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ABSTRACT
Conventional approaches to estimating reserves, optimising mine
planning and production forecasting result in single, often biased,
forecasts. This is largely due to the non-linear propagation of errors in
understanding orebodies throughout the chain of mining. A new mine
planning paradigm is considered herein, integrating two elements:
stochastic simulation and stochastic optimisation. These elements provide
an extended mathematical framework that allows modelling and direct
integration of orebody uncertainty to mine design, production planning,
and valuation of mining projects and operations. This stochastic
framework increases the value of production schedules by 25 per cent.
Case studies also show that stochastic optimal pit limits:
• can be about 15 per cent larger in terms of total tonnage when

compared to the conventional optimal pit limits, while
• adding about 10 per cent of net present value (NPV) to that reported

above for stochastic production scheduling within the conventionally
optimal pit limits.

Results suggest a potential new contribution to the sustainable
utilisation of natural resources.

INTRODUCTION

Optimisation is a key aspect of mine design and production
scheduling for both open pit and underground mines. It deals with
the forecasting, maximisation, and management of cash flows
from a mining operation and is the key to the financial aspects of
mining ventures. A starting point for optimisation in the above
context is the representation of a mineral deposit in
three-dimensional space through an orebody model and the
mining blocks representing it; this is used to optimise designs and
production schedules (eg Whittle, 1999). Geostatistical estimation
methods have long been used to model the spatial distribution of
grades and other attributes of interest within the mining blocks
representing a deposit (David, 1988). The main drawback of
estimation techniques, be they geostatistical or not, is that they are
unable to reproduce the in situ variability of the deposit grades, as
inferred from the available data. Ignoring such a consequential
source of risk and uncertainty may lead to unrealistic production
expectations (eg Dimitrakopoulos, Farrelly and Godoy, 2002).
Figure 1 shows an example of unrealistic expectations in a
relatively small gold deposit. In this example (Dimitrakopoulos,
Farrelly and Godoy, 2002), the smoothing effect of estimation
methods generates unrealistic expectations of net present value in
the mine’s design, along with ore production performance, pit
limits, and so on. The figure shows that if the conventionally
constructed open pit design is tested against equally probable
simulated scenarios of the orebody, its performance will probably
not meet expectations. The conventionally expected NPV of the
mine has a 2 - 4 per cent chance to materialise, while it is expected
to be about 25 per cent less than forecasted. Note that in a
different example, the opposite could be the case.

For over a decade now, a traditional framework has been used
when dealing with uncertainty in the spatial distribution of
attributes of a mineral deposit, as well as its implications to
downstream studies, planning, valuation, and decision-making.
Now, a different framework than the traditional has been
suggested and is outlined in Figure 2. Instead of a single orebody

model as an input to optimisation for mine design and a ‘correct’
assessment of individual key project indicators, a set of models
of the deposit can be used. These models are conditional to the
same available data and their statistical characteristics, and all are
constrained to reproduce all available information and represent
equally probable models of the actual spatial distribution of grades
(Journel, 1994). The availability of multiple equally probable
models of a deposit enables mine planners to assess the sensitivity
of pit design and long-term production scheduling to geological
uncertainty (eg Kent, Peattie and Chamberlain, 2007; Godoy,
2010, in this volume) and, more importantly, empower mine
planners to produce mine designs and production schedules with
substantially higher NPV assessments through stochastic
optimisation. Figure 3 shows an example from a major gold mine
presented in Godoy and Dimitrakopoulos (2004), where a
stochastic approach leads to a marked improvement of 28 per
cent in NPV over the life of the mine, compared to the standard
best practices employed at the mine; note that the pit limits used
are the same in both cases and are conventionally derived
through commercial optimisers (Whittle, 1999). The same study
also shows that the stochastic approach leads to substantially
lower potential deviation from production targets, that is, reduced
risk. A key contributor to substantial differences is that the
stochastic or risk-integrating approach can distinguish between
the ‘upside potential’ of the metal content, and thus economic
value of a mining block, from its ‘downside risk’, and then treat
them accordingly, as further discussed herein.

Figure 2 represents an extended mine planning framework that
is stochastic (that is, integrates uncertainty) and encompasses the
spatial stochastic model of geostatistics with that of stochastic
optimisation for mine design and production scheduling. Simply
put, in a stochastic mathematical programming model developed
for mine optimisation, the related coefficients are correlated
random variables that represent the economic value of each block
being mined in a deposit, which are in turn generated from
considering different realisations of metal content. Note that the
second key element of the risk-integrating approaches is
stochastic simulation; the reader is referred to Mustapha and
Dimitrakopoulos (2010, in this volume) for the description of
a new general method for high-order simulation of complex
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FIG 1 - Optimisation of mine design in an open pit gold mine, net
present value versus ‘pit shells’ and risk profile of the

conventionally optimal design.



geological phenomena. The further integration of market
uncertainties in terms of commodity prices and exchange rates is
discussed elsewhere (Abdel Sabour and Dimitrakopoulos, 2010,
in this volume; Meagher, Abdel Sabour and Dimitrakopoulos,
2010, in this volume).

The key idea in production scheduling that accounts for grade
uncertainty is relatively simple. A conventional optimiser (any
one of them) is deterministic by construction and evaluates a
cluster of blocks, such as that in Figure 4a, so as to decide when
to stop mining, which blocks to extract when, and so on,
assuming that the economic values of the mining blocks
considered (inputs to the optimiser) are the actual/real values. A
stochastic optimiser, also by construction, evaluates a cluster of
blocks, but as in Figure 4b, by simultaneously using all possible
combinations of economic values of the mining blocks in the
cluster being considered. As a result, substantially more local
information on joint local uncertainty is utilised, leading to much
more robust schedules that also can maximise the upside
potential of the deposit (eg higher NPV and metal production)
and at the same time minimise downsides (eg not meeting
production targets and related losses).

To elaborate on the above, the next sections examine a key
element in the risk-integrating framework shown in Figure 2, that
of stochastic optimisation. The latter optimisation is presented in
two approaches, one based on the technique of simulated
annealing, and a second based on stochastic integer programming.
Examples follow that demonstrate the practical aspects of
stochastic mine modelling, including the monetary benefits.

STOCHASTIC OPTIMISATION IN MINE DESIGN
AND PRODUCTION SCHEDULING

Mine design and production scheduling for open pit mines is an
intricate, complex, and difficult problem to address due to its
large-scale and uncertainty in the key parameters involved. The
objective of the related optimisation process is to maximise the
total net present value of the mine plan. One of the most
significant parameters affecting the optimisation is the
uncertainty in the mineralised materials (resources) available in
the ground, which constitutes an uncertain supply for mine
production scheduling. A set of simulated orebodies provides a
quantified description of the uncertain supply. Two stochastic
optimisation methods are summarised in this section. The first is
based on simulated annealing (Godoy and Dimitrakopoulos,
2004; Leite and Dimitrakopoulos, 2007; Albor Consequega and
Dimitrakopoulos, 2009); and the second on stochastic integer
programming (Ramazan and Dimitrakopoulos, 2007, 2008;
Menabde et al, 2007; Leite and Dimitrakopoulos, 2010, in this
volume).

Production scheduling with simulated annealing

Simulated annealing is a heuristic optimisation method that
integrates the iterative improvement philosophy of the so-called
Metropolis algorithm with an adaptive ‘divide and conquer’
strategy for problem solving (Geman and Geman, 1984). When
several mine production schedules are under study, there is
always a set of blocks that are assigned to the same production
period throughout all production schedules; these are referred to
as the certain or 100 per cent probability blocks. To handle the
uncertainty in the blocks that do not have 100 per cent
probability, simulated annealing swaps these blocks between
candidate production periods so as to minimise the average
deviation from the production targets for N mining periods, and
for a series of S simulated orebody models, that is:
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where θn s* ( ) and ωn s* ( ) are the ore and waste production targets,
respectively, θn s( ) and ωn s( ) represent the actual ore and waste
production of the perturbed mining sequence. Each swap of a
block is referred to as a perturbation.
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FIG 2 - Traditional (deterministic or single model) view and practice versus risk-integrating (or stochastic) approach to mine modelling, from
reserves to production planning and life-of-mine scheduling, and assessment of key project indicators.

FIG 3 - The stochastic life-of-mine schedule in this large gold mine
has a 28 per cent higher value than the best conventional

(deterministic) one. All schedules are feasible.



The probability of acceptance or rejection of a perturbation is
given by:
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This implies all favourable perturbations (Onew ≤ Οold) are
accepted with probability 1 and unfavourable perturbations are
accepted based on an exponential probability distribution, where
T represents the annealing temperature.

The steps of this approach, as depicted in Figure 5 are as
follows:

1. define ore and waste mining rates;

2. define a set of nested pits as per the Whittle implementation
(Whittle, 1999) of the Lerchs-Grossmann (1965) algorithm,
or any pit parameterisation;

3. use a commercial scheduler to schedule a number of
simulated realisations of the orebody given 1 and 2;

4. employ simulated annealing as in Equation 1 using the
results from 3 and a set of simulated orebodies; and

5. quantify the risk in the resulting schedule and key project
indicators using simulations of the related orebody.

Stochastic integer programming for mine
production scheduling
Stochastic integer programming (SIP) provides a framework for
optimising mine production scheduling considering uncertainty
(Dimitrakopoulos and Ramazan, 2008). A specific SIP
formulation is briefly shown here that generates the optimal
production schedule using equally probable simulated orebody

models as input, without averaging the related grades. The optimal
production schedule is then the schedule that can produce the
maximum achievable discounted total value from the project,
given the available orebody uncertainty described through a set of
stochastically simulated orebody models. The proposed SIP model
allows the management of geological risk in terms of not meeting
planned targets during actual operation. This is unlike the
traditional scheduling methods that use a single orebody model,
and where risk is randomly distributed between production periods
while there is no control over the magnitude of the risks on the
schedule.
The general form of the objective function is expressed as:
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where:

p is the total production periods

n is the number of blocks

bi
t is the decision variable for when to mine block i (if mined

in period t, bi
t is 1 and otherwise bi

t is 0)

The c variables are the unit costs of deviation (represented by
the d variables) from production targets for grades and ore
tonnes. The subscripts u and l correspond to the deviations and
costs from excess production (upper bound) and shortage in
production (lower bound), respectively, while s is the simulated
orebody model number, and g and o are grade and ore production
targets. Figure 6 graphically shows the second term in Equation 2.

Note that the cost parameters in Equation 2 are discounted by
time using the geological risk discount factor developed in
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FIG 4 - Production scheduling optimisation with conventional versus stochastic optimisers: (a) single representation of a cluster of mining
blocks in a mineral deposit as considered for scheduling by a conventional optimiser; and (b) a set of models of the same cluster of blocks

with multiple possible values considered simultaneously for scheduling by a stochastic optimiser.



Dimitrakopoulos and Ramazan (2004). The geological risk
discount rate (GRD) allows the management of risk to be
distributed between periods. If a very high GRD is used, the
lowest risk areas in terms of meeting production targets will be
mined earlier and the most risky parts will be left for later
periods. If a very small GRD or a GRD of zero is used, the risk
will be distributed at a more balanced rate among production
periods depending on the distribution of uncertainty within the
mineralised deposit. The ‘c’ variables in the objective function
(Equation 2) are used to define a risk profile for the production,
and NPV produced is the optimum for the defined risk profile. It
is considered that if the expected deviations from the planned
amount of ore tonnage having planned grade and quality in a
schedule are high in actual mining operations, it is unlikely to
achieve the resultant NPV of the planned schedule. Therefore,
the SIP model contains the minimisation of the deviations
together with the NPV maximisation to generate practical and
feasible schedules and achievable cash flows. For details, please
see Ramazan and Dimitrakopoulos (2008) and Dimitrakopoulos
and Ramazan (2008).

EXAMPLES AND VALUE OF THE STOCHASTIC
FRAMEWORK

The example discussed herein shows long-range production
scheduling with both the simulating annealing approach in
Section 3.1 and SIP model in Section 3.2. Section 3.3 focuses on
the topic of stochastically optimal pit limits. The application
used is at a copper deposit comprising 14 480 mining blocks.
The scheduling considers an ore capacity of 7.5 M tonnes per
year and a maximum mining capacity of 28 M tonnes. All results
are compared to the industry’s ‘best practice’: a conventional
schedule using a single estimated orebody model and Whittle’s
approach (Whittle, 1999).

Simulated annealing and production schedules

The results for simulated annealing and the method in Equation 1
are summarised in Figures 7 to 10. The risk profiles for NPV, ore
tonnages, and waste production are respectively shown in
Figures 7, 8, and 9. Figure 10 compares with the equivalent best
conventional practice and reports a difference of 25 per cent in
terms of higher NPV for the stochastic approach.
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FIG 5 - Steps needed for the stochastic production scheduling with simulated annealing. S1... Sn are realisations of the orebody grade
through a sequential simulation algorithm. Seq1…Seqn are the mining sequences for each of S1…Sn. Mining rates are input to the process.

FIG 6 - Graphic representation of the way the second component of
the objective function in Equation 2 minimises the deviations from

production targets while optimising scheduling. This leads to
schedules where the potential deviations from production targets

are minimised, leading to schedules that seek to mine first not only
for high-grade mining blocks, but also with high probability to be ore.

FIG 7 - Risk based life-of-mine production schedule (cumulative net
present value risk profile).



Stochastic integer programming and production
schedules

The application of the SIP model in Equation 2, using pit limits
derived from the conventional optimisation approach, forecasts
an expected NPV at about $238 M. When compared to the
equivalent traditional approach and related forecast, the value of
the stochastic framework is $60 M, or a contribution of about
25 per cent additional NPV to the project. Note that unlike
simulated annealing, the scheduler decides the optimal waste
removal strategy, which is the same as the one used in the
conventional optimisation with which we compare.

Figure 11 shows a cross-section of the two schedules from the
copper deposit: one obtained using the SIP model (bottom) and
the other generated by a traditional method (top) using a single
estimated orebody model. Both schedules shown are the raw
outputs and need to be smoothed to become practical. It is
important to note that:

• the results in the second case study are similar in a
percentage improvement when compared to other stochastic
approaches such as simulated annealing; and

• although the schedules compared in the studies herein are not
smoothed out, other existing SIP applications show that the
effect of generating smooth and practical schedules has
marginal impact on the forecasted performance of the related
schedules, thus the order of improvements in SIP schedules
reported here remains.

Stochastically optimal pit limits

The previous comparisons were based on the same pit limits
deemed optimal using best industry practice (Whittle, 1999).
This section focuses on the value of the proposed approaches
with respect to stochastically optimal pit limits. Both methods
described above consider larger pit limits and stop when
discounted cash flows are no longer positive. Figures 12 and 13
show some of the results. The stochastically generated optimal
pit limits contain an additional 15 per cent of tonnage when
compared to the traditional (deterministic) ‘optimal’ pit limits,
add about 10 per cent in NPV to the NPV reported above from
stochastic production scheduling within the conventionally
optimal pit limits, and extend the life-of-mine. These are
substantial differences for a mine of a relatively small size and
short life-of-mine. Further work shows that there are additional
improvements on all aspects when a stochastic framework is
used for mine design and production scheduling.
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FIG 8 - Risk based life-of-mine production schedule (ore risk profile).

FIG 9 - Risk based life-of-mine production schedule (waste risk
profile).

FIG 10 - Net present value of conventional and stochastic (risk based) schedules and corresponding risk profiles.



The new approach yielded an increment of ~30 per cent in the
NPV when compared to the conventional approach. The
differences reported are due to the different scheduling patterns,
the waste mining rate, and an extension of the pit limits which
yielded an additional ~5.5 thousand tonnes of metal.

CONCLUSIONS

Starting from the limits of the current orebody modelling and
life-of-mine planning optimisation paradigm, an integrated
risk-based framework has been presented. This framework
extends the common approaches in order to integrate both
stochastic modelling of orebodies and stochastic optimisation in
a complementary manner. The main drawback of estimation
techniques and traditional approaches to planning is that they are
unable to account for the in situ spatial variability of the deposit
grades; in fact, conventional optimisers assume perfect knowledge
of the orebody being considered. Ignoring this key source of risk
and uncertainty can lead to unrealistic production expectations as
well as suboptimal mine designs.

The work presented herein shows that the stochastic
framework adds higher value in production schedules in the
order of 25 per cent, and will be achieved regardless of which
method from the two presented is used. Furthermore, stochastic
optimal pit limits are shown to be about 15 per cent larger in
terms of total tonnage, compared to the traditional (deterministic)
optimal pit limits. This difference extends the life-of-mine and
adds approximately ten per cent of net present value (NPV) to the
NPV reported above from stochastic production scheduling within
the conventionally optimal pit limits.
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FIG 11 - Cross-sectional views of the Stochastic integer
programming (bottom) and traditional schedule (top) for a copper

deposit.

FIG 12 - Life-of-mine cumulative cash flows for the conventional approach, simulated annealing and SIP, compared to results
from conventionally derived optimal pit limits.

FIG 13 - Stochastic pit limits are larger than the conventional ones; physical scheduling differences are expected when bigger pits
are generated.
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