from gridblock i�1, across its xi�1/2 face at a mass rate of

wx jxi�1/2
, and leaves to gridblock i+1 across its xi+1/2 face at a mass rate of

wx jxi+1/2. The fluid also enters gridblock i through a well at a mass rate of qmi
.

The mass of fluid in gridblock i per unit volume of rock is mvi
.

Therefore, the material balance equation written over a time step

Δt¼ tn+1� tn as expressed by Eq. (10.1) becomes

mijxi�1=2
�mojxi+ 1=2 +msi ¼mai (10.38)

Terms like wx jxi�1/2
, wx jxi+1/2 and qmi

are functions of time only because space
is not a variable for an already discretized reservoir (see Observation 1).

Therefore,

mijxi�1=2
¼

ðtn+ 1

tn

wxjxi�1=2
dt (10.39)

mojxi+ 1=2 ¼
ðtn + 1

tn

wxjxi + 1=2dt (10.40)
xi – 1/2
xi + 1/2

i – 1 i + 1i
mi mo

Well

ms

Δxi – 1/2 i + 1/2
Δx

FIG. 10.3 Gridblock i (or gridpoint i) used for writing material balance in the engineering

approach.
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and
msi ¼
ðtn+ 1

tn

qmi
dt (10.41)

Using Eqs. (10.39) through (10.41), Eq. (10.38) can be rewritten as
ðtn+ 1

tn

wxjxi�1=2
dt�

ðtn + 1

tn

wxjxi+ 1=2dt +
ðtn + 1

tn

qmi
dt¼mai (10.42)

Substitution of Eqs. (10.6) and (10.7) into Eq. (10.42) yields
ðtn + 1

tn

ð _mxAxÞjxi�1=2
dt�

ðtn + 1

tn

ð _mxAxÞjxi+ 1=2dt +
ðtn + 1

tn

qmi
dt¼Vbi mn+ 1

v �mn
v

� �
i
(10.43)

Substitution of Eq. (10.11) through (10.13) into Eq. (10.43) yields
ðtn+ 1

tn

�
αcρuxAxÞjxi�1=2

dt�
ðtn + 1

tn

�
αcρuxAxÞjxi + 1=2dt+

ðtn + 1

tn

αcρqð Þidt

¼Vbi ϕρð Þn + 1i � ϕρð Þni
h i

: (10.44)

Substitution of Eq. (10.2) into Eq. (10.44), dividing through by αcρsc and

noting that q/B¼qsc yields

ðtn+ 1

tn

�
uxAx

B

	����
xi�1=2

dt�
ðtn + 1

tn

�
uxAx

B

	����
xi + 1=2

dt+

ðtn + 1

tn

qscidt¼
Vbi

αc

ϕ

B

� 	n+ 1

i

� ϕ

B

� 	n

i

" #

(10.45)

Fluid volumetric velocity (flow rate per unit cross-sectional area) from grid-
block i-1 to gridblock i is given by the algebraic analog of Eq. (10.3),

uxjxi�1=2
¼ βc

kx
μ

� 	
i�1=2

pi�1�pið Þ
Δxi�1=2

: (10.46)

Likewise, fluid flow rate per unit cross-sectional area from gridblock i to

gridblock i+1 is

uxjxi + 1=2 ¼ βc
kx
μ

� 	
i+ 1=2

pi�pi+ 1ð Þ
Δxi+ 1=2

: (10.47)
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Substitution of Eqs. (10.46) and (10.47) into Eq. (10.45) and rearranging
results in

ðtn+ 1

tn

�
βc

kxAx

μBΔx

	����
xi�1=2

pi�1�pið Þ
" #

dt

�
ðtn + 1

tn

�
βc

kxAx

μBΔx

	����
xi+ 1=2

pi�pi+ 1ð Þ
" #

dt +

ðtn+ 1

tn

qscidt

¼Vbi

αc

ϕ

B

� 	n+ 1

i

� ϕ

B

� 	n

i

" #
(10.48)

or
ðtn + 1

tn

Txi�1=2
pi�1�pið Þ

h i
dt +

ðtn + 1

tn

Txi+ 1=2 pi+ 1�pið Þ
h i

dt +

ðtn + 1

tn

qscidt

¼Vbi

αc

ϕ

B

� 	n+ 1

i

� ϕ

B

� 	n

i

" #
(10.49)

The derivation of Eq. (10.49) is rigorous and involves no assumptions other
than the validity of Darcy’s law (Eqs. 10.46 and 10.47) to estimate fluid volu-

metric velocity between gridblock i and its neighboring gridblocks i-1 and i+1.
Such validity is not questionable by petroleum engineers.

Again, the accumulation term in the earlier equation can be expressed in

terms of the pressure of gridblock i, and Eq. (10.49) becomes

ðtn + 1

tn

Txi�1=2
pi�1�pið Þ

h i
dt +

ðtn+ 1

tn

Txi+ 1=2 pi+ 1�pið Þ
h i

dt +

ðtn + 1

tn

qscidt

¼Vbi

αc

ϕ

B

� 	0

i

pn + 1i �pni
� �

(10.50)

where ϕ
B

� �0
i
is chord slope defined by Eq. (10.30).
10.2.4.2 Approximation of time integrals

If the argument of an integral is an explicit function of time, the integral can be

evaluated analytically. This is not the case for the integrals appearing on the

LHS of either Eq. (10.49) or Eq. (10.50). The integration is schematically shown

in Fig. 10.4. Performing the integrals on the LHS of Eq. (10.49) or (10.50)

necessitates making certain assumptions. Such assumptions lead to deriving

equations as those expressed by Eqs. (10.28), (10.32), and (10.35) or

Eqs. (10.29), (10.33), and (10.36).
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Consider the integral
Ðtn + 1
tn

F tð Þdt shown in Fig. 10.5. This integral can be eval-
uated as follows

ðtn+ 1

tn

F tð Þdtffi
ðtn + 1

tn

F tmð Þdt¼
ðtn + 1

tn

Fmdt¼Fm

ðtn + 1

tn

dt¼Fmtjtn + 1tn ¼Fm tn+ 1� tn
� �

¼FmΔt
(10.51)

The argument F stands for [Txi�1/2
(pi�1�pi)], [Txi+1/2(pi+1�pi)], or qsci that
appears on the LHS of Eq. (10.49) and Fm ¼ approximation of F at time

tm¼constant over the time interval Δt.
Forward-difference equation

The forward-difference equation given by Eq. (10.28) can be obtained from

Eq. (10.49) if the argument F of integrals is dated at time tn; that is, FffiFm¼Fn
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FIG. 10.6 Different methods of approximation of the integral of a function. (a) Forward differ-

ence; (b) Backward difference; (c) Central difference (Crank Nicholson).
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as shown in Fig. 10.6a. Therefore, Eq. (10.51) becomes
Ðtn+ 1
tn

F tð ÞdtffiFnΔt, and
Eq. (10.49) reduces to

Tn
xi�1=2

pni�1�pni
� �h i

Δt + Tn
xi+ 1=2

pni+ 1�pni
� �h i

Δt + qnsciΔt

ffiVbi

αc

ϕ

B

� 	n+ 1

i

� ϕ

B

� 	n

i

" #
(10.52)

Dividing above equation by Δt gives Eq. (10.28):
Tn
xi�1=2

pni�1�pni
� �

+ Tn
xi+ 1=2

pni+ 1�pni
� �

+ qnsci ffi
Vbi

αcΔt

ϕ

B

� 	n+ 1

i

� ϕ

B

� 	n

i

" #

(10.28)

If one starts with Eq. (10.50) instead of Eq. (10.49), he ends up with
Eq. (10.29):

Tn
xi�1=2

pni�1�pni
� �

+ Tn
xi + 1=2

pni+ 1�pni
� �

+ qnsci ffi
Vbi

αcΔt

ϕ

B

� 	0

i

pn+ 1i �pni
� �

(10.29)

Backward-difference equation
The backward-difference equation given by Eq. (10.32) can be obtained from

Eq. (10.49) if the argument F of integrals is dated at time tn+1; that is,

FffiFm¼Fn+1 as shown in Fig. 10.6b. Therefore, Eq. (10.51) becomes

Ðtn + 1
tn

F tð ÞdtffiFn+ 1Δt, and Eq. (10.49) reduces to

Tn+ 1
xi�1=2

pn+ 1i�1 �pn+ 1i

� �h i
Δt + Tn+ 1

xi+ 1=2
pn+ 1i+ 1 �pn+ 1i

� �h i
Δt + qn+ 1sci

Δt

ffiVbi

αc

ϕ

B

� 	n+ 1

i

� ϕ

B

� 	n

i

" #
(10.53)

Dividing above equation by Δt gives Eq. (10.32):
Tn+ 1
xi�1=2

pn+ 1i�1 �pn+ 1i

� �
+ Tn+ 1

xi+ 1=2
pn+ 1i+ 1 �pn+ 1i

� �
+ qn+ 1sci

ffi Vbi

αcΔt
ϕ

B

� 	n+ 1

i

� ϕ

B

� 	n

i

" #

(10.32)
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If one starts with Eq. (10.50) instead of Eq. (10.49), he ends up with
Eq. (10.33)

Tn+ 1
xi�1=2

pn + 1i�1 �pn + 1i

� �
+ Tn + 1

xi+ 1=2
pn+ 1i+ 1 �pn+ 1i

� �
+ qn+ 1sci

ffi Vbi

αcΔt
ϕ

B

� 	0

i

pn+ 1i �pni
� �

(10.33)
Central-difference (Crank-Nicholson) equation

The second order in time Crank-Nicholson approximation given by Eq. (10.35)

can be obtained from Eq. (10.49) if the argument F of integrals is dated at time

tn+1/2. This choice of time level was made to make the RHS of Eq. (10.26) to

appear as second-order approximation in time in the mathematical approach.

In this case, the argument F in the integrals can be approximated as

FffiFm¼Fn+1/2¼ (Fn+Fn+1)/2 as shown in Fig. 10.6c. Therefore,

Ðtn+ 1
tn

F tð Þdtffi 1
2
Fn +Fn+ 1ð ÞΔt, and Eq. (10.49) reduces to

1=2ð Þ Tn
xi�1=2

pni�1�pni
� �

+ Tn+ 1
xi�1=2

pn+ 1i�1 �pn+ 1i

� �h i
Δt

+ 1=2ð Þ Tn
xi + 1=2

pni + 1�pni
� �

+ Tn + 1
xi+ 1=2

pn+ 1i+ 1 �pn+ 1i

� �h i
Δt

+ 1=2ð Þ qnsci + q
n+ 1
sci

h i
ΔtffiVbi

αc

ϕ

B

� 	n+ 1

i

� ϕ

B

� 	n

i

" # (10.54)

Dividing above equation by Δt and rearranging terms give Eq. (10.35):
1=2ð Þ Tn
xi�1=2

pni�1�pni
� �

+ Tn
xi+ 1=2

pni+ 1�pni
� �h i

+ 1=2ð Þ Tn+ 1
xi�1=2

pn + 1i�1 �pn+ 1i

� �
+ Tn+ 1

xi+ 1=2
pn+ 1i+ 1 �pn+ 1i

� �h i

+ 1=2ð Þ qnsci + q
n+ 1
sci

h i
ffi Vbi

αcΔt

ϕ

B

� 	n+ 1

i

� ϕ

B

� 	n

i

" # (10.35)

If one starts with Eq. (10.50) instead of Eq. (10.49), he ends up with
Eq. (10.36):

1=2ð Þ Tn
xi�1=2

pni�1�pni
� �

+ Tn
xi+ 1=2

pni+ 1�pni
� �h i

+ 1=2ð Þ Tn+ 1
xi�1=2

pn + 1i�1 �pn+ 1i

� �
+ Tn+ 1

xi+ 1=2
pn+ 1i+ 1 �pn+ 1i

� �h i

+ 1=2ð Þ qnsci + q
n+ 1
sci

h i
ffi Vbi

αcΔt

ϕ

B

� 	0

i

pn+ 1i �pni
� �

(10.36)

Therefore, one can conclude that the same nonlinear algebraic equations can
be derived by the mathematical and engineering approaches.
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10.3 Treatment of initial and boundary conditions

Initial conditions receive the same treatment by both the mathematical and engi-

neering approaches. Therefore, this section focuses on the treatment of bound-

ary conditions by both approaches and highlights differences. An external (or

internal) reservoir boundary can be subject to one of four conditions: no-flow

boundary, constant-flow boundary, constant pressure-gradient boundary, or

constant pressure boundary. In fact, the first three boundary conditions reduce

to specified pressure-gradient condition (Neumann boundary condition) and the

fourth boundary condition is the Dirichlet boundary condition. In the following

presentation, we demonstrate the treatment of boundary conditions at x¼0 only

as an example.
10.3.1 Specified boundary pressure condition

10.3.1.1 The mathematical approach

For point-distributed grid (see Fig. 10.7a), p1¼pb. Therefore, fictitious well rate
across left boundary becomes

qscb,bp ¼ T1 + 1=2 p1�p2ð Þ¼ T1 + 1=2 pb�p2ð Þ (10.55)

which is the interblock flow rate (qsc1+1/2) between gridpoints 1 and 2.
For block-centered grid, one sets p1ffipb at reservoir left boundary (see

Fig. 10.7b) and the flow equation for gridblock 1 is removed from the system

of flow equations. This is a first-order approximation.

If a second-order approximation is used at reservoir left boundary (Settari

and Aziz, 1975), the following pressure equation is added and solved with

the system of flow equations.

pb ffi
Δx1=2 +Δx1 + 1=2

Δx1 + 1=2
p1�

Δx1=2
Δx1 + 1=2

p2 (10.56a)

or for equal size gridblocks,
pb ffi 1

2
3p1�p2ð Þ (10.56b)
1

(a)

(b)
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FIG. 10.7 Dirichlet boundary condition. (a) Point-distributed grid and (b) block-centered grid.
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This treatment increases the number of equations to be solved by one equation
for each boundary block having specified boundary pressure. Furthermore, this

extra equation does not have the same form as that of the final pressure equation

for a gridblock.
10.3.1.2 The engineering approach

For point-distributed grid, the fictitious well flow rate was derived earlier in

Chapter 5 and expressed by Eq. (5.46c):

qmscb,bP ¼ βc
klAl

μBΔl


 �m
bP,bP∗

pmbP�pmbP∗

� �� γmb,bP∗ ZbP�ZbP∗ð Þ� �
(5.46c)

where l is the direction normal to the boundary.
Replacing direction l by x and discarding time level m and gravity term,

Eq. (5.46c) reduces to

qscb,bP ¼ βc
kxAx

μBΔx


 �
bP,bP∗

pbP�pbP∗ð Þ (10.57a)

or
qscb,bP ¼ Tb,bP∗ pbP�pbP∗ð Þ (10.57b)

where
Tb,bP∗ ¼ βc
kxAx

μB x

� 	
bP,bP∗

(10.58)

For point-distributed grid (see Figs. 10.7a and 10.8a), p1¼pbP, p2¼pbP∗, and
T1+1/2¼Tb,bP∗. Substitution of these relations into Eq. (10.57b) gives

qscb,bP ¼ T1 + 1=2 p1�p2ð Þ (10.59)

which is the interblock flow rate (qsc1+1/2) between gridpoints 1 and 2 as given by

Eq. (10.55) in the mathematical approach.

For block-centered grid the fictitious well flow rate was derived earlier in

Chapter 4 and expressed by Eq. (4.37c):

qmscb,bB ¼ βc
klAl

μB Δl=2ð Þ

 �m

bB

pb�pmbB
� �� γmb,bB Zb�ZbBð Þ� �

(4.37c)

Replacing direction l by x and discarding time level m and gravity term,
Eq. (4.37c) reduces to

qscb,bB ¼ βc
kxAx

μB Δx=2ð Þ

 �

bB

pb�pbBð Þ (10.60a)
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or
qscb,bB ¼ Tb,bB pb�pbBð Þ (10.60b)

where
Tb,bB ¼ βc
kxAx

μB Δx=2ð Þ

 �

bB

(10.61)

The application of Eq. (10.60b) for boundary gridblock 1 gives
qscb,bB ¼ Tb,1 pb�p1ð Þ¼ βc
kxAx

μBΔx=2ð Þ

 �

1

pb�p1ð Þ (10.62)

Note that the fictitious well rate presented by Eq. (10.62) is a second-order
approximation and does not need the introduction of an extra equation as

required by the mathematical approach.

10.3.2 Specified boundary pressure-gradient condition

10.3.2.1 The mathematical approach

For the mathematical approach, we will demonstrate the application of bound-

ary pressure-gradient specification for gridblock 1 and gridpoint 1. A second-

order approximation for the pressure gradient is possible using the “reflection

technique” by introducing an auxiliary point (p0) outside the reservoir on the

other side of the boundary as shown in Fig. 10.8. Aziz and Settari (1979)

reported the discretization of this boundary condition for both block-centered

and point-distributed grids for regular grids. The discretization of this boundary

condition is presented here for irregular grids.

For point-distributed grid (Fig. 10.8a),

∂p

∂x

����
b

ffi p2�p0
2Δx1 + 1=2

(10.63)

The difference flow equation for the whole boundary block in terms of the
original reservoir boundary block represented by gridpoint 1 is

Tx1=2 p0�p1ð Þ+ Tx1 + 1=2 p2�p1ð Þ+ 2qsc1 ¼
2Vb1

αcΔt
ϕ

B

� 	n+ 1

1

� ϕ

B

� 	n

1

" #
(10.64)

because Vb¼2Vb1
and qsc¼2qsc1. Using Eq. (10.63) to eliminate p0 from
Eq. (10.64), dividing the resulting equation by 2, and observing that

Δx1/2¼Δx1+1/2 and Tx1/2¼Tx1+1/2 because of the reflection technique, one obtains

�Tx1 + 1=2Δx1 + 1=2
∂p

∂x

����
b

+ Tx1 + 1=2 p2�p1ð Þ+ qsc1 ¼
Vb1

αcΔt
ϕ

B

� 	n+ 1

1

� ϕ

B

� 	n

1

" #

(10.65a)
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Noting that the first term on the LHS in above equation is nothing but qscb,1

and that Tx1 + 1=2Δx1 + 1=2 ¼ βc
kxAx

μBΔx

� 	
1 + 1=2

Δx1 + 1=2 ¼ βc
kxAx

μB

� 	
1 + 1=2

, then,

qscb,1 ¼�Tx1=2Δx1=2
∂p

∂x

����
b

¼� βc
kxAx

μB

� 	
1 + 1=2

∂p

∂x

����
b

(10.66)

Therefore, Eq. (10.65a) becomes
qscb,1 + Tx1 + 1=2 p2�p1ð Þ+ qsc1 ¼
Vb1

αcΔt
ϕ

B

� 	n+ 1

1

� ϕ

B

� 	n

1

" #
(10.65b)

For specified pressure gradient at reservoir east boundary, the fictitious well
flow rate for gridpoint nx is defined by:

qscb,nx ¼ + Txnx�1=2
Δxnx�1=2

∂p

∂x

����
b

¼ + βc
kxAx

μB

� 	
nx�1=2

∂p

∂x

����
b

(10.67)

For block-centered grid (Fig. 10.8b),
∂p

∂x

����
b

¼ p1�p0
Δx1

(10.68)

The difference equation for gridblock 1 is
Tx1=2 p0�p1ð Þ+ Tx1 + 1=2 p2�p1ð Þ+ qsc1 ¼
Vb1

αcΔt
ϕ

B

� 	n+ 1

1

� ϕ

B

� 	n

1

" #
(10.69)

Using Eq. (10.68) to eliminate p0 from Eq. (10.69), one obtains
�Tx1=2Δx1=2
∂p

∂x

����
b

+ Tx1 + 1=2 p2�p1ð Þ+ qsc1 ¼
Vb1

αcΔt
ϕ

B

� 	n+ 1

1

� ϕ

B

� 	n

1

" #
(10.70a)

or
qscb,1 + Tx1 + 1=2 p2�p1ð Þ+ qsc1 ¼
Vb1

αcΔt
ϕ

B

� 	n+ 1

1

� ϕ

B

� 	n

1

" #
(10.70b)

where
qscb,1 ¼�Tx1=2Δx1=2
∂p

∂x

����
b

¼� βc
kxAx

μB

� 	
1

∂p

∂x

����
b

(10.71)

kxAx

� 	

Because in this caseΔx1/2¼Δx1 and Tx1=2 ¼ βcμBΔx 1

because properties

and dimensions of gridblock 0 are the same as those of gridblock 1 (reflection

technique about reservoir boundary [see Eq. 4.19]).
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For specified pressure gradient at reservoir east boundary, the fictitious well

flow rate for gridpoint nx is defined by Eq. (10.72):

qscb,nx ¼ + Txnx + 1=2Δxnx + 1=2
∂p

∂x

����
b

¼ + βc
kxAx

μB

� 	
nx

∂p

∂x

����
b

(10.72)
10.3.2.2 The engineering approach

For point-distributed grid, if pressure gradient at reservoir boundary is speci-

fied (see Fig. 10.9a), Chapter 5 defines the flow rate across the reservoir bound-

ary by Eq. (5.31) for reservoir left boundary and Eq. (5.32) for reservoir right

boundary. Discarding the time levelm and gravity term in these equations, they

reduce to

qscb,1 ¼� βc
kxAx

μB

� 	
1 + 1=2

∂p

∂x

����
b

(10.73)
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FIG. 10.9 Neumann boundary condition. (a) Point-distributed grid and (b) block-centered grid.
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FIG. 10.8 Reflection technique. (a) Point-distributed grid and (b) block-centered grid. bP**¼0,

bP¼1, bP*¼2, bB**¼0, bB¼1.
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for boundary gridpoint 1, on reservoir left (west) boundary, and
qscb,nx ¼ + βc
kxAx

μB

� 	
nx�1=2

∂p

∂x

����
b

(10.74)

for boundary gridpoint nx, on reservoir right (east) boundary.
For block-centered grid, if pressure gradient at reservoir boundary is spec-

ified (see Fig. 10.9b), Chapter 4 defines the flow rate across the reservoir bound-

ary as Eq. (4.23b) for reservoir left boundary and Eq. (4.24b) for reservoir right

boundary. Discarding the time level m and gravity term in these equations and

replacing direction l by x, these two equation reduce to

qscb,bB ¼� βc
kxAx

μB

� 	
bB

∂p

∂x

����
b

(10.75)

for reservoir left (west) boundary, and
qscb,bB ¼ βc
kxAx

μB

� 	
bB

∂p

∂x

����
b

(10.76)

for reservoir right (east) boundary.
Applying Eq. (10.75) for boundary gridblock 1 on reservoir west boundary

results in

qscb,1 ¼� βc
kxAx

μB

� 	
1

∂p

∂x

����
b

(10.77)

and Eq. (10.76) for boundary gridblock nx on reservoir east results in
qscb,nx ¼ + βc
kxAx

μB

� 	
nx

∂p

∂x

����
b

(10.78)
10.3.3 Specified flow rate condition

10.3.3.1 The mathematical approach

In the mathematical approach, the specified flow rate boundary condition is

expressed in terms of pressure-gradient condition using an equation similar

to Eq. (10.66) for point-distributed grid or Eq. (10.71) for block-centered grid.

This is followed by the treatment of specified pressure-gradient condition as

presented in Section 10.3.2.1.

10.3.3.2 The engineering approach

In the engineering approach, the specified flow rate across reservoir boundary

of a specific boundary gridblock (qscb,bB¼qspsc) or boundary gridpoint

(qscb,bP¼qspsc) is substituted in the flow equation for that gridblock or gridpoint.
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Note that qspsc 6¼0 reflects constant flow rate boundary condition and

qspsc¼0 reflects no-flow boundary condition.
10.4 Linearization of well flow rates

A wellblock production (or injection) rate is evaluated in space at the gridblock

(or gridpoint) for which the flow equation is written. Linearization in time of the

wellblock flow rate equation involves first linearizing the wellblock production

rate equation and then substituting the result in the linearized flow equation for

the wellblock.

The well flow rate equation for wellblock i that needs linearization is

qn+ 1sci
ffi�Gwi

1

Bμ

� 	n+ 1

i

pn+ 1i �pwf i
� �

(10.79)

for specified bottom-hole pressure (Mode 1), or
qn + 1sci
ffi 2πβcrw khð Þi

1

Bμ

� 	n+ 1

i

dp

dr

����
rw

(10.80)

for specified pressure gradient at well radius (Mode 2).
In the mathematical approach, time nonlinearity in well rate includes both

1
Bμ

� �n+ 1

i
and (pi

n+1�pwfi), whereas in the engineering approach, it is limited to

1
Bμ

� �n+ 1

i
. This difference results from considering qn+1sci as the average of the

time integral of well flow rate over a time step. This difference leads to

having different methods of linearization as shown in the next sections. The

treatment of well rate nonlinearities in time is presented for wells operating with

Mode 1.
10.4.1 The mathematical approach

The explicit method,

qn+ 1sci
ffi qnsci ¼�Gwi

1

Bμ

� 	n

i

pni �pwf i
� �

(10.81)

The simple iteration method,
qn+ 1sci
ffi qn+ 1

υð Þ

i ¼�Gwi

1

Bμ

� 	n+ 1
υð Þ

i

pn+ 1
υð Þ

i �pwf i

� 	
(10.82)

The explicit transmissibility method,
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qn+ 1sci
ffi�Gwi

1

Bμ

� 	n

i

pn+ 1
υ + 1ð Þ

i �pwf i

� 	
(10.83)

The simple iteration on transmissibility method,
qn+ 1sci
ffi�Gwi

1

Bμ

� 	n+ 1
υð Þ

i

pn+ 1
υ+ 1ð Þ

i �pwf i

� 	
(10.84)

The fully implicit method,
qn+ 1sci
ffi qn+ 1

ν + 1ð Þ

sci
ffi qn+ 1

νð Þ

sci
+
dqsci
dpi

����
n+ 1

νð Þ

pn+ 1
ν + 1ð Þ

i �pn+ 1
νð Þ

i

� 	
(10.85)
10.4.2 The engineering approach

The explicit transmissibility method,

qn+ 1sci
ffi�Gwi

1

Bμ

� 	n

i

pn+ 1
υ+ 1ð Þ

i �pwf i

� 	
(10.83)

The simple iteration on transmissibility method,
qn+ 1sci
ffi�Gwi

1

Bμ

� 	n+ 1
υð Þ

i

pn+ 1
υ + 1ð Þ

i �pwf i

� 	
(10.84)

The fully implicit method,
qn+ 1sci
ffi qn+ 1

ν + 1ð Þ

sci
ffi qn+ 1

νð Þ

sci
+
dqsci
dpi

����
n+ 1

υð Þ

pn+ 1
ν + 1ð Þ

i �pn+ 1
νð Þ

i

� 	
(10.85)

The degree of implicitness increases with the equation selection from
Eq. (10.81) to Eq. (10.85). Furthermore, the use of Eqs. (10.83)– (10.85) pro-
vides tremendous improvement in implicitness and hence stability over the lin-

earization with Eqs. (10.81) and (10.82). This is the case because the primary

nonlinearity in time of the production rate is due to (pi
n+1�pwfi) term; the con-

tribution of the 1
Bμ

� �n+ 1

i
term to nonlinearity is secondary.

For wells operating with Mode 2, the explicit method is the same as explicit

transmissibility method, and simple iteration method is the same as the simple

iteration on transmissibility method because there is only one nonlinear term in

the wellblock rate equation, namely, 1
Bμ

� �n+ 1

i
.

Another method of well rate linearization in time involves substituting the

appropriate well rate equation into the flow equation for the wellblock prior to
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linearization and subsequently linearizing all terms in the resulting flow equa-

tion. That is to say, the well rate, fictitious well rates, and interblock flow rate

terms receive identical linearization treatments. For a well operating with

bottom-hole-pressure specification, this method results in the implicit treatment

of wellblock pressure compared with the explicit treatments provided by the

explicit transmissibility method, Eq. (10.83), and simple iteration on transmis-

sibility method, Eq. (10.84). This method of linearization is identical to the lin-

earization method used in the engineering approach because all terms in the

flow equation except accumulation (well rate, fictitious rate, interblock flow

rates) receive the same treatment of nonlinear terms in time.

10.5 Summary

The following conclusions can be drawn.

1. The discretized flow equations (nonlinear algebraic equations) in reservoir

simulation of any process can be obtained in a rigorous way by the engineer-

ing approach without going through the rigor of obtaining the PDEs describ-

ing the process and space and time discretizations (mathematical approach).

2. The engineering approach rather than themathematical approach is closer to

engineer’s thinking. While the mathematical approach derives the nonlinear

algebraic equations by first deriving the PDEs, followed by discretizing the

reservoir, and finally discretizing the PDEs, the engineering approach first

discretizes the reservoir, then derives the algebraic flow equations with time

integrals, and finally approximates the time integrals to obtain the same

nonlinear algebraic flow equations.

3. Both the engineering and mathematical approaches treat boundary condi-

tions with the same accuracy if second-order approximation is used. If dis-

cretization of specified boundary pressure condition in block-centered grid

is first-order correct, then the engineering approach gives a representation

that is more accurate. If a second-order approximation of boundary condi-

tions in block-centered grid is used, then the engineering approach provides

lesser number of equations.

4. The engineering approach is closer to the physical meaning of various terms

in the algebraic flow equation. It also provides confirmation for using

central-difference approximation of the second-order space derivative

and gives interpretation of the forward-, backward-, and central-difference

approximations of the first-order time derivative in the PDE. Analysis of

local truncation errors, consistency, convergence, and stability; however,

can be studied by the mathematical approach only. Therefore, one may con-

clude that the mathematical and engineering approaches complement

each other.
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11.1 Introduction

Nature is inherently multiphase and multicomponent. Water being ubiquitous in

nature, any oil and gas formation is necessarily multiphase. In general, condi-

tions pertaining to fluid, commonly designated as “black oil,” show the pres-

ence of water, oil, and gas. For simplicity, previous chapters have dealt with

single-phase fluid. This chapter presents the basics of modeling a black-oil res-

ervoir. In this context, we present the necessary engineering concepts for multi-

phase flow in porous media, followed by the derivation of the flow equation for

any component in the system in a 1-D rectangular reservoir. Then, using CVFD

terminology, we present the component general flow equations in a multiphase,

multidimensional system, which apply to interior and boundary reservoir

blocks. From these component flow equations, the basic flow models of
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two-phase oil/water, oil/gas, and gas/water and three-phase oil/water/gas are

derived. The accumulation terms in flow equations are expressed in terms of

changes in the reservoir block unknowns over a time step. We present the equa-

tions for phase production and injection rates from single-block and multiblock

wells operating with different conditions. The treatment of boundary conditions

as fictitious wells is presented and discussed in detail. Methods of linearization

of nonlinear terms in multiphase flow are discussed. We introduce two of the

basic methods for solving the linearized multiphase flow equations, the implicit

pressure-explicit saturation (IMPES) and simultaneous solution (SS) methods.

Because this chapter forms an introduction to the simulation of multiphase flow,

we present the two solution methods (IMPES and SS) as they apply to the two-

phase oil/water flow model only. The extensions of these methods to other flow

models are straightforward, whereas the application of additional solution

methods, such as the sequential (SEQ) and the fully implicit methods, is dis-

cussed elsewhere.
11.2 Reservoir engineering concepts in multiphase flow

The reservoir engineering concepts discussed in this chapter pertain to the

simultaneous flow of oil, water, and gas. These three phases coexist and fill

the pore volume of the reservoir; that is,

So + Sw + Sg ¼ 1 (11.1)

The properties of interest in modeling multiphase flow in petroleum reser-
voirs include the PVT and transport properties of oil phase, water phase, and gas

phase; the relative permeabilities to oil phase, water phase, and gas phase; and

oil/water capillary pressure and gas/oil capillary pressure. Such data are usually

available and supplied to simulators in a tabular form.
11.2.1 Fluid properties

In a black-oil system, the oil, water, and gas phases coexist in equilibrium under

isothermal conditions. To describe this behavior in a practical sense at reservoir

temperature and any reservoir pressure, the oil and water phases can be assumed

immiscible, neither the oil component nor the water component dissolves in the

gas phase, and the gas-component miscibility may be large in the oil phase but is

negligible in the water phase. Therefore, the water-phase and gas-phase prop-

erties that were discussed previously in single-phase flow are applicable for

multiphase flow, whereas the oil-phase properties in multiphase flow are

affected by pressure and solution-gas/oil ratio only. Fig. 11.1 demonstrates

the dependence of the gas FVF and viscosity on pressure. Fig. 11.2 shows

the pressure dependence of the water FVF and viscosity. Fig. 11.3 shows the

oil FVF, oil viscosity, and solution-gas/oil ratio dependence on pressure.

Fig. 11.3 highlights the effect of the solution-gas/oil ratio on oil FVF and vis-

cosity below the oil bubble-point pressure. Above the oil bubble-point pressure,
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these properties are similar to those for a slightly compressible fluid and can be

estimated from the values at the bubble-point pressure using

Bo ¼ Bob

1 + co p�pbð Þ½ � (11.2)
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and
μo ¼
μob

1� cμ p�pbð Þ� � (11.3)

where co and cμ are treated as constants although they, in general, depend on the

solution-gas/oil ratio at the bubble-point pressure.

The densities of oil, water, and gas at standard conditions are usually sup-

plied to simulators to aid in estimating the phase densities at reservoir temper-

ature and any pressure using

ρw ¼
ρwsc
Bw

(11.4)

for the water phase,
ρg ¼
ρgsc
αcBg

(11.5)

for the gas phase,
ρosat ¼
ρosc + ρgscRsat=αc
� �

Bosat
(11.6a)

for the saturated oil phase (oil at saturation pressures that are below or equal to
the bubble-point pressure, p¼psat and psat�pb), and

ρo ¼ ρob 1 + co p�pbð Þ½ � (11.6b)

for the undersaturated oil phase (oil at pressures above the saturation pressure,
p>psat).

Example 11.1 Table 11.1 lists the properties of gas, water, and saturated oil at

reservoir temperature.Other pertinentdata areρosc¼45 lbm/ft3,ρwsc¼67 lbm/ft3,

ρgsc¼0.057922 lbm/ft3, co¼21�10�6 psi�1, and cμ¼40�10�6 psi�1. Estimate

the oil-, water-, and gas-phase properties (B, μ, and ρ) at the following reservoir
conditions:

1. p¼4000 psia and Rs¼724.92 scf/STB

2. p¼4000 psia and Rs¼522.71 scf/STB

Solution
1. p¼4000 psia and Rs¼724.92 scf/STB
Water and gas properties are obtained from Table 11.1 at the reported

reservoir pressure, p¼4000 psia. Therefore, Bw¼1.01024 RB/B,

μw¼0.5200 cP, and Eq. (11.4) is used to estimate the water density,

ρw ¼ ρwsc
Bw

¼ 67
1:01024¼ 66:321 lbm/ft3; Bg¼0.00069 RB/scf, μg¼0.0241 cP,

and Eq. (11.5) is used to estimate the gas density,

ρg ¼ ρgsc
αcBg

¼ 0:057922
5:614583�0:00069¼ 14:951 lbm/ft3. Note that if the sought entry

value (p¼4000 in this example) is not listed in the table, linear interpolation



TABLE 11.1 Fluid PVT and viscosity data for Example 11.1.

Pressure (psia)

Oil Water Gas

Rs (scf/STB) Bo (RB/STB) μo (cP) Bw (RB/B) μw (cP) Bg (RB/scf) μg (cP)

1500 292.75 1.20413 1.7356 1.02527 0.5200 0.00180 0.0150

2000 368.00 1.23210 1.5562 1.02224 0.5200 0.00133 0.0167

2500 443.75 1.26054 1.4015 1.01921 0.5200 0.00105 0.0185

3000 522.71 1.29208 1.2516 1.01621 0.5200 0.00088 0.0204

3500 619.00 1.32933 1.1024 1.01321 0.5200 0.00077 0.0222

4000 724.92 1.37193 0.9647 1.01024 0.5200 0.00069 0.0241

4500 818.60 1.42596 0.9180 1.00731 0.5200 0.00064 0.0260
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within table entries is used (linear interpolation is widely used in commer-

cial reservoir simulators). For oil properties, we first determine if the oil, at

the reported pressure conditions, falls into the saturated or undersaturated

oil region using the saturated oil properties reported in Table 11.1. From

the pressure entries in the table, Rsat¼724.92 scf/STB at psat¼4000 psia.

Since Rsat¼724.92¼Rs, then p¼4000¼psat, the oil in the reservoir is sat-

urated, and the oil properties at the reported pressure conditions are those of

saturated oil at p¼past¼4000 psia. Second, Rs¼Rsat¼724.92 scf/STB,

Bo¼Bosat¼1.37193 RB/STB, μo¼μosat¼0.9647 cP, and the density of

oil is estimated using Eq. (11.6a) at psat, which gives
ρosat ¼
ρosc + ρgscRsat=αc
� �

Bosat
¼ 45 + 0:057922�724:92=5:614583ð Þ

1:37193
¼ 32:943lbm=ft3

Therefore, ρo¼ρosat¼32.943 lbm/ft3 because p¼past.

2. p¼4000 psia and Rs¼522.71 scf/STB
Water and gas properties are obtained from Table 11.1 at the reported

reservoir pressure, p¼4000 psia as in part 1. Therefore,

Bw¼1.01024 RB/B, μw¼0.5200 cP, and Eq. (11.4) is used to estimate

the water density, ρw ¼ ρwsc
Bw

¼ 67
1:01024¼ 66:321 lbm/ft3; Bg¼0.00069 RB/scf,

μg¼0.0241 cP, and Eq. (11.5) is used to estimate the gas density,

ρg ¼ ρgsc
αcBg

¼ 0:057922
5:614583�0:00069¼ 14:951 lbm/ft3. For oil properties, we first

determine if the oil, at the reported pressure, falls into the saturated or

undersaturated oil region using the saturated oil properties reported in

Table 11.1. From the pressure entries in the table, Rsat¼724.92 scf/STB

at psat¼4000 psia. Since Rsat¼724.92>522.71¼Rs, the oil in the reservoir

is undersaturated. The oil bubble-point pressure is obtained by searching

the table for the saturation pressure that corresponds to

Rsb¼Rsat¼Rs¼522.71 scf/STB. The search in Table 11.1 results in

pb¼psat¼3000 psia, Bob¼Bosat¼1.29208 RB/STB, μob¼μosat¼1.2516 cP,

and Bgb¼0.00088 RB/scf. The FVF, viscosity, and density of undersaturated

oil at p¼4000 psia are estimated using Eqs. (11.2), (11.3), and (11.6b),

respectively. The use of Eq. (11.6b) requires the calculation of ρob from

Eq. (11.6a). Therefore,
Bo ¼ Bob

1 + co p�pbð Þ½ � ¼
1:29208

1 + 21�10�6
� �

4000�3000ð Þ� �¼ 1:26550RB=STB

μo ¼
μob

1� cμ p�pbð Þ� �¼ 1:2516

1� 40�10�6
� �

4000�3000ð Þ� �¼ 1:3038cP
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ρob ¼
ρosc + ρgscRsb=αc
� �

Bob
¼ 45 + 0:057922�522:71=5:614583ð Þ

1:29208
¼ 39:001lbm=ft3

and
FIG
ρo ¼ ρob 1 + co p�pbð Þ½ � ¼ 39:001� 1 + 21�10�6
� �

4000�3000ð Þ� �
¼ 39:820lbm=ft3
11.2.2 Relative permeability

In multiphase flow, oil, water, and gas may coexist in any reservoir block at any

time. The capacity of the rock to transmit any phase through its pores is

described by the relative permeability to that phase. The flow rate of the same

phase is described by Darcy’s law in multiphase flow (Section 11.2.4).

Figs. 11.4 and 11.5 show sketches of the phase relative permeability depen-

dence on saturation in two-phase oil/water and gas/oil systems.

The relative permeability in three-phase oil/water/gas system can be esti-

mated using data obtained from two-phase systems (Figs. 11.4 and 11.5). A

widely used model for that purpose is Stone’s Three-Phase Model II presented

by Eqs. (11.7)–(11.9):

krw ¼ f Swð Þ (11.7)

for the water phase,
krg ¼ f Sg
� �

(11.8)
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for the gas phase, and
kro ¼ krocw krow=krocw + krwð Þ krog=krocw + krg
� �� krw + krg

� �� �
(11.9)

for the oil phase, where kro�0, krow and krw at a given Sw are obtained from two-
phase oil/water data (Fig. 11.4), krog and krg at a given Sg are obtained from

two-phase oil/gas data (Fig. 11.5), and krocw is the relative permeability to oil

at irreducible water saturation (krow jSw¼Siw obtained from Fig. 11.4 or krog jSg¼0

obtained from Fig. 11.5). It should be mentioned that the oil/gas relative perme-

ability data in Fig. 11.5 must be obtained in the presence of irreducible water.

Although Eq. (11.9) reduces to kro¼krow at Sg¼0 (i.e., for a two-phase oil/water

system) and to kro¼krog at Sw¼Siw (i.e., for a two-phase oil/gas system), the

estimation of relative permeabilities uses Fig. 11.4 for oil/water reservoirs and

Fig. 11.5 for oil/gas reservoirs.

Example 11.2 Table 11.2 lists two-phase oil/water and oil/gas relative perme-

ability data that will be used in three-phase relative permeability calculations.

Estimate the relative permeability to oil, water, and gas using Stone’s Three-

Phase Model II for the following fluid saturation distributions:

1. So¼0.315, Sw¼0.490, and Sg¼0.195

2. So¼0.510, Sw¼0.490, and Sg¼0.000

3. So¼0.675, Sw¼0.130, and Sg¼0.195

Solution

1. So¼0.315, Sw¼0.490, and Sg¼0.195

At Sw¼0.490, krw¼0.0665 and krow¼0.3170 using the two-phase oil/water rel-

ative permeability data. At Sg¼0.195, krg¼0.0195, and krog¼0.2919 using the

two-phase oil/gas relative permeability data. According to Stone’s Three-Phase

Model II, the application of Eq. (11.7) gives relative permeability to the water

phase, that is, krw¼0.0665; the application of Eq. (11.8) gives relative



TABLE 11.2 Two-phase relative permeability data (Coats et al., 1974).

Oil/water data Oil/gas data

Sw krw krow Sg krg krog

0.130 0.0000 1.0000 0.000 0.0000 1.0000

0.191 0.0051 0.9990 0.101 0.0026 0.5169

0.250 0.0102 0.8000 0.150 0.0121 0.3373

0.294 0.0168 0.7241 0.195 0.0195 0.2919

0.357 0.0275 0.6206 0.250 0.0285 0.2255

0.414 0.0424 0.5040 0.281 0.0372 0.2100

0.490 0.0665 0.3170 0.337 0.0500 0.1764

0.557 0.0970 0.3029 0.386 0.0654 0.1433

0.630 0.1148 0.1555 0.431 0.0761 0.1172

0.673 0.1259 0.0956 0.485 0.0855 0.0883

0.719 0.1381 0.0576 0.567 0.1022 0.0461

0.789 0.1636 0.0000 0.605 0.1120 0.0294

1.000 1.0000 0.0000 0.800 0.1700 0.0000
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permeability to the gas phase, that is, krg¼0.0195; and the application of

Eq. (11.9) gives relative permeability to the oil phase, that is,

kro ¼ 1:0000 0:3170=1:0000 + 0:0665ð Þ 0:2919=1:0000 + 0:0195ð Þ½
� 0:0665 + 0:0195ð Þ�

or kro¼0.03342. Note that krocw¼1.0000 from the oil/water data at the irreduc-
ible water saturation of 0.13 or from oil/gas data at Sg¼0.

2. So¼0.510, Sw¼0.490, and Sg¼0.000

This is an example of two-phase flow of oil and water only because the gas sat-

uration is zero. Therefore, at Sw¼0.490, krw¼0.0665, and kro¼krow¼0.3170.

Alternatively, the application of Stone’s Three-Phase Model II gives

krw¼0.0665 and krow¼0.3170 at Sw¼0.490 from the oil/water data and

krg¼0.0000, krog¼1.0000 at Sg¼0.000 from the oil/gas data. Therefore,

krw¼0.0665, krg¼0.0000, and the application of Eq. (11.9) gives

kro ¼ 1:0000 0:3170=1:0000 + 0:0665ð Þ 1:0000=1:0000 + 0:0000ð Þ½
� 0:0665 + 0:0000ð Þ�

or kro¼0.3170.
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3. So¼0.675, Sw¼0.130, and Sg¼0.195

This is a case of two-phase flow of oil and gas only because the water saturation

is at the irreducible value of 0.130. Therefore, at Sg¼0.195, krg¼0.0195 and

kro¼krog¼0.2919. Alternatively, the application of Stone’s Three-Phase

Model II gives krw¼0.0000 and krow¼1.0000 at Sw¼0.130 from the oil/water

data and krg¼0.0195, krog¼0.2919 at Sg¼0.195 from the oil/gas data. There-

fore, krw¼0.0000, krg¼0.0195, and the application of Eq. (11.9) gives

kro¼ 1:0000 1:0000=1:0000 + 0:0000ð Þ 0:2919=1:0000 + 0:0195ð Þ� 0:0000 + 0:0195ð Þ½ �

or kro¼0.2919.
The results of parts 2 and 3 confirm that Stone’s Three-PhaseModel II reduces

to two-phase oil/water relative permeability data at zero gas saturation and to two-

phase oil/gas relative permeability data at irreducible water saturation.
11.2.3 Capillary pressure

The coexistence of more than one phase in the capillary size pores of the res-

ervoir rock is responsible for the creation of pressure difference between any

two phases across the interface. This pressure difference is called capillary pres-

sure, and it is a function of fluid saturation. Capillary pressure is defined as the

pressure of the nonwetting phase minus the pressure of the wetting phase.

Therefore,

Pcow ¼ po�pw ¼ f Swð Þ (11.10)

for a two-phase oil/water system in water-wet rock, and
Pcgo ¼ pg�po ¼ f Sg
� �

(11.11)

for a two-phase gas/oil system. Note that in the presence of gas, liquid (oil or
water) always wets the rock. Figs. 11.6 and 11.7 show sketches of the depen-

dence of f(Sw) and f(Sg) on saturation.

Leverett and Lewis (1941) reported that the capillary pressures in a three-

phase oil/water/gas system can be described by those obtained from two-phase

systems.

Example 11.3 Table 11.3 lists two-phase oil/water and gas/oil capillary pres-

sure data. Estimate the oil/water and gas/oil capillary pressures in a three-phase

oil/water/gas reservoir at So¼0.26, Sw¼0.50, and Sg¼0.24.

Solution

Using two-phase oil/water capillary pressure data, Pcow¼2.42 psi at

Sw¼0.50. Also, using two-phase gas/oil capillary pressure data, Pcgo¼0.54 psi

at Sg¼0.24. Now, the three-phase capillary pressure data at the given fluid sat-

urations are those obtained from two-phase data; that is, Pcow¼2.42 psi and

Pcgo¼0.54 psi.
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11.2.4 Darcy’s law in multiphase flow

In multiphase flow in petroleum reservoirs, the fluid volumetric velocity (flow

rate per unit cross-sectional area) of phase p¼o, w, or g from block i�1 to

block i is given by

upx
��
xi�1=2

¼ βc
kxkrp
� ���

xi�1=2

μp
��
xi�1=2

Φpi�1
�Φpi

� �
Δxi�1=2

	 

(11.12)

The potential difference between block i�1 and block i is
Φpi�1
�Φpi ¼ ppi�1

�ppi
� �� γpi�1=2

Zi�1�Zið Þ (11.13)

for p¼o, w, or g.



TABLE 11.3 Two-phase capillary pressure data.

Oil/water data Gas/oil data

Sw Pcow (psi) Sg Pcgo (psi)

0.20 16.00 0.04 0.02

0.25 8.60 0.24 0.54

0.30 6.00 0.34 1.02

0.40 3.56 0.49 2.08

0.50 2.42 0.59 2.98

0.60 1.58 0.69 4.44

0.70 0.86 0.74 5.88

0.80 0.20 0.79 9.52

0.90 0.00
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Substituting Eq. (11.13) into Eq. (11.12) yields

upx
��
xi�1=2

¼ βc
kxkrp
� ���

xi�1=2

μp
��
xi�1=2

ppi�1
�ppi

� �� γpi�1=2
Zi�1�Zið Þ

Δxi�1=2

" #
(11.14)

Eq. (11.14) can be rewritten as
upx
��
xi�1=2

¼ βc
kxjxi�1=2

Δxi�1=2

krp
μp

 !�����
xi�1=2

ppi�1
�ppi

� �� γpi�1=2
Zi�1�Zið Þ

h i
(11.15a)

for p¼o, w, or g.

Likewise, the fluid volumetric velocity of phase p from block i to block i+1

is expressed as

upx
��
xi+ 1=2

¼ βc
kxjxi + 1=2
Δxi+ 1=2

krp
μp

 !�����
xi+ 1=2

ppi �ppi+ 1
� �� γpi + 1=2 Zi�Zi+ 1ð Þ
h i

(11.15b)

for p¼o, w, or g.
11.3 Multiphase flow models

In this section, we derive the equations for two-phase and three-phase flow

models. As in the case for single-phase, the flow equations are obtained by first

discretizing the reservoir into gridblocks as shown in Fig. 4.1 (or gridpoints as
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shown in Fig. 5.1), followed by writing the material balance for the component

under consideration for block i and combining it with Darcy’s law and FVF.We

must clarify that once the reservoir is discretized and elevation and rock prop-

erties are assigned to gridblocks (or gridpoints), space is no longer a variable,

and the functions that depend on space, such as interblock properties, become

well defined. In other words, reservoir discretization removes space from being

a variable in the formulation of the problem. In the black-oil model, we have

three components in the system compared with one component in a single-phase

flow model. The three components are oil, water, and gas at standard conditions

(c¼o, w, g). As implied in Section 11.2.1, the oil component (c¼o) is con-
tained in the oil phase (p¼o), the water component (c¼w) is contained in

the water phase (p¼w), and the gas component (c¼g) is distributed between

the oil phase (p¼o) as solution gas and the gas phase (p¼ fg¼g) as free

gas. In deriving the flow equation for the gas component, we fictitiously split

the gas component (c¼g) into a free-gas component (c¼ fg) that is contained
in the gas phase (p¼g) and a solution-gas component (c¼ sg) that is contained
in the oil phase (p¼o); that is, c¼g¼ fg+ sg. In addition, the oil phase consists
of the oil component and the solution-gas component. Close inspection of the

density of the gas-saturated oil phase as given by Eq. (11.6a) gives the definition

of the apparent density of the oil component and the solution-gas component at

reservoir conditions (on the basis of the oil-phase volume) as ρosc/Bo and

ρgscRs/(αcBo), respectively. It does not need mentioning that Rs and Bo are sat-

urated oil properties (i.e., Rs¼Rsat and Bo¼Bosat) and the density of the oil

component and the solution-gas component at standard conditions are ρosc
and ρgsc, respectively. The flow equations for the water and free-gas compo-

nents (c¼w, fg) are similar in form because each of these two components is

the sole occupant of its phase. However, the flow equations for the oil compo-

nent (c¼o) and the solution-gas component (c¼ sg) (both occupy the oil phase)
are obtained by considering the flow of the oil phase at reservoir conditions and

the apparent densities of these two components.

Fig. 11.8 shows block i and its neighboring blocks in the x-direction (block

i�1 and block i+1). At any instant in time, oil, water, free-gas, and solution-gas
Δxi–1/2 Δxi +1/2

xi–1/2 xi +1/2

i –1 i+1i
mci mco

Well

mcs

Δxi

FIG. 11.8 Block i as a reservoir volume element in 1-D flow.
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components enter block i, coming from block i�1 across its xi�1/2 face at mass

rates of wcx jxi�1/2
, and leave to block i+1 across its xi+1/2 face at mass rates of

wcx jxi+1/2. Any of the components c¼o, w, fg, and sg may also enter block i
through a well at mass rates of qcmi

. The mass of component c¼o, w, fg, or
sg contained in a unit volume of rock is mcv. In the following steps, we derive

the material balance equation for component c¼o,w, fg, and sg for block iwrit-
ten over a time step Δt¼ tn+1� tn. For block i in Fig. 11.8, the mass balance

equation for component c can be written as

mcijxi�1=2
�mcojxi+ 1=2 +mcsi ¼mcai (11.16)

where
mcijxi�1=2
¼
ðtn+ 1

tn

wcxjxi�1=2
dt (11.17)

mcojxi+ 1=2 ¼
ðtn + 1

tn

wcxjxi+ 1=2dt (11.18)

and
mcsi ¼
ðtn + 1

tn

qcmi
dt (11.19)

because terms like wcx jxi�1/2
, wcx jxi+1/2, and qcmi

for an already discretized reser-
voir are functions of time only, as discussed earlier. Further justification is pre-

sented later in this section.

Substitution of Eqs. (11.17) through (11.19) into Eq. (11.16) yields

ðtn + 1

tn

wcxjxi�1=2
dt�

ðtn + 1

tn

wcxjxi+ 1=2dt+
ðtn + 1

tn

qcmi
dt¼mcai (11.20)

The mass accumulation of component c is defined as
mcai ¼Δt Vbmcvð Þi ¼VbiΔtmcvi ¼Vbi mn+ 1
cvi

�mn
cvi

� �
(11.21)

Note that the mass flow rate and mass flux for component c are related
through

wcx ¼ _mcxAx (11.22)

mass flux ( _mcx) can be expressed in terms of the component density (or apparent
density) and phase volumetric velocity as
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_mwx ¼ αcρwuwx (11.23a)

_mfgx ¼ αcρgugx (11.23b)

_mox ¼ αc
ρosc
Bo

� �
uox (11.23c)

and

_msgx ¼ αc
ρgscRs

αcBo

� �
uox (11.23d)

The mass of component c contained per unit rock volume (mcv) can be

expressed in terms of porosity, fluid saturation, and component density (or

apparent density) as

mwv ¼ϕρwSw (11.24a)

mfgv ¼ϕρgSg (11.24b)

mov ¼ϕ
ρosc
Bo

� �
So (11.24c)

and
msgv ¼ϕ
ρgscRs

αcBo

� �
So (11.24d)

The mass production rate of component c (qcm) can be expressed in terms of

the phase volumetric production rate (qp) and component density (or apparent

density) as

qwm ¼ αcρwqw (11.25a)

qfgm ¼ αcρgqfg ¼ αcρgqg (11.25b)

qom ¼ αc
ρosc
Bo

� �
qo (11.25c)

and
qsgm ¼ αc
ρgscRs

αcBo

� �
qo (11.25d)

It should be mentioned that, in Eqs. (11.23) through (11.25), uox, uwx, ugx, qo,
qw, qg, So, Sw, Sg, Bo, Bw, Bg, Rs, ρw, and ρg are all phase properties, whereas ρosc,
ρwsc, and ρgsc are component properties.
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Substitution of Eqs. (11.21) and (11.22) into Eq. (11.20) yields

ðtn + 1

tn

�
_mcxAxÞjxi�1=2

dt�
ðtn + 1

tn

�
_mcxAxÞjxi+ 1=2dt+

ðtn + 1

tn

qcmi
dt¼Vbi mn+ 1

cvi
�mn

cvi

� �

(11.26)

Substituting Eqs. (11.23) through (11.25) into Eq. (11.26) after using
ρw¼ρwsc/Bw in Eqs. (11.23a), (11.24a), and (11.25a) and ρg¼ρgsc/(αcBg) in

Eqs. (11.23b), (11.24b), and (11.25b); dividing by the appropriate αcρpsc for
p¼o, w, g; and noting that qp/Bp¼qpsc for p¼o, w, g yield

ðtn + 1

tn

�
uwxAx

Bw

�����
xi�1=2

dt�
ðtn + 1

tn

�
uwxAx

Bw

�����
xi+ 1=2

dt+

ðtn+ 1

tn

qwscidt

¼Vbi

αc

ϕSw
Bw

� �n+ 1

i

� ϕSw
Bw

� �n

i

" #
(11.27a)

for the water component,
ðtn + 1

tn

�
ugxAx

Bg

�����
xi�1=2

dt�
ðtn+ 1

tn

�
ugxAx

Bg

�����
xi+ 1=2

dt+

ðtn + 1

tn

qfgscidt

¼Vbi

αc

ϕSg
Bg

� �n+ 1

i

� ϕSg
Bg

� �n

i

" #
(11.27b)

for the free-gas component,
ðtn+ 1

tn

�
uoxAx

Bo

�����
xi�1=2

dt�
ðtn+ 1

tn

�
uoxAx

Bo

�����
xi+ 1=2

dt+

ðtn + 1

tn

qoscidt

¼Vbi

αc

ϕSo
Bo

� �n+ 1

i

� ϕSo
Bo

� �n

i

" #
(11.27c)

for the oil component, and
ðtn+ 1

tn

�
RsuoxAx

Bo

�����
xi�1=2

dt�
ðtn + 1

tn

�
RsuoxAx

Bo

�����
xi+ 1=2

dt+

ðtn + 1

tn

Rsiqoscidt

¼Vbi

αc
ϕRsSo
Bo

� �n+ 1
i

� ϕRsSo
Bo

� �n
i

	 

(11.27d)

for the solution-gas component.
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Consider the equation for the water component. Water-phase volumetric

velocities from block i�1 to block i and from block i to block i+1 are given

by Eq. (11.15) for p¼w. Substitution of Eq. (11.15) for p¼w into Eq. (11.27a)

yields

ðtn+ 1

tn

�
βc

kxAxkrw
μwBwΔx

�����
xi�1=2

pwi�1
�pwi

ð Þ� γwi�1=2
Zi�1�Zið Þ

h i( )
dt

�
ðtn + 1

tn

�
βc

kxAxkrw
μwBwΔx

�����
xi+ 1=2

pwi
�pwi+ 1

ð Þ� γwi + 1=2
Zi�Zi+ 1ð Þ

h i( )
dt+

ðtn+ 1

tn

qwscidt

¼Vbi

αc

ϕSw
Bw

� �n+ 1

i

� ϕSw
Bw

� �n

i

" #

(11.28)

Define the transmissibility of phase w in the x-direction between block i and

neighboring block i�1 as

Twxi�1=2
¼
�
βc

kxAxkrw
μwBwΔx

�����
xi�1=2

(11.29)

Combining Eq. (11.29) and Eq. (11.28) and rearranging the terms result in
ðtn+ 1

tn

Twxi�1=2
pwi�1

�pwi
ð Þ� γwi�1=2

Zi�1�Zið Þ
h in o

dt

+

ðtn + 1

tn

Twxi+ 1=2 pwi + 1
�pwi

ð Þ� γwi+ 1=2
Zi+ 1�Zið Þ

h in o
dt

+

ðtn + 1

tn

qwscidt¼
Vbi

αc

ϕSw
Bw

� �n+ 1

i

� ϕSw
Bw

� �n

i

" #
(11.30)
The derivation of Eq. (11.30) is rigorous and involves no assumptions other

than the validity of Darcy’s law for multiphase flow (Eq. 11.15) to estimate the

water-phase volumetric velocities between block i and its neighboring blocks

i�1 and i+1. Such validity is widely accepted by petroleum engineers. As dis-

cussed in Section 2.6.2 for single-phase flow, once the reservoir is discretized

into blocks (or nodes), the interblock geometric factor between block i and its



414 Petroleum reservoir simulation
neighboring block i�1

�
βc
kxAx

Δx

�����
xi�1=2

" #
is constant, independent of space and

time. In addition, the pressure-dependent term (μwBw)jxi�1/2
of transmissibility of

the water phase uses some average viscosity and FVF for block i and neighbor-
ing block i�1, or some weight (upstream weighting, average weighting, etc.) at

any instant of time t. In other words, the term (μwBw)jxi�1/2
is not a function of

space but a function of time as the block pressures change with time. Sim-

ilarly, the relative permeability of the water phase between block i and

neighboring block i�1 at any instant of time t (krw jxi�1/2
) uses the upstream

value or two-point upstream value of block i and neighboring block i�1 that

are already fixed in space. In other words, the term krw jxi�1/2
is not a function

of space but a function of time as the block saturations change with time.

Hence, transmissibility Twxi�1/2
between block i and its neighboring block

i�1 is a function of time only; it does not depend on space at any instant

of time.

As discussed in Chapter 2, the integral
Ðtn + 1
tn

F tð Þdt is equal to the area under

the curve F(t) in the interval tn� t� tn+1. This area is also equal to the area of a
rectangle with the dimensions of F(tm) and Δt where Fm is evaluated at time tm

and tn� tm� tn+1. Therefore,

ðtn+ 1

tn

F tð Þdt¼
ðtn + 1

tn

F tmð Þdt¼
ðtn + 1

tn

Fmdt¼Fm

ðtn+ 1

tn

dt¼Fmtjtn+ 1tn ¼Fm tn+ 1� tn
� �

¼FmΔt
(11.31)

Substituting Eq. (11.31) for the integrals into Eq. (11.30) and dividing by Δt

result in the flow equation for the water component,

Tm
wxi�1=2

pmwi�1
�pmwi

� �
� γmwi�1=2

Zi�1�Zið Þ
h i

+ Tm
wxi + 1=2

pmwi+ 1
�pmwi

� �
� γmwi+ 1=2

Zi+ 1�Zið Þ
h i

+ qmwsci ¼
Vbi

αcΔt
ϕSw
Bw

� �n+ 1

i

� ϕSw
Bw

� �n

i

" # (11.32a)

Steps similar to those that resulted in Eq. (11.32a) can be carried out on
Eqs. (11.27b), (11.27c), and (11.27d) to derive the flow equations for the

free-gas, oil, and solution-gas components, respectively.
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For the free-gas component,

Tm
gxi�1=2

pmgi�1
�pmgi

� �
� γmgi�1=2

Zi�1�Zið Þ
h i

+ Tm
gxi+ 1=2

pmgi+ 1 �pmgi

� �
� γmgi+ 1=2 Zi+ 1�Zið Þ

h i

+ qmfgsci ¼
Vbi

αcΔt
ϕSg
Bg

� �n + 1

i

� ϕSg
Bg

� �n

i

" # (11.32b)

For the oil component,
Tm
oxi�1=2

pmoi�1
�pmoi

� �
� γmoi�1=2

Zi�1�Zið Þ
h i

+Tm
oxi+ 1=2

pmoi+ 1 �pmoi

� �
� γmoi+ 1=2 Zi+ 1�Zið Þ

h i

+qmosci ¼
Vbi

αcΔt
ϕSo
Bo

� �n+ 1

i

� ϕSo
Bo

� �n

i

" # (11.32c)

For the solution-gas component,
ToxRsð Þmi�1=2 pmoi�1
�pmoi

� �
� γmoi�1=2

Zi�1�Zið Þ
h i

+ ToxRsð Þmi+ 1=2 pmoi + 1 �pmoi

� �
� γmoi+ 1=2 Zi+ 1�Zið Þ

h i

+ Rsqoscð Þmi ¼ Vbi

αcΔt
ϕRsSo
Bo

� �n+ 1

i

� ϕRsSo
Bo

� �n

i

" # (11.32d)

The general flow equations for the various components present in block n,

written in CVFD terminology, are now presented in Eq. (11.33).

For the water component,

X
l2ψn

Tm
wl,n

pmwl
�pmwn

� �
� γmwl,n

Zl�Znð Þ
h i

+
X
l2ξn

qmwscl,n + q
m
wscn

¼ Vbn

αcΔt
ϕSw
Bw

� �n+ 1

n

� ϕSw
Bw

� �n

n

" #
(11.33a)

For the free-gas component,
X
l2ψn

Tm
gl,n

pmgl �pmgn

� �
� γmgl,n Zl�Znð Þ

h i
+
X
l2ξn

qmfgscl,n + q
m
fgscn

¼ Vbn

αcΔt
ϕSg
Bg

� �n+ 1

n

� ϕSg
Bg

� �n

n

" #
(11.33b)
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For the oil component,
X
l2ψn

Tm
ol,n

pmol �pmon

� �
� γmol,n Zl�Znð Þ

h i
+
X
l2ξn

qmoscl,n + q
m
oscn

¼ Vbn

αcΔt
ϕSo
Bo

� �n+ 1

n

� ϕSo
Bo

� �n

n

" #
(11.33c)

For the solution-gas component,
X
l2ψn

ToRsð Þml,n pmol �pmon

� �
� γmol,n Zl�Znð Þ

h i
+
X
l2ξn

Rsqoscð Þml,n + Rsqoscð Þmn

¼ Vbn

αcΔt
ϕRsSo
Bo

� �n + 1

n

� ϕRsSo
Bo

� �n

n

" #

(11.33d)

As defined in the previous chapters, ψn¼ a set whose elements are the exist-
ing neighboring blocks to block n in the reservoir, ξn¼ a set whose elements are

the reservoir boundaries (bL, bS, bW, bE, bN, bU) that are shared by block n, and
qn+1pscl,n¼ flow rate of the fictitious well that represents transfer of phase p¼o, w,
fg between reservoir boundary l and block n as a result of a boundary condition.
As mentioned in Chapters 4 and 5, ξn is either an empty set for interior blocks or

a set that contains one element for boundary blocks that fall on one reservoir

boundary, two elements for boundary blocks that fall on two reservoir bound-

aries, or three elements for blocks that fall on three reservoir boundaries. An

empty set implies that the block does not fall on any reservoir boundary; that

is, block n is an interior block, and hence,
X
l2ξn

qn+ 1pscl,n
¼ 0 for p¼o, w, fg.

The explicit, implicit, and Crank-Nicolson formulations are derived from

Eq. (11.33) by specifying the approximation of time tm as tn, tn+1, or tn+1/2, which
are equivalent to using the first, second, and third integral approximation

methods referred to in Section 2.6.3. The explicit formulation, however, is

not used in multiphase flow because of time step limitations, and the Crank-

Nicolson formulation is not commonly used. Consequently, we limit our pre-

sentation to the implicit formulation. In the following equations, fluid gravity

is dated at old time level n instead of new time level n+1, as this approximation

does not introduce any noticeable errors (Coats et al. 1974).

For the water component,

X
l2ψn

Tn+ 1
wl,n

pn + 1wl
�pn + 1wn

� �
� γnwl,n

Zl�Znð Þ
h i

+
X
l2ξn

qn+ 1wscl,n
+ qn+ 1wscn

¼ Vbn

αcΔt
ϕSw
Bw

� �n+ 1

n

� ϕSw
Bw

� �n

n

" #
(11.34a)
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For the free-gas component,
X
l2ψn

Tn + 1
gl,n

pn+ 1gl
�pn+ 1gn

� �
� γngl,n Zl�Znð Þ

h i
+
X
l2ξn

qn+ 1fgscl,n
+ qn+ 1fgscn

¼ Vbn

αcΔt
ϕSg
Bg

� �n+ 1

n

� ϕSg
Bg

� �n

n

" #
(11.34b)

For the oil component,
X
l2ψn

Tn + 1
ol,n

pn+ 1ol
�pn+ 1on

� �
� γnol,n Zl�Znð Þ

h i
+
X
l2ξn

qn+ 1oscl,n
+ qn+ 1oscn

¼ Vbn

αcΔt
ϕSo
Bo

� �n+ 1

n

� ϕSo
Bo

� �n

n

" #
(11.34c)

For the solution-gas component,
X
l2ψn

ToRsð Þn+ 1l,n pn+ 1ol
�pn+ 1on

� �
� γnol,n Zl�Znð Þ

h i
+
X
l2ξn

Rsqoscð Þn+ 1l,n + Rsqoscð Þn+ 1n

¼ Vbn

αcΔt
ϕRsSo
Bo

� �n+ 1

n

� ϕRsSo
Bo

� �n

n

" #

(11.34d)

The transmissibility of phase p¼o, w, or g between blocks l and n is
defined as

Tpl,n ¼Gl,n
1

μpBp

 !
l,n

krpl,n (11.35)

whereGl,n¼ the geometric factor between blocks n and l presented in Chapter 4
for a block-centered grid or Chapter 5 for a point-distributed grid.

We limit our presentation in this chapter to the po�Sw�Sg formulation, that

is, the formulation that uses po, Sw, and Sg as the primary unknowns in the

reservoir. The secondary unknowns in this formulation are pw, pg, and So.
Explicitly, the flow models of oil/water, oil/gas, and oil/water/gas use po�Sw,
po�Sg, and po�Sw�Sg formulations, respectively. Other formulations such as

po�pw�pg, po�Pcow�Pcgo, or po�Pcow�Sg break down for negligible or

zero capillary pressures. To obtain the reduced set of equations for each block,

we express the secondary unknowns in the flow equations in terms of the pri-

mary unknowns and thus eliminate the secondary unknowns from the flow

equations. The equations used to eliminate the secondary unknowns are the sat-

uration constraint equation (Eq. 11.1):

So ¼ 1�Sw�Sg (11.36)
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and the capillary pressure relationships (Eqs. 11.10 and 11.11),
pw ¼ po�Pcow Swð Þ (11.37)

and
pg ¼ po +Pcgo Sg
� �

(11.38)

The gas/water flow model uses the pg�Sg formulation, and thus, the equa-
tions used to eliminate the secondary unknowns are

Sw ¼ 1�Sg (11.39)

and
pw ¼ pg�Pcgw Sg
� �

(11.40)

Once the primary unknowns are solved for, the saturation and capillary pres-
sure relationships (Eqs. 11.36 through 11.40) are used to solve for the secondary

unknowns for each reservoir block.
11.3.1 Flow equations for oil/water flow model

The two components in the oil/water flow model are oil (or gas-free oil) and

water at standard conditions. The oil phase in this case contains the oil compo-

nent only. The flow equations for block n in the oil/water flow model are

expressed by Eqs. (11.34a) and (11.34c). Combine these two equations with

So¼1�Sw and pw¼po�Pcow(Sw) to obtain the po�Sw formulation.

For the oil component,

X
l2ψn

Tn+ 1
ol,n

pn + 1ol
�pn + 1on

� �
� γnol,n Zl�Znð Þ

h i
+
X
l2ξn

qn+ 1oscl,n
+ qn+ 1oscn

¼ Vbn

αcΔt
ϕ 1�Swð Þ

Bo

	 
n+ 1
n

� ϕ 1�Swð Þ
Bo

	 
n
n

( ) (11.41)

For the water component,
X
l2ψn

Tn+ 1
wl,n

pn+ 1ol
�pn+ 1on

� �
� Pn+ 1

cowl
�Pn+ 1

cown

� �
� γnwl,n

Zl�Znð Þ
h i

+
X
l2ξn

qn+ 1wscl,n
+ qn+ 1wscn

¼ Vbn

αcΔt
ϕSw
Bw

� �n+ 1

n

� ϕSw
Bw

� �n

n

" #

(11.42)

Eqs. (11.41) and (11.42) also model the flow of undersaturated oil and
water as long as the reservoir is operated above the oil bubble-point pressure.
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Under such condition, the gas remains in the solution, and the undersaturated oil

behaves as a slightly compressible fluid with Bo
°¼Bob and a constant oil com-

pressibility (co) whose value depends on the solution GOR at the bubble-point

pressure (Rsb).

Example 11.4 A homogeneous, 1-D horizontal, two-phase oil/water reservoir

is described by four equal blocks as shown in Fig. 11.9. Initial reservoir pres-

sure and phase saturations are known. The reservoir left and right boundaries

are sealed off to flow. The reservoir has a water injection well in gridblock 1

and a production well in gridblock 4. Write the flow equations for interior

gridblock 3.

Solution

For gridblock 3, n¼3, and ψ3¼{2,4}. Gridblock 3 is an interior block;

therefore, ξ3¼{},
X
l2ξ3

qn+ 1oscl,3
¼ 0, and

X
l2ξ3

qn+ 1wscl,3
¼ 0. Gridblock 3 has no wells;

therefore, qn+1osc3¼0 and qn+1wsc3¼0.

The oil equation is obtained by substituting the given values into Eq. (11.41)

and expanding the summation terms, yielding

Tn+ 1
o2,3

pn+ 1o2
�pn+ 1o3

� �
� γno2,3 Z2�Z3ð Þ

h i

+Tn+ 1
o4,3

pn+ 1o4
�pn+ 1o3

� �
� γno4,3 Z4�Z3ð Þ

h i
+ 0 + 0

¼ Vb3

αcΔt
ϕ 1�Swð Þ

Bo

	 
n+ 1
3

� ϕ 1�Swð Þ
Bo

	 
n
3

( ) (11.43a)

Observing that Z2¼Z3¼Z4 for a horizontal reservoir, the oil equation
becomes

Tn+ 1
o2,3

pn+ 1o2
�pn+ 1o3

� �
+ Tn+ 1

o4,3
pn+ 1o4

�pn+ 1o3

� �

¼ Vb3

αcΔt
ϕ 1�Swð Þ

Bo

	 
n+ 1
3

� ϕ 1�Swð Þ
Bo

	 
n
3

( )
(11.43b)
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The water equation is obtained by substituting the given values into
Eq. (11.42) and expanding the summation terms, yielding

Tn+ 1
w2,3

pn+ 1o2
�pn+ 1o3

� �
� Pn+ 1

cow2
�Pn+ 1

cow3

� �
� γnw2,3

Z2�Z3ð Þ
h i

+ Tn+ 1
w4,3

½ pn + 1o4
�pn + 1o3

� �

� Pn+ 1
cow4

�Pn+ 1
cow3

� �
� γnw4,3

Z4�Z3ð Þ� + 0 + 0¼ Vb3

αcΔt
ϕSw
Bw

� �n+ 1

3

� ϕSw
Bw

� �n

3

" #

(11.44a)

Observing that Z2¼Z3¼Z4 for a horizontal reservoir, the water equation
becomes

Tn+ 1
w2,3

pn+ 1o2
�pn+ 1o3

� �
� Pn+ 1

cow2
�Pn+ 1

cow3

� �h i

+Tn + 1
w4,3

pn+ 1o4
�pn+ 1o3

� �
� Pn+ 1

cow4
�Pn + 1

cow3

� �h i

¼ Vb3

αcΔt
ϕSw
Bw

� �n+ 1

3

� ϕSw
Bw

� �n

3

" # (11.44b)

Eqs. (11.43b) and (11.44b) are the two flow equations for gridblock 3 in this
1-D reservoir.
11.3.2 Flow equations for gas/water flow model

The two components in the gas/water flow model are water at standard condi-

tions and the free-gas component at standard conditions. Gas solubility in the

water phase is assumed negligible; hence, the gas phase contains all the gas that

exists in this system. Therefore, Eqs. (11.34a) and (11.34b) express the gas/

water flow equations for block n. Combine these two equations with Sw¼1�Sg
and pw¼pg�Pcgw(Sg) to obtain the pg�Sg formulation.

For the gas component,

X
l2ψn

Tn+ 1
gl,n

pn + 1gl
�pn + 1gn

� �
� γngl,n Zl�Znð Þ

h i
+
X
l2ξn

qn+ 1gscl,n
+ qn+ 1gscn

¼ Vbn

αcΔt
ϕSg
Bg

� �n+ 1

n

� ϕSg
Bg

� �n

n

" # (11.45)

where qn+1gsci
¼qn+1fgsci

and qn+1gscl,n
¼qn+1fgscl,n

.
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For the water component,

X
l2ψn

Tn+ 1
wl,n

pn+ 1gl
�pn+ 1gn

� �
� Pn+ 1

cgwl
�Pn+ 1

cgwn

� �
� γnwl,n

Zl�Znð Þ
h i

+
X
l2ξn

qn+ 1wscl,n
+ qn+ 1wscn

¼ Vbn

αcΔt
ϕ 1�Sg
� �
Bw

	 
n + 1
n

� ϕ 1�Sg
� �
Bw

	 
n
n

( )

(11.46)
Example 11.5 A homogeneous, 1-D horizontal, two-phase gas/water reservoir is

describedby four equal blocksas shown inFig. 11.10. Initial reservoir pressure and

phase saturations are known. The reservoir left and right boundaries are sealed off

to flow.The reservoirhasaproductionwell ingridblock3.Write the flowequations

for interior gridblock 2. Assume negligible gas/water capillary pressure.

Solution

For gridblock 2, n¼2 and ψ3¼{1,3}. Gridblock 2 is an interior block;

therefore, ξ2¼{},
X
l2ξ2

qn+ 1gscl,2
¼ 0, and

X
l2ξ2

qn+ 1wscl,2
¼ 0. Gridblock 2 has no wells;

therefore, qn+1gsc2¼0 and qn+1wsc2¼0.

The gas flow equation is obtained by substituting the given values into

Eq. (11.45) and expanding the summation terms, yielding

Tn+ 1
g1,2

pn+ 1g1
�pn+ 1g2

� �
� γng1,2 Z1�Z2ð Þ

h i

+Tn+ 1
g3,2

pn+ 1g3
�pn+ 1g2

� �
� γng3,2 Z3�Z2ð Þ

h i
+ 0 + 0

¼ Vb2

αcΔt
ϕSg
Bg

� �n+ 1

2

� ϕSg
Bg

� �n

2

" # (11.47a)

Observing that Z1¼Z2¼Z3 for a horizontal reservoir, the gas flow equation
becomes

Tn+ 1
g1,2

pn+ 1g1
�pn+ 1g2

� �
+ Tn + 1

g3,2
pn+ 1g3

�pn+ 1g2

� �
¼ Vb2

αcΔt
ϕSg
Bg

� �n+ 1

2

� ϕSg
Bg

� �n

2

" #

(11.47b)

The water flow equation is obtained by substituting the given values into
Eq. (11.46) and expanding the summation terms, yielding
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Tn+ 1
w1,2

pn+ 1g1
�pn+ 1g2

� �
� Pn+ 1

cgw1
�Pn+ 1

cgw2

� �
� γnw1,2

Z1�Z2ð Þ
h i

+Tn+ 1
w3,2

h
pn+ 1g3

�pn+ 1g2

� �
� Pn + 1

cgw3
�Pn+ 1

cgw2

� �
� γnw3,2

Z3�Z2ð Þ
i
+ 0 + 0

¼ Vb2

αcΔt
ϕ 1�Sg
� �
Bw

	 
n+ 1
2

� ϕ 1�Sg
� �
Bw

	 
n
2

( ) (11.48a)

Observing that Z1¼Z2¼Z3 for a horizontal reservoir and for negligible gas/

water capillary pressure, the water flow equation becomes

Tn + 1
w1,2

pn+ 1g1
�pn+ 1g2

� �
+ Tn+ 1

w3,2
pn+ 1g3

�pn+ 1g2

� �

¼ Vb2

αcΔt
ϕ 1�Sg
� �
Bw

	 
n+ 1
2

� ϕ 1�Sg
� �
Bw

	 
n
2

( )
(11.48b)

Eqs. (11.47b) and (11.48b) are the two flow equations for gridblock 2 in this 1-D
reservoir.
11.3.3 Flow equations for oil/gas flow model

The components in the oil/gas flow model are oil at standard conditions, gas at

standard conditions, and irreducible water (immobile water). Gas consists of

both free-gas and solution-gas components. The flow equation for gas is

obtained by adding Eqs. (11.34b) and (11.34d):

X
l2ψn

Tn+ 1gl,n pn+ 1gl �pn+ 1gn

� �
� γngl,n Zl�Znð Þ

h i
+ ToRsð Þn+ 1l,n pn+ 1ol �pn+ 1on

� �
� γnol,n Zl�Znð Þ

h in o

+
X
l2ξn

qn+ 1fgscl,n
+ Rsqoscð Þn+ 1l,n

	 

+ qn+ 1fgscn

+ Rsqoscð Þn+ 1n

h i

¼ Vbn
αcΔt

ϕSg
Bg

 !n + 1

n

� ϕSg
Bg

 !n

n

2
4

3
5 +

ϕRsSo
Bo

� �n+ 1
n

� ϕRsSo
Bo

� �n
n

" #8<
:

9=
;

(11.49)

Therefore, Eqs. (11.34c) and (11.49) express the oil/gas flow equations for
block n.
Combine these two equations with So¼ (1�Siw)�Sg and pg¼po+Pcgo(Sg)

to obtain the po�Sg formulation.

For the oil component,

X
l2ψn

Tn+ 1
ol,n

pn+ 1ol
�pn+ 1on

� �
� γnol,n Zl�Znð Þ

h i
+
X
l2ξn

qn+ 1oscl,n
+ qn+ 1oscn

¼ Vbn

αcΔt
ϕ 1�Siw�Sg
� �

Bo

	 
n+ 1
n

� ϕ 1�Siw�Sg
� �

Bo

	 
n
n

( ) (11.50)
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For the gas component,
X
l2ψn



Tn + 1
gl,n

pn+ 1ol
�pn+ 1on

� �
+ Pn+ 1

cgol
�Pn + 1

cgon

� �
� γngl,n Zl�Znð Þ

h i

+ ToRsð Þn+ 1l,n pn + 1ol
�pn + 1on

� �
� γnol,n Zl�Znð Þ

h i�
+
X
l2ξn

qn+ 1fgscl,n
+Rn+ 1

sl,n
qn+ 1oscl,n

h i

+ qn+ 1fgscn
+Rn+ 1

sn
qn+ 1oscn

h i

¼ Vbn

αcΔt
ϕSg
Bg

� �n+ 1

n

� ϕSg
Bg

� �n

n

+
ϕRs 1�Siw�Sg

� �
Bo

	 
n+ 1
n

� ϕRs 1�Siw�Sg
� �

Bo

	 
n
n

( )

(11.51)

The irreducible water in this model is assumed to have the same compress-

ibility as that of porosity. If the irreducible water is assumed incompressible,

then ϕHC¼ϕ(1�Siw) replaces ϕ, and (1�Sg) replaces (1�Siw�Sg) in

Eqs. (11.50) and (11.51).
y

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

x

FIG. 11.11 2-D reservoir in Example 11.6.
Example 11.6 A homogeneous, 2-D horizontal, two-phase oil/gas reservoir is

shown in Fig. 11.11. Initial reservoir pressure and phase saturations are known.

The reservoir has no-flow boundaries. There is a gas injection well in gridblock

1 and a production well in gridblock 16. Write the flow equations for interior

gridblock 10. Assume negligible gas/oil capillary pressure.

Solution

For gridblock 10, n¼10 and ψ10¼{6,9,11,14}. Gridblock 10 is an interior

block; therefore, ξ10¼{},
X
l2ξ10

qn+ 1oscl,10
¼ 0, and

X
l2ξ10

qn+ 1fgscl,10
¼ 0. Gridblock 10 has

no wells; therefore, qn+1osc10¼0 and qn+1fgsc10¼0.

The oil equation is obtained by substituting the given values into Eq. (11.50)

and expanding the summation terms, yielding
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Tn+ 1
o6,10

pn+ 1o6
�pn+ 1o10

� �
� γno6,10 Z6�Z10ð Þ

h i

+Tn+ 1
o9,10

pn+ 1o9
�pn+ 1o10

� �
� γno9,10 Z9�Z10ð Þ

h i

+Tn+ 1
o11,10

pn+ 1o11
�pn+ 1o10

� �
� γno11,10 Z11�Z10ð Þ

h i

+Tn+ 1
o14,10

pn+ 1o14
�pn+ 1o10

� �
� γno14,10 Z14�Z10ð Þ

h i
+ 0 + 0

¼ Vb10

αcΔt
ϕ 1�Siw�Sg
� �

Bo

	 
n + 1
10

� ϕ 1�Siw�Sg
� �

Bo

	 
n
10

( )
(11.52a)

For a horizontal reservoir, Z6¼Z9¼Z10¼Z11¼Z14, and the oil equation
becomes

Tn+ 1
o6,10

pn+ 1o6
�pn+ 1o10

� �
+ Tn+ 1

o9,10
pn+ 1o9

�pn+ 1o10

� �

+Tn+ 1
o11,10

pn+ 1o11
�pn+ 1o10

� �
+ Tn+ 1

o14,10
pn+ 1o14

�pn+ 1o10

� �

¼ Vb10

αcΔt
ϕ 1�Siw�Sg
� �

Bo

	 
n+ 1
10

� ϕ 1�Siw�Sg
� �

Bo

	 
n
10

( ) (11.52b)

The gas equation is obtained by substituting the given values into
Eq. (11.51) and expanding the summation terms, yielding

Tn+ 1
g6,10

pn + 1o6
�pn+ 1o10

� �
+ Pn+ 1

cgo6
�Pn + 1

cgo10

� �
� γng6,10 Z6�Z10ð Þ

h i

+ ToRsð Þn+ 16,10 pn+ 1o6
�pn+ 1o10

� �
� γno6,10 Z6�Z10ð Þ

h i

+Tn + 1g9,10
pn+ 1o9

�pn+ 1o10

� �
+ Pn+ 1

cgo9
�Pn+ 1

cgo10

� �
� γng9,10 Z9�Z10ð Þ

h i

+ ToRsð Þn+ 19,10 pn+ 1o9
�pn+ 1o10

� �
� γno9,10 Z9�Z10ð Þ

h i

+Tn + 1g11,10
pn+ 1o11

�pn + 1o10

� �
+ Pn+ 1

cgo11
�Pn+ 1

cgo10

� �
� γng11,10 Z11�Z10ð Þ

h i

+ ToRsð Þn+ 111,10 pn+ 1o11
�pn+ 1o10

� �
� γno11,10 Z11�Z10ð Þ

h i

+Tn + 1g14,10
pn+ 1o14

�pn + 1o10

� �
+ Pn+ 1

cgo14
�Pn+ 1

cgo10

� �
� γng14,10 Z14�Z10ð Þ

h i

+ ToRsð Þn+ 114,10 pn+ 1o14
�pn+ 1o10

� �
� γno14,10 Z14�Z10ð Þ

h i
+ 0 + 0 +Rn+ 1

s10
�0

h i

¼ Vb10

αcΔt
ϕSg
Bg

� �n+ 1

10

� ϕSg
Bg

� �n

10

+
ϕRs 1�Siw�Sg

� �
Bo

	 
n+ 1
10

� ϕRs 1�Siw�Sg
� �

Bo

	 
n
10

( )

(11.53a)
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Observing that Z6¼Z9¼Z10¼Z11¼Z14 for a horizontal reservoir and for

negligible gas/oil capillary pressure, the gas equation becomes

Tn+ 1g6,10
+ ToRsð Þn+ 16,10

h i
pn + 1o6

�pn+ 1o10

� �
+ Tn+ 1g9,10

+ ToRsð Þn + 19,10

h i
pn+ 1o9

�pn+ 1o10

� �

+ Tn+ 1g11,10
+ ToRsð Þn+ 111,10

h i
pn+ 1o11

�pn+ 1o10

� �
+ Tn+ 1g14,10

+ ToRsð Þn+ 114,10

h i
pn+ 1o14

�pn+ 1o10

� �

¼ Vb10

αcΔt
ϕSg
Bg

� �n+ 1

10

� ϕSg
Bg

� �n

10

+
ϕRs 1�Siw�Sg

� �
Bo

	 
n+ 1
10

� ϕRs 1�Siw�Sg
� �

Bo

	 
n
10

( )

(11.53b)

Eqs. (11.52b) and (11.53b) are the two flow equations for gridblock 10 in this
2-D reservoir.
11.3.4 Flow equations for black-oil model

The isothermal oil/water/gas flow model is known as the black-oil model. The

oil component forms the bulk of the oil phase. The solution-gas component dis-

solves in it, and the remaining gas (the free-gas component) forms the gas phase.

Oil and water are immiscible, and both do not dissolve in the gas phase. There-

fore, the black-oil system consists of the water component, the oil component,

and the gas component (solution gas plus free gas). Accordingly, a black-oil

model consists of Eqs. (11.34a), (11.34c), and (11.49).

For the oil component,

X
l2ψn

Tn + 1
ol,n

pn+ 1ol
�pn+ 1on

� �
� γnol,n Zl�Znð Þ

h i
+
X
l2ξn

qn+ 1oscl,n
+ qn+ 1oscn

¼ Vbn

αcΔt
ϕSo
Bo

� �n+ 1

n

� ϕSo
Bo

� �n

n

" # (11.34c)

For the gas component,
X
l2ψn

Tn+ 1
gl,n

pn+ 1gl
�pn+ 1gn

� �
� γngl,n Zl�Znð Þ

h in

+ ToRsð Þn+ 1l,n pn+ 1ol
�pn+ 1on

� �
� γnol,n Zl�Znð Þ

h io

+
X
l2ξn

qn+ 1fgscl,n
+ Rsqoscð Þn+ 1l,n

h i
+ qn+ 1fgscn

+ Rsqoscð Þn+ 1n

h i

¼ Vbn

αcΔt
ϕSg
Bg

� �n + 1

n

� ϕSg
Bg

� �n

n

" #
+

ϕRsSo
Bo

� �n+ 1

n

� ϕRsSo
Bo

� �n

n

" #( )

(11.49)
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For the water component,
X
l2ψn

Tn+ 1
wl,n

pn + 1wl
�pn + 1wn

� �
� γnwl,n

Zl�Znð Þ
h i

+
X
l2ξn

qn+ 1wscl,n
+ qn+ 1wscn

¼ Vbn

αcΔt
ϕSw
Bw

� �n + 1

n

� ϕSw
Bw

� �n

n

" # (11.34a)

Combine these three equations with So¼1�Sw�Sg, pw¼po�Pcow(Sw),

and pg¼po+Pcgo(Sg) to obtain the po�Sw�Sg formulation.

For the oil component,

X
l2ψn

Tn+ 1
ol,n

pn + 1ol
�pn + 1on

� �
� γnol,n Zl�Znð Þ

h i
+
X
l2ξn

qn+ 1oscl,n
+ qn+ 1oscn

¼ Vbn

αcΔt
ϕ 1�Sw�Sg
� �

Bo

	 
n+ 1
n

� ϕ 1�Sw�Sg
� �

Bo

	 
n
n

( ) (11.54)

For the gas component,
X
l2ψn



Tn + 1
gl,n

pn+ 1ol
�pn+ 1on

� �
+ Pn+ 1

cgol
�Pn+ 1

cgon

� �
� γngl,n Zl�Znð Þ

h i

+ ToRsð Þn+ 1l,n pn+ 1ol
�pn+ 1on

� �
� γnol,n Zl�Znð Þ

h i�

+
X
l2ξn

qn+ 1fgscl,n
+Rn + 1

sl,n
qn+ 1oscl,n

h i
+ qn+ 1fgscn

+Rn+ 1
sn

qn+ 1oscn

h i

¼ Vbn

αcΔt
ϕSg
Bg

� �n+ 1

n

� ϕSg
Bg

� �n

n

+
ϕRs 1�Sw�Sg

� �
Bo

	 
n+ 1
n

� ϕRs 1�Sw�Sg
� �

Bo

	 
n
n

( )

(11.55)

For the water component,
X
l2ψn

Tn+ 1
wl,n

pn+ 1ol
�pn+ 1on

� �
� Pn+ 1

cowl
�Pn+ 1

cown

� �
� γnwl,n

Zl�Znð Þ
h i

+
X
l2ξn

qn+ 1wscl,n
+ qn+ 1wscn

¼ Vbn

αcΔt
ϕSw
Bw

� �n+ 1

n

� ϕSwÞ
Bw

� �n

n

" #
(11.56)

It is noteworthy to mention that the flow equations in a black-oil model
(Eqs. 11.54, 11.55, and 11.56) can be reduced to any of the two-phase flow

models already presented. This is accomplished by discarding the flow equation

for the missing phase and setting the saturation of the missing phase to zero in

the remaining flow equations. For example, the oil/water flowmodel is obtained

from the black-oil model by discarding the gas flow equation (Eq. 11.55) and

setting Sg¼0 in Eq. (11.54). The oil/gas flow model is obtained by discarding



i =1 i =2 i =3 i = 4

k = 1

k = 2

k = 3

r

z

1 2 3 4

5 6 7 8

910 11 12

Production well

No-flow boundary

No-flow boundary

Constant boundary pressure

FIG. 11.12 2-D radial-cylindrical reservoir in Example 11.7.
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the water flow equation (Eq. 11.56) and setting Sw¼Siw in Eqs. (11.54) and

(11.55).

Example 11.7A single-well simulation problem is presented in Fig. 11.12. The

reservoir is horizontal and contains oil, water, and gas. Initial reservoir pressure

and phase saturations are known. The reservoir top and lateral boundaries are

no-flow boundaries, whereas the reservoir bottom boundary represents a con-

stant pressureWOC. The well is completed through the top layer.Write the flow

equations for interior gridblock 7.

Solution

For gridblock 7, n¼7 and ψ7¼{3,6,8,11}. Gridblock 7 is an interior block;

therefore, ξ7¼{},
X
l2ξ7

qn+ 1oscl,7
¼ 0,

X
l2ξ7

qn+ 1wscl,7
¼ 0, and

X
l2ξ7

qn+ 1fgscl,7
¼ 0. Gridblock 7

has no wells; therefore, qn+1osc7¼0, qn+1wsc7¼0, and qn+1fgsc7¼0. Observe also that

Z6¼Z7¼Z8.
The oil equation is obtained by substituting the given values into Eq. (11.54)

and expanding the summation terms, yielding

Tn+ 1
o3,7

pn+ 1o3
�pn+ 1o7

� �
� γno3,7 Z3�Z7ð Þ

h i
+ Tn+ 1

o6,7
pn + 1o6

�pn + 1o7

� �

+Tn+ 1
o8,7

pn+ 1o8
�pn+ 1o7

� �
+ Tn+ 1

o11,7
pn+ 1o11

�pn+ 1o7

� �
� γno11,7 Z11�Z7ð Þ

h i
+ 0 + 0

¼ Vb7

αcΔt
ϕ 1�Sw�Sg
� �

Bo

	 
n+ 1
7

� ϕ 1�Sw�Sg
� �

Bo

	 
n
7

( )

(11.57)

The gas equation is obtained by substituting the given values into
Eq. (11.55) and expanding the summation terms, yielding
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Tn+ 1
g3,7

pn + 1o3
�pn+ 1o7

� �
+ Pn+ 1

cgo3
�Pn+ 1

cgo7

� �
� γng3,7 Z3�Z7ð Þ

h i

+ ToRsð Þn + 13,7 pn+ 1o3
�pn+ 1o7

� �
� γno3,7 Z3�Z7ð Þ

h i

+Tn+ 1
g6,7

pn+ 1o6
�pn+ 1o7

� �
+ Pn+ 1

cgo6
�Pn+ 1

cgo7

� �h i
+ ToRsð Þn+ 16,7 pn + 1o6

�pn+ 1o7

� �h i

+Tn+ 1
g8,7

pn+ 1o8
�pn+ 1o7

� �
+ Pn+ 1

cgo8
�Pn+ 1

cgo7

� �h i
+ ToRsð Þn+ 18,7 pn + 1o8

�pn+ 1o7

� �h i

+Tn+ 1
g11,7

pn+ 1o11
�pn+ 1o7

� �
+ Pn+ 1

cgo11
�Pn+ 1

cgo7

� �
� γng11,7 Z11�Z7ð Þ

h i

+ ToRsð Þn + 111,7 pn+ 1o11
�pn+ 1o7

� �
� γno11,7 Z11�Z7ð Þ

h i
+ 0 + 0 +Rn+ 1

s7
�0

h i

¼ Vb7

αcΔt
ϕSg
Bg

� �n+ 1

7

� ϕSg
Bg

� �n

7

+
ϕRs 1�Sw�Sg

� �
Bo

	 
n+ 1
7

� ϕRs 1�Sw�Sg
� �

Bo

	 
n
7

( )

(11.58)

The water equation is obtained by substituting the given values into
Eq. (11.56) and expanding the summation terms, yielding

Tn+ 1
w3,7

pn+ 1o3
�pn+ 1o7

� �
� Pn + 1

cow3
�Pn+ 1

cow7

� �
� γnw3,7

Z3�Z7ð Þ
h i

+Tn+ 1
w6,7

pn+ 1o6
�pn+ 1o7

� �
� Pn+ 1

cow6
�Pn+ 1

cow7

� �h i

+Tn+ 1
w8,7

pn+ 1o8
�pn+ 1o7

� �
� Pn+ 1

cow8
�Pn+ 1

cow7

� �h i

+Tn+ 1
w11,7

pn+ 1o11
�pn+ 1o7

� �
� Pn+ 1

cow11
�Pn+ 1

cow7

� �
� γnw11,7

Z11�Z7ð Þ
h i

+ 0 + 0

¼ Vb7

αcΔt
ϕSw
Bw

� �n+ 1

7

� ϕSw
Bw

� �n

7

" #
(11.59)

Eqs. (11.57), (11.58), and (11.59) are the three flow equations for gridblock 7 in
this 2-D radial flow reservoir.
11.4 Solution of multiphase flow equations

The equations for the whole reservoir consist of the flow equations contributed

by all reservoir blocks. The unknowns in the system are the unknowns of the

formulation for all reservoir blocks. To solve the flow equations of a reservoir

model, several steps are taken. The accumulation terms in the flow equations

are expanded in a conservative way and expressed in terms of the changes of

the unknowns of the block over a time step, the boundary conditions are imple-

mented (or the rates of fictitious wells are estimated), production and injection

rates are included, and the nonlinear terms are linearized both in space and time.

The treatments of boundary conditions, production (injection), and linearization
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are, to some extent, similar to those for single-flow models presented in

Chapters 4, 5, 6, and 8. In this section, we present, in elaborate detail, the expan-

sion of the accumulation terms, the treatments of production and injection wells,

boundary conditions, and solution methods of the equations of multiphase flow

models. In addition, we highlight differences in the treatment of nonlinear terms

from single-phase flow.
11.4.1 Expansion of accumulation terms

The accumulation terms of the reduced set of equations for each reservoir block

must be expanded and expressed in terms of the changes of the primary

unknowns of formulation over a time step. These accumulation terms form

the RHS of Eqs. (11.41) and (11.42) for the oil/water model, Eqs. (11.45)

and (11.46) for the gas/water model, Eqs. (11.50) and (11.51) for the oil/gas

model, and Eqs. (11.54) through (11.56) for the oil/water/gas model. The expan-

sion scheme used must preserve material balance. For example, consider the

expansion of the RHS of Eq. (11.42),
Vbn

αcΔt
ϕSw
Bw

� �n+ 1
n

� ϕSw
Bw

� �n
n

	 

, in terms of

po and Sw. Add and subtract the term Snwn

ϕ
Bw

� �n+ 1
n

and factorize the terms as

follows:

Vbn

αcΔt
ϕSw
Bw

� �n+ 1

n

� ϕSw
Bw

� �n

n

" #

¼ Vbn

αcΔt
ϕSw
Bw

� �n+ 1

n

�Snwn

ϕ

Bw

� �n+ 1

n

+ Snwn

ϕ

Bw

� �n+ 1

n

� ϕSw
Bw

� �n

n

" #

¼ Vbn

αcΔt
ϕ

Bw

� �n+ 1

n

Sn+ 1wn
�Snwn

� �
+ Snwn

ϕ

Bw

� �n+ 1

n

� ϕ

Bw

� �n

n

" #( )
(11.60)

Again, add and subtract the term ϕn+ 1
n

1
Bn
wn
in the square bracket on the RHS
of Eq. (11.60) and factorize the terms as follows:

Vbn
αcΔt

ϕSw
Bw

� �n+ 1

n
� ϕSw

Bw

� �n

n

" #

¼ Vbn
αcΔt

ϕ

Bw

� �n+ 1

n
Sn+ 1wn

�Snwn

� �
+ Snwn

ϕ

Bw

� �n+ 1

n
�ϕn+ 1

n
1

Bnwn

+ϕn+ 1
n

1

Bnwn

� ϕ

Bw

� �n

n

" #( )

¼ Vbn
αcΔt

ϕ

Bw

� �n+ 1

n
Sn+ 1wn

�Snwn

� �
+ Snwn

ϕn + 1n
1

Bn+ 1wn

� 1

Bnwn

 !
+

1

Bnwn

ϕn+ 1
n �ϕn
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� �" #( )

(11.61)

Expressing the changes in 1
Bwn

and ϕn over a time step in terms of the changes
in oil-phase pressure over the same time step, results in
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Vbn

αcΔt
ϕSw
Bw

� �n+ 1

n

� ϕSw
Bw

� �n

n

" #

¼ Vbn

αcΔt
ϕ

Bw

� �n+ 1

n

Sn + 1wn
�Snwn

� �
+ Snwn

ϕn+ 1
n

1

Bwn

� �0
+

1

Bn
wn

ϕ0
n

" #
pn+ 1on

�pnon

� �( )

(11.62)

1
� �0

0
where
Bwn

and ϕn are defined as the chord slopes estimated between values

at current time level at old iteration n + 1
νð Þ

and old time level n

1

Bwn

� �0
¼ 1

Bn+ 1
vð Þ

wn

� 1

Bn
wn

0
@

1
A. pn+ 1

vð Þ

on
�pnon

� �
(11.63)

and
ϕ0
n ¼ ϕn+ 1

vð Þ

n �ϕn
n

� �.�
pn+ 1

vð Þ

on
�pnon

�
(11.64)

The RHS of Eq. (11.62), along with the definitions of chord slopes given by
Eqs. (11.63) and (11.64), is termed a conservative expansion of the accumula-

tion term represented by the LHS of Eq. (11.62).

Other accumulation terms can be expanded using similar steps as those that

led to Eq. (11.62). Ertekin et al. (2001) derived a generic equation for a conser-

vative expansion of any accumulation term, which states

Vb

αcΔt
UVXYð Þn+ 1� UVXYð Þn

h i
¼ Vb

αcΔt
½ VXYð Þn Un+ 1�Un

� �
+Un + 1 XYð Þn Vn+ 1�Vnð Þ+ UVð Þn+ 1Yn Xn+ 1�Xnð Þ+ UVXð Þn + 1 Yn+ 1�Ynð Þ�

(11.65)

whereU is the weakest nonlinear function, Y is the strongest nonlinear function,
and the degree of nonlinearity of V and X increases in the direction from U to Y.
Usually, U�ϕ, V�1/Bp, X�Rs, and Y�Sp. If U, V, X, or Y does not exist, then

it is assigned a value of 1. Because ϕ, 1/Bp, and Rs are functions of the oil-phase

pressure that is a primary unknown and Sp is either a primary unknown as in case

of Sw and Sg or a function of the saturations that are primary unknowns (Sw, Sg)
as in the case of So, Eq. (11.65) can be developed further to give

Vb

αcΔt
UVXYð Þn+ 1� UVXYð Þn

h i
¼ Vb

αcΔt



VXYð ÞnU0 pn+ 1�pn

� �
+Un+ 1 XYð ÞnV0 pn+ 1�pnð Þ+ UVð Þn+ 1YnX0 pn+ 1�pnð Þ
+ UVXð Þn+ 1 ∂Y=∂Swð Þ Sn + 1w �Snw

� �
+ ∂Y=∂Sg
� �

Sn+ 1g �Sng

� �h i� (11.66)
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or
Vb

αcΔt
UVXYð Þn + 1� UVXYð Þn

h i
¼ Vb

αcΔt



½ VXYð ÞnU0 +Un+ 1 XYð ÞnV0

+ UVð Þn+ 1YnX0� pn+ 1�pnð Þ + UVXð Þn+ 1 ∂Y=∂Swð Þ Sn+ 1w �Snw
� �

+ UVXð Þn + 1 ∂Y=∂Sg
� �

Sn+ 1g �Sng

� �� (11.67)

where
U0 ¼ Un+ 1
νð Þ
�Un

� �.
pn+ 1

νð Þ
�pn

� �
(11.68a)

V0 ¼ Vn+ 1
νð Þ
�Vn

� �.
pn+ 1

νð Þ
�pn

� �
(11.68b)

and
X0 ¼ Xn+ 1
νð Þ
�Xn

� �.
pn+ 1

νð Þ
�pn

� �
(11.68c)

Moreover, for Y�Sw, ∂Y/∂Sw¼1 and ∂Y/∂Sg¼0; for Y�Sg, ∂Y/∂Sw¼0 and
∂Y/∂Sg¼1; and for Y�So, ∂Y/∂Sw¼ �1 and ∂Y/∂Sg¼ �1.

Let us apply Eq. (11.67) to obtain the expansion given by Eq. (11.62). In this

case, we have U�ϕ, V�1/Bw, X�1, and Y�Sw. Note that p�po. Substitution
into Eq. (11.68) gives

ϕ0 ¼ ϕn+ 1
vð Þ
�ϕn

� �.
pn+ 1

vð Þ

o �pno

� �
(11.69)

1

Bw

� �0
¼ 1

Bn+ 1
vð Þ

w

� 1

Bn
w

0
@

1
A. pn+ 1

vð Þ

o �pno

� �
(11.70)

and
X0 ¼ 0 (11.71)

In addition,

∂Y=∂Sw ¼ ∂Sw=∂Sw ¼ 1 (11.72a)

and
∂Y=∂Sg ¼ ∂Sw=∂Sg ¼ 0 (11.72b)
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Substitution of Eqs. (11.69) and (11.70) and the definitions ofU, V, X, and Y

into Eq. (11.67) gives

Vb

αcΔt
ϕ

1

Bw
Sw

� �n+ 1

� ϕ
1

Bw
Sw

� �n
" #

¼ Vb
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(11.73)

Substitution of Eqs. (11.71) and (11.72) into this equation yields
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(11.74)

which upon simplification, term factorization, and addition of subscript n to all

functions to identify the block gives Eq. (11.62), which states
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(11.62)
11.4.2 Well rate terms

Production and injection wells are treated separately because injection usually

involves one phase only, either water or gas, but production involves all phases

present in wellblocks.
11.4.2.1 Production terms

Fluid production rates in multiphase flow are dependent on each other through at

least relativepermeabilities. Inotherwords, the specificationof theproduction rate

of any phase implicitly dictates the production rates of the other phases. In this sec-

tion, we emphasize the treatment of a vertical well that is completed in several

blocks, as shown in Fig. 11.13, and produces fluids from a multiphase reservoir.
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FIG. 11.13 Cross section showing pressures within a vertical production wellbore.
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If the FBHP at reference depth (pwfref) is assumed to be known, then well

pressure opposite wellblock i can be estimated using the following equation:

pwf i ¼ pwf ref + γwb Zi�Zref
� �

(11.75)

where
γwb ¼ γcρwbg (11.76)

In addition, the average fluid density in the wellbore opposite the producing
formation is approximated as

ρwb ¼

X
p2 o,w, fgf g

ρpBpqpsc

X
p2 o, w, fgf g

Bpqpsc
(11.77a)

where average FBHP or pwfref can be used to obtain estimates for Bp and ρp for

phase p¼o, w, g.

The concern here is to estimate the production rate of phase p¼o,w, fg from
wellblock i under different well operating conditions, where wellblock i is a
member of the set of all blocks that contribute to well production; that is, i2ψw.

Shut-in well

qpsci ¼ 0 (11.78)

where p¼o, w, fg.

Specified well flow rate



TABLE 11.4 Well rate specification and definitions of set ηprd and Mp.

Well rate specification

qsp

Set of specified phases

ηprd

Phase relative mobility

Mp

qosp {o,w} krp/μp

qLsp {o,w} krp/μp

qTsp {o,w,g} krp/μp

qospsc {o,w} krp/(Bpμp)

qLspsc {o,w} krp/(Bpμp)
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The production rate of phase p¼o, w, fg from wellblock i is given by

qpsci ¼�Gwi

krp
Bpμp

 !
i

pi�pwf i
� �

(11.79a)

This equation can be combined with Eq. (11.75) to give

qpsci ¼�Gwi

krp
Bpμp

 !
i

pi�pwf ref � γwb Zi�Zref
� �h i

(11.80a)

For a multiblock well, pwfref is estimated from the well rate specification
(qsp) using

pwf ref ¼

X
i2ψw

Gwi
pi� γwb Zi�Zref

� �� � X
p2ηprd

Mpi

8<
:

9=
;+ qsp

X
i2ψw

Gwi

X
p2ηprd

Mpi

(11.81a)

where ηprd and Mp depend on the type of well rate specification as listed in
Table 11.4. The use of Eq. (11.81a) requires solving for pwfref implicitly alongwith

the reservoir block pressures. An explicit treatment, however, uses Eq. (11.81a) at

old time level n to estimate pnwfref, which is subsequently substituted into

Eq. (11.80a) to estimate the production rate of phase p¼o, w, fg from wellblock

i (qpsci). For a single-block well, the application of Eq. (11.81a) for ψw¼{i}
followed by substitution for pwfref into Eq. (11.80a) yields.

pwf ref ¼ pi� γwb Zi�Zref
� �� �

+
qsp

Gwi

X
p2ηprd

Mpi

(11.81c)
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and
qpsci ¼
krp
Bpμp

 !
i

qspX
p2ηprd

Mpi

(11.80c)

for p¼o, w, fg.

Specified well pressure gradient
For a specified well pressure gradient, the production rate of phase p¼o, w,

fg from wellblock i is given by

qpsci ¼�2πβcrwkHi
hi

krp
Bpμp

 !
i

∂p

∂r

����
rw

(11.82a)

Specified well FBHP

If the FBHP of a well (pwfref) is specified, then the production rate of phase

p¼o, w, fg from wellblock i can be estimated using Eq. (11.80a):

qpsci ¼�Gwi

krp
Bpμp

 !
i

pi�pwf ref � γwb Zi�Zref
� �h i

(11.80a)
Example 11.8 Consider the single-well simulation problem presented in

Example 11.7. Write the production rate equations for oil, water, and gas from

the well in gridblock 9 given that the well is producing at a specified constant

liquid rate of qLspsc.
Solution

The concern here is to find the production rate of the individual phases from

the well in wellblock 9 given that qsp¼qLspsc. For single-block wells,

Eq. (11.80c) is applicable, stating

qpsci ¼
krp
Bpμp

 !
i

qspX
p2ηprd

Mpi

(11.80c)

where p¼o, w, fg. For qsp¼qLspsc in Table 11.4, we have ηprd¼{o,w} and
Mp¼krp/Bpμp. Therefore, substitution into Eq. (11.80c) for wellblock 9

(i.e., i¼9) gives

qosc9 ¼
kro
Boμo

� �
9

qLspsc
kro
Boμo

� �
9

+
krw
Bwμw

� �
9

	 
 (11.83a)

qwsc9 ¼
krw
Bwμw

� �
9

qLspsc
kro
Boμo

� �
9

+
krw
Bwμw

� �
9

	 
 (11.83b)
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FIG. 11.14 Cross section showing pressures within a vertical injection wellbore.
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and
qfgsc9 ¼
krg
Bgμg

 !
9

qLspsc
kro
Boμo

� �
9

+
krw
Bwμw

� �
9

	 
 (11.83c)

It should be noted that qgsc9¼qfgsc9+Rs9qosc9.

11.4.2.2 Injection terms

For injection wells, one phase (usually water or gas) is injected. The mobility of

the injected fluid at reservoir conditions in a wellblock is equal to the sum of the

mobilities of all phases present in the wellblock (Abou-Kassem, 1996); that is,

Minj ¼
X
p2ηinj

Mp (11.84)

where
ηinj ¼ o,w, gf g (11.85)

Mp¼ (krp/μp), and βckHMp¼ mobility of phase p at reservoir conditions of
the wellblock.

In this section, we emphasize the treatment of a well that is completed in

several blocks, as shown in Fig. 11.14, and injects either water or gas into a mul-

tiphase reservoir. If the FBHP at reference depth (pwfref) is assumed to be known,

then the well pressure opposite wellblock i can be estimated using Eq. (11.75):
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pwf i ¼ pwf ref + γwb Zi�Zref
� �

(11.75)

where
γwb ¼ γcρwbg (11.76)

and the average density of the injected fluid, opposite the formation, is esti-
mated as

ρwb ¼
ρpsc
Bp

(11.77b)

Average FBHP or pwfref can be used to obtain an estimate for Bp of the
injected phase p. The concern here is to estimate the injection rate of the injected

phase (usually water or gas) into wellblock i under different well operating con-
ditions, where wellblock i is a member of the set of all blocks that receive the

injected fluid; that is, i2ψw. Of course, the rates of injection of the remaining

phases are set to zero.

Shut-in well

qpsci ¼ 0 (11.78)

where p¼w or fg.

Specified well flow rate

The injection rate of the injected fluid p¼w or fg into wellblock i is given by

qpsci ¼�Gwi

Minj

Bp

� �
i

pi�pwf i
� �

(11.79b)

This equation can be combined with Eq. (11.75) to give
qpsci ¼�Gwi

Minj

Bp

� �
i

pi�pwf ref � γwb Zi�Zref
� �h i

(11.80b)

For a single-block well, qpsci¼qspsc and Eq. (11.80b) is used to estimate
pwfref. For a multiblock well, however, pwfref is estimated from the well rate spec-

ification at standard conditions (qspsc) using

pwf ref ¼

X
i2ψw

Gwi

Minj

Bp

� �
i

pi� γwb Zi�Zref
� �� �
 �

+ qspsc

X
i2ψw

Gwi

Minj

Bp

� �
i

(11.81b)

Then, the injection rate of the injected fluid p¼w or fg into wellblock i (qpsci)

is estimated using Eq. (11.80b). The use of Eq. (11.81b) requires solving for

pwfref implicitly along with the reservoir block pressures. An explicit treatment,

however, uses Eq. (11.81b) at old time level n to estimate pnwfref, which is sub-

sequently substituted into Eq. (11.80b) to estimate the injection rate of the

injected phase p¼w or fg into wellblock i (qpsci).
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Specified well pressure gradient
For a specified well pressure gradient, the injection rate of fluid p¼w or fg

into wellblock i is given by

qpsci ¼�2πβcrwkHi
hi

Minj

Bp

� �
i

∂p

∂r

����
rw

(11.82b)

Specified well FBHP

If the FBHP of a well (pwfref) is specified, then the injection rate of the

injected fluid p¼w or fg into wellblock i can be estimated using Eq. (11.80b):

qpsci ¼�Gwi

Minj

Bp

� �
i

pi�pwf ref � γwb Zi�Zref
� �h i

(11.80b)
11.4.3 Treatment of boundary conditions

A reservoir boundary can be subject to one of four conditions: (1) a no-flow

boundary, (2) a constant flow boundary, (3) a constant pressure gradient bound-

ary, and (4) a constant pressure boundary. As discussed in single-phase flow in

Chapters 4 and 5, the first three boundary conditions reduce to a specified pres-

sure gradient condition (the Neumann boundary condition), and the fourth

boundary condition is the Dirichlet boundary condition. The treatment of

boundary conditions for 1-D flow in the x-direction is similar to that presented

in Section 4.4 for a block-centered grid and Section 5.4 for a point-distributed

grid. In this section, we present the fictitious well rate equations as they apply to

multiphase flow in reservoirs discretized using a block-centered grid only. The

effect of capillary pressure is assumed negligible. The fictitious well rate of

phase p (qn+1pscb,bB
) reflects fluid transfer of phase p between the boundary block

(bB) and the reservoir boundary itself (b) or the block next to the reservoir

boundary that falls outside the reservoir. In multiphase flow, a reservoir bound-

ary may (1) separate two segments of one reservoir that has same fluids,

(2) separate an oil reservoir from a water aquifer or a gas cap, or (3) seal off

the reservoir from a neighboring reservoir. If the neighboring reservoir segment

is an aquifer, then either water invades the reservoir across the reservoir bound-

ary (WOC), or reservoir fluids leave the reservoir block to the aquifer. Simi-

larly, if the neighboring reservoir segment is a gas cap, then either gas

invades the reservoir across the reservoir boundary (GOC), or reservoir fluids

leave the reservoir block to the gas cap.
11.4.3.1 Specified pressure gradient boundary condition

For a specified pressure gradient at the reservoir left (west) boundary,

qn+ 1pscb,bB
ffi� βc

klkrpAl

μpBp

" #n + 1
bB

∂pp
∂l

����
n + 1

b

� γp
� �n

bB

∂Z

∂l

����
b

" #
(11.86a)
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for p¼o, w, fg, and at the reservoir right (east) boundary,
qn+ 1pscb,bB
ffi βc

klkrpAl

μpBp

" #n+ 1
bB

∂pp
∂l

����
n+ 1

b

� γp
� �n

bB

∂Z

∂l

����
b

" #
(11.86b)

for p¼o, w, fg, where the component physical properties and phase physical
properties other than the flow rate for the gas phase and the free-gas component

are the same. The flow rate at standard conditions of the gas component, how-

ever, equals the sum of flow rates at standard conditions of the free-gas and

solution-gas components; that is,

qn+ 1gscb,bB
¼ qn+ 1fgscb,bB

+Rn+ 1
sbB

qn+ 1oscb,bB
(11.87)

In Eq. (11.86), the specified pressure gradient may replace the phase pres-
sure gradient at the boundary. Eq. (11.86) applies to fluid flow across a res-

ervoir boundary that separates two segments of the same reservoir or across a

reservoir boundary that represents WOC with fluids being lost to the water

aquifer. If the reservoir boundary represents WOC and water invades the

reservoir, then

qn+ 1wscb,bB
ffi� βc

klAl

μwBw

	 
n+ 1
bB

krwð Þn+ 1aq

∂p

∂l

����
n+ 1

b

� γwð ÞnbB
∂Z

∂l

����
b

" #
(11.88a)

for the reservoir left (west) boundary, and
qn+ 1wscb,bB
ffi βc

klAl

μwBw

	 
n+ 1
bB

krwð Þn+ 1aq

∂p

∂l

����
n+ 1

b

� γwð ÞnbB
∂Z

∂l

����
b

" #
(11.88b)

for the reservoir right (east) boundary.
Moreover,

qn+ 1oscb,bB
¼ qn+ 1fgscb,bB

¼ qn+ 1gscb,bB
¼ 0 (11.89)

Note that, in Eq. (11.88), the rock and fluid properties in the aquifer are
approximated by those of the boundary block properties because of the lack

of geologic control in aquifers and because the effect of oil/water capillary pres-

sure is neglected. In addition, (krw)aq
n+1¼1 because Sw¼1 in the aquifer.

11.4.3.2 Specified flow rate boundary condition

If the specified flow rate stands for water influx across a reservoir boundary,

then

qn+ 1wscb,bB
¼ qsp=BwbB

(11.90)

In addition, Eq. (11.89) applies (i.e., qn+1oscb,bB¼qn+1fgscb,bB¼qn+1gscb,bB¼0). If, how-
ever, the specified flow rate stands for fluid transfer between two segments of

the same reservoir or fluid loss to an aquifer across WOC, then
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qn+ 1pscb,bB
¼

TR
p

� �n+ 1
b,bB

Bp

X
l2 o,w, fgf g

TR
l

� �n+ 1
b,bB

qsp ¼

krp
μp

 !n+ 1

bB

Bp

X
l2 o,w, fgf g

krl
μl

� �n+ 1

bB

qsp (11.91)

for p¼o, w, fg because in this case,
TR
p

� �n+ 1
b,bB

¼ TR
p

� �n+ 1
bB

¼ βc
klkrpAl

μp Δl=2ð Þ

" #n+ 1
bB

(11.92)

Eq. (11.91) neglects the effects of gravity forces and capillary pressures.
11.4.3.3 No-flow boundary condition

This condition results from vanishing permeability at a reservoir boundary or

because of symmetry about a reservoir boundary. In either case, for a reservoir

no-flow boundary,

qn+ 1pscb,bB
¼ 0 (11.93)

for p¼o, w, fg.
11.4.3.4 Specified boundary pressure condition

This condition arises due to the presence of wells on the other side of a reservoir

boundary that operate to maintain voidage replacement and as a result keep

the boundary pressure (pb) constant. The flow rate of phase p across a reservoir
boundary that separates two segments of the same reservoir or across a reservoir

boundary that represents WOC with fluid loss to an aquifer is estimated using

qn+ 1pscb,bB
¼ βc

klkrpAl

μpBp Δl=2ð Þ

" #n+ 1
bB

pb�pn+ 1bB

� �� γp
� �n

bB
Zb�ZbBð Þ

h i
(11.94)

for p¼o, w, fg.

If the reservoir boundary represents WOC with water influx, then

qn+ 1wscb,bB
¼ βc

klAl

μwBw Δl=2ð Þ
	 
n+ 1

bB

krwð Þn+ 1aq pb�pn+ 1bB

� �� γwð ÞnbB Zb�ZbBð Þ� �
(11.95)

In addition, Eq. (11.89) applies (i.e., qn+1oscb,bB
¼qn+1fgscb,bB

¼qn+1gscb,bB
¼0). Note
that, in Eq. (11.95), the rock and fluid properties in the aquifer are approximated

by those of the boundary block properties because of the lack of geologic con-

trol in aquifers. In addition, (krw)aq
n+1¼1 because Sw¼1 in the aquifer.
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It is worth mentioning that when reservoir boundary b stands for WOC, the

flow rate of phase p across the reservoir boundary is determined from the

knowledge of the upstream point between reservoir boundary b and boundary
block bB. If b is upstream to bB (i.e., when ΔΦw>0), the flow is from the

aquifer to the reservoir boundary block, and Eq. (11.95) applies for water

and qn+1oscb,bB
¼qn+1fgscb,bB

¼qn+1gscb,bB
¼0. If b is downstream to bB (i.e., when

ΔΦw<0), the flow is from the reservoir boundary block to the aquifer,

and Eq. (11.94) applies for all phases. The water potential between the

reservoir boundary and the reservoir boundary block is defined as

ΔΦw¼ (pb�pbB)� γw(Zb�ZbB).

Example 11.9 Consider the single-well simulation problem presented in

Example 11.7. Write the flow equations for boundary gridblock 3.

Solution

In this problem, the reservoir is subject to water influx. For gridblock 3,

n¼3, and ψ2¼{2,4,7}. Gridblock 3 is a boundary block that falls on the res-

ervoir lower boundary; therefore, ξ3¼{bL},
X
l2ξ3

qn+ 1oscl,3
¼ 0,

X
l2ξ3

qn+ 1fgscl,3
¼ 0, and

X
l2ξ3

qn+ 1wscl,3
¼ qn+ 1wscbL,3

, where qn+1wscbL, 3
is estimated using Eq. (11.95) as

qn+ 1wscbL ,3
¼ βc

kzAz

μwBw Δz=2ð Þ
	 
n+ 1

3

� krwð Þn + 1aq � pbL �pn+ 1o3

� �
� γwð Þn3 ZbL �Z3ð Þ

h i

or
qn + 1wscbL ,3
¼ βc

kzAz

μwBw Δz=2ð Þ
h in+ 1

3
p

WOC
�pn + 1o3

� �
� γwð Þn3Δz3=2

h i

where pbL¼p
WOC

, (krw)aq
n+1¼1, and (ZbL�Z3)¼Δz3/2.

Gridblock 3 has no wells; therefore, qn+1osc3
¼0, qn+1wsc3

¼0, and

qn+1fgsc3
¼0. Observe also that Z2¼Z3¼Z4.

The oil equation is obtained by substituting the given values into Eq. (11.54)

and expanding the summation terms, yielding

Tn+ 1
o2,3

pn+ 1o2
�pn+ 1o3

� �
� γno2,3 �0

h i
+ Tn+ 1

o4,3
pn + 1o4

�pn + 1o3

� �
� γno4:3 �0

h i

+Tn+ 1
o7,3

pn + 1o7
�pn + 1o3

� �
� γno7,3 Z7�Z3ð Þ

h i
+ 0 + 0

¼ Vb3

αcΔt
ϕ 1�Sw�Sg
� �

Bo

	 
n+ 1
3

� ϕ 1�Sw�Sg
� �

Bo

	 
n
3

( ) (11.96)

The gas equation is obtained by substituting the given values into
Eq. (11.55) and expanding the summation terms, yielding
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Tn+ 1
g2,3

pn + 1o2
�pn+ 1o3

� �
+ Pn+ 1

cgo2
�Pn+ 1

cgo3

� �
� γng2,3 �0

h i

+ ToRsð Þn + 12,3 pn+ 1o2
�pn+ 1o3

� �
� γno2,3 �0

h i

+Tn+ 1
g4,3

pn+ 1o4
�pn+ 1o3

� �
+ Pn+ 1

cgo4
�Pn+ 1

cgo3

� �
� γng4,3 �0

h i

+ ToRsð Þn + 14,3 pn+ 1o4
�pn+ 1o3

� �
� γno4,3 �0

h i

+Tn+ 1
g7,3

pn+ 1o7
�pn+ 1o3

� �
+ Pn+ 1

cgo7
�Pn+ 1

cgo3

� �
� γng7,3 Z7�Z3ð Þ

h i

+ ToRsð Þn + 17,3 pn+ 1o7
�pn+ 1o3

� �
� γno7,3 Z7�Z3ð Þ

h i
+ 0 + 0 +Rn + 1

s7
�0

h i

¼ Vb3

αcΔt
ϕSg
Bg

� �n+ 1

3

� ϕSg
Bg

� �n

3

+
ϕRs 1�Sw�Sg

� �
Bo

	 
n+ 1
3

� ϕRs 1�Sw�Sg
� �

Bo

	 
n
3

( )

(11.97)

The water equation is obtained by substituting the given values into

Eq. (11.56) and expanding the summation terms, yielding

Tn+ 1
w2,3

pn+ 1o2
�pn+ 1o3

� �
� Pn+ 1

cow2
�Pn+ 1

cow3

� �
� γnw2,3

�0
h i

+Tn+ 1
w4,3

pn+ 1o4
�pn+ 1o3

� �
� Pn + 1

cow4
�Pn+ 1

cow3

� �
� γnw4,3

�0
h i

+Tn+ 1
w7,3

pn+ 1o7
�pn+ 1o3

� �
� Pn + 1

cow7
�Pn+ 1

cow3

� �
� γnw7,3

Z7�Z3ð Þ
h i

+ βc
kzAz

μwBw Δz=2ð Þ
	 
n+ 1

3

p
WOC

�pn+ 1o3

� �
� γwð Þn3Δz3=2

h i
+ 0

¼ Vb3

αcΔt
ϕSw
Bw

� �n+ 1

3

� ϕSw
Bw

� �n

3

" #

(11.98)
11.4.4 Treatment of nonlinearities

The time linearization methods of the phase transmissibility terms in multiphase

flow are similar to those presented in Section 8.4.1.2 for single-phase flow

(explicit method, simple iteration method, and fully implicit method). There

are other time linearization methods such as the linearized-implicit method

(MacDonald and Coats, 1970) and the semiimplicit method of Nolen and

Berry (1972); however, these methods deal with nonlinearities due to fluid sat-

uration only. The time linearization methods of well production rates in multi-

phase flow are similar to those presented in Section 8.4.2 for single-phase
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flow (explicit transmissibility method, simple iteration on transmissibility

method, and fully implicit method). It should be mentioned that the time linear-

ization of well rate terms (production and injection) and fictitious well rates in

multiphase flow are the same as those used for the treatment of flow terms

between a block and its neighboring blocks (see Section 8.4.3).

The space linearization methods of phase transmissibility are different from

those for single-phase flow. For phase transmissibility defined by Eq. (11.35),

Tpl,n ¼Gl,n
1

μpBp

 !
l,n

krpl,n (11.35)

the various space-weighting methods presented for single-phase flow !

(Section 8.4.1.1) work for the pressure-dependent terms,

1

μpBp
l,n

and

Rs

μoBo

� �
l,n

, but only the upstream-weighting method works for the

saturation-dependent terms, krpl,n. In fact, the function average-value method

and the variable average-value method presented in Section 8.4.1.1 give erro-

neous results when applied to relative permeabilities. The most commonly used

method for space linearization of pressure- and saturation-dependent terms is

the upstream-weighting method.
11.4.5 Solution methods

In this section, we present the implicit pressure-explicit saturation (IMPES) and

simultaneous solution (SS) methods as they apply to the two-phase oil/water

flow model in multidimensional reservoirs. The flow equations (reduced set

of equations) for block n in a multidimensional reservoir are presented in

Section 11.3.1 as Eqs. (11.41) and (11.42).

The oil equation is

X
l2ψn

Tn+ 1
ol,n

pn+ 1ol
�pn+ 1on

� �
� γnol,n Zl�Znð Þ

h i
+
X
l2ξn

qn + 1oscl,n
+ qn+ 1oscn

¼ Vbn

αcΔt
ϕ 1�Swð Þ

Bo

	 
n+ 1
n

� ϕ 1�Swð Þ
Bo

	 
n
n

( ) (11.41)

The water equation is
X
l2ψn

Tn+ 1
wl,n

pn+ 1ol
�pn+ 1on

� �
� Pn+ 1

cowl
�Pn+ 1

cown

� �
� γnwl,n

Zl�Znð Þ
h i

+
X
l2ξn

qn+ 1wscl,n
+ qn+ 1wscn

¼ Vbn

αcΔt
ϕSw
Bw

� �n+ 1

n

� ϕSw
Bw

� �n

n

" #

(11.42)
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The po�Sw formulation is used here; hence, the primary unknowns are po

and Sw, and the secondary unknowns are pw and Sowhere pw¼po�Pcow(Sw) and
So¼1�Sw. The expansions of the RHS of Eqs. (11.41) and (11.42) are

Vbn

αcΔt
ϕ 1�Swð Þ

Bo

	 
n+ 1
n

� ϕ 1�Swð Þ
Bo

	 
n
n

( )

¼ Vbn

αcΔt
� ϕ

Bo

� �n+ 1

n
Sn+ 1wn

�Snwn

� �
+ 1�Snwn

� �
ϕn+ 1
n

1

Bon

� �0
+

1

Bn
on

ϕ0
n

" #
pn + 1on

�pnon

� �( )

(11.99)

and
Vbn

αcΔt
ϕSw
Bw

� �n+ 1

n

� ϕSw
Bw

� �n

n

" #

¼ Vbn

αcΔt
ϕ

Bw

� �n+ 1

n

Sn + 1wn
�Snwn

� �
+ Snwn

ϕn+ 1
n

1

Bwn

� �0
+

1

Bn
wn

ϕ0
n

" #
pn+ 1on

�pnon

� �( )

(11.62)

Eqs. (11.99) and (11.62) can be rewritten as
Vbn

αcΔt
ϕ 1�Swð Þ

Bo

	 
n+ 1
n

� ϕ 1�Swð Þ
Bo

	 
n
n

( )

¼Copn pn+ 1on
�pnon

� �
+Cown

Sn+ 1wn
�Snwn

� �
(11.100)

and
Vbn

αcΔt
ϕSw
Bw

� �n + 1

n

� ϕSw
Bw

� �n

n

" #
¼Cwpn pn+ 1on

�pnon

� �
+Cwwn

Sn+ 1wn
�Snwn

� �

(11.101)

where
Copn ¼
Vbn

αcΔt
1�Snwn

� �
ϕn+ 1
n

1

Bon

� �0
+

1

Bn
on

ϕ0
n

" #( )
(11.102a)

Cown
¼ Vbn

αcΔt
� ϕ

Bo

� �n + 1

n

" #
(11.102b)

Cwpn ¼
Vbn

αcΔt
Snwn

ϕn+ 1
n

1

Bwn

� �0
+

1

Bn
wn

ϕ0
n

" #( )
(11.102c)
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and
Cwwn
¼ Vbn

αcΔt
ϕ

Bw

� �n+ 1

n

(11.102d)

A form of the reduced set of flow equations for the oil/water model that is
suitable for applying a solution method is obtained by substituting Eqs. (11.100)

and (11.101) into Eqs. (11.41) and (11.42).

The oil equation becomes

X
l2ψn

Tn+ 1
ol,n

pn+ 1ol
�pn+ 1on

� �
� γnol,n Zl�Znð Þ

h i
+
X
l2ξn

qn + 1oscl,n
+ qn+ 1oscn

¼Copn pn+ 1on
�pnon

� �
+Cown

Sn+ 1wn
�Snwn

� � (11.103)

and the water equation becomes
X
l2ψn

Tn+ 1
wl,n

pn+ 1ol
�pn+ 1on

� �
� Pn+ 1

cowl
�Pn+ 1

cown

� �
� γnwl,n

Zl�Znð Þ
h i

+
X
l2ξn

qn+ 1wscl,n

+ qn+ 1wscn
¼Cwpn pn+ 1on

�pnon

� �
+Cwwn

Sn+ 1wn
�Snwn

� �
(11.104)

The coefficients Copn, Cown
, Cwpn, and Cwwn

are defined in Eq. (11.102), and� � � �

the derivatives

1

Bon

0
,

1

Bwn

0
, and ϕn

0 are chord slopes that are defined as

1

Bon

� �0
¼ 1

Bn+ 1
vð Þ

on

� 1

Bn
on

0
@

1
A� pn+ 1

vð Þ

on
�pnon

� �
(11.105a)

1

Bwn

� �0
¼ 1

Bn+ 1
vð Þ

wn

� 1

Bn
wn

0
@

1
A� pn+ 1

vð Þ

on
�pnon

� �
(11.105b)

and
ϕ0
n ¼ ϕn+ 1

vð Þ

n �ϕn
n

� ��
pn+ 1

vð Þ

on
�pnon

� �
(11.105c)

The pressure dependence of the oil and water FVFs in the oil/water flow
model is described by Eq. (7.6) and that of porosity is described by

Eq. (7.11). Substitution of Eqs. (7.6) and (7.11) into Eq. (11.105) yields

1

Bon

� �0
¼ co
B°
o

(11.106a)

1

Bwn

� �0
¼ cw
B°
w

(11.106b)

and
ϕ0
n ¼ϕ°

ncϕ (11.106c)
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11.4.5.1 IMPES method

The IMPES method, as the name implies, obtains an implicit pressure solution

followed by an explicit solution for saturation. In the first step, the transmissi-

bilities, capillary pressures, and coefficients of pressure difference in the well

production rates and fictitious well rates, in addition to the fluid gravities, are

treated explicitly. The resulting water and oil equations using Eqs. (11.103) and

(11.104) are combined to obtain the pressure equation for block n through the

elimination of the saturation term (Sn+1wn
�Snwn

) that appears on the RHS of equa-

tions. This is achieved by multiplying the oil equation (Eq. 11.103) by Bn+1
on

,

multiplying the water equation (Eq. 11.104) by Bn+1
wn

, and adding the two result-

ing equations. Then, the pressure equation is written for all blocks n¼1, 2, 3…

N, and the resulting set of pressure equations is solved for block pressures at

time level n+1 (pn+1on for n¼1, 2, 3…N). The second step involves solving

the water equation for block n (Eq. 11.104) explicitly for water saturation at

time level n+1 (Sn+1wn
). Capillary pressures are then updated (Pn+1

cown
¼

Pcow(S
n+1
wn

) for n¼1, 2, 3…N) and used as Pn
cown

in the following time step.

For a volumetric reservoir (no-flow boundaries) with explicit well produc-

tion rates, the pressure equation for block n¼1, 2, 3…N is

X
l2ψn

Bn+ 1
on

Tn
ol,n

+Bn+ 1
wn

Tn
wl,n

� �
pn+ 1ol

�
( X

l2ψn

Bn+ 1
on

Tn
ol,n

+Bn+ 1
wn

Tn
wl,n

� �2
4

3
5

+ Bn+ 1
on

Copn +B
n+ 1
wn

Cwpn

� �)
pn+ 1on

¼
X
l2ψn

Bn + 1
on

Tn
ol,n

γnol,n +B
n + 1
wn

Tn
wl,n

γnwl,n

� �
Zl�Znð Þ

h i

+
X
l2ψn

Bn + 1
wn

Tn
wl,n

Pn
cowl

�Pn
cown

� �
� Bn+ 1

on
Copn +B

n+ 1
wn

Cwpn

� �
pnon

� Bn+ 1
on

qnoscn +B
n+ 1
wn

qnwscn

� �
(11.107)

Solving Eq. (11.107) for oil-phase pressure distribution may, in general,
require iterating on Bn+1
on

, Bn+1
wn

, Copn
, and Cwpn

to preserve material balance.

For 1-D flow problems, Eq. (11.107) represents a tridiagonal matrix equation.

In this case, the coefficients of the unknowns pn+1on�1
, pn+1on , and pn+1on+1 in the equation

for block n correspond to wn, cn, and en, respectively, and the RHS of the equa-

tion corresponds to dn in Thomas’ algorithm presented in Section 9.2.1.

The water saturation for individual blocks in a volumetric reservoir is

obtained from Eq. (11.104) with explicit transmissibilities and capillary pres-

sures as

Sn+ 1wn
¼ Snwn

+
1

Cwwn


X
l2ψn

Tn
wl,n

pn + 1ol
�pn+ 1on

� �
� Pn

cowl
�Pn

cown

� �
� γnwl,n

Zl�Znð Þ
h i

+ qnwscn �Cwpn pn+ 1on
�pnon

� ��
ð11:108Þ

Thewater saturation for blockn is solved for explicitly usingEq. (11.108) inde-

pendent of the equations for other blocks. This new estimate of water saturation is
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used to update the capillary pressure for block n, Pn+1
cown

¼Pcow(S
n+1
wn

), and this

updated value will be used as Pn
cown

in the calculations for the following time step.

11.4.5.2 SS method

The SS method, as the name implies, solves the water and oil equations simul-

taneously for the unknowns of the formulation. Although this method is well

suited to fully implicit formulation, we demonstrate its application for a volumet-

ric reservoir (no-flow boundaries,
X
l2ξn

qn+ 1oscl,n
¼ 0, and

X
l2ξn

qn+ 1wscl,n
¼ 0) using

explicit transmissibilities (Tnol,n and Tnwl,n
), explicit well rates (qnoscn and qnwscn),

and implicit capillary pressures. The capillary pressure terms (Pn+1
cowl

�Pn+1
cown

)

in the water equation (Eq. 11.104) are expressed in terms of water saturation.

In addition, the fluid gravities are treated explicitly.

Therefore, for block n, the oil equation becomes

X
l2ψn

Tn
ol,n

pn+ 1ol
�pn+ 1on

� �
� γnol,n Zl�Znð Þ

h i
+ 0 + qnoscn

¼Copn pn + 1on
�pnon

� �
+Cown

Sn+ 1wn
�Snwn

� � (11.109)

and the water equation becomes
X
l2ψn

Tnwl,n
pn+ 1ol

�pn+ 1on

� �
� Pn

cowl
+P

0n
cowl

Sn + 1wl
�Snwl

� �
�Pn

cown
�P

0n
cown

Sn+ 1wn
�Snwn

� �h ih

�γnwl,n
Zl�Znð Þ

i
+ 0 + qnwscn ¼Cwpn pn+ 1on

�pnon

� �
+Cwwn Sn+ 1wn

�Snwn

� �
(11.110)

The terms in Eqs. (11.109) and (11.110) are rearranged as follows:
X
l2ψn

Tn
ol,n

pn + 1ol
+ 0ð ÞSn+ 1wl

h i
�

X
l2ψn

Tn
ol,n

 !
+Copn

" #
pn + 1on

+Cown
Sn+ 1wn

( )

¼
X
l2ψn

Tn
ol,n

γnol,n Zl�Znð Þ
h i

�qnoscn �Copnp
n
on
�Cown

Snwn

(11.111)

for the oil equation, and
X
l2ψn

Tn
wl,n

pn+ 1ol
�Tn

wl,n
P

0n

cowl
Sn+ 1wl

h i
�

 X

l2ψn

Tn
wl,n

 !
+Cwpn

" #
pn+ 1on

+
X
l2ψn

Tn
wl,n

P
0n

cown

 !
+Cwwn

" #
Sn+ 1wn

�

¼
X
l2ψn

Tn
wl,n

Pn
cowl

�P
0n

cowl
Snwl

� �
� Pn

cown
�P

0n

cown
Snwn

� �
+γnwl,n

Zl�Znð Þ
h i

�qnwscn �Cwpnp
n
on
�Cwwn

Snwn

(11.112)
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for the water equation.
Eqs. (11.111) and (11.112) are written for all blocks (n¼1, 2, 3…N), and the
2N equations are solved simultaneously for the 2N unknowns. For 1-D flow

problems, there are 2nx equations that form a bitridiagonal matrix equation:

A½ �X!¼b
!

(11.113a)

or
c1½ � e1½ �
w2½ � c2½ � e2½ �

… … …

wi½ � ci½ � ei½ �
… … …

wnx�1½ � cnx�1½ � enx�1½ �
wnx½ � cnx½ �

2
666666664

3
777777775

X
!
1

X
!
2

…

X
!
i

…

X
!
nx�1

X
!
nx

2
6666666664

3
7777777775
¼

b
!
1

b
!
2

…

b
!
i

…

b
!
nx�1

b
!
nx

2
6666666664

3
7777777775

(11.113b)

where
wi½ � ¼
Tn
oxi�1=2

0

Tn
wxi�1=2

�Tn
wxi�1=2

P
0n
cowi�1

" #
(11.114)

ei½ � ¼
Tn
oxi+ 1=2

0

Tn
wxi + 1=2

�Tn
wxi+ 1=2

P
0n
cowi + 1

" #
(11.115)

ci½ � ¼
� Tn

oxi�1=2
+ Tn

oxi+ 1=2
+Copi

� �
�Cowi

� Tn
wxi�1=2

+ Tn
wxi + 1=2

+Cwpi

� �
Tn
wxi�1=2

+ Tn
wxi+ 1=2

� �
P

0n
cowi

�Cwwi

h i
2
64

3
75

(11.116)

X
!
i ¼ pn + 1oi

Sn + 1wi

	 

(11.117)

and
b
!
i¼

Tnoxi�1=2
γnoi�1=2

Zi�1�Zið Þ + Tnoxi + 1=2γnoi+ 1=2 Zi + 1�Zið Þ�qnosci �Copip
n
oi �CowiS

n
wi

Tnwxi�1=2
γnwi�1=2

Zi�1�Zið Þ+ Tnwxi + 1=2γnwi + 1=2
Zi+ 1�Zið Þ;�qnwsci ;�Cwpip

n
oi ;�CwwiS

n
wi

n

+Tnwxi�1=2
Pncowi�1

�Pncowi

� �
� P

0n
cowi

Snwi�1
�P

0n
cowi

Snwi

� �h i

+Tnwxi + 1=2 Pncowi + 1
�Pncowi

� �
� P

0n
cowi+ 1

Snwi+ 1
�P

0n
cowi

Snwi

� �h io

2
666666664

3
777777775

(11.118)

for i¼1, 2, 3…nx.
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The solution of the bitridiagonal matrix equation for 1-D flow problems is

obtained using the same steps as in Thomas’ algorithm, presented in

Section 9.2.1, with scalar mathematical operations being replaced with matrix

mathematical operations. Therefore, Thomas’ algorithm for solving bitridiago-

nal matrix equation becomes.

Forward solution
Set

u1½ � ¼ c1½ ��1 e1½ � (11.119)

and
g
!
1 ¼ c1½ ��1d

!
1 (11.120)

For i¼2, 3…nx�1,
ui½ � ¼ ci½ �� wi½ � ui�1½ �½ ��1 ei½ � (11.121)

and for i¼2, 3…nx,
g
!
i ¼ ci½ �� wi½ � ui�1½ �½ ��1 d

!
i� wi½ �g!i�1

� �
(11.122)

Backward solution

Set

X
!
nx ¼ g

!
nx (11.123)

For i¼nx�1, nx�2, …, 3, 2, 1,
X
!
i ¼ g

!
i� ui½ �X!i+ 1 (11.124)

For a black-oil model, the resulting set of equations is a tritridiagonal matrix.
The algorithm presented in Eqs. (11.119) through (11.124) can be used to obtain

the solution, but note that the submatrices are 3�3 and the subvectors have

dimensions of three.

11.5 Material balance checks

The incremental and cumulative material balance checks in multiphase flow are

carried out for each component in the system. For oil and water (p¼o, w), each
component is contained within its phase; therefore,

IMBp
¼

XN
n¼1

Vbn

αcΔt
ϕSp
Bp

� �n+ 1

n

� ϕSp
Bp

� �n

n

" #

XN
n¼1

qn+ 1pscn
+
X
l2ξn

qn+ 1pscl,n

 ! (11.125a)

and
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For the gas component, both free-gas and solution-gas components must be
taken into consideration; therefore,
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and
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11.6 Advancing solution in time

Pressure and phase saturation distributions in multiphase flow problems change

with time. This means that the flow problem has an unsteady-state solution. At

time t0¼0, all reservoir unknowns must be specified. Initially, fluids in the res-

ervoir are in hydrodynamic equilibrium. Therefore, it is sufficient to specify the

pressure at water-oil contact (WOC) and at oil-gas contact (OGC), and the ini-

tial pressure and saturations of all three phases can be estimated from hydro-

static pressure considerations, oil-water and gas-oil capillary pressure

relationships, and phase saturations constraint equation. Details can be found

elsewhere (Ertekin et al., 2001). The procedure entails finding phase pressures

and saturations at discrete times (t1, t2, t3, t4, etc.) by marching the solution in

time using time steps (Δt1, Δt2, Δt3, Δt4, etc.). The pressure and saturations

solution is advanced from initial conditions at t0¼0 (time level n) to t1¼ t0+Δt1
(time level n+1). The solution then is advanced in time from t1 (time level n) to
t2¼ t1+Δt2 (time level n+1), from t2 to t3¼ t2+Δt3, and from t3 to t4¼ t3+Δt4,
and the process is repeated as many times as necessary until the desired
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simulation time is reached. To obtain the pressure and saturations solution at

time level n+1, we assign the pressures and saturations just obtained as pres-

sures and saturations at time level n, write the flow equation for each component

in every block (node) in the discretized reservoir, and solve the resulting set of

linear equations for the set of unknowns. The calculation procedure within each

time step for a black-oil model follows:

1. Calculate the interblock phase transmissibilities and coefficients Cop, Cow,

Cog, Cwp, Cww, Cwg, Cgp, Cgw, and Cgg, and define the pressure and satu-

rations at the old time level and at the old iteration of the current time level

for all reservoir blocks. Note that the phase transmissibilities are calculated

at the upstream blocks and are not necessarily constant.

2. Estimate the phase production rates (or write the phase production rate

equations) at time level n+1 for each wellblock in the reservoir, as

described in Section 11.4.2.

3. Estimate the phase flow rates (or write the phase flow rate equations) at

time level n+1 for each fictitious well in the reservoir, that is, estimate

the phase flow rates resulting from boundary conditions, as described in

Section 11.4.3.

4. For every gridblock (or gridpoint) in the reservoir, define the set of existing

reservoir neighboring blocks (ψn) and the set of reservoir boundaries that

are block boundaries (ξn), expand the summation terms in the flow equa-

tions, and substitute for phase production rates fromwellblocks obtained in

(2) and phase flow rates from fictitious wells obtained in (3).

5. Linearize the terms in the flow equations, as outlined in Section 11.4.4.

6. Factorize, order, and place the unknowns (at time level n+1) on the LHS,

and place known quantities on the RHS of each flow equation.

7. Solve the resulting set of equations for the set of pressure and saturation

unknowns (at time level n+1) using a linear equation solver.

8. Check for convergence of the solution. Proceed to (9) if convergence is

achieved. Otherwise, update the interblock phase transmissibilities and

the coefficients mentioned in (1), define the pressure and saturations at

the latest iteration at the current time level for all reservoir blocks, and start

all over from (2).

9. Estimate the wellblock production rates and fictitious well rates at

time level n+1 if necessary by substituting for the pressures and satu-

rations obtained in (7) into the phase flow rate equations obtained in

(2) and (3).

10. Perform incremental and cumulative material balance checks for all com-

ponents (o, w, g) using the equations presented in Section 11.5.
11.7 Summary

In petroleum reservoirs, oil, water, and gas may coexist and flow simulta-

neously. In multiphase reservoirs, the phase saturations add up to one, capillary
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pressures between phases exist, and phase relative permeability and phase

potential gradient among other things affect flow properties. Although volumet-

ric and viscosity properties of water and gas phases are not different from those

in single-phase flow, oil-phase properties are affected by both solution GOR

and whether the pressure is below or above the oil bubble-point pressure. Sim-

ulation of multiphase flow involves writing the flow equation for each compo-

nent in the system and solving all equations for the unknowns in the system. In

black-oil simulation, the components are the oil, water, and gas all at standard

conditions, and the flow model consists of one equation for each of the three

components, the saturation constraint, and the oil/water and gas/oil capillary

pressures. The model formulation dictates how the model equations are com-

bined to produce a reduced set of equations. It also implies the choice of primary

unknowns and secondary unknowns for the reservoir. The black-oil model for-

mulation discussed in this chapter is the po�Sw�Sg formulation, that is, the

formulation that uses po, Sw, and Sg as the primary unknowns for the reservoir

and pw, pg, and So as the secondary unknowns. The two-phase oil/water, oil/gas,
and gas/water flowmodels can be considered subsets of the black-oil model pre-

sented in this chapter. To solve the model equations, the accumulation terms

have to be expanded in a conservative way and expressed in terms of the

changes of the primary unknowns over the same time step, the well production

rate terms for each phase defined, and the fictitious well rate terms reflecting the

boundary conditions need to be defined. In addition, all nonlinear terms have to

be linearized. This process produces linearized flow equations, and the IMPES

or SS solution methods can be used to obtain the linearized flow equations. The

resulting set of linearized equations for all blocks can then be solved using any

linear equation solver to obtain the solution for one time step. An extension to

Thomas’ algorithm can be used to solve simultaneously the equations of multi-

phase, 1-D flow problems.
11.8 Exercises

11.1 Consider the 1-D reservoir shown in Fig. 11.9. The reservoir has no-

flow boundaries, gridblock 1 hosts a water injection well, and gridblock

4 hosts a production well. The reservoir contains oil and water only.
a. Name the four equations that constitute the flow model for this

reservoir.

b. Name the four unknowns for a gridblock in his reservoir.

c. Write the general flow equations for gridblock n in this reservoir.

d. Write the saturation constraint equation and capillary pressure rela-

tionship in this reservoir.

e. If you use the po�Sw formulation, name the primary unknowns and

secondary unknowns for a gridblock in this reservoir.
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f. Write the flow equations for gridblock n using the po�Sw
formulation.

g. Write the flow equations for gridblocks 1, 2, 3, and 4 using the po�Sw
formulation.
11.2 Complete the following problems that are related to Exercise 11–1.

a. If you use the po�So formulation, name the primary unknowns and

secondary unknowns for a gridblock in this reservoir.

b. Derive the flow equations for gridblock n using the po�So
formulation.

c. Write the flow equations for gridblocks 1, 2, 3, and 4 using the po�So
formulation.
11.3 Consider the 1-D reservoir shown in Fig. 11.9. The reservoir has no-

flow boundaries, gridblock 1 hosts a gas injection well, and gridblock

4 hosts a production well. The reservoir contains oil and gas only.
a. Name the four equations that constitute the flow model for this

reservoir.

b. Name the four unknowns for a gridblock in this reservoir.

c. Write the general flow equations for gridblock n in this reservoir.

d. Write the saturation constraint equation and capillary pressure rela-

tionship in this reservoir.

e. If you use the po�Sg formulation, name the primary unknowns and

secondary unknowns for a gridblock in this reservoir.

f. Write the flow equations for gridblock n using the po�Sg
formulation.

g. Write the flow equations for gridblocks 1, 2, 3, and 4 using the po�Sg
formulation.
11.4 Complete the following problems that are related to Exercise 11–3.

a. If you use the po�So formulation, name the primary unknowns and

secondary unknowns for a gridblock in this reservoir.

b. Derive the flow equations for gridblock n using the po�So
formulation.

c. Write the flow equations for gridblocks 1, 2, 3, and 4 using the

po�So formulation.
11.5 Consider the 1-D reservoir shown in Fig. 11.10. The reservoir has

no-flow boundaries and gridblock 3 hosts a production well. The reser-

voir contains gas and water only.
a. Name the four equations that constitute the flow model for this

reservoir.

b. Name the four unknowns for a gridblock in this reservoir.

c. Write the general flow equations for gridblock n in this reservoir.
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d. Write the saturation constraint equation and capillary pressure

relationship in this reservoir.

e. If you use the pg�Sg formulation, name the primary unknowns and

secondary unknowns for a gridblock in this reservoir.

f. Write the flow equations for gridblock n using the pg�Sg
formulation.

g. Write the flow equations for gridblocks 1, 2, 3, and 4 using the

pg�Sg formulation.
11.6 Complete the following problems that are related to Exercise 11–5.

a. If you use the pg�Sw formulation, name the primary unknowns and

secondary unknowns for a gridblock in this reservoir.

b. Derive the flow equations for gridblock n using the pg�Sw
formulation.

c. Write the flow equations for gridblocks 1, 2, 3, and 4 using the

pg�Sw formulation.
11.7 Consider the 1-D reservoir shown in Fig. 11.9. The reservoir has no-

flow boundaries. Gridblock 1 hosts a water injection well, and gridblock

4 hosts a production well. The reservoir contains oil, gas, and water.
a. Name the six equations that constitute the flow model for this

reservoir.

b. Name the six unknowns for a gridblock in this reservoir.

c. Write the general flow equations for gridblock n in this reservoir.

d. Write the saturation constraint equation and capillary pressure rela-

tionships in this reservoir.

e. If you use the po�Sw�Sg formulation, name the primary unknowns

and secondary unknowns for a gridblock in this reservoir.

f. Write the flow equations for gridblock n using the po�Sw�Sg
formulation.

g. Write the flow equations for gridblocks 1, 2, 3, and 4 using the

po�Sw�Sg formulation.
11.8 Complete the following problems that are related to Exercise 11.7.
a. If you use the po�Sw�So formulation, name the primary unknowns

and secondary unknowns for a gridblock in this reservoir.

b. Derive the flow equations for gridblock n using the po�Sw�So
formulation.

c. Write the flow equations for gridblocks 1, 2, 3, and 4 using the

po�Sw�So formulation.
11.9 Complete the following problems that are related to Exercise 11.7.
a. If you use the po�So�Sg formulation, name the primary unknowns

and secondary unknowns for a gridblock in this reservoir.



TABLE 11.5 Oil/water relative permeability data for Exercise 11.11.

Sw krw krow Pcow (psi)

0.130 0.000 1.0000 40

0.191 0.0051 0.9400 15

0.250 0.0102 0.8300 8.6

0.294 0.0168 0.7241 6.0

0.357 0.0275 0.6206 4.0

0.414 0.0424 0.5040 3.0

0.490 0.0665 0.3170 2.3

0.557 0.0910 0.2209 2.0

0.630 0.1148 0.1455 1.5

0.673 0.1259 0.0956 1.0

0.719 0.1381 0.0576 0.8

0.789 0.1636 0.0000 0.15

2 31 
40 ft

300 ft 300 ft 350 ft

x

y

qsc3
 = –100 STB/D

pbW
 = 1000 psia

No-flow boundary

FIG. 11.15 Discretized 1-D reservoir for Exercises 11.11 and 11.12.
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b. Derive the flow equations for gridblock n using the po�So�Sg
formulation.

c. Write the flow equations for gridblocks 1, 2, 3, and 4 using the

po�So�Sg formulation.
11.10 Derive the IMPES equations for the 1-D oil/gas flow model by execut-

ing the following steps:
a. Date the transmissibilities, capillary pressures, phase gravities,

relative permeabilities, and phase properties in production rates at

old time level tn in Eqs. (11.50) and (11.51).

b. Expand the accumulation terms (the RHS of Eqs. 11.50 and 11.51) in

terms of the (pn+1oi
�pnoi) and (Sn+1gi

�Sngi).
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c. Substitute the results of the second step into the equations of the

first step.

d. Add the resulting oil equation from the third step multiplied by

(Bn+1
oi

�Rn+1
si

Bn+1
gi

) and the resulting gas equation from the third step

multiplied by Bn+1
gi

to obtain the pressure equation.

e. Solve for Sn+1gi using the resulting oil equation from the third step for

each block.
11.11 A 1-D horizontal, two-phase oil/water reservoir is described by three

equal gridblocks as shown in Fig. 11.15. The reservoir rock is incom-

pressible and has homogeneous and isotropic properties, k¼270 md

and ϕ¼0.27. Initially, the reservoir pressure is 1000psia, and water sat-

uration is irreducible, Swi
¼0.13. gridblock dimensions are Δx¼300 ft,

Δy¼350 ft, and h¼40 ft.
Reservoir fluids are incompressible with Bo¼Bo
∘¼1 RB/STB,

μo¼3.0 cP, Bw¼Bw
∘¼1 RB/STB, and μw¼1.0 cP. Table 11.5 gives

the oil/water relative permeability and capillary pressure data. The res-

ervoir right boundary is sealed off to flow, and the reservoir left bound-

ary is kept at constant pressure of 1000psia because of a strong water

aquifer. A 7-in vertical well at the center of gridblock 3 produces liquid

at a rate of 100STB/D. Using the IMPES solution method, find the pres-

sure and saturation distributions in the reservoir at 100 and 300days.

Take single time steps to advance the solution from one time to another.
11.12 Consider the reservoir data presented in Exercise 11.11. Using the SS

method, find the pressure and saturation distributions in the reservoir

at 100 and 300days. Take single time steps to advance the solution from

one time to another.
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A
Accumulation terms The right-hand side term of the flow equation. Every flow equation

consists of a flow term, plus a well term (source/sink) that equals the right side, accumu-

lation term. For water, for instance, see Fig. G.1.
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Alternating-direction implicit procedure (ADIP) Originally suggested in petroleum engi-

neering applications in 1966 (Coats and Tarhune), this method solves the governing equa-

tion alternating between implicit and explicit modes.

Anisotropic permeability Because natural material is never homogenous or uniform, per-

meability varies significantly between the vertical and horizontal planes within a given

formation. This variation in permeability in different planes or directions is known as

anisotropic permeability.

Aphenomenal When a continuous logical train is not followed or first premise is false or

illogical. Such conclusion or process is inherently spurious, meaning has no meaning

or significance.

Areal discretization Any model has to be divided along space in order to find solutions that

apply to that elemental volume. In Cartesian coordinate, this corresponds to assigning Δx
and Δy to a particular grid. This process is called areal discretization.

B
Backward difference The accumulation term, in the finite difference flow equation, is back-

warddifference in time if the remaining terms in the flowequationaredatedatnewtime(tn+1).

Black-oil model When the simulation process considers oil, gas, and water as discrete

phases, disallowing any component exchange between phases.

Block-centered grid When grid properties are assigned to the center of a particular block

(see Fig. G.2).

Fig. G.1 Accumulation term
  n + nxny
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z
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Fig. G.2 Block-centered grid. (a) ψn¼{(n�1), (n+1)}, (b) ψn¼{(n�nx), (n�1), (n+1), (n+nx)},

and (c) ψn¼{(n�nxny), (n�nx), (n�1), (n+1), (n+nx), (n+nxny)}.
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Block identification Numbering of grid blocks in order to assign them corresponding prop-

erties. There can be various ways of numbering the blocks, some yielding advantages over

others.

Boundary conditions Because nature is continuous, but a reservoir model is not, every

model has to have a specific values assigned to the boundary blocks, which may or

may not correspond to original values of the block. These properties are assigned by

the user of the model according to their expectation or knowledge of the prototype.

Block successive over relaxation (BSOR) It is an iterative technique for solving a set of

linear algebraic equation, for which an entire block of properties are assumed/estimated

simultaneously. See also, SOR.

C
Capillary pressure Capillary pressure (Pc) is the pressure difference across the interface

between two immiscible fluids. The difference occurs because of the discontinuity

between two fluids. The magnitude of capillary pressure depends on surface tension,

interfacial tension, pore size, size distribution, and fluid properties.

Cartesian grid Discretization of the model in the Cartesian coordinate system.

Central difference The accumulation term, in the finite difference flow equation, is central

difference in time if the remaining terms in the flow equation are dated at time (tn+1/2)

halfway between old time (tn) and new time (tn+1).

Compressible fluid In nature, everything is compressible, only variable being the amount of

compression caused by certain pressure. In petroleum engineering, often incompressibility

is assigned to fluid (such aswater) by assigning a constant density (independent of pressure).

Others, forwhich a small but constant compressibility factors are assigned, these fluids being

called slightly compressible.Conventionally, slightly compressible fluid has a small but con-

stant compressibility (c) that usually ranges from10�5 to 10�6 psi�1.Gas-free oil, water, and

oil above bubble-point pressure are examples of slightly compressible fluids.

Conservation of mass Mass or energy cannot be created or destroyed, only transformed from

one phase to another. In modeling, it means total mass entering a system or a block must

equal total amount exiting plus (or minus) the amount retained (or extracted) in the block.

Constitutive equation The governing equation, along with boundary and initial conditions

that are necessary to have the number of equations the same as the number of unknowns.

For most reservoir simulators, the governing equation is the Darcey’s law.

Crank-Nicolson formulation This formation is central difference in time and central

difference in space.

D
Darcy’s law It connects pressure drop across a porous body with flow rate with permeability

of the porous medium as a proportionality constant. This is the most commonly used flow

equation in petroleum reservoir engineering. The original equation was developed in the

context of water flow through sand filters, but the law has been extended to include multi-

phase flow through multidimensional space.

E
Elementary volume The volume pertinent to the unit blocks or grids in a reservoir simulation

model. It is synonymous with control volume.

Engineering approach This approach eliminates the partial differential representation of

governing equations and use algebraic form of the governing equations directly.
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This approach thus simplifies the reservoir modeling process without compromising accu-

racy or speed of computation.

Equation of state It is the functional form that connects fluid density with pressure and tem-

perature. There are many equations of states, all of which are empirical but only a few are

practical. The complexity arises from the fact that each reservoir has unique set of reser-

voir fluid and the compositions are such that different coefficients for equation of state

should be used.

Explicit formulation When the governing equations are cast as an explicit function, for

which pressures of each block can be calculated directly. This is the slowest and the most

unstable solution scheme and is useless in the context of reservoir simulation.

F
Fictitious well This is a special technique for representing boundary conditions in the

engineering approach. It involves replacing the boundary condition with a no-flow bound-

ary plus a fictitious well having flow rate, which reflects fluid transfer between the

gridpoint that is exterior to the reservoir and the reservoir boundary itself or the boundary

gridpoint.

Flowing bottom-hole pressure (FBHP) The pressure measured in a well at or near the depth

of the producing formation during production.

Formation volume factor (FVF) This is the ratio of the volume of a fluid under reservoir

conditions to the volume at standard conditions. The ratio depends of the type of fluid

and reservoir conditions (both pressure and temperature). For instance, for most oils,

the FVF values are greater than 1.0. It means for water, this value is closer to 1.0, and

for gas, it is only a fraction of 1.0, meaning gas would occupy much greater space under

standard pressure and temperature conditions. It is the case because natural gas is highly

compressible.

Forward difference The accumulation term, in the finite difference flow equation, is for-

ward difference in time if the remaining terms in the flow equation are dated at old time

(tn).

G
Gas cap In oil reservoirs, where reservoir pressure is below the bubble point, natural gas

escapes to be trapped by the caprock. The collection of this gas within the caprock is

called gas cap.

Gas/oil contact (GOC) The bounding between a top gas layer and underlying oil layer within

a petroleum formation. Such boundary exists because oil and gas are not miscible.

H
Heterogeneous Although Darcy’s law and all other governing equations of mass and energy

transport assume homogeneity, in reality, nature is inherently heterogeneous. In reservoir

simulation, heterogeneity is recognized in the severe changes in permeability in space.

Also, anisotropy can render a porous medium heterogeneous.

Historymatching The process involving the adjustment of reservoir rock/fluid parameters in

order to match real production data and pressure of the reservoir. Because even best of

models only have limited data available and the rest of the data have to be assumed/inter-

polated, the process of history matching is commonly used. However, history matching

doesn’t assure accuracy in predicting future performance. It is because different sets of

properties would yield the same result, meaning the real properties remain elusive despite

good history match.
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I
Implicit formulation In this formulation, the algebraic equations are expressed in terms of

pressure and saturation values, both sides of equations being at a future time. This system

is inherently nonlinear, and linearization must be applied prior to solving the set of

governing equations and constitutive relationships. Implicit formulation is uncondition-

ally stable.

Implicit pressure and explicit saturation (IMPES) method In this formulation, the pres-

sure terms are implicit, whereas saturation terms are explicit. It is easier to solve in this

method. However, except for a narrow range of parameters and/or very small time steps,

this method is unstable.

Incompressible fluid When the fluid density can be assumed to be constant or independent

of pressure and temperature of confinement. For all practical purposes, only water and oil

under certain conditions can be assumed to be incompressible.

Inflow performance relationship (IPR) It is the fluid flow as a function of flowing bottom-

hole pressure. The shape of the curve is determined by the quality of the reservoir. This

curve is also used to determine at what stage pressure maintenance and other operations

should take place to improve the production capability of the reservoir. Typically, the

intersection between tubing performance versus production rate curve and the IPR marks

the optimal operating conditions (Fig. G.3).
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Fig. G.3 IPR and optimum operating conditions.
Initial conditions All values pressure and saturation prevailing at each grid block at the

beginning of the reservoir simulation. Initial conditions are necessary for startup of a sim-

ulation procedure.

L
Line successive overrelaxation (LSOR)method See also BSOR. In this iterative technique,

equations of each line are approximated and integrated.

Linearization Because all algebraic equations are nonlinear in every method other than

explicit (which is practically irrelevant for its lack of stability in solving reservoir simu-

lation equations), the algebraic equations have to be rendered linear prior to any attempt to

solve them. This process is called linearization. Linearization is also necessary because of

the boundary conditions and the presence of wells in a reservoir.
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M
Mass accumulation term See accumulation term.

Mass balance Mass balance is a scientific way to verify if a given solution is not spurious.

The process involves adding up total mass accumulated in each block and see there is an

overall mass balance holds. If not, the iteration process has to restart for the given time

step.

Mathematical approach This is the conventional method that uses partial differential equa-

tions, then discretizes using Taylor series approximations and finally derives the algebraic

equations, to be solved with a numerical solver.

Mobility An expression containing permeability over viscosity. Typically, it represents ease

of flow through a porous medium for a particular fluid.

Multiblock wells When a well penetrates more than one block in the reservoir simulator.

Multiphase flow Whenever more than one mobile phase exists. The most common scenario

is the follow of three phases, namely, oil, water, and gas. Water is innate to petroleum

reservoirs, whereas gas and oil are constantly separating from each other depending on

the operating pressure.

N
Newton’s iteration A linearization technique, in which the slope is taken in order to approx-

imate the solution to a nonlinear equation.

No-flow boundaries This the assumption of a boundary through which no flow occurs. This

is equivalent to perfect seal. Although it is absurd in nature, it is a good approximation for

certain types of reservoirs.

P
Permeability It is the capacity of the rock to transmit fluid through it. It is assumed to be a

constant and a strict property of the rock. Its dimension is L2.

Point successive overrelaxation (PSOR) method It is the SOR method for which iterations

are performed for each point. See SOR.

Pore volume Bulk volume multiplied by porosity. It represents void space of porous media.

Porosity Fraction of void volume over bulk volume of a porous medium.

R
Representative elemental volume (REV) This is the minimum sample volume for which the

sample properties become insensitive to the sample size.

Reservoir characterization Detailed assignment of relevant rock and fluid properties and

reservoir conditions for each blocked considered in a reservoir model. Conventionally,

this is performed after numerous reservoir simulation runs in order to fine tune reservoir

data to match the modeling data with the real history of the reservoir.

Residual oil saturation the saturation of oil that cannot be removed with any more water-

flooding. This saturation is dictated by the oil/water interfacial tension and reservoir

properties.

S
Sandface pressure This pertains to physical interface between the formation and the well-

bore. This is the location where there is a discontinuity between porous medium flow and

open flow in the production tubing, where Darcy’s law ceases to apply. Pressure at this

point is called sandface pressure.
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Stability In a stable process, the errors subside and diminish with more number of interac-

tions. Stability is measured by the outcome where a unique solution emerges.

Steady state When all parameters become insensitive to time.

Successive over relaxation (SOR) method It is an iterative technique for solving a set of

linear algebraic equation. It starts off with an assumed value and then multiplies the

new value with a factor to accelerate the convergence.

T
Transmissibility This is the product of formation rock and fluid properties. It expresses

flow rate between two points per one psi pressure drop. It combines rock (k), fluid prop-

erties (β, μ), and blocks dimensions (Δx, Δy, Δz or Δr, Δθ, Δz). For multiphase flow, it

uses effective permeability to each phase and viscosity and formation volume factor of

that corresponding phase.

U
Unsteady state When the flow parameters continue to change with time. A natural system is

inherently dynamic, hence, in unsteady state.

W
Water/oil contact (WOC) This is the borderline between predominantly oil phase and

water in the aquifer. Similar to gas-oil contact, WOC emerges because oil and water

not miscible. In a porous medium, the WOC is not uniform and depends on the rock

and fluid characteristics.
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User’s manual for single-phase
simulator
A.1 Introduction

This manual provides information on data file preparation and a description of

the variables used in preparing a data file, and it gives instructions for running

the reservoir simulator on a PC. The simulator models the flow of single-phase

fluid in reservoirs. Model description (flow equations and boundary conditions)

for incompressible, slightly compressible, and compressible fluids; well oper-

ating conditions; and methods of solving the algebraic equations of the model is

described in detail in the previous chapters of this book and by Ertekin et al.

(2001). The simulator (written in FORTRAN) was developed to provide

solutions to single-phase flow problems in undergraduate courses in reservoir

simulation. The simulator can be used to model irregular rectangular reservoirs

and single well in r-z radial-cylindrical coordinates using either a block-

centered grid or a point-distributed grid. The purpose of presenting this

simulator as part of this book is to provide the user with intermediate and final

results so the user’s solution for any given problem can be checked and any

errors can be identified and corrected. Educators may use the simulator to make

up new problems and obtain their solutions.
A.2 Data file preparation

The data required for the present simulator are classified into groups based on

how the data within each group are related. A group of data could be as simple

as defining a few related variables or as complicated as defining the variables

for the well recursive data. These groups of data are classified, according to

their format of input procedure, into five categories (A, B, C, D, and E).

Categories A and B include 17 and 6 groups of data, respectively, whereas

categories C, D, and E include one group of data each. The data of each cat-

egory are entered using a specific format procedure; for example, category A

uses format procedure A and category B uses format procedure B. Each group
463
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of data carries an identification name consisting of the word “DATA” fol-

lowed by a number and an alphabet character; the number identifies the group

and the alphabet character identifies the category and the format procedure.

For example, DATA 04B identifies a group of data that belongs to category

B that uses format procedure B and whose variables are defined under DATA

04B in Section A.3. Data file preparation, including format procedures and

description of variables, follows the work of Abou-Kassem et al. (1996) for

black-oil simulation. The folder available at www.emertec.ca contains four

examples of data files prepared for the problems presented in Example 7.1

(ex7-1.txt), Example 7.7 (ex7-7.txt), Example 7.12 (ex7-12.txt), and Example

5.5 (ex5-5.txt).

Each format procedure is introduced by a title line (line 1), which

includes the identification name and the group of data to be entered, fol-

lowed by a parameter sequence line (line 2), which lists the order of param-

eters to be entered by the user. Only format procedure D has an additional

parameter sequence line (line 3). The user, in each subsequent data line,

enters the values of the parameters ordered and preferably aligned with

the parameters shown in the parameter sequence line for easy recognition.

Both format procedures B and E require a single-line data entry, whereas

format procedures A, C, and D require multiple-line data entry and terminate

with a line of zero entries for all parameters. The various groups of data

and any specific instructions for each format procedure are presented in

the following sections.
A.2.1 Format procedure A

This format procedure is suitable for entering data that describe the distribu-

tion of a grid block property over the whole reservoir. Such data include

block size and permeability in the x-, y-, and z-directions; depth; porosity;
modifiers for porosity, depth, bulk volume, and transmissibilities in the x-,
y-, and z-directions; boundary conditions; and block identifiers that label a

grid block as being active or inactive.

Each line of data (e.g., line 3) represents a property assignment for an arbi-

trary reservoir region having the shape of a prism with I1, I2; J1, J2; and K1, K2

being its lower and upper limits in the x-, y-, and z-directions. The data entered
by each subsequent line (e.g., line 4) are superimposed on top of the data entered

by all earlier lines; that is, the final distribution of a property is the result of the

superposition of the entire arbitrary reservoir regions specified by all lines of

data. This option is activated by setting the option identifier at the beginning

of the parameter sequence line (line 2) to 1. DATA 25A has no option identifier,
but it implicitly assumes a value of 1.This is a powerful method for entering data

if a block property is distributed into well-defined (not necessarily regular)

reservoir regions. For a homogeneous property distribution, only one line of

data is needed (with I1¼ J1¼K1¼1, I2¼nx, J2¼ny, and K2¼nz). If; however,

http://www.emertec.ca
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a block property is so heterogeneous that it varies from block to block and

regional property distribution is minimal, this method loses its effectiveness.

In such cases, the option identifier at the beginning of the parameter sequence

line (line 2) is set to 0, and the data for all blocks are entered sequentially in a

way similar to natural ordering of blocks along rows (i.e., i is incremented first,

j is incremented second, and k is incremented last). In this case, both active and

inactive blocks are assigned property values, and the terminating line of zero

entries is omitted.
A.2.2 Format procedure B

This format procedure is suitable for entering data involving a combination of

integer and/or real variables. Groups of data of this type include options for the

method of solution, block ordering scheme, and units of input and output; con-

trol integers for printing options and number of grid blocks in the x-, y-, and
z-directions; fluid density; fluid and porosity compressibilities and reference

pressure for porosity; and simulation time. Note that the values of the param-

eters are entered in line 3. They are ordered and aligned with the parameters

shown in the parameter sequence line (line 2) for easy recognition.
A.2.3 Format procedure C

This format procedure is suitable for entering a PVT property table for a natural

gas. The parameter sequence line (line 2) lists pressure as the independent var-

iable followed gas FVF and gas viscosity as the dependent variables. It is impor-
tant to note that the range of pressure in the PVT table must cover the range of
pressure changes expected to take place in the reservoir and that the pressure
entries in the table must have equal pressure intervals. Each line of data rep-

resents one entry in the table of data that corresponds to a specified value of

the independent variable. The data in the table are entered in order of increasing

value of the independent variable (pressure). Note that entries in each line of

data (e.g., line 3) are ordered and aligned with the parameters specified on

the parameter sequence line (line 2) for easy recognition.
A.2.4 Format procedure D

This format procedure is suitable for entering well recursive data. As mentioned

earlier, this format procedure has two parameter sequence lines. The parameters

in the first parameter sequence line (line 2) include a time specification that sig-

nals a new user’s request (SIMNEW), an override time step to be used (DELT),

the number of wells changing operating conditions (NOW), the minimum flow-

ing bottom-hole pressure for producing wells (PWFMIN), and the maximum

bottom-hole pressure for injection wells (PWFMAX). This line of data can

be repeated, but each subsequent line must have a time specification larger than
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the last time specification. The parameters in the second parameter sequence

line (line 3) include data for individual wells such as the well identification

number (IDW), wellblock coordinates (IW, JW, and KW), the well type and

well operating condition (IWOPC), the wellblock geometric factor (GWI), a

specified value of condition (SPVALUE), and the well radius (RADW). There

must exist NOW lines describing NOW individual wells immediately following

the line where NOW specification appears if NOW>0. Using this format pro-

cedure, any number of wells can be introduced, shut-in, reopened, recompleted,

etc., at any number of key times.

A.2.5 Format procedure E

This format procedure is used to enter one line of information, such as the name

of the user and the title of the computer run, consisting of up to 80 alphanumeric

characters.

A.3 Description of variables used in preparing a data file

There are 26 data groups in the data file. The descriptions of the variables within

each data group are given under the data group itself. Follows is a list of all 26

data groups, starting with DATA 01E and ending with DATA 26D:
DATA 01E
 Title of Simulation Run
TITLE
 Name of user and title of simulation run (one line having
up to 80 alphanumeric characters)
Note

For identification purposes, the name of user and title of simulation run appear

immediately after acknowledgement in all four output files.
DATA 02B
 Simulation Time Data
IPRDAT
 Option for printing and debugging input data file

¼0, do neither print nor debug input data file

¼1, print input data file and activate messages to debug data file
TMTOTAL
 Maximum simulation time, D [d]

TMSTOP
 Time to stop this simulation run, D [d]
DATA 03B
 Units
MUNITS
 Option for units of input data and output

¼1, customary units

¼2, SPE preferred metric units

¼3, laboratory units
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DATA 04B
 Control Integers for Printing Desired Output (1, print; 0,

do not print)
BORD
 Block order

MLR
 Left and right half width

BASIC
 Basic intermediate results used in simulation

QBC
 Results and intermediate results related to boundary conditions

EQS
 Block equations and details of solution method

PITER
 Block pressure every outer iteration

ITRSOL
 Detailed results related to method of solving linear equations and

block pressure every inner iteration for iterative methods
Note

The results of simulation appear in four separate files. Description of reservoir and

results related to PITER, QBC, reservoir production rates, and material balance

checks appear in MY-OUT1.LIS. Those related to BORD, MLR, BASIC, QBC,

EQS, PITER, and ITRSOL appear in MY-OUT2.LIS. Tabulation of reservoir pressure

as a function of time appears in MY-OUT3.LIS. Tabulation of reservoir and well

performances appear in MY-OUT4.LIS.
DATA 05B
 Reservoir Discretization and Method of Solving Equations
IGRDSYS
 Type of grid system used in reservoir discretization.

¼1, block-centered grid

¼2, point-distributed (or node) grid
NX
 Number of gridblocks (or gridpoints) in the x-direction (or the r-direction if
NY¼0)
NY
 Number of gridblocks (or gridpoints) in the y-direction. For single-well
simulation, set NY¼0
NZ
 Number of gridblocks (or gridpoints) in the z-direction

RW
 Well radius for single-well simulation, ft [m]

RE
 External radius of reservoir for single-well simulation, ft [m]

NONLNR
 Linearization of nonlinear terms. The options that apply to the mathematical

approach (MA) or engineering approach (EA) are as indicated in the
succeeding text.
¼1, explicit treatment of transmissibility and production term (MA) (�)

¼2, simple iteration on transmissibility and production term (MA) (�)

¼3, explicit treatment of transmissibility and coefficient of pressure drop in

production term (EA)

¼4, simple iteration on transmissibility and coefficient of pressure drop in

production term (EA)

¼5, Newton’s iteration (MA and EA)
LEQSM
 Method of solving linear equations

¼1, Thomas’ algorithm for 1-D flow problems

¼2, Tang’s algorithm for 1-D flow problems where blocks form a ring (�)

¼3, Jacobi iterative method for 1-D, 2-D, and 3-D flow problems

¼4, Gauss-Seidel iterative method for 1-D, 2-D, and 3-D flow problems

¼5, PSOR iterative method for 1-D, 2-D, and 3-D flow problems
Continued
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DATA 05B
 Reservoir Discretization and Method of Solving Equations
¼6, LSOR iterative method for 2-D and 3-D flow problems

¼7, BSOR iterative method for 3-D flow problems (�)

¼8, g-band using natural ordering for 1-D, 2-D, and 3-D flow problems
TOLERSP
 User’s specified value for maximum absolute relative deviation between two
successive outer iterations. A value of 0.001 is recommended
DXTOLSP
 User’s specified value for maximum absolute pressure deviation between two
successive inner iterations. A value of 0.0001psi is recommended
Notes

1. TOLERSP and DXTOLSP are convergence tolerances. Compressible flow prob-

lems use TOLERSP. Iterative linear equation solvers use DXTOLSP. The correct

solution to a simulation problem is obtained using the recommended

tolerances.

2. If stricter convergence tolerances are specified, the program uses the recom-

mended tolerances to save on iterations. Stricter tolerances do not improve

the pressure solution but rather increase iterations. Relaxed tolerances, how-

ever, influence the solution and may result in unacceptable material balance

errors.

3. Options marked with (�) are not active in this version
DATA 06A to

DATA 21A
Reservoir Description and Initial Pressure Distribution
I1, I2
 Lower and upper limits in the x-direction of a parallelepiped region or
the r-direction of a reservoir region in single-well simulation
J1, J2
 Lower and upper limits in the y-direction of a parallelepiped region; for
single-well simulation, set J1¼ J2¼1
K1, K2
 Lower and upper limits in the z-direction of a parallelepiped region or a
reservoir region in single-well simulation
IACTIVE
 Block indicator for active and inactive blocks

¼0, inactive gridblock or gridpoint

¼�1, inactive gridblock or gridpoint to identify constant pressure
block
¼1, active gridblock or gridpoint

DX
 Block size in the x-direction for block-centered grid (or gridpoint

spacing in the x-direction for point-distributed grid), ft [m]

DY
 Block size in the y-direction for block-centered grid (or gridpoint

spacing in the y-direction for point-distributed grid), ft [m]

DZ
 Block size in the z-direction for block-centered grid (or gridpoint

spacing in the z-direction for point-distributed grid), ft [m]

KX
 Block permeability in the x- or r-direction, md [μm2]

KY
 Block permeability in the y-direction if NY>0, md [μm2]

KZ
 Block permeability in the z-direction, md [μm2]
Continued
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DATA 06A to

DATA 21A
Reservoir Description and Initial Pressure Distribution
DEPTH
 Elevation of top of gridblock for block-centered grid (or elevation of
gridpoint for point-distributed grid) below selected datum, ft [m]
PHI
 Block porosity, fraction

P
 Block pressure, psia [kPa]

RATIO
 Property modifier, dimensionless
¼0.0, property is not modified

>0.0, property is increased by that ratio

<0.0, property is decreased by that ratio
Notes

1. A number of gridblocks (or gridpoints) that are part of the reservoir are deacti-

vated on purpose to simulate a specified gridblock (or gridpoint) pressure.

2. DX, DY, andDZ are supplied for all gridblocks (or gridpoints) whether active or

inactive.

3. Ratio is the desired fractional change of a property value entered by the user or

internally calculated by the simulator. Modifiers can be applied to the block

porosity, block elevation, block bulk volume, and transmissibilities in the x-,

y-, and z-directions.

4. For a point-distributed grid, define the gridpoint spacing in a given direction

(DX in i-direction, DY in j-direction, and DZ in k-direction) by setting the upper

limit of a parallelepiped region in that direction only equal to the coordinate of

the upper limit gridpoint in the same direction minus one
DATA 22B
 Rock Data and Fluid Density
CPHI
 Porosity compressibility, psi�1 [kPa�1]

PREF
 Reference pressure at which porosities are reported, psia [kPa]

RHOSC
 Fluid density at reference pressure and reservoir temperature, lbm/ft3 [kg/m3]
DATA 23B
 Type of Fluid in the Reservoir
LCOMP
 Type of fluid indicator

¼1, incompressible fluid

¼2, slightly compressible fluid

¼3, compressible fluid (natural gas)
IQUAD
 Interpolation within gas property table

¼1, linear interpolation

¼2, quadratic interpolation
DATA 24B
 Fluid Properties for LCOMP51 (Incompressible Fluid)
FVF
 Formation volume factor at reservoir temperature, RB/STB

MU
 Fluid viscosity, cP [mPa.s]
Continued
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DATA 24B
 Fluid Properties for LCOMP52 (Slightly Compressible Fluid)
FVF0
 Formation volume factor at reference pressure and reservoir temperature, RB/
STB
MU0
 Fluid viscosity at reference pressure and reservoir temperature, cP [mPa.s]

CO
 Fluid compressibility, psi�1 [kPa�1]

CMU
 Rate of relative change of viscosity with respect to pressure, psi�1 [kPa�1]

PREF
 Reference pressure at which FVF0 and MU0 are reported, psia [kPa]

MBCONST
 Handling of liquid FVF and liquid viscosity in transmissibility terms
¼1, constant values independent of pressure

¼2, values that depend on pressure
DATA 24C
 Fluid Properties for LCOMP53 (Natural Gas)
PRES
 Pressure, psia [kPa]

FVF
 Gas formation volume factor, RB/scf [m3/std m3]

MU
 Gas viscosity, cP [mPa.s]
Note

Gas FVF and viscosity are supplied in a table form. The pressure is entered in

increasing order using equal intervals.
DATA 25A
 Boundary Conditions
I1, I2
 Lower and upper limits in the x-direction of a parallelepiped region or the
r-direction of a reservoir region in single-well simulation
J1, J2
 Lower and upper limits in the y-direction of a parallelepiped region; for single-
well simulation, set J1¼ J2¼1
K1, K2
 Lower and upper limits in the z-direction of a parallelepiped region or a
reservoir region in single-well simulation
IFACE
 Block boundary subject to boundary condition

¼1, block boundary in the negative direction of z-axis

¼2, block boundary in the negative direction of y-axis

¼3, block boundary in the negative direction of x-axis or r-direction

¼5, block boundary in the positive direction of x-axis or r-direction

¼6, block boundary in the positive direction of y-axis

¼7, block boundary in the positive direction of z-axis
ITYPBC
 Type of boundary condition

¼1, specified pressure gradient at reservoir boundary, psi/ft [kPa/m]

¼2, specified flow rate across reservoir boundary, STB/D or scf/D [std m3/d]

¼3, no-flow boundary

¼4, specified pressure at reservoir boundary, psia [kPa]

¼5, specified pressure of the block on the other side of reservoir boundary, psia

[kPa]

SPVALUE
 Specified value of boundary condition

ZELBC
 Elevation of center of boundary surface for block-centered grid (or elevation of

boundary node for point-distributed grid) below selected datum, ft [m]
Continued
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DATA 25A
 Boundary Conditions
RATIO
 Property modifier for area open to flow or geometric factor between reservoir
boundary and boundary gridblock (or gridpoint), dimensionless
¼0.0, property is not modified

>0.0, property is increased by that ratio

<0.0, property is decreased by that ratio
Notes

1. All reservoir boundaries are assigned a no-flow boundary condition as a

default. Therefore, there is no need to specify no-flow boundaries.

2. For ITYPBC¼5, ZELBC is the elevation of the point (node) that represents the

block whose pressure is specified.

3. DATA 25A has no option identifier at the beginning of the parameter sequence

line (line 2).

4. For single-well simulation using point-distributed grid, a specified FBHP must

be simulated as a specified pressure boundary condition
DATA 26D
 Well Recursive Data
NOW
 Number of wells that will change operational conditions

¼0, no change in well operations

>0, number of wells that change operational conditions
SIMNEW
 Time specification signaling user’s new request, D [d]; well data entered here
will be active starting from previous time specification until this time
specification and beyond
DELT
 Time step to be used, D [d]

PWFMIN
 Minimum BHP allowed for production well, psia [kPa]

PWFMAX
 Maximum BHP allowed for injection well, psia [kPa]

IDW
 Well identification number; each well must have a unique IDW
¼1, 2, 3, 4…

IW, JW,

KW

(i, j, k) location of wellblock
IWOPC
 Well operating condition

IWOPC for production well

¼�1, specified pressure gradient at well radius, psi/ft [kPa/m]

¼�2, specified production rate, STB/D or scf/D [std m3/d]

¼�3, shut-in well

¼�4, specified bottom-hole pressure, psia [kPa]

IWOPC for injection well

¼1, specified pressure gradient at well radius, psi/ft [kPa/m]

¼2, specified injection rate, STB/D or scf/D [std m3/d]

¼3, shut-in well

¼4, specified bottom-hole pressure, psia [kPa]
GWI
 Wellblock i geometric factor, RB-cP/D-psi [m3.mPa.s/(d.kPa)]

SPVALUE
 Specified value of the operating condition

RADW
 Well radius, ft [m]
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Notes

1. The NOW line can be repeated for different times, but each subsequent line

must have a time specification larger than the previous time specification.

2. The NOW line can be used to specify new values for DELT, PWFMIN, or

PWFMAX at desired times during simulation.

3. The specified value of PWFMIN and PWFMAX must be within the range of the

pressure specified in the PVT table. For realistic simulation of slightly com-

pressible and compressible fluids, these two parameters need to be specified.

However, setting PWFMIN� �106 and PWFMAX�106 deactivates the func-

tion of these two parameters.

4. This data group terminates with a line of zero entries.

5. Each IWD line enters specifications for one well. This line must be repeated

NOW times if NOW>0.

6. Both IWOPC and the specified rate are positive for injection well, and both are

negative for production well.

7. For single-well simulation using point-distributed grid, a specified FBHP must

be simulated as a specified pressure boundary condition.

8. RADW is specified here to handle options IWOPC¼1 or �1

A.4 Instructions to run simulator

The user of the simulator is provided with a copy of a reference data file (e.g.,

REF-DATA.TXT) similar to the one presented in Section A.6. The user first

copies this file into a personal data file (e.g., MY-DATA.TXT) and then follows

the instructions in Section A.2 and observes the variable definitions given in

Section A.3 to modify the personal data file such that it describes the con-

structed model of the reservoir under study. The simulator can be run by click-

ing on the compiled version (SinglePhaseSim.exe). The computer responds

with the following statement requesting file names (with file type) of one input

and four output files:

ENTER NAMES OF INPUT AND OUTPUT FILES
‘DATA.TXT’ ‘OUT1.LIS’ ‘OUT2.LIS’ ‘OUT3.LIS’ ‘OUT4.LIS’

The user responds using the names of five files, each enclosed within single

quotes separated by a blank space or a comma as follows and then hits the

“Return” key.

‘MY-DATA.TXT’,‘MY-OUT1.LIS’,‘MY-OUT2.LIS’,‘MY-OUT3.LIS’,‘MY-
OUT4.LIS’

The computer program continues execution until completion.

Each of the four output files contains specific information. ‘MY-OUT1.LIS’

contains debugging information of the input data file if requested and a
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summary of the input data, block pressure, production and injection data includ-

ing rates and cumulatives, rates of fluid across reservoir boundaries, and mate-

rial balance checks for all time steps. ‘MY-OUT2.LIS’ reports intermediate

results, equations for all blocks, and details specific to the linear equation solver

every iteration in every time step. ‘MY-OUT3.LIS’ contains concise reporting

in tabular form of block pressures at various times. ‘MY-OUT4.LIS’ contains

concise reporting in tabular form of reservoir performance as well as individual

well performances.
A.5 Limitations imposed on the compiled version

The compiled version of SinglePhaseSim is provided here for demonstration

and student training purposes. The critical variables were therefore restricted

to the dimensions given next.

1. Number of gridblocks (or gridpoints) in x- or r-direction �20

2. Number of gridblocks (or gridpoints) in y-direction �20

3. Number of gridblocks (or gridpoints) in z-direction �10

4. Number of entries in PVT table �30

5. Number of wells¼1 well/block

6. Unrestricted number of times, wells change operational conditions

7. Maximum number of time steps¼1000 (precautionary measure)
A.6 Example of a prepared data file

The following data file was prepared as a benchmark test problem:

'*DATA 01E* Title of Simulation Run'
'TITLE'
J.H. Abou-Kassem. Input data file for Example 7.1 in Chap. 7.
'*DATA 02B* Simulation Time Data'
'IPRDAT TMTOTAL TMSTOP'

1 360 10
'*DATA 03B* Units'
'MUNITS'

1
'*DATA 04B* Control Integers for Printing Desired Output'
'BORD MLR BASIC QBC EQS PITER ITRSOL'

1 1 1 1 1 1 1
'*DATA 05B* Reservoir Discretization and Method of Solving
Equations'
'IGRDSYS NX NY NZ RW RE NONLNR LEQSM TOLERSP DXTOLSP'

1 4 1 1 0.25 526.604 4 8 0.0 0.0
'*DATA 06A* RESERVOIR REGION WITH ACTIVE OR INACTIVE BLOCK
IACTIVE'
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1,'I1 I2 J1 J2 K1 K2 IACTIVE'
1 4 1 1 1 1 1
0 0 0 0 0 0 0

'*DATA 07A* RESERVOIR REGION HAVING BLOCK SIZE DX IN THE
X-DIRECTION'
1,'I1 I2 J1 J2 K1 K2 DX (FT)'

1 4 1 1 1 1 300
0 0 0 0 0 0 0.0

'*DATA 08A* RESERVOIR REGION HAVING BLOCK SIZE DY IN THE
Y-DIRECTION'
0,'I1 I2 J1 J2 K1 K2 DY (FT)'
350 350 350 350
'*DATA 09A* RESERVOIR REGION HAVING BLOCK SIZE DZ IN THE
Z-DIRECTION'
0,'I1 I2 J1 J2 K1 K2 DZ (FT)'
4*40
'*DATA 10A* RESERVOIR REGION HAVING PERMEABILITY KX IN THE
X-DIRECTION'
1,'I1 I2 J1 J2 K1 K2 KX (MD)'

1 4 1 1 1 1 270
0 0 0 0 0 0 0.0

'*DATA 11A* RESERVOIR REGION HAVING PERMEABILITY KY IN THE
Y-DIRECTION'
1,'I1 I2 J1 J2 K1 K2 KY (MD)'

1 4 1 1 1 1 0
0 0 0 0 0 0 0.0

'*DATA 12A* RESERVOIR REGION HAVING PERMEABILITY KZ IN THE
Z-DIRECTION'
1,'I1 I2 J1 J2 K1 K2 KZ (MD)'

1 4 1 1 1 1 0
0 0 0 0 0 0 0.0

'*DATA 13A* RESERVOIR REGION HAVING ELEVATION Z'
1,'I1 I2 J1 J2 K1 K2 DEPTH (FT)'

1 4 1 1 1 1 0.0
0 0 0 0 0 0 0.0

'*DATA 14A* RESERVOIR REGION HAVING POROSITY PHI'
1,'I1 I2 J1 J2 K1 K2 PHI (FRACTION)'

1 4 1 1 1 1 0.27
0 0 0 0 0 0 0.0

'*DATA 15A* RESERVOIR REGION HAVING INITIAL PRESSURE P'
1,'I1 I2 J1 J2 K1 K2 P (PSIA)'

1 4 1 1 1 1 0
0 0 0 0 0 0 0.0
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'*DATA 16A* RESERVOIR REGION WITH BLOCK POROSITY MODIFICATION
RATIO'
1,'I1 I2 J1 J2 K1 K2 RATIO'

0 0 0 0 0 0 0.0
'*DATA 17A* RESERVOIR REGION WITH BLOCK ELEVATION MODIFICATION
RATIO'
1,'I1 I2 J1 J2 K1 K2 RATIO'

1 4 1 1 1 1 0.0
0 0 0 0 0 0 0.0

'*DATA 18A* RESERVOIR REGION WITH BLOCK VOLUME MODIFICATION
RATIO'
1,'I1 I2 J1 J2 K1 K2 RATIO'

1 4 1 1 1 1 0.0
0 0 0 0 0 0 0.0

'*DATA 19A* RESERVOIR REGION WITH X-TRANSMISSIBILITY MODIFICATION
RATIO'
1,'I1 I2 J1 J2 K1 K2 RATIO'

1 4 1 1 1 1 0.0
0 0 0 0 0 0 0.0

'*DATA 20A* RESERVOIR REGION WITH Y-TRANSMISSIBILITY MODIFICATION
RATIO'
1,'I1 I2 J1 J2 K1 K2 RATIO'

1 4 1 1 1 1 0.0
0 0 0 0 0 0 0.0

'*DATA 21A* RESERVOIR REGION WITH Z-TRANSMISSIBILITY MODIFICATION
RATIO'
1,'I1 I2 J1 J2 K1 K2 RATIO'

1 4 1 1 1 1 0.0
0 0 0 0 0 0 0.0

'*DATA 22B* Rock and Fluid Density'
'CPHI PREF RHOSC'
0.0 14.7 50.0

'*DATA 23B* Type of Fluid in the Reservoir'
'LCOMP IQUAD'

1 1
'*DATA 24B* FOR LCOMP= 1 AND 2 OR *DATA 24C* FOR LCOMP= 3 ENTER
FLUID PROP'
'LCOMP=1:FVF,MU;LCOMP=2:FVF0,MU0,CO,CMU,PREF,MBCONST;LCOMP=3:
PRES,FVF,MU TABLE'
1.0 0.5
'*DATA 25A* Boundary Conditions'
'I1 I2 J1 J2 K1 K2 IFACE ITYPEBC SPVALUE ZELBC RATIO'

1 1 1 1 1 1 3 4 4000 20 0.0
4 4 1 1 1 1 5 3 0 20 0.0
0 0 0 0 0 0 0 0 0. 0.0 0.0



476 Appendix A
'*DATA 26D* Well Recursive Data'
'NOW SIMNEW DELT PWFMIN PWFMAX'
'IDW IW JW KW IWOPC GWI SPVALUE RADW'

1 10.0 10.0 -10000000.0 100000000.0
1 4 1 1 -2 11.0845 -600 0.25
0 0.0 0.0 0.0 0.0
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