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PREFACE

This book is divided into four parts. The introduction (Part I) provides the
physical background of the geophysical models that are analyzed in this book
from a mathematical viewpoint.

Part I is devoted to a self-contained proof of the existence of weak (or strong)
solutions to the incompressible Navier—Stokes equations.

Part III deals with the rapidly rotating Navier—Stokes equations, first in
the whole space, where dispersion effects are considered. Then the case where
the domain has periodic boundary conditions is considered, and finally rotating
Navier—Stokes equations between two plates are studied, both in the case of
horizontal coordinates in R? and periodic.

In Part IV the stability of Ekman boundary layers, and boundary layer
effects in magnetohydrodynamics and quasigeostrophic equations are discussed.
The boundary layers which appear near vertical walls are presented and form-
ally linked with the classical Prandlt equations. Finally spherical layers are
introduced, whose study is completely open.
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PART I

General introduction

The aim of this part is to provide a short introduction to the physical theory
of rotating fluids, which is a significant part of geophysical fluid dynamics. This
chapter contains no rigorous results but rather gives a general overview of clas-
sical phenomena occurring in rotating fluids, in particular the propagation of
waves and of boundary layers in the neighborhood of horizontal and vertical
walls. It also makes links with mathematical results proved in this book and
gives some references to the physical literature (very abundant on this subject).

Meteorology and oceanography

Let us begin by simple computations of orders of magnitude. The typical amp-
litude of velocity in the ocean is a few meters per second (except in strong oceanic
currents like the Gulf Stream), and the typical size of an ocean is 5000 kilometers.
It therefore takes 50 days for a fluid particle to cross the ocean. Meanwhile the
Earth has made 50 rotations. As a consequence, if we want to study oceans at a
global level, the Coriolis force cannot be neglected. It is important in magnitude
and also for its physical consequences. Therefore all the models of oceanography
and meteorology dealing with large-scale phenomena include the Coriolis force.
Of course other physical effects are of similar importance, like temperature vari-
ations, salinity, stratification, and so on, but a first step in the study of more
complex models is to understand the behavior of rotating fluids. Many important
features of oceanic circulation can be explained by large rotation, like for instance
the intensification of oceanic currents near western coasts (the Gulf Stream near
the Gulf of Mexico, Kuroshio near Japan, and so on). It is striking to realize that
a model as simple as the incompressible Navier—Stokes equations together with
a large Coriolis term, with natural boundary conditions, is sufficient to recover
with quite good accuracy the large-scale oceanic circulation and to give a pre-
liminary explanation to strong currents! Of course precise explanations require
refined models, including topographical effects, stratification, for instance, to
predict the location where the Gulf Stream leaves the American shore.

So a first step is to neglect temperature, salinity, and stratification, and to
consider only Navier—Stokes equations for incompressible fluids. Note that at
these scales, compressibility effects can be completely dismissed: we are not con-
cerned with sound effects, and the speed of air or water at large scales is so small
that the Mach number is almost 0 and the assumption of incompressibility is
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fully justified. Another way to justify the incompressibility condition is to derive
it from so-called “primitive equations” after a change of vertical coordinates
(pressure coordinates). We will not detail this point here. Moreover, the speed
of rotation of the Earth can be considered as a constant on the time-scales con-
sidered (a few months or a few years). In that case, up to terms which we write
as gradients, the Coriolis force reduces to 2w A u where w denotes the rotation
vector, which will be taken along the z3-direction, and w the velocity of the fluid.
The equations are then the so-called Navier—Stokes—Coriolis equations (NSC.),
written in a non-dimensional way (for the sake of simplicity, we will set in the
whole book the characteristic length to one)

e Au
(NSC.) Ou+u-Vu—vAu + 5

div u =0,

+Vp=f

in a domain  (with boundary conditions to be made precise later on). In these
equations, u denotes the velocity of the fluid, p its pressure, e the unit vector in
the x3-direction, v the rescaled viscosity and ! the rescaled speed of rotation,
and f a forcing term (heating, gravity, and so on). The parameter ¢ is called
the Rossby number, and is a small parameter, usually of order 10~ to 1073.
The high rotation limit corresponds to the regime when ¢ tends to 0, possibly
with a link between v and e. In physical situations, v is of order € and we assume
that v = Oe where ( is fixed. As a matter of fact, the limit € tends to 0 with
fixed v leads to u = 0, which is not very interesting: the fluid is immediately
stopped (see the section below on Ekman layers).

In real situations, however, the fluid is turbulent and v no longer denotes
the molecular kinematic viscosity of the fluid, but rather a turbulent viscosity,
measured from the speed of diffusion of tracers for instance. This is of course a
very crude approximation of turbulent phenomena. In particular, it does not take
into account the anisotropy created by large rotation. The Coriolis force creates
an asymmetry between horizontal and vertical motions, vertical motion being
penalized. This induces an anisotropy in the turbulent behavior, the horizontal
turbulence being more important than the vertical turbulence. To take this effect
into account, it is usual in meteorology and oceanography to replace the —vA
term by —v, Ay — v, 03 where Ay, = 97 + 03, vy, denotes the horizontal viscosity
and v, the vertical viscosity, and we state © = (zp,x3). Here and throughout
this text we have denoted xp = (z1,22) and 0; stands for 9/0z,. We take v,
of order ¢, v, large compared to v, and either v, tends to 0 with €, or v, is
constant as € goes to 0.

This is of course a fully unjustified turbulence model. More complicated mod-
els can be studied, where the viscosity is linked to the local shear, or where a
dynamical model for the energy of the small-scale flow is considered, like the k—¢
model.



Review of physical phenomena 3

Let us now discuss the geometry of the domain. The natural domain would
be the oceans or the whole atmosphere. However to isolate the various phe-
nomena it is more interesting to begin with simple geometries like the whole
space R?, the periodic setting T?, between two plates R? x[0,1] or T2 x[0, 1],
or domains with vertical boundaries €, x [0, 1] where ), is a two-dimensional
domain. These domains already cover the stratification effect of rotation, iner-
tial waves, boundary layers, and Ekman pumping. To go further towards refined
models and to study the effect of curvature of the Earth, we should consider a
spherical shell R; < r < Ry where Ry — Ry < Ry, or a part of it (see [47]).
This leads to the so-called 3 effect and to equatorial singularities. Topographical
effects can also be included (see below).

For a more detailed introduction we refer to the monographs of Pedlovsky
[103] and Greenspan [67].

Review of physical phenomena

The aim of this section is to describe various physical problems which arise in the
high-rotation limit of Navier—Stokes—Coriolis equations (NSC.) — in particular,
the two-dimensional limit constraint, Poincaré waves, and horizontal boundary
layers — and to refer to the corresponding mathematical results and chapters.

Taylor-Proudman columns

The first step in the study of rotating fluids (NSC.) is to verify that the only
way to control the Coriolis force as ¢ tends to 0 is to balance it with the pressure
gradient term. Hence in the limit, e3> A u must be a gradient

e3ANu=—Vp,
which leads to
—u®=—0ip
ut =—0sp
0= —33p.

In particular, the limit pressure p must be independent of x3, hence depends
only on ¢ and zj,. We see that u' and u? are also independent of x3, and that

O1ut + Ogu? = —0109p + 201p = 0.

In particular (u',u?) is a two-dimensional, horizontal, divergence-free vector

field. On the other hand,
83u3 = —81’11,1 — 82’11,2 = 0,

therefore u? is also independent of x3. Physically, the fluid is limited by rigid
(fixed) boundaries or interfaces, from above or from below, which in general
leads to u? = 0 (at least to first order in e; this will be detailed later). In that
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case, the fluid has a two-dimensional behavior. Throughout this book we will
be working with vector fields which may depend on the vertical variable or not,
and which may have two components or three. In order to fix the terminology,
we will denote by a “horizontal vector field” any two-component vector field,
whereas a two-dimensional vector field will denote a vector field independent of
the vertical variable.

In physical cases, all the particles which have the same x; and x2 have the
same velocity (u!(t,zp),u?(t,zp),u3(t,x1)). The particles of fluid move in ver-
tical columns, called Taylor-Proudman columns. That is the main effect of high
rotation and a very strong constraint on the fluid motion. First note that on the
boundary of the domain, where the velocity vanishes usually or is prescribed,
the x5 independence is violated. That leads to boundary layers which are invest-
igated below. Second, note that as the fluid is incompressible, the height of
Taylor—Proudman columns must be constant as time evolves.

If the domain of evolution is limited by two parallel planes a < x3 < b or
is periodic in x3 then columns move freely and in the limit of high rotation the
fluid behaves like a two-dimensional incompressible fluid (we forget for a while
the boundary layers).

If the domain of evolution is limited by two non-parallel planes (for instance
the domain defined by 0 > x3 > —x1), the motion is even more constrained. First
it has to be two-dimensional and horizontal. Second the columns must have a
constant height. Therefore the fluid moves in the xo-direction and the velocity
field is of the form (0,u?(t,x),0). By incompressibility we even have dou? = 0
hence u? depends only on ¢ and z;! Of course such motion is too constrained
and is not of much interest.

If the domain of evolution is a sphere or an ellipsoid, then again the fluid
particles move along paths of constant height, which are closed circles or closed
ellipses. Again the motion is too constrained and not relevant in meteorology and
oceanography, but can be easily studied in laboratories (we refer to impressive
pictures in [67]).

That conclusion may seem strange at first glance since oceans have a non-
negligible topography, both in terms of amplitude (ranging from a few hundred
meters near shores to ten kilometers at most) and also through the influence
of global circulation. However we must keep in mind that the rotating Navier—
Stokes equations are a very crude model since they in particular neglect the
effects of stratification and density, of temperature and salinity. As a consequence
the effects of topography are amplified and exaggerated, and if we want to keep a
reasonable role for topography, we must study variations in heights of the domain
of order &, or else the motion is completely constrained [103]. A typical domain
of evolution to study topography is therefore

Q. ={-1+en(zy) <3 <0},
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where 7 is a smooth function. A domain of the form Q = {n(z;) < z3 < 0} leads
to degenerate motions if 7 is not a constant independent of xj. Such domains
have been studied in [48] and will not be investigated in this book.

In conclusion, if € is the whole space R? or in the periodic setting, the limit
flow is a two-dimensional, horizontal divergence-free flow u = (u!,u?). We shall
show later on that it simply satisfies the two-dimensional incompressible Euler
or Navier—Stokes equations. In the case of an isotropic viscosity —vA when v
goes to 0 with €, the limit equation is simply the incompressible Euler system

(&) {?u-l—irVu-l—Vp: 0
ivu =0,

in two-dimensional space. That limit still holds in the case when the viscosity
is anisotropic and vy, goes to 0 with e. Finally, if v, is constant one finds the
incompressible Navier—Stokes system in two-dimensional space:

Ou+u-Vu—vpApu+Vp =0
divu = 0.

The proof will be detailed in Part III and requires the understanding of another
important physical phenomenon: the propagation of high-speed waves in the
fluid, which we will now detail.

Poincaré waves

In the previous section we have seen that the limit flow is two dimensional. That
is not always the case for general initial data (which may depend on z3) and
it remains to describe what happens to the three-dimensional part of the initial
data. Let us, in this paragraph, again forget the role of boundaries, and focus on
the whole space or on periodic cases. If we omit for a moment the non-linearity
of (NSC.) and the viscous terms, we end up with the Coriolis system

e3Av  Vp
a _— =
(Cg) tv"!_ c +
dive =0,

0

which turns out to describe the propagation of waves, called Poincaré waves,
or inertial waves. As we will see in the second section of Chapter 5, the
corresponding dispersion law relating the pulsation w to the wavenumber
¢ eR3is

iy

Therefore the two-dimensional part of the initial data evolves according to two-
dimensional Euler or Navier—Stokes equations, and the three-dimensional part
generates waves, which propagate very rapidly in the domain (with a speed of

+w(§) =



6 General introduction

order e~ 1). The time average of these waves vanishes, like their weak limit, but
they carry a non-zero energy. Note that the wavenumbers of these waves are
bounded as e tends to 0 and a priori no short wavelengths are created. On the
contrary, time frequencies are very large and go to infinity like e~ as ¢ goes to 0.

To gain some intuition about these waves, it is interesting to make a com-
parison with the incompressible limit of compressible Euler or Navier—Stokes
equations, in the isentropic case, to simplify. The compressible isentropic Euler
equations are as follows

Orp + div (pu) =0

(Eeomp) Vp?

O(pu) + div (pu @ u) + Py =0,

where 7 is a real number greater than 1. In this case, € denotes the Mach number,
i.e. the ratio of the typical velocity of the fluid to the speed of sound. Here
the typical velocity is O(1) and the sound speed is of order e~!. The Mach
number plays the role of the Rossby number. As e goes to 0, formally, Vp = 0
therefore p is a constant, say 1, and divu = 0. This gives the incompressible Euler
system (E), hence the limit flow has a constant density and is incompressible.
This is the analog of the two-dimensional property of the limit flow in the case
of rotating fluids. However, in general the initial data have a varying density and
the problem is not divergence-free. If we write p = 1+ p, forget all the non-linear
terms of (Egomp) and set ¢ = 1 we get

Oip+divu=0
Ou+~yVp=0,

which are exactly the equations of acoustic waves. Therefore, general initial data
split as the Mach number goes to 0 into an incompressible part (that is the
projection of u on divergence-free fields and of p on constants) evolving according
to the incompressible Euler equations, and a compressible part which creates
acoustic waves (with bounded spatial frequencies) with very high time frequency
(of order e~1). The time average of acoustic waves is zero, but they carry a
non-vanishing part of the total energy in the general case. The incompressible
limit and the high rotation limit are therefore two highly linked problems, with
similar features, the first one being maybe more familiar to the reader. We refer
to [92],[93],[50], [41] and [42] for a mathematical justification of this limit.

Let us go back to the high rotation limit and to Poincaré waves. Those waves
propagate very fast in the domain. Therefore if the domain is unbounded they go
rapidly to infinity and in fact disappear. Only the x3 independent part remains
and solutions converge to solutions of two-dimensional Euler or Navier—Stokes
equations. At the mathematical level, this leads to the setup and use of Strichartz
type estimates on Poincaré waves, which are dispersive waves. This is detailed
in Part III, Chapter 5.
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If the domain is bounded, however, or if the flow is periodic, Poincaré waves
persist for long times, and interact not only with the limit two-dimensional flow,
but also with themselves. The first striking fact is that the interaction between
two Poincaré waves does not create x3 independent fields: the interaction of
waves does not affect the limit z3 independent field. In particular if we forget
the waves (by projection on z3 independent vector fields, or by time averaging,
or by approaching a weak limit), the limit z3 independent field satisfies Euler or
Navier—Stokes equations and is completely decoupled from the waves (which may
not be the case in the framework of low Mach number limit in non-homogeneous
fluids [19]). Next, interaction between the limit flow and Poincaré waves always
takes place, alters the waves and can be seen as a kind of “diffraction” by the
medium. Interaction between two Poincaré waves to create another Poincaré
wave, however, is less frequent: let us consider a periodic box of lengths aq, as
and az. A wave ¢ interacts with a wave £ to give birth to a wave &’ provided

I en £ & & il <fl &2 53)
€+€ 75 9 and —_ + = = = hereff —_—y )
a @ e

which are the usual resonance conditions in the three-wave interaction problem.
In the periodic case, all the components of £, £ and £” are integers. Thus the
above conditions turn out to be diophantine equations which in general have no
solutions. More precisely, if we consider a;, as and az as parameters, for almost
every (ay,as,ag) there is no integer solution to the above equations except the
trivial solutions given by symmetries. Therefore generically in the sizes of the
periodic box, the waves do not interact with themselves and only interact with
the two-dimensional underlying flow.

Mathematically to handle waves we introduce the Poincaré group as follows.
Let L(t)vg be the solution of the Coriolis system (C.) with ¢ = 1 and initial
data vy. We describe the solution of the (NSC;) system by

t
u(t,zp,x3) = u(t,zp) + L <€> Uose (t, Th, T3)

where 7 is a two-dimensional divergence-free vector field and u,g. is a divergence-
free, zero x3 average vector field. The main point is the weak convergence of
L(t/€)uosc to 0 as e goes to 0, leading to the weak convergence of u to @ which sat-
isfies a two-dimensional Euler or Navier—Stokes equation (depending on whether
vy, vanishes or not). The oscillatory profile us. satisfies a three-dimensional
Navier—Stokes type system, with special properties because of the rare occur-
rence of wave interactions. Even in the general case, the non-linearity of this
system contains few terms, and behaves like a two-dimensional non-linearity. It
therefore turns out to be possible to prove global well-posedness of this equa-
tion, and hence global well-posedness of the limit system on (@, tesc), which was
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quite unexpected before the work of [2] since the limit system is a priori three
dimensional. This analysis will be detailed in Part III, Chapter 6.

In particular if at ¢ = 0, uegc is identically 0 then wuqs. remains identically 0
for any positive time. Such initial data are called “well prepared” in contrast
with general initial data (uesc # 0 at ¢ = 0) which are called “ill prepared”.

The existence of these fast waves is a first difficulty for the study of the high
rotation limit of (NSC.), since two time-scales have to be considered. A second
difficulty arises in the presence of boundaries and will be detailed in the next
paragraph.

Ekman layers

Let us now study in more detail the case of a fluid between two parallel infinite
planes @ = {0 < z3 < 1}. In the limit of high rotation, the fluid velocity
is independent of xz3 (in the first step we forget the propagation of Poincaré
waves studied in the preceding paragraph). However it is classical to enforce
Dirichlet boundary conditions on 92, namely u = 0 on 9 (the fluid stops on the
boundary), which is incompatible with the Taylor-Proudman theorem (except if
u = 0 in the whole domain!). This incompatibility leads to boundary layers which
appear near Jf). Boundary layers are located in very thin parts of the domain,
usually near walls where the velocity of the fluid has very large gradients: the
velocity changes are of O(1) within lengths of order A with A tending to 0 with e.
Let us derive the size, the equations and the main features of horizontal boundary
layers in a physical way (a rigorous approach is given in Part III, Chapter 7).
In the boundary layers, the viscosity is of order A2, the pressure of order !
and the Coriolis force of order e~!. Hence to get equilibrium we must take A of
order y/ev. In particular, if v is of order ¢, A is also of order e. The equation of
the boundary layer expresses the balance between the Coriolis force, the vertical
viscosity and the pressure. After rescaling we get, with u = u (xp, x3/€):

—8§u1 —u?+0p=0
- guerulJran:O
BCP =0.
In particular the pressure does not change, to first order, in the boundary layer

and is given by the pressure in the interior of the domain. We can therefore set
the pressure to 0 in the layer. We thus obtain

— gul—uzzo and —a§u2+u1=07

which is a fourth-order ordinary differential equation in «! and w?. It is com-
pleted by the boundary conditions u — wus(t, zp) as x5 — oo for the tangential
components, where u, is the velocity in the interior of the fluid (outer limit
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of the boundary layer), and by v = 0 at 3 = 0 (Dirichlet boundary condi-
tion). Solving that differential equation is then straightforward and provides the
classical expression for the tangential velocity,

Utan (£, T, T3) = <Idexp <\/%) R < %)) oo (t, 1)

where R({) denotes the rotation of angle ¢. This boundary layer is called the
Ekman layer, or the Ekman spiral taking into account the shape of way (¢, zp, x3).

Now to enforce incompressibility we must have dsu® = —91u' — Gu?, which
leads, together with u? = 0 for 23 = 0, to

. [ev x
ud(t,zh,xg): ?curlhuw(t,zh)f <—\/;;7V>

with f(¢) = —1/2e~¢(sin ¢ + cos ). As a consequence, u> does not go to 0 as 3
tends to infinity: if the velocity in the interior of the domain is not constant,
a small amount of the fluid, of order \/ev, enters the domain (or the boundary
layer, depending on the sign of the two-dimensional curl). This phenomenon is
called Ekman suction, and u3(t, xp,, o) is called the Ekman suction velocity or
Ekman transpiration velocity. This velocity is responsible for global circulation
in the whole domain, of order v/ev, but not limited to the boundary layer, a first
three-dimensional effect in the interior of the domain.

This small velocity has a very important effect in the energy balance. Namely,
let us compute the energy dissipation in the Ekman layer, that is let us eval-
uate the order of magnitude of v [|Vu/|? in the layer. The gradient |Vu| is of

order A=! ~ /v~ ', therefore v [ |Vul|? scales as

NCARNCES \/;,
€

the last term /v corresponding to the volume of integration. In the most inter-
esting case v ~ ¢, the dissipation of energy per unit of time is of order one:
despite its smallness, the Ekman layer dissipates a significant amount of energy,
and cannot be neglected in the energy balance. In other words, the Ekman layer
damps the interior motion, like an order-one friction term. This phenomenon
is called Ekman pumping. Note that if ¥ remains constant while £ goes to 0,
then the dissipation is infinite! In fact the fluid is immediately stopped by its
boundary layers. This remains true if v > ¢ when € tends to 0. On the contrary,
if v < ¢ then Ekman pumping is negligible.

Let us compute the Ekman pumping precisely . The dissipation in one layer
equals

v 9sut|? + |05u?|?) dx  where &u:'uoo‘e <— 3 )
[ Qs+ o) de where 0l = 22 exp (2
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Hence the dissipation equals

2
V|U:x)| ver oo 2 v
ev 2 2e

As there are two layers (one for each boundary), the total dissipation equals
V20B)use|? where 3 = v/e. Hence Ekman pumping is a linear dissipation, and
adds the linear term /28 in the Euler or Navier-Stokes equations. The limit
equation on the x3 independent field is

{8tu+u-Vu+\/26u+Vp:0

divu = 0.

As will be clear in the rigorous derivation of Ekman layers, this friction term is
deeply connected to the Ekman suction velocity. The role of this vertical velocity
is to move the fluid from the interior to the boundary layers, where it slows down
because of the large vertical viscosity. The slow fluid then goes back to the interior
of the domain again with the help of the Ekman suction velocity. This can be
observed very simply, by making a cup of tea turn rapidly with a spoon [67].
Everyday experience shows that once one stops turning the spoon, the tea stops
moving within a dozen seconds. The first idea is that the dissipation is due to
viscosity. Let us make a short computation of the associated order of magnitudes:
the typical size of the cup is L = 5 cm, the kinematic viscosity of water is of
the order of 1072cm?-s™!, and the rotation is, say ) = 4ms~!. The diffusion

. . f . . .
time-scale is therefore Tyig de L? /v ~ 40 minutes, whereas the suction time

scale is Tyyet def L/ V) = 14 seconds. Tea can be considered as a rotating fluid
and the main effect is in fact Ekman suction which brings tea from the interior
of the cup to boundaries where dissipation is high. The time-scale is then the
time needed for a particle of fluid to cross the cup and reach a boundary. This
is the right time-scale.

Now in the general case Poincaré waves propagate in the medium. They also
violate in general the Dirichlet boundary condition, and have their own boundary
layers, which are very similar to Ekman boundary layers, except for their slightly
different size and their dependence on the frequency. Again those boundary layers
dissipate energy and damp the waves like a linear friction term (which depends on
the frequency and the wavenumber). The detailed computations of the boundary
layers of Poincaré waves is the object of Part III, Chapter 7.

To summarize, rotating fluids in T? x[0, 1] or R? x]0, 1[ consist of:

e a limit two-dimensional, divergence-free flow;

e horizontal boundary layers at 3 = 0 and 3 = 1 to match the interior flow
with Dirichlet boundary condition (Ekman layers);

e Poincaré waves, with high time frequency;

e horizontal boundary layers at 3 = 0 and 3 = 1 to match Poincaré waves
with Dirichlet boundary conditions.
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Moreover, the limit flow is damped by Ekman pumping and satisfies a damped
Euler (or Navier—Stokes) equation. Poincaré waves are also damped by Ekman
pumping, and in the periodic case satisfy a quadratic damped equation. In the
case R? x[0, 1], Poincaré waves go to infinity very fast (with speed e~!) and go
to 0 locally in time and space (for ¢ > 0). All this will be detailed in Part III,
Chapter 7.

When, instead of e, the direction of rotation r is not perpendicular to
the boundaries, the boundary layer is still an Ekman layer of size /ev/|r - 3|
provided r - e3 does not vanish. The situation is, however, different if r-e3 = 0:
the vertical layers are very different and more difficult to analyze. We shall discuss
the layers in a general three-dimensional domain in the last chapter of this book.

Stability of Ekman layers

A general problem in boundary layer theory is to know whether the layer remains
laminar or becomes turbulent, that is, to know whether the characteristics of the
flow vary over lengths of size \/ev in x3 and of size 1 in zj in times of order 1,
or whether small scales also appear in the horizontal directions, or whether the
flow evolves in small time, of order say 1/ev. The answer is not straightforward,
since the velocity, being of order 1 in the layer, a particle may cross it in time
scales of order y/ev if by chance its velocity is not parallel to the boundary. Hence
naturally, the system could evolve in a significant manner in times of order /ev.
This would in fact create tangential structures of typical size v/ev. In other words
there is a priori no reason why the flow in the boundary layer would remain so
anisotropic (the zs-direction being the only direction of high variation), as the
transport term has a natural destabilizing effect.

On the other hand, we can think that in the boundary layer the viscosity is
so important that it suffices to stabilize everything and to cancel motions in the
vertical direction.

The answer lies in between these two limit cases, and depends on the ratio
between inertial forces and viscous forces. Let us define the Reynolds number Re
of the boundary layer as the typical ratio between inertial forces and viscous
forces in the boundary layer. The inertial forces are of order U2A~! where U is
the typical velocity in the layer (Jus| in our case), and the viscous forces are of
order vUMX"2. Therefore we can define Reynolds number by

A €
Re = el = el 2

If the Reynolds is small, then viscous forces prevail and the flow is expected to be
stable. On the contrary if the Reynolds is large, inertial forces are important and
the flow may be unstable. This is a classical phenomenon in fluid mechanics, a fea-
ture common to many different physical cases (boundary layers of viscous flows,
rotating flows, magnetohydrodynamics (MHD)): there exists a critical Reynolds
number Re. such that the flow is stable and the boundary layer remains stable
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provided Re < Re., and such that the flow is unstable and the boundary becomes
more complicated or even turbulent if Re > Re.. In the case of Ekman layers,
the critical Reynolds number can be computed, and equals approximately 54.

Therefore if Re < Re. ~ 54, the flow of a highly rotating fluid between two
plates splits into an interior two-dimensional flow and a boundary layer flow,
completely laminar.

If Re > Re., on the contrary, the boundary layer is no longer laminar. If the
Reynolds is not too high (say Re < 120) rolls appear, of size \/ve x \/ve x 1 and
move with a velocity of order 1. At high Reynolds number (say Re > 120), the
rolls themselves become unstable and are destroyed. The flow near the boundary
is fully chaotic and turbulent. An interesting question is to know whether this
turbulent layer remains near the boundary or goes into the interior of the domain
and destabilizes it. In this latter case, the whole flow would be turbulent (and
of course the Taylor-Proudman theorem would no longer be true).

This leads to a restriction of the size of the limit solution to get convergence.
Note that if the viscosity is anisotropic and if v, /v, tends to +o0, all those
problems disappear since the critical Reynolds number is infinite: Ekman layers
are always stable. This is not surprising since anisotropic viscosity accounts for
turbulent behavior. This only says that the model is strong enough and that no
other phenomenon (instability of the boundary layer) appears in this turbulent
model.

Let us end this introduction with the proof that at small Reynolds num-
bers Re < Rey for some Re; < Re., Ekman layers are linearly stable, by using
energy estimates. Let ug be a pure Ekman layer given by

(Id —exp (— \/%) R (—Z)) Uoo(t, )

\/?curlhuoo(t, zn)f (\)%)

and let us linearize the Navier—Stokes Coriolis equations (NSC.) around ug. This
yields, denoting the perturbation w,

Ug =

ez AN w

Oyw + ug - Vw + w - Vug +
(LNSC)  qdivw =0

w|39 =0.

—vAw+Vp=0

Let us estimate the L? norm of the perturbation w. We have, using the
divergence-free condition and integrating over (2,

1d

5%/|w|2dz+l//|Vw|2dx+/w~(w~VuE)dx:0.
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The main term of /w - (w - Vug) dz turns out to be /’LU3U) - Osug dz. As

1 T3
10sup s 23w ) < lluscllz=(@n) 7= e { = 75= )

the following estimate holds:

N dgf

/wgw - Ozug dx

oo zs3
< ool (Qh)/ ’ (/ Osw(t,xp, 2 z) (/ 83w3(t,xh,z)dz) e ws/V2ev
0

||“00||L°O(Q;) / _
R L2 o) o z/\/2£1/d
/> 03w L2 [|O3ws]| L2 RZG z

< Covevlus | L=(,)105ull 1210507 2,

dx

IN

where Cj is a numerical constant. This last term can be absorbed by the viscous
term v [ |Vu|? dz provided Colltool 1 (,)vEV < v, namely provided

€ 1
Re = uOCHLoo(Qh)\/: S Rel = Cio .

Hence (LNSC) is stable provided Re. < Re;. Of course Re; < Re. and the com-
putation of Cy leads to Re; ~ 4. There is therefore a large gap between Re;
and Re.. Note that this proof uses little of the precise description of ug since it
only uses the exponential decay of d5up with respect to zs/ V2ev. Tt is therefore
not surprising that the result is not optimal at all. The method, however, can be
used in a wide range of situations, and we refer to [52] for other applications.
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PART 11

On the Navier—Stokes equations

This part is devoted to the mathematical study of the Navier—Stokes equations
for incompressible homogeneous fluids evolving in a domain (i.e. an open connec-
ted subset) 2 of Rd, where d = 2 or 3 denotes the space dimension. For instance,
the space domain may be either the whole space R, or a domain of Rd, or a
three-dimensional unbounded domain such as R? x]0, 1], which will be of par-
ticular interest in the framework of geophysical flows. Denoting by u € R? the
velocity field, p € R the pressure field, and v > 0 the kinematic viscosity, the
Cauchy problem can be written as follows:

ou~+u-Vu—vAu+Vp=f
(NS,) divu =0

Ult=0 = U0,

where f is a given bulk force. Note that the density p has been chosen equal to
1 for simplicity. It corresponds to the case of the non-dimensionalized Navier—
Stokes equations, in which the viscosity is expressed as the inverse Reynolds
number. The system (NS, ) is supplemented with the no-slip boundary condi-
tions ujpo = 0. Multiplying (NS,) by u and integrating over 2 formally yields
the well-known energy equality

1 t
f/ \u(t,x)|2dx+1// /|Vu(t’,x)|2dxdt’
2 Ja 0o Ja

1 K / /
:§/Q|u0(x)|2dx+/0 /Qf~u(t,x)d:cdt.

It follows that the natural regularity assumptions for the data are ug square
integrable and divergence-free, while f is a vector field the components of which
should be in L2 _(R™; H~(Q2)) where H~1(£2) denotes the set of functions which
are the sum of an L? function and the divergence of an L? vector field. This
implies the introduction of a little bit of functional analysis. In particular, the
basic properties of the Stokes operator and Sobolev embeddings are recalled in
Chapter 1, followed by the proof of Leray’s global existence theorem in Chapter 2.
The question of uniqueness and stability is addressed in Chapter 3: the stability of
Leray solutions is proved in two dimensions, and the existence of stable solutions
is proved in three dimensions for bounded domains and for domains without
boundary, namely R? or T3.
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Some elements of functional analysis

Before introducing the concept of Leray’s weak solutions to the incompress-
ible Navier—Stokes equations, classical definitions of Sobolev spaces are required.
In particular, when it comes to the analysis of the Stokes operator, suitable
functional spaces of incompressible vector fields have to be defined. Several
issues regarding the associated dual spaces, embedding properties, and the
mathematical way of considering the pressure field are also discussed.

1.1 Function spaces

Let us first recall the definition of some functional spaces that we shall use
throughout this book. In the framework of weak solutions of the Navier—
Stokes equations, incompressible vector fields with finite viscous dissipation and
the no-slip property on the boundary are considered. Such H'-type spaces of
incompressible vector fields, and the corresponding dual spaces, are important
ingredients in the analysis of the Stokes operator.

Definition 1.1 Let Q be a domain of R? (d = 2 or 3). The space D(Q)
is defined as the space of smooth functions compactly supported in the
domain Q, and D'(Q) as the space of distributions on ).

The space H'(Q) denotes the space of L* functions f on § such that V f
also belongs to L?(QY). The Hilbertian norm is defined by

def
113 ) = 1F1720) + 1V FII72 (-

The space HE () is defined as the closure of D() for the H(Q) norm, and

the space H=1(Q) as the dual space of H}(Q) for the D' x D duality and we
state

def
||fHH—1(Q) = sup (f, ).
PEH; ()
”‘Pl‘Hl(Q)Sl
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Let us recall the Poincaré inequality. When € is a bounded domain and f is
in D(Q), writing

fxla / aylf Yy, T )dmlv

and using the Cauchy—Schwarz inequality, we get

o0

flar,2) < Cq / IV F ()2 dyn.

—0o0

By integration, it follows that
11720y < CRIVIZ2(0),

and by density this also holds for all functions f € Hg(£2). This means that the
norm || - ||z defined by

def
1l = IV £l
is equivalent to the || - || g1 norm if the domain is bounded.
As we shall be working with divergence-free vector fields, we have to adapt
the above definition to that setting.

Definition 1.2  Let Q be a domain of R? (d = 2 or 3). We shall denote
by V(Q) the space of vector fields, the components of which belong to H} (),
and by V5 (Q) the space of divergence-free vector fields in V(). The closure
of Vy(Q) in L*(Q) will be denoted H(LY). Finally, we shall denote by V'(Q)
the space of vector fields with H~1(2) components.

If E is a subspace of V(R), the polar space E° is the space of vector
fields f in V'(Q) such that for allv € E,

d
def
= E fJ,UJ H- 1><H1 =0.

If F is a subspace of V'(Q), the polar space F* is the space of vector fields v
in V(Q) such that for all f € F, (f,v) =

To make the notation lighter, we shall omit mention of {2 when no confusion is
likely.

Remark The space V'(Q) is a Hilbert space, endowed with the following norm

||f||w(9)= sup <f7v>

veEV(Q)

= ||U||H3(Q),
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where u is the unique solution of the Dirichlet problem
(Id—-A)u = f.
We recall, indeed, that Id —A is a one-to-one isometry from H& to H™L.

When the boundary of the domain is regular, namely the boundary is a C*-
hypersurface, it can be checked that the map f — f - n is well defined on the
space of L? vector fields with L? divergence (with values in the space H ~3 on
the boundary). In that case, the space H is exactly the space of L? divergence-free
vector fields such that f -njaq = 0.

Now we are ready to define the well-known Leray projector.

Definition 1.3 We denote by P the orthogonal projection of (L*(£2))%
on H.

1.2 The Stokes problem

The Stokes system is defined as follows. Let f € V'. We shall say that v in V,
solves the inhomogeneous Stokes problem Au = f if, for all v € V,,

(u— Au,v) = (f,v). (1.2.1)

In other words, u — Au — f € V3.
Again assuming that f € V', we shall say that « in V, solves the homogeneous
Stokes problem Au = f if, for all v € V,,

(—Au,v) = (f,v). (1.2.2)

In other words, —Au — f € V2.

When considering the Navier-Stokes equations (NS, ), the homogeneous
version of the Stokes system arises in a very natural way. However, the inhomo-
geneous Stokes problem allows us to control the L? norm of the velocity, which
is particularly convenient in the case of unbounded domains. As a matter of fact,
the following existence and uniqueness result holds.

Theorem 1.1 Given f € V', there exists a unique solution u in V, of the
inhomogeneous Stokes problem (1.2.1). When the domain Q) is bounded, there is
a unique solution u in V, of the homogeneous Stokes problem (1.2.2).

Proof The proof is nothing but the Lax—Milgram theorem. For the reader’s
convenience, we recall it. Given f in V', a linear map V, — R on the Hilbert
space V, (a closed subspace of V endowed with the H' scalar product) can be
defined as v — (f,v). Thanks to the Riesz theorem, a unique u exists in V,
such that

Yv € VG‘? (u|U)H1 = <f,’U>.
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By definition of the H! scalar product, we get
Yo €V, , (uv)re + (VulVo) 2 = (f,v).
As u and v belong to V, we get
Yo € Vy, (u— Au,v) = (f,v),

and the theorem is proved (the case of the homogeneous Stokes problem in a
bounded domain is strictly analogous thanks to Poincaré’s inequality). O

Let us point out that relations (1.2.1) and (1.2.2) are equalities on linear
forms on V,. It is therefore natural to introduce the following definition.

Definition 1.4 We denote by V. (Q) the space of continuous linear forms
on the space V,(Q). The norm in V. () is given by

def
[fllv.@ = sup (f,v).
VEV
llvllv<1

The following proposition will be very useful in the following.

Proposition 1.1  For any function f € V'(Q), a sequence of functions (fn)neN
in H(Q) exists such that

Jim [ fn = fllv, @) =0

Proof By the density of (L?)? in V' there exists a sequence (g, )nen in L(Q)
(we drop the exponent d to simplify the notation) such that

n—oo

We have in particular, of course,
lim |lg, — gllv; (@) = 0.
n—oo

Then we just need to write

1f = Pgnllv. @) < llgn — Panllve ) + llgn — fllvie)s
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and to notice that

sup (gn — Pgn,v)
VEV,
lvllv <1

Hgn - Pgn”v(’,(ﬂ)

= sup (gn —Pgnlv)p2
VEV,
lvllv<1

= sup (gn|v—Pv)ge
VEV,
lvllv<1

=0.
The proposition is proved, on choosing f, = Pg,. O
Remarks

e The fact that a vector field g € V' belongs to the polar space V2 of V,
implies in particular that for all ¢ € D, one has for all 1 <1¢,5 <d

(9,%ij) =0, where 9;; = ¢£;0;¢ — €;0ip € Vs,
where ¢; € R? has zero components except 1 on the i*" component, so that
(9", =05) + (¢’ i) = 0,
hence 9;9" — 9;¢7 =0 in D', i.e. curlg = 0.
e There exist simple examples of smooth domains €2 and vector fields g such

that curl g = 0 but which do not appear as a gradient. For instance, consider
the two-dimensional ring

Q={recR*/0< R, <|z| <Ry}

and g = (=0 log |z|, 01 log |z|). Then g is clearly divergence-free, and irrota-
tional since x +— log |x| is harmonic on Q. Assume that g can be written as
a gradient of a function p. Since g is smooth on 2, so is p. Let now zg € 2
such that g(xg) # 0, and let t — ~(¢) be the unique solution of

D 1) = 9026, (0) = o

Note that the fact that the level lines of « +— log |z| are circles implies that
is periodic. Then, we have

d dry
—por(t) = — - Vp(y(t)) = [Vp(y(t))]> > 0,
dt dt

which yields a contradiction to the periodicity of =, since the derivative at
time ¢ = 0 does not vanish.

e However, the condition for a vector field g € V' to belong to V2 is
stronger than the assumption that ¢ is irrotational. As a matter of fact,
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when g belongs to V2, one can prove that a locally L? function p exists
such that ¢ = Vp. Moreover, this function p is L2 (€2) when 2 has a C!
boundary. In order to give the flavor of this kind of result, let us state the
following proposition, which will be proved in Section 1.4.

Proposition 1.2 Let Q be a C* bounded domain of R and g € V2. Then there
exists p € L*(Q) such that g = Vp.

e In all that follows, we shall denote by Vp any element of V7.

1.3 A brief overview of Sobolev spaces

The aim of this section is to recall the basic features of Sobolev spaces in the
whole space R¢ and useful compactness results in the case of bounded domains.

1.3.1 Definition in the case of the whole space R?

In the whole space R? (d = 2 or 3), Sobolev spaces are defined in terms of integ-
rability properties in frequency space, using the Fourier transform. Let us recall
that for all u € D', the Fourier transform Fu, also denoted by , is defined by

ve e RY,  Fu(e) =a(e) ™ / e~ Ey(z) da.
Rd
The inverse Fourier transform allows us to recover u from u:
(@) = F (@) = (2m) / CITER(E) de.
Rd

For all s € R we introduce the inhomogeneous Sobolev spaces

def 2 def

w0 e sl [+ lepy P <-+oo)
and similarly the homogeneous Sobolev spaces

fys def {u eS'/ie L, and [ul. déf/ €125 @) de < +oo} .
Rd

Let us notice that when s > d/2; H*® is not a Hilbert space. Let us define the

following sequence. Let C be a ring included in the unit ball B(0,1) such that
CN2C = and let us define

n

def _
fn =F ! Z
q=1

It is left as an exercise to the reader to check that the sequence (fr)nen is a
Cauchy sequence in H® which does not converge in H*® if s > d/2.

9q(s+9%)

q

13-4c(§)-
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1.8.2 Sobolev embeddings

The purpose of this section is to recall Sobolev embeddings, which will be
extensively used in this book. In the whole space R, the statement is the
following.

Theorem 1.2 If s is positive and smaller than d/2 then the space H®*(R®) is
continuously embedded in L (RY).

Proof First of all, let us show how a scaling argument allows us to find the
critical index p = 2d/(d —2s). Let f be a function on R<, and let us denote by f,

the function f,(x) def f(lzx) (£ > 0). We have, for all p € [1, 00],
_d
HféHLp(Rd) ={r ||fHLp(Rd)

and

il = [ 6RO de

e [ jePIfe o ag
Rd

= Y,
As soon as an inequality of the type ||f||Lr(ra) < C||f]lg<(ra) holds for any
smooth function f, it holds also for f, for any positive ¢. This leads to the
relation p = 2d/(d — 2s).

Let us now prove the theorem. In order to simplify the computations, we may
assume without loss of generality that || f|| 7. ga) = 1.

Let us start by observing that for any p € [1, +oo[, Fubini’s theorem allows
us to write for any measurable function f,

def

11y [ V@) o

£ ()]
:p/ / APTLdA dx
R Jo

= p/ooo AP meas ({a: eRY/|f(x)] > A}) dA.

As quite often in this book, let us decompose the function into low and high
frequencies. More precisely, we shall write f = f1 4 + f2 4, with

fl,A:]:_l(].B(QA)]?) and fQ,A:]:_l(ch(O’A)f), (1.3.1)

where A > 0 will be determined later. As the support of the Fourier transform
of fi 4 is compact, the function f; 4 is bounded. More precisely we have the
following lemma.
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Lemma 1.1 Let s be in |—co,d/2[ and let K be a compact subset of R®. If f
belongs to H* and if Supp f is included in K, then we have

de \ 2
1l < (2m) ( / |5|§s> 1l

Proof The inverse Fourier formula together with the Cauchy—Schwarz inequal-
ity allows us to write

[ £l oo (may < (QW)_dHﬂLl(Rd)
< (2m) " / €[ € 7€) de
K

< (2m)" (/K de) 1l

The lemma is proved. O

Applying this lemma, we get
Ifrallpe < CsAE™. (1.3.2)
The triangle inequality implies that for any positive A we have
{:c e RY/|f(2)] >A} c {x e RY /2| f1.4(2)| >A} U {x € R /2| fau(2)| >A}.

From the above inequality (1.3.2) we infer that

A=A, <4g> — meas ({z € RY/|fi.a(@)| > A/2}) =

From this we deduce that
||f||Lp Ry < / AP~ tmeas ({x € RY/|fan, (z)| > A/Z}) dA

It is well known (this is the so-called Bienaimé-Tchebychev inequality) that
meas ({xeRd/|f27AA(x)\ >A/2}) z/ dx
{2€R /| f2,a, (2)|>7/2}
- Ufaa, ()
o {JEERd/‘f2,AA(x)‘>A/2} A

4
< FHfQ,AAHiQ(Rd).

dzx

Thus we infer

A AR EON IS
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But we know that the Fourier transform is (up to a constant) a unitary transform
of L?. Thus we have

o <4 ~a [T g F(€)|2 dedA. 3.
1 ey < 402 [ /uazAA)'ﬂg)' ; (1.3.3)

Then by the definition of Ay we have
€] > Ap = A < 4C,[¢]7.

Then, Fubini’s theorem implies that

4C, lel® R
e <m0 [ | [ amsan ) iR ae

R

d(p—2)
P

4p _ p—2 Iy
< Lsem ey [ 1" flor as

S
As 2s = d(p — 2)/p the theorem is proved. O

The following corollary will be useful in the future.

Corollary 1.1 If p belongs to ]1,2], then
d s d . 1 1
LP(R") Cc H*(R®) with s=—d S5
p
Proof This corollary is proved by duality. Let us write

lallg =  sup  (a,p).
ol y—s <1

1 1 1 1
As —s = (p - 2) = (2 - (1 - p))’ we have that [|¢]l5-. > Cllel 1,

lallzs <C  sup (a,¢p)
llell o <1

< Clla||ze-
This concludes the proof. O
Other useful estimates are Gagliardo—Nirenberg inequalities.

Corollary 1.2 If p € [2,00[ such that 1/p > 1/2 —1/d, then a constant C
exists such that for any domain Q in R, we have for any u € HYQ),
d(p —2)

llull zr ) < C’||u||i§é’m||Vu||‘£2(Q) where o = T (1.3.4)
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Proof By density arguments, we may suppose that « is in D(Q2). Then, Sobolev
embeddings yield

l[ullLe o) < C““”H‘“’;—;”(Rd)'
The convexity of the Sobolev norms

HUHHU(Rd) < HquzFRd)Hu”%{l(Rd) forall o€ [0’ 1]v

allows us to conclude. O

The following lemma, known as Bernstein inequalities, will be useful in the
future, especially in Part III.

Lemma 1.2 Let B be a ball of RY. A constant C' exists so that, for any non-
negative integer k, any couple of real numbers (p,q) such that 1 < p < ¢ < 400
and any function u of LP, we have

Supp @ C AB = sup [|0%| e < CFFINFIG=D) |y 10
la|=k

Proof Using a dilation of size A, we can assume throughout the proof that
A =1. Let ¢ be a function of D(R?) the value of which is 1 near B. As 6(£) =
d(&)u(§), we can write, if g denotes the inverse Fourier transform of ¢,

0% = 0% *u
where * denotes the convolution operator

grut@)= [ oo =suls)dn

By Young’s inequality, we get

. 1 1 1
10%ullLa <[|0%gl[Lrlluflze  with = +1= -+~
q r . p
By a Holder estimate
fe" « 1_% « %
0%l < [10%gll~"10%gll 7. -
Then using the general convexity inequality
V(a,b) e R x R*,V0 €]0,1], ab < fa? + (1 —0)bT7, (1.3.5)

we get
10%gllzr < [10%gll Lo + 10%g] L1
<21+ [}l
< 2| (1d =2)*(()*¢) 1

The lemma is proved. O
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1.3.3 A compactness result

In the next chapter, we shall use the following compactness theorem, known as
Rellich’s theorem.

Theorem 1.3 Let Q be a bounded domain of R%. The embedding of H(Q)
into L?(Q) is compact and so is that of L*(Q) into H—1(£2).

Proof For the reader’s convenience, we present here a proof based on the
Fourier transform of periodic functions. Without any loss of generality, we may

assume that Q is included in ngf]o, 27[¢. Let us define, for any function u in
H(Q), the 27 Z-periodic function

i) =Y ulz - 2mj).

jEZ4

Let us define its Fourier coefficients for k € Z? by

~ def ik dx
Up = /Qe u(x) ) :

Using integration by parts and the Fourier—Plancherel theorem, we obtain

Y A+ K a? < O VulZ..

keZd

Let us define the sequence (Tv)nen of linear maps by

L*(Q) - L*(Q)
Inqu — Z et
[k|<N

where L?(Q) is identified with 27 Z%-periodic L? functions. Obviously, the range
of Ty is a finite-dimensional vector space. Moreover, the following property holds

lu = (Tvu)alfz0) < 10— Tnuli g
2

L2(Q)

C? 9

Thus we end up with the inequality

C
11d =T el e(mg )2 0) < N+1
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The operator Id appears as a limit in the norm of L(Hg(€2); L?(£2)) of operators
of finite rank. This proves the compactness of the identity as a map from Hg ()
into L2(Q2).
Now let us prove the compactness of the identity as a map from L?(Q)
into H~1(Q). For any u in L?(£2), we have
lu—(Tvu)ella-1@) = sup (u— (Tnu), )

pEH; ()
IVellg2=1

= s [ (- Tyu)a)ele) de
peH(Q) JQ
Vel 2=1

< sup / (u — Tyu)(x)p(z) de.
Forn S
Cllgr=

The Fourier—Plancherel theorem implies, by definition of T, that
lu — (Tyvu)iolla-1(0) < (2m) ¢ sup > Wk

peH? (Q) |k|>N
llell 1=

SNTEmT! sup YT (1K)
PEH(Q) |k|>N
llell =1

The Cauchy—Schwarz inequality implies that
u— (Tnwiallz-1@) < N7l e

The theorem is proved. O

1.4 Proof of the regularity of the pressure

The aim of this section is the proof of Proposition 1.2. Let  be a C'!' bounded
domain of R? and VL?(Q) be the set of vector fields f € V'(Q) be such that
there exists a function p € L?(Q) satisfying f = Vp. Let v € V(Q2) such that v
belongs to (VL2(2))*. Then, for all functions p € L?(2),

(divw,p) = —(Vp,v)
_<fv U>
=0.

It follows that div v = 0, which means that (VL?(Q2))* C V,. Thus V2 is a subset
of ((VL?)*)°. Thanks to the Hahn—Banach theorem, one has
H-!
Vo C ((VL?)*)° =VL?
In other words, if f € V2, there exists a sequence (p,)nen of L2(Q) functions
such that Vp, converges to f in V'
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In order to prove Proposition 1.2, it remains to prove that the range of

< {LQHV'
p —Vp

is closed. The regularity of the boundary 0} turns out to be essential at this
point of the proof.
Let us first state the following lemma.

Lemma 1.3 Let Q be a C* bounded domain of R and p € H=Y(Q). Then p
belongs to L%(Q) if and only if Vp belongs to V'(Q). Moreover, there exists a
positive constant C' such that

Pl < C (Ipllz— + 1VpI%) - (1.4.1)

Postponing the proof of Lemma 1.3, we deduce the following corollary, which
implies that VL?(2) is closed and this ends the proof of Proposition 1.2.

Corollary 1.3 Under the assumptions of Lemma 1.3, there exists a positive
constant C' such that for all functions p in

s Y {pe @) [ po e =o}.
one has

Ipllz20) < ClIVPlv (-

Proof Let us assume that there exists a sequence (p,,)nen in L3(Q) such that
lPnll2() = 1 and [[Vp, ||y (o) converges to 0.

The embedding of L?(2) into H (1) is compact due to Theorem 1.3. Thus,
up to an extraction of a subsequence, we may assume that a function p in L? ()
exists such that

pn — p weakly in L?(Q) and  lim |p, — pla-1) =0.

As the domain © is bounded, the constant functions belong to L?(£2). Thus
the function p is in L3(2). Moreover, the assertion above implies in particular
that (pp)nen converges to p in the distribution sense, and so does (Vpp)nen
to Vp. As [|[Vpy |y () converges to 0, this implies that p = 0, hence ||p,|[z-1(0)
converges to 0. Passing to the limit in the inequality of Lemma 1.3 gives a
contradiction. O

Proof of Lemma 1.3  Since Q is a C* bounded domain of R, there exists a
finite family (U;)1<j<n of open subsets of R? such that

oc |J v (1.4.2)
1<GEN
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and, for all j, there exists a C! diffeomorphism y; from U; to W; such that
i(U;NQ) =W, NRY  with R% = {:c = (¢',2q) € R9 x R*} . (14.3)
Finally, there exists an open subset Uy of R? such that Uy C Q and
ac | v (1.4.4)
0<j<N

Now let us consider a partition of unity (¢;)o<;<n associated with the
family (Uj;)o<j<n and p € H~1(2). Then, we write

p= ij with p; = ¢;p.
§=0

By definition of || - || -1, we have, if B denotes the unit ball of H{(Q2),

Hap”H—l(Q) = sup(ap, u)
ueB

= sup(p, au)
ueB

< [lplla-1(0) sup [lav| gz -
ueB

The Leibnitz formula (and Poincaré’s inequality) implies that
IV(au)||r2 < Callull gy a)-

This gives that [|ap||g-1() < Cullpllz-1(0) and in particular that
1Piller-1(0) < Cllpllz-1(0)-

Moreover, if Vp belongs to V'(£2), then using the fact that Vp; = pVe,; + ¢, Vp,
we deduce that, for all j € {0,..., N},

IVpillv: < Cllplla-1@) + CllVpllv-

Then it suffices to prove that estimate (1.4.1) holds for each p;.

Since pp is compactly supported in Q, estimate (1.4.1) is obtained easily
for pg. As a matter of fact, py and its derivatives belong to H _1(Rd) and the
Fourier transform can be used: let us write that, for any function p in L? (Rd)7

IP(E)] < [1B(0,1)P(E)] + [1Be(0,1)P(€)]

< L+ 1602 [1poa L+ 62 HpE)|
d
Z +[¢1%) 21130(01 ékg(l‘ﬂf ) 2 (8lcp)(§)‘
k=1

d
< V2 + ED) TR+ C D (1 + [EP) T2 F(@rp) (©)].

k=1
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The Fourier—Plancherel theorem implies that

Il < Clipllg-1 w2y + VPl -1 (m2), (1.4.5)

which proves the result for py. For each j > 1, x; being a C' diffeomorphism,
one has

L [HEW; nRY) — HY(U; N Q)

I \w v 0 Xj_l.

A change of variables allows us to deduce that

o {H—l(Uj NQ)— H-Y(W; NRY)

I\ = (v (fIxox; xvox;h)).

As a result, the proof reduces to the case when 2 = Ri. Let us introduce the
mappings @ and R from H*(R?) to H}(R%) given for u € H'(R?) by

Qu(x)_{o if 24 <0,

u(z) + 3u(a’, —x4) — du(z’, —2x4) otherwise,

and

Ru(:v) . 0 if z4<0,
N u(z) = 3u(a’, —zq) + 2u(z’, —2x4)  otherwise.

It can easily be checked that @ and R map continuously H'(R?) to H&(Ri)
and L?(R%) to L?(R‘1). Moreover, one has

0] 0]
— = — if j#d d R = . 1.4.6
Ox; o Qo&vj it j#d an mdo Qo&zcd ( )
Next, we consider the transposed maps on H !, namely
‘0 {H*(Ri) —H (R
f =1Qf/("Qf,v) = ([, Q)
and similarly for R. Taking the transpose of (1.4.6) leads to
0 ' o .. . 9 t
— = — if d d — ='Ro —- 1.4.7
8xjo Q Q ° an ! J ?é an al‘d ° Q ° 61’(1 ( )

Applying (1.4.7) to p; = Xjp; € H’l(Ri) yields

O (1Qp;) € H'(RY).

Lj

‘Qp; € H-Y(RY) and
Using (1.4.5), we deduce that *Qp; € L*(R%) and

Q122 ey < C (1M Q%+ ey + IV QB3 0 )
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Since the restriction of ) on compactly supported functions in Ri is the identity
map, the restriction of ‘Qp; to Ri is p;. Therefore, we have

175122ty < C (I3 131y + IV g ) -
so that p; belongs to L*(Q) and

1231320y < € (19132t + 190130 )
which proves Lemma 1.3, hence Proposition 1.2. O
Remark For a general open subset €2, it can be proved that there exists p

in L2 () such that if f € V2(2), then f = Vp.

loc
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Weak solutions of the Navier—Stokes equations

The mathematical analysis of the incompressible Stokes and Navier—Stokes
equations in a possibly unbounded domain € of R (d =2 or 3) is the purpose
of this chapter. Notice that no regularity assumptions will be required on the
domain 2.

2.1 Spectral properties of the Stokes operator

Because of the compactness result stated in Theorem 1.3, page 27, the case
of bounded domains will be different (in fact slightly simpler) than the case
of general domains.

2.1.1 The case of bounded domains

The study of the spectral properties of the Stokes operator previously defined
relies on the study of its inverse, which is in fact much easier. We shall restrict
ourselves here to the case of the homogeneous Stokes operator which is adapted
to the case of a bounded domain.

Definition 2.1 Let us denote by B the following operator

H—-V, CH
fou/—Au—feV.

This operator has the following properties.

Proposition 2.1 The operator B is continuous, self-adjoint, positive, one-to-
one and thus the range of B is dense in 'H.

Proof Let us show that B is symmetric: for all vector fields f and g in H,
denoting u = Bf and v = Bg, one has

(Bflg)r> = (=Av,u) = (Vu|Vv) 2 = (=Au,v) = (f[Bg)L>-

The fact that B is bounded is due to the following computation. Let f be a vector
field in H(£2) and denote u = Bf. Then, using the Poincaré inequality, we have

(BfIf)L2 = (=D, u) > cllullz> = cllBF||Z--
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This proves that B is continuous and positive. Finally to show that B is one-to-
one, we observe that the kernel of B is equal to VS N H, which is exactly Vi.
By definition of H as the closure of V, in L2, this space reduces to {0} and the
proposition follows. As the closure in H of the range of B (denoted by R(B)) is
equal to the orthogonal space of ker B, we infer that R(B) is dense in H. O

The basic theorem is the following.

Theorem 2.1 Let Q be a bounded domain of R®. A Hilbertian basis (ex)keN
of H and a non-decreasing sequence of positive eigenvalues converging to
infinity (u3)ren exist such that

—Aep + Vm, = uiek, (2.1.1)

where (mx)keN is a sequence of L2 _(Q) functions, the gradient of which belongs

to V2. Moreover, (,u,:lek)keN is an orthonormal basis of V, endowed with the H}
scalar product.
Moreover for any f € V' we have

-2
A5, =D ;% (fre5)°
jEN
Remark As claimed by Proposition 1.2, the functions 7, are in L?(Q) when

the boundary of Q is C*.

Proof of Theorem 2.1 Let us consider the operator B defined in
Definition 2.1. Proposition 2.1 claims that the operator B is positive, self-adjoint
and one-to-one. As the range of B is included in V, which is included in H}, the
operator is compact as inferred by Theorem 1.3. Applying the spectral theorem
for self-adjoint compact operators in a Hilbert space, we get the existence of a
Hilbertian basis (ex)ren of H and a non-decreasing sequence of positive eigen-
values converging to infinity (u3)ren such that Bey, = u,fek. By definition of B,
this implies that there exists 7, € L2 () such that

e, = —ABep + V7,
= fu;QAek + V7.

Moreover, denoting 7w = ,u%%k, it is obvious that (eg)ren satisfies (2.1.1)
and that

(exlew )y = (—Aeg, exr)
= (—Vm + pjer, ex)
= pi(erler )

2
= (15O k-
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This proves (,u,;lek) keN is an orthonormal family of V, endowed with the H&
scalar product. Let us prove that the vector space generated by (ex)ren is dense
in V,. Let us consider any w in V, such that

Vk e N, (ulex)mgr = 0.
We have, by definition of the H{ scalar product,
(ulex) gz = (VulVer) 2 = (—Aey, u).
Using (2.1.1), we infer that
(uler) my = (e + Vg, u)
= pilen, u)
= pi(enlu) 2.

As the vector space generated in H by the sequence (eg)ren is dense in H, we
deduce that © = 0 and thus that (ey)ren is an orthonormal basis of V,.

Now let us consider a vector field f € V' and let us compute its norm in V..
By definition of || f|ly: we have

I£1Il5, = sup (f,v)

vEV,
lloll<1
2
— -1
= sup <f,Zaj;Lj ej> .
”(O‘j)]ﬂﬂgl i<k

Using the characterization of £2(N), we infer that
£, = sup  sup | Y a;u; ' (f,e;)
lenla<t & \ =

_ 2
= |5 (Fre)ill,e -
This concludes the proof of Theorem 2.1. O

Definition 2.2 Let us define
V' =V,
Pe g fe) (fre) e

<k
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Remark

e The operators Py are the spectral projectors of the Stokes problem (see the
forthcoming Theorem 2.2 on page 38 for the general definition of spectral
projectors).

e As (ex)ren is a Hilbert basis on H, we have, for any vector field in L2(Q)?,

Pu="> (vlej)e; = > (v,e;)e;
J J
where P is the Leray projector on L? divergence-free vector fields defined
in Definition 1.3.

Corollary 2.1 The operators Py satisfy
1Pefllvy < W fllv, and VfeV', lim [|Pef = flv, =0.

Proof The first point of the corollary is clear. As to the second one, according
to Theorem 2.1 we have

IPef = flI% =) ui?(fre)
j>k

This goes to zero as k goes to infinity, as the remainder of a convergent series. O

2.1.2 The general case

Let us first define the inverse of the inhomogeneous Stokes operator.

Definition 2.3 Let us denote by B the following operator

H—=V, CH
fu/u—Au—fevs.

This operator has the following properties.

Proposition 2.2 The operator B is continuous, self-adjoint and one-to-one.
Moreover it satisfies || Bl ¢y < 1.

Proof The fact that B is bounded is due to the following computation. Let f
be a vector field in H(2) and denote u = Bf. Then

(BfIf)re = (ulu = Au) > JulZ. = | Bf|Z-.

This proves that B is continuous and that || Bl|zx) < 1.
Now let us show that B is symmetric. For all vector fields f and g in H(Q),
denoting © = Bf and v = By, one has

(Bflg)rz = (u,v — Av) = (u|v) 2 + (VulVo) 2 = (u = Au,v) = (f|Bg) L2



Spectral properties of the Stokes operator 37

Finally to show that B is one-to-one, we observe that the kernel of B is equal
to V2 N'H , which is exactly V. By the definition of H as the closure of V, in L2,
this space reduces to {0} and the proposition follows. O

As the closure in H of the range of B (denoted by R(B)) is equal to the
orthogonal space of ker B, we infer from Proposition 2.2 that R(B) is dense
in H. This allows us to define the inverse of B as an unbounded operator A with
a dense domain of definition.

Definition 2.4 Let us denote by A the following operator

4 {R(BZ :?/ Bf = u.

This is exactly the operator A defined in (1.2.1) on page 19.
Lemma 2.1 The operator A is self-adjoint with domain R(B).

This lemma is a classical result of operator theory. For the reader’s
convenience, we give a proof of it.

Proof of Lemma 2.1 Of course A is symmetric, so the only point to check
is that the domain D(A*) of A* is R(B). By definition,

D(AY) = {v € H|3C > 0, Yu € R(B), (Aulv)y < C|lull}.

Since A is symmetric, we have of course R(B) C D(A*). Now let us prove
that D(A*) C R(B). Let us define the graph norm

def
e = ol + 1 A%]1%

[l

The fact that (D(A*),| - |la~) is a Hilbert space is left as an exercise to the
reader. The equality D(A*) = R(B) will result from the fact that R(B) is closed
and dense for the || - || 4+ norm. For any f € H, we have A*Bf = ABf = f hence

1Bf I3 = 1Bfl5 + I £1I3

which immediately gives that ||f||3, < [|Bf|/4-, hence that the space R(B) is
closed in (D(A*), || - ||a~). Now let v be in the orthogonal space of R(B) in the
sense of the (- | )4+ scalar product. By definition, we have, for any f in H,

(Bflv)w + (A"Bf|A™v)y = 0.
As B is self-adjoint and A*B = Id, we get for all f in H,
(f[Bv)x + (f|A™v) = 0.
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This implies that Bv + A*v = 0. In particular A*v belongs to R(B) = D(A)
and by application of the operator A we get v + AA*v = 0. By definition of A*,
we have

(AA™0[v)y = [|A"0]F,
thus ||v|| 4~ = 0 and the lemma is proved. O

As the Stokes operator A = A — 1Id is also self-adjoint, we are now ready to
apply the spectral theorem to the operator A (see, for instance, [108], Chapter
VII for a proof).

Theorem 2.2 There exists a family of orthogonal projections on 'H, denoted
by (Px)acr, which commutes with A and satisfies the following properties.
The family (P))xer is increasing, in the following sense:

P\Py =Py,  forany (A N) € R>. (2.1.2)
For A <0, Py =0 and for any u € H,
)\ILII;O IPru — uljx = 0. (2.1.3)
The family (Px)xcr is continuous on the right, which means that

Y i Pyu—-P =0. 2.1.4
weH, | lm [Pxu —Pyully (2.1.4)

For any u € H, the function X\ — (Pyulu)y = ||Pul|3, is increasing, and
Il :/ dPrulu) and [Vl = (Aulu)n :/ Nd(Pyulu).  (2.1.5)
R R
Let us state a corollary which shows that the operators P, should be
understood as smoothing operators; they are an extension of frequency cut-off

operators.

Corollary 2.2 For any u € 'H, the vector field Pu is an element of V, and
IVPullze < A% ul] 2.

For any u € V,, we have
1
[(Id =P)ull> < —llullv,-
A2
Proof Using (2.1.5) we get

||VP)\U||%2 :/ /\/d(P)\P)\/’UJ‘U).
R
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Using (2.1.2) this means that

A
VP ul%s =/ Nd(Pyulu)
0

R

< AullZ:,

which proves the first part of the corollary. For the second part we notice that
if w is in V, then

J(1d=Pauls = [ d(1a-Px)ulu).
R
Using (2.1.2) again, we get

|(1d Py yul2, = / d(Pulu)
A

Y
S / —d(PA/u|u)
A A

1
< 5 Ivul3
which ends the proof of Corollary 2.2. O

Let us give a few examples in which the operators P, can (and will) be

explicitly computed.

In the case of bounded domains, the operators P are given by P def Py

with n(\) def max{k/ p7 < A} where the sequences (uy)ren and (Py)reN are
given by Theorem 2.1 and Definition 2.2.

The case when Q = T¢, i.e. the periodic box (0,27)¢ with periodic boundary
conditions, is very similar to the bounded case. Using the Galilean invariance
of the Navier—Stokes system, we shall only consider mean free vector fields.
Everything that will be done in that framework is based on the discrete Fourier
transform. Let us recall that for all distributions u defined on Td,

akdéf (27r)_d/ e_“”u(x) dz, for ke Z?.
Td

Now let us define Sobolev spaces for any real number s:

H*E S u e DT / ullfr D7 k> finl? < +o0
kezd

Note that V, is given by
VJ:{uGHl/VkeZd, k-@k:o}.
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The spectral projection P can be easily expressed in terms of the Fourier trans-
form. Let us note that, as u is assumed to be real valued, we have Uy = U_.
If k # 0, let us denote by (fi*)1<m<a_1 an orthogonal basis of {k} in R%. Tt is
easily checked that the family

" ) (" + i)™ + (= i)

is an orthonormal basis of H which satisfies —Ae"" = |k[?¢}"". Of course
we have

Pau)(z)= > (ulef™)2 e (@).

[k|2<
1<m,n<d—1

In the case of the whole space, the Fourier transform plays, of course, again
a crucial role: the operator P reduces to the Fourier cut-off operator

P)\(u) :f_l(l‘g‘zg)\a(f)). (2.1.6)

Let us return to the general aspect of the spectral theorem. We would like to
define, as in the bounded case, the spectral projections on V' and also to prove
an approximation result analogous to Proposition 2.1. The extension to V' is
achieved simply by transposition, as defined in the following proposition.

Proposition 2.3 The map
_ / /
B, V=V
feve (f,Py)

satisfies the following properties:

IPAfllve < [1£llvs; (2.1.7)
VieV,, PxfeV, and Jim IPf — fllv, =0. (2.1.8)

Proof Let us first observe that, as Py is an orthogonal projection on H, for
any u and v in ‘H, we have

(Pru,v) = (Prulv)y = (u|Prv)y = (u, Pyv).
Thus the operator P is an extension of Py on V. By definition of || f [lv: we have

”lN))\fHV[, = sup (P»f,v)
VEV

= sup (f, Pyv)
VEV

1f1lvs,

IN
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which proves (2.1.7). Let us now prove (2.1.8). We shall first show that P, f is
in ‘H. For any v € V, we have

<f))\f7 U> = <fv PAU>
< [If v P xvlly, -
Using Corollary 2.2 as well as (2.1.5) we infer that for any v € V,,
(P 0) < (£l (L 4+ A5 o]

As V, is dense in H we find that PAf is in H. Then as P2 3f = PAf we deduce
that Py f is in V, thanks again to Corollary 2.2.

Then using Proposition 1.1, page 20 we know that for any positive € there is
a vector field f. in H such that

I1f = fellv, < <

As f. belongs to H, we have P, fe = Py f.. Thus we can write
IPAf = Fllvy < IPAG = fo)llvg + [P fe = fellvy + 1 = fellvy.-
Then (2.1.7) implies that
IPxf — fllve <20f = fellve + IPafe = fellvr
< S+ CIPAL = Ll
Identity (2.1.3) allows us to conclude the proof. O
Notation In all that follows, we shall denote p A by Pjy.

The following proposition makes the link between the family (PA)yso and
the Leray projector P defined in Definition 1.3 page 19.

Proposition 2.4 For any f in (L?)?, we have
Jin Pof =P
where P denotes the Leray projector on H of Definition 1.3.
Proof By the definition of P, we have, for any v in V,,
(PAPf,v) = (Pf,Pyv) = (Pf|Pv)n
As the Leray projector P is the projector of (L?)? on H, we have
(PfPav)w = (fIPPxv)3 = (fIPrv)n
By the definition of Py on V/, which contains (L?)¢, we infer that
(PAPf,v) = (f,Pv)

and thus that P\Pf=P,f. Then the assertion (2.1.4) ensures the
proposition. O
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2.2 The Leray theorem

In this section we present a general approach to proving the global existence
of weak solutions to the Navier-Stokes equations in a general domain Q of R?
with d = 2 or 3. Let us notice that no assumption about the regularity of the
boundary is made. Let us now state the weak formulation of the incompressible
Navier—Stokes system (NS,).

Definition 2.5 Given a domain Q in RY, we shall say that u is a weak
solution of the Navier—Stokes equations on R xQ with initial data ug in H
and an external force f in LZ (RT; V') if and only if u belongs to the space

loc

CRYV)HNLE. (R H)NLE (RY;V,)

loc

and for any function ¥ in C*(R1;V,), the vector field u satisfies the
following condition (Sy):

/Q(u-\I/)(t,x)dx—i—/O /Q(I/Vuzvlll—u@u:V\I/—u-at\Il)(t,x)dacdt
:/uo(aﬁ)-\II(Ow)dx—i—/ ), B () dt
Q 0
with

d d
Vu: V¥ = Z 8juk8jlllk and u®@u:VV¥ = Z ujuk(‘?j\I/k.
J,k=1 j,k=1

Let us remark that the above relation means that the equality in (NS, ) must be
understood as an equality in the sense of V..
Now let us state the Leray theorem.

Theorem 2.3 Let Q be a domain of R? and ug a vector field in H. Then, there
exists a global weak solution u to (NS,) in the sense of Definition 2.5. Moreover,
this solution satisfies the energy inequality for allt > 0,

1 t
7/ |u(t,x)|2dfc+u/ /|Vu(t’,x)|2d:cdt’
2 Ja 0 Ja

< %/Q|U0(x)|2dx+/0 (f@,),ult’, ) dt'. (2.2.1)

It is convenient to state the following definition.
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Definition 2.6 A solution of (NS,) in the sense of the above
Definition 2.5 which moreover satisfies the energy inequality (2.2.1) is called
a Leray solution of (NS,).

Let us remark that the energy inequality implies a control on the energy.
This control depends on the domain €.

Proposition 2.5 Any Leray solution u of (NS,) satisfies

t t
1
lu(t)ll72 + 1// IVu(t)[|7> dt' < e (IIUOIILz + ;/ LFEOIR, dt') :
0 0

If the domain Q) satisfies the Poincaré inequality, a constant C exists such that
any Leray solution u of (NS,) satisfies

t t
C
s +v [ IVl et < ol + 5 [ 1€t
Proof By definition of the norm || - ||y, , we have

(F& ) ult)) < AFE vy lult, v, -
Inequality (2.2.1) becomes

t t
lu(®)]2 + 20 / IVu(t') |22 dt’ < [u|2s + / £ () v e, |13 d’

As Ju(t', )13 = [Jul®, )22 + |[Vu(t',-)||22, we get, using the fact that 2ab <
2 12
a® + b2,

t C t
ol +20 [ 1)t < ol + < [ 150013, o

t
e / LFEI, (e, )2 dt'

Then Gronwall’s lemma gives the result for any domain 2. When the domain €2
satisfies the Poincaré inequality, then the last term on the right disappears in the
above inequality and then the second inequality of the proposition is obvious. [

The outline of this section is now the following.

e First approximate solutions are built in spaces with finite frequencies by
using simple ordinary differential equation results in L?-type spaces.

e Next, a compactness result is derived.

e Finally the conclusion is obtained by passing to the limit in the weak
formulation, taking especial care of the non-linear terms.
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2.2.1 Construction of approximate solutions

In this section, we intend to build approximate solutions of the Navier—Stokes
equations.

Let (Py)x be the family of spectral projections given by Theorem 2.2; we
shall consider in the present proof only integer values of A\. Thus let us denote
by Hj the space PrH.

Lemma 2.2 For any bulk force f in L% _(R";V'), a sequence (fi)ren exists

in the space C*(R1;V,) such that for any k € N and for any t > 0, the vector
field fi.(t) belongs to Hy, and

Jim 1= fllzz oz = 0.

Proof Thanks to Proposition 2.3 and to the Lebesgue theorem, a sequence
(fr)ren exists in L2 (R*;V,) such that for any positive integer k and for almost

all positive ¢, the vector field fi(¢) belongs to Hj and
vI'>0, lm I fe = fllz2qo.rv,) = O

A standard (and omitted) time regularization procedure concludes the proof of
the lemma. O

In order to construct the approximate solution, let us establish some properties
of the non-linear term.

Definition 2.7 Let us define the bilinear map

Y x V=Y
Q{ (u,v) ——div(u @ v).

Sobolev embeddings, stated in Theorem 1.2, ensure that @) is continuous. In the
sequel, the following lemma will be useful.

Lemma 2.3 For anyu and v inV, the following estimates hold. Ford in {2, 3},
a constant C exists such that, for any ¢ € V,

1-2 1-2

d a a
(Qu, ), 0) < C[Vull 2|Vl f2l[ull g2 * [0][ 12 * Vel L2
Moreover for any u in V, and any v in V,
(Q(u,v),v) =0.

Proof The first two inequalities follow directly from the Gagliardo—Nirenberg
inequality stated in Corollary 1.2, once it is noticed that

(Qu,v),0) < [lu@vL2[[ Vel L2
< lullzallvllzs 1Vell 2
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In order to prove the third assertion, let us assume that u and v are two vector
fields the components of which belong to D(€2). Then we deduce from integration
by parts that

(O, v),v) = — / (div(u ® v) - v)(x) dz

Q

d
== 3 [ Oyt @)t () da
Lm=1 Q
d
= u™(2) v (2)0,,0" (x) dx
%;L ()0 (@), () d

=~ [ ot)P diva(e) dz ~ (Q(u v).0).
Q

Thus, we have

(Q(u,v),v) = f%/g|v(:17)|2divu(z) dz.

The two expressions are continuous on V and, by definition, D is dense in V.
Thus the formula is true for any (u,v) € V, x V, which completes the proof. O

Thanks to Proposition 2.3 and the above lemma, we can state

Fiu(u) € PQ(u, u).

Now let us introduce the following ordinary differential equation

(NS,%) {5:((8 z ;f;’ﬁuk(t) + Fi(ur(t) + fr(t)

Theorem 2.2 implies that PpA is a linear map from H; into itself. Thus the
continuity properties on @) and Py allow us to apply the Cauchy—Lipschitz the-
orem. This gives the existence of T}, €10, +00] and a unique maximal solution uy
of (NS, ) in C*([0,Tx[; Hi). In order to prove that T} = +oo, let us observe
that, thanks to Lemma 2.3 and Theorem 2.2,

. 4
law ()2 < vkllu(®)lrz + Ck* lux(@)1Z2 + | fu(t)l 2

If ||ug (t)|| L2 remains bounded on some interval [0, T'[, so does ||t (t)| 2. Thus, for
any k, the function wy satisfies the Cauchy criteria when ¢ tends to 7. Thus the
solution can be extended beyond T'. It follows that a uniform bound on ||uk(t)|| L2
will imply that T} = +oc.
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2.2.2 A priori bounds

The purpose of this section is the proof of the following proposition.
Proposition 2.6 The sequence (ug)renN s bounded in the space

4
(L*(9)).

Moreover, the sequence (Auy)ren s bounded in the space L2 (RT; V7).

loc

L2 (RT3 H) N L2 (RT3 V,) N L

loc

Proof Let us now estimate the L? norm of uy(t). Taking the L? scalar product
of equation (NS, ;) with u (), we get

5= luk @172 = v(Aug()uk (1)) 22 + (Fr(ur (6)fure(t)) £z + (Fe(t)Jur(2)) 2.
By the definition of F}, Lemma 2.3 implies that

(F (ur () [ur (t)) L2 = (Q(ur (1), ur(t)), ux) = 0.
Thus we infer that

1d

§%Huk(t)\liz + v(Vug () [Vug(t)) L2 = (fi()|ur(t)) 2. (2.2.2)
By time integration, we get the fundamental energy estimate for the approximate
Navier—Stokes system: for all ¢ € [0, T})

1 k 1 K
O +v [ 1Vl ' = SO + | uEhon(t) 1
(2.2.3)
Using the (well known) fact that 2ab < a? + b?, we get

t C t
lu(®)]22 + v / Vs (#)3 e’ < [ 0)]3 + / 1A ()2,

t
+ u/ | (8|32 dt’. (2.2.4)
0

Gronwall’s lemma implies that (ug)ren remains uniformly bounded in H for all
time, hence that T = +oc0. In addition, we obtain that the sequence (ug)ren
is bounded in the space LS (RT;H)NLE (RY;V,). Using the Gagliardo-
Nirenberg inequalities (see Corollary 1.2, page 25), we deduce that the
sequence (ug)genN is bounded in the space

L (R H) N L2 (RN ) N L

oo (L ().
Moreover, we have, for any v € V,,
(—Aug,v) = (Vug|Vo) 2
< lurllzg l[vllv-
By definition of the norm || - [y , we infer that the sequence (Aug)ren is bounded
in L2 (R™;V"). The whole proposition is proved. O

loc
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2.2.3 Compactness properties

Let us now prove the following fundamental result.

Proposition 2.7 A wvector field u exists in LIQOC(R+;VU) such that up to an
extraction (which we omit to note) we have for any positive real number T and

for any compact subset K of

lim lug(t, x) — u(t,z)|? dtdr = 0. (2.2.5)
k—oo Ji0,T)x K
Moreover for all vector fields ¥ € L*([0,T);V) and ® € L*([0,T] x ) we can
write

k—oo

lim / (Vug(t,x) — Vu(t,z)) : VU(t, z) dtdx = 0;
[0, T]x$2 (2.2.6)
lim (ug(t, ) — u(t,x))®(t, ) dtde = 0.
k—oo Ji0,11x0
Finally for any ¢ € CY(RT;V,) the following limit holds:

T sup [Gun (1), 9(0)) — {u(), 6(1))] = 0. (2.2.7)
—0 ¢e[0,T

Proof A standard diagonal process with an increasing sequence of positive
real numbers T, and an exhaustive sequence of compact subsets K, of
reduces the proof of (2.2.5) to the proof of the relative compactness of the
sequence (ug)ken in L2([0,T] x K). So let us consider a positive real number &.
As the sequence (uy)gen is bounded in L2([0,T];V,), Corollary 2.2 (together
with Lebesgue’s theorem) implies that an integer kg exists such that

Vk € N, ||uk — PkoukHLQ([O,T]XQ) < % (2.2.8)
Now we claim that there is an L([0,7]) function fi,, independent of k,
such that

10eP ko u (£)[| L2 < fio (1) (2.2.9)
Let us prove the claim. Proposition 2.6 tells us, in particular first, using the
fact that the sequence (ug)gen is bounded in the space L2 _(R*;V,), we infer

that the sequence (—Aug)ren is bounded in L2 (R™;V”). The fact that the

loc
sequence (fi)ken is bounded in L2 (R*;V’) is clear by definition of f;, and

finally using Lemma 2.3, we have

4 9_4d
1% (un (D) llv, < ClIVurzallunllz.®- (2.2.10)
Then using the energy estimate (2.2.4) with (2.2.10), we deduce that

kEN, [0l 4 gy, < C- (2.2.11)

The claim (2.2.9) is obtained.
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But for any ¢ € [0, T, the family (P, ux)ren is bounded in H}. Let us denote
by L3 the space of vector fields in L? supported in K. As the embedding of Hg
into L2 is compact, Ascoli’s theorem implies that the family (Pgyuk)ren is
relatively compact in the space L>([0,7T7]; L%), thus in the space L([0,7] x K).
It can therefore be covered by a finite number of balls of L2([0,T] x K) of
radius €/2, and the existence of u follows, such that (2.2.5) is satisfied.

In particular this implies of course that wug converges towards wu
in the space D'(]J0,T[x ). The sequence (up)ren is bounded in the
space L2([0,T); H}). So as D(]0,T[x Q) is dense both in L2([0,T] x ) and
in L%([0,T); H}), the weak convergence holds in the spaces L2([0,7] x Q)
and L2([0,T); H}). This proves (2.2.6). Moreover since divug = 0 we also infer
that divu = 0.

In order to prove (2.2.7), we consider a vector field ¢ in C*([0,T];V,) and

the function
0,7 - R
P\t Gunlt) ().

The sequence (gx)ren is bounded in L ([0, T]; R). Moreover

gr(t) = (s (t), (1)) + (uk(t), O (2)).
We therefore have

9k (O] < Nlak(@)[lv, sup [v@)llv, +llue®)][zz sup [[0:4()] L2
te[0,T) t€[0,T7]

and using (2.2.11) this implies that (gi)ren is bounded in L%([O,T];R). The
sequence (gx)ren is therefore a bounded sequence of C1~% ([0, T]; R) which by
Ascoli’s theorem again implies that, up to an extraction, g (t) converges strongly
towards g(t) in L>=([0, T]; R).

But using (2.2.6) we know that gx(t) converges strongly in L?([0,77])
towards [, u(t,x)i(t,z) de. Thus we have (2.2.7). O

2.2.4 End of the proof of the Leray theorem

The local strong convergence of (uy)xen Wwill be crucial in order to pass to the
limit in (NS, ;) to obtain solutions of (NS,).

According to the definition of a weak solution of (NS, ), let us consider a test
function ¥ in C*(R*;V,). Because uy, is a solution of (NS, k), we have

D0, 0(0)) = (i), W(0)) + (g (0), ¥ (1)

dt
= v(PrAug(t), ¥ (1)) + (PrQ(ur(t), ux(t)), ¥ (1))
+ (1), U (H)) + (ur(t), U(1)).
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We have, after integration by parts,

(P Aug(t), U(1)) = —Z//QVuk(t,x) VP, 7) da,

(PLQ(un(t), up (1)), U(E)) = /Quk(t,x) © un(t, ) : VPRU(t, ) do

and

(g (1), 0 () = / wn(t, z) - 0,V (t, ) da.

Q

By time integration between 0 and ¢, we infer that

/uk(t,m) - U(t,x) dx

Q

¢
+//(quk:VPk\I/—uk®uk:VPk\II—uk-8t‘l') (t', ) dzdt’
0Ja

t
— [ w00 902 do+ [ (ule) W)
Q 0
We now have to pass to the limit.
Let us start by proving the following preliminary lemma.

Lemma 2.4 Let H be a Hilbert space, and let (Ap)nen be a bounded sequence
of linear operators on H such that

VheH, lim |[Aph— hly = 0.
Then if ¢» € C([0,T]; H) we have
lim sup ||4n3(t) —¢()||la = 0.

nN= (0,7

Proof The function % is continuous in time with values in H, so for all pos-
itive €, the compact 1([0,7]) can be covered by a finite number of balls of
radius
€
2(A+1)
and center (¢(t¢))o<e<n- Then we have, for all ¢ in [0,7] and ¢ in {0,..., N},

[Ant(t) =) |la < [[Antp(t) — Antb(te)|ln
+ [ Antb(te) — (o)l + ([P (te) — ()|

The assumption on A,, implies that for any ¢, the sequence (A, ¥ (t¢))nen tends
to 1 (t¢). Thus, an integer ny exists such that, if n > ny,

Vee{0,...,N}, |l Ant(te) — (te)|lu <

with A% sup 1 Anllzcm)

<
2
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We infer that, if n > ny, for all ¢ € [0,7] and all £ € {0,..., N},

A4(8) — (D)l < NARb(E) — Awb(te) s + I06(te) — (0 + &
For any ¢, let us choose ¢ such that
€
[(t) — vt llu < m
The lemma is proved. O

We can apply the lemma to H =V, and to ¥ € C([0,T];V,). We find that

lim sup [[Pr¥(t) — ¥(t)|y =0.
k—oo te[0,T)

This implies that

¢ ¢
lim u/ / Vauy : VP,V dzdt’ = lim V/ / Vuy : VU dxdt’,
o Ja 0 Ja

k—o0 k—o0

and the weak convergence of (uy)ren to u in L2 (R™;V,) ensures that

¢ "
lim u/ / Vuy, : VU dxdt’ = u/ / Vu : VU dxdt'.
k—oo Jo Ja 0 Ja

By (2.2.7) we have, for any non-negative ¢,

Jm | up(t,z) - U(t, ) de = lm (uk(t), U(t)) = (u(t), U(2))
and by (2.2.6)

lim sup
k—o0 te[0,T)

/Quk(t,:r) -0 (t,x) de — (u(t), 0,0 (t))| = 0.

The two terms associated with the initial data and the bulk forces are convergent
by construction of the sequence (fi)ren and because of the fact that, thanks to
Theorem 2.2, (Pjug)ren tends to ug in L2.

Now let us pass to the limit in the non-linear term. As above we have in fact

t
lim / /(u;€ ® uy, : VPRU) (¢, z) dedt!
0 Ja

k—oo

k—o0

t
= lim / /(uk@)uk VO (', x) dadt
0 Jo

so it is enough to prove that

k— o0

t t
lim / /(uk Quy : VO) (', z) dedt’ = / /(u @u: V)t x)drdt'.
o Ja 0 Ja
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Let (K,)nen be an exhaustive sequence of compact subsets of . Applying

Lemma 2.4 with H = (L?)? and A, fo 1k, f, we have

Eg HlKnV\I’ - V\II”LZ([O,T];L?) =0.
Using the fact that the sequence (uj ® ug)ren is bounded in L'([0,T7]; L*(Q)),
it is enough to prove that, for any compact subset K of 2, we have
klirgo lue @ up —u @ ullLao,my;22.) =0 (2.2.12)
which will be implied by
kli{lgo Huk - u||L2([O,T];L‘}<) =0. (2213)

Recall that L% denotes the space of LP functions supported in K. Using
Corollary 1.2, we have, for any vector field a € V,

1—4 a
la®llzs. < Clla@®ll s * IVa(®)lz2-

Hoélder’s inequality implies that

1—4 4
||a||L2([O,T];L‘;() < CH‘I”Lz(To,T]XK) ||Va||£2([o,T]xQ)'

We therefore have

1-4 4
(s — “HLQ([O,T];L‘%) < Cllug, — u||L2(4[0$T]><K)||V(uk - u)HL2([0’T]><Q)‘
Proposition 2.7 allows us to conclude the proof of the fact that u is a solution
of (NS,) in the sense of Definition 2.5.

It remains to prove the energy inequality (2.2.1). Assertion (2.2.7) of
Proposition 2.7 implies in particular that for any time ¢t > 0 and any v € V,,

lim inf (uy () |v) 2 = (u(t)[v)n-
As 'V, is dense in H, we get that for any ¢ > 0, the sequence (uy(t))ren converges
weakly towards u(¢) in the Hilbert space H. Hence
u(t)||32 < lim inf |ur(t)|[22  for all t > 0.

On the other hand, (ux)gen converges weakly to u in L2 _(R™;V), so that for
all non-negative ¢, we have

t t
/0||vu(t'>||i2dt’gnkrggf/o Vup ()22 .

Taking the liminf;_, ., in the energy equality for approximate solutions (2.2.3)
yields the energy inequality (2.2.1).

To conclude the proof of Theorem 2.3 we just need to prove the time
continuity of w with values in V.. That result is obtained by using the fact
that u satisfies (Sy) in particular with a function ¥ independent of time.
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Choosing such a function yields that for any ¥ € V,,
t/
(wlt), ) = (u(t), ) = [ (0 ar”
t

t/
+ // WVu(t"): VU —u@u(t") : VI) dzdt”.
t Ja
Using the inequality
1—4 4
[u®)llzs < lu@)lz2 * IVu®)l 2,

we infer, by energy inequality, that u belongs to La([0,T]; L*(Q)). Then we
deduce that

. ’ _o1—4 2
(u(t), ®) = (@) W] < [t =Tl

1
+ 1t =12 (Il o mv) + VI Vullzzqo ryzo) ¥y,

which concludes the proof of Theorem 2.3.
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Stability of Navier—Stokes equations

In this chapter we intend to investigate the stability of the Leray solutions con-
structed in the previous chapter. It is useful to start by analyzing the linearized
version of the Navier—Stokes equations, so the first section of the chapter is
devoted to the proof of the well-posedness of the time-dependent Stokes system.
The study will be applied in Section 3.2 to the two-dimensional Navier—Stokes
equations, and the more delicate case of three space dimensions will be dealt
with in Sections 3.3-3.5.

3.1 The time-dependent Stokes problem
Given a positive viscosity v, the time-dependent Stokes problem reads as follows:
Ou —vAu = f—Vp
divu =0
(ES,) ivu
ujpn =0
Ug=0 = U € H.

Let us define what a solution of this problem is.

Definition 3.1 Let ug be in H and f in L2 (RT;V'). We shall say that u
is a solution of (ES,) with initial data ug and external force f if and only

if u belongs to the space
CRV)NLE (R H) N LY (RTV,)

loc loc

and satisfies, for any ¥ in C*(RT;V,),

(u(t), U (1)) +/[0 g T Y000 (¢ ) e

z/uo(x)-\I'(O,x)dx+/ (), W () dt.
Q 0

The following theorem holds.

Theorem 3.1 The problem (ES,) has a unique solution in the sense of the
above definition. Moreover this solution belongs to C(R¥;H) and satisfies

1 K 1 t
gl +v [ 19u(e) ' = Sl + [ @) ue) .
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Proof In order to prove uniqueness, let us consider some function u
in C(R™; V)N L2 _(R";V,) such that, for all ¥ in C*(RT;V,),

loc

(u(t), U()) + /Ot/Q(VVu LV — - 00 (¢, 2) dadt = 0.

This is valid in particular for a time-independent function P ¥ where VU is any
given vector field in V,. We may write

<Pku(t>7 \IJ> = <u(t), Pk\l}>
- —y/t/ Vu(t',z) : VP,V (x) dzdt
0 Jo

= y/t(u(t’),APk\m dt'.
0

We have, thanks to the spectral Theorem 2.2,

t
(Pru(t), ¥) = V/ (Pru(t'), APLT) dt/
0
t
< VAP / 1Pt ¢ dt
0

t
< VK| P |l5 / 1Pyl e '
0

By the definition of H, the space V, is dense in H, and we have

IPru(®)llz = sup (Pr(t)u, ¥)
]2 =1
vev,

t
< Vk/ IPru(t)|| dt'.
0

The Gronwall lemma ensures that Prpu(t) = 0 for any ¢ and k. This implies
uniqueness.

In order to prove existence, let us consider a sequence (fi)ren associated
with f by Lemma 2.2, page 44, and then the approximated problem

(ESV,k) {&tuk - l/PkAuk = fk
Uk |t=0 = Pruo.

Again thanks to the spectral Theorem 2.2, page 38, it is a linear ordinary differ-
ential equation on Hj, which has a global solution u; which is C'! (R+; Hi). By
the energy estimate in (ES, ;) we get that
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A time integration gives

t t
gl +v [ IV de = SIPaOls+ [ () () dt.
(3.1.1)

In order to pass to the limit, we write the energy estimate for uy — ug4¢, which
gives

i
G 3l =) O 0 [ 1 (o = g0
1 2 ! / / /
= 51 Pe = Prsdu@Is + [ (U = fro) ). (e
0
C t
< SI® = Pru@: + 5 [ 10~ SR,

1% ¢ 1% ¢
45 [ 190 = we ) Ol dt + 5 [ = s (€)1 ar

This implies that
t
e I (uk — unso) (B)]|72 + Ve_”t/ IV (uk = unso) ()72 dt’
0

< (|(Pk — Pryo)u(0)]|7: + S/O 1(f = Frre) ()%, dt/) :

This implies immediately that the sequence (uy)ren is a Cauchy sequence in the
space C(RT;H) N LE (RT;V,). Let us denote by u the limit and prove that u

loc
is a solution in the sense of Definition 3.1. As uy, is a C*! solution of the ordinary

differential equation (ES, ), we have, for a ¥ in CY{(R*;V,),

d

27 (un(0), (1)) = v{Aux(t), U (1)) + (fu(t), ¥(2)) + {ur(t), 0¥ (1)).

By time integration, we get

t
(ug(t), T(t)) = —1// / Vug(t',x) : VU (', z) dzdt’
0 Ja
t t
[ ) w4 Pra0), ¥(0) + [ funlt), a0
0 0
Passing to the limit in the above equality and in (3.1.1) gives the theorem. O

Remark This proof works independently of the nature of the domain Q. In
the case when the domain € is bounded, the solution is given by the explicit
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formula

u(t) =Y Uj(t)e; with

JEN
def 2 ¢ 2 ’
U;(t) = e "Mt (ugle;) L2 —|—/ eV AT (F (), e5) dt. (3.1.2)
0
In the case of the whole space R%, we have the following analogous formula

u(t,z) = (2w)—d/Rd e UL, €) dé with

t
a(t, &) & eI, (6) + / e VT gt (3.1.3)

0

3.2 Stability in two dimensions

In a two-dimensional domain, the Leray weak solutions are unique and even
stable. More precisely, we have the following theorem.

Theorem 3.2 For any data ug in H and f in LIOC(R+;V’), the Leray weak
solution is unique. Moreover, it belongs to C(R+, H) and satisfies, for any (s,t)
such that 0 < s <'t,

gl +v [ I19u(@) @t = Sl + [ (@)uenar. 321

Furthermore, the Leray solutions are stable in the following sense. Let u (resp. v)
be the Leray solution associated with ug (resp. vo) in H and f (resp. g) in the
space L2 (RT;V'). Then

t
e l(u—v) )7 +ve / IV (u = 0) ()72 d
0

1/t CE?(t
< (uuo et [ 10 =01, dt') exp( °( ))
1% 0 14
with

def
B0 e min {fuoli + & [ W, at ol + 3 [ a3, ar}.

Remark When the domain (2 satisfies the Poincaré inequality, the estimate
becomes

1w = v)@OIZ2 + V/O IV (u = o) (t)][72 dt’

t C E2
< (Iuo—wlie + 3 [ 10 - 9@, a¢ ) e (E50)

with Ep(t) & e E(t).
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Proof of Theorem 3.2  As u belongs to LS (RT; H) N L (RT;V,), thanks

to Lemma 2.3, page 44, the non-linear term Q(u,u) belongs to L2 (R™;V’).

loc

Thus w is the solution of (ES, ) with initial data ug and external force f + Q(u, u).
Theorem 3.1 immediately implies that u belongs to C(R™;H) and satisfies, for
any (s,t) such that 0 < s <t

1 t
Sl + [ V(e ar
S

= sl + [ @@+ [ Q) ue).utyar.

Using Lemma 2.3, we get the energy equality (3.2.1).

To prove the stability, let us observe that the difference w dlef u — v is the
solution of (ES,) with data uy — vp and external force

f -9 + Q(u,u) - Q(U7U)'
Theorem 3.1 implies that

t
lw(®)]|7> + QV/O V()72 dt’ = [[w(0)]Z:

t

+2 / (f = )t w(t)) dt’ +2 / (Q(u,u) — Qv ) (t'), w(t')) dt’.

0 0

The non-linear term is estimated thanks to the following lemma.
Lemma 3.1 In two-dimensional domains, if a and b belong to V,, we have
3 1 1 1
[((Q(a,a) = Q(b,b)),a = b)| < C|V(a—Db)l;:lla—bl7:[Vali.llal .-
Proof It is anice exercise in elementary algebra to deduce from Lemma 2.3 that

<Q(a7 a) - Q(bv b)v a— b> = <Q(a -0, a’)v a— b> (322)

Using Lemma 2.3 again, we get the result. O
Let us go back to the proof of Theorem 3.2. Using the well-known fact
that 2ab < a® + b2, we get

3 t 2 t
o)+ 5 [ IV < o)+ = 106 = ael, o

t 3 1 1 1 t
+0/0 V()| 72 llw )| 2 V@) Follult)]| 2 dt'+CV/O lw ()] 2 dt’.

Note that if the domain satisfies the Poincaré inequality, then the last term on
the right-hand side can be omitted.
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Using (with 8 = 1/4) the convexity inequality (1.3.5), page 26 we infer that
t
)t +v [ 19w a
2 2 ! N |12 /
< lw(O)z: + - | I(f =) (E)I[y, dt

C t
17 [ @l (96 s e 2 +0) ar.

Gronwall’s lemma, implies that
t
()25 + v / V()12 dt
0
2 2 k N2 /
< (Il + 5 [ 10 = 9)¢)1R, d)

t g 2 i V AN dt/
xexp (vt + — sup [lu(7)||z2 [ [Vu()]z2dt").
V7 relo,t] 0

The energy estimate tells us that

2

t 1 ) t .
sup u(r) I [ IV at < 3 (ol + 2 [ 150, av) e

T€[0,t]

As u and v play the same role, the theorem is proved. O

3.3 Stability in three dimensions

In order to obtain stability, we need to enforce the time regularity of the Leray
solution. The precise stability theorem is the following.

Theorem 3.3 Let u be a Leray solution associated with initial velocity ug
in H and bulk force f in L2([0,T];V’). We assume that u belongs to the
space L*([0,T); V,) for some positive T. Then u is unique, belongs to C([0, T); H)
and satisfies, for any (s,t) such that 0 < s <t <T,

Sl + v / IVult)|32 dt' = 3 lu(s)]2: + / ), u()) e (33.1)

Let v be any solution associated with vy in H and g in L% ([0,T];V"). Then, for
all t in [0,T7,

t
e (u— v) ()22 + ve / IV — 0)(¢)] 25 dt’
0

2 [* c [
< (o= vl + 2 [ 1= )Ry @t Yeso (G [ I9ute iz ar').
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Remarks
e As in the two-dimensional case, if the domain satisfies the Poincaré
inequality, then the estimate becomes

= o)Ol: +2 [ 190 = o)) d

2 [ c [
< (lo =l + 2 [0 = 0@, ) oo (5 [ 19ue)lzar).

e The proof that such an L*([0,T];V,) solution u exists will be detailed in
Section 3.4 in the case of bounded domains, and in Section 3.5 in the case
without boundary.

Proof of Theorem 3.3 Thanks to Lemma 2.3, the fact that u belongs
to L*([0,7]; V,) implies that

1 3
1Q(u, u) ||L2([0,T];V') < C”“H[Q,oo([oj];L?) HUHIQJS([O’T};H(%)

1 1 3
< CTH ullF e o s 10l 0 2,013 (3.3.2)

Hence the non-linear term Q(u,u) belongs to L%([0,T];V’). Thus, exactly as in
the two-dimensional case, u is the solution of (ES,) with initial data ug and
external force f + Q(u,u). Theorem 3.1 immediately implies that u belongs
to C([0,T]; H) and satisfies, for any (s,¢) such that 0 < s <t,

1 t
Sl +v [ [7u)]e at

= Sl + [ @ uende + [ Qe ue).uie) ar.

Using Lemma 2.3, we get the energy equality (3.3.1).

The method now used in the proof of the stability is important because we
shall follow its lines quite often in this book. As u and v are two Leray solutions,
we can write that

5,0) % 1w — ) (1) 12 + 20 / IV (u— 0)(t)]25 dt

= [lu(®)]2 + QV/O IVu(t)|72 dt’ + o(®)]72 + 2”/0 IVo(t)|72 dt’
() v(t)) o — Av / (V)| Vo)) 2 d’
0

< Jup|2s +2 / ) u(t)) dt + o2 +2 / (gt o(t")) d’

— 2u(®)|o(t)) 2 — v /0 (Vu(t)|Vo(t')) e dt'. (3.3.3)
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Now the problem consists in evaluating the cross-product terms

(u(t)|v(t)) 2 + 20 /O (Vu(t)|Vo(t')) 2 dt’

- / (gt ot")) dt’ — / (), ult)) dt'
0 0

Let us suppose for a moment that v and v are smooth in space and time; then
we can simply scalar-multiply by v the equation satisfied by u, and conversely
scalar-multiply by u the equation satisfied by v. We get

(Opulv) 2 + v(Vu| Vo) 2 + (u- Vulv) 2 = (f|v)2  and

(Opvlu)p2 + v(Vo|Vu) 2 + (v- Volu)r2 = (glu) p2;
hence summing both equalities yields
O (u(t)|v(t)) L2 + 2v(Vu(t)[Vo(t)) 2 — (f(#)]o(t)) L2 — (9()|u(t)) L2
+ (u(t) - Vu(t)[ot)) 2 + (v(t) - Vot)|u(t)) L2 = 0.
After an easy algebraic computation we find that

(u(®) - Vu(®)o(t)) 2 + (v(t) - Vo@)|u(t)) 2 = ((u = v)(t) - V(u = v)(#)]u(t)) L2,

hence after integration in time, we obtain

(w(®)|o(t)) 12 + 20 /0 (V) [Vo(t')) 2 dt’
- / (o(t)o(t")) = dt’ — / () ut')) = dt
0 0
— (uolvo)zs + / (= 0)(#) - V(= 0) () ut))) 2 dt
0

+/O (f(#)](v = u)(t)) dt +/0 (9(t)[(u = 0)(t)) dt’. (3.3.4)
Plugging (3.3.4) into (3.3.3) yields

t
= O3 20 [ 19— 0O < o~ ol

+2/0((f—g)l(u—v))(t’)dt’

+2

)

/O (1= 0) - V(u—v)lu) s () dt’

and the Gronwall lemma gives the smallness of §,,. However unfortunately the
above computations make no sense if no smoothness in space and time is known
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on u or on v (and in particular the final Gronwall argument does not seem pos-
sible to write correctly). So some precautions have to be taken in order to make
these computations valid, and to conclude the argument by the Gronwall lemma —
in particular we are going to see that the assumption that u € L*([0,T];V,) is
enough to make the above computations valid.

Let us therefore proceed with the rigorous computations. Identity (3.3.3)
involves scalar products of v and v, which naturally lead to using the definition
of weak solutions choosing for instance u as a test function. Unfortunately, in
order to be admissible, test functions need to belong to C*(R™;V,), so that
some preliminary smoothing in time of u is required. We shall use the following
approximation lemma and postpone its proof to the end of the proof of the
theorem.

Lemma 3.2 Let u be a Leray solution which belongs to L*([0,T];V,). A
sequence (g )gen of CH(RT;V,) ewists such that

e the sequence (Uy)ren tends to u in LA([0,T];V,) N L>([0,T]; H);
e for all k € N, we have

Oyuy, — vAuy, = Q(uk, ux) + f + Ry, + Vpy, (3.3.5)
with limy,—, o | Rx || L2 (j0,17:v2) = 0.

The function 1 belongs to C'(R™;V,), so it can be used as a test function in
Definition 2.5. As v is a Leray solution, we have

Bi() < (w(t) @ (1)) 12

— (0(0)[@(0)) 2 — v / (Vo(t) [ Viin(t')) 2 dt’ + / (o1, T (1)) dt

0
+/0 (") @ v(t")|Vug(t')) e dt’—i—/o (w(t'), Ogur(t')) dt’.

Thanks to (3.3.5), we get
t

Bi(t) = (v(0)|ux(0)) 2 — 21//0 (Vo) Vug(t')) e dt’ +/ (g, up(t")) dt’

0

+/O (f(t’),v(t’)>dt'+/0 (w(t) @ v(t)|Vag(t')) 2 dt’

+/Ot@(ﬂk(t'),ﬂk(t’)%v(t’)>dt'+/Ot<v(t’),Rk(t’)>dt/-
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Lemma 3.2 implies that limg_,oc Bi(t) = (v(¢)|u(t))r2 and that

lim {(U(O)ak(o»y Y /0 (Vo)) | ViiR(t)) 2 dt’

k—o0

+ [ m i+ | <g<t'>,ak<t'>>dt'}

is equal to
t

(0(0)|u(0)) 2 *QV/O (Vo) Vu(t')) 2 dt’+/ (g(t"), u(t)) dt".

0
Thus stating

N [ (0t & o) VD)0 dt + [ Q). T (¢, o8))
0 0
we obtain

(v(®)u(t)) L2 = (v(0)|u(0))r> — 21//0 (Vo()[Vu(t)) L2 dt’

+ [lruendr + [ r@)oar+ tim N

Plugging this into (3.3.3) gives

6u(0) = o = ol +2 [ ((f = g)(E). (u—0)(ED) ¥ + Jim i (0

It remains to study the term Ny (¢). In order to do this, let us observe that,
for any vector field @ and b in V,, we have (b® b|Va)r2 = (Q(b,b),a) and thus

(b ® b‘va)LZ + (Q(a, a)7 b> = <Q(b7 b)? a) + <Q(a7 a)7 b>‘

Using Lemma 2.3, we can write

Thus, it turns out that
<Q<b’ b)v a> + <Q(a7 a)’ b> = <Q(a —b, a’)7 b— a’>
=((a—b)®alV(b—a))Le.

Using the Gagliardo—Nirenberg inequality (see Corollary 1.2), we get for any a
and ¢ in V,,

l(c®@alVe)r2| < CllalLslell s [Vell L2

1 3
< ClValzzllell 22 IVell .- (3.3.6)
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For almost every time ¢, the vector field v(¢) belongs to V,. It follows that for
all k € N and t > 0, taking a = ux(t') and b = v(t'), t’ € [0,t], we have

Ni(t) < © / IV (#1221 — ) (22119 (i — o) (¢ e

Using Lemma 3.2, we know that

IV ()r2)ken  tendsto  [[Vu()llz2 in LU([0, 7))
(I (ar = v)(#)[|L2)ren  tends to  [[(u—v)(-)[[z2 in L>=([0,T1)
(IV (@@ = v)()lL2)ken  tends to  [[V(u—v)()llz= in L*([0,T]).

Therefore, we have
. ¢ / / 1 / 3 /
dm (0 < [ 19U s = o) 1 T = ) €)1 .
We conclude that
t
3, (t) < |luo —wol[Z2 + 2/0 1(f = 9)(E)lIv, 1w —0)(@)]lv dt’
t 3 1
+ C/O IVut) 2]V (w = o) () 7211 (u — 0) ()| 72 dt’.
Using the convexity inequality (1.3.5) with § = 1/4 and 6 = 1/2, we obtain
t
[(w = v)(®)[[72 + V/ IV (u = v)(t")[[72dt’
0
2 2 ! \]12 /
< lluo = vollzz + ; I(f = 9) &), dt

t < w(t)||* v (w—v)@E))?. dt’
+/0 (Vg,llv )z + >||( )()][22 dt'.

Gronwall’s lemma allows us to conclude the proof of Theorem 3.3 provided we
prove Lemma 3.2. O
Proof of Lemma 3.2  Thanks to inequality (3.3.2), Q(u,u) belongs
to L?([0,77];V"). This implies that if in addition u is a Leray solution, then dyu
also belongs to L%([0,T];V'). Lebesgue’s theorem together with Proposition 2.3,
page 40, yields

i Pou — 4 . =1 P — 2 vy = 0.
kljgoﬂ %t — ull La [0, 7)5v,) kljgoﬂ %O — Ogul| L2 (0,790 ) = 0

Then, as in Lemma 2.2, page 44, we can define by a standard regularization
procedure in time, a sequence (ty)gen in C! (R+,Vg) such that uy tends to u
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in L*([0, T); V,) N L*([0, T], H). Moreover 0,1y, tends to dyu in L2([0,T]; V') and
inequality (3.3.2) implies that

khjgo 1Q(ur, ux) — Q(u, u)||L2(j0,13;v2) = 0.

Lemma 3.2 and thus Theorem 3.3 are now proved. O

3.4 Stable solutions in a bounded domain

The purpose of this section is the proof of the existence of solutions of the
system (NS,) which are L* in time with values in V, in the case when the
domain {2 is bounded. In order to state (and prove) a sharp theorem, we shall
introduce intermediate spaces between the spaces V! and V,. Then, we shall
prove a global existence theorem for small data and then a theorem local in time
for large data.

3.4.1 Intermediate spaces

We shall define a family of intermediate spaces between the spaces V! and V.
This can be done by abstract interpolation theory but we prefer to do it here in
an explicit way.

Definition 3.2 Let s be in [—1,1]. We shall denote by V3 the space of
vector fields u in V' such that

def
[ull$e =D 3 (u,e5)* < oo
jEN

Here (¢;)jen denotes the Hilbert basis on H given by Theorem 2.1, page 34.

Theorem 2.1 implies that V¢ = H and V! = V,. Moreover, it is obvious that,
when s is non-negative, V; endowed with the norm || - ||ys is a Hilbert space.
The following proposition will be important in the following two paragraphs.

1
Proposition 3.1 The space VZ is embedded in L> and the space L3 is
_1
embedded in Vs .

Proof This proposition can be proved using abstract interpolation theory.

We prefer to present here a self-contained proof in the spirit of the proof of
1

Theorem 1.2. Let us consider a in V#. Without loss of generality, we can assume

that ||a||V% < 1. Let us define, for a positive real number A,

aAdéf Z (a,e;)e; and bAdéfa—aA.

3/ mi<A
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Using the fact that
{r eQ/]a(z)] > A} C{z € Q/|apn(x)] > A/2}U{z € Q/|ba(z)] > A/2}>

we can write

+oo
lal2s < 3/ A’meas ({z € Q / |an(2)] > A/2)}) dA
0
+oo
+ 3/ A’meas ({z € Q / |ba(z)] > A/2}) dA
0
+oo

+oo
<3 x 26/ Aapl8e dA 43 x 22/ |ba |32 dA.
0 0

Thanks to Theorem 1.2, we have, by definition of the || - |

ys 10T,

laallis < Cllaall3,

<C ) piae)?

J/ mi<A
<CA Y pilaey)?
J/pi<A

< CA.

Thus we have

+oo +oo
lalls < C / A2llan 3, dA + C / Iba2. dA

+oo 1
< CZ / A72u5<a,ej>2d/\+ C Z/ (a,e;)? dA
GEN VM jeN 0
<CY pilase)’
JEN
<C.

This proves the first part of the proposition.
The second part is obtained by a duality argument. By definition, we have,
for any a in V',

—1
lall 3 = lI(u; *(a,€;))jenlle
%

= sup Z ajp; *{a,e;). (3.4.1)
(aj)jen JEN
[[(ej)jenll2<1
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The map L defined by

1
2 — Vg

L -3

()jen— > ajp; 2e;
jeN

is an onto isometry. Thus, thanks to (3.4.1), we have

_1
lall -y = sup_ > (L) " (a,e5).
el y st

For any ¢ in V,, we have

SL )05 ayes) = (a, ).

JEN
If we assume that a is in L%7 we have, because ¢ is in L3,
(@.0) = [ atw) - o(w) do
Holder’s inequality and the first part of Proposition 3.1 imply that
[{a, o) < llall 5 llllLs
< Cllall g llll 3
Thus we have

all -1 < sup (a,p)
Vo T gl 1<t
vé

< Cllall, 3.

This completes the proof of Proposition 3.1.

3.4.2 The well-posedness result

The aim of this paragraph is the proof of the following existence theorem with

1
data in V2.

Theorem 3.4 If the initial data ug belongs to Vg% and the bulk force f belongs

to L?

loc

_1
(R4; V5 2), then a positive time T exists such that a solution u of (NS,)
1

exists in L*([0,T); V). This solution is unique and belongs to C([0,T]; V).
Moreover, a constant ¢ exists (which can be chosen independently of the

domain ) such that, if

<cv,

1
luoll gy + 510 et <
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then the above solution is global.

Proof For the sake of simplicity, we shall ignore the bulk force in the proof.

Let us consider the sequence (ug)ren used in the proof of Leray’s theorem and

defined by the ordinary differential equation (NS, ), page 45. The point is to

prove that this sequence (uy,)ren is bounded in L*([0, T; V,) for some positive 7.
Let us recall the remark on page 56 which tells us that

k
up = Z Ujk(t)e;
§=0

with
U () % (uole;) poe5t
t
+/ e (Qup (1), uk(t)), ¢5) dt. (3.4.2)
0

Using Proposition 3.1 we claim that for any vector field @ and b in V, and for
all j € N,

1Py diva@b)l ;= 1P, VO],

< Cla- Vb||L%
< Cllal|Ls|[V| 2
Using Sobolev embeddings, we deduce that

175 div(a®b)ll -3 < Cllallv, [Ib]lv,- (3.4.3)

_1
By definition of the norm on V, 2, we infer that for all £ € N, a (¢ (t))jen
exists such that

1
Q). u (). )] < CeznOnl lun (D)1, (3.4.4)
with, for any ¢, Z c?,k(t) = 1. Plugging this inequality into (3.4.2), we get
JEN

t
1 ’
U k()] < \(uo|€j)|6_””§t +Cpu; /0 eV (it Ve k(@) lue@)[3, dt'. (3.4.5)

Thanks to Young’s inequality ||f * gljpa < ||fHL%||g||L2, we have, for any
positive T,

U, < NP e~ T\ !
| gk ‘L4([07T]) = |(U0|€J)|M3

4uv

c —1 T 2 4
et ([ aoluols, @

1
2
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Multiplying by p; and taking the 22 norm gives

1
2

1\ 3
1— e—4yujz-T 2
S Ukl Ty | < D0 w(uole;)? (

. - 14
JjEN jEN

s / () lur (D)1, dt

JEN
Thanks to (3.4.4), we have

N|=

IN

1
1— 674UH§T 2
> U ke qomy > wy(uole;)? <>

‘ ‘ v
JEN JEN

2
+ V*%||uk||L4([oA,T];va)'

Now let us observe that, thanks to the Cauchy—Schwarz inequality, for any a
in £2(L4[0, T1),

2

/OTnag()nfz at = /OT S|

JEN

JEN,EkEN

< Z ||aj||2L4([0,T])|\akH%4([o,T])
JENKEN

< H(||aj||L4([0,T]))jeNH;2

Let us notice that this is a particular case of the Minkowski inequality. Thus we
infer that

1
€—4up, T 2
HukHL4 0,7];V,) < Zug Uo\eg T

JjeEN

2
N E”“’“”L“([&T];va)-
Let us define

3
s
Tk = sup{T>0/ kel o, 11,v0) < 20}
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As uy, belongs to C1(R*; P,V,), the supremum T}, is positive for all k. We have
for all T € [0, Ty],

1— —dvp;T
lurllao,rpv,) <2 Z 11 (uole;)? <V> : (3.4.6)
jEN

[N

In the case of small data, it is enough to observe that, for any positive T

1

1— 6—41//L?T 1
> wiluole;)* | ————] < —rluol?,.
v V2 Vi

JEN

v
we have, for any T smaller than T},

Th if <
us, i ||u0||vé <30
3
<t
lurllzaqorive) < 35
This implies that T, = 400 and that

ukll Lam+v,) < — lluoll
Vi

1.
12

In the case of large data, let us define the smallest integer jo such that

2

14
> miluole)® | < ge5 (3.4.7)

J>Jjo

Then, using the fact that 1 — e < z for all non-negative x, we can write for

1— e—4y,u§T 2
5 i (15

all T < Ty,

JEN
1 4vpsT \ 2 2
—e J
(S e (257
i<Jjo
18 1
< 16C + 1o V2T |Jug | 2.

Thus, stating

3 4
T def va
" 16v2C ;o [[uo| 2
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we have, for any positive T" less than min{T};T,, },

3

va
Vo) < i
lurlizaqorive) < 55

Thus, for all k, Ty, > T,. This implies that (ug)gen is a bounded sequence
of L*([0,T);V,). We infer that a Leray solution u of (NS,) exists such that u
belongs to L*([0, T]; V, ). Thanks to Theorem 3.3, this solution is unique on [0, 7],
continuous from [0, 7] into H and satisfies the energy equality on [0, T].

The only thing we have to prove now is the continuity of u from [0,7]

into V2. As u belongs to L*([0,T);V,), we infer from (3.4.3) that Q(u,u) is
_1
in L2([0,T]; Vs 2). Using Theorem 3.1, we get

(ult)]e;) = (uoles)e "5t + / e Qut), ult')), e5) dt'.

1
Using (3.4.3) again, we infer by definition of the norm on V, ? that there exists
a sequence (¢;(t)) e, such that

t
2 1 Cun2(t—t
[(u(t)lej)] < I(uoles)le™"" + Cuj /O e ey () lu(t) |3, dt’

with > jeN J( ) = 1. Using the Cauchy—Schwarz inequality, we have

T
. ( | éoens, dt)

1
Multiplying by p; and taking the £? norm gives

1
2

Q

[N

[[(w(®)le)ll Lo fo.rp) < [(uole;)| +

X
Wl

def
ZMH Jles) ||L°°(0T])
JEN

[N

< Valuol 3 + V3 Z/ Dllu(t) 4, dt

C
< \/§||u0||vé + ?||U||%4([0,T];vg>~

This gives that w is in L>° ([0, T]; V ). In fact, it will imply continuity using the
following argument. Let 7 be any positive number. An integer jg exists such that

2

Z wll (ul-)les) ||L°° o1y | <3°

Jj>Jo

3
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Now, it turns out that for all (t1,¢2) € [0,7]?, one has

lu(ts) —u(t2)ll 3 < Yol e o |+ | Do walulty) —ulta)le;)?
’ 3>Jo 3<do
< Tt ) lult) = ulta) | 2.
Theorem 3.1 tells us that w is continuous from [0,7] into H. Thus the whole
Theorem 3.4 is proved. O

3.4.8 Some remarks about stable solutions

In this paragraph, we shall assume that the bulk force f is identically 0. We
shall establish some results about the maximal existence time of the solution
constructed in the preceding paragraph.

Proposition 3.2 Let us assume that the initial data ug belongs to V.. Then
the maximal time of existence T* of the solution u in the space

C([0,T*V2) N L (10, T Vs)

satisfies

3

cv
T > ————.
~ I Vuollze

Proof Thanks to (3.4.6), the maximal time of existence T* is bounded from
below by T such that

2
1—e vt 3
4y y(uole;)’ <V> <.
j

As1— e*””?‘T < V/L?T, we infer that

1
1—e T\ " 1 2 2
e (L) <t ok

J

N|=

< AT gl [,
This proves the proposition. O
From this proposition, we infer the following corollary.
Corollary 3.1 Let T* be the mazimal time of existence for a solution u of the

system (NS,) in the space C(]0,T*); Vg%) NLE ([0, T*);V,). If T* is finite, then

loc

T*
/ IVa(®)le dt = +00 and T* < Jluo[}s.
0

N
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Proof For almost every ¢, u(t) belongs to V,. Then, thanks to the above pro-
position, the maximal time of existence of the solution starting at time ¢, which
is of course T* — t, satisfies

3
cv
T —t> ————.
[Vu(t)]-
This can be written as
3
4 cv
[Vu(t)||z2 = T _1

This gives the first part of the corollary. Taking the square root of the above
inequality gives, thanks to the energy estimate,

/T* dt
— <
o (T*—1):

The corollary is proved. O

(SIS

l[uol|7--

N

cv

3.5 Stable solutions in a domain without boundary

The case of two dimensions was dealt with in Section 3.2 in complete general-
ity. The purpose of this section reduces to the study of well-posedness of the
incompressible Navier-Stokes equations in the whole space R? or in a periodic
box T°.

The basic remark about the level of regularity which is necessary to get
uniqueness and stability is related to the scaling of the Navier—Stokes equation.
If u is a solution of the Navier-Stokes equations in the whole space R?, then the
vector field u) defined by

ux(t, x) def (N2, M)
is also a solution with initial data Aug(A-). It turns out that non-linear estimates
will be based in this section on scaling invariant norms. It is very easy to check
that in two dimensions, the energy norm

t
lu(t) 22 + 20 / IVu(t') |2 dt
0

is scaling invariant. This is not the case in three dimensions. In three dimensions,
the analogous scaling invariant norm is

t
2 12 /
lu()]1% +21//0 IVu(t)]]%, 5 dt'- (3.5.1)

Unfortunately, no conservation or global a priori control is known about that
quantity.
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Theorem 3.5 Let ug be a divergence-free vector field in H? and let f be an

external force in L2 (RY; H~2). There is a positive time T such that there is a

solution of (NS,) satisfying
we C(0,T);H?) and Vue L*([0,T);H?).
Moreover a constant c exists such that

1
||UOHH% + ;”f”LQ(RJr;H—l Sev=T= oo,

2) —

in which case one also has lims_, 4o ||u(t) =0.

%

Remark The convexity inequality on Sobolev norms implies that
C([0,T); H2) NLA([0,T); H?) € L*([0,T); H*).

Thus the solutions constructed by the above theorem are stable.

Proof of Theorem 3.5

Step 1: The case of small data

We shall start by examining the case when the initial data uy are small in Hz.
We shall of course be using the sequence of approximate solutions (u)gen intro-
duced in Subsection 2.2.1 as solutions of the system (NS, ;) defined on page 45.
Let us write the energy estimate in the space H 3, Taking the H 3 scalar product
of (NS, ) with ug, it turns out, due to the divergence-free condition, that

%Ilw(t)llzé + 20| V() 2 (Q(un (1), ur () [ur(1)) 3 -

[

H?2

By definition of the scalar product on H %, we get
(Qur(t), ur () [ur(t)) ;1 | < NQur(t), ue@)l -3 IVur ()l 1 -

The Sobolev embeddings proved in Theorem 1.2, page 23, and Corollary 1.1,
page 25, imply that

1Q@b)ll, 3 < Clla-Vb| 4
< CllallLs I V0| 2
< O|Va| 12| V| 2. (3.5.2)

By the interpolation inequality between H? and H %, we infer
d
%Iluk(t)llzé +20|[Vur (02, < Cllux(®)l] 3 [Vur (@)% - (3.5.3)

A quick examination of that inequality shows that it is of little use when the

norm ||uk(t)||H% is large. On the other hand, it is very good when that norm
is small enough. This is a typical phenomenon of global existence theorems for
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small data. From now on we suppose that ||uk(0)||H% < cv; let us define T}
in [0, +00] by

1
T Csup{t /W' <t ur(t)] 3 <ev} with cdéfa,

the constant C' being that in (3.5.3) By estimate (3.5.3), we have

d
uuwwl) <0,
(dt Hz2 [t=0

Thus T}, is positive and there is some positive t; such that
vt €0, ], Huk(t)HH% < cv.

Moreover, still by inequality (3.5.3), the function ||uk(t)||H% decreases on the
interval [0, Ty [. So for any ¢ € [ti, Tx[ we have |Jux(t)
We deduce directly from inequality (3.5.3) that

”H% < cv. Hence T, = +00.

<0.

d 2
ve20, —lu(t) ah S

I3 + I Vu @)l

By integration it follows that for any real number ¢, we have
t

2 2 / 2

(O3 +v [ IV < ).

Extracting a subsequence which converges weakly towards a Leray solution wu,
the above estimate implies that this Leray solution u satisfies

u€ LOO(R_,_;H%) and Vu € L2(R+;H%).

Now let us prove that the solution u goes to zero for large times, in H 3

this result is simply due to the fact that as u is a Leray solution it is in the
. o

space L°(R™; L?) N L2(R*, H'), hence by interpolation in L*(R™; H?). Tt fol-

lows that for any 7 > 0 one can find a time T;, such that [[u(T};,)|| , 3 < n, which

yields the result recalling that the H 2 norm decreases in time.

Step 2: The case of large data

Let us now consider the case of large data. We start by decomposing the initial
data into a high-frequency part and a low-frequency part. Let kg be a positive
real number which will be chosen later on and let us consider uy, the solution of
the evolution Stokes problem

Oyur, — vAuyp = —Vp
(ES,)) S divur, =0

uL\t:O = Pkouo.
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Stating wy def ur —ur, it is obvious after very elementary computations that wy
is the solution of the evolution Stokes problem with initial data P (ug — Pg,ug)
and external force

9 & Py (Q(wyy wy) + Qs ur) + Qur, wyy) + Qur,ug)) -

Using again an H? energy estimate, we get that

d

2 2 _
&”wk(t)HH% +2v[Vur @)1, = 2(9x(0)|we (1)) ;5

< Jlge @I, 3 IVwr®)l ;-

Using estimate (3.5.2), we get that
lge@l ;-3 < CIVwe®)Z2 + [Vur(@®)]Z:) -

2

Then by an interpolation inequality between H? and H %, we deduce that

2geOlwr() 3 < (Collun®)l 3 + 5 ) IVwR®IF , + 2@

Thus we get

d
@Hwk(t)

2
2

Cy
1+ 7||VUL(t)||i2-

3 2
4+ 5V V() 2,

[ y < Cillwr@)] 3 [[Vwr(#)

2
12,
Now let us prove that wy, which can be made arbitrarily small initially, will
remain so for a long enough time. More precisely, let us define T} by

T sup {1/ ¢ <t Jun@)ly < 50 |-
Let us choose kg the smallest integer such that
v
o = Prouoll 3 < g5 (3.5.4)

Let us prove that a positive time T exists such that for any integer k, we
have Ty > T. For any time ¢t smaller than or equal to T}, we get

d C
S lon (O, +vIVur@IP,y < 2 IVur )]

By time integration, we infer, for any ¢ < Ty,

t
2 \V/ N2 /

v \> C [
<|(-—= = |32 dt’. 5.
<(16) + 5 [ 1w (355
As uy, belongs to Py, H, we have

IVur@®lze < kdlluz (@)l72 < kdlluollz
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Thus, thanks to (3.5.4), we get that

v

t 2
C
sl +v [ 1T b < (75 + Sl

Now let us state

def V3 1

T 16C2C R2luollts

Then for any k we get T, > T.

Similarly to the case of small data, one can extract from (wg)gen & sub-
sequence which converges weakly towards v — uy, where v is a Leray solution.
By the above estimate on wy, u satisfies

we L¥([0,T); H?) and Vue L([0,T]; H?).

(3.5.6)

To end the proof of the theorem, it remains therefore to prove that u belongs
to C([0,T]; H2). In order to do so, we recall that the above bounds on « imply in
particular that v € L*([0,T]; H'). Hence u is stable in the sense of Theorem 3.3,
page 58, and we can write, as noted in formula (3.1.3),

u(t,z) = (271')_d/ e UL, &) dé with

R4

t

it €) < e (€) + / I FQu(t') u(t)) (€) dt'
0

Note that we have supposed here that the domain is R?, but the computations are

identical in the case of T?, simply replacing everywhere the integrals in ¢ € R?

by sums on k € Z3. We leave the details to the reader. Let us state the following

proposition, which we will prove at the end of this section.

Proposition 3.3 Ifwv is the solution of the Stokes evolution system (ES,), with

an initial data vy in H2 and an external force in L (R H~2), then

1
=~ 2
/R U orry 46 < ool gz + 7 11 o -4
Let us recall that
1Q(u, W)l -3 < ClIVulZ..

Thus we may apply Proposition 3.3. This implies directly the fact that u is
continuous in time on [0,7] with values in H 3. Indeed let 1 be any posit-
ive number. One can find, according to Proposition 3.3, a positive integer Ny
such that

a.7 200 d <ﬂ.
[ IR Ol oy e <
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Now consider ¢; and ¢5 in the time interval [0,7]. We have

1
2

lu(ty) — u(ta)] 3 < ( /M i, ) — (2, )2 df)

+ ( /QNO 5|||a<-,5>||%w<[o,m>

.

2

But we know from Theorem 3.3, page 58, that w is continuous in time with values
in L2, so the result follows, up to the proof of Proposition 3.3.

SIS

1
< NG llulty,-) — ulta, )|z +

Proof of Proposition 3.3 We have

t —~
1% [alt,€)] < Jél? ()] + ’/ eSOl e ) |

Young’s inequality enables us to infer that

1

I
203

€172 F(t,€)ll 2o, 1)) -

EIZ [a(t, &)l o7y < I€12 @0 ()] +

Taking the L? norm gives

([ e ae) < ([ eiator de)

v ) !
(/ / €|1|f(t,€)|2dtd£> |
0 R4

The proposition follows. O

1
+
2032

3.6 Blow-up condition and propagation of regularity

The aim of the first subsection is a version of Proposition 3.2 and Corollary 3.1
for the case of domains without boundary. The purpose of the second subsection
is the proof of the propagation of regularity result in the case of dimension two
which will be useful in Chapter 6 in the periodic case.

3.6.1 Blow-up condition

Proposition 3.4 Let ug be in H'(R®). Then the mazximal time of existence
T* of the solution w in C([0, T*[; Hz) N L2 ([0, T*[; H?) satisfies

loc

cv?

™> <L .
~ Vol
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Proof If ugisin H', we have

Juo = Prouollyy < [ el (€l de

[€]>ko
<kt / €0 (6 de

< kg | Vuol|7:.

Thus choosing ko = (4C1||Vugl|2:)/v? ensures (3.5.4). Now, estimate (3.5.5)
gives, thanks to the conservation of the H! norm by the heat flow,

2
2 2 ’ v C 4
\% dt < | -— —t||V 2.
01y +v [ 19, d < (1) + Soivlt

Proposition 3.4 is now proved. O

We can now state an analog of Corollary 3.1, the proof of which is left to the
reader as an exercise.

Corollary 3.2 Let T* be the mazimal time of existence for a solution of the
system (NS,)) in the space C([0,T*); H2)N LE ([0, T*); HY). If T* is finite then

loc

T T*
/ [Vo(t)||]: dt :/ HVu(t)HZ% dt =400 and T*< —||u0||
0 0

This property will have the following useful application (see in particular the
scheme of the proof of the forthcoming Theorem 6.2, page 119).

Theorem 3.6 Two real numbers ¢ and C' exist which satisfy the following prop-
erty. Let u be the solution of (NS,) in T? associated with initial data Ug 1N Hz
and an external force f in L*(R™; H*%) Let us assume that u is global and that

ol s (10, + 20 [ V02, ) < -+oc.
>
Then, for any vy in H? and any g in L*(R™; H_%) such that

C
2 2 4
oo = ol + 15 = 012, e, < evexe (~Slul}).

the solution for (NS), associated with vy and g is global and belongs to the
space E%.
Proof Let us consider the maximal solution v given by Theorem 3.5. It belongs
to the space C([0,T*[;Hz) N L2 ([0, T*[; H?). Let us state w Aot w1t s
solution of

0w — vAw = Q(’U),’LU) + Q(U,U}) + Q(w7u) +h

divw =0

Wit=0 = Vo — Uo
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with h g - f. Inequahty (3.5.2), together with the interpolation inequality
between H2 and H? 2, tells us that

Q(w,w) + Qu,w) + Q(w,u) € Li,e ([0, T H™%).
Again inequality (3.5.2), together with the interpolation inequality between H %,
and H? gives

t
2 V112 /
)12y +20 [ IVl a

t
< |lwoll? 4 +2/0 1RGN - IV, g !

t
/! / 2 !
+C [ )]y IV, d

t 1
+0/0 Va2 Vo @I Vo)l di"

1
2

jnaJNICS

Using the convexity inequality (1.3.5), page 26, gives

t
2 N2 L dt < 2 E2
o ®)1?,y +v / IVl e < ol + 102,

+C/ [l ;3 IVwE)2 y dt’ +C/ IVu() |72 llw )2, dt’.

Let us assume that

*II [

2
2 < (L) .
ol + S0 0,5 (35

Let us define 7 < s { <T* )Vt <t [Jw(t) As w is con-

v

| .1 < —}

Hz = 200
tinuous with values in H % the time T is positive. For any ¢t < T,
we have

t
14
)+ 5 [ 1T ar < ol + 52

L2(R+;H™3)

e / V() [ ()2, d’.
0 Hz2

Gronwall’s lemma gives, for any t < T,

1%y + 5 [ 1@,y a0 < (ol + 21002, 00 )
C oo

X exp (3/ IVu()|[Ls dt’) .
v Jo
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Using the interpolation inequality between H 3 and H %, we get, for any ¢ less
than T,

2 2 2 2
I+ 5 [ 19y < (ool + 2002 )

C 4
Thus, if

2 C
2 2 YVull?
||w0|| Lt H || 2t b) S (40) exp( 21/4” u||§> )

then, for any ¢t < T, we have ||w(t )|| 1 <v/2C and thus T = T*. Then inequal-

ity (3.6.1) together with the blow- up condltlon given by Proposition 3.4 implies
that T* = 4+00. Theorem 3.6 is now proved. O

3.6.2 Propagation of regularity
We shall investigate this problem only in the two-dimensional periodic case. The
following theorem holds.
Theorem 3.7 Let ug be in H2(T?) and f € LIOC(R+ H~=2(T?)). Then the
3
5

stable Leray solution u belongs to C(R*; H2(T?)) N L} (RT; H2(T?)) and
satisfies

t C t
@l v [ I9u@ e < e ([ 1vue)zaar

C c [t
< (ol + € [ s,y e (=S [ ivuei.ar) a).

As usual, we prove a priori bounds on the sequence (uy)ren of solutions of the
approximated problem. Taking the H? scalar product of the system (NS, k)
gives
1d| W23 +vlue@®)? 5 = = (uk - Vg |ug) 3 + (f 3.6.2)
2dt| w(t gy TYNURDN g = 7 Uk VUE [ Uk) ) k|uk)H%' (3.6.
By definition of the H 3 scalar product, we have

(alt) 3 = 3 @wlnfin).

nez?

The Cauchy—Schwarz inequality and the Fourier—Plancherel theorem
imply that

(alb) ;3 < llallz2[[VO] 2

2

Thus we get
| (ur - Vug [ur) 1 | < Cllug - Vug| 22 [V 2.
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The Sobolev embedding Hz (T?) — L*(T?) together with the Hélder estimate
gives

| (ur - Vg | ug) lurll sl V|| L[ Vul]| L2

s =0
< Cllunll, 3 IVl 3 [V
<

Using the fact that (fx]|ug)
inequality (1.3.5), we infer

IVug] 3 1fxll ;-3 and the convexity

1
H?2 2

C
LAl g <= (el Va2 + 1502 )

d 2
Sl

The Gronwall lemma implies that

t t
C
s (@)1, +v / IVus(t)|?,; dt’ < exp ( / IVur (e[ dt')
2 0 2 v .Jo

% H 2 Q ! _9 ! v 11\ (|12 d// \112 d/
wllfy + 5 [ exo (=3 [ IVt ) 157,y ).

Thus the Leray solution belongs to L (R Hz )NLE (RT; H?) and satisfies the
estimate of the theorem. Now let us prove that it is continuous with values in H 3,
Thanks to Sobolev embeddings (see Theorem 1.2, page 23, and Corollary 1.1,

page 25), one has
la - Vb||H7% <Cl|la- Vb||L%
< Cllal|L=(|Vb]| 4
< Cllall=IVol -
loc(R+;H%), it solves the

Stokes problem with initial data in H z and an external force in the space
L? (R+; H_%). Thus following Proposition 3.3 allows us to conclude the proof

loc

of the theorem. O

As u belongs in particular to L (RT;L2%) N L2






4

References and remarks on the Navier—Stokes equations

The purpose of this chapter is to give some historical landmarks to the reader.
The concept of weak solutions certainly has its origin in mechanics; the article
by C. Oseen [100] is referred to in the seminal paper [87] by J. Leray. In that
famous article, J. Leray proved the global existence of solutions of (NS,) in the
sense of Definition 2.5, page 42, in the case when @ = R?. The case when € is
a bounded domain was studied by E. Hopf in [74]. The study of the regularity
properties of those weak solutions has been the purpose of a number of works.
Among them, we recommend to the reader the fundamental paper of L. Caffarelli,
R. Kohn and L. Nirenberg [21]. In two space dimensions, J.-L. Lions and G. Prodi
proved in [91] the uniqueness of weak solutions (this corresponds to Theorem 3.2,
page 56, of this book). Theorem 3.3, page 58, of this book shows that regularity
and uniqueness are two closely related issues. In the case of the whole space R,
theorems of that type have been proved by J. Leray in [87]. For generalizations
of that theorem we refer to [113], [121], [58] and [62]. In the article [87], J. Leray
also proved the global regularity of weak solutions (and their global uniqueness)
for small initial data, namely initial data satisfying

luollZzlluollr= < *® or Juoll7al|Vuol L2 < c*v?.

Theorem 3.4, page 66, and Theorem 3.5, page 73, which are generalizations
of the first smallness condition above, were proved by H. Fujita and T. Kato
in [57]. In the case if the whole space R®, the smallness condition has been
generalized in terms of the Lebesgue space L? by T. Kato in [79], of Besov
spaces by M. Cannone, Y. Meyer and F. Planchon in [25], and of the BM O-type
space BMO~! by H. Koch and D. Tataru in [84]. The set of results presented in
this part contains the material required for the further study of rotating fluids.
The reader who wants to learn more about the theory of the incompressible
Navier—Stokes system can read the following monographs:

e M. Cannone: Ondelettes, paraproduits et Navier—Stokes [24]
e J.-Y. Chemin: Localization in Fourier space and Navier—Stokes system [30]
o P. Constantin and C. Foias: Navier—Stokes Equations [38]

e P.-G. Lemarié-Rieusset: Recent Developments in the Navier—Stokes
problem [86]

e P.-L. Lions: Mathematical topics in fluid mechanics [92)]
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e Y. Meyer: Wavelets, Paraproducts and Navier—Stokes [98]
o L. Tartar: Topics in non linear analysis [117)]
o R. Temam: Navier—Stokes Equations, Theory and Numerical Analysis [118].

Let us conclude this chapter by noticing that the proof of Sobolev embeddings
presented here comes from [35]. Moreover, Section 1.4 follows mainly [117] by
L. Tartar.



PART III

Rotating fluids

In this part we intend to study the rotating-fluid equations (NSC,) presented in
the introduction. Let us recall the system:

3

A
8tu+u-Vu—VAu+%+Vp:f
div u = 0.

(NSCe)

We recall that the parameter ¢ is the Rossby number, which will be considered
very small: one of the aims of this part is to study the asymptotics of the solutions
as € goes to zero. As explained in the introduction, the situation depends strongly
on the boundary conditions.

In Chapter 5 we consider the case when the system (NSC;) is written in the
whole space R3. In that situation we are faced with dispersion — this concept is
studied in an abstract setting in Section 5.1, and applied to the system (NSC,)
in Sections 5.2 and 5.3.

Chapter 6 deals with the case of periodic boundary conditions. In that situ-
ation there is no longer any dispersion, and the possible interaction of oscillatory
Rossby waves for all times has to be taken into account.

Finally in Chapter 7 we deal with the more difficult case where the fluid
evolves between two fixed, horizontal plates. The assumption made on the
boundary is that the fluid is stopped (this corresponds to Dirichlet boundary
conditions), which, as explained in the introduction, immediately creates bound-
ary layers. Depending on the horizontal boundary conditions (in the whole space
or periodic), these boundary layers are coupled with dispersion, or oscillatory
phenomena.






5

Dispersive cases

5.1 A brief overview of dispersive phenomena

It is well known that dispersive phenomena play a significant role in the study of
partial differential equations. Historically, the use of dispersive effects appeared
in the study of the wave equation in the whole space R? with the proof of the
so-called Strichartz estimates. The idea is that even though the wave equation is
time reversible and preserves the energy, it induces a time decay in LP norms, of
course for exponents p greater than 2. In particular, the energy of the waves over
a bounded subdomain vanishes as time goes to infinity. These decay properties
also yield smoothing effects, which have been the beginning of a long series of
works in which the aforementioned smoothing is used in the analysis of non-
linear wave equations to improve the classical well-posedness results. Similar
developments have been applied to the non-linear Schrédinger equations.

Let us give a flavor of the proof of dispersion estimates in the case of simple
systems. As a first example, the free transport equation describing the evolu-
tion of a system of free particles in R is expressed in terms of a non-negative
microscopic density f(¢,z,v) as

atf+v'vxf20a f|t:O(I7U) :fo(x,’l/), (511)

where z€ R and v € Rd, respectively, denote the particles’ position and
velocity. The associated macroscopic density is given by

p(t,z) = f(t,z,v)dv, (5.1.2)
R

so that the total mass conservation property reduces to
d .
&t Jr p(t,x)de =0, ie. [|f(t, )Lrmaxrr@ay = 1ol )L ma x re)-

On the other hand, the exact expression of f in terms of f; is given by integration
along the characteristics f(t,z,v) = fo(x — vt,v), so that

ot ) Lo may = I1f (s ) oo (me; 1 (RY)

< [t|=¢ sup /d fo (m—w,%) dw
R'UJ

r€R4
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<l sup [ oo = 0 ) quoydu
zeRYJRY

—d
< N follLr (re noe (maY) (5.1.3)
which means in view of (5.1.2) that the macroscopic density p decays in the L
norm, even though the total mass is preserved.
Another simple illustration is provided by the linear Schrédinger equation in
the whole space R?

1
10,0 = §A\1/ in RY U)o = Vo, (5.1.4)

where U(t,-) denotes the wave (complex valued) function at time t. Its Fourier

~

transform W can be expressed in terms of the Fourier transform of ¥
(t,€) = To(¢)e™ €2,
which yields the L* conservation |[W(t,-)||p2re) = [[Wollp2(re)- Moreover, easy

computations show

W) = [ ola =K ty)dy
where
K(t7 y)déf (27Tt>_d/Qeiﬂd/4e_i‘y‘2/t,

so that we deduce from convolution estimates that the L® norm of W(¢,-) decays
when |t| tends to +o00

19t gy < 127020 1 - (5.1.5)

This estimate is one of the key tools for proving well-posedness properties for
non-linear Schrodinger equations.

The analysis of the wave equation is another classical framework for the
application of dispersion estimates. The linear wave equation is as follows:

O%u—Au=0 in RxR?. (5.1.6)
It reduces to the study of
Ayt £i|Djur =0 in RxRY, with |D|v:= F~1(|¢[0(¢)), (5.1.7)

where F denotes the Fourier transform. Thus, the solution is of the form
u(t) = F* (1€ () +e "y (9)).

Let us suppose that the support of the Fourier transform of the initial data v+
and 4~ is included in a fixed ring C of R%. The Strichartz estimate is based on
the so-called “dispersive estimate”

C _
w(t)| Lo (mey < Y (I e rey + 17 22 wmey) - (5.1.8)

|t
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Then, functional analysis arguments based upon interpolation results (the
so-called T'T™* result) imply that

ull Lo r: oy < CUN prmay + 17 1o ray) (5.1.9)

for suitable p and ¢, which is clearly a decay property. Using scaling arguments
and Sobolev embeddings, it can be proved that

IVull 2o, 172 (rey) < Cr (I e ey + 177 e (me))

for some s < d/2 depending on the dimension of the space. This kind of
smoothing estimate is used to solve non-linear wave equations locally in time.

The aim of this section is to emphasize basic properties which allow us to
derive dispersion estimates in a much more general framework, as long as waves
propagate in a physical medium. Indeed, the main tool for proving time decay for
solutions of wave equations is multiple integration by parts like in the stationary
phase theorem.

In the next subsection, we shall explain the general way to derive Strichartz
estimates and shall illustrate how this method works on the wave equation in
Subsection 5.1.2.

In Section 5.2, we apply these ideas to the rotating incompressible Navier—
Stokes equations. Dispersion takes place in the direction transverse to the
rotation vector, which influences the time decay of the associated waves in the L>°
norm. Finally, the application to the non-linear case of the rotating Navier—Stokes
equations is given in Section 5.3.

5.1.1 Strichartz-type estimates

We now intend to describe mathematically dispersion phenomena in terms of
the time decay in the L°° norm in the case of frequency localized functions. It
turns out that dispersion is obtained by integration by parts just like in the
proof of the stationary phase theorem. Let d>1 and m >1 be two integers,
B a bounded open subset of R%, and §2 an open subset of R™. Let U € D> (B;C)
and a € C®°(R% xQ; R). We define K : R xQ — C by

K(r,z) = / V(&) exp(ita(§, z)) dE. (5.1.10)
Rd
We also introduce the stationary set
X ={(2)eBxQ/Vea(l z)=0}.
We assume that the phase a satisfies the bounds
Vaec L®(BxQ) and V?ae L®(BxQ). (5.1.11)

We intend to prove the following two theorems.
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Theorem 5.1 Let us consider the non-stationary case X = (0. Assuming that
i > 1.
BlI)l(fQ [Veal > >0, (5.1.12)
then K decays in 7 at any order: for any k € N, there exists Cr > 0 such that
for any T in RT,
K (7, )| o) < Cr(l+7)7F (5.1.13)
In the stationary case, we shall prove the following result.
Theorem 5.2 Assume that a function & exists in C*(2; B) such that
X ={((2),2), z€Q} and inf 2|D2a(§0(z),z) cx| >0 >0. (5.1.14)

|z|=1, z€S
Then, there exists C > 0 such that for all T € R,
1K (7, )| L 0 < Clr| =42 (5.1.15)

Proof of Theorems 5.1 and 5.2 The main idea in proving the above two
theorems is to perform multiple integrations by parts. As a matter of fact, we
introduce the following operator
1 — 400k
1+ 7]ef?’
It can be easily checked that Lexp(ita) = exp(ita). On the other hand, the
transposed operator 'L is defined by

/tﬁf~gd$:/ f-Lgdx forany (f,g) € D(R%C)2.
R R

L= where «(g, z)dgfafa(f, z). (5.1.16)

Straightforward computations now yield
1 Oea — 7?0 v ]
+1 ( d d ) + @ O .
1+ 7a? (14 71a2)? 147102
It follows from the assumptions of Theorem 5.1 that for all ¥ € D(B),

tﬁ:

(5.1.17)

C
L2 ey < T3 527 (1Pl 19l

IV Ly llal L)) -

As a result, it can be deduced by induction that for all & € N*, there exists a
positive C}, such that for all 7 > 0, we have

C
H(t‘c)k(T"")\IJHLOO(BXQ) < )kH\I’HWkoo(B) (5118)

_k
(1+7
Writing

Kirz) = [ w©expliralé2) de = [ teHwexplira(e.2) e



A brief overview of dispersive phenomena 91

we deduce from (5.1.18) that

Ch.
K (7, )Ly < VOI(B)WH‘I’HW’c = (Q)>

which completes the proof of Theorem 5.1. In order to prove Theorem 5.2, it only
remains to deal with the case when (&, 2) is localized in a neighborhood B’ x §2 of
the stationary set X, otherwise Theorem 5.1 would apply and yield the claimed
time decay. For (€, z) in B’ x §), we may use the non-degeneracy assumption on
the phase along the stationary set to prove that

la(&,2)] = € - fo(z)|g .

As a result, we deduce similarly by induction that for k € N and (£, z) in B’ x §,

we have

| < T
T (176 =Gz

For a given integer k greater than d/2, we conclude by making the change of

variables ¢ = \/|7[(€—£&o(2)) and using the fact that ¢ — 1/(1+|¢|?)* is integrable

over RY. O

|(PL)* (T, =

5.1.2  llustration of the wave equation

Let us consider again the wave equation (5.1.6). Solutions can be expressed in
terms of

ut(t,z) = / E(€) exp(i€ - x + it|€]) dE. (5.1.20)
Rd

The above integral can be rewritten as a function of z=2x/¢ in order to match
the assumptions of Theorem 5.2. It corresponds to the case when

a(§,z) = £[g| +2- £
and to amplitude functions localized in Rg \{0}. Observing that

Vea(,z) =z £ iv

iy
we deduce that the phase is likely to be stationary when ¢ is directed along z. The
idea is then to write the integration over R? as an integration over R x Ri-!
for suitable one and d — 1 dimensional spaces. Let us assume that the direction

of z is the first vector basis e;. Then the phase can be written

a(¢,2) =&z = (|EP + 6PV with €= (&,¢) e RxRT!
and its d — 1 dimensional gradient as
g/

VE’G’(Z,g) |§|
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so that the stationary set over Rg,_l is given by X ={(¢' =0, z1e1)}. The second
derivative in &’ of the phase is expressed as

2 ! ' gl 1
viaten €20 = (10~ g o ) i

and hence reduces to Ig/ /|€1| along the stationary set (we recall that £ = 0 is
forbidden since the amplitude function is supported outside {0}). As a result,
Theorem 5.2 applies and yields the claimed time decay (5.1.8) in t=(@=1/2 The
classical estimate (5.1.9) follows from the so—called TT™* argument (see [80]).

There are many applications of the above estimates to fluid mechanics prob-
lems such as the low Mach number limit of compressible flows (otherwise known
as the incompressible limit). In the inviscid case, the Euler equations can be
considered in the isentropic case to simplify to

Op + div (pu) =0

(ALEcomp) Vol

I (pu) + ~e? 0,

where v > 1 denotes the exponent of the pressure law and € the Mach number of
the flow. As the Mach number vanishes, the density tends to a constant, say 1,
and we find divu = 0. Since general initial data do not necessarily have constant
density and incompressible velocity, waves propagate at the very high speed 1/e.
Introducing the density fluctuation

p—1
Y= v
€
we get the acoustic wave equations
\Y
8tu + l =0

(WE.) e

O+ divu _ 0

and hence 92t — Av/e? =0. From the time decay (5.1.8) in L>°(R%) deduced
from Theorem 5.2, classical duality arguments allow us to derive bounds such
as (5.1.9) for suitable p and ¢ such that ¢>2. As a result, rescaling the time
according to the speed of sound 1/¢ gives convergence to zero at a rate e. In the
case of the Euler equations for finite time or in the viscous case globally in time,
convergence to the incompressible limit system can be proved for general initial
data, namely the local energy of the potential part of the flow, which is carried
out by the acoustic waves, vanishes as the Mach number tends to zero.

Let us emphasize that a number of physically relevant systems can be studied
similarly, as long as waves propagate in an infinite medium. Indeed, a linear-
ization procedure followed by a travelling wave analysis allows us to derive
dispersion relations expressing the pulsation w as a function of the wavenumber
&. Then, the superposition of such waves can be analyzed like the above simple
example.



The particular case of the Rossby operator in R? 93

The next section will illustrate once again dispersion effects in a non-linear
system such as the rotating Navier—Stokes equations, which is the main purpose
of this book.

5.2 The particular case of the Rossby operator in R?

In this section, we give another illustration of the preceding dispersion estimates
on a linearized version of the rotating Navier—Stokes equations. In the sequel,
we shall denote e®= (0,0, 1) the unit vector directed along the x3-coordinate,
€ >0 the Rossby number and v >0 the viscosity of the fluid. The inviscid case
v = 0 can be treated by using Theorem 5.2 and yields a 7~'/2 time decay in the
L norm. In the Navier—Stokes-like case v > 0, the viscosity provides additional
regularity which can be used for nonlinear applications, so that the proof is
detailed in the sequel. The model equations read as

3
Oyv — VAU + ¢ ;\U+Vp:f
(VC) Jdive=0
v|t:0 = %o,

which yields in Fourier variables ¢ € R?
§END

80 + v|€)%0 + =7
(bvey {0V g =Y

ﬁ\t:o = i)\().
The matrix Mo Egé/; Y has three eigenvalues, 0 and :tilé;~ The associated
eigenvectors are

e’(¢) = "(0,0,1)
and

1 . .
eF(8) = =" (& Fitlel, L& xialel —1&l?) -

V2[¢]1€n]

The precise value of these vectors is not needed for our study; all we need to
know is that the last two are divergence-free, in the sense that & - e*(¢£)=0.
Furthermore they are orthogonal, and we leave the proof of the following easy
property to the reader.

Lemma 5.1 Let v € H(R?) be given, and define

ELF () (@)t (©) (5:2.1)
Then

lollZe = llv*IIZe + o~ I1Z--
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We are now led to study

GrE(n):g = | 5(E)e s ovreleting e
3

it 53 _pre|¢Pti(z—y)-
:/3 gl gy,
R xR

first considering the case when g is supported in C, g for some r < R, defined by
Con={¢€R? /|| > r and [¢] < R}. (5.2.2)

Let us introduce

)def w(g)e:i:i'l'a(fvz)"riz‘f—”ﬂﬂz d§7 (523)

3
RE

K*(t, 71,2

where
ydef 53

and v is a function of D(R?*\{0}), such that 1) = 1 in a neighborhood of C, g,
which in addition is radial with respect to the horizontal variable &, = (&1, &2).

As we shall need anisotropic-type estimates in the next section (when we
apply those estimates to the full non-linear rotating fluid equations), it is
convenient to introduce also

def iTa(€,z izp-Ep—V 2
ot o)™ [ (et g, (5.2.4)
R
33

Note that
Ki(t,r,z)z/ e [E(t, 7, 21, €3) dEs. (5.2.5)
R

Lemma 5.2 For any (r, R) such that 0 < r < R, a constant C, r ezists such
that Vz € R?, V&5 € R,
v ,.2

\K*(t,7,2)| + [T (t, 7, 2, €3)| < Cpgmin{l, 772} e 57°F, (5.2.6)

Proof Due to (5.2.5) and to the fact that &5 is restricted to r < |€3] < R, it is
enough to prove the result on I* and the estimate on K+ will follow.

The proof of the estimate on IT follows the lines of Theorem 5.2 in the
previous section, in a very simple way; the only difference is that we have to take
care of the dependence upon the viscosity. Moreover for the sake of simplicity
we will only consider IT, the term I~ being dealt with exactly in the same way.

First using the rotation invariance in (&;,&2), we restrict ourselves to the
case when z; = 0. Next, denoting a(ﬁ)déf — Og,a(€) = £263/|€[3, we introduce
the following differential operator:

def 1

L= T+ 7a2(6) (1 +1i(§)0,),
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which acts on the &, variable, and satisfies £(e?™®) = e'®. Integrating by parts,
we obtain

I+(ta7—a zha€3) - /

erraleating (1o (e)e ) dey,
R2

Easy computations yield

'L (7#(5)67”%‘2) = ( L i(8§2a)(1m42> W(E)eHEr

1+ 72 1+ 7a2)?
e v 2
14702 De. (e 1 ¢(§)> ’

As € belongs to the set C, g defined by (5.2.2), we have clearly

&lr R?
Sl ooy < L

hence
1 11— 7a?| || Crr
1+7a2 14702 14702~ 14782

An easy computation also shows that |9g,(€)| < C;. g. Finally, since ¢ € D(R?),
we have

‘8&2 (e—vt|§|2w(£))‘ < |8§2¢<§)|€_VtT2 +Vt|§2‘|w(€)‘e_ytr2

v 2
< Crpe 5

Putting all those estimates together we infer that

12 (v < liRg

so since r < |&| < R and |efT*(&#r) =18 | = 1 we obtain, for all z;, € R? and
all 53 € R,

dés 7
1+7€2

which proves Lemma 5.2. O

|I+(t,7', Zh,gg)‘ S CT’RG_%”Q/
R

Lemma 5.2 yields the following theorem.

Theorem 5.3 For any positive constants r and R such that r < R, let C, r be
the frequency domain defined in (5.2.2). Then a constant C, r exists such that
if vg € L*(R®) and f € LY(R™Y; L*(R?)) are two vector fields such that

Supp %o U | Supp f(t,-) C Cra,
t>0
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and if v is the solution of the linear equation (VC.) with forcing term f and
initial data vg, then for oll p in [1,400],

1
HU||LP(R+;L°°(R3)) < CpRre (||U0||L2(R3) + ||f||L1(R+;L2(R3))) (5.2.7)
and
1
ol Lo+ i5e2,) < Crre™ (lvoll 2msy + 121w+ 22(R3))) » (5.2.8)

where we have noted, for (o, 3) € [1,+00]?,

def
1l zee,, =

| f(zh, ')HLB(R%) Le(RZ,)) -

Proof Let us start by proving estimate (5.2.7). Its anisotropic counterpart
(estimate (5.2.8)) will be obtained in a similar though slightly more complicated
way.

Before proving the result (5.2.7), we note that Duhamel’s formula enables
us to restrict our attention to the case f = 0. Indeed if f is non-zero then we
write v = v + v~ with

o e (D + [ (8) e ar,

where we have used notation (5.2.1) above. Then by Lemma 5.1 it is enough to
prove the result for v+ remembering that

[0l L2mey < 0llp2mey and  [|f 5[ we r2me)) < 1@ 22 m2))-

Note that the eigenvalue 0 does not appear in this formula since the correspond-
ing eigenvector is not divergence-free.
If the result (5.2.7) holds when f* = 0, then of course

t 1
1G5+ (E) vg oo R+ (R3)) < Cror €% 0ol p2(R3)-

Then we write, if p=1,

t /
s (H) 7

g”( )f*()
// Jor(555) 77

< Cppet / 17t =t

gor(f)

LY(R+;Lo°)

dt'dt
LOO

dtdt’
L(x)
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which yields the result if p = 1. Similarly if p = +o0,

ga*(t )f*( )

t
< Cpp sup / 17t e dt’
t>0 Jo

dt'
LDO

G+ (1) < sup /

t>0

and estimate (5.2.7), for all p € [1, o], follows by interpolation. So from now on
we shall suppose that f = 0.

As a consequence of Lemma 5.2, considering ¢ such that g is supported in C, r
and 1) € D(R?\{0}) radial with respect to &, such that ¢/ = 1 in a neighborhood
of C; r, one has

iT£—3—u7— 24 i(z—v)-
G;*(glo) = [ wl@)gly)e BT ggay
R3 x R3
= | K (er,7,2—y)g(y)dy,
RJ

where K is defined by formula (5.2.3). Moreover, the following estimate holds:

()

Now we shall use a duality argument, otherwise known as the TT* argument.
Once we have observed that

m\»—-

< Crrre gl
LOO t

[N

[0l 1 (m+: Lo (m3)) = Sup/ b(t, x)p(t, x) dadt,
eBJR+ x R?

with

B={peDR"xR?), ||¢llp~m+r(re)y <1},

0

we can write

L (RF;L)
t
= sup/ K* (t, T — y> 9(y)e(t, z) dtdzdy
peBJRT x RS €
which can be written
o ()
g Ll(R+;LOO)

t
= sup/ 9(y) </ K* (L - — y> w(t,x)daﬁ> dtdy.
peB JRT x R3 R3 €
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A Cauchy-Schwarz inequality then yields, denoting b(x) = b(—z),
< llgll=®

t
‘Q,ﬁ’* () g
13 Ll(R+;LOO)

§ t
def / K+ <t, -, ) s o(t, ) dt
Rt g

®'= sup
By the Fourier-Plancherel theorem, we have

with

peB L2

, 1 ot - ?
*W R+-7'-K t,ga' o(t,-)dt Lo
<c Kt (t - —«s) 2(t,6K (s,f,—f) P(s.€) dedtds.
R+ x RT x R3 €

By definition (5.2.3) of K, we have
R*(t,7,-€) = (- g)eimel-s DIl
Thus the following identity holds
~ t —<+ ~ t—
K+ (taag)K <Sa§37§> :KJr <t+$, Sag) q/)(—f)
€ € €
It follows that

P2 <C Y(&)F (K+ (t + s, t ; S, ) * p(t, )) P(s, &) dédtds.

(R1)2xR3

We now use the Fourier—Plancherel theorem again to get

. t—
o[ e (R (s ) ote)) (et o) deds
2%
<c it (t+s,t‘s,~) ot || N, o deds,
(R+)2 & Lo
<C

et ) o (s, )l L mey dids.

. t—
K+<t+s, S,~>
€

The dispersion estimate (5.2.6) on K+ yields

(RT)2 L (R3)

1

E —VT2 El
CT R/ () HQO(L ')||L1(R3) H‘P(Sa ')”LI(RB) dtds.
R+)2

-

t—s 2

Now we conclude simply by writing

1
2 <O b ol / . dsdt.
< Crre? |19l 70o (r+, 11 (R (B2 (t — 5)3
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As the integral

1
/ 7167’”’2““) dtds
(R+)2 (L —s)2

is finite, this yields the expected estimate in the case p = 1. To get the whole
interval p € [1,4+00], we simply notice that due to the skew-symmetry of the
rotation operator, the L>°(R™; L?(R?)) norm of v is bounded, uniformly in e.
As its frequencies are bounded by R, the same goes for the L®(R™T x R3) norm
since according to Lemma 1.2, page 26,

[l oo (r+ x R3) < CRIVI Lo (m+L2(R3)) < Vol L2 (m3)-

Interpolation of that uniform bound with the L'(R™*; L>°(R?)) estimate found
above yields estimate (5.2.7).

Now let us turn to the anisotropic estimate (5.2.8), which is obtained in a very
similar manner to the isotropic estimate above. If we denote, for any function g
defined on R?, by § its vertical Fourier transform

Gan, &)

/ e‘”Bgag(mh, x3) dzs,
R
then we have of course

I

1G5 (7)g]

L2 :C’

Th ®3

T Cor] I
zp,€3

where we have defined

G (e ) [ e o €000, )

2
Yh

where I is defined by (5.2.4). By Lemma 5.2 we have

()

We shall now be using exactly the same TT* argument as in the isotropic case;
we reproduce it here for the reader’s convenience. We have

|

_cti~
gz

< Cr,R
o002 t
zp €3

Nl=

||g||L1(R+;L?°’2£ ) = SUE/ g(t,$h7£3)g5(t,(ﬁh,§3) d,’Ehd&gdt,
Th,83 @GB Rt x R3
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with B = {gE € DR xR?), H‘ZHLOO(R+~L1’2§ ) < 1}. So we can write
TTap,Es

G ()

t
= Sup/ It (t ,Zh — yh,&) 9(yn, &3)P(t, wn, &3) dtdzydyndés
cBJR+ x R® €

LY (R+;LS> 2£ )

— sup / . &)
geg Rt x R3

X (/ It (t ! T —ymfs) o(t, xmés)dxh) dtdynds.
R2

We infer that
. t
/ I+ <t7a'a€3> *w(t77£3)dt
R+ £
Similarly to the isotropic case, we have
(0t
1 t77a'a§3 *@(t,',fg,) dt
Rt 9 L2

1
£2 2 - -
CTR/ Ty ———— e NG, e (1B (s, )l e dtds

R*)2 t — s xp €3 zp,.€3

< 191l z2(m3) sup
pEB

L2(R3)

2

and the result follows as previously: to get the LP estimate in time for all p,
we now notice that the L (R™, Lz 3;3) norm of the solution is bounded, again
by frequency localization and the fact that the rotation operator is an isometry

on L?(R?), and the corollary is proved. O

5.3 Application to rotating fluids in R?

In this section, we focus on the small Rossby number limit of solutions to the
incompressible Navier—Stokes—Coriolis system, namely
3 /\ >4
opuf + uf - Vu® — vAu® +
(NSC¢) divu® =0

€ —
u|t=0 = Uug-

+Vp* =0

We refer to the introduction of this book for physical discussions of the model.
In the sequel, we will focus on the viscous case v >0. We have neglected the
presence of bulk forces to simplify the presentation. Let us introduce some nota-
tion: let P be the Leray projector onto divergence-free vector fields; the fact that
the operator P(e® A uf) is skew-symmetric implies that if the initial velocity ug
belongs to L2(R?), then we obtain a sequence (u).sq of Leray’s weak solutions,
uniformly bounded in the space L®(R™; L2(R?)) N L*(R*; H'(R?)). We leave
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as an exercise to the reader, the adaptation of the proof of Theorem 2.3, page 42,
to obtain the existence of such solutions.

We now wish to analyze that system in the limit when € goes to zero. In the
introduction (Part I), we claimed that the weak limit of u® does not depend on
the vertical variable z3. The only element of L?(R?) which does not depend on 3
is zero, so in order to get some more relevant results on the asymptotics of u®,
we are going to study the existence (and convergence) of Leray-type solutions
for initial data of the type

ul) =@ (z1) + wh(zn, x3), € {1,2,3}, (5.3.1)

with divy, uft = divwy = 0.
Let us denote by H(R2) the space of vector fields u with three components
in L?(R?), such that 0" 4 9,u% = 0. We have, of course, for @ in H(R?),

= (@",0) +7°(0,0,1)

with " in H(R?) and @ in L*(R?).
We will denote by (NS) the two-dimensional Navier—Stokes equations, when
the velocity field has three components and not two:

o +a" - Vha — vALT A+ (Vip,0) =0
(NS) < divya* =0

U= = Uo € H.
Our aim is to prove the convergence of the solutions of the rotating fluid equa-
tionL(NSCE) associated with data of the type (5.3.1) towards the solution
of (NS). So we first need to define what a solution of (NS) is, and to prove
an existence theorem for that system; that will be done in Section 5.3.1 below.
Then we will investigate the existence and convergence of solutions to (NSC;)
in a “Leray” framework (in Section 5.3.2) and we will discuss their stability and
global well-posedness in time in Section 5.3.3.

5.3.1 Study of the limit system

In this brief section we shall discuss the existence of solutions to system (NS).

Definition 5.1 We shall say that a vector field @ in the space
Lis.(R* HR) N L, (R H(R?)

is a weak solution of (NS) with initial data ug in ﬁ(RQ) if and only if " is
a solution of the two-dimensional Navier—Stokes equations in the sense of
Definition 2.5, page 42, and if for any function ¥ in C'(R™; H'(R?)),

@ (1), ¥(t)) = <u3(0),\11(0))+/0t /R (V'R V-3 0,0) (¢, 2) dapdt.
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We state without proof the following theorem, which is a trivial adaptation of
Theorem 3.2, page 56.

Theorem 5.4 Let ug be a vector field in 'F[(Rz), Then there is a unique solu-
tion @ to (NS) in the sense of Definition 5.1. Moreover, this solution belongs

to C’(R+;7'~[(R2)) and satisfies the energy equality

1 ¢ 1
S IEOI72 + v / IV a3 dt’ = 5 |Tol|2-
0

5.3.2 Existence and convergence of solutions to the rotating-fluid equations

The goal of this section is to study the well-posedness of the rotating-fluid equa-
tions in the functional framework presented above. We will then investigate their
asymptotics as the parameter £ goes to zero.

Due to the skew-symmetry of the rotation operator, studying (NSC;) in such
a framework means in fact studying three-dimensional perturbations of the two-
dimensional Navier—Stokes equations. Let us first establish the equation on such
a perturbed flow. We consider %, in H(R?) and the associate solution % of (NS)

given by Theorem 5.4. Let us now define wdgu —u, where u is assumed to solve
the three-dimensional Navier—Stokes equation. Then we can write formally

w4+ w-Vw+u-Vw+w-Vu—vAw = —Vp

(PNS,) { .
divw = 0.

The definition of a solution is simply a duplication of Definition 2.5, page 42.

Definition 5.2 Let wy be a vector field in H(R?). We shall say that w is
a weak solution of (PNS,) with initial data wq if and only if w belongs to the
space L (RT;H)N L2 _(RY;V,) and for any function ¥ in C*(R1;V),),

loc loc
t
/ w(t,x) - U(t, z)ds — / / (w- 0¥ +vVw : V) (¢, x) dzdt
R3 0 JR3

- /t/ (w® @+ w)+uw): VE(',z)dedt’ :/ wo(x) - V(0, ) dx,
0 JR3 R3

where W is the unique solution of (NS) associated with Wy, given by
Theorem 5.4.

We have the following result.

Theorem 5.5 Let Uy and wo be two vector fields, respectively in ﬁ(R2) and
in H(R?). Let @ be the unique solution of (NS) associated with g, given by
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Theorem 5.4. Then, there exists a global weak solution w to the system (PNS,) in
the sense of Definition 5.2. Moreover, this solution satisfies the energy inequality

t
C
sy [ ] vt P ded < ool e ( Sl )
R 0 JR

Proof We shall not give all the details of the proof here, as it is very similar to
the proof of the Leray Theorem 2.3, page 42. The only difference is the presence
of the additional vector field @, which could cause some trouble, were it not for
the fact that it only depends on two variables and not on three. So the key to
the proof of that theorem is to establish some estimates on the product of two
vector fields, one of which only depends on two variables.

Let us therefore consider the sequence (wg)ren defined by

u';k(t) = l/PkA’wk(t) + Fk(wk(t)) + Gk(wk(t),ﬂ(t)), (532)
where we recall that Fi(a) = PrQ(a,a), and where we have defined
Gila,b) = PrG(a, b)) P (Q(a.b) + Q(b, ). (5.3.3)

The only step of the proof of Theorem 2.3 we shall retrace here is the proof of
the analog of the energy bound (2.2.4), page 46. An integration by parts yields

5 7 e @)Lz + vIIVwk(@)[72 = —Ag(ﬂ(twh) - Vwg(t,x)) - w(t, x) de

- / (Wp(t, ) - VPt 2p)) - wi(t, 7) d
R3

and again
ld
2 dt
Let us define

lwr Iz + I Vwr ()72 = */ (wi(t,2) - V'a(t, 2p)) - wi(t, z) da.

R3

I(t) = /R3 (wi(t,x) - Vu(t, xp)) - wi(t, z) de.

We can write
01 < ([ e s doa ) 1970002
and the Gagliardo—Nirenberg inequality (see Corollary 1.2), page 25 yields
0] < CIVTOll ey [ Te(tv23) o [V 008 23) 2 d
It is then simply a matter of using the Cauchy—Schwarz inequality to find that

v C _
1) < SIVeR@)T2@s) + - lwk @Ol 72 @) IV 72 @2 -
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Going back to the estimate on wy we find that

d c _
Zlwe®I7z +vIVws @7 < ;||wk(t)|\iz(R3)||VhU(t)||%z<R2>

which by Gronwall’s lemma yields

t C t
sl + v [ 9@l de < fon) e (S [ 190013 ar ).

The energy estimate on @ enables us to infer finally that

t
C
lun®l: +v [ 19wl d < o)1 exp (5wl ).

The end of the proof of Theorem 5.5 is then identical to the case treated in
Section 2.2, page 42, so we will not give any more detail here. O

We are now ready to study the asymptotics of Leray solutions of (NSC,).
We start by defining the Coriolis version, denoted by (PNSC.) of the perturbed
system (PNS,):

3/\ £ \W/'
8tw5—|—w5-Vw8+ﬂ~VwE+wE-Vﬂ—qug—i—e w__Yp
€

divw® = 0.

Let us note that @ belongs to the kernel of the Coriolis operator because e3> A @
is a gradient.

Definition 5.3 Let wy be a vector field in H(R?), and let & > 0 be given.
We shall say that we is a weak solution of (PNSC.) with initial data wq if
and only if w® belongs to the space L2 (RT;H)NLE (RY;V,) and for any
function ¥ in CY(RT;V,),

t
/ wé(t,z) - VU(t,z) dz —// (w® - 0¥ + vVuw® : V) (¢, z) dedt’
R? 0 Jr?

t 63/\’LUE
+// ( = -w—(wf®(u+wf)+u®w5):V\I’> (t', ) dadt’
0J/R3

_ /R wo(z) - W(0, ) de,

where W 1is the unique solution of (NS) associated with g, given by
Theorem 5.4.

Theorem 5.6 Let Uy and wo be two vector fields, respectively in ﬁ(R2) and
in H(R?). Let @ be the unique solution of (NS) associated with g, given by
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Theorem 5.4. Then, there exists a global weak solution w® to the system (PNSC,),
satisfying

t
C
/ |w€(t,x)|2dx + V// |Vw5(t'73;)|2 dzdt’ < ||w0||2L2 exp (2||u0||%2> .
R3 0J/R3 v

Moreover, for any q €]2,6[, for any time T, we have

T
. 2 _
glir(l)/o [[w® (@)[| 70 () dt = 0.

This means that one can solve the system (NSC.) with initial data @ + wo, and
any such solution converges towards the unique solution u of (NS) associated
with Ho.

Proof of Theorem 5.6 We shall omit the proof of the existence of w® sat-
isfying the energy estimate, as it is identical to the proof of Theorem 5.5 due
to the skew-symmetry of the Coriolis operator. So what we must concentrate on
now is the proof of the convergence of w® to zero. It is here that the Strichartz
estimates proved in Section 5.2 will be used. In order to use those estimates, we
have to get rid of high frequencies and low vertical frequencies. Let us define the
following operator

D
Prfx ('R'> f. where x € D(] —2,2]), x(z) =1 for |¢] < 1.
Let us observe that, thanks to Sobolev embeddings (see Theorem 1.2, page 23)

and the energy estimate, we have, for any ¢ € [2, 6],

" = Prwllpamepamey < Clw’ =Profl | o oyos),

< CR™ 0| 2 g+ )
- c — |12
S CR™ % ||U}O||L2 exp ﬁ||U0HL2(R2) (534)
with aqdéf (3/q) — (1/2)- Now let us define

() (%))

As the support of x(Ds/r)Prw® is included in Brygdéf {£ € B(0,R)/ |&] < 2r},
we have, thanks to Lemma 1.1, page 24,

(%) puwra], = ([ ) e (22) ]

< Cr? (log(1 + R?))

H1

[N

[ @) g1
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Then, by the energy estimate, we have

D
(%) o
:

Let us define

1 C
< Crrtlunllzz oo (il ) - (535)

L2(R+;L>)

Prrfd (Id —x (2‘”’)) Prf. (5.3.6)

The following lemma, which we admit for the moment, describes the dispersive
effects due to fast rotation.

Lemma 5.3 For any positive real numbers r, R and T, and for any g
in ]2, 400,
1(1_2
Ve >0, IPrr 0l g myzacesy < O 074,
the constant C above depending onr, q, R, T, ||[Uo||r2 and |wo||r2 but not on e.

Together with inequalities (5.3.4) and (5.3.5), this lemma implies that, for any
positive r, R and T, for q €12, 6],

Ve >0, Hw HLQ(OT ;La) < CR %« —|—0er +C’3€%( 7%),

the constant C3 above depending on r, R, T, ||ugl||r2 and |Jwg|/L2 but not on e.
We deduce that, for any positive r, R and T, for q €]2, 6],

limsup ||w6HL2([0’T];Lq) < CR % + CR T%.
e—0

Passing to the limit when 7 tends to 0 and then when R tends to oo gives
Theorem 5.6, provided of course we prove Lemma 5.3. O

Proof of Lemma 5.3 Thanks to Duhamel’s formula we have,

P rw( Z we(t) with

P} pw ()defga<> ', RWO,

'Pwa (t )def/ G <t€t'> PT7RQ(w€(t,)aw€(t,)) dt  and

Pt [ 65 (20 ) P Qe ) + Q) w0
Theorem 5.3 implies

1
1P gl 210y < Crre® [Jwoll e
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By interpolation with the energy bound, we infer that
1P} rwllia oy < Cromred (73 gl 2 exp (f;nuoniz(m)) . (637
Using again Theorem 5.3, we have
P2 s || L2 o171y < Cr g €3 |PRQ(w, w)|| L1 (f0.17:22)-
Lemma 1.2, page 26, together with the energy estimate implies that

IPRQ(w®, w)|| L1 (j0,7):2) < CR|Pr(w® @ w)| L1 (j0,1]:22)

< CR™ 2 ||u® ® w1 o, ry:00)
2 C_ 2
SCRTHWOHB(RB)GXP §||UOHL2(R2) :
Thus we have
P2 ] < CrnT o2 sy exp (5 70l
R L2([0,7;L°) =~ LUr R o0llL2(r3) €XP 2 ollLz(r?) | -
By interpolation with the energy bound, we infer
1(1_2 2(175) c
||7D72-,Rw6||L2([O,T];Lq) < C7‘7R7T ss(l <1)||w0||L2 exp <V2||U0||2L2(R2)) . (5~3-8)

Still using Theorem 5.3, we have
P2 qwf || L2 o170y < Crore® |[PR(Q(w?, @) + Q(@, w)) | 110,132y (5-3.9)
Lemma 1.2, page 26, implies that
PrQ@, w)|[1(j0,17;02) < CR|Pr(T @ w)| L1([0,1);:L2)-

We shall prove the following lemma, which is an anisotropic version of Lemma 1.2,
page 26.

Lemma 5.4 For any function f € Liﬁm, we have

1Prlliemey < CRIfI 1z

Proof Let z3 € R be given. Then Lemma 1.2 in two space dimensions
implies that

||7>Rf('a$3)||L2(R2) < CRHf('vxS)”Ll(Rz)'

Taking the L? norm in x3 therefore yields

1Paflleme, < CR ( LIl dxg) ,

=
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and the result follows from the fact that

[l dos < 112
R Tp,x3 D

This lemma, together with Holder’s estimate and the now classical energy
bound, implies that
PrQ(@, we)| L1 (jo,7);L2(r?)) < CR*|u® wEHLl([O,T];Ll’Q )

Th,3
< CR||ull 2 o,7) 2 (r2)) 1w 20,77 12 (R#)

< CrrlltollL2@m2) lwoll L2(m3)

Co o
X €xp ﬁ||u0||L2(R2) :

Clearly, the term ||PrQ(w®, )| 1([0,1);22(r?)) can be estimated in the same way.
Thus, inequality (5.3.9) becomes

1 c,_
1P oo < Crmr et ol ol exp (5ol )

By interpolation with the energy bound, we get
1(1_2),_ ,1-2 c,_
P2 g |2 o.z3ze) < Crrr ¥ 078 |[To | 2 7 luwol| 2 exp <V2||U0||2L2> :

Combining inequalities (5.3.7)—(5.3.9) concludes the proof of the lemma and thus
of Theorem 5.6. O

5.8.8  Global well-posedness

In the same way as in Part II, once solutions have been obtained it is natural
to address the question of their stability. The stability arguments of Section 3.5,
page 72, still hold in the setting of rotating fluids, due as usual to the skew-
symmetry of the rotation operator. What we are interested in, therefore, is
proving the existence, in the framework set up in the introduction of this section,
of a solution in L*([0,7]; V,) with uniform bounds. Actually we will do better
than that since we will be able to prove a result global in time, with no small-
ness assumption on the initial data. That will be of course due to the presence
of strong enough rotation in the equation.
The theorem we shall prove is the following.

Theorem 5.7 Let g and wo be two divergence-free vector fields, respectively,
in the spaces H and H%(RS). Then a positive €y exists such that for all € < gy,
there is a unique global solution u® to the system (NSC.). More precisely, denot-
ing by U the (unique) solution of (NS) associated with Uy, by v the solution
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of (VC.) with initial data wo (with f =0), and defining w® e — w, we have
w® e CORY;H2(R?) and  Vuw® € LARY; H2(R?)),
we — v5 — 0 in L>(RT; Hz (R?))
and V(w®—0v%)—0 in L2(R*; H2(R?))

as € goes to zero.

Proof Let us start by proving the uniqueness of such solutions. In order to do
so, it is enough to prove the uniqueness of w* solving(PNSC.). So let us consider
two vector fields w$ and w§ solving (PNSC.), with the same initial data wq in H2
and the same 7 in L°(R*; H) N L2(R™; H*) solution of (NS). As in Section 3.5,
page 72, we are going to use results on the time-dependent Stokes system. If w®

denotes the difference @° % w§ — w§, then w* solves the time-dependent Stokes
system with force

Q(wi, wi) — Q(ws, w5) + G(u, ws),

using notation (5.3.3). As seen in Chapter 3, page 53, for any vector field a
which belongs to L*([0,77;V,), Q(a,a) is in the space L2([0,T];V.), so the
term Q(w§,w§) — Q(w§, ws) is dealt with exactly as for the three-dimensional
stability result (Theorem 3.3, page 58— it is in fact even easier here since both w§
and w$ are supposed to be in L4([0,77];V,)). So the only term we must control
is G(u,w®). Let us prove that it is an element of L?([0,77];V7). In order to do
so, it is enough to prove that w ® w® is in L?([0,T]; L?). But we have, by the
Gagliardo—Nirenberg inequality (1.3.4), page 25,

L _ 2
I ® & 22 s, = / 1@ ® @) (- 20) |22 gy s

. / 1@ (- 28) |2 s s

< Clfall g2 g2y IV L2 (r2) |0 [ L2 (r3) | VO© || 2 (R3) s

so the result follows; for G(u,w®) to be in L%([0,7];V.) it is in fact enough to
suppose that @ belongs to L>([0, T]; H) N L?([0,T]; V,), contrary to the purely
three-dimensional case where a L([0, T]; V) bound is required.

Let us now prove the global existence of w® as stated in the theorem. We
can immediately note that it 1s hopeless to try to prove the global existence
of w® simply by considering H? estimates on (5.3.2): by skew-symmetry, the
rotation would immediately disappear and unless the initial data wy are small,
it is impossible to find an estimate global in time using the methods introduced
in Section 3.5. So the idea is to subtract from (5.3.2) the solution v% of (VC;),
which we know goes to zero (at least for low frequencies) by the Strichartz
estimates. We will then be led to solving a system of the type (5.3.2) on the
difference wj — v%, which will have small data and small source terms. The
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methods of Section 3.5 should then enable us to find the expected result, up to the
additional difficulty consisting in coping with the interaction of two-dimensional
and three-dimensional vector fields.

Let us be more precise. We can introduce v¢, the solution of (VC,) associated
with the initial data P, pwo where P, g is the cut-off operator defined in (5.3.6).
Notice that P, pwg converges towards wg in H 3asr goes to zero and R goes to
infinity. So the proof of the fact that w® — v® can be made arbitrarily small, in
the function spaces given in Theorem 5.7, implies that w® — v can also be made
arbitrarily small in those same spaces; therefore, from now on we shall restrict
our attention to v¢, and we are ready to consider the following approximate
system:

B e3 A Pk(;,i(t)

SE(t) = + VPLASL(t) + Fp(05(t)) + Fe(v®(2))

+ Gr(65(t), u(t) + 07 (1) + Gr(u(t), v° (1)),
where F), and G}, were defined in (5.3.3). The initial data for d5 are
Opjt=o = Pr(Id — Py, r)wo.

We omit in the notation of 6; and v* the dependence on r and R, although that
fact will of course be crucial in the estimates. We notice that J; remains bounded
in L?(R?) and is defined as a smooth solution for any time ¢. The point is now
to prove a global bound in H%(Rg), as well as the fact that 7 can be made

arbitrarily small. Indeed widéfve + dy, solves

P (e? Aws)

oywy, + Pr(wy, - Vwi + 1 - Vwj, + wi, - Vu) — vPrAwj, + -

:O’

with initial data PP, rwo.
The main step in the proof of the theorem reduces to the following
proposition.

Proposition 5.1 For any positive 1, one can find three positive real num-
bers ro, Ry and €y such that for any k € N and for any ¢ < €y, we have

€ 2 L € (4/\[|12 !
i>€ H(Sk(t)HH%(m) 2 /R+ IVoi(t )”H%(m) F=n

We leave the reader to complete the proof of Theorem 5.7 using that proposition,
since it consists simply in copying the end of the proof of Theorem 3.5 page 73.
O

Proof of Proposition 5.1 Let us consider from now on three positive real
numbers 7 <1, r and R. We define the time 7}, (depending of course on those
three numbers), as the biggest time ¢ for which

t
€(4/\]|2 v €(4/\]|2 !
3 — <n.
?Pg;”ak(t Wy +5 /0 VORI, 5 dt' <
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Thanks to the Lebesgue theorem, r and R can be chosen in order to have
10RO, < 1A =Prp)woll% 3 < 0, (5.3.10)

which implies in particular that T} is positive for each k, since n? < 7.
. . . L |
Let us now write an energy estimate in H2(R*) on §7. We have

1 € 2 K € (4] 2 12
SISO, +1//0 Vo5 @2, dt

< IO, + [ GG,y e + / (FENEE) i
where
Edeka(ék,ﬂ + 0%) 4+ G (T, v°) + Fi(v°).
By (3.5.2) we have
IF @RI, 3 < CIVEEIZ: < ClISEIL, 3 IV,

so we infer that
1 t
5%2(0\\2% +V/O RG] b

1 t
< S8R O)IF, 3 + ClURWDON 1 VRO, 4 +/O (Fr()IOR (") ;3 dt’.

Now let us suppose that n < (1/2C)s where C is the constant appearing in the
estimate above. Then by (5.3.10) we have, for all times ¢ < T},

t t
IO+ [ IV, @ <o+ [ FREIEE) , ar. 63

We have the following estimate for F; we postpone the proof to the end of this
section.

Proposition 5.2  With the previous choices of n,rq and Ry, there is a €9 > 0
and a family of functions (f€)e<c,, uniformly bounded in L*(R*) by a constant
depending on |[ugl|r2 and on ||w0||H%, such that, for all t < Ty, we can write,
for any e < e,

v t t
[y | <5 [ 1osnn, a s [ @, af o
0 0

Let us end the proof of Proposition 5.1. Applying Gronwall’s lemma to the
estimate (5.3.11) and using Proposition 5.2, yields

[AG

2 2
2 b+ / IV, g g ' < 207 50 L7 Ln e
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It is therefore now a matter of choosing 7 small enough so that
21 exp <Sup II.f< ||L1(R+)) 3’
e< €0
to infer that T} = 4o00; Proposition 5.1 is proved. O
Proof of Proposition 5.2 Recalling that

e def

Fi = Gr(05,0%) + G (6, 1) + Gr(v%, ) + Fi(v%),

we have four terms to estimate. First of all we can write, again using (3.5.2),

(G5 v)10E) 1)

< OV 2Vl 2 Vil 4

SO

t
/ K e (41\ |2 /!
dt’ < 8/0 VRN, 5 dt

/

(Gr(67.0)167) 3

C t
+ 7,/ ORI,y V05 ()I[72 d'. (5.3.12)
v=Jo
Then to conclude we just need to notice that
C
/ VoS ||72 dt’ < —|jwoll* + . (5.3.13)
R+ 14 H?2

The second term is more delicate: it is here that we have to deal with interactions
between two-dimensional and three-dimensional vector fields. This is done by the
following lemma.

Lemma 5.5 A constant C exists such that for all vector fields a and b

|(a[b) ;3| < Clla] Vo]l

L2(RagsL 3 (2 VL2 (R 513 (R2))

Proof By definition of the scalar product on H %, we have

(alh) ) = (2m)~ / Ela(e)h(e) de
=G [ el Ha(©) ke ele) de

We have denoted Z = F(b(—-)). By the Cauchy—Schwarz inequality, we get

)y = o) ([ |shl|a<s>2ds)é ([ el imomor df)é

Using the Fourier-Plancherel theorem in R,, we infer

3 o 3
(b)) < (@2n (/ la(-,z3)] _(R2)dx3> (/R||Vb(,x3)||H%(R2)da:3> |
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Thanks to the dual Sobolev estimate stated in Corollary 1.1, page 25, we have

2
Vo R, faluoa)l g ) < Cllalan)ly
Lemma 5.5 is proved.
As for any function a in Hz(R?),
||a||L2(R13;H%(R2 CHG’HH (RS

Lemma 5.5 enables to find
t t
[ et ar < [ (1680) Va )t ey

+ [t - V5Z(t/)||L2(R13;L§(R2))) IVSE (), dt' (5.3.14)

On the one hand, we have by Hélder’s inequality
17 V2 ot sy < Il | 907 2

hence using the Gagliardo—Nirenberg inequality (1.3.4), page 25,

/nu T ety IV 3 0

<2 / Vo5, e+ / 852 3 1) 43 sy 4. (5.3.15)
On the other hand, we have

L ®2) < |Vl L2 w2y 197l

s (R3)"

Thus we infer

t
L) T 8 g IV 5

t t
v SATANIPA / C e (4/\]|2 —(4+/\ |2 /
<= / IV, dt +— / 1522 3 IV ) 172 g2yt (5.3.16)

Plugging (5.3.15) and (5.3.16) into (5.3.14) yields finally

t
/ /||v5k Hz.ldt’
0

¢ / IOEI,y (Sl + IV ) ar.
and the result follows from the fact that

C 1
4 2 — 2 — 2
[ (o, + 195018 dr < Sl Fimli +1). G347

(Gr (0%, WIOR)
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Next let us estimate the term containing Gy, (v®,u). We have

(G, W157)

VT4 T - V|| 12| V| 2

< (||U€||L;<;L»?IS IVl ey + RIVE N I  zogrey IV e,
SO
102 (19l 2 + ) )

+ Cllv Iz IVEllL2 + Crllo] 2, 172

Tp,T3

[T

Finally

/

(Gr(o" )55, 3

t
ar < [ ey
= / 10512,y (IVa) 22 + 0 ()2 ) dt

+ / o), (CRIE) s + Ol () V()22 ) dt'

But using the a priori bounds on @ along with the Strichartz estimates on v¢
we have

t
/ Jo* ()l (CrllEE)IEe + Cllo* () 2 V512 at
— 1, 1
< Cpallwollyy Wollse (=¥ [Tollzs + = flwol 3 ) -
So finally, we get

[

t
ar < / 1951, dt

(Gl W)57) 3

= / 10512, 5 (IVa) 2 + o () ) dt
+ Crre¥luwoll [T llzz (3 lmollre +1) . (5.3.18)
Let us notice that
_ C _ 1

/R (IO + 10 @ ) d < lol2 + Crnet fwnlly . (5.3.00)

and that for € small enough,
Crone? ol 3 Il e (2ol 2 +1) < 2
7 RES [[Wol 1 [[UollL2 | €7 [[Uol[L2 =5

The third term is therefore correctly estimated.
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The last term is very easy to estimate: we simply write

|(F()197) 54

o IVoS)l L2 [VOR 22

to find finally

[

c ‘ ST g4\ |12 / ! e(4/\(12 e (4 /
+ 5 IO IT O,y @ +0 [ 1o @~ o ¢ .

t
/ K e (4/1\ 12 /
dt’ < 8/0 VORI, 5 dt

(FL@)I5F) , 3

Since
! e(4/\(12 e(q! CrR 1
/ 0= ()2 I ()] g dt' < €4||Wo||
0
we find
[ a5 ar < % [ iwszene, a
C Crr
/||5k IV (@I 4 dt' + €4||wo|| - (5.3.20)
Finally we use the fact that
C
/R+ IV (@I, de' < ol (5.3.21)

and that for € small enough,

C,
T’REiH’on% L < 77
v Hz2

2
Putting together estimates (5.3.12), (5.3.17), (5.3.18) and (5.3.20) yields the
result. We notice in particular that

70 = Cu (IVF Ol + 107, + IO

— 2
by + 19O e

so as computed in (5.3.13), (5.3.17), (5.3.19), (5.3.21) we have
t
[ ir@iar < . (ol + ol + ol

1
+iTollts + Cr,ret lwoll? ) -

Proposition 5.2 is proved. O
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The periodic case

6.1 Setting of the problem, and statement of the main result

This chapter deals with the rotating-fluid equations (NSC) in a purely periodic
setting. Let ai, as and a3 be three positive real numbers and define the
periodic box

3
T3 dgf H R/aj ”

j=1

unlike the previous chapter where T2 denoted the unit periodic box in R3. In
this chapter the size of the box will have some importance in the analysis.
The system we shall study is the following.

1
(NSCS) Ot — vAu® +P(uf - Vu') + EP(eS Auf)=0in T3

U 4= = ug with divug =0,

where P is the Leray projector onto the space of divergence-free vector fields.
Let us recall its definition in Fourier variables. As we are in a periodic setting,
the Fourier variables are discrete variables n = (ni,n2,n3) € 73 and we will
denote throughout this chapter

~ ~ ~ ~ . ~ n; .

n = (n1,ng,n3) with n; def 1y je{1,2,3}.
a

J

Then the Fourier transform of any function h is

VneZd, hn)=Fhin) / e~ BT (1) da, (6.1.1)

T3
and 7 - x is the scalar product of (71,2, n3) by (21,2, 23). The expression of P
in Fourier variables is the following:
n?  nine ning

Tony N3 neng |,
Nany nang N3

where Id denotes the identity matrix in Fourier space.
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Let us also recall the definition of Sobolev spaces on T>. We shall say that a
function h is in H*(T?) if

def s
17| e (o) = Z(1+|ﬂ\2) [h(n)]* | < +oo.

nezs

Similarly h is in the homogeneous Sobolev space H* (T3) if

2

def ~12517
1Allgoersy = | D APRM)P | < +oo.
nez3

A vector field is in H*(T?) (respectively in H5(T?)) if each of its components is.
All the vector fields considered in this chapter will be supposed to be mean-free,
and one can notice that for such vector fields, homogeneous and inhomogeneous
spaces coincide on T?.

Our goal is to study the behavior of the solutions of (NSC7T) as the Rossby
number € goes to zero. As in the R? case studied in the previous chapter, we will
be concerned with the existence and the convergence of both weak and strong
solutions.

Let us start by discussing the case of weak solutions. We have the following
definition.

Definition 6.1 We shall say that u is a weak solution of (NSCT.) with
initial data ug in H(T?) if and only if u belongs to the space

CR%V) N LE (RT3 H) N Li, (RT3 V),
and for any function ¥ in C*(RT;V,),

[1“3 u(t,z) - ¥(t,x)dr — //r3<u 8t\11+//TSVVu V\Il)(t x) dadt’

+// <6 Au-\Ilu®u:V\I/> (t’,x)dxdt/:/ uo(z) - (0, z) da.
0 T3 g T3

Let us recall the definition of the Coriolis operator L:

Lw® P(e® Aw).

As L is skew-symmetric and commutes with derivatives, (NSCT) satisfies the
same energy estimates as the three-dimensional Navier—Stokes equations in
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all H® spaces. The existence of global Leray solutions for ug in H, and of stable,
local-in-time solutions for uy € H %, is therefore obtained exactly as in the case
of the Navier—Stokes equations. We recommend to the reader, as an exercise, to
rewrite the proof of the following theorem (see Chapters 2 and 3).

Theorem 6.1 Let ug be a vector field in H, and let € > 0 be given. There
exists a global weak solution u® to (NSC%), satisfying for allt >0

1 ‘ 1
5 [P de o [ | V(e o) deat < G uol.
T3 0./T3

Moreover, if ug belongs to H%(T?’), there exists a positive time T independ-
ent of € such that u® is unique on [0,T] and the family (u®) is bounded
in C([0,T); Hz(T%)) N L2([0,T); H2 (T?)). Finally there is a constant ¢ > 0,
independent of e, such that if HUJOHH%(T3) < cv, then T = +o0.

In this chapter we are interested in the asymptotic behavior of u® as e goes
to zero. The first step of the analysis consists (in Section 6.2) in deriving a
limit system for (NSC%.), which will enable us to state and prove a convergence
theorem for weak solutions. The main issue of the chapter consists in studying
the behavior of strong solutions, and in proving in particular the following global
well-posedness theorem.

Theorem 6.2 (Global well-posedness) For every triplet of positive real
numbers (a1, az,as), the following result holds. Let u§ converge to a divergence-
free wector field ug in H%(T?’). Then for € small enough (depending on the
parameters (a;)i<j<s and on ug), there is a unique global solution to the
system (NSC&) in the space CO(R*Y; H2 (T?)) N L2(RY; H2 (T?)).

Before entering into the structure of the proof, let us compare this theorem with
Theorem 5.7, page 108. Those two theorems state essentially the same result: for
any initial data, if the rotation parameter ¢ is small enough, the Navier—Stokes—
Coriolis system is globally well-posed. In other words, the rotation term has a
stabilizing effect. As we saw in the previous chapter, in the case of the whole
space R? this global well-posedness for small enough ¢ is due to the fact that the
Rossby waves go to infinity immediately; this is a dispersive effect. In the case
of the torus, there is of course no dispersive effect. The global well-posedness
comes in a totally different way: it is a consequence of the analysis of resonances
of Rossby waves in the non-linear term v - Vu.

The proof of Theorem 6.2 relies on the construction of families of approxim-
ated solutions. Let us state the key lemma, where we have used the following
notation (see page 78):

t
def
||u||2% = 3?3 <||u(t)||2% —|—21//0 ||Vu(t’)||2% dt’> < +o0.
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Lemma 6.1 Let ug be in Hz. For any positive real number n, a family (u
exists such that

app)

hmsup hmsup [lu \1 = Uo < o0.

n—

app‘

o 6 ) .
Moreover, the families (uaiﬁp) are approximate solutions of

€ € € £ }; 3 g\ __ . 3
(NSC.) Ot — vAu® + P(u® - Vu )—i—EP(e Au®)=04n T

U= = ug with divug =0

e,m ;
in the sense that ugrl, satisfies

3
Opugit, — vAugt + Pugh - Vugh) + P(e Nugih) = R in T
%Lr%ellm ||uapp‘t 0 “OHH% =0,
a1 Tim e _
with 71}13});5% IR ||L2(R+;H‘%) =0.

The goal of this chapter is the construction of the families (ug;1). For the time

being, let us prove that the above lemma implies Theorem 6.2.

Proof of Theorem 6.2 This is based on Theorem 3.6, page 78. Let us observe
that, as the Coriolis operator is skew-symmetric in all Sobolev spaces, all the
theorems of Section 3.5 are still valid because their proofs rely on (H®) energy
estimates. With the notation of Theorem 3.6, let us fix 7y such that, for the

associated (ug;%0), we have

c C
3 €,70 2 —_9 U4
llranjélpllRapp o) = 77 eXp( 2u4UO> '
Let us choose gy such that, for all £ < &g,

4 c C
€, 2 s 2 4
||uap77};)‘t:0 — UOHH% + ;||R§Pﬁl§HL2(R+ Hfi) S ; exp <—2I/4U0>

and
Jusgells < 20

Thus, for any € < gp, we have

4 c C
o — ol + SR, g sy < 2w (— S huEgply )

Theorem 3.6, page 78, implies that the solution u® is global and the global
well-posedness Theorem 6.2 is proved. O
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Remark In fact, we can prove a little bit more. For any positive real number 9,
let us choose 7, such that, for any n < 79, a positive €, exists such that

2

app

4
Ve < En> (”u&ﬁ (O) - UOHZ% + ;HREJY LQ(R+;H%))

. [0 ¢ C
< min {4, lez exp <2y4U61> } .

Then, inequality (3.6.1), page 80, implies that

Ve < €n>s ||u;g7p - u{s”% <o.

Structure of the proof of Lemma 6.1 Let us explain how we will prove
Lemma 6.1. Fast time oscillations prevent any result of strong convergence to
a fixed function. In order to bypass this difficulty, we are going to introduce a
procedure of filtration of the time oscillations. This will lead us to the concept
of limit system. The purpose of Section 6.2 is to define the filtering operator, the
limit system and to establish that the weak closure of u® is included in the set
of weak solutions of the limit system.

In Section 6.3 we prove that the non-linear terms in the limit system have a
special structure, very close to the structure of the non-linear term in the two-
dimensional Navier—Stokes equations, which makes it possible in Section 6.4 to
prove the global well-posedness of the limit system, as well as its stability.

Section 6.5 is then devoted to the construction of the families (ug;)).

6.2 Derivation of the limit system in the energy space

In this section we shall derive a limit system to (NSC%T), when the initial data
are in H(T3). Since, according to Theorem 6.1, there is a bounded family of
solutions (uf).s0 associated with that data, one can easily extract a subsequence
and find a weak limit to (u°)e>0. Unfortunately finding the equation satisfied by
that weak limit is no easy matter, as one cannot prove the time equicontinuity
of (u%):>0 (a quick look at the equation shows that 9;u is not uniformly bounded
in €). So one needs some refined analysis to understand the asymptotic behavior
of (u%)e0.

Let £ be the evolution group associated with the Coriolis operator L. The
vector field L(t)wy is the solution at time ¢ of the equation

Ow + Lw =0, wi—g = wo.

As L is skew-symmetric, the operator £(t) is unitary for all times ¢, in all Sobolev
spaces H*(T?). In particular if we define the “filtered solution” associated
with u®, then by Theorem 6.1 the family

~ t
T (—) u®
€
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is uniformly bounded in the space L=(R™; L2(T?)) N L2(R*; H'(T?)). It satis-
fies the following system:

(NSC7) {iﬂe — (@, W) — vAT =0

j— &€
Ug=p = 0>

noticing that £(t/¢) is equal to the identity when ¢ = 0. We have used the fact
that the operator L commutes with all derivation operators, and we have noted

SHERTA AT
‘L (-Z_) P <£ C) b.VL (2) a)) . (6.2.1)

The point in introducing the filtered vector field u° is that one can find a limit
system to (l\fé/C;) (contrary to the case of (NSC5)): if ug is in L2(T?), it is
not difficult to see that, contrary to the original system, the family (9;u°)c~0 is
bounded, for instance in the space L3 ([0, T]; H~1(T?)) for all T > 0. Indeed that
clearly holds for Au¢, and also for Q¢ (¢, u®) due to the following easy sequence
of estimates: since £(-) is an isometry on all Sobolev spaces we have

TORAGE

hence the dual Sobolev embeddings proved in Corollary 1.1, page 25, yield

15 "’6 "’6 t ~c t ~c
19T, 4 gy < € [ (£) 792 (£)

By a Holder inequality we get
t
151 E "'E ~e
19 T g o, r -2 (ryy < © HE (e) ¢

X

Qs 4

S (o -1 (T) T ’

L5 ([0,T);H-1(T3))

4
L3 (0,18 (T3))

L4([0,T};L3(T?))

Ve <t> e
13

So by the Sobolev embedding proved in Theorem 1.2, page 23, along with the
Gagliardo—Nirenberg inequality (1.9), page 25, we infer

t
c () i
I3
2
v (2)w
L2([0,T];H (T3)) €

L3([O T);H—1(T3)) < C(T) (6.2.2)

L2([0,T];L2(T?)) .

1
2

1Q°(u", a)l[ 4 <Cr

L3([0 TH-Y(T3)) —
c (t) e
13

1Q° (@™, w4

Leo([0,T];L3(T?))

X

L2([0,T};L2(T?))

hence
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where we have used again the fact that £(-) is an isometry on H*(T?), along
with the a priori bound provided by Theorem 6.1. That yields the boundedness
of (8t65)8>0.

The same compactness argument as that yielding the Leray theorem in
Section 2.2.2 enables us, up to the extraction of a subsequence, to obtain a
weak limit to the sequence u®, called u (we leave the precise argument to the
reader). The linear terms 0;u® and Au® converge weakly towards dyu and Auwu,
respectively, in D’((0,T) x T?), so the point is to find the weak limit of the
quadratic form Q°f(u®,u®). Let us study that term more precisely. For any
point & = (z1, z2, 23) in T, we shall define as in the previous chapters the hori-

zontal coordinates xhdif (71, 22), and similarly we shall denote V" def (01, 02),

divhdéfvh-, and Ahd£f82 + 02. For any vector field u = (u',u? u?), we shall

define 1 (u',u?), and W will be the quantity

U(zp) =

as

1
def u(zp, x3) drs. (6.2.3)

las| Jo

Note that if w is divergence-free, then so is @", due to the following easy
computation:

1 a3
divya” —/ divhuh(mh,xg) drs = — / Osu>(xp, x3) drs = 0.
las| Jo Jas]

Finally we will decompose v into
U =T+ Upsc, (6.2.4)

where the notation ues. stands for the “oscillating part” of u; that denomination
will become clearer as we proceed in the study of (NSCT). Now in order to derive
formally the limit of QF, let us compute more explicitly the operators L and L.
We have to solve the equation

Oyw + Lw = 0,

where the matrix L is the product of the horizontal rotation by angle /2,
denoted by RTr /2 with the Leray projector P. Writing L,, for the result of the

product P( )RZ /20 @ simple computation shows that

) Mny  ni+n: 0
52 _ =2 5o
L, = W nl ny  —nino 01,
n2n3 —ning 0

and the eigenvalues of L, are 0, in3/|n|, and —ing/|n|. We will call €°(n), e*(n)
and e~ (n) the corresponding eigenvectors, which are given by

e’(n) = *(0,0,1) and
1

ef(n) = —=——
" V2[7 7]

Y(nyns F ing|n|, nong + ing 7], —|7in)?)
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when n;, # 0, and €’(n) =(0,0,1), ef(n) = %’5(17 +i,0) when n;, = 0.
Divergence-free elements of the kernel of L are therefore vector fields which do
not depend on the third variable; we recover the well-known Taylor-Proudman
theorem recalled in Part I, page 3.

Now we are ready to find the limit of the quadratic form Q¢. In the following,

we will define Udéf (01,02,03) € {+,—}3, any triplet of pluses or minuses, and
for any vector field h, its projection (in Fourier variables) along those vector
fields will be denoted

Vne Z3, Vje{1,2,3}, h%(n) (Fh(n) - % (n)) e (n).

Proposition 6.1 Let Q° be the quadratic form defined in (6.2.1), and let a
and b be two smooth vector fields on T>. Then one can define

9(a, b) hm Q%(a,b) in D' (RT xT?),

and we have

FQa,b)(n) =~ D (a7 (k) (=) [ (n— k) - €7 (n)]e” (n),
oe{+,—}*
keK?

where K7 is the “resonant set” defined, for anyn in 73 and any o in {+,-}3, as

k —k n
kel ezd o2 4o Jahks M oL 6.2.5
{ / 1|k\ ‘ 3 ar (6.2.5)

Proof We shall write the proof for a = b for simplicity. We can write

FE@amm= Y e tirefioai)
(k,m)eZs ce{+,-}3
k+m=n

x [a” (k) - m] [a”(m) - €72 (n)]e? (n).

To find the limit of that expression in the sense of distributions as € goes to
zero, one integrates it against a smooth function ¢(t ) That can be seen as the

Fourier transform of ¢ at the point i

(Ull | + gy Im\ 03%>7 which clearly

goes to zero as £ goes to zero, if 01 + oo 7= Iml — 03‘ 3| is not zero. That is

\k\
also known as the non-stationary phase theorem. In particular, defining, for

any (n,0) € z’ \{0} X {+7 _}3’

def ks fig — ks n3
wg(lc) _0'17"‘0'2 — =~ — 037’ (626)
k| 7 — k| n|
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we get
~FQ(a,a)(n) = Y > a7 (k) - (7= k)][a”(n — k) - €7 (n)]e7 (n),
oe{+,—1}3 kw2 (k)=0
and Proposition 6.1 is proved. O

So the limit system is the following:

O — vAu — Q(u,u) =0

Ujt=0 = U0,

(NSCL){

and we have proved the following theorem.

Theorem 6.3 Let ug be a vector field in H, and let (uf)eso be a family of weak
solutions to (NSC%), constructed in Theorem 6.1. Then as € goes to zero, the
weak closure of (L (—1)u®)es0 is included in the set of weak solutions of (NSCL).

€

In the next section, we shall concentrate on the quadratic form Q, and
we will prove it has particular properties which make it very similar to
the two-dimensional product arising in the two-dimensional incompressible
Navier—Stokes equations.

6.3 Properties of the limit quadratic form Q

The key point of this chapter is that the limit quadratic form Q has a very special
structure, which makes it close to the usual bilinear term in the two-dimensional
Navier—Stokes equations. The properties stated in the following proposition will
enable us in the next section to prove the global well-posedness of the limit
system.

Proposition 6.2 The quadratic form Q given in Proposition 6.1 satisfies the
following properties.

(1) For any smooth divergence-free wvector field h, we have, using nota-

tion (6.2.3) and (6.2.4),
o /% Q(h, h) dag = P(h-Vh).
las| Jo

(2) If u,v and w are three divergence-free vector fields, then the following two
properties hold, with the notation (6.2.83) and (6.2.4):

Vs >0, (9w, UOSC)|(—A)SUOSC)L2(T3) =0, (6.3.1)
and
} (Q(Uosmvosc)|wosc)H%(T3) | < C(HUOSC”H%(Tg)||UOSC||H1(T3)
+ ”UOSCHH%(T'@.)||UOSC||H1(T3))

X || wose | (6.3.2)

HE (T3’
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Remark The second result of Proposition 6.2 is a typical two-dimensional
product rule, although the setting here is three-dimensional. Indeed, one would
rather expect to obtain an estimate of the type

| (Q(uosm Uosc)|wosc)

H%(T?’) } < C||UOSC||H1(T3)HUOSC||H1(T3)HU’OSCHH%(Tz)'

We have indeed

‘ (Q(Uosm Uosc)|wosc)H%(T3) < HwoscHH%(Tg,)
X (HUOSC : VUOSCHH—%(TL%) + Hvosc : VUOSC”H_%(TP’)>7

for which Holder and Sobolev embeddings yield (in a similar way to (6.2.2))

‘(Q(Uosm Uosc)|wosc)H% (T%) < C”wosc”H% (T?)

X (||UOSC||L6(T3)||VUOSC||L2(T3) + HUOSC||L5(T3)||VUOSCHL2(T3))

and the result follows by the Sobolev embedding H'(T?) — LS(T?). Estim-
ate (6.3.2) therefore means one gains half a derivative when one takes into
account the special structure of the quadratic form Q compared with the usual
product.

Proof of Proposition 6.2 There are two points to be proved here. Let us
start with the first one, which is the simplest.

First statement Let us start with the vertical average

1 [
I h,h) dzs.
|a3|/0 Q(h, h) das
We have
1 [
@/0 Q(h, h) dxy = F~ (1pns=0y FO(h, h)(n))

where 1y denotes the characteristic function of any frequency set X'. Recalling
the expression for Q given in Proposition 6.1, we infer that all we need to compute
is the form of the resonant set K¢ when ngs is equal to zero. We have

k: k
173202 — 3~7Withn3:0} .

|| n — k|

o 3
ICn|n3:O = {k S/ /O'
It follows that either k3 = 0 or o1 = 02. Now if k3 = 0, we have

1,0y (k) = h(k)
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so that will account for the expected limit since
1 as
- [ ey e
las| Jo
=P(h-VR) +F 1Y D[ (k) (7 — K)[A7(n — k) - €7 (n)]e”* ().

ge{+7,}3 kekg
kg;éo,n:g:o

Let us therefore concentrate now on the case k3 # 0. In that case o1 = 09

and |k| = |m|. In order to prove the result we are going to go back to the
definition of Q(u,u) as the weak limit of Q°(u,u). Recalling that
|2
(h . V)h = —h/\curlh+ VT,
|2 -
as P VT = 0, we therefore want to compute the limit of

_11(01@+02$) o1 ~ o2 o3 o3
3 Lpuemoye TR IET R (k) A (@ A B2 () - €7 (0)e% (n).

(k,m)ezb,oe{+,—}*
k+m=n

Let us separate the complex time exponential into sines and cosines, defining

kst ks t
(k) = cos | 0y —— and s°(k) =sin | oy —— | -
k| € |k| €

Noticing that
m A (m A h%2(m)) = —|m|*h72(m)

and using the fact that ik (k) = (k/|k|) A h°* (k), we have the following terms
in the sum, when n and o are fixed (recall that o1 = 09):

¢ (k)ef(m) h7 (k) A (m A R (m)),
—|k773||35(k)sa(m) (k AR (k)) A R (m),
—|m|e* (k)s®(m) h?* (k) A h?2 (m),
1
—S
||
We shall only deal with the left-hand column (which is made up of the even

terms in ¢, whereas the right-hand side is made up of the odd terms). Since as

noted above || = |k| and k3 = —ms, the terms of the left-hand side lead to two
contributions:

(€)2(m) 7 (k) A (AR (m))  and  (s5)2(m)(k AR (k) AR (m).

S(k)et (m) (kAR (k) A (AR (m)).



128 The periodic case

Then interchanging k and m by symmetry gives finally the contribution

— cos (201 )h”l( ) A (7 A BT (m)).

mle
The phase in that term is not zero; it follows that the quadratic form, restricted
to ng = 0 and k3 # 0, converges weakly to zero, and that proves the first
statement of Proposition 6.2.

Second statement Now let us prove the second statement, which is a little
more subtle. To simplify the notation we shall take all the a; to be equal to one
in this proof. We first consider the case of

(Q(W, vose) | (_A)SUOSC)LQ(T3) )

Let us write the proof of (6.3.1) for s = 0 to start with. We have

(Q(ﬂ7 UOSC)}WOSC)LQ(TS) - Z [ﬂdl (k) ’ ’fl] [Uosc (TL - k) Ug:c* (n)]v
k3=0,n3#0
keKS oe{+,—}°

where h* denotes the complex conjugate of any vector field h. Then we notice that
necessarily o9 = o3 and |n| = |k — n|, and we exchange n and k —n in the above
summation. Since the vector fields are real-valued we have v73 (n) = v73*(—n),

so we get

(Q, o) tse) sy =~ O S0 (m W7 (K) + (k= m) % ()

O'TL\g;ﬁO k‘3 0
kEKS

x v32 (k —n) - v (n).

osc osc

Then the divergence-free condition on @ yields the result.

To prove (6.3.1) with s # 0, we just have to notice that the operator (—A)*
corresponds in Fourier variables to multiplying by |n|?¢. But when k is in K7,
then in particular ng — ks = ng and |nj, — k| = |ns|; that means that the same
argument as in the case s = 0 holds, as one can exchange k — n and n in the
summation. So the result (6.3.1) is found.

Now let us consider the statement concerning (Q(uosc, Vosc) | wOSC)H% (T9)’
which is more complicated, and will require a preliminary step.

Lemma 6.2 For any n € Z*\{0}, let K(n) be a subset of Z* such that
ke Kn)=n—keK(n) and ne K(k).
For any j € N, define

def

K ( {keZ®\{0} /27 < |k| <27 and k € K(n)}.
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If Cy > 0 and v > 0 are two constants (with Cy possibly depending on (a;)1<;j<3
if K(n) does) such that

sup card K;(n) < Cp277, (6.3.3)
nezs3\{0}

then there exists a constant C' which may depend on (aj)1<;<3 such that for all
smooth functions a, b and ¢, and for all real numbers o < /2 and § < v/2 such
that o« + 3 > 0, we have

Y latk)l b(n = k)| [en)] < Cllallgacrs) |1l s (o) el z2r2-a-s xs).

(k,n)€Zb
keK(n)

Remark One of course always has v < 3, and the case v = 3 corresponds to
nothing more than three-dimensional product rules. Indeed

> (k) b(n — k) ¢ (n) = Re (ab]e) 2 gy
(k,n)€ZS

where ¢* denotes the complex conjugate of ¢, and product rules in T3 yield (see
for instance [46])

HabHHM@,g (T?) < CHGHHQ(T% Hb”Hﬁ(T‘»")a

as long as a and 3 are smaller than % and o+ ( > 0. It will turn out in our case,
where

ORI U
oe{+,—}3
and K7 is the resonant set defined in (6.2.5), that v = 2. In that case Lemma 6.2
means that two-dimensional product rules hold when Fourier variables are

restricted to K (n). In other words, there is a gain of half a derivative compared
with a standard product.

Proof of Lemma 6.2 The idea of the proof is based on Littlewood—Paley
decomposition and some paraproduct. One can decompose the sum into three
parts, writing

> fa®)| pn—k)len) = > > @) [bn— k)| [en)],
(k,n)€ZS (4,4,9)EN3  n—keKe(n)
kEK(n) keK;(n),nekq(k)

due to the symmetry properties satisfied by the set K (n). Then one considers
separately the following three cases (this is the usual paraproduct algorithm):
1. j < £ —2, which implies that £ — 1 < ¢ < {+ 2
2. £ < j — 2, which implies that j —1 < ¢ < j+2
3.0 —1<j </{+1, which implies that ¢ < j + 2.
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Let us start by considering Case 1. Using the Cauchy—Schwarz inequality, we
infer that the quantity

3 > jak)| [bn - k)l [en)]
(-2 keK;(n),neky(k)
<2 p_keky(n)

is less than or equal to

2 2
Cas Y SoolemP ] [sup (kT
J<O-2 \20-1<|n|<20+2 " kek;(n)
0—1<q<t+2
2
X S kPatk)Pbn — k)P — k2| 274,
2671 n| <212
ke)Cj(n)

where we have used the fact that |n — k| ~ 2° if n — k is in Ky(n). But by
assumption on card /Cj(n), we have

Z k|2 < Cp 520 00/270)
ke ;(n)

since on K;(n), we have |k| ~ 27. We can also write

2

29[S fen)P

20-1<|n|<26+2

Nl

< Cap D e (O Tl A

20-1<|n|<26+2
so we get finally that the quantity
> > lak)|[o(n = k)| [e(n)]
j<£—2 keEK;(n),nekq(k)
£—1<q<t+2 n—kek¢(n)

is less than or equal to

1
2

Capy_ | D [@k)PIk>e| 20790220 1b]| o gy [l o2 9
j<€—-2 kGICj(n)
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Using the assumption that o < /2, the result follows by Young’s inequality.
Note that the replacement of, say,

> 1a®)PIEPY by lalFeers
keZz?

is valid up to multiplication by a constant depending on (a;)1<;j<3. Cases 2 and 3
are obtained symmetrically: in Case 2, one exchanges the roles of @ and b, and in
Case 3 the roles of a and ¢. That yields the conditions 8 < v/2 and v/2—a—£ <
v/2, respectively. The proof of Lemma 6.2 is complete. O

Now we can finish the proof of the second statement of Proposition 6.2. We
can write the quantity

|(Q(U/OSC7 vosc) |wosc)H% (%) |

is less than or equal to

C Z Z |uosc | |’I’L - k| |U050(n k)|

n€Z3 keK(n)
+ [Vosc (k)| |1 — K| [Uosc(n — k)|) 1| [Wosc(m)],
so let us give an estimate of the type (6.3.3) on the set K (n), defined as
Em™ |J K
oe{+,-}?

If one defines

def def def i~
o Ekg\mH [, B emg|n||k‘| and -~y §n3|kz||m|,

with k +m = n, then

N O U S
ol \ (k| |7 — k| 7]
2
B ((a2+ﬂ2’y2)24a2ﬂ2>

aglk|* [m|* [7]*

To simplify this expression let us choose the a;’s to be equal to one; their exact
value is of no importance in the calculation. Then an easy computation shows
that the set K (n) is made of the integers k € Z* such that

(k31k — nl’n|* + (n3 — k3)?[k[*|n|> — n3|k — n|?[k|*)
= 4k3(ng — k3)?|k*In — k|*|n|.
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That expression can be seen as a polynomial of degree 8 in k3, where the coeffi-
cient of k§ does not vanish. It follows that if n and (ki, ko) are fixed, there are
at most eight roots to that polynomial in k3. So we can write

card KC;(n) < 2711 Z k|7t

20 <|k|<2itt
keK(n)

<2148 > k!
0<|kp|<27+1

Finally, assumption (6.3.3) holds with v = 2. Now it remains to apply Lemma 6.2
twice: once with o = 1, 8 =0 and a(k) = Tosc(k), b(n — k) = |n — k| Tose(n — k)
and ¢(n) = |n| Wesc(n) and once with the same values of a and 8 and
exchanging ues. and veg.. The result follows directly:

‘ ( Qosc (uosc ) Uosc) ‘ wosc)

H%(T‘?’)' S C(HUOSCHH%(TS)||vaSC||L2(T3)
+ ||IUOSC||H%(T3) ||VUOSCHL2(T3)>HVMOSC”H%(T3)7
and Proposition 6.2 is proved. O

Finally we have shown that the limit system (NSCL) splits into two parts: in
the following, we will say that u = T+ uegs satisfies the limit system (NS2D—Ss.)
associated with data Wy + ug,csc and forcing term f + fosc if it satisfies the
two-dimensional Navier—Stokes equation

04T — vALT + Py (T - Vha) = f

ﬂ|t:0 = Uo,

(NS2D) {

where P} denotes the two-dimensional Leray projector onto two-dimensional
divergence-free vector fields, coupled with the system

Uosc|t=0 = U0,0sc-

(S ) {atuosc - VAU‘OSC - Q(Qﬂ + Uosca uosc) = fosc

Of course here uwy and f are two-dimensional divergence-free vector fields,
and ug,osc and fosc have zero vertical average and are divergence-free.

6.4 Global existence and stability for the limit system

The aim of this section is to study the global well-posedness and the stability of
the limit system (NS2D — Ss.) derived in Section 6.3. In the rest of this part,
to simplify notation we will note (for d = 2 or 3)

By (T CYRY; HE(T) N L*(R*; HE (TY))
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and
1
def 2 2 ‘ ) 2
100 < (1812 < e ey + P8I 13
Let us prove the following results.

Proposition 6.3 (Global well-posedness) Let Uy and ugesc be two diver-
gence-free wvector fields, respectively, in H%(TQ) and in H%(Tg) such
that ug osc(Th, ) is mean-free on Tl, and define uy = Ty + Up osc. Let us consider
also an external force f = f 4 fose, where [ is in L2(RY; H2(T?)) and fose
in L2(RY; H=2(T%)) and mean-free on T.,. Then there exists a unique global
solution u to the system (NS2D — Sosc), and
U=T+ Upge WithTU E E%(Tz) and Upse € E%(TS).
Moreover, the solution u goes to zero as time goes to infinity:
y =0. (6.4.1)

tim_[u(t. ),

Proposition 6.4 (Stability) The application

(o, f) €E —u € (E (T2)+ E (T3)),

N|=

1
2
where

g (H (T2) + H? (T3))X(L2(R+; H™N(T?) + AR H? (T3)))
mapping the initial data ug = Uy + Up,osc and external force f = f 4 fosc to the
solution u = U+ Upsc 0of (NS2D — Spee) given in Proposition 6.3 is Lipschitz on
bounded subsets of €.

Proof of Proposition 6.3 The fact that there is a unique global solution @
to (NS2D) in the space B, is nothing but Theorem 3.7, page 80.
Now let us consider the system (Sesc); it has a priori the structure of the three-
dimensional Navier—Stokes equations, so it is much less obvious that it can be
solved uniquely, globally in time. The key to the proof of that result is that
the three-dimensional interactions in Q(uesc, Uose) are sufficiently few to enable
one to write two-dimensional-type estimates, and hence to conclude. That was
studied extensively in the previous section, so we shall be referring here to
Proposition 6.2.

Let us start by noticing that due to the skew-symmetry of Q shown in (6.3.1)
(with s = 0), we have as for Leray solutions of the three-dimensional Navier—
Stokes equations the energy estimate

t
|wmﬁméaa+”4”mmwm%awﬁ’

C t
S ||u0,OSCH%2(T3) + ;/0 ||fosc(t/)|‘§_171(rr3) dtl. (642)
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Moreover due to (6.3.1), one can apply standard arguments of the theory of
three-dimensional Navier—Stokes equations to solve (Sesc) locally in time (see
Theorem 3.5); one obtains a unique solution

Uose € CO([0,T]; H? (T?)) N L2([0, T); H? (T%)),

for some time T' > 0. Furthermore, if that time is not infinite, then according to
Corollary 3.10, page 79, there is a unique maximal time T™* € |0, +oo[ with

hm HUOSCHL2 (0.11:3 (19)) = 4o0. (6.4.3)

T<T*

In order to prove the proposition, one therefore just has to check that the
norm of s in L?([0,T7; H%(Tg)) can be bounded uniformly in 7', which will
automatically extend the solution globally in time, due to (6.4.3). In order to
do so, we are going to write an energy estimate on the system (Sesc) in the
space H %(TB). The computations will be very similar to the two-dimensional
case treated above. We have

d
([tose (t )”2

2 dt HE(T?)
= (fosc‘uosc)H% (T?) + 2 (Q(ﬂa uosc)luosc)H% (T3)

+ VHuosc(t) ||i{% (T3)

+ (Q(uosc,Uosc)|uosc)H%(T3) . (6.4.4)

We then get from Proposition 6.2 the following estimate:

O]

2
s (T%) + V| tosc (1)

3 g IMose 3 (1?)

< fone®)l - o 1t Ol o
+ C ”uosca)”H%(Ts)||u086(t)||H1(T3)||u086(t)||H%(T3)7
where the term containing @ has disappeared due to (6.3.1). We infer that

[

2
HE(T9) + V| tuosc (1)

d
%HUOSC( ) H%(T3)

< S (luase (012,

13 (T ||u050(t)H§{1(T3) + | fose 7 _

H™ 2 (TS))

Then (6.4.2), associated with a Gronwall estimate, yields finally
¢
2 2
HUOSC(t)”H%(T:‘) + I// ||UOSC(S)”H%(T3) ds

Y 2
(”UO oscH % (T3) / ”fosc ||H7§(T3) dS)

C
+ ” fosc||2L?(R+;Hl(T3))>> ’

< exp (- (10 el 2o
2 8 L2(T?)
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and the global existence is proved. Now to end the proof of Proposition 6.3,
we just need to prove the asymptotic result (6.4.1). That result is quite
straightforward: we just need to recall that the solution w is in the energy space

L®(R"Y; L(T°) N L*(RY; HY(T?)),

so in particular w is in LYRY; Hz(T?) and there is a time T, such
that ||u(T0,~)HH% < cv, where cv is the smallness constant of Theorem 3.5,
page 73. So for a large enough time we are in the small-data situation and (6.4.1)
follows from Theorem 3.5.

The proof of Proposition 6.3 is now complete. O

Proof of Proposition 6.4 This proposition follows directly from the following
lemma.

Lemma 6.3 Let u; and us be two solutions of (NS2D — S.s.), associated

with data ug,1 and ug and forcing terms fi1 and fo, respectively, satisfying
. ., d . .

the assumptions of Proposition 6.3. Then w :eful — ug satisfies the following

estimates, with gdgf]ﬂ — fa:

C t
w 2 a2 ~ —(21\(|2 /
@Iy < <||w°|H;(T2)+ V/o 19N, o) dt)Gl, (6.4.5)
luonc I < (Inoscl, g ) + TNy
C t
N2 /
+;/0 IIQOSC(t)IIH_%(TS) dt)H1 (6.4.6)

where Gy is a function of |[To || L2(r2) and || f,llp2m+,m-1(12y) for i equal to 1
or 2, and Hy is a function of |[@ol|lr2(r2) and ||f;|lz2m+,m-1(12)) as well as
of ||Uosc,i ) and || fosc,il forie{1,2}.

Proof We shall start with the estimates on w. As @, and U, satisfy the two-
dimensional Navier—Stokes equations in T2, we can apply the stability inequality
of Theorem 3.2, page 56, to find that

t
Mmm;@a+ulnv%mw;@a@

1
|H%(T3 L2(R+;H™ 3 (T?))

_ Lt
< (100l + 5 [ 1O ) G,

CE2(t)
1/4

where Gldgf exp ( ) , and E(t) denotes

) B 1t7 B 1t7
win { [l + 3, [ 1T (00t nals + [ 1) '}

The result for the L? norm is proved.
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Now let us prove the H2 estimate (6.4.5). Since w satisfies the equation
o — v+ P(w - V') = —P(@" - V', + 7, - VT + 7, (6.4.7)
we can apply Theorem 3.7, page 80, to w considering as external force
f=-P@" V', + 1, V'a") +3.

We have therefore, by Theorem 3.7,

t C t
— 2 — 11\ |2 I < ~ (4|2 /
Ol +v [ IVa@R,yd < (S [ 9o

x| [[wo? < —QtV*”Hl”d’
olfs + - ; £, -y exp { = ) IVw(t”)|[z=dt™ ) dt" ),

and we need to control f in H~2(T?). By definition g is an element of H~2 (T?)
so let us now study @" - Vs + Uy - V*w". On the one hand, we can write, by
the dual Sobolev embeddings of Corollary 1.1, page 25,

" VT, < Cl" - V'al,y

so a Holder estimate yields, using the embedding of L*(T?) into Hz (T?),

Hﬁh . VhEQHH*% < OHU}HH% HVhﬂ?HLZ'

It follows that
t C t
[@" () - Va2 exp (—= [ [Vw)|2.de”) dt
0 H 2 v Jy

t t
C
<0 [ 1) 19wl o0 (-5 [ Ivuade ) ar.
0 H?2 v Jy
On the other hand we have, by the same arguments,

[ - V" @" ||,y < OV D" 2w,y

2

so an interpolation inequality yields
1 I
[z - V"o < Cl |12 L (VP12 ) Il -

Now we notice that for any function F,

c [ ¢ c [t
exp —/ V@ (t')|3. dt’ / F(t')exp _7/ [Vw(t")|72 dt" ) di’
v 0 0 1% t

t C t
g/ F(t')exp ;/ Vw32 dt” | dt’,
0 0
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and we have that the quantity

t/
1t ||* vt @) exp (S [ Vw2 de” ) ar
H 2 v 0

is less than and equal to

t
—h/al h—h /4 — N2
C [ 1) 195" () I,

X e g g 11y112 " !
xp | — |Vw(t")||7.dt” | dt’.
0

We infer that

t
v ho=h (4/\|12 ’
<y [ v, @
+ & [, >||41exp( [ 1w (">|%2dt"> .

and finally putting all the estimates together we have obtained that

w2 / V@), dr

3 C t
E W;(t) | exp (/ ||V@(t’)||2L2 dt’)
- vV Jo
Jj=1
with

def

W20 ol + [ IBEOIE, - a
df _
L0 [ o)1 1970

def C _ _
W) [ @2, w1

Then a Gronwall lemma, associated with the energy estimate satisfied by o,
yields the expected result.

Finally we are left with the proof of estimate (6.4.6). The function wesc
satisfies the following equation:

atwosc - VAwosc - Q(wosc + 2@a ul,osc) - Q(u2,osc + 2ﬂ27 wosc) = Josc

recalling that

def
Josc = fosc,l - fosc,2~
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An energy estimate in H z yields

1d 9 9
2d1tHw°SCH %) +V”Vw°SCHH%(T3)
S ’(Q(wosc; U1, 0sc + u2,osc)‘wosc)H%(T3) + ‘(gosc|wosc)H%(T3)
2’(Q(waul,osc)‘wosc)H%(T3) + 2 (Q(ﬂ%wosc”wosc)H%(Tg) . (648)

The last term on the right-hand side is zero due to (6.3.1), so let us estimate the
others. For the first one, we use (6.3.2) which yields that the quantity

def
Q) =

(Q(woscul,osc + u2,osc) |wosc)

1
H?2(T3)
is less than or equal to

C”wOSC”H%(TS) (Hul osC”Hl(Td) + [|uz, 0bC||H1(T3)> vaowHH2 (T

+C||w050||H1(T3)||VU}OSCHH%(T3 (Hul OSCHH YT + HUZ OSCHH%(Ts))'

This gives
||V'LUOSC|| T3)
C
+ ;H@UOSCH2 (T%) (”uLOSC”%{l(T?’) + Hu2,osc||§—[1('j[‘3))
L ¢ 4 4
Sl gy (ot gy + 2l )+ (649
Now let us estimate (Q(E,ul’osc)|wOSC)H%(T3). We have
'(Q(Eaul,osc)‘wosc)H%(Tg)
with
def |,__
Ay = (w : vul,osc|wosc)H%(T3) ,
A | (w1 one - VT |wose) (6.4.10)
2 = |(U1,0sc W|Wosc H%(Tg) . -

The term A; is estimated as follows.
A < /1 1] L (02) [ VU ose (- 23) | L2 (12) [ VWose (4, 23) | L4 (72 da
T

< W@l a2y VU osell 2 (re) | VWwose | L2 (7124 (12))

by a Cauchy—Schwartz inequality in the third variable. Now we claim that for
any function h,

1ollz2rripscr)) < ClRI g oy
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Indeed Sobolev embeddings yield

Il crrecroy <C [ MGl g o da

(T?)
But
/ [A(,x )”2 (TQ) / Z (1+ ‘nh 2 |fh(n :L’3)|2 dzxs
T! nhez?
=@2m) Y A+ ")z [h(n)?
neZ3

< -1 2
< @m) AR,
so the claim follows, and we obtain

Ay < C||@|

[Vt osell 2 (1) [ Vwose | (6.4.11)

H3(T3)
The estimate of (Az) is along the same lines. We have indeed

H2(T2)

Ap < /Tl [1,05¢ (5 23) | (02 [ V0| 2 02y | Vtwose (-, @3) || (2 das.

So as above, we claim

A2 S CthE”Iﬂ(TZ)||vwoscHH2 T3 ||’LL1 OSCHH%(T?’)' (6412)
Plugging (6.4.11) and (6.4.12) into (6.4.10) yields
(Q(@a ul,osc)|wosc)H%(T5 >~ 4vaosc||H 5 (T3)
S— 2
+ I, g IV
C on
*”V wHL?(T2)HU1 ObC”H 513y’ (6.4.13)
Going back to estimate (6.4.8), and putting (6.4.9) and (6.4.13) together we get
3
d

2 2 )
%H ObCHH 3 T3y V”VwOSCHH%(TC‘) SZ;WJ
j:
with

defc 2 2 2
W (2 g 1901 By + e

2

v
et C [\
W (19 el

+||w050||i1 59 (HUI,OSCHEI(T% + ||u2,OSC||§{1(T3))> and

def C

WS ||1Uosc||22(T3) (”Ul,osc”?{é(’rs) + Hu2,05C||4 1 > .
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The result follows by integration in time and a Gronwall lemma, using the estim-
ates proved previously on uj osc, U2,0sc @and w. Lemma 6.3 is proved, and the
stability result of Proposition 6.4 follows directly. O

6.5 Construction of an approximate solution

In this section we shall prove Lemma 6.1 using the results of the previous para-
graphs. The goal of this section is therefore to construct an approximation of u¢,
called ugil, which exists globally in time. In fact we will do more, as in the
construction of ug;l we will also show that ug; is a (strong) approximation of
the limit solution u built in the previous section. That will enable us to infer the
following theorem, which is a more precise version of the weak convergence

Theorem 6.3.

Theorem 6.4 Let ug be in Hz and let u be the unique, global solution con-
structed in Proposition 6.3 (with f = 0). For any positive real number 1, a

family (uzph)e>o exists such that
t
ugrt, — L (8) U

satisfies

=0.

lim lim sup
n—0 ¢—0

1
2

Moreover, the family (ug;l)

Opugit, — vAugh + P(ugh - Vugil) + P(e ANugih) = RS"

(6.5.1)
UOHH% = Oa

hm hm sup ||uapp‘t 0

with lim,,_,o lim sup,_ || R*" =0.

It
Remark Theorem 6.4 clearly proves Lemma 6.1, page 120, simply by a
triangular inequality since
t
“le(E)r
% 3

[lws || o < C < +o0.

app” —

t
app »— L <€> u

Proof of Theorem 6.4 Let i be an arbitrary positive number. We define,
for any positive integer IV,

[N

uy = Pyu Ef}' (1|n|§Na(”)) )

and obviously there is N,, > 0 such that

Jo () ¢ -

where p=" denotes from now on any non-negative quantity such that

S p€777

1

hm lim sup p=" = 0.
—0 -0
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We will also denote generically by R any vector field satisfying

|| — .

1
L2(R+;H™2)

From now on we can concentrate on uy,, and our goal is to approxim-
ate L(t/e)un, in such a way as to satisfy system (6.5.1). So let us write

t
ugh = <E> un, + eui”
where u]"" is a smooth, divergence-free vector field to be determined. To simplify

we also define the notation
def t
U(E)’n =L (€> UN,

1
Liw dgfﬁtw —vAw+ = Aw.
€

as well as the operator

Then we have

€,Em en . e — TE,EM €,,57M &M €M
Loust +ugl - Vugll = Loug” + eLiuy™ + ugll - Vugl, (6.5.2)

and the only point left to prove is that there is a smooth, divergence-free vector
field u]"" such that the right-hand side of (6.5.2) is a remainder term.
We notice that by definition of ug”,

1
PL uy"” = P(Opuy" — vAug" + geg Aug™)

=L (t) (aguN»7 - I/AuNn) + lﬁTﬁ (t> un, + 1P (63 AL (t> uNn)
€ € € € €
=L (2) Py, Q(u,u),

since by definition of £, 0;L(t/e)un, + P (¢* A L(t/e)un,) = 0. But it is easy
to prove that

<p7. (6.5.3)

(gm0

L2(RHH ™2 (T9))

Indeed we have, on the one hand, by Lebesgue’s theorem and using the fact
that « is in E%,

1P, Q(u, u) — Q(u, U)HLZ(R+;H—%) < pem,
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On the other hand, we can write by the usual Sobolev embeddings
1Q(u, u) — Qun,, un,)|
< Ofull

1
|L2(R+.H*§)

IV (un, —

Loo(RH;HZ) )||L2(R+;H%)’

where we have used the fact that
||U’N77HLOQ(R+;H%) g ||uHLOQ(R+H%)

The result (6.5.3) therefore simply follows again from Lebesgue’s theorem. We
infer that

t
PLEuEf, + Plucgh - Vi) = B+ £ (L) Qv

+ ePLiul" + P(ull - Vuill).

app app

Now we write, by definition of Q¢

t t t
P i = (0) @ (e (-2t e (-2) i)
hence since L£(—t/e)uy"” = un,, we get
t
P, Vuigy) = £ (L) 0w, cuw,) + F
where

e () e (2)4).

Going back to the equation on ugrl we find that

t
PLLE/ ggp + P( app Vuai;qp) R +L (6) Q(U’Nna uN,,)

-L ( ) Q% (un,,un,) + F&" + ePLiuf".
Let us postpone for a while the proof of the following lemma.

Lemma 6.4 Let n > 0 be given. There is a family of divergence-free vector
fields uS", bounded in (L N LY)(RY; H*(T?)) for all s > 0, such that

L <z> (Q° — Q)(un,,un,) = ePLSUS" + RO,
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Lemma 6.4 implies that

PLIuS! +P(ul? - Vus) = RS + F§

vUapp (uapp app
and the only point left to check is that F<7 is a remainder term. But that is obvi-
ous due to the smoothness of u5"" which implies that F= is O(e) in L2(R*; H2)
for instance, for all 1. So the theorem is proved, up to the proof of Lemma 6.4. [

Proof of Lemma 6.4 We start by noticing that by definition,
(Q° = Qun, un,) =—F 1 D e wn®y n 1y, w7 (k) - (n— k)]

kgKCs,
oe{+,-}*
X [u”?(n — k) - e7(n)]e”*(n),
recalling that
k fis — k 7
wl (k) = 01— + O'Qni UC 03@
|| 7 — k| ||

and that k& ¢ K7 means that wy (k) is not zero, so (Q° — Q)(un,,un,) is an

oscillating term in time. Moreover the frequency truncation implies that |w? (k)|

is bounded from below, by a constant depending on 1. That enables us to define
e itwy (k)

F! k%c:aiwg(k)lleannkKN" [u” (k) (n — k)]

~5 m def

x [u”%(n — k)-e”®(n)]e’®(n),
and 5" < £ (t) @". Then
€

eduy" = (Q — Q) (un,,un,) + Ry,
where R} ** is the inverse Fourier transform of
el Lw? (k)
2 3 S e, Tt (0007 () (n = B[ (1= K™ ()] ()

k¢S , n
Notice that euj” is defined as the primitive in time of the oscillating
term Q° — Q, and it is precisely the time oscillations that imply that u]" is
uniformly bounded in .

We therefore have

i = et (D i+ o ()
— (L)@ o) unun) +eL (L) Ry - P (£ (L) arrae
= 5 Nys UN, z )ty Z ) ,
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recalling that 0;£ + PRz £ = 0 where Rz is the rotation by angle m/2. Finally
we have

t t
O P (S A &) = L <E> (Q - Q) (un, ,un, ) + <L (8) REt.

Since uj" is arbitrarily smooth (for a fixed 7) and so is R;*, we find finally that

EPI/Z‘E,U?J7 = RE,T] + E (z) (Q - QE)(uNnauNn)a

and Lemma 6.4 is proved. O

6.6 Study of the limit system with anisotropic viscosity

In Chapter 7, we shall be dealing with a fluid evolving between two fixed hori-
zontal plates at x3 = 0 and x3 = 1, with Dirichlet boundary conditions on the
plates, and periodic horizontal boundary conditions. In that case we will see that
the limit system is quite similar to the purely periodic case, apart from the fact
that there is no vertical viscosity. There is also an additional, positive operator £.
In other words the limit system in that case is

Ou—vApu+ Eu+ Qu,u) =0
(NSE, )< divu =0
U‘t:() = Ug-

The well-posedness result will be useful in the next chapter. Before stating and
proving that result, we need some additional notation. We define

HO'Y (f e 12(Q), 05f € LX)}

and

£ 1zron = I1£11Z2 + 11051172

Moreover we denote by Hy the space of divergence-free vector fields with a
vanishing horizontal mean.
Finally we shall need the notion of admissible classes of periodic boxes.

Definition 6.2 We say that T? satisfies condition (A) if one of the
following conditions is satisfied:

e the following implication holds:
(R) ke K:Z = ksng = 0;

e condition (R) does not hold and a;/a; € Q for all (i,j) € {1,2,3}%;
e condition (R) does not hold and there are i # j, i # k, j # k such
that af/ajz- €Q and a?/ai is not algebraic of degree /.
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Remark It can be proved that almost all periodic boxes satisfy condition (R)
(see [47], [48]). Condition (\A) is introduced because it is under that assumption
that we will be able to prove that the horizontal mean of the solution of the limit
system is preserved; a vanishing horizontal mean will be needed to construct the
boundary layers in Section 7.4 page 176.

Proposition 6.5 (Global well-posedness) Let ug be in H N H®!, and sup-
pose that the operator £ is continuous and non-negative on H N H%'. There
is a unique solution u in CO(RT,H N H%') to (NSE,¢) such that V'u is
in L2 _(RT; H%Y). Moreover, defining

loc
1

u=u+u withd3u=0 and/ﬂdmgz(),
0

we have the following estimates:

t
()12 2 +2/0 V"Gt 1 2 p2y dt’ < ([0 722, (6.6.1)

and
t
GO + [ 19T o dt
0

< o |30 x exp (Cot? [l 2 (1 + ¢ lollz2))
Finally we have Q(u,u) € L& (R, H™0), and if T3 satisfies condition
(A) then
vt >0, / O(u, u)(t, zp, x3) drp, = 0. (6.6.2)
T2

In particular the horizontal mean of the solution is preserved.

Remark Note that the global well-posedness result is no a priori trivial fact,
as the structure of that system is that of the three-dimensional Navier—Stokes
equations, supplemented with vanishing viscosity in the vertical variable. Simil-
arly to the above, the reason why global well-posedness holds relies on the very
special structure of the non-linear term Q.

Proof of Proposition 6.5 Let us start by proving the uniqueness of the solu-
tions. Suppose v and v are two solutions associated to the same initial data ug,
and define w = v — v. Then

Ow — vApw + Ew = Q(w,w) + Q(u, w) + Q(w, u)

and an energy estimate in L? implies that

t
lwo(t) 22 + 2 / IV ()22 dt

< Jlwol[72 +/0 [((Qw, w)w) 2 + (Qw, w)|w) > + (Qu, w)|w) =) ()] dt’
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and the symmetry properties of Q enable us to write that
t t
@) +20 [ 19 (@) < ol +2 [ 1(Qws w)a
0 0

In order to estimate the last term, it is enough to prove the following lemma.

Lemma 6.5 Let § be a divergence-free vector field vanishing on the boundary.
Then for any vector field b,

T

T
| 60 9s0lbe),- it < [ 1501150
0 0
% (IVb(t) 501 + 1105b()]| 2105 7" b(8)] 1) .

Proof The divergence-free condition implies that

/ (S(#) - VS () b)) e dit’ = / (6(t) ® ()| Vb(t)) 12 dt’
0 0
=Ap + Ava

where

t
Av= Y / SE (87 (¢ ol (1) dt’.
ke{1,2} 70
j€{1,2,3}
Let us start by estimating Aj. We have
t 1 ' 4
[Anl < D2 /0 /0 165t~ @3) |l e 167 (¢, - aws) pa 10kY7 (¢, -, 23) || 2 dsdt!

ke{1,2}
j€{1,2,3}

t 1
< [ 10 g I8 )l a0 () oy o
by the Gagliardo—Nirenberg inequality. The result follows from the continuous

embedding of H'([0,1]) into L>([0,1]).
Now let us estimate A,. We have

t 1
1A, < / / 163t ) 2 18 - 23) | 3 | 9sb(¥' -, 28) | s st

t 1 1 1
< [ [ 18 m)lzg 1 a3, 195 )
0 0

X ||a3b(t/a " 13)”2’21 ||a3vhb(t/a " x3)||[§/’21 dedt/~
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But
M%wm%:/m£WWwM%@3
’ Ly 0 dy3 ’ Ly
T3
= 2/ 0363 (x,y3)0% (x, y3) dapdys
0 T2

SQA 1978, ) 22 18, ) 2 dys,

where we have used the divergence-free condition on §. Finally
¢ 1 1
Ay < C/ IV 3 22 16 22110551 210V b (t) | £ dt',
0

which proves the lemma. O

Remark It is easy to adapt the proof (and the result) of Lemma 6.5 to the
quadratic form Q; it is enough to use the fact that £ is unitary together with
the definition of Q. We infer

t t
/O (Q(w, w)lu) 2] di’ < C/O ()] L2V w() | 2
X <||th(t')||Ho,1 + \|83u(t’)||L2Hagvhu(t’)HLz) dt/.
We find that

t
|mum;+ouénvﬂmm@2

t
< C/O lw @172 > (IV ) IF01 + 105ul)II72 10V u(t)II7=) dt',

and the result follows from Gronwall’s lemma and the regularity properties of w.

Now let us prove the global existence result. That result is not trivial for
several reasons. First, the system (NSE, ¢) is similar to a three-dimensional
Navier—Stokes equation, for which such a result is not known. However, as
we saw in Section 6.3, the bilinear term has in fact a special structure which
makes it close to a two-dimensional equation (the product rules it satisfies are
of two-dimensional type, with the loss of only one derivative instead of 3/2).
The additional difficulty here is that the Laplacian is only two-dimensional, so
there is a priori no smoothing effect in the third direction. However using the
fact that the velocity field is divergence-free, we can recover one vertical deriv-
ative on the third component of the velocity field and we shall see that this
fact will be enough to conclude. So let us prove Proposition 6.5. We recall that,
with notation (6.2.3) and (6.2.4), the vector field @ satisfies a two-dimensional
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(damped) Navier-Stokes equation so the existence of @ satisfying (6.6.1) is obvi-
ous. Now let us concentrate on the vector field uq,sc = u — u, which satisfies the
following system:

Opliose — VAR Ugse + Ellose — Q(UOSCa Uosc + 2ﬂ) =0

divuese =0

Uosc|o = 0

Ult=0 = Uosc,0-
In order to avoid additional notation, we shall write energy estimates on ugsc
and Osues. directly, and not on regularizations; we shall omit the final, now
classical step consisting of taking the limit of the sequence of regularized solutions
satisfying the energy estimate. The properties recalled in Proposition 6.2 imply

the following estimate (the operator £ is non-negative on H N H%! so we shall
no longer consider it here):

t
tose (8) 22 + 20 / IV e ()22 dt’ < [ltiome 2. (6.6.3)
0

Now we want to write an energy estimate on Jsuqs.. We have

+ 2‘ (83 Q(ﬂv uosc)|a3uosc)L2 .

(6.6.4)

By Proposition 6.2 we have (93Q(U, Uosc)|03Uosc) 2 = 0, so let us estimate the
first term on the right-hand side. We cannot simply use the methods of the above
sections since we are missing the regularization effect in the third variable, so
we need to use the fact that wuqs. is divergence-free in order to gain that missing
derivative. The method is as follows. We define

Q(uosm uosc) = Qh(uosm uosc) + 9, (uosm Uosc)

where for any vector field a and b we have defined

Qn(a. )™ tim £ (-i) ((z: <z> a)h VL (i) b) (6.6.5)
0,0, tim £ (‘i) ((c (z) a>3 ds L <z> b) . (66.6)

Then we can write

(95 Q(Uosc, Uosc) |a3uosc)L2

and

< ’ (83 93 (UOSC7 uosc)|63uosc)L2

+ ’ (83 Qv (uoscv uosc)|83uosc)L2 (667)
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and we are going to show that each of those two terms can be estimated in
the same way. In the following computations we shall use the notation of the
above sections. The computations will be quite similar to Section 6.4, apart
from the fact that one needs to take into account the anisotropy of the problem
here (since the Laplacian is anisotropic). The first term in (6.6.7), where Qp
appears, is a finite sum of terms of the form

S (e (k) on = ) s = )i (n — k)
(k,n)ezb
keK(n)

o R (8) (i — )i (n = ) ) nsie(n), (6.6.8)
where j,j’ and j” are in {1,2,3}. We have denoted Kndif Uy K7 with nota-
tion (6.2.5). Now we are going to show that (95Q,(Uosc, Uosc)|O3Uosc) ;2 can be
written in the same way. We have

(83 Qo (Uose, Uosc) 83UOSC) L2

t 8 t t
= — lim (83 ((E (> uosc) 83 L () uosc) ‘83 L () uosc)
e—0 g g €
and using the fact that £ (t) Upse 18 divergence-free, we can write on the
€
one hand
3
(a?) <‘C <t> uosc) 83 L <t) Uosc a3 L (t) uosc)
€ € €
h
= - <divh <£ <t> uosc> 03 L <t> Uosc
€ €

L2

L2

03 L (t) uosc)
13

L2
whereas, on the other hand, an integration by parts implies that
3
t t t
<<£ () uosc) 8§ L () Uosc|03 L () Uosc)
€ € €
L2
1 t 3 t t
= -3 <83 (»C () uosc) 83»6 () Uosc 83»6 <> uosc)
2 € € € 1

So finally using once again the fact that £ (i) Uosc 18 divergence-free we get

(83 Qy (Uosca uOSC) a3u05c)m
83 »C (t> uosc)
3

h
= 1 lim (divh (,C <t> Uosc) 83 ,C <t> Uosc
2 e—0 € €

L2
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So we are back to the formulation (6.6.8). The following lemma shows how to
estimate a sum of the type (6.6.8).

Lemma 6.6 There is a constant C' such that the following estimate holds: for
all vector fields a,b, c of the form 7.0.5, we have

Nl=

> latwbin - ke < O (0 (1 nal)? an)?)

(k,n)ez® nez?3
keK,
~ 3 1 7
(2 BE) (3 @ ) )
nezs neZzs

Remark This result is similar to Lemma 6.2, only the spaces appearing on
the right-hand side are anisotropic-type Sobolev spaces. Contrary to the case of
Lemma 6.2 and in order to avoid any additional complication, we shall not prove
that result in any more generality (with a general “resonant set” and with more
general Sobolev norms on the right-hand side).

Before proving Lemma 6.6, let us finish the proof of Proposition 6.5. We use
Lemma 6.6 twice, once with a@ = ose, b = 93V tuose and ¢ = O3uose, and once
with a = O3ucsc, b = VUgse and ¢ = O5uopsc. We get

(03 Q(Uosc, Uose ) |O3Uosc) 1.2 |
< (195t + 1| 19" ¥ Osttoncll2) 19" tnc
o (Itoscllzs + 11 19" Bttose 2 ) 9" Dsttonc 22
(1 9stosc L2 + 1171 Dsvtcllz )
An easy computation using the interpolation inequality
V"2 ttose(8)[32 < Ifttose ()] 2 |V tose () 22, (6.6.9)
yields the following estimate:

|(83 Q(UOSCa uosc) |83uosc)L2 |

v
< levhafSUOSC“%? + ||a3u050||%2‘|vhu050||L2
C C 1
+ ;”ai%uos':ll%?(HVhUOSCHQL2 + HUOSCH%Q) + ;HUOSCHQL?||83‘Vh|2“080||2L2

C 1 C 1 1
+ ;Haiiuoscn%?mvh‘2“OSC||2L2 + ;||83|vh|2“OSC||2L2|||Vh|2UOSCH%2~
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Using (6.6.9) once again yields

|((93 Q(UOSC7 uosc) ‘a?)uosc)Lz |

< 517" Bsttonc 32 + 10sttosc 3" toscl| .2
+ S0l (19 sl el + 5 st e )
Going back to (6.6.3), we have finally
Ot (1) + 7" st (1)

C
< H83u05C||2L2 (vhUJOSC|L2 + ;(”VhUOSCHQL2 + |U,05C||%2))

+ 5”8315080”%2 HUOSCH%Z-

The result follows from the L? energy estimate (6.6.3) on ues. thanks to the
Gronwall lemma.

To end the proof of Proposition 6.5, we still need to prove (6.6.2). This result
relies on some refined analysis of diophantine equations, and is beyond the scope
of this book. We will therefore not prove the result, but refer to [49] where the
proof can be found. Proposition 6.5 is proved. 0]

Proof of Lemma 6.6 This is, as in the case of Proposition 6.2, due to the
special structure of the quadratic form Q. We recall to this end that if n and kj,
are fixed, then there are at most eight integers k3 such that k is in the resonant
set K. So we can write, using the Cauchy—-Schwarz inequality,

1
2
> la(kb(n—k)em)|<C D [én) <§ [@(k)[2b(n — )I2>
(k,n)eZ® (kn,n)€Z® k3cZ
keK,

which again by a Cauchy—Schwarz inequality yields

[N

Yo fakbn —kem) <Cc Y (Z |6<n>|2>

(k,n)ezZ® (kn,nn)€EZ* \nz€Z
kEK,

[N

X

S fak)Pbn - k)2

(k3,n3)€Z?



152 The periodic case

We deduce that
> [a(k)b(n — k)e(n)|

(k,n)€Z"
keK,,
) s, :
<Cc > ( > |5(n)|2> (Z |a(k)|2> (Z |b(rn — kh,€3)2>
(kn,mp)€EZ* \n3€Z k3 L3

Two-dimensional product rules enable us to write, for all two-dimensional vector
fields A, B and C

Y 1Amn)Bny — kn)C(kn)]

(kh,,nh)€Z4

<O D i) AP

nhEZ2
3 3
= 1
x| Y 1Bw))? > @+ [na)2(Clnn)?
ny €Z? ny €Z>

~ 1
so the result follows, taking A(nn) = (3, cz[@(n)[*)? and similarly for B
and C. Lemma 6.6 is proved. O

Note that in particular Lemma 6.6 implies the following result.

Proposition 6.6 The quadratic form Q satisfies, for any divergence-free vector
field a,

19(a, @) l-10 < Cllallz2llallzro + [Bsall 2 al 22 lall .

In particular Q is bilinear continuous from

L>=([0,T); H*') x L*([0,T]; H®) into L*([0,T]; H~ ).
Proof Asin (6.6.5) and (6.6.6) let us decompose

Q(a,a) = Qn(a,a) + Qy(a,a).
Let b € H*Y be given. The divergence-free condition on a implies that
(a,@)p) < > [a(k )llnal[br)] + >~ [a(k)|[an — k)|nsfb(n)|-
keKg KeKo

Let us start with the first term. We can write

(Qn(a,a)b)] < Y [ak)|[aln — k)l|lnslb(n)],

keEKZ
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so Lemma 6.6 implies that

N|=

(Qu@ @) < C | D= A+ 2am)” | | Y @+ nal*)bn)

nezs nez3
By the Gagliardo—Nirenberg inequality we get
(Q(a, a)[b)] < Cllallzzllall o 16l 0

For O, we write

(Qu(a,@)b)| < Y~ ksfa(k)|[@(n — k)|[b(n)|

keKZ

+ 37 [ak)lIns — ksla(n — k)|[b(n)],

kEKZ
and Lemma 6.6 along with the Gagliardo—Nirenberg inequality implies that
1 1 1 1
(Qu(a, a)[b)| < Cl|Bsall[|al| 72 llall Zr.o 1Bl 221101 £1.0,

and Proposition 6.6 is proved. O






7

Ekman boundary layers for rotating fluids

In this chapter, we investigate the problem of rapidly rotating viscous fluids
between two horizontal plates with Dirichlet boundary conditions. We present
the model with so-called “turbulent” viscosity. More precisely, we shall study the
limit when ¢ tends to 0 of the system

By + div(u® ® u) — vAUE — BB + e Aus o
(NSC.) divu® =0 :

Uiy =0

Ujy— = UG,

where Q = Q;,x]0, 1[: here Q;, will be the torus T? or the whole plane R?. We
shall use, as in the previous chapters, the following notation: if w is a vector
field on Q we state u = (u”,u?). In all that follows, we shall assume that on
the boundary 02, uj - n = ug’?’ =0, and that divu§ = 0. The condition u3 = 0
on the boundary implies the following fact: for any vector field u € H(2), the
function d3u? is L?(]0, 1) with respect to the variable x3 with values in H~*(£2,)
due to the divergence-free condition. So by integration, we get

1
u3(xh, 1) — u?’(:rh,O) = 7/ divy, uh(xh,:cg)dwg =0. (7.0.1)
0

So the vertical mean value of the horizontal part of the vector field is divergence-
free as a vector field on €2,
We proved in Chapter 2 that a weak solution u® exists such that if

t t
.\ def
E; (v) = [o(t)]172 +2V/0 IIVv(t')IIizdt'+2ﬁ€/o 1030(t")|[Z24t',  (7.0.2)

then we have

BE () < ol 2. (7.0.3)
It follows that the family (u®).>¢ has some weak limit points, for instance in the
space L2 (R* x©), and as seen in the introduction in Part I they do not depend
on the vertical variable. Let us recall the arguments. Let u be in the weak closure
of u®. Obviously, the term

Ot + div(u® ® uf) — vApuE — Bediu’
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is, up to an extraction of a subsequence, convergent in D’(R* xQ). Thus this
implies that

esANu=—-Vp
which can be written
—u? —01p
| =-0p],
0 —03p

from which we deduce that 9;%" = 0 and div, @"* = 0. As T is a divergence-free
vector field on the three-dimensional domain €, then 95> = 0.
In the following we will also define

T
Er(@) ™ sup [olt)Eaoy + 20 [ IV0(0) oy
te[0,T) 0

The aim of this chapter is to study the asymptotics of the family (u®).>0 as e
goes to zero. The easiest situation occurs when the initial data do not depend
on the vertical variable x3 (which corresponds to the so-called “well-prepared”
case). The precise theorem in the well-prepared case is the following. It will be
proved in Section 7.3, using a fundamental linear lemma stated and proved in
Section 7.1. Let us first introduce space with anisotropic regularity.

Definition 7.1 We shall denote by H*°(Q) (or by HO when no confu-
sion is possible) the space of L? functions u on § such that V"u also belongs

to L?(Q).

Theorem 7.1 Let (u®)es0 be a family of weak solutions of (NSC.) associated
with a family of initial data u§ € H(Q) such that
lim = @r,0) in H(Q),

where Th is a horizontal vector field in H(S2y,). Denoting by @ the global solution
of the two-dimensional Navier—Stokes-type equations on Qy,

o+ divy (T R T) — vAR T+ /281 = —V"'p

(NSE, 3) {divpaz=0

Ujp—o = g ,

then u® goes to (u,0) as € goes to zero, in the space

Lise(Rs L*(Q)) N Lie (R HY).

loc

Remark We will omit the proof that there is a unique global solution to the
system (NSE, ) with initial data @ in H(s), as it is exactly the same proof as
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for the two-dimensional Navier—Stokes equations studied in Part II, Section 2.2
and Chapter 3. In particular the solution u belongs to the space

Cy (RT, H () N L*(RT, Vo (),

and for all t > 0,

1 ¢ ¢ 1
§Ilﬁ(t)lliz + V/O Iva(t')|3. dt' + /283 /0 [a(t)|)7- dt’ = §H%Hiz- (7.0.4)

We shall investigate the more delicate case when the initial data ug do actu-
ally depend on the vertical variable x3 (the so-called “ill-prepared” case) in
Section 7.4, where we shall compute explicitly approximate solutions for the
linear problem. The study of the full non-linear problem depends strongly on
the domain Q. In the case when © = R? x]0,1[, the result is the following,
proved in Section 7.6.

Theorem 7.2 Let ug be a vector field in H(R? x]0,1[). Let us consider a fam-
ily (u¥)eso of weak solutions of (NSC.) associated with the initial data ug.
Denoting by u the global solution of the two-dimensional Navier—Stokes-type
equations (NSE, g) with initial data

_ def
u|t:0(33h) =

1
/ ug(xh,xg)dxg,

0

we have, for any positive time T and any compact subset K of R? x]0, 1],

lim [uf (t, ) — (u(t, zp),0)|* dzpdes = 0.

=0 Jjo,11x K
The key point of the proof of this theorem is that the dispersive phenomena
studied in Chapter 5 are not affected by the Ekman boundary layer.

When the domain €y, is periodic, the result is different, due to the absence of
dispersion; in particular the methods of Chapter 6 will be used here to deal with
the periodic horizontal boundary conditions. We will therefore be using some
notation of the purely periodic case: in the coming theorem, £ is the filtering
operator of Chapter 6, and Q is the quadratic form defined in Proposition 6.1,
page 124. Before stating the result let us define the periodic setting: the horizontal
torus will be defined as

2
o def
T = H R/aj Z
j=1

where the a;’s are positive real numbers. We will see that solving the problem
in Q with Dirichlet boundary conditions corresponds to considering vector fields
having the following symmetries:

w(wn, x3) = (u"(zn, —x3), —u®(zh, —23)).
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These symmetry properties are clearly preserved by the rotating-fluid equations.
Such vector fields will be decomposed in the following way:
ukheimkn-eh cos(kymas)

u(z) = E [ koh jimky o o
_ Ly - s h'Th k
et T u™"e sin(ksmxs)

(7.0.5)

This form is very similar to the decomposition of periodic vector fields used in
Chapter 6, and in particular the Fourier components are

(uk’l,uk’Z,uk’?’) with /3 = —Lkh L
k‘gﬂ'
Comparing the vertical Fourier transform defined in (7.0.5) with the definition
of the classical Fourier transform (6.1.1), page 117, shows that with the notation
of Chapter 6 we have as = 2, so as in Chapter 6 we will define

%déf <Iﬁ7l€2>k3> with as = 2.

The theorem proved in Section 7.7 is the following. We have denoted by H%!
the space of functions f € L?(Q2) such that d3f is in L?(€2), and H the space of
vector fields in H with vanishing horizontal mean.

Theorem 7.3 A non-negative, continuous operator & on HoNH%'(Q) exists (it
is defined by (7.4.39) below) such that the following results hold. Let us consider
initial data ug in Ho N H%Y, and let u be the associated solution of the system

Ou —vApu+Eu+ Qu,u) =0
(NSE, ¢) ¢ divu=0

Ujt=0 = U0

given by Proposition 6.5, page 145. If T? satisfies condition (A) in the sense of
Definition 6.2, then the following result is true. Let (u®).s0 be a family of weak
solutions of (NSC;) associated with the initial data uo. Then for all T > 0,

lim Ep (uE - L <t) u) =0.
e—0 €

Note that the structure of the limiting equation in the periodic case is very
different from the case of the whole space. The filtering operator acts like the
identity on two-dimensional vector fields, and that is why it does not appear in
the statement of Theorem 7.3, as the three-dimensional vector fields disappear
due to dispersion. In the same way, the operator £ acts like v/231d on two-
dimensional vector fields. In the case of T? x]0, 1[, the above theorem generalizes
Theorem 7.1. Here three-dimensional vector fields remain in the limit, since u is
no longer two dimensional. We recall (see Section 6.6, page 144) that the fact
that the periodic box satisfies condition (A) ensures that the horizontal mean
of the solution of the limit system is preserved — a vanishing horizontal mean is
needed to construct the boundary layers in Section 7.4.
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7.1 The well-prepared linear problem

The goal of this section is to construct approximate solutions to the linear system
(Stokes—Coriolis equations)

ez AV
00" — VAR — v, 030° + ———

(SCe) dive =0

€ —
Yjt=0 = V0,

= —va

when vy belongs to H(Qp).
Let us denote by R the rotation of angle 7/2 in the (x1, 23) plane and by L¢
the operator
R h
stdgf " — vA " + Tw — Vvﬁgwh
Oyw? — vApw? — v, 03w

The system (SC.) can be rewritten as

LEvE = _Vpe
(SCe) < dive® =0
v|€t:0 = 7.

We will assume that v, depends on the parameter ¢, and that these two para-
meters go to 0. It is of course possible to investigate this double limit without
any further assumption, however the only interesting regime arises when v,, /e
converges to some positive constant . To shorten the study we have therefore
chosen to restrict ourselves to the case when

v, = [, (7.1.1)

with 8 > 0, which is a physically relevant regime.

We immediately note that the Taylor—Proudman theorem (i.e. the limit is
independent of the vertical variable) is not compatible with Dirichlet condi-
tions (except in the degenerate case when vy = 0). As usual in these situations,
boundary layers appear near z3 = 0 and x3 = 1.

We want to do the following: a horizontal two-dimensional divergence-free
vector field v being given, we want to construct a family of approximate solu-
tions (vg,,)e>0 and an operator L such that Lfvg, = Lv up to small remainder
terms (i.e. which will tend to 0 when ¢ tends to 0.) As we shall see later on, the
operator L is related to the system (NSE, ).

A typical approach is to look for approximate solutions of the form (the
Ansatz)

€
V° = Vg,int + V0,BL + EV1,int + EV1,BL + ... ,

o1 1 (7.1.2)
P = gp—l,int + gp—l,BL + Po,int +Po,BL + -,
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where “int” stands for “interior”, namely smooth functions of (z}, z3), and “BL”
stands for “boundary layers”: smooth functions of the form

(xh7m3) = f (tvmha %) +g <ta Th, w) )
where f(xp, () and g(zp, () decrease rapidly at infinity in ¢. In that expression 4,
which goes to 0 in the limiting process, denotes the size of the boundary layer.
We will prove below that ¢ is of order /7€ = e/[3.

Now we plug the Ansatz (7.1.2) into the above system (SC.) and identify
powers of e, functions of the type “int” and “BL”, keeping in mind that the
divergence-free condition and the Dirichlet boundary condition must be satisfied.

First, the third component of (SC.) at order e~*§~! gives in the boundary
layer

Osp—1,B1, = 0.
As, by definition, p_; g1, goes to 0 as ¢ goes to infinity, we deduce that
p—1,BL = 0.

We recover a classical principle of fluid mechanics which claims that the pressure
does not vary in a boundary layer.

Next, horizontal components of (SC.) to leading order in the boundary layer
yield

h
Rug g,

—eB05v pr, + = 0. (7.1.3)

Note that 832>USLBL is of order 62, hence the previous equation indicates that
v, 072 must be of order . We thus define

5 =/2v,e =e\/20,

the coefficient v/2 being considered for algebraic simplicity. In physics, it is usual
to introduce the Ekman number

p 2ev,, = 220.

The boundary layer size 6 is then simply v/E. Let us search for v(’},BL of the form

T 1-—2z
(wh, x3) — Mo <\/3E) V5 it + Mo (\/E3> U int

where My is a 2 X 2 matrix with real-valued coefficients. Then, equation (7.1.3)
implies that M, satisfies the following ordinary differential equation

M} =2RM, with My(0)=—1Id and My(+oo) =0, (7.1.4)

which gives
My(¢) = —e“R_¢, (7.1.5)
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where R, denotes rotation by the angle a. So we have
T3 1-— T3 h )
v = My | —=)+My|{——= | )V int,0 |- 7.1.6
OBk (( 0<\/E> O( @)) 0t ( )

L8U07BL = (&gvo,mt — VAhU07int, 0) and (717)

1
(UO,int + UO,BL)‘{)Q = (MO (\/E) v(’iint,O) (718)

which means that the boundary condition is satisfied to leading order, up to
exponentially small terms that will be treated later on.

Let us continue with the study of the Ansatz. The third component of (SC.)
in the interior, to order ¢!, gives

Note that

03p—1,int = 0,

hence p_1in only depends on the horizontal coordinates. The horizontal
components of the same equation lead to

I I2
R’UOL,int =-V Lpfl,inb

—UG int _ (01p—1,int

’Ué,int anfLint ’
This implies, using the incompressibility of vg int, that vgvint does not depend on
the vertical variable x3, that v%ymt = 0, and that

Therefore

divy, vg)int =0, (7.1.9)

which is exactly the Taylor—Proudman theorem.
The next step is to ensure the incompressibility condition in the boundary
layer, namely

dth U(]]l,BL + 5831}?73]_‘ =0. (7110)

As v gy, is explicitly known as a function of vg’int, it is possible to solve (7.1.10)
in order to compute UiBL. A simple integration of (7.1.6) gives

v} g, = V26 <f (j%) - f (1\;53)) curlhvg,int, (7.1.11)

where

f¢) = —%e*(sin( + cos ().
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Now we turn to viint. The boundary values of viBL at x3 = 0 and 3 = 1
provide the boundary condition for viint, namely

1
VF iy = 3 2ﬂcurlhv6”int at x3=0 and (7.1.12)
1
Uiinc =-3 20 curlhvgyint at a3 =1 (7.1.13)

We recall that under (7.1.1), VE/¢ is a constant, namely

Let us lift those boundary conditions by a vector field v; in; over the interior
domain. A natural choice is

1
V3 e = V28 (2 - 1’3) urlp vl i (7.1.14)

which, completed with

Ul int — \/7R UO int» (7115)

leads to a divergence-free vector field vy int. Let us note that, as in (7.1.8), we
have exponentially small error terms at the boundary, namely

(UiBL + vimt) 00 = ‘1353 V2B f ( ) curlhv&im. (7.1.16)

Next, (SC.) to order O(1) in the interior gives

(7.1.17)
8t/U[?)),int - VAhv(?)),int = _a3p0,int~

h h hoo_ ho
{ Ovgine — VARVG ine + RV i = =V Po,int
Taking the two-dimensional curl of the first two equations gives
h h « o h 3
dreurlpvg g, — vARCurlpvg = —divay g = 0307 jue-

The left-hand side being independent of x3, so is the right-hand side, and
integration in x3 over |0, 1] gives

h h 3 3
dreurlpvg iy — VARCUTIRUG 1y = U7 iy (Ths 1) = 07 iy (%4, 0),
namely
h h h
Oreurlpvg ing — vApcurlpvg e + 1/ 28 curlpug e = 0. (7.1.18)

Note that (7.1.17), combined with (7.1.18), completely determines vfint, up to
two-dimensional divergence-free vector fields. To go further we need to enforce
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an asymptotic expansion for the initial value itself. Here we take ug as the initial
data, which do not depend on €. This allows us to go on with the construction,
in theory, up to any order. For our purpose, however, it is sufficient to stop the
construction at this step, up to small technicalities.

Before dealing with those, let us sum up what we have done:

o We first ensured the boundary condition by introducing v gr,.

e Then, as vo pr violated the divergence-free condition, we introduced vq L,
in order to ensure the divergence-free condition.

e The introduction of v; pr, destroyed the boundary condition which we
restored by introducing vy ins.

Let us deal with the final technicalities.

e As shown by (7.1.8), the Dirichlet boundary condition is not exactly
satisfied.

e The horizontal component of the vector field vy iy defined in (7.1.15) does
not vanish on the boundary.
In order to deal with the second point, let us state

o =2 (e (T2 ) e (Z) ) Rogif

v, 0 (7.1.19)

5 def —x3 —(1 - 563))) h
v =28 (exp| —= | +exp| ——=—= ) ) curlpvy -
2,BL B ( P( ﬁE> P( 0o hY0,int
Then, using (7.1.8), (7.1.10), and (7.1.16), we get that

. 2
div (vo,int + V0,BL + €V1,int + €v1,BL + £7v2,8L) =0 and

2
(Uo,int + vo,BL + €V1,int + EV1,BL + € Uz,BL) EX) = VR

where vy is defined by

1 -1
UR def (Mo (\/E) Ug,im —VE exp (\/E) R*%vgvint’

1 1
(—1)|1§m3\/ﬁf <_\/E) curlhvg,int + Eexp <_\/E> curlhv(}JL’int) .
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Let us define v&,__ by

exp

in(2
vgxp def (— cos(27rx3)v§f—i, w divy, v%)

VE

+ Fexp (—

1
+VEf () (m sin(ﬂxg)R_%vg,mt,cos(ﬁarg)curl;Lv&int)
\/E) (27 sin(27racg)R,%vg’int, cos(27rx3)cur1hvg’int) .
Then it is obvious that

. 2 5
div (vo,int + V0,BL + EV1,int + EV1,BL + £°V2,BL 4 V5,,) =0 and

(UO,int + vo,BL + €V1,int + €V1,BL + 52U2,BL + ngp) 199 =0. (7120)

Now we are ready to state the fundamental approximation lemma. We
define H*? to be the space of vector fields f satisfying

1
def
£ 120 é/o 1£Co28) 3o, s < +00. (7.1.21)

Let us define the limit Stokes-Ekman system

0T —VvALT+/280=Ff—-V"p
(SEV7B) divpv =0

ilt:() == EO .

Lemma 7.1 Let T be in RT, let By be a horizontal vector field in H(Q),
and let f be a horizontal vector field in L2([0,T); V. (Q)). We denote by U the
solution of the system (SE, g).

Then for any positive n, there exists a family (Ugﬁ))wo of smooth divergence-
free vector fields on §, vanishing on the boundary, such that

HPstiﬁ) - ?”Lz([O,T];H*LO) = pg’n7 and (7122)

T
1oz = P Zee (o700 + 2”/0 IV (b = D) ()72 dt = p77,  (7.1.23)

where, as in the previous chapter, p*" denotes generically any sequence of non-
negative real numbers, possibly depending on T, such that

lim lim sup p=" = 0. (7.1.24)

n—0 <0
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Moreover, v satisfies, for any t € [0,T], the energy estimate

t
sup Ef(vih) < |[woll7> + 2/ (f&"),v(t")) dt’ + p=". (7.1.25)
te[0,T]

Remark In the case when the Fourier transforms of f and ¥y are included in
a fixed ball, then the family vZ;] can be chosen independently of 7, and all the
estimates given in Lemma 7.1 hold with n = 0.

Proof of Lemma 7.1 The proof consists mainly in reading the previous com-
putations. First of all, let us consider a given > 0, and let us perform a
frequency cut-off, by stating for any N € N,

Ton = PrTy and fr 2 Py, (7.1.26)
where Py is the usual spectral cut-off operator introduced in Chapter 2 (see
relation (2.1.6) page 40). Then we denote by ¥ the solution of (SE, ) associated
with the initial data Ty y and bulk force f. It is obvious that Dy y converges
towards Up in H as N goes to infinity, and that (see Proposition 2.3, page 40,
for details) for N, chosen large enough

1=

1fn, = Fllzeqomov) < 5 (7.1.27)

[\)

It follows that for IV, large enough,

t
VST, (@B, O + v / IV*@ = B0, (@) ey dt’ < 1.

Thus inequality (7.1.23) will be proved if we show that

lim (IIvmpp O, [ (0,102

T
—1—21//0 IV (v, =N, (1720 dt) =0. (7.1.28)

Now let us define, with the notation introduced at the beginning of this section,
(and, in order to avoid excessive heaviness, dropping the index 7)),

def _ 2
g, p €
Uapq) = UN + €V1,int + V0,BL + €V1,BL + €7 V2, BL + Uexp

where we recall that

1
Ulint def <\/ 26R_zvn, /28 (2 - 553) curlth) ,

def €3

o (o 23) (552,
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o (o) o)
(1 (3) () o)

V2,BL o (0’ _\/ﬁ <9XP(—53E) + exp(—l_\/gg)> curlth)

and finally
e def 9 h sin(27rx3) di h
Vexp = | —cos(2ma3)vg, —5, divavg

+VEf (\}E) (wsin(rzs) R_ 5V, cos(mxs)curl, vy )

1
+ Eexp <\/E) (2msin(2m23) R_ = Uy, cos(2mas)curl, oy )

with
def ,_ 2
VR = (UN + vo,BL + €V1,int + €V1,BL + £7V2,BL) |90
Thanks to (7.1.20) we have

divet, =0 and ¢

app applon = 0;

and furthermore v<_ is clearly a smooth vector field.

app -
Let us start by estimating || L=v;,, — fll£2([0,7];;r-1.0). We shall first deal with
the boundary layer terms. We have, using (7.1.7),

app
1 —
LfvopL = (Mo (j%) + My <\/£%:3)> (0N — VALTN)

- <M0 (j‘%) + M, <1\;Ex?’)> (Fn — V28 7w).

Hence, by Definition (7.1.21) of the || - || g-1.0 norm, we get
_ _ 1
[ L5v0,BL(t) | g-10 < C (||fN(t)||H*1(Qh> +v2p ||UNHH*1(Q;L)) ki
1 — _
< Ot ([Fn®ll-r00) + V2B [oxlli2c0n) ) -
For the higher-order boundary layer terms we simply need to use the fact that
cdsg (f%) _y (fﬂs)
VE VE)'

and we leave the details to the reader. We infer that

stgpp = LE(@N + 5vl,int) + R&M

= (0 — vAR)ON +/28UN + R,
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where R®" denotes generically a vector field satisfying

hm hmsup I1R= " 2 ([0, 17510y = 0.

Since (9; — vARL)TN + V280N = fn, we conclude, using also (7.1.27), that

1505 = Fllezqo.ry 20y = o7

In order to prove (7.1.28) (hence (7.1.23) as noted above), let us observe that

IV* (vapp = TN) ()22 < Cyll(vapp — TN) (8]l 22
2

< Gy | DN mu(®)llze + ellvrine(t)ze + g Iz
7=0

Thus we infer

IV (05 — 8) ()] 12 < Cret.

app

Now let us prove estimate (7.1.25). By the definition of vS_ . we have that the

energy

app’

t
i3+ 20 [ 19" 0O '+ 25 [ 10w )1 o
is less than or equal to
t t
[5(t) 122 + 20 / IV () |22 di’ + 28 / 150,50 () |22 d’ + Ce.

An easy computation implies that
y (T3 / 1- x3 _
M, (7) + M T
€ €
4

1
_ 2z
O O,y [ oxw (- 275 ) doa+Cye

V28
Oe

1 2

232

+ Ce
L2(Q)

050,81 (t)]|72 =

IN

[T()I72(0,) + Cre-

So we get that
05, (D22 + 20 / IVP0g,, () |22 dt’ + 26 / 10505, (¢)]22 di’

§||@(t)||%2+2u/0 HV’"”@(t’)H%zdt'JrQ\/QB/O 1) 20, It + e
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Clearly we have

t t
D@22 + 20 / IV 2ot + 20/28 / 1) 26

— [[T0]122 +2 / F(t'), o)) dt’

so finally

t
EE(5,,) < oo, +2 / (), () dt’ + Cye,
and Lemma 7.1 is proved. O

7.2 Non-linear estimates in the well-prepared case

The two key estimates of this section (Lemmas 7.2 and 7.3) essentially say that
Ekman boundary layers do not affect non-linear terms. That will be of great
importance in the proof of Theorem 7.1. Actually as we will see in Section 7.5,
that fact remains true in the ill-prepared case.

Let us start by proving the following lemma.

Lemma 7.2 Under the assumptions of Lemma 7.1, the families (v3l)->0
satisfy

V8N e . Vi = Fe + R,

app app

where, with the notation of Lemma 7.1,

RS 20,1, 5-1.0) = =" and ¥n >0, glj}(l) 1E= ™[ 2(j0,7],£2(22)) = 0.

Proof Let us denote in all the following L = LP(£2}). The fact that Q is a con-
tinuous map from the space L*([0,T]; L}) x L*([0,T]; L}) into L2([0,T]; H10)
implies that it is enough to prove that
et yen st —wy, - Vi,

goes to zero in L2([0,T]; L?(2)) as € goes to zero, for any 1. We recall that vy
is the solution of (SE, g) associated with Do x and fy as defined in (7.1.26).
By definition of F¢", we have, omitting the index 7 in order to avoid excessive
heaviness,

3
e,mn __ €51 4
F&l = Z Fj with
j=1
def _
e,ndel e h h(, e
Fl - vapp Y (vapp - vN)

def _ _
g,n Ut e,h h
F5 = (vapp —on) - V'oy

endef ¢ 3 €
Fyl = vappagvapp,
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recalling that vg,int =% = 0. But

15" 22 o122y < Nogpplle to.1y:2o) V" (05pp = TN |22 (0,73:2)
Using the estimate (7.1.25), we infer that

hmsgp I F7" L2 0, 1):02) < Climsélp V" (v5pp — D)l L2 (0,712
e— s

and it is just a matter of using (7.1.28) to conclude. The result on F5"" is proved
along the same lines.
In order to estimate F3'"7, let us write

||F§’77||L2([0’T];L2) S Hvzi’?;)HLOO([OvT]?Lm)||a3v§pp||L2([O,T];L2)~
By definition (7.1.11)7 we have
I\vié’})\lmc([o,n;mo) < Che.
We infer that

1F5 L2 (j0,1);12) < CrellOsvapp [l L2 (0, 17:22)-

The energy estimate (7.1.25) implies that e2 1030501122 ([0,7);22) 1s uniformly
bounded, which implies the expected result on F5'" and the lemma is proved. [J

Now let us prove the following result.

Lemma 7.3 Let T be a solution of (SE,g) and let n be a posit-

iwe real number. Denote by (vgiﬂ;)wo the families given by Lemma 7.1.

Then for any wector field § belonging to L>([0,T);H) N L2([0,T];V,),
we have

T L1
/0 (8(t) - Vo) v (t)) ., dt < (C,]sa + 4) E5.(9)

RV
g I OT A

Proof The proof of the result relies on the explicit expression of (’U;l’%)g>0,
jointly with the following lemma.

Lemma 7.4 Let 6 be a vector field in V, and let w be a bounded vector field.
Then

(6-Vélw)p. < C||Vh5||L2||335||L2||d§(')w||L2(]o,1[;L;;°),

where d denotes the distance to the boundary.
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Proof Let us define
IjJC = / 6’“8k5jwj d:C,
Q

for j and k in {1,2,3}. In the case k # 3, since § vanishes at the boundary we
can write that

|6 (wn, 23)| =

z3
/ 055" (. y3) dys
0

<} 1036l 220,11+
and similarly for the upper boundary z3 = 1. We therefore have
6" (e, 23)| < d(s) ? |056(2n. )| 20.1p-
We infer that for k # 3,

7 k| S/QH535(96ha')|\L2(]o,1[)|Vh'5($)|d($3)% |w(z)| dz

1
< [ 108, Moo 9" 860) da) (el o
The Cauchy—Schwarz inequality implies finally that for k # 3,
1
L] < 1103012216 22 [|d= (Ywll 20,1250

Now let us turn to the case k = 3. Using the fact that ¢ is divergence-free, we get

&3 (xn, 3) =/ 950° (21,y3) dys
0

x3
:*/ divy, 6" (21, y3) dys.
0

It follows as above that
6% (en, @) < d(ws) | V"8(xn, )22 0.1,
which implies that
Tial < [ 19*8on sgoa010:0(0)] ) (o) do
The estimate is now the same as in the previous case k& # 3. Thus the lemma is
proved. O

Now let us go back to the proof of Lemma 7.3. We recall that by the definition

of vl we have

[vaph = O, = o BLI L= (0,72 (0)) < Cre-
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It follows that
T T
/ (0(t) - Vo(t)|(vaph — v, — vo,Br) (1)) dt < Cné‘/ 162 (IVE(E)| 2 di
0 0
which, using the fact that e2 1056 2 (0,1 x ) < E7(6), yields

/O (6(t) - V6(1)| (0531, — T, — von) (1)) db < Coet E5(6). (7.2.1)

Moreover

oo p ()] < Clo, ()] (exp (‘m) texp (—1\‘/%)) |

Thus

1
d(z3)?2[|vo,BL (", 3) | 3o

1 X
< CN,l[on, ||z2 <x3 exp (J}ﬂ) + (1= a3)

A classical L? energy estimate on (SE, 5) implies that

[ME

(-5

_ _ 2=
90, I3 12y < T3 + 21 F 130 -1y

so we deduce that

1 2 2 2 [ X3 T3 dxs
||d(z3)21}07BL||L2(]071[;L00) S QCoNnE /?exp <2€m> ?7

2 = .
where Cj denotes any O <||v0||2L2 + V||f||2L2([O,T];H170)>' Finally

ld(x3) 2 vo.LlI32 0.1 ) < CoNZe. (7.2.2)

Now let us write that

T 3
/0 |(3(t) - V) v ()2 | dt <Y V;(T)  where
j=1

T
V(1) % / (50 - V80l ~ T, — voe) ot
T
Vo (T) /0 |(8(t) - VS(t)vo L (t)) 2| dt and
() [ 1(60) - 95O, () | .
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Estimate (7.2.1) claims exactly that
Vi(T) < Cyet B3 (6).
Lemma 7.4, together with (7.2.2), imply that

T
W(T) < Cng/ V"6 ()] 21036 ()]| 2 || d(25) 2 vo, 5L () || 20,1 ;.o )
0

< CylIV™8 L2 (o, 77221 % 1930]| £2 (0,7: 12)-

By definition of Ef we infer, using the Cauchy-Schwarz inequality, that
Vo(T) < Cpe? E5(6).
Thus we get that
T
/ 1(5(2) - VOIS (8) 12| df < Va(T) + Cpet E2(5).
0
Now we are left with the estimate of
T
V(D) = [ 160) - V(o) () el
0

As ¢ is divergence-free and vanishes at the boundary, we have

(5 . V§|@NU)L2 = 7(5}7' . VhﬁNn 5)L2

1
< 9", 2 |18 2 da
0 1

The two-dimensional Gagliardo—Nirenberg and Cauchy—Schwarz inequalities

imply that

T
Vs(T) SC/O V"o, (Ol 22 80 22 [V 6(2)| L2t

v T h 5 Cf T , ) ,
< 5/0 |V 5(t)||L2dt+;/0 V"N, (#)]13210(t) |3 2t (7.2.3)
which ends the proof of Lemma 7.3.

7.3 The convergence theorem in the well-prepared case

In this section we intend to prove Theorem 7.1. The idea is to apply Lemma 7.1

to 79 7. Indeed T solves a system of the type (SE, ), stating ?déf Q(u,u) with
the notation of Definition 2.7, page 44. We recall that according to Lemma 2.3,

Q(u, ) is an element of L?(R™;V") as long as % is in the energy space.

Let T > 0 be given and let n be an arbitrarily small positive real number.

According to Lemma 7.1, the theorem will be proved if we prove that

T
sup [[(u° — uSgp) (O sy +v [ 190 — w0l e di =
t€[0,T 0
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where ugrl is the family given by Lemma 7.1, associated with 7,

=7 and f=Q(uu) =-u-V".

The main step of the proof is purely algebraic and is common to this case and
to the ill-prepared case (in the R? case in Section 7.6 as well as in the periodic
case in Section 7.7). It is based on the following lemma.

Lemma 7.5 Let (u) be a family of Leray solutions of (NSC.) with initial

data ug, and let (U%).so be a family of C*(RT;V,(Q)) functions. Then the

. def .
function §° = u — U satisfies

E7(0°) = By (v°) + B (¥°) — 2(u(0)|¥5(0)) L2 (7.3.1)

72/0 (65(') - V& (t)| W5 (t')) o dt’ + 2/0 (G2 (W) () |us (') 2t

where G=(T°) A pege 1w e,
Before proving the lemma, let us show why it leads to Theorem 7.1. We apply
Lemma 7.5 with U¢ = ugl and up = Up. Note that preliminary smoothing in

time is required, so as to have ug;l € C'(R™,V,). That procedure should by now

be familiar to the reader, and in order to avoid introducing additional notation
we shall omit that time smoothing procedure in the following. As u® is a Leray
solution of (NSC;), it satisfies

B (u®) < |[Tol|7-

Furthermore, estimate (7.1.25) yields

t
Ef (ug),) < |lollZ: + 2/0 (@) - v'at'),at))dt’ + p>" = |wo||z2 + p°"

and since
[uzji=0 — ollzz = P77,
we get
Ef(u®) + Ef(ugi?p) — 2(u5(0)\uzgplt:0)Lz < po. (7.3.2)

Then Lemma 7.1 implies that

Lougl = —u- V" + RS + Vp©,

where R*" denotes from now on generically any vector field satisfying
IR 22 (0, 73;1-1.0) = p7".
It follows that one can write

€M (7€M ) — 96N . en _ o \7hy TRV v
G (uapp)—uapp Vus —un, - V'uy, +un, - V'uy,

—u-V'a+ RS + Vp~.
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As @ is a continuous bilinear map from

LA(0,T); L}) x L*([0,T]; L}) into  L2([0,T]); H*(Q))

we get
G (ugh) = ugh - Vugih — 7y, - V', + R*" + Vp°©.
By Lemma 7.2 we find
G=N(ugph) = F=" + RS + Vp© (7.3.3)

with glj.% ||F€’n||L2([O,T],L2(Q)) = 0. Since

t
/ (R [us (') 2 dt’ < | R p2qo,ry, 20y IV 6 | L2 o,7),22) = 07,
0

(7.3.4)
and
t 1
/ (F=(E) s (t) 2 dt” < t2 ([0l L2 | F="| 2 (o,7y;02) = P77, (7.3.5)
0
plugging both inequalities into (7.3.3) yields
T
| @) Ol @) ae < oo, (7.3.6)

Putting (7.3.2) and (7.3.6) into (7.3.1) yields finally

t
B < C| [ (5:(0) 95 () luigy(¢) o |+ 5.
0

It is now just a matter of using Lemma 7.3 to obtain, for € small enough compared
to N, that

C t
BEE) <o+ [ IR 5 ) -
0
and the result follows from Gronwall’s inequality: we find
13 (3 £ C £
E;(0°) <p ’”eXPV%) =p~"

and Theorem 7.1 is proved. O

Proof of Lemma 7.5 This is a typical weak—strong type argument along the
lines of those followed in Chapter 3 in the proof of the stability Theorem 3.3 (see
pages 59-63). We have

EE(6%) = EX(uf) + EE(0F) — 285 (u, UF), (7.3.7)
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where
B5(a,0) S (a(t)[b(t)) 2 + 2v /0 (VPa(t)[V*b(t)) . d
+ 28 / (Dsa(t))|Osb(t))) 2 dt’.
0

Let us compute B (uf, ¥¢). Using ¥° as a test function in Definition 2.5, page 42,
we get

(us ()T (t)) 2> = (u”(0)[¥5(0)) L2 — V/O (Vs ()| VO () adt!
— 56/0 (O3us (t')|O3 W (t')) p2dt —/O (us(t") - Vus(t") |0 (t')) 2 dt’
i (4! E (4! / 1 K g (4! (4! !
+/0 (u® ()]0, Ve (t")) p2dt’ — 5/0 (Ru®(t")|We(t')) L2dt’.
By definition of L*W¥®, we have

1
8, 0° = LEU° + (VA,L + 002 — 6R) v,

hence by an integration by parts allowed by the fact that u® and W€ vanish at
the boundary, we infer that

(Uf]|0y U)o = — v(V'uf| V) 12 — e8(03uf|D30F) 12

- %(uﬂR\IIs)L'z + (uE|LE\I’E)L2.
It follows that
(u ()| (t)) 2 = (u(0)[¥(0)) 2 — 21//0 (V' ()| V05 () L2 dt!

—2p /O (D50 ()93 05 (¢')) p2dt’ — /O (uf - Vs ()| W5 () o dt’

1 ‘ (4! € (4 / 1 ! e(4! e(4! /
- 7/0 (Rus(t")| e (t')) p2dt’ — 5/0 (RYE(t")|u(t')) L2dt

3

+/0 (uS ()| LSS (¢)) 2t
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SO

B; (u®,0%) = (u(0)|¥°(0)) 2 (7.3.8)
t t
—/ (u® - Vus ()| W= () p2dt’ +/ (us(t")|LEVE(t)) p2dt’.

0 0

But relation (3.2.2) page 57, implies that

—(u® - Vub [Pz = (Q(u®, u®)| ¥ — u®) e
(Q(PF,U)|6%) L2 + (Q(6°,u)|6%) L2
= —(TF - VUE[6) 2 + (6° - V&% [uf) 2. (7.3.9)

We then just have to put together (7.3.8), (7.3.9), and (7.3.7) to prove the lemma.
O

7.4 The ill-prepared linear problem

The goal of this section is to construct approximate solutions to

040 — VARV — BeOFvE + e h” = -Vp°
(SC%) div v* =0 )

”ﬁs:o =

v’faﬂ =0

in the case when the initial data vy does depend on the vertical variable x3. We

suppose throughout this section that Q) = R? or T? and in the periodic case we

also suppose that the horizontal mean of v vanishes. We introduce the following

notation: Ho(T? x[0,1]) denotes the space of functions in H(T? x[0,1]) of van-

ishing horizontal mean. In the following, to simplify notation we will denote by &5,

the horizontal Fourier variable (which in the periodic case belongs to Z*\{0}).
Let us recall that

Ro"
1oy def [ 0" — A" + — — Bedi"

€
03 — vARVE — Bedivd

and that R denotes rotation by angle 7/2 in the horizontal plane.

The vector field v, which of course also depends on the vertical variable x3,
does not belong to the kernel of P(e? A v¢). Thus we have to deal with very fast
time oscillations.

As in the well-prepared case, we will need to truncate functions in frequency
space, hence to consider divergence vector fields which are a finite sum of trigo-
nometric functions and the horizontal Fourier transform of which is supported
in rings. Let us start by proving the following lemma.
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Lemma 7.6 Let us consider the space B = |J3_, By of vector fields on 0 of
the form

vk (1) cos(ksmasz)

oy = (N )30 [
ho3) = 0 o divy, v* " (2, sin(ksmas)
37

k=1

where (V¥3") 1< <N are two-dimensional vector fields on R* (resp. on T?),

the Fourier transform of which has its support included in the ring C (1/N, N)
of R?, and such that div, v®" = 0. The space B is dense in H(R? x[0,1])
(resp. Ho(T? x[0,1])).

Proof In order to prove this lemma, let us prove that the orthogonal space of B
in H(R? x[0,1]) (resp. Ho(T? x[0,1])) is {0}. Let us consider a vector field w in
the orthogonal space of B. In particular, for any function ¢ in L?(Qj) the Fourier

transform of which is supported in a ring C of R? (and of vanishing horizontal
mean if Q;, = T?), we have, for any ks € N \{0},

1
Prs (¢ )d§ (w‘ gDCOS(kg’/Tl'g),*ik Ahgosin(kgwxg))) = 0.
37 L2

By integration by parts and using the fact that w3 vanishes in the boundary, we
get that

Prs () = — /Q divy, w" (xn, x3)(xn) cos(ksmas)drydrs

k:7r /agw (zh, x3)App(zh) cos(ksmxs)drpdrs.
3

Using the fact that w is divergence-free gives that

Prs () =/Rz <(]€317_‘_)2Ah@_90> (zn)

1
X </ divy, w" (zp, z3) cos(kgﬂ:cg)dxg) dxp,.
0

For any positive integer k3, the operator (kzm)~2Aj; — Id is an isomorphism in
the space of functions belonging to L?(€);,) and the Fourier transform of which
is included in the ring Cy def {n € R* / |n| € [N"',N]}. Thus if w belongs
to the orthogonal space of B, for any given positive integer k3, we have for
any function v such that Supp ¥ C Cy and for any positive integer ks such
that k3 < N,

1
U(xp) (/ divy, wh(xh,xg) COS(kgﬂ'ZL'g)dl’g) dxp = 0.
Qn 0

When Q, = R?, we note that the space of functions of L2(R2), the Fourier
transform of which is included in a ring, is a dense subspace of L? (RQ). When Q,
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is equal to T2, that still holds for L?(T?) restricted to functions the horizontal
mean of which vanishes. So in both cases we get that, for any positive integer ks,

1
/ divy, w" (zp,, z3) cos(ksmas)drs = 0.
0

As wf’aﬂ = 0, we have, thanks to (7.0.1), that

1
/ divy, wh(xh,xg)dasg =0.
0

Thus for any non-negative integer k3, we get
1
/ divy, wh(a?h, x3) cos(kgmes)drs =0
0

and thus divw”(z;,,23) = 0 on Q. As the vector field w is divergence-free, we
have G3w3 = 0. As w?(xp, 1) = w?(zp,0) = 0, we have w3 = 0 on .

But w is orthogonal to B; so for any function ¢ on R?, the Fourier transform
of which is included in the ring C,y (and of vanishing horizontal mean if ;, = T?),
we have for any non-negative integer ks

(w|(V"* ¢ cos(ksmzs), 0)),. =0.

This means exactly that, for any non-negative integer ks,

1
/ o(xp) (/ curlhwh(mh,xg) cos(kgﬂ'acg)dxg) dxy,.
R? 0

Thus we have curl,w” = 0 on Q. The lemma is proved. O

Remarks e The choice of the basis (cos(k3mz3))r,en for the horizontal com-
ponent ensures that the boundary condition U3|3Q = 0 is satisfied because
the vertical component is of the type sin(k3mxs) thanks to the divergence-free
condition.

e Let us note that for any v in B, we have

lv))2, = Z ™13 20,y + Z 2\|dwhv "2 (7.4.1)
k3=0

This leads us naturally to the following definition. We define the sets

G = {w e L*(Q; R?) /divh w E LZ(Qh)} and

Gy = Gﬁ{wELQ(T2 R?) // w(xy, dJ;h—O}
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Then for any w € G (resp. in Gy) and any v € H (resp. in Hy), we define
2 _ 2 1 d 2 d
[wllicy, @, = lwllz20,) + W” vpwllzz(g,) an
1
vP R () :/ o™ (zp,, 3) cos(ksmas) das.
0

Then Lemma 7.6 implies that

Z ¥ () cos(ksmas)

k3€]1-\1
- Z Tar divy, v**" (2, sin(ksmas)

ks>1

() =

as well as the two easy but useful properties:

”UH%Z(Q) = Z Hvk?”hﬂis@h and (7.4.2)
k3eN

01220 + 11050[|72 0y = Z (1+ (ksm)®)[lo*7, o, - (7.4.3)
kseN

Now let us start the construction of the approximate system. Let us consider a
vector field v in the closure of C'*°([0,T; B) for the energy norm

T
1012 w o 720) + 20 / VPt 22 dt’.

We want to construct a family vg,, (smooth, divergence-free and vanishing at

the boundary), and an operator L such that

Lfvg,, = Lv,
up to small remainder terms. As we shall see later on, the operator L is related
to the linear part of the system (NSE, ¢), page 158. More precisely, we want to
construct, for any n > 0, a family (v5])c>0 and a family (Ny),>o of integers
such that

Livgl = Lo + R®", with

—

lim lim sup || R*7|| z2(j0,73;5-1.0) = 0
oy TS T);
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while the family (N,),>o is given by the condition that

T
o= o e oryny + 2 190 = o, )€1 ¥ <.

Tt seems reasonable to think that d;ve__ will be of size 1/e. This leads us to

look for solutions of the form

app

Vspp = V0,int + V0,BL + V1 int + EVIBL + - -,
1 1
PpF = —P—Lint + —P-1.BL + Po,int + PoBL + -, (7.4.4)

where vj int, V;,BL, Pj,int, and p; pr, are respectively of the form

. 1
Z (vﬁﬁ(ﬂt,xh)cos(kgﬂxg), T dlvh"ufmt(Ttxh)51n(k37r:vg)>

k3<Ny 37
1—
f (T t x}“ ) +g.7 (T,t7$h, x?)) 9
g
Z p?int(Tvtaxh) COS(k}ng’aj3)
k3<N,
and
1— 23
p-(Tt$h7 )+p] T, t, T, . )
with 7 =t/e-

The main difference with the well-prepared case comes from the terms of
order e~ in the interior. They vanish if, for any k3 < N,),

ks, ks,
0 UO?’lnt + RUOE’lnt = _vhp 1,int
o h (7.4.5)
3 —
a7'U0 int — kgﬂ—p—l,int'
Let us introduce the following new unknown W defined by

Fp, divy, vl

h
W = (%3> def Freurlpo® |,
fhvg

and we also denote D def Fnp- The unknown v is recovered from W by

v=F; (A(EV};,);V h) , (7.4.6)

where A(&p,) is defined by

-2 —2
Ao (Gl i) (7.47)
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We recall that &, is in a fixed ring of R?. Let us notice that the divergence free
condition on v becomes, expressed in terms of W,

W4 0sW? = 0. (7.4.8)
Moreover the system (SCj) turns out to be

3§32
0

Lf = with (7.4.9)

—03p
1
Fedef RWEN Lu|g, PWeh — BedZweEl 4 ERWE’h
W3 4+ v|&,|PWe3 — BedIWES
Remark All the computations from now on will be carried out on W rather
than on v, and in particular in the case k3 = 0. We recommend to the reader

the exercise of rewriting the proof of Lemma 7.1 in that new formulation and
recovering the formulas we will derive here (in the case k3 = 0).

The Ansatz (7.4.4) becomes

W =Woint + WoBL + €Wiine +eWir + -+,

1 1 - - (7.4.10)
p° = gp—l,int + gp—l,BL + Po,int +PoBL + -

where W int, Wj BL, Dj,int, and Dj gL, are respectively of the form

1 .
Z <W;€,igr;g(7_a t,&n) cos(ksmas), —— Wit (7,t, &n) sin(k37x3)> ;

ks <N, k‘37‘(’
X3 1—x3
.f] (Tat7€h7 ?) +g] (Tatvfl’m c ) ’

Z p_?,gint (Ta l, gh) COS(k)37T.'E3)
kSSNn

and

~ T . 1—=z
Dj (Tat7£h7?3) +p] (T7t7£ha c 3) )

with 7 = ¢/e- Now the relation (7.4.5) turns out to be equivalent to

s gh 21/)\53 in
0 Wik + RV = (' P2

Vks < N, (7.4.11)

k3,3 s
aTWO,int = _k377p—1,int~
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The divergence-free condition as expressed in (7.4.8) gives

Vs < Ny, Wb + ksnWoss = 0. (7.4.12)
It determines as usual the pressure which is given here by
1
~k _ k3,2
P2 e = _WWQ?M'

By (7.4.12), Wé“frﬁ is totally determined by écf‘m and the relation (7.4.11)
becomes

0- Wyt = R, Wyt (7.4.13)
with
1
def 0 —)\2 def (kSW)Q bl
Ry, < ks d M\ & (230 ). 7.4.14
e <1 0 > me A <|§h2+<k3w>2 (T4.14)

Remark Although it does not appear in the notation, to avoid unnecessary
heaviness, one should keep in mind that A, depends on the horizontal frequency
and not on k3 alone.

Thus, if Ly, is the matrix defined by

COS T Alig SIN Tgg
def . def
= 1 fr—
Ls (7) ——sin 7y, COS T, with  7py = Ak, T, (7.4.15)
k3
we get that Wéﬁ fn}tl can be put into the form
WL = La, (W (1,85), (7.4.16)
where
— divy, vf\, oh
W (t,&n) = Fn ko | (6:€n)- (7.4.17)
curlp vy 3:h

Let us notice that obviously Ly, (7) satisfies
To sum up, we have

WO int = Z L (T W 3(t, &) cos(ksmas) (7.4.18)
ks<N,

and, because of the divergence-free condition as expressed in (7.4.12),

Wi =— 3 kg—ﬁnl (T)WHs (¢, &,) sin(ksmas) (7.4.19)
ks<N,

where IT' denotes the projection on the first coordinates in the horizontal plane.
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Remark The terms (Wk?’)lSkSSNn can be understood as the filtered part
of Wy int in the sense of Chapter 6.

From now on, we shall follow exactly the same lines as in the well-prepared
case. Let us recall them:

e We first ensure the boundary condition by introducing é“jéL.

e Then, as W&%L violates the divergence-free condition, we introduce the

. k3,3 .
boundary layer of size e W3] in order to ensure that divergence-free
condition.

e This introduction of Wlk %i destroys the boundary condition which we

restore by introducing Wlk 2t

The existence of time oscillations will make the operations a little bit more

delicate, especially in the third step where really new phenomena will appear
because of fast time oscillations.

Step 1: The boundary layer of size €°

Let us study the term of size ¥ for the horizontal component of the boundary
layer. As the third component of the interior solution of size £° is 0 on the bound-
ary, then the third component of the boundary layer of size €° is identically 0.
Thus 93p_1 L. = 0. We meet again the well-known fact that the pressure does
not vary in the boundary layers.

As cos(ksm) = (—1)*s we look for the boundary layer in the form

def x t\ — 1—=x t\ —
Wyt S My, (f) Ly, (5) W 4 (=1)% My, < . 3) L, <5> whs

and

The term of size °:

~ 1
LWokt, = 0Wgist — B08Wokt, + RWo st
must be zero, so we infer that
MkaaT£k3 - ﬁM{JBﬂ]% + RMk3£k3 =0.

Let us note that in the case when k3 = 0, we have Ly, = Id. This case corres-
ponds to the well-prepared case and the above relation corresponds to (7.1.4).

Thus we have
x 1—=z
Wo'sr, = (Mo (\/%> + My ( \/Eg» Woms (7.4.20)

where M is given by (7.1.5).
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Now let us assume that ks > 1. As 0;Ly, = —Rg,Li,, it turns out that the
equation on the boundary layer is

—ﬂM,/C; = My, Ry, — RMjy,
My, (0) =—1d
Mk3(+00) =0.

This is a linear differential equation of order 2 with an initial and a final
condition. The solution is given by

Miy(©) = = 3 guit exp(~GEME(GE)  with
+

£, ndef [ cosf  FAp,sinf
ng(ﬁ) o <— sinf  FAp, cosf
and
Ldef ¢ L def B 4 def 1
= 3 = d = 1 M 7.4.21
Cres 5 fi Br, W and g F e, ( )

So stating Eki3 def QEQﬂi’, we infer by the definition of Ly, that

1 T T Aot
ks,h + 3 + 3 k

”0,?]’3L D) E :Mk3 Xp | ——F/—— ng [ + ?3
+ Ek;3 k:g

—1)ks 1— 1-— Aist | =
- EE S e (SR ) [ 2

2 7 v B VEiL €

recalling the definition of Wks in (7.4.17). To sum up this step, if we have

s

Ny,
Wi = > Wopt and Wi, =0, (7.4.22)
k3=0

where W(?,’IQLL is given by (7.4.20) and Wéﬁ %ﬁ for positive ks by the above equation,
then

||EEWO,BLHL2([07T];H—110) § CWE%. (7423)
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Remarks
e The eigenvectors of M ki and those of Ly, are different and time oscillations
introduce a phase shift in the boundary layer.
e The fact that we work with a vector field, the horizontal Fourier transform
of which has its support in a ring, prevents A, from being too close to 1.

e Let us note that the boundary layer operators My, depend strongly
on (fh7 k3)

Step 2: The divergence-free condition for boundary layers

As in the well-prepared case, the fact that the boundary layer must be divergence-
free implies that we have to introduce a vertical component of the boundary layer
of size e. When k3 = 0, which corresponds to the well-prepared case, thanks
to (7.4.20), we find the analog of (7.1.11) in terms of the unknown W, i.e.

wg = vas (1 (25 1 (522)) Wi N

1
still with f(¢) = —ie_ﬁ(sing + cos ().
Now let us assume that k3 is positive. The divergence-free condition as
expressed in (7.4.12) gives 563W1k'°]'3’i = 7H1Wé€7‘"§}£. So we get

zs3

1
k3,3
edsWigL = 5 E M’:il):g €xp *\/?

Akt | = Aot | =
x | cos x?’i T Zha” | pykat Ak, Sin x3i Dkl | ka2
€ €
JEE Ef
+ (—1)k3 Z + 1-— I3
py,, exp | —
2 3 +
+ \/ P,
— YA — PYRAEE
x | cos T3 o ksl ) gkt F g, sin 3 T Sk | pjrks.2

1 1
[t + € [t €
EkB Eks

We get, by integration and with the notation

st cos£sin and 7,::3 def ui v/ 262:3 , (7.4.25)
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Y At | —
x | cs 3 ks Wkl £\ cs™t 3 ks” | ka2
v Eii € vV Eii €
(—1)ks " 1—m3
+ Z”/k exp | —
4 3 +
+ \ Ei,
1— YR A — At | =
x | es™ 3 ka? | kst F Apgcs™t 3 T Zha | ka2

1
[t T e s £
Ey, Ey,
It is clear that this boundary layer is a sum of a rapidly decreasing function
of 23/e and of a rapidly decreasing function of (1 —x3)/e. But it is obvious that
these two functions do not vanish, respectively, at x3 = 0 and x3 = 1. To sum

up, we have
N,

Wign = > Wist (7.4.26)
k3=0

where WE’éL is defined by (7.4.24) and the Wlk ?]’3?1: for positive k3 are defined
by the above formula. The horizontal boundary layer is not given at this stage:
it will be introduced only to ensure that the boundary condition of size ¢ is
satisfied.

Step 3: The boundary condition of size e

In the case when k3 = 0, we have, as in (7.1.12) and (7.1.13), up to exponentially
small terms,

3

0,3 t\ =
L Wibe = ~Do (5 w?

_ o
BLl:E:;:O 1,

where Dy : RT — L(R?;R) is defined by

Do(7) < j; >d§f;\/%A2. (7.4.27)

Obviously Dy does not in fact depend on 7, but we use that notation to be
consistent with the k3 # 0 case below.

In the case when k3 is positive, up to exponentially small terms we have,
stating again 7y, = Ak, T,

k3,3 ks 1rrks,3 _ U\ =k
Wiy = ~CUPWIL, =D ()W
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where Dy, is the linear form on R? defined by

A def 1
Dks(T) (A2> < 4

As in the well-prepared case (see page 162), let us lift the boundary value of Wlk 3Bi
by introducing the divergence-free vector field W, ,,,; defined by

'yi (5™ (Thy ) AY F ApyesT (14,) A?) . (7.4.28)

def " — O
W, ine(7) = Z (DIZ(T)WZ) 0 (7.4.29)
(=0 re(xs3)

with 6, = 14 (=1)¢ and r,(z3) = 1 when ¢ is odd, r¢(x3) = 1 — 223 when £ is
even. Then let us look for W7 i in the form
M, W’“

1,in
Wiint = W i + E ks, "
k3=0 - k3 Wl ,int Sln( 37Tl‘3)

¢ cos(ksmas)

where M,, is an integer (greater than N,)) which will be chosen later on. Let us
note that the boundary condition on the vertical component together with the
divergence-free condition are satisfied, namely

(ng,BL + ng,int)\aﬂ =0 and Wll,int + 83W13,int =0
Let us compute up to a gradient the terms of size £° of
LE(Wo int + W1 int)-
By definition of Wy in¢, we have

t —~
B Ny Ly, (E (0; + v|En|H)WHs cos(ksmas)
PL Woimt = Y ) ; _
k3=0 —k—Hl (£k3 (5) (0 + V§h|2)Wk3> sin(ksmrs)
By definition of W1 jn¢, we have

M, (a + R)Wl int COS(k37Tl'3) <(a + R)Wl mt>

1
k3=0 a Wl ?r71t Sln(kgﬂ'.’l,‘z;) a7'w1,1n‘5

ePLEW, e =

Let us approximate wimt (and thus aTwiint) by a sum of sin(ksgmxs). This is
allowed by the following proposition.

Proposition 7.1 For any 7, an integer M, greater than N,, exists such that,
if W ine,nr,, @ defined by

¢
N, N 0
W\ e, = Z (DZ(T)WZ) My , (7.4.30)
=0 Z T4 ks Sin(k3mas)

ka=1
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. def
with 7o g, =

’ (1+ (—=1)%**3), then we have
37

V>0, lim || 7710, (W3 = W, )|

L2([0,T;H=19)
Proof Let us first observe that, by definition of the r ., we have
re(xs) = Z T ks SID(k3TT3).
k3>0

Thus, by definition of W ;¢ », , we have

Or (Wl Jint T 1 Jint, M, Z Z Te k3a D@ )Wé Sin(k37x3)~
=0 k3> M, +1

By definition of the H~%° norm, we have
2

N,
2 i
(Wl ,int Wl yint, My, ) ‘H—I,O = ZaTDZ(T)WZ
=0 H-1()
2
X Z T0,ks Sin(k3ﬂ'$3)
Fs2 M L2(jo,1)
2
C - e
< ﬁn Za-rDZ(T)W
H=1(Qn)
N,
Cp <= =
< ﬁn S I 1)
T =0

Thanks to (7.4.19), the family is assumed to be bounded in H 10 (this is the L?
energy estimate on the original vector field v). Thus we have

PG
H-10 = M,

Proposition 7.1 is now proved. O

(Wl int Wl int M,,)

Remarks

e It is obvious that, for any M,, wh Lint = I/V1 int, M, -

e Until now, the time oscillations produced more complicated formulas com-
pared to the well-prepared case, but no real different phenomena. The real
difference will appear now. Indeed, in the previous computations, time
oscillations of frequency A\, were coupled only with the vertical mode of
frequency ¢. This is not the case anymore because wi’,inc contains time
oscillations of frequency A, for any £ € {1,..., N, }.
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e The precision of the whole approximation will be limited by the above
proposition.

e The number of vertical modes M,, used for the approximation may be much
greater than V.

Let us go back to algebraic computations. Thanks to the above Proposi-
tion 7.1, we have

M, (a + R) 1 in
eL°W it = whal - —
" k;] 0- —% + Z 7’@7}63D4W€ sin(ksmas)

" =0

37

o " cos(ksmas)

(6 + R)Wh _|€h|2ﬁ07int
a3ﬁ0,int

As usual, the divergence-free condition determines the pressure. Here, it seems
natural to look for P int in the form

M,
Do,int = Z Do'ing cos(kzmas).

k3=0

We find

ﬁ(O),int = |§h|2 (8 (Wlomt + Wl mt) Wloflt) and

1
pks e k3,2
Dot = o5 ksmr —W — Wi for k3 # 0.
Ot 8, 2 + (kgm)? KZ]\:, ks Lne 37
n
This gives
M, 2 cos(ksmz3)
PL Wi = » | 15 + R with
k3=0 g in(ksmas)
0

Le,h _ 7 N + 0
0 Z 0¢Dy (T)WZ a'rW:P,’iit + Wlo ilt
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and, for ks # 0,

Lyt = (8, + Ry, W™ " — Fy,  with
1— )2
Fry ()% ’f3 S krr kg/\zzygtMi and (7.4.31)
(<N,
M}(T) def ( sin Tzoﬂ: cosTp EApsin TgoJr Ag COS Tg) . (7.4.32)
We infer that
N M, Whsh cos(ksmas)
PLE(W, in Wiint) = k3,1
(Woint + €W ime) Z —W sin(ksmas)
k‘3:0
with, for ks = 0,
0
0,h Ny 0
W@t | S )+ (o w, )

for k3 € {1, .. "N"?}7
Wks’h = £k3 <::) (8,5 + V|§h‘2)/W/k3 + (87— + ng)ch,,h — Fkg

and, for ks € {N, +1,...,M,},
Whal = (9, + Ry, )Whh — ...

The following lemma sorts all the time oscillations which are contained in the
term Fp,.

Lemma 7.7 We have the following identity:

N7I

Fiy(7) = Liy (1) | =Be, W™ + > By o)W | if ks €{1,...,N,}
=1

Fey (1) = Ly (7 ZB%, WE if kse{N,+1,...,M,}

where By, ¢(T) are matrices, the coefficients of which are cosine or sine functions
of (Aks £ Xo)T for £ # ks and of 2\, 7 when £ = ks, and where, for ks < N,

- + + _
Vg = Vhe  —Mes (Vi +
g det =X [ 3y + k)
e I
>\k k3 k3

3
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Proof It is elementary. Let us observe that, by the definition of £, and M, zi,
we have

COS Tk, (— sin 7o £ cos ) A COS Ty, (COS T £ 8in 7¢)
-1 +
£k3 (T)Me =

. . ¢ . .
sin 7y, (— sin 7, & cos 7¢) S sin 7y, (cos 7 £ sin 7¢)
)\kg k3

Using the formulas which transform a product of two sines or cosines into a sum,
we infer that, when ¢ # ks,

LN (T)MF (1) = By o(7).
When ¢ = k3, we have

N 1 +1 Aks
-1
£k3 (T)Mk3 = 2| — 1 +1 + Blg ks -
Aks
This proves the lemma. O

Now we can write the terms W*3" in a simpler way. We have, for k3 = 0,
0

0 N,
WO = (3 + v|én*) Worn +< >+ §n: Wl
(0 +v[&nl?) 0,int Wlolllt 8TW1O,}it + 8Dy(r)W*

=0
for kig € {L -7N77}’

WESR = £4,(7)(0r + VIEn|?) + Bi, W
+ (Or + Ry WIS — Loy (7 )in“ (HW*,
and for k3 € {N,, +1,...,M,},
W = (0, + R, )W — Ly, ( )i By ()W

Let us define
0

Wlo,yi}rllt = Z(;[ Z (:FCS:F(TZ)WZ 1 )\gCS ( )> W@ 2 (7.4.33)

and, for k3 € {1,..., M,},

N.
t il t\ ~
Wit = o (1) S (4) 0 (7.4.34)
=1
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where the Cj, ¢ are (2 x 2 matrix valued) smooth bounded functions of 7, the
derivatives of which are the oscillating functions By, ,.
This gives

PL* (Wo,int + W1 int)

0
= (0 +vI€n]® +V28) Wi (7.4.35)
0

Ly <€> (0: + v|&n|* + Br,) Wks cos(ksmas)

1 t —~
_7H1£k3 () (@ + V|£h|2 + BkS) Wks sin(ksmzs)
k37T 9

+ + R,

Note that the horizontal components do not satisfy the Dirichlet boundary condi-
tion. As usual that is taken care of by introducing a boundary layer T/VllC 3BE which

will cancel out the value of W in t at the boundary. We therefore define Wlk 3BL
exponentially decreasing away from the boundary, such that

k3, k3,h
Wy SBL\OQ Wl,?nt\é)ﬂ’
We will not give the explicit value of Wlk ?]’3;1 here as it is of no use in the following.
As in the well-prepared case, the introduction of WllC ?1’3{5 requires introducing an

additional boundary layer of order 2 called VVQIc SBZ in the decomposition, to take
care of the divergence-free condition. Again explicit values are unnecessary and
are omitted.

Remark It can be useful to notice that solutions of
d 2 Wwks _
dt+”\§h| + By, | W™ =0

are written

COS O, t ks SN Oyt

Wks (t) = e~VIénl"t=Pryt Wks(0)  (7.4.36)

sindp,t  coSOp,t
k3

with

def (1 =A%)\ - ef (1= M)Ay
By S PO ) and Py S ST 0 =),

By formulas (7.4.21) and (7.4.25), we have

7,_7+:\/2ﬁ 14 Mg, n 1— Mg, >0
ks ks A \/1_)%3 \/1+)\k3

(7.4.37)
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Let us now sum up the above construction in order to state (and prove) the
analog of Lemma 7.1, page 164. We are going to define the approximation

£ 2
Vapp = V0,int T V0,BL + €V1,int + EV1,BL + €7 V2, BL

such that there is a smooth function veyp, exponentially decreasing near 052,
satisfying

div(vg,, = Vexp) =0 and  (vg,, — Vexp)jon = 0.
Let us give the explicit expression of each term of the decomposition (up to
the boundary layers of order 1 and more, and the exponentially decreasing
remainder). In order to do so, we need to define a one-parameter group of unit-

ary operators on L? we shall denote by (£(7))rer. By the density Lemma 7.6,
defining (£(7))rer on B will give a definition on H. So let us state, for any v € B,

(E(T)U)(xh,mg)d§f< vo’héxh) )

O A(ER) Ly (T) AT (€)D" () cos(kamaa)
*Fh Z k?%rﬁh CA(ER) Lioy (T) A1 (E)DF3 " (&) sin(ksmas)

k3=1

(7.4.38)

where A(&y) is defined by (7.4.7) and Ly, (7) by (7.4.15).

Let us remark that when ks = 0, (this corresponds to the well-prepared case
studied in the previous section), we get L, = Id because in that case A, = 0.
Let us note that (£(7)),er is a group of unitary operators on H*? for any real
number s. Moreover, the restriction of £(7) to functions which do not depend on
the third variable (which corresponds to the well-prepared case) is the identity.
We will call the group (£(7)),cr the Poincaré group.

Similarly we shall need the definition of the following “Ekman operator”,
which once again we define on B:

(Sv)(xh,xg) dgf\/% ( vo,héxh) >

- Al€n)Bry A7 (€)™ (€n) cos(ksmas)

+F i Cle e . 7.4.39
" kz_jl 7o 6n A€n) Br A H(&n)0* " (&) sin(ksmas) ( )
3= 37
with
1= A7,
By = oy Id + —— R, (7.4.40)
where
(1- )‘z JAks + + def 1 26
ak3:+(vk3_7k3)>0 and 7, = 1:F)\k3 1:‘:>\k3-

Let us note that the restriction of £ on functions which do not depend on the
third variable (which again corresponds to the well-prepared case) is /25 Id.
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Proposition 7.2 The operator £ defined by the above formula (7.4.39) is a

non-negative, bounded operator on B for the L? norm.

Proof Let us start by proving that £ is non-negative. Using (7.4.2), we have
for any u € H (resp. in Hyp)

Eulu)ro@) = Y (Exuf>" [uFsP), q,,
ks EN
where
Eryw = Fp, (A(€n) Brs A~ (ER)W(ER))-
So by (7.4.40) we have

. 1— A7, 1
Ey = Fy | s ld + — = A(&R) Rig A7 (6) | -

We know that the evolution group generated by Ry, is an isometry of G (resp.
of Gy) because L is an isometry of H. It follows that

(Eru™® ™ [P M), 0, > 0.

Now let us prove the L? boundedness. According to (7.4.1), we have

1€0[17, = 26[0°" 720,y + D 471 A(ER) By A (€0) 0" M1 720 a0
ks=1

Z 2||§h (€n) Brs A7 (E0)T* " (€)1 T2 (0 -

ks=1

We leave to the reader the fact that

sup | Bis || £ (r2;r2) < +00.
hs '3

As A(&h) is homogeneous of degree —1, this implies that

sup || A(&r)Br, A (ER) | r2ir2) = C < 400

En ks

Thus we have that

Y An?| A(Gn) Br AT (€)o7 < C Z [F 12

k3=1 k3=1

By definition of A(&,), we have &, - A(&,)W = W', Thus we infer

ka%fh-A(éh)Bkg Y(&n)or (&) = iHl(Bks HEn)ue M (En)).
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Let us observe that, by definition of By, and A~1(&), we have

VEs (&, )defk;;ﬂnlB@ L)oo (€n)
—i“;kfff?’)xks% (A TRy
_ me O+ ) (AT (g
:i%%(m m)kl (Fn divy o™ ") ()
_ m)\é (Vg + Vit ) i (curlo®s ™).

Straightforward computations left to the reader imply that a constant C' exists
such that

1~ Mg (=A%) s <

s <C and ~——RN2 (ym by <
T M (g — ) Toon s (Ve +0) &

Thus we have

1 1 -1 ~ks,h 2 c . k3,h2 ks,h2
- [T By A7 (€)D" (€n) |12 < gl divi 0™ |7 + Cllo™ "7, -

(k)
(7.4.41)
Then we deduce that
Ev]F < C > 0" 2, g,
k?3:0
< Cllvll3;
Thus Proposition 7.2 is proved. O

In order to solve the limit system (NSE, ¢) that will appear in the case of periodic
horizontal boundary conditions, we will need the following result.

Proposition 7.3 The operator £ defined by the above formula (7.4.39) is a
non-negative, bounded operator on H N HY!,

Proof Using (7.4.3) it is a straightforward adaptation of the proof of Proposi-
tion 7.2: indeed the orthonormal basis used for the description of £ is a basis of
diagonalization of 93. O

Now let us consider a time-dependent family (vw,)y>o in C*([0,T]; By,). We
define first

t
Vo,int = L (5) UN,, - (7.4.42)
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Then we state

h
Vo BL = fh—l ( A(é‘h)(YVO,BL ) , (7443)

where W&BL is defined by (7.4.22). Next we define

h
Viine = T ( A(gh)?,W“m ) , (7.4.44)

1,int
with Wlh,int defined by (7.4.33) and (7.4.34). Now we define

~67 j—
UaPTIID - ,onint’ + UO,BL + EULint (7445)

and as noted before, there are vector fields vy gL, v2,B1, and vexp, smooth and
exponentially decreasing near 92 such that

def ~

e,m A€l ~g/ h 2
Vi, = Ugnhy + €V g, + € V2 BL + Vexp (7.4.46)

is divergence-free and vanishes at the boundary. Thanks to (7.4.23) we know
that L°vp py, is a remainder term, and of course the same goes for eL®v; gy,
for e2Lfvy g1, and for Lfvey,. By definition of £ and &, the formula (7.4.35)
becomes therefore

PLvS] = (0 — vA, + E)vw, + R, (7.4.47)

app
Now we are ready to state the key lemma. We denote the limit system by
O —vApv+Ev=f—Vp
(SE,¢e) < dive=0

’U|t:0 =10 -

The proof of the following elementary proposition is left to the reader.
Proposition 7.4 Let T be in ﬁJr, and let vg € H(R) be given. Consider f
in the space L?([0,T]; H=40). Then there is a unique vector field v belonging

to C([0,T); H()) N L2([0,T]; H°) solution of (SE,¢). It satisfies, moreover,
for allt €10,T],

1 2 ! ] N2 / ‘ / / /
SIoOIE+v [ IV e+ [ (0ot an
= glulla + [ .oy i,

Lemma 7.8 Let T be in ﬁ+, and let vg € H(QY) be given. Consider [ in the
space L*([0,T); H=19), and denote by v the solution of (SE, ¢). Then for any
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positive 1, there exists a family (vil)eso of smooth divergence-free vector fields
on Q, vanishing on the boundary, such that

’PL%;;; "y (t> f

3

=p=",  and (7.4.48)

L ([0,T];H-10)

t
E, <’U§g£ —L <€> v) = p=n. (7.4.49)

Moreover the energy of viil, is controlled, in the sense that

t
E; (vg) < |lvoll7- +/0 (f(E), v(t"))dt' + p=. (7.4.50)

Proof Calling Py the orthogonal projection from H onto By, let us define

def def
Vo,N = PN’UO and fN = PNf

Then since
]\;i_r)noO voN =g in H,
and
Jim fy=f in L*(0,T]; HMY),
we can choose IV,, € N such that
lvo,n,, — voll# + lf5 — fllL2qo,ry; 1.0y < -
We will call vy, the associate solution of (SE, ¢), which since P& = EPN
satisfies

T
o, — 012w o 13060 + 20 / IV (o, — 0) (1) 2oyt < Cr.

Inequality (7.4.49) will therefore be proved if we show that

t
limsup sup FE <U§§{D - L () an) =0. (7.4.51)
e—0 te€[0,T] €

Let us write

UN, (thv 373) = ('UOJL(xh)a 0)

4 3,1 3
— —— dlvy Sin T3
1<k:3<N7, kg (] Vv UN" (.’I;h) k3 x

v]]i}"f’(xh) cos ksmxs

(7.4.52)

Then, as in (7.4.45) and (7.4.46), we can define an approximate solution v,
divergence-free and vanishing at the boundary, such that by (7.4.47)

PLAv — (0 — vAR + E)vn, = BT,
which directly yields (7.4.48).
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Let us prove the estimate (7.4.51). According to the definition (7.4.42) of vg int
and to the relations (7.4.45) and (7.4.46), we have

t
e,m __ 2
Vapp = L (E VN, + V0,BL + €V1,int + V1 BL + € V2 BL + Vexp

so to prove (7.4.51), we need to check that
E;(vo,BL + €V1 it + €V1,BL + €2V2 BL + Vexp) = p°7.

This is achieved, just like in the well-prepared case, by noticing that

2

. 1
> &5 pL®)llze + ellvring (8]l L2 + [[vesp (£l 2 < Cre?.
=0

In order to prove estimate (7.4.50), let us start from (7.4.48) which claims that
4
PLavgb”p =L (e) f+ R,
An energy estimate implies that

t
B (v™") = |[os (t)]122 +2y/ thvs’"(t')H%zdt’+26/tH83v5’”||2L2dt’
0 0

_2/0t <L‘ (t/> f(t’),vs’"(t’)>dt’+2/(:(R5’”(t’),vf*”(t’)>dt’.

3

Thanks to (7.4.51), we have

t
€
This implies that

Q/Ot <£ (Z) f(t'),vfm(t’)>dt’ < 2/: <£ (Z) FE), L (i) v(t’)>dt’ + oo,

As L is a group of isometries of L?, we have ‘£L = Id. This gives

2/; (c (t> P01 Vet < 2/0t<f(t’),v(t’)>dt’ o,

— 5
P

L2([0,T};H*-0)

9

Thanks to (7.4.49), we have

t
2/ (Re’n(t/),vg’n(t/» dt’ < 2| R |L2([O,T];H*1’0)||U6’n||L2([O,T];H1w0) = p=.
0

The whole of Lemma 7.8 is proved. O
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7.5 Non-linear estimates in the ill-prepared case

As in the well-prepared case discussed in Section 7.2, we shall see in this section
that Ekman boundary layers do not affect non-linear terms. The two estimates
proved here (Lemmas 7.9 and 7.10) will be essential in the proof of Theorems 7.2
and 7.3 in the following sections.

Let us start by proving the following lemma, which is the generalization of
Lemma 7.2 to the case of ill-prepared data. It claims that Ekman boundary
layers disappear in non-linear terms.

Lemma 7.9 Let us consider v and f two vector fields satisfying the hypotheses
of Lemma 7.8. Let us consider any family of approrimations (vyl)->o0 given by
Lemma 7.8; we have

=0.

lim
e L2([0,T};L?)

t t
b |[Vapp - VVapp — £ (5) N, - VL (5> UN,

Proof Recalling that £ (t/¢) vy, = v§ ;e let us write (omitting to mention the
dependance on 7 to avoid excessive heaviness)

4
g g 1> 1> _ 153 3
Vapp * YVapp — Uo.int * VV0,int = g B;  with

Jj=1

def h h
edel , ¢ € 5
Bl - (vapp - v(),int) -V Vapp»
def h
e del e, h(,e €
B3 = Vo,int -V (Uapp - UO,int)v
def
g del 3 £ 3 3
B3 - (Uapp - U07int) 83Uapp7

def 3
edaer ¢, e 5
B4 - UO,inta?)(/Uapp - vO,int)'

‘We have
I1B5 1122 (0,73:22) < [05pp = V6 el o= (f0,71:22) [V " 05l L2 10, 77:2.2)-

By definition of vg,,, the difference v, — v§ ;,, consists of terms of order € and

of a boundary layer of order 0. Obviously, we get that
[5pp = 08 me = (0,77:2%) < Cre®. (75.1)
Using the fact that the horizontal Fourier transform of vg,, is supported in
B(0,N), we get, using the energy estimate (7.4.50), that
IV v5ppllz2qoryz=) < €y and thus  lim [|Bf[| 2o, ry;z2) = 0.
The estimate on B5 is analogous. The terms B§ and Bj in which vertical

derivatives are involved require different arguments. We have that

3
B3l L2(j0,13:22) < W5 — vie Lo ((0,79;25) 19305 pp | 210, 73522) -
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3 . .
As v;) vanishes on the boundary, there is no boundary layer term of order zero

3 . .
on the vertical component of vg,,. Thus the term v —vg'i, consists of a finite

sum of bounded terms (uniformly with respect to €) of order . Thus we have
3
||vapp - viant ||L°°([01T]§L°°) <e
This implies that
B3l (10,77;22) < CnellOsvgpp |20, 13522) -
The energy estimate (7.4.50) claims in particular that
1 . 1
€2 [10svappl L2 (0,71:22) = Cf -
This gives that
lim B3|z (jo,7;22) = 0.
In order to estimate B, let us study Uo int- By definition of UO mt, it consists of
a finite sum of smooth functions which vanish on the boundary It follows that
057 (8 23) | L3 (13e) < Cpdl(s)

where d(x3) denotes the distance to the boundary of ]0,1[. As

1BE 2 g0 270 < / 0620 ) |2 190555, — V2 () 25 i,
[0,7]%[0,1]
we infer that
1BE122 010 < Co / 02 (9)]| 050 — U6 s (E -+ 2) |25 .
[0,7]%[0,1]

The worse term of 95(vg,, — VG i) 18 agvgng. More precisely, using (7.4.45) and

app
(7.4.46), we get

1
| P aon(uzy = 16 )t 0) [

0
1
< [ a)oues b )y dos + 7
0

By definition of vg py,, we have
0306 BL(t, - 3) | L2(0) < i Z %" ()1l 2
kg 0

I3 1—$3

XZ sup exp _71 + exp _71
+ &neln /265, /265,
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where recall that Cy = C(1/N, N). So we infer that

1
| @l st ey < Coe 3 Il
k3=0
1 ;2
[ ) (-l s
0 1) & 19

Computing the integral gives

1
ARSI ey < Cye 3 Ik 6 )12,

k3=0

By definition of vy, using the result that the family (sin(ksmxs)) is orthogonal
in L?, we infer that

1
| al0nes s 8 )l dos < Coelfon (7.5.2)
0

The lemma is proved. 0

The following result is the analog of Lemma 7.3, in the ill-prepared case. We
have defined, for any vector field v,

1
v=T+47, Whereﬁz/ v(xp, x3) das.
0

Lemma 7.10 Let v be a solution of (SE, ¢) and let n be a positive real number.
Denote by (viil)e>o the family given by Lemma 7.8. Then for any vector field 6
belonging to L>=([0,T); H) N L*([0,T]; V), we have

/0 (8(t) - V() vgpp(t)) o dt < <C €7 + )ET((S)

+ [ (s0-vawie () o, ) a+s [ IS0 Bl .

Proof The proof follows the lines of the proof of Lemma 7.3 in the well-
prepared case, so we will skip some details. We can decompose

t
Vapp = (Vapp — VN, — V0,BL) + VN, + L ( ) UN, + V0,BL;

and as for (7.2.1) we have [[v;,, — vn, —vo,BL| L= (j0,71xQ) < Cye. So we infer as
in the case of (7.2.1) that

T
/0 (8(8) - V()| (v5pp — v, = v0,81) (1)) 12 di < Cpe? EF(5).
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Similarly we have as in (7.2.3)
T
| 60 Vs, ©), a0 < § / 19" 513 dt

¢ / V", (1) [2:]16(2) 2.,

so we are left with the term containing the boundary layers, which as in the well-
prepared case we want to prove it can be neglected. We recall that

N77

-1 h 3 h ks,h

vo,BL = F}, (A(fh)Wo,BLv WO,BL) where Wy'gp, = Z WO,SBL
k3=0

and where Wg) ’];LL is given by the boundary layer of the well-prepared case
(hence its contribution can be neglected just like in the well-prepared case),
and where VV&“B% is given by (7.4.22). Writing that

T 11—z
|U0,BL( )| <ON sup Z 3 3

—F— | texXp | ——F— )
€nE€CNy 120 € /2522 € /2522

the lemma follows exactly as in the well-prepared case. ]

7.6 The convergence theorem in the whole space

The goal of this section is to prove Theorem 7.2. Let us start by considering ,
the solution of

ot~ divy, (TR 1) — VAL T+ /2 u Vhp7 0)
(m) divy,u=0

1

__p, def h

Ujy—o = Uy —/ ug (zh, x3)dxs.
0

Then let us consider u, the solution of the forced equation
ou — vApu+ Eu = (Q(u, ), 0)
(FSE,¢) S divu =0
u\t:O = Up.-

1
Let us note that H/ u(zn, x3)dxs is the solution of (FSE, ¢). The main step of

0
the proof of Theorem 7.2 consists in proving the following lemma.

Lemma 7.11 Let n > 0 be given, and consider (ugil)co, the family of

approximations given by Lemma 7.8 associated with n and u. Then
sup By (u® —ugl) = p= (7.6.1)

t€[0,T]



The convergence theorem in the whole space 203
Remark Lemma 7.11 does not imply Theorem 7.2 directly as it remains to
prove that wug;l converges towards u in some sense. That is the purpose of

Lemma 7.13 below.

Proof of Lemma 7.11 Let us start by recalling that

t\ - .
Uo’?nt un, + L <8> un, with

_ def _ _

iy, = F 1 (1C(%7Nn)F“) and
Ny u"sh () cos(kzmas)
Z_ ——dlvh yhsh (xp) sin(ksmas) |’

the support of the horizontal Fourier transform of 7¥3"* being included in the
ring C(1/N,, N,,).

In order to prove Lemma 7.11, we will follow the same method as in the
well-prepared case, namely a weak—strong uniqueness argument. Let us indeed

apply Lemma 7.5 to ug;l, (omitting again the smoothing in time). We find
Ets(as) = ( ) + EE( ;pp) (u0|uapp|t 0)
¢
=2 [ (50 VE Ol (e))
0
¢
w2 [ e, @62
0
where according to Lemma 7.8,
G (uapp) = Uapp * Vit + Lougp,
=ugl - Vugll —a" - V" + RO 4 V)~ (7.6.3)
We have as usual
E5 (uf) < [|uol|7-- (7.6.4)

Moreover by Lemma 7.8 we have

t
Eﬂ;Qﬂ%hﬁﬂ/@“Wﬁwmﬁ+f”
0
Let us define w = u — @. Then by definition

Ot — vAN T+ ET=0, with o = uo — (@}, 0),
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which in particular implies that
1
vt >0, / ﬂh(t, Xp, x3)drs = 0.
0
Writing (u - VM, u) = (- V', a) + (u- V', u"), we find that

/t<u~ VI, u)(t)dt' =0
0

hence
B (uggp) < lluoll72 + o=, (7.6.5)
Finally clearly [lug,,_o — uollz2 = p=". So with (7.6.4) and (7.6.5) we get
B{(uf) + B (u5) — 2ol _)ps = oo, (7.6.6)

Then Lemma 7.10 implies that
t 1 2
/O (6°(t') - VO (£ Jusgh (1)) ot < <P€n+ 4) B (5) + Y Uy(H)  (7.67)
j=1
with
gof [* #
Uy (t) é/ <5€(t’).V65(t’)|£ (E) ﬂN(t’)> dt’  and
0 L2
det C [T 5
Us (1) = ;/0 IV () 172 116°(¢') 17 2t

Finally since Q is continuous from LJ.(L}) x Li.(L}) into L3(H'(2))
(denoting LY for LP(€2y,)), we can write

G (ugph) = Fy" + F;" + R + Vp©®  with
def
>1 us"n N €M
Fl Uapp vuapp uO int v“0 e and
endel en e — _
Fy'' = uging - vUo,im —un, - Vuy,.

Notice that by Lemma 7.9 we have limo IFY || 2 (jo, 1322y = 0. As in the case
E—
of (7.3.4) and (7.3.5), we have

R+ P ) =
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so finally

| @ @ e < [ (E Ot 4. (168)
0 0

Plugging (7.6.6), (7.6.7) and (7.6.8) into (7.6.2) implies that for € small enough,

€ € £ C ! - (> :
E7(0°) < p™" + ;/0 IV*a(t) |2 116° () | Z2dt’ + ) &(t) (7.6.9)

i=1
with

def

amne|[ (F;"(t’>|uf<t’>>pdt"

‘At<¥aﬁ-V&%ﬂ)£(i>ﬁN)dﬂ

Let us note that for the moment no dispersive effects have been used, and the
computations hold in the periodic setting as well as in R?. However to continue
the proof we will argue differently depending on the setting.

As z, is in R? in this section, we will be able to use Strichartz estimates to
get rid of Fy'" and of L (t'/e) uy in estimate (7.6.9). Let us write

&H o

F2E,n = ug,int : v(ug,int - EN) + (ug,int - ﬂN) -Vuy
t\ - T\ ~
= u(g),int -VL <€> uny + L (5) uy - Vuy.
Using the fact that uy and thus £(t/¢)uy is a finite sum of products of func-

tions of xp, the horizontal Fourier transform of which is supported in B(0, N)
by cos ksmxs or sin ksmxs, we have

t\ -
UG int * VL (5) un

Let us postpone the proof of the following lemma which is a consequence of
dispersive effects.

t\ -
< Cn||u(6),int||L°°([0,T];L2) Hﬁ <5> un

L2([0,T];L?) L2([0,T];L>).

Lemma 7.12 For every N € N and every T' > 0, the following estimate holds:

(9 e (1)

This lemma implies immediately that

4
ug,int N Vﬁ (g) 'Z’ZN

=0.
L2([0,T];L=)

= lim
e—0

L2([0,T]; L)

=0.
L2([0,T];L?)

lim
e—0
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As above, we can write that

‘ﬁ(t) uy - Vuy SCnHﬁ (t> UN
< L2([0,T};L2) €

Using Lemma 7.12, we deduce that lirr(l] 1F5"|| L2(j0,m;£2) = 0, so that
E—

I@N || Lo ([0, 17;2.2) -
L2([0,T];L>°)

t
/ (F5 (") [u(t)) o dt’ < p7. (7.6.10)
0

As 6° vanishes at the boundary, we have, by integration by parts,
t /
/ (58@’) Vo) (t> aN(t')) d’
0 € L2
t t/
:/ (55(15’) ® 6 (t)|VL <> ’aN(t’)) dt’.
0 € L2
We immediately infer that
t /
/ <65(t’) V()| (’5) aN(t')> d
0 € L2

t
<c / 15 (¢)]2

By the Cauchy—Schwarz inequality, we get

/0 t (56@') Ve (| (’;) EN(t’)>L2 a

< Cyt? B (5°)

dt'.
LOO

VL <t> i (t)

3

t\ -
c L2([0,T];L>)
Lemma 7.12 therefore implies that

/Ot (56(75’) VS (IL (i) aN(t')>L2 '

Plugging (7.6.10) and (7.6.11) into (7.6.9) and using a Gronwall inequality finally
yields

< p. (7.6.11)

t
51(5) < p e (S [ 19 a(0)]aa )
0

C, _
< e ( Gl ) = oo,
That proves Lemma 7.11, provided we prove Lemma 7.12. ]
Proof of Lemma 7.12 We shall prove a slightly better result, namely that

(5 m

< Cpe?||uol| 2 (7.6.12)
Lip (L)
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Since £(t/e)tuy is uniformly bounded in the space L>([0,7T7]; L?), it is controlled
by C, in L%([0,T]; L>°) by Bernstein’s lemma. Then Lemma 7.12 follows
from (7.6.12).

So let us prove (7.6.12). This is typically a Strichartz-type estimate, of the
type of those derived in Chapter 5, Theorem 5.3, page 95. However the setting
here is slightly different (the vertical variable is in [0, 1] instead of R) so we will
give the details of the proof

By definition, ﬁN = L(t/e)uy satisfies
~ ~ 1~
WUy — vALUS + gRU}EV =-Vpy + fx with
ﬁja\”tzo =ugN —Uo,Ny and

o (1) eun < LhRY ),

Using Duhamel’s formula (we omit the argument, see for instance
Section 5.2), (7.6.12) follows from the following result. If the vector field v®
solves the anisotropic Stokes—Coriolis system

1
00" — VARUE + ERUE = —Vp°, vft:O = vy,
in C(R"; By) N L*(RT; HYY), then

1
[0l 22 (et pee) < COne2|lvoll 2

So let us prove that result. As £ and Aj commute, we have

vi(t) =L <t> eVtBhyy = eVtAn L (t) vo.
€ €

Now let us write
vks"h(:ch) cos(ksmas)

N
Z d k3, h i
ot ivp ve® " (zp) sin(ksmxs)

where vk3’ has support included in the ring C(1/N, N).

We have
7 (£ (L) w) = 3 (e (1) 4760k 60 costionss).
ks=1

- AL, (2) A7 () (&) sin(k37r1:3)) |
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Let us compute this expression more precisely. We have

/\k37
AN @Akt (€)= (f: Am(’f’;’).

En N0 (6n)
Since
Ep - TP CO8(Tig )& - To™" + Ay sin(7iy )n A T
£l )<5 AA’% >_ ———sin(7y, )6 - Tp* " + cos(Thy )€ A T |

Aks

with the notation introduced in (7.4.15), it follows that

A(fh)ﬂk}g (f’:) A_l(g}“kg) —vt|én|? ’\kS, (Eh)

is a combination of terms of the following type (complex notation will be helpful
for the computations below)

eFNnat A(gy, ks)e VT (&), (7.6.13)
where A(£p,, k3) is a 2 x 2 matrix, the coefficients of which are bounded by Cy.

Let us consider a radial function ¥ € D(R?\{0}), the value of which is one
near the ring C(1/N, N), and let us define

Ik:z (ta T, xh) déf / ei(whlfh)-i_i)\kli‘r_”t‘fﬂz \Ij(gh)dgh
R2

Since v¢(t) is a finite combination of terms of the type

Ik)3 <ta 27 ) * ]: A(gha k3)/\k37‘77

the result will be proved if, for any k3 < N,

t
’Ik?’ <t,7~) * 7y
[

By Lemma 5.2, page 94 we know that there exist constants (), and ¢, such that

< Cnet ||y e (7.6.14)
L([0,T];Ly2)

C —c
||Ik3(t77-7')”L§° < Tge nt- (7615)

Now we shall use a duality argument, exactly as in the proof of Theorem 5.3,
page 95. We observe that

ol ) = sup / alt, o) (t, on)dzndt
€gJRT x R2
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with gdéf {cp e DR x R?), [l m;21) < 1}. So we can write

t
Iks (t, - ) *’y
e

t
= sup/ Tk (t7 T yh> v(yn)p(t, xp)dxndypdt
veG JRT x R4 €

t
= Sup/ v(yn) </ Ty (t, — T — yh) ‘P(taxh)dxh> dyndt.
peg JRT x R2 R? €

The Cauchy—Schwarz inequality then yields

‘/ T, (t, t7~> * p(t,-)dt
Rt 9

By the Fourier—Plancherel theorem, we have

¢ def
ks —

LY(RF;L5°)

€

ks < Vllz2 sup (7.6.16)
pe

Ly

2
~ ; t
Tk, def / Ti, (u ) s o(t,-)dt
R+ € L2
. ¢ 2
= (2m)72 / FnZTk, (t, = ) B(t,-)dt
Rt g Li

and we have that
2

= t
[ it (1) e
Rt 3

Ly,
is less than or equal to
~ t - =/ s .
/ Ty, (7@ - - §h) D, En)Tky (87 - = fh) P(s,&p)dEpdids.
(R1)2xR?2 e g

But by definition of Zj,, we have

T, (t,t7 _gh>fk3(s,s7 _gh) =Ty, <t+s, t=s, —gh) U(—&).
& g

€

It follows that

~ . t
Fk3 S C F (Ikg (t + S,
(RT)2xR?

Now we use the Fourier—Plancherel theorem again to get

~ . t—
st < O/ (Ikg (t + s,
(R+)2xR2

tsv-)wu,-)

— S

) ) * ot -)) P(s, &) dEdtds.

s,.> * w(t,)) (zn) (s, —2n)dzndtds

<C

jkg <t + s,

(s, )l oy deds.

+
(R+)2 Ly
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Using the dispersion estimate (7.6.15), we get

o1/2

il e en(tts)

A e O P ER
and the result follows by integration since ¢ is bounded in time. The lemma
is proved. ' ]

Now to end the proof of Theorem 7.2 we still need to prove that ug;l converges

towards @ in an appropriate way. That is the object of the following lemma.

Lemma 7.13 Under the assumptions of Lemma 7.11, we have for any compact
subset Kof )

/[ ] |ugp (t, @) — (@(t, 2p), 0)*dandas = p™.
0,T]x K

Remark Putting together Lemmas 7.11 and 7.13 clearly completes the proof
of Theorem 7.2. L]

Proof of Lemma 7.13 If is enough to prove that for all N > 0,

;i_r)r(l) \u‘;’p"p(um) — T, (t, xh)\2dachdac3 =0.
[0,TIx K

But by Lemma 7.8 we have

t
lim |[ul? — L <> UN =0
e—0 || PP € "2 (jo,71x )
and by definition
t t\ -
L () uy =uny + L <) UN,
€ €
so the result simply follows from Lemma 7.12. ]

7.7 The convergence theorem in the periodic case
7.7.1  Proof of the theorem

In this section we shall prove Theorem 7.3, dealing with the case when the
horizontal variable zj is no longer in the whole space R? as in the previous
section, but in T? like in Chapter 6. As noted in the introduction of this chapter,
the difference with the periodic case is of course the boundary condition at x3 = 0
and z3 = 1. We will, as in the previous section, work with the space B, which is
dense in Hp, which means in particular that we restrict our attention to vector
fields satisfying the symmetry condition

u(xp, xs3) = (uh(:rh, —x3), —u?’(xh, —3)).
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The general approach to prove Theorem 7.3 is the same as in the R? case, so we
shall continuously be referring to the results and computations of the previous
sections of this chapter. However the fact that the horizontal variables are no
longer taken in R? prevents one from using the dispersive effects pointed out in
Chapter 5, and used in the proof of Theorem 7.2 above. The analysis becomes
therefore somewhat more complicated, as the interaction of fast oscillating waves
(which no longer disperse and disappear) has to be taken into account; for that
reason, the methods developed in Chapter 6 will be used in this section again
(namely in the construction of an approximate solution, where both the ideas of
the previous section and of Chapter 6 will be used).
Let us start by considering u, the solution of

ou — vApu + Eu = Q(u,u)
(NSE, ) divu =0

u\t:O = Ug-

We recall that & is defined in (7.4.39), and that the quadratic form Q was defined
in Chapter 6, Proposition 6.1. In the following we will denote by P the projector
onto divergence-free vector fields of the form (7.0.5). We have clearly PE = €.

The existence and uniqueness of solutions to (NSE,¢) was proved in
Section 6.6, Chapter 6. From now on we will suppose that T? satisfies
condition (A) and that

/ uo(xp, x3) dry, = 0.
T2

A positive real number 1 and a time T > 0 being given, let us denote by (ug,,,)->0

the family of approximations given by Lemma 7.8 with v = u and f = Q(u, u).

Notice that by Proposition 6.5, the horizontal mean of f is zero for all times.
Let us observe that

t\ -
UG int = UN + L <€> uy with

def

uy = F ' (lea,vFu) and
f o 1

un def Z ko () cos(ksmas), ——— divy 0P (x) sin(ksmas) |,
) kg’]'('

the support of ¥3>" being included in the ring C(1, N) (and N is large, depending
on 7).
As in the R? case studied in the previous section, our aim is to apply

Lemma 7.5. Unfortunately if we apply that lemma directly with ¥¢ = ug |
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as defined above, we will not be able to conclude, as the term G®(ug,,) is not
small in the periodic case (due to the absence of dispersion). So as in Chapter 6,
we will get around that difficulty by introducing an additional corrector. Let us
postpone the proof of the following lemma.

Lemma 7.14 There is a smooth family of divergence-free vector fields uﬂ)

belonging to CY(R™;V,) satisfying the following properties:

ugsp = Uapp + 077 i Lig (RT; HY(Q)) (7.7.1)
and
Lou zpp u;’ﬁ) - Vg app = H""+Vp©, (7.7.2)
where

| e < oo

Let us continue with the proof of the theorem, applying Lemma 7.5 to the family
ugss. We find that 6% el e uzss satisfies

B7(5°7) = B§ (u°) + I () — 2(u(0) L2+ZR (7.7.3)

with

def

Ri(t) % 2/0 (6°(t) - V=1 () users (1))t

Ry(t) ' 2 / (G () () (¢)) ! and
Gg(ug )def

app

Lfui~ - Vui—

Uspp + app app-
As usual we have
E; (uf) < luo|72, (7.7.4)

so let us compute the energy of uzs;. By (7.7.1) clearly

Ef (uzpp) < B (tapy) + 077,

and by Lemma 7.8 one has

Ef (ugpp) < lluollz: +2/0 (Q(u(t), u(t)), u(t))dt’ + p=".
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The symmetry properties of Q imply that Ef(uS ) < ||ugl||%2 + p=", hence

app
B (ugsp) < lluollZ2 + po". (7.7.5)

Similarly by (7.7.1), we can write that
[uZppii=0 — vollLz = p7". (7.7.6)

Putting (7.7.4), (7.7.5) and (7.7.6) together yields
B (u) + B (u5) — 2(u(0) [u5(0)) 12 < p°. (7.7.7)
Then according to (7.7.2), we have
Ry (t) = p=", (7.7.8)

so plugging (7.7.7) and (7.7.8) into (7.7.4) yields

t
EE(6°") < o™ 4 C / (65(t) - Vo= () users (1)), dt

SpE,n—f—C/O (05(t") - VT () ugpp, () 0 dt’

where we have used (7.7.1). To estimate the last term we use Lemma 7.10, which
implies that

t
/ (657 V6€"|udpp)L2(’)dt” < (cne%+i) E£ (9)
0
t t/ C t
+ [ (W( N TEEL () aN@’)) '+ S IV 50
0 € L2 vV Jo

Applying Lemma 6.5 page 146 to b = L(t/e)un implies (since £ is unitary) that

t
BEG N < g7+ 5 [ VS et
0
- O e 2 |9 2t
v 0 L2 L2

o[t _ _ _
+;/0 1857 ()72 (IV"@(®)1Z2 +05u(t)]1721105 V" a(t) |7 2) dt’,
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and Gronwall’s lemma yields finally that E;(6") < p=", using Proposition 6.5.
The theorem follows, up to the proof of Lemmas 7.14. ]

Proof of Lemma 7.14 Our aim is to find a smooth, divergence-free corrector
to ug,,, vanishing at the boundary, such that equation (7.7.2) is satisfied.
By Lemma 7.8, we know that

Lougpp + Uapp * Vitapp = Uapp - Vilgpp + £ ( ) Q(u,u) + R¥" + Vp©,
and by the continuity properties of Q stated in Proposition 6.6 we infer that
Lfug,, 4 ugy, - Vug,, = ugy, - Vug,, + £ ( ) Qun,un) + R*" + Vp°©.
Let us define
Fer— s Vs, — £ L) uy e (L
uapp uapp g UN - g unN

t
= Ugpp - Vg, + £ (5) Q" (un, un).

By Lemma 7.9 we have liné | E5 || 2 (jo,m;2) = 0, so as for (7.3.5) we have

| @i < o

Note that by (7.3.4) one also has

/ LR () d? < g7
0
so we find that one can write
Lfu pr +u§pp - Vg Uapp = =H""+PyL ( ) (Q Qe)(UNauN) + Vp©,

where H®" satisfies

/ () =

0

Now let us prove the following lemma.

Lemma 7.15 Let n > 0 be given. There is a family of divergence-free vector
fields F=", bounded in L (RY; H*(Q)) for all s > 0, such that

loc

Pyl (t> (Q° — Q)(un, uy) = ePLEFS + REN, (7.7.9)
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Proof We define the following function, as in the purely periodic case, page 143,

Ry (T, t)deff_11|n|§N Z Z B ( (t,k) - (n—k)

oe{+,—}3 k¢Kg

x uS2 (t,n — k), e (n))e‘73(n).

Then we have
0;Ry =Pn(Q° — Q)(un,un). (7.7.10)

Moreover F=1 L(t/e)Ry is clearly smooth and divergence-free. Now let us
check (7.7.9). We have

ePL°F" = (0, + PR —eA), —°B03) L <z> Ry

oo 0.0y (V) r e (t)re 2 (! am

where
5 def e 2 2 e i
gen —eARFET —*BOsFEN + L z R

The first two terms of G%" are clearly remainder terms of the generic type R,
as long as N is chosen large enough in terms of 7, so is the last term which is
exactly the term £ (t/e) Ry where R;* was defined on page 143. So G=" is a
remainder of the type R®". Since 0,.L + PRL = 0, we infer that

t
ePLEFS"T =L (5) Pn(Q° — Q)(un,un) + R™",

and Lemma 7.15 is proved. 0
It follows from Lemma 7.15 that
Lfug,, + ugy, - Vug,, = HOT — e LEF=" 4 Vp©.

aPP aPP

Lemma 7.14 is almost proved, except for the fact that F=" does not vanish on
the boundary. So we shall finally correct F°°7 by a boundary layer: we write F*="
in the form
N
Fon = Z (F=MFs cos(kgmas), F&3P sin(ksmas))
k3=0

and we define a smooth function b on R" such that b(0) = 1 and b(¢) = 0
when ¢ > 1/2 and such that b is mean free. Define
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Finally consider

~c . pdef
€,n "= €,1 €51
For=F FBL>

N
where P = 3 (F5fe F>?) with

k3=0

s,k ks, (T3 ks e.hk 1—z3

Rt =t () + v (1)

and
. . ) T . \ 1—=x
fgf“s = —edivy, .ﬁi:j&B (;3) + e(—1)k= divy, fﬁc?jfB ( 5—: 3) )

Clearly Fem is smooth, divergence-free, and vanishes on the boundary (because
b is mean free). Finally let us define

15 _ €
Uapp = Uapp

A

The vector field Ugss 1s smooth, divergence-free, and vanishes on the boundary.
Clearly uzs satisfies (7.7.1), and we leave the smoothing of ug in time to the
reader. The only point to check is (7.7.2), but that is simply due to Lemma 7.15,
along with the fact that the boundary layers contribute to the equation by

negligible terms of the type R®", as they are of order 1 in €. Lemma 7.14 is
proved. L]
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References and remarks on rotating fluids

The problem investigated in this part can be seen as a particular case of the
study of the asymptotic behavior (when & tends to 0) of solutions of systems of
the type

1
Ou® — Aqu® + Quf,uf) + gAu =0

where A, is a non-negative operator of order 2 possibly depending on ¢, and A is
a skew-symmetric operator. This framework contains of course a lot of problems
including hyperbolic cases when A, = 0. Let us notice that, formally, any element
of the weak closure of the family (uf).~o belongs to the kernel of A.

We can distinguish from the beginning two types of problems depending on
the nature of the initial data. The first case, known as the well-prepared case, is
the case when the initial data belong to the kernel of A. The second case, known
as the ill-prepared case, is the general case.

In the well-prepared case, let us mention the pioneer paper [82] by
S. Klainerman and A. Majda about the incompressible limit for inviscid fluids. A
lot of work has been done in this case. In the more specific case of rotating fluids,
let us mention the work by T. Beale and A. Bourgeois (see [10]) and T. Colin
and P. Fabrie (see [37]).

In the case of ill-prepared data, the nature of the domain plays a crucial role.
The first result in this case was established in 1994 in the pioneering work [112] by
S. Schochet for periodic boundary conditions. In the context of general hyperbolic
problems, he introduced the key concept of limiting system (see the definition on
page 125). In the more specific case of viscous rotating fluids, E. Grenier proved in
1997 in [69] Theorem 6.3, page 125, of this book. At this point, it is impossible
not to mention the role of the inspiration played by the papers by J.-L. Joly,
G. Métivier and J. Rauch (see for instance [77] and [78]).

In spite of the fact that the corresponding theorems have been proved after-
wards, the case of the whole space, the purpose of Chapter 5 of this book,
appears to be simpler because of the dispersion phenomena. These phenomena
were pointed out in 1986 by S. Ukai in [119] and by K. Asano in [1] to prove the
convergence of weakly compressible fluids to incompressible fluids in the whole
space.

These dispersion phenomena are related to Strichartz estimates. These types
of estimates appeared in the context of the wave equation in the work [116] by
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R. Strichartz, [13] and [14] by P. Brenner and [102] by H. Pecher. The reader
who wants to become more familiar with Strichartz estimates can refer to [66)
by J. Ginibre and G. Velo and [80] by M. Keel and T. Tao.

A huge literature exists concerning applications to non-linear problems. For
the Schrodinger equations, the literature is numerous. The book [26] provides a
nice introduction to the subject. For a recent example of such applications, we
refer for instance to [36].

Concerning the non-linear wave equation, the reader can refer to [104] for
semilinear equations, and [8] and [83] for quasilinear equations. Let us mention
the approach of commuting vector fields developed in [81] which does not require
us to write a parametrix. This type of inequality has been used in the context
of the incompressible limit for viscous fluids by B. Desjardins and E. Grenier
(see [47]) to prove the analog of Theorem 5.6, page 104. In [41], R. Danchin
proved the analog of Theorem 5.7 for the incompressible limit.

In the context of rotating fluids, the use of these techniques comes from [32]
where a weaker version of Theorems 5.6, page 104, and 5.7, page 108, are proved.

In the case of periodic boundary conditions, the first result of the type of
Theorem 6.2, page 119, was proved in 1996 by A. Babin, A. Mahalov and B.
Nicolaenko in [5] under a non-resonance condition (namely condition (R) intro-
duced in Definition 6.2, page 144). Then the same authors dropped this condition
in 1999 (see [6]) and proved Theorem 7.2, page 157. Moreover, asymptotic expan-
sions in € have been proved by I. Gallagher in 1998 (see [59] and [60]). Let us note
that in the context of the incompressible limit, there is no such non-resonance
condition. In spite of that, N. Masmoudi proved in [96] that the limit system
(which is surprisingly globally parabolic as proved by I. Gallagher in [61]) in that
case is globally well-posed. Using that, R. Danchin proved in [42] the analog of
Theorem 6.2, page 119.

For Ekman boundary layers, the pioneering mathematical work is the work by
N. Masmoudi and E. Grenier (see [72]) where Theorem 7.1, page 156, is proved.
This corresponds to the case of well-prepared data. The case of ill-prepared data
with horizontal periodic boundary conditions was investigated by N. Masmoudi
in [95]. Theorem 7.2, page 157, was proved by the authors in [34].



PART IV

Perspectives

The aim of this last part is to present some open questions related to the stability
of Ekman boundary layers, or to other types of boundary layers.

In Chapter 9 we first discuss the stability of Ekman boundary layers, define
the notion of critical Reynolds number, give some hints to compute it, and some
related results (instability as well as more recent stability results). This leads us
to discuss basic ideas on the transition between a laminar and a turbulent regime.
In Chapter 10 we review boundary layer effects in magnetohydrodynamics and
quasigeostrophic equations, which are very close to genuine Ekman layers. In
Chapter 11 we then introduce the boundary layers which appear near vertical
walls and formally link them with the classical Prandlt equations, and in the last
chapter, we introduce spherical layers, whose study is completely open.
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Stability of horizontal boundary layers

Let us now detail the stability properties of an Ekman layer introduced in Part I,
page 11. First we will recall how to compute the critical Reynolds number. Then
we will describe briefly what happens at larger Reynolds numbers.

9.1 Critical Reynolds number

The first step in the study of the stability of the Ekman layer is to consider the
linear stability of a pure Ekman spiral of the form

1—e¢/V2cos &
uE(t7I1;I2a<) = Uoo ( _C/ﬁ . gﬂ ’ (911)
—e sin -5
where Uy, is the velocity away from the layer and ( is the rescaled vertical
component ¢ = x3/y/ev. The corresponding Reynolds number is

Re = UOO\F.
v

Let us consider the Navier-Stokes—Coriolis equations, linearized around u?

3

B VP - eixu, Va_
(LNSC.) Ou+u” - Vu+u-Vu® —vAu+ . + - =

div u = 0.

0

The problem is now to study the (linear) stability of the 0 solution of the sys-
tem (LNSC.). If u=0 is stable we say that u” is linearly stable, if not we say
that it is linearly unstable. Numerical results show that =0 is stable if and
only if Re < Re. where Re. can be evaluated numerically. Up to now there is
no mathematical proof of this fact, and it is only possible to prove that 0 is lin-
early stable for Re < Re; and unstable for Re > Res with Re; < Re. < Rea, Re;
being obtained by energy estimates and Res by a perturbative analysis of the
case Re=o00. We would like to emphasize that the numerical results are very
reliable and can be considered as definitive results, since as we will see below,
the stability analysis can be reduced to the study of a system of ordinary differ-
ential equations posed on the half-space, with boundary conditions on both ends,
a system which can be studied arbitrarily precisely, even on desktop computers
(first computations were done in the 1960s by Lilly [89]).
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To reduce the system to ordinary differential equations, we take the Fourier
transform in the (z1,22) plane by introducing a wavenumber k € R?, and we
take the Laplace transform in time, and look for a solution u of (LNSC.) of
the form exp(ik - (x1,x2) — i||k||ct)vo(x3) where vy is a vector valued function.
Note the —i||k||c factor, which is traditional in fluid mechanics. To simplify the
equations we first make a change of variables in the (z1,22) plane and take

S LA

as a new frame, and (%1, Z3) as new coordinates. In these new coordinates, k is
parallel to the second vector of the basis. This change is equivalent to a rotation
in u® which becomes (dropping the tildes for convenience)

cosy — e /2 cos <C+ )
v /2 v

E
u”(t, 1,2, w3) = —Uso . YN ( ¢ ;
—siny+e sin [ — + 7y
V2
0

where «y is the angle of rotation of the frame. Now w is of the form exp(ikzo —
ikct)vi(x3) where k € R. However, as u does not depend on 1, we can introduce
a stream function ¥ and look for u in the form

U(<)
u(t, 1,22, () = exp(ikxy —ikct) | W'(()
—ik¥(¢)

System (LNSC.) then reduces to the following 4 x 4 system on the two
functions (U, V)

OZU — kU + 20,V = ikRe (v — c)U — Wocuy) , (9.1.2)
(02 — k2)* W — ikRe (v — ¢)(0F — K*)U — WdPv) —20,U =0 (9.1.3)

Uu; = Co8y — exp (—C\/E) cos <’y + C\/E) and
v = — <sini — exp <—C\/§> sin (77—1— C\/?)) ,

and where 7 is the angle between the direction of the flow outside the boundary
layer and the direction of k, with boundary conditions

where

U0) =0, W(0)=0a(0)=0
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on ¢ =0 and
OU =0T =0
at infinity.
Note that as Re — oo, system (9.1.2, 9.1.3) degenerates into
(1}1 — C)U — \I’agul = 0, (9.1.4)
(v = ) (02 — k*) — WOZv, = 0, (9.1.5)

and (9.1.5) is exactly Rayleigh’s equation governing the stability of v; for lin-
earized Euler equations (ignoring rotation and viscosity). Moreover (9.1.4) and
(9.1.5) are completely decoupled, (9.1.4) being easy to solve. Therefore, for high
Reynolds numbers, the stability of v; is the same as its stability for the Euler
equations. For this latter equation, stability is mainly controlled by possible
inflexion points in the tangential velocity profile. As v; has many inflexion points,
we can expect the flow to be unstable for Euler equations. This is indeed the
case, and there exist solutions (U, ¢) of (9.1.5) with Sm ¢ > 0, which give exponen-
tially increasing solutions of linearized Euler equations. A perturbative analysis
then shows that for sufficiently large Re, there exist solutions (¥, U, c¢) of (9.1.2)
and (9.1.3) with Smc>0. Hence for sufficiently large Reynolds numbers there
exist exponentially increasing solutions of (LNSC,), and ug is linearly unstable.

Once we have a linear instability, we can get a non-linear instability by using
the techniques of [49] and prove the following theorem, showing the nonlinear
instability of Ekman layers at supercritical Reynolds numbers.

Theorem 9.1 Let ug be given by (9.1.1). Then ug is non-linearly unstable
provided Re > Re. in the following sense. For every arbitrary large s, there exists
a constant Cy such that for every n>0 there exists a solution u' with

[u"(0, ) — upllms <n,
[u"(T",-) = up|L2 = Co,
[u"(T", ) = up| L~ = Co,
for some time T" < Cylogn~! + C,.

We refer to [49] for more precise results.

Let us now detail a little the numerical study of (9.1.2) and (9.1.3). It is an
eigenvalue problem since we have to find solution (¥, U, ¢) of (9.1.2) and (9.1.3),
with Sm e > 0. But (9.1.2) and (9.1.3) can be seen as elliptic partial differential
equations of order at most 4. We can discretize them in a classical fashion (using
for instance the classical three-point approximation of the second derivative),
using the values at N different points, and taking into account the boundary
conditions. This gives large matrices and (9.1.2) and (9.1.3) is of the form

Ax = cBx
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where x contains the discretized values of ¥ and U. It remains to invert B and
to compute the spectrum of B~1A.

Therefore if k, Re, and v are given we can compute the spectrum of (9.1.2)
and (9.1.3) with an arbitrary solution. For a given N, we get of course only a finite
number of eigenvalues, but as IV increases, a part of the eigenvalues concentrates
in a continuous spectrum and a part of the eigenvalues remains isolated and “true
eigenvalues”. If there exists an eigenvalue with positive imaginary part, the flow
is unstable, for these parameters, if not it is stable. To get the critical Reynolds
number it remains to find the smallest Reynolds number Re for which there exists
parameters k and vy and a corresponding eigenvalue ¢ with Smc> 0. Lilly has
found in [89] a critical Reynolds number Re.~ 55 and has computed the most
unstable mode for various values of k and Re. Note that as Re. is moderately
high, we do not need many points N to discretize correctly the solution (N of
order 50 to 100 is sufficient).

9.2 Energy of a small perturbation

The aim of this section is to discuss the evolution of the energy of a perturba-
tion u, a solution of (LNSC,).

For Re < Re;y as seen at the end of Part I, the energy is decreasing. As the
flow is stable, it goes to 0.

For Re > Re. there exist exponentially increasing modes, therefore, in general
the energy of the perturbation will increase exponentially.

In the range [Rey, Re.] the situation is slightly different. First as the Reynolds
number is subcritical the energy of an arbitrary perturbation tends to 0 as time
goes to +00. The question is then to know whether the energy is decreasing or if it
begins to increase before ultimately decreasing. Let Res be the supremum of the
Reynolds numbers such that for every Re > Res, the energy of any perturbation
decreases continuously. It is possible to compute numerically Res, which is of
order 8. The final picture is the following:

e Re < Res: the energy of any perturbation goes to 0 in a monotonic way;

e Rez < Re < Re.: the energy of any perturbation tends to 0 as time goes
to +00, but may begin to increase, before its decay;

e Re > Re.: the energy of a general perturbation goes to +oco as time goes
to +o0 (not always in a monotonic way).

The main consequence is that linear stability cannot be proved by energy
estimates in the range [Res, Re.] since in this area we have only energy estim-
ates of the form 0;||ul|2, <C||u||?./e, which are useless in the limit ¢ — 0. In
this range linear stability can only be proved by spectral arguments, using
refined pseudodifferential techniques. This has been done by G. Métivier and
K. Zumbrun [97] in the case of the vanishing viscosity limit of parabolic systems,
leading to hyperbolic systems of conservation laws. As in rotating fluids, bound-
ary layers appear, which are stable under a smallness criterion. Simple energy
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estimates give stability of such layers with a stability threshold much smaller
than the optimal one. The proof that the spectral stability of the boundary layer
implies the stability of the complete solution, and the justification of the classical
formal Ansatz is very technical and difficult, involving careful pseudodifferential
analysis.

Very recently, similar work has been done on Ekman layers, for well-prepared
initial data, by F. Rousset [73] who proved that sequences of solutions of Navier—
Stokes—Coriolis system (in the well-prepared case) converge to a solution of
damped Euler equations, provided the Reynolds number of the limit solution
always remains smaller than the critical Reynolds number Re..

9.3 Rolls and turbulence

When Re > Re. the Ekman layer is linearly unstable, and more precisely as Re
crosses Re. the layer exhibits a Hopf bifurcation [76] since two isolated eigenval-
ues cross the imaginary axis. The flow is no longer laminar and gets organized
into rolls of typical size v/ev x /ev, which make a given angle with the direction
of the flow at infinity, U,,. Their size is proportional to v/Re — Re. which is
the classical behavior in Hopf bifurcations. Moreover the rolls move with a fixed
velocity. The question of the influence of these rolls on the interior behavior
(Ekman pumping, energy balance, and so on) is widely open (and completely
open from a mathematical point of view). In particular it is not known whether
for Re <100 or even for slightly supercritical Reynolds numbers, flows of highly
rotating fluids consist of a two-dimensional incompressible flow in the interior
of the domain, bounded by two layers consisting of rolls (or of Ekman’s layers),
and whether the limit two-dimensional flow satisfies a damped Euler equation
or not.

These rolls are the first step towards turbulent behavior. They are destabil-
ized at some higher Reynolds (of order 120~150) and “burst” into a real
three-dimensional turbulent boundary layer. The mathematical viewpoint is of
course open.

Note that it is not clear whether turbulent boundary layers separate from
the boundary and enter the domain or whether they remain close to the bound-
ary and only affect the Ekman pumping term and the local energy dissipation.
It seems that turbulent layers dissipate less energy than laminar layers (as
for Prandtl-type layers). It is almost impossible to make computations precise
enough to answer this question, which makes theoretical studies all the more
interesting.
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Other systems

The methods developed in this book can be applied to various physical systems.
We will not detail all the possible applications and will only quote three systems
arising in magnetohydrodynamics (MHD) and meteorology, namely conducting
fluids in a strong external “large scale” magnetic field, a classical MHD system
with high rotation, and the quasigeostrophic limit. The main theorems of this
book can be extended to these situations.

10.1 Large magnetic fields

The theory of rotating fluids is very close to the theory of conducting fluids in
a strong magnetic field. Namely the Lorenz force and the Coriolis force have
almost the same form, up to Ohm’s law. The common feature is that these phe-
nomena appear as singular perturbation skew-symmetric operators. The simplest
equations in MHD are Navier—Stokes equations coupled with Ohm’s law and the
Lorenz force

8tu+(u~V)ufl/Au+Vp+% =0, (10.1.1)
V-u=0,
j=—-Vo+uxe,
V.j=0,

where V¢ is the electric field, j the current, and e the direction of the imposed
magnetic field. In this case ¢ is called the Hartmann number. In physical situ-
ations, like the geodynamo (study of the magnetic field of the Earth), it is really
small, of order 107°~1071%, much smaller than the Rossby number.

These equations are the simplest model in geomagnetism and in particular
in the geodynamo. As ¢ — 0 the flow tends to become independent of x3. This is
not valid near boundaries. For horizontal boundaries, Hartmann layers play the
role of Ekman layers and in the layer the velocity is given by

u(t, 1,72, 73) = Uoso (¢, xl,mg)(l - exp(—xg,/\/aiy)). (10.1.2)

The critical Reynolds number for linear instability is very high, of order
Re. ~10% The main reason is that there is no inflexion point in the boundary
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layer profile (10.1.2), therefore it is harder to destabilize than the Ekman layer
since the Hartmann profile is linearly stable for the inviscid model associated
with (10.1.1). As for Ekman layers, Hartmann layers are stable for Re < Re. and
unstable for Re > Re.. There is also something similar to Ekman pumping, which
is responsible for friction and energy dissipation. Vertical layers are simpler than
for rotating fluids since there is only one layer, of size (ev)'/4. We refer to [109],
[110] for physical studies.

10.2 A rotating MHD system

Currently the persistence of the magnetic field of the Earth is not explained and
much work has been done, from a numerical, experimental or mathematical point
of view to try to explain why the Earth has a non-zero large-scale magnetic field
whose polarity turns out to invert over several hundred centuries. One possible
model is the following:

Ou+u-Vu+Vp—vAu+2Qe xu— (Vx B)x B=0,

divu = 0,
0B —V x (ux B)—nAB =0,
divB =0,

where u is the velocity field, B the magnetic field, v the viscosity, n the diffusion of
the magnetic field and 2 the rotation speed. There are many different interesting
scalings, but usually v and & go to 0, © goes to 400 and n— oo as well (large
diffusion of the magnetic field). It is in particular interesting to enforce a strong,
large-scale external magnetic field, in the e-direction to simplify and to consider
perturbations of it: B=e+b. We refer to [51], [44],[45] and to the references
therein.

10.3 Quasigeostrophic limit

Let us go back to meteorology and oceanography. A first attempt to include more
complex effects to the (NSC,) system is to add a temperature equation and to
couple it with the vertical motion (see [103],[31]). This is done in the following
quasigeostrophic system

1 "2
Ou+u-Vu+Vp—vAu==| —uy |,
€
0

00 +u- VO — VA = _%,

divu =0,

where 6 denotes the temperature, v the viscosity, and v’ the thermal diffusivity.



Quasigeostrophic limit 229

As € goes to 0, the only way to control the right-hand side is to absorb it in
the pressure term, which gives

Op=uz, Op=—u1, O3p=0, 0=—us.

As for rotating fluids, the limit flow is a divergence-free two-dimensional vector
field, with 8 =u3 = 0 which satisfies two-dimensional Euler or Navier—Stokes
equations (depending on whether » — 0 or not).
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Vertical layers

11.1 Introduction

From a physical point of view, as well as from a mathematical point of view,
horizontal layers (Ekman layers) are now well understood. This is not the case-
for vertical layers which are much more complicated, from a physical, analytical
and mathematical point of view, and many open questions in all these directions
remain open. Let us, in this section, consider a domain §2 with vertical boundar-
ies. Namely, let Q; be a domain of R? and let Q =, x [0,1]. This domain has
two types of boundaries:

e horizontal boundaries p, x {0} (bottom) and € x {1} (top) where Ekman
layers are designed to enforce Dirichlet boundary conditions;

o vertical boundaries 99, x [0,1] where again a boundary layer is needed
to ensure Dirichlet boundary conditions. These layers, however, are not of
Ekman type, since r is now parallel to the boundary.

Vertical layers are quite complicated. They in fact split into two sublayers:
one of size E/3 and another of size E'/* where E = ve denotes the Ekman num-
ber. This was discovered and studied analytically by Stewartson and Proudman
[105], [115]. Vertical layers can be easily observed in experiments (at least
the E'/* layer, the second one being too thin) but do not seem to be relevant in
meteorology or oceanography, where near continents, effects of shores, density
stratification, temperature, salinity, or simply topography are overwhelming and
completely mistreated by rotating Navier—Stokes equations. In MHD, however,
and in particular in the case of rotating concentric spheres, they are much more
important. Numerically, they are easily observed, at large Ekman numbers F
(small Ekman numbers being much more difficult to obtain).

The aim of this section is to provide an introduction to the study of these
layers, a study mainly open from a mathematical point of view. First we will
derive the equation of the E'/3 layer. Second we will investigate the E/* layer
and underline its similarity with Prandtl’s equations. In particular, we conjecture
that E'/* is always linearly and nonlinearly unstable. We will not prove this latter
fact, which would require careful study of what happens at the corners of the
domain, a widely open problem.
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11.2 EY3 layer

Let us consider the Stokes—Coriolis equations

e xu

—VAU—I—%:O
divu =0

(SC:)

and let £ = ve. We have
—uy — E2A%uy + 01p + EAOqp = 0,
—uy — E?A%u; — Oyp+ EAOp =0,
—Aug + E7103p — E2Aus + EA203p = 0,
hence, using the divergence-free equation,
D33p + E?A%p = 0. (11.2.1)

Let us go back to horizontal boundary layers. Ekman layers are in fact stationary
solutions of rotating Stokes equations (since in their derivation we drop the non-
linear transport term). Let us recover their size A with the help of (11.2.1).
Vertical derivatives are of order O(A~1) and horizontal derivatives of order O(1)
in the layer. Hence in (11.2.1), O33p is of order O(A~2) and E2A3p of order E2\~6,
and equals E20§ up to smaller order terms (E2A~%). Therefore A=2 ~ E2Z\~6
and A\ ~ E'/2 ~ \/ev. We can even derive the equation of Ekman layers, namely
D33p + E?08p = 0.

Let us repeat the same procedure for horizontal layers, say in the z;-direction.
Derivatives in the x;-direction are of size O(A™!), in the z2- and z3-directions of
size O(1). Hence 0s33p is of order O(1) and E?A3p ~ E?d%p is of order E2\ .
Therefore A ~ E'/3. Let X =1 /\. The equation of the E'/ layer is therefore

D33p + p = 0. (11.2.2)

This is no longer an ordinary differential equation in the normal variable, but a
partial differential equation of elliptic type in x1, x3 space, with different orders in
the z1- and z3-directions. Equation (11.2.2) must be supplemented with bound-
ary conditions on the velocity field, namely =0 on the boundary and the
convergence of u to some constant (z3 independent) vector for x; — + co. We
refer to [105] and [115] for the explicit resolution of (11.2.2) the cylindrical case,
using Bessel functions.

11.3 E'Y4 layer

The derivation of this layer is more subtle than the previous one. Namely this
layer would not exist if there were no Ekman pumping. Its role is to fit the Ekman
pumping (at the horizontal boundaries) near the vertical boundaries. There is
no E'/* layer if we assume periodicity in the z3-direction (€ of the form Q; x T
where ), is a two-dimensional open set).
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Let us derive the equations in the case R™ x R x [0, 1] (the case of a general
cylinder Qp, x [0,1] being similar). Let (u,v,w) be the velocity field, where w is
the radial velocity, v the orthoradial part, and w the normal velocity. In the layer,
the orthoradial velocity is of order O(1), the other parts being of order O(E'/4).
It is natural that the normal velocity if small, since the boundary layer cannot
absorb a large flux. On the other hand, the vertical velocity is small since it is
absorbed in horizontal Ekman layers. This E'/* vertical flow will close the global
circulation of the fluid in the domain, since through Ekman pumping, flow enters
or leaves the top and bottom Ekman boundary layers, a global circulation which
is closed through flow near the vertical walls. Let us emphasize that E'/4 layers
would not exist without Ekman pumping (in particular they do not exist if x3
is a periodic variable).

This leads to asymptotic expansions of the form

u(t, xy, 2, x3) = EY*y + EY?uy 4 - -
o(t, @1, 29, 23) = v + EV 40y + -+,
w(t, z1, 2, 3) = EY %o + EY 2wy + -+ 7
p(t, x1, 22, 23) = po + E1/4p1.

Now looking at (SC.) at order E-3/% gives

O1po = 0, (11.3.3)
at order E~1/2
—vo 4+ &1p1 =0, (11.3.4)
Oapo = 0, (11.3.5)
Bspo = 0. (11.3.6)
At order E~1/4 we get
—v1 + O1ps = 0, (11.3.7)
up + O2p1 = 0, (11.3.8)
d3p1 = 0, (11.3.9)
at order E°,
Osvg + ug01vg + voO2vg + uy + Oapa — 0119 = 0, (11.3.10)

O1ug + Oavg = 0,

and at order E/4,
61%1 + 82’[)1 + agwg =0. (11311)

Combining (11.3.7), (11.3.10), and (11.3.11) gives
D3y — 01010 — 01 (ued1vg + VDavo) + 3wy = 0. (11.3.12)
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Note that by (11.3.3)-(11.3.5), po = 0 and that by (11.3.9), p1 is independent
of z3. Using (11.3.4), (11.3.8) we deduce that uo and vy are independent of x3,
and using (11.3.12) we get that dywp is independent of x3.

As a first approximation, as the Ekman layer is much smaller than the E'/4
layer, the vertical velocity at 3 = 1 and x3 = 0 is given by the vertical velocity
just outside the Ekman layer, and hence (in the original spatial variables),

1
w=+—F"2curl U, v
5B em,v)

with the minus sign at z3 = 1 and the plus sign at 3 = 0. After rescaling, this
gives

1
wg = ——=01vg for z3 =1, and
0 7 100 3
1
wo = 7811]0 for Tr3 = 0.

V2

As wy is affine, this gives
B3wo = — V20, vp.
So we can integrate (11.3.12) to get
Devo + uO1vo + VoOavg — D110 + V20 = f(z1) (11.3.13)

where f is some integrating constant, which only depends on z; (since the left
of (11.3.13) is independent of x3) and is given by the flow outside the layer. This
equation must be supplemented with

O1ug + Oavg = 0, (11.3.14)
u=v9=0 on z;=0. (11.3.15)

System (11.3.13)—(11.3.15) is very similar to Prandtl’s equations. We recall that
Prandtl’s layer appears in the inviscid limit of Navier—-Stokes equations near a
wall and describes the transition between Dirichlet boundary condition and the
flow away from the boundary, described at least formally by Euler’s equations.
Prandtl’s system is exactly (11.3.13)-(11.3.15) except for the term /2vy which
does not appear.

This is very bad news since Prandtl’s system behaves very badly from a
mathematical point of view, and little is known of the existence of solutions. Up
to now we just have existence in small time of analytic type solutions for analytic
initial data [1], [22], which is an important result. In the case of monotonic
profiles, existence is established locally in time and space [99] and we are far
from small-time existence of strong solutions, technically because of a lack of
high-order estimates, but also because there are physical underlying instability
phenomena that we will now detail.
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Prandtl’s layers try to describe boundary layers of Navier—Stokes equations
in the regime of high Reynolds number (v — 0), with a size \/v. But it is well
known, since the work of Tollmien in particular, that any shear layer profile
is linearly unstable for Navier—Stokes equations provided the viscosity is small
enough [52], [111]. More precisely, let V' = (0, Vy(z1/+/v)) be some smooth shear
layer profile and let us consider the linearized Navier-Stokes equation near V'

Ou+V -Vu+u-VV —vAu+ Vp =0, (11.3.16)
V-v=0. (11.3.17)

The main result (see [52], [90], [111]) is that for any profile Vj, there exists a
solution of (11.3.16), (11.3.17) of the form ug exp(At) with Re A > 0, provided v
is small enough. This is quite natural if Vj has an inflection point and is unstable
for the limit system v =0 (Euler equations) since the viscosity can not kill an
inviscid instability if it is too small. It is, however, more surprising if V has no
inflection point and is stable at v =0, since the viscosity then has a destabilizing
role (which is less intuitive).

The only difference between Prandtl’s equation and (11.3.13)—(11.3.15) is the
damping term /2u. However this damping term improves the energy estimates
only slightly and cannot be used to improve the existence results on Prandtl’s
equations. It is also not sufficient to kill the linear instabilities which arise at
low viscosity, and therefore the equations of the E'/4 layer behave like Prandtl’s
equations.

Therefore, we can only expect existence of analytic solutions local in time for
analytic initial data, which is a technically difficult result, but not so interesting
from a physical point of view. The second consequence is that “non-derivation”
results of Prandtl’s equation [71] can be extended to our system. In particular
the flow is not as simple as an interior inviscid flow combined with a laminar
boundary layer flow. Note that it is possible formally to construct a boundary
layer, but that this boundary layer is not stable and therefore is not relevant in
the analysis. This is an important difference in the mathematical and physical
treatment of vertical and horizontal boundary layers.

11.4 Mathematical problems

Let us review some mathematical open problems in the direction of vertical
layers.

First in the x5 periodic case, F'/* does not appear. It seems in this case
possible to handle rigorously the limit ¢, — 0. In the interior the limit flow
satisfies Euler (or Navier—Stokes) equations (without damping), and a bound-
ary layer appears, of size E'/3 near the boundary. The boundary layer is stable
provided the limit interior flow is small enough near the boundary (stability
under a Reynolds condition, like for Ekman layers), else it may be unstable. Lin-
ear and nonlinear instability of this layer seems open (critical Reynolds number,
behavior of the unstable modes, and so on).
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When 0 < z3 < 1, one important problem is the corners 9Q x {0} and 9 x {1}.
Their structure is not clear, despite various studies [120]. Second, in a cylinder,
exact solutions have been computed [115], but little is known in the general case.
We conjecture an instability result of the type [71] for these layers. This result
is probably very technical to obtain, since we must control the E'/3 layer and
the flow near the corners.



12

Other layers

Note that Q =y, x [0, 1] is a particular case where the boundary layers are purely
horizontal or purely vertical. In the general case of an open domain €2, the bound-
aries have various orientations. As long as the tangential plane 02 is not vertical,
the boundary layers are of Ekman type, with a size of order /ve/|v.r| where v
is the normal of the tangential plane. When v.r — 0, namely when the tangential
plane becomes vertical, Ekman layers become larger and larger, and degenerate
for v.r =0 in another type of boundary layer, called equatorial degeneracy of the
Ekman layer. We will now detail this phenomenon in the particular case of a
rotating sphere. Mathematically, almost everything is widely open!

12.1 Sphere

Let Q= B(0,R) be a ball. Let 6 be the latitude in spherical coordinates. The
equatorial degeneracy of the Ekman layer is difficult to study. We will just give
the conclusions of the analytical studies of [105], [115]. The Ekman layer is a
good approximation of the boundary layer as long as |0 > E'/®. For |0| < E'/®
the Ekman layer degenerates into a layer of size E2/5.

The structure of the boundary layer is therefore the following;:

e for || > (ev)'/, Ekman layer of size \/cv/ sin(f);

o for || of order (ev)'/®, degeneracy of the Ekman layer into a layer of
size (ev)/® in depth and (ev)%/® in latitude.

12.2 Spherical shell

Let us now concentrate on the motion between two concentric rotating spheres,
the speed of rotation of the spheres being the same. In this case, Q= B(0, R) —
B(0,r) where 0 < r < R. Keeping in mind meteorology, the interesting case arises
when R — r < R: the two spheres have almost equal radius. Let us study the
fluid at some latitude . If 6 # 0, locally, the space between the two spheres can
be considered as flat and treated as a domain between two nearby plates. The
conclusions of the previous paragraphs can be applied. Two Ekman layers are
created, one near the inner sphere and the other one near the outer sphere. The
size of the layer is, however, different, since it is of order

eV

sinf’
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and in particular it goes to infinity as € goes to 0. The Ekman layer gets thicker
and thicker as one approaches the equator, where it degenerates and is no longer
a valid approximation.

This phenomenon can be observed in experiments where one can see for
instance large currents leaving the equatorial area of a highly rotating sphere.
In oceanography and meteorology, this degeneracy is also important, since it
indicates that the behavior of oceans is very different near the equator. We must
keep in mind however that other phenomena, not included in this toy model, have
a prominent influence near the equator, like winds, global atmospheric currents
(including very important vertical currents created by heating). Therefore the
precise study of the degeneracy must not be taken too seriously in this context,
and is completely overwhelmed by other physical phenomena.

12.3 Layer between two differentially rotating spheres

Let us turn to the case when (2 is the domain limited by two spheres of different
radius R and r (0 <r < R), rotating with different velocities Qe ~* and Qe =1+,
) being of order 1 (a slight difference in the rotation speed). This situation is
often studied in MHD where this rotation difference is considered as a possible
source of the Earth’s magnetic inner core field. This geometry is very rich and
fascinating, and still far from being completely understood [105], [115], since
there is a conflict between the spherical symmetry enforced by the domain, and
the cylindrical geometry imposed by the large Coriolis force, which penalizes
motions depending on the vertical direction.

For 2% 4+ 22 > 72, by the Taylor-Proudman theorem, the fluid moves with
the speed of the outer sphere, namely Qe ~!. For 22 + 23 < r?, however, there is
competition between the velocity imposed by the inner sphere and the velocity
imposed by the outer sphere. It can be shown that the fluid then has an averaged
velocity, and that two Ekman layers appear at the surfaces of the spheres to
fit Dirichlet boundary conditions. The Ekman pumping velocity then creates a
global circulation in the area % + 23 < 72, fluid leaving the upper sphere to fall
vertically on the inner sphere. At the equator x% + 23 = r? of the inner sphere,
however, Ekman layers degenerate. To close the global circulation, the fluid which
by Ekman suction is absorbed by the Ekman layer goes to the equator, remaining
in the Ekman layer. It then escapes the inner sphere and goes vertically to
the outer sphere, in a vertical shear layer of size E'/4. The situation would be
simple without a whole bunch of other boundary layers created by the various
singularities of the Ekman layer and of the vertical layers, new boundary layers
of size EV/5, E2/5 EY/3 ET/12 E1/28 and so on.
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