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The Journal of Elasticity: The Physical and Mathematical Science of Solids is dedicated
to the promotion of fundamental and physically based research which advances our un-
derstanding of various areas of solid mechanics and engages a breadth of disciplines includ-
ing continuummechanics, materials science, biology, chemistry, medicine, electromagnetics
and rheology.

This volume contains an invited exposition, Crystallographic Texture and Group Rep-
resentations by Chi-Sing Man, on the elements and foundational structure of the theory of
crystallographic texture and its measurements. Polycrystalline materials are aggregates of
crystallites separated by microscopic grain boundaries which contain defects, and natural
formative processes as well as manufacturing usually introduce some ordering of this scat-
tered arrangement. The resulting complex structure plays a significant role in characterizing
the constitutive response and behavior of such materials in practice. Quantitative texture
analysis offers a description of one aspect of this complex structure that is useful by itself
or in tandem with descriptions of other aspects in building a constitutive model to describe
the physical behavior of such materials. For example, the transmission of waves through a
polycrystalline material is highly affected by the presence of crystallographic texture.

Professor Man has herein presented a masterful and complete research-level exposition
of quantitative texture analysis that brings to light a novel approach where basic concepts
are made precise through their mathematical definition, and the important role played by
group representations is emphasized. A modern ‘active’, rather than a classical ‘passive’,
view of rotations as linear transformations is introduced in order to enhance the conceptual
understanding of the subject and to establish a workable setting for the basis of future ad-
vancements. This novel approach to the subject provides a natural link to known formulas
and developments in mathematics and physics, and allows many aspects of the classical ap-
proach to be clarified, organized and developed further under one mathematical setting and
common logical thread.

The work is completed in three parts, the first being an introduction to quantitative tex-
ture analysis. This contains a description of the classical approach and its reorganization
into a systematic scheme. Parts two and three concentrate on the mathematical foundations
of the subject which center around group representations and possible relations with crys-
tallographic texture and material properties.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.
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Abstract
This exposition consists of three parts. Part I is an introduction to classical texture analysis.
The harmonic method and the approach initiated by Roe, where the orientation distribution
function (ODF) is always defined on the rotation group SO(3), is emphasized and given a
systematic treatment. Basic concepts (e.g., the orientation density function) are made precise
through their mathematical definition. The active view of rotations is implemented through-
out. A conscientious effort is made to use machinery already available in mathematics and
physics. The Wigner D-functions, whose properties are familiar in physics, are used instead
of Bunge’s and Roe’s versions of generalized spherical harmonics. By including three math-
ematical appendices, it is hoped that engineering students would find Part I readable. The
objectives of Parts II and III are threefold, namely: (i) To delve deeper into the mathematical
foundations of the harmonic method. The Weyl method is used to prove that the Wigner
D-functions are the matrix elements of a complete set of pairwise-inequivalent, continuous,
irreducible unitary representation of SO(3). General formulas of the Wigner D-functions,
valid for any parametrization of SO(3), are derived. An elementary proof (attributed to
Wigner) of the Peter-Weyl theorem is presented. (ii) To provide mathematical prerequisites
in group representations for research on representation theorems that delineate the effects of
crystallographic texture on material properties defined by tensors or pseudotensors. (iii) To
introduce tensorial Fourier expansion of the ODF and the tensorial texture coefficients. The
classical ODF expansion in Wigner D-functions is recast as a special tensorial Fourier se-
ries. The relation between the tensorial and classical texture coefficients in this context is
derived.

Keywords Quantitative texture analysis · Wigner D-function · Mathematical foundations
of harmonic method · Group representations · Tensorial texture coefficients
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Preface

I first learned of crystallographic texture in the late 1980s when I began to work on acous-
toelastic measurement of stress in structural metals. There the presence of crystallographic
texture was the culprit for the difficulty in using ultrasonic waves for measurement of stress,
and the central problem was deemed to be the separation of stress-induced and texture-
induced shifts in wave velocities. From the mid-1990s till the untimely passing of my col-
league James G. Morris in 2006, I collaborated with his research group at Materials Engi-
neering, University of Kentucky. Jim’s group was mainly interested in devising processing
parameters to improve the mechanical properties of various continuous-cast aluminum al-
loys. My research efforts in the collaboration were focused on studying the effects of crys-
tallographic texture on plastic anisotropy and formability parameters of sheet metals and on
on-line measurement of texture coefficients and formability parameters of sheet metals by
electromagnetic-acoustic transducers (EMATs) or laser ultrasonics. During that period the
research of my own group remained to be centered around acoustoelastic measurement of
stress in textured metals.

Since 1997, from time to time I offered graduate courses on the topics of this exposition,
partly to teach myself the subject and partly to train graduate students for research in the
area. Some of the classes were mainly targeted to students in Materials Engineering, some
were meant exclusively for students in Mathematics, and some were attended by roughly
equal mix from the two groups. In all the classes clarity of basic concepts was emphasized.
No textbook was adopted in any of the classes. Instead, lecture notes that covered parts of
each course were written and handed out in class. The present exposition is a revised, up-
dated, and expanded version of those notes. The aforementioned research interests explain
the bias in the selection of topics, particularly in the examples and applications, in the lec-
ture notes and in this exposition. In particular, coverage on methods of inversion of pole
figures and ghost correction is limited to those which my research group considered for
implementation in our in-house computer programs.

When I first approached quantitative texture analysis, I was dismayed to find that both
Bunge and Roe, pioneers of the subject, used passive rotations. From my background in
mathematics, mechanics, and physics, using active rotations would be easier and more con-
venient. Moreover, both Bunge and Roe defined their own “generalized spherical harmon-
ics”, which are variants of the Wigner D-functions [340, 341]. The Wigner D-functions play
a central role in the quantum theory of angular momentum. By the time when I lectured on
the subject, they had long been thoroughly studied and formulas of their detailed properties
were easily available in the physics literature [28, 39, 99, 238, 274, 313, 325]. Matthies [215,
p. 432], for one, explains why he differs from Bunge in his choice of Euler angles and in his
use of the Wigner D-function as follows:1

The used mathematical apparatus differs somewhat from that of BUNGE .... It is com-
monly used in modern theoretical physics (EDMONDS), has from the view of the au-
thor definite comprehensible advantages in deriving geometric relations and is avail-
able in a manageable form since the publication of the extensive and detailed col-
lection of formulas of WARSCHALOWITSCH et al. [i.e., the 1975 Russian edition of
[325]]

Note also that any unwitting tinkering of the Wigner D-functions (e.g., their normaliza-
tion) might destroy their most fundamental property, namely that they are matrix elements

1Matthies, however, uses passive rotations just as Edmonds [99].
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of irreducible unitary representations of the rotation group. Hence, when I began to write
lecture notes on the subject, I elected to rewrite the fundamentals with active rotations and
Wigner D-functions. These conventions are kept in the present exposition. On the other
hand, other conventions used most prominently in quantitative texture analysis that include
those adopted by Bunge [60], Roe [270], Matthies et al. [224], and Gel’fand et al. [125] are
also fully explained.

This exposition is meant for beginning learners of quantitative texture analysis, and its
focus is on the fundamental concepts. It seeks conceptual clarity by using the appropriate
mathematical language. Another distinguishing feature is that the approach initiated by Roe
is emphasized. The exposition is divided into three parts. Part I is based on lecture notes
originally written for classes on quantitative texture analysis that catered to graduate stu-
dents in Materials Engineering and Engineering Mechanics. It presents the rudiments of
classical texture analysis, where the orientation distribution function in the Roe approach is
always defined on the rotation group. Mathematical prerequisites for much of this part are
matrix algebra and advanced multivariate calculus. In refurbishing my lecture notes for this
exposition, I have added in this part a number of new sections plus paragraphs and explana-
tory remarks that use some mathematical terms beyond the aforementioned prerequisites
and refer to a few theorems in topology and measure theory, which I hope would make the
mathematical foundations of the subject clearer. Three mathematical appendices have been
added to Part I to aid reading. Moreover, suggestions are made either at the beginning of a
chapter or in the Comments on Contents of the Introduction to specify which sections and
remarks could be skipped on a first reading.

Parts II and III are largely based on lecture notes for classes taken by graduate students
in Mathematics. The main objectives of those classes were twofold, namely: (i) to delve
deeper into the mathematical foundations of the subject—in my view mathematics students
should see how the Wigner D-functions could be derived and their fundamental attribute
as matrix elements of irreducible unitary representations of the rotation group be proved;
(ii) to prepare students for research on representation theorems that delineate the effects of
crystallographic texture on material properties defined by tensors or pseudotensors. These
objectives underlie the selection of topics in much of Parts II and III, which centers around
group representations. Chapters 12 and 17 are newly written for this exposition.

I thank all my former students and associates who participated in work related to tex-
ture analysis. Among them I mention in particular: Roberto Paroni, Mojia Huang, and Scott
Godefroy, whose keen observations and meticulous work helped deepen my understanding
in several aspects of texture analysis; Wenwen Du, Leigh Noble, and Ding Zhao, who, like
their three aforementioned peers, authored or coauthored writings cited in the present ex-
position. Huang, moreover, wrote in-house Maple and Fortran programs in texture analysis
for use by the research group. Special contributions were made by Xingyan Fan, who was
responsible for all X-ray measurements, and by Helen Xiang and Carl Gao, who at different
times shouldered the work for EBSD measurements. I am deeply grateful to Roger Fosdick:
as Editor-in-Chief he was the strongest advocate, whose unrelenting support was instrumen-
tal for this exposition to appear also as a hardbound spin-off; as the Handling Editor of the
manuscript, he arranged its reviewing process, which he followed closely and nudged to a
timely conclusion.

Chi-Sing Man
Lexington, Kentucky, 2021 Department of Mathematics

University of Kentucky

Preface
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Introduction

Many materials are polycrystalline aggregates of tiny crystallites or grains of various sizes
and shapes. Even for aggregates whose crystallites are chemically identical, the crystal
lattices of the grains will still differ in their orientation in space. Since each crystallite is
anisotropic in its physical properties, the macroscopic properties of a polycrystal will like-
wise be anisotropic unless the orientations of its constituent crystallites are completely ran-
dom and the anisotropies of the crystallites even themselves out. Manufacturing processes
(e.g., annealing and hot/cold rolling in the case of sheet metals) and natural processes (e.g.,
deformation of the earth’s interior during the earth’s long history), however, impart crys-
talline materials thus formed with crystallographic texture (i.e., the constituent crystallites
have preferred orientations), which is found in metals, ceramics, polymers, rocks, and min-
eralized biological materials. While it does not need much imagination to speculate that
crystallographic texture would play a major role in accounting for the anisotropy of phys-
ical properties of polycrystalline materials, to ascertain the quantitative relations between
texture and anisotropy is an entirely different matter. In fact, it was not until the mid 1960’s
that quantitative texture analysis began to take shape as an exact science. Great advances
in the subject have been made since then. Nowadays, “texture research is indeed a wide
multidisciplinary field” that “connects many domains of science with metallurgy, ceram-
ics, polymer science, geology, geophysics, and biology as just a few highlights”, as Wenk
and Van Houtte [338] assert in the conclusion of their 2004 review paper on texture and
anisotropy. To their assertion, we may add that more recently crystallographic texture is a
basic ingredient in some studies on microstructure-sensitive design to optimize engineering
performance of polycrystalline materials (see, e.g., [3, 122, 189, 191]).

This exposition is an introduction to the basics of quantitative texture analysis (QTA),
which has several special features as follows:

1. The approach to QTA as initiated by Roe [270, 271] is emphasized and given a systematic
treatment. Its advantages are discussed. Roe no longer published papers in texture anal-
ysis after 1966. The presentation of the approach in his 1965–66 papers is incomplete.
Here some aspects of the approach are clarified and developed further.

2. Basic concepts are made precise through their mathematical definition. Take the orien-
tation (probability) density function and Roe’s orientation distribution function (ODF)
in classical texture analysis for instance. For simplicity, consider polycrystals without
sample symmetry. Given the orientation space of a polycrystal with non-trivial crystallite
symmetry, before an orientation density function can be defined on it, one has to specify
an SO(3) left-invariant volume measure on the orientation space. Once the orientation
density function is defined, Roe’s ODF can be defined naturally. See Definition 6.5 in
Chap. 6.

3. The active view of rotations is implemented throughout the exposition. Adopting the
active viewpoint is the standard practice in mathematics and has become increasingly
popular in physics since the 1980s. In contrast, the passive view of rotations is dominant
in the literature of texture analysis. Changing to the active view has the clear advantage
of smooth transition to the literature of mathematics and physics, where plenty of known
theorems and formulas are already available.

4. A conscientious effort was made to make better use of the machinery already available
in the literature of mathematics and physics.2 For example, it has been a common mis-
conception in the mainstream of QTA that the definition of the generalized spherical

2This is a lesson learned the hard way from the historical development of quantitative texture analysis. As
Matthies [218, p. 119] remarked in 1988: “From our point of view it is a somewhat ‘tragic’ circumstance for

7
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functions (or equivalently the Wigner D-functions) would be tied up with the use of Eu-
ler angles as parameters of the rotation group, while there are applications where the
parametrization in the axis-angle parameters are much more preferable. In fact the gen-
eral formulas for the D-functions, one of which already appears in Wigner’s 1931 book
[340, p. 176, equation (21)] and its 1959 expanded English edition [341, p. 164, equation
(15.21)]), are valid for all parametrizations of the rotation group, with which the Wigner
D-functions in axis-angle parameters can be written down easily. See Sect. 14.2.2.

Comments on Contents

This exposition is divided into three parts. Part I on the rudiments of classical texture anal-
ysis is the core of the exposition, and we consider only polycrystalline aggregates of crys-
tallites of the same species. By classical texture analysis is meant the treatment where the
orientation distribution function (ODF) is defined on the rotation group SO(3). Such a treat-
ment of the ODF requires the point group Gcr of the crystallites in question to be proper,
i.e., a subgroup of SO(3), and leads to the practice in texture analysis that an improper Gcr

is replaced by G+
cr, the proper point group in the Laue class of Gcr. Carrying this logical

wart notwithstanding, classical texture analysis has dominated the literature of quantitative
texture analysis from its inception in the mid-1960s to this day.

Part I is a rewritten and much expanded version of lecture notes for a course in quantita-
tive texture analysis for graduate students in Materials Engineering, Engineering Mechanics,
and Mathematics. The lecture notes were written with the mathematical preparations of the
engineering students in mind, which were typically limited to linear or matrix algebra and
advanced multivariate calculus. In the rewriting I have added sections, remarks, and para-
graphs, some of which refer to mathematics beyond the limits set for the lecture notes to
aid deeper understanding. By including three mathematical appendices, and by indicating
(either at the beginning of a chapter or in comments below) which sections and remarks can
be skipped on a first reading, I hope that engineering students would still find Part I readable
as a first course in quantitative texture analysis.

The reader can glance over the table of contents to get an idea of topics covered in this
exposition. In what follows I will give short comments on each chapter to draw attention to
points I want to emphasize.

Section A.1 in Appendix A. We review the fundamental concepts of sets, relations, and
functions, partly for the purpose of specifying mathematical terminology and notation for
the entire exposition.

Chapter 1. The basic mathematical properties of rotations are described, and their
parametrizations by Euler angles and axis-angle parameters are presented. We compare our
parametrization of rotations by Euler angles with several other conventions in the literature
of texture analysis. In Sect. 1.10 we define a distance function on the set of rotations SO(3)
so that it becomes a metric space.

Chapter 2. Here is a comprehensive introduction to ideal crystals and their associated
space groups, lattice groups, lattices, and crystallographic point groups. Full derivations of
the 32 geometric crystal classes and the 14 Bravais lattice-types are presented. Appendix A
provides the prerequisites in group theory for reading this chapter. The theory of classical

QTA that the ‘theoretical texturists’ in the sixties do not use the already existing modern apparatus what [sic]
leads to a confusion in descriptions, inaccuracies, partly repeated ‘inventions of the bicycle’, loss of possible
simplifications and other things.”

Introduction
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texture analysis, however, concerns only macro-texture, i.e., it is a macroscopic theory. As a
consequence, only crystallographic point groups would figure prominently in the theory (see
Sect. 2.11). Moreover, as the ODF is defined on the rotation group, the point group of the
crystallites Gcr is by default a finite rotation group—by Proposition 2.16 crystallographic
point groups are finite. Thus on a first reading, one may just focus on Sects. 2.1, 2.2, 2.4,
2.5.1, 2.5.2, and 2.11, where every crystallographic point group K, in the restricted context
of classical texture analysis, is understood to be proper. What the other sections cover will
become indispensable when one studies methods of texture measurement.

Chapter 3. The central formula is that of the left-invariant integral (3.36) on SO(3), our
derivation of which follows largely the presentations by Gel’fand et al. [125] and Naimark
[244]. In this chapter we put the invariant integral on SO(3) as one example, albeit the most
important one for our present purpose, in the context of Haar integrals. Doing so not only
will enhance understanding but will also facilitate extensions to other situations, e.g., when
SO(3) is replaced by the orthogonal group O(3) in some sections of Parts II and III.

Chapter 4. The ODF is introduced for triclinic aggregates of triclinic crystallites, a case
that occupies a central position in the Roe approach. Relations between ODFs defined on ac-
tive and passive rotations are given. The Wigner D-functions are defined, but the derivation
of the defining formulas is left to Chap. 14 in Part III. Likewise, the Peter-Weyl theorem,
which leads to the conclusion that the normalized Wigner D-functions form a Hilbert basis
in the space of square-integrable, complex-valued functions on SO(3), is proved in Chap. 15.
Nevertheless, in Chap. 4, some properties of the Wigner D-functions are derived, and several
alternate expressions for the Wigner D-functions and alternate formulations for the series
expansions of the ODF are presented and discussed.

Many readers of Bunge’s classic [60] would be puzzled by his definition of generalized
spherical harmonics. He refers [60, p. 351] the reader to Gel’fand et al. [125], Vilenkin
[327], and Wigner [340] “for detailed representations of these functions and their proper-
ties”. The expression of Bunge’s generalized spherical harmonics T mn

l , however, is nowhere
to be found in any of the three references. Moreover, there does not seem to be a natural way
to convert any of its counterparts in the three references to T mn

l . In fact Bunge’s T mn
l are

the same as the generalized spherical functions Tl,m,n of Viglin [326], who obtained his ex-
pression earlier by tragicomical happenstance. He started with an erroneous formula3 from
the 1952 paper of Gel’fand and Šapiro [124, §7] for their generalized spherical functions
T l
mn and arrived at his Tl,m,n by making a second mistake when he converted Gel’fand and

Šapiro’s formula for T l
mn from the active to the passive view of rotations. See Sects. 4.5.2

and 4.5.3 for more details.
To the uninitiated, the basic formulas that involve the D-functions in Matthies [215] and

Matthies et al. [224] will provoke head-scratching, because the authors use the same symbol4

Dl
m,n(·) for what we shall denote by Dl

mn(·) and D
l
mn(·), the Wigner D-functions under the

active and passive view of rotations, respectively. As a result, the formulas will be valid
only if the Dl

m,n(·) in question are correctly identified as Dl
mn(·) or Dl

mn(·) as appropriate.
In Sect. 4.5.4 we shall undertake the identification of Dl

m,n(·) in some of the most basic
formulas that include the defining equation of Dl

m,n(·), the addition theorem for Dl
m,n(·),

and the series expansion of the ODF.
Chapter 5. This chapter is a presentation of the Roe approach to account for crystallite

symmetries and/or sample symmetries of polycrystals.

3Later corrected in Gel’fand et al. [125].
4Note the comma between m and n in the suffix of the symbol.

Introduction
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Chapter 6. Suppose a single-orientation measurement is made at a point in a polycrystal,
which delivers the crystallite orientation at the point in question. If the polycrystal consists
of triclinic crystallites, after a reference single crystal is chosen, the space of all possible
crystallite orientations (or orientation space, for short) is SO(3). If the polycrystal has non-
trivial crystallite symmetry, what is the orientation space? Roe did not raise this question in
his papers. Bunge, on the other hand, in effect tackled this problem directly in his work. In
Sect. 6.8 we illustrate the Bunge approach by a simple example. In this exposition, however,
we mainly follow the Roe approach, where the ODF is always defined on the entire rota-
tion group (although it should satisfy all the constraints on texture coefficients imposed by
the presence of crystallite and/or sample symmetry), and in the harmonic method the ODF
is always expanded as an infinite series of the Wigner D-functions. For a polycrystal with
non-trivial crystallite symmetry, SO(3) isn’t the space of crystallite orientations, and Roe’s
ODF isn’t an orientation probability density on SO(3). But Roe’s ODF, when restricted to
a fundamental domain in SO(3) that represents the space of orientations, can still be used
to compute probabilities. Fundamental domains, which are not mentioned in Roe’s papers,
are presented in outline in this chapter, whereas proofs of mathematical assertions are pro-
vided in Appendices B and C. All the main ideas about fundamental domains, the difference
between Roe’s ODF (orientation distribution functions) and the orientation density func-
tions, and the difference between the Roe approach and the Bunge approach are apparent
in the special case where Gcr �= {I } and Gtex = {I }, on which we focus our discussions in
Sects. 6.1–6.3 (see also the paragraphs on this case in Sect. 6.7).

Chapter 7. Sections 7.3–7.4 are indispensable for understanding of X-ray crystallogra-
phy.

Chapter 8. The central topic of this chapter is the original and the modified Bunge–
Haessner method for evaluation of texture coefficients from data obtained by single-
orientation measurements (e.g., through electron backscatter diffraction). A mathematical
basis for the original Bunge–Haessner method is presented in Sect. 8.5.1.

Chapter 9 and Appendix D. To understand what information on texture that X-ray pole
figures do and do not contain, one needs to have a basic grasp of the physics of X-ray
diffraction by crystals. It is hoped that Appendix D would serve that purpose. As far as our
intended application is concerned, the central role is played by formula (D.96) for the inte-
grated intensity, from which we obtain the physical meaning of normalized intensity in pole
figures. Moreover, it is the basis by which we infer which (hkl) pole figure of what crystal
structure will suffer from systematic extinction, and by which we derive the conditions for
Friedel’s rule to hold. As for the methods of inversion of pole figures and ghost correction,
the coverage is limited to those which my research group considered for implementation in
our in-house computer programs.

Most of the chapters in Parts II and III are based on my lecture notes for a course in group
representations and crystallographic texture for graduate students in Mathematics.

Chapter 10. Here is another derivation of the Haar integral on SO(3) in Euler angles,
which is more straightforward than that in Chap. 3. The extension to the Haar integral on
O(3) is also straightforward.

Chapter 11. This chapter provides further properties of rotations, including their relations
to quaternions with unit norm in particular, which pave the way for derivation of the Wigner
D-functions by Weyl’s method in Chap. 14.

Chapter 12. This chapter gives a brief summary of some basics that pertain to texture
analysis based on O(3) as discussed in [95, 206].

Chapter 13. This chapter presents some rudiments in group representations, which serve
as prerequisites for the discussions in Chaps. 14–17.

Introduction
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Chapter 14. In this chapter Weyl’s method is applied to derive a complete set of finite-
dimensional, continuous, irreducible unitary representations of SU(2) and obtain general
formulas for the Wigner D-functions as matrix elements of these representations under some
chosen orthonormal bases. A parallel complete set of irreducible representations of SO(3)
and the corresponding general formulas for Wigner D-functions defined on SO(3) follow
easily. The general formulas are valid for any parametrization of SU(2) and of SO(3), re-
spectively. For example, for Wigner D-functions defined on SO(3), explicit formulas can be
written down in Euler angles and in axis-angle parameters. A complete set of irreducible
representations of O(3) is given together with what we call the Wigner D-functions of O(3).

Chapter 15. This chapter presents an elementary proof of the Peter-Weyl theorem under
the assumption that the compact group in question has a faithful representation, a condition
met by matrix groups such as SO(3) and O(3). The Peter-Weyl theorem is central to the
mathematical foundation for the harmonic method in texture analysis based on SO(3) or
O(3).

Chapter 16. This chapter is an extended version of the mathematical preliminaries for
proving the representation theorems in [95, 203].

Chapter 17. The objective of this chapter is to give an introduction to harmonic tensors,
the tensorial Fourier expansion of the ODF, and the tensorial texture coefficients. The clas-
sical ODF expansion in Wigner D-functions is recast as a tensorial Fourier series under a
special orthonormal basis in each of the spaces of harmonic tensors H l (l = 0,1,2, . . .).
The relation between the tensorial and classical texture coefficients in this context is dis-
cussed, first for triclinic aggregates of triclinic crystallites and then for polycrystals with
texture and/or crystallite symmetry.

Introduction
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PART I. RUDIMENTS OF CLASSICAL TEXTURE ANALYSIS

Chapter 1

1 Parametrization of Rotations

1.1 Preliminaries in Vector Algebra

We start by recapitulating some elementary facts in vector algebra, which, besides serving
as a quick review, will introduce the notation adopted in this exposition.

Let E3 be the physical space, which we assume to be Euclidean and three-dimensional.
Let V be the translation space5 of E3, which is a three-dimensional vector space over the
reals R. After selecting one point O in E3 and calling it the origin, each vector a in V can
be identified with a unique directed line segment OP. We denote the magnitude or norm of
a vector a by ‖a‖, the scalar or dot product of two vectors a and b by 〈a,b〉 or a · b, and
their cross product by a × b.

Let {ei : i = 1,2,3} be a right-handed, orthonormal triad in V , i.e., the unit vectors ei
satisfy ei × ej = ek if (i, j, k) is a cyclic permutation of (1,2,3) and ei · ej = δij , where δij
is the Kronecker delta satisfying δij = 0 for i �= j and δij = 1 for i = j . Each vector a in V

can be expressed as a linear combination of e1, e2, and e3:

a = a1e1 + a2e2 + a3e3 =
3∑

i=1

(a · ei )ei . (1.1)

Since the vectors ei are also linearly independent (i.e.,
∑

i αiei = 0 implies αi = 0 for all i)
they constitute a basis in V . The numbers ai are called the components or coordinates of the
vector a under the basis {ei}. When there is no confusion about the basis chosen, we often
write a as the row vector (a1, a2, a3) or the column vector

(a1, a2, a3)
T ≡

⎛

⎜⎝

a1

a2

a3

⎞

⎟⎠ .

While the row vector and the column vector in question are representations of the vector a

under the basis {ei}, for convenience we shall often abuse the language and confuse them
with a when the chosen basis is understood. In terms of the coordinates of a and b under
the basis {ei}, we have the formulae

‖a‖ =
√
a2

1 + a2
2 + a2

3, a · b= a1b1 + a2b2 + a3b3, (1.2)

a × b= (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3. (1.3)

With few exceptions, we shall use right-handed orthonormal bases throughout this expo-
sition.

5For a formal definition see, e.g., [40, p. 297].
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1.1.1 Linear Transformations

A mapping (or transformation) L : V −→ V is linear if

L(α1a1 + α2a2)= α1La1 + α2La2 (1.4)

for any vectors a1, a2 in V and for any numbers α1 and α2 in R. Let {ei} be a right-handed,
orthonormal triad in V . Let b=∑

i biei , a =∑
j ajej , and b=La. Then

bi = ei · b= ei ·La = ei ·
∑

j

ajLej =
∑

j

Lij aj , (1.5)

where Lij = ei · Lej . Thus, under the basis {ei}, L is represented by the 3 × 3 matrix
(Lij )1≤i,j≤3, and the equation b=La assumes the form

⎛

⎜⎝

b1

b2

b3

⎞

⎟⎠=
⎛

⎜⎝

L11 L12 L13

L21 L22 L23

L31 L32 L33

⎞

⎟⎠

⎛

⎜⎝

a1

a2

a3

⎞

⎟⎠

=
⎛

⎜⎝

e1 ·Le1 e1 ·Le2 e1 ·Le3

e2 ·Le1 e2 ·Le2 e2 ·Le3

e3 ·Le1 e3 ·Le2 e3 ·Le3

⎞

⎟⎠

⎛

⎜⎝

a1

a2

a3

⎞

⎟⎠ . (1.6)

From the preceding equation, we observe that the matrix representing L under basis {ei} has
its columns given by the column vectors representing Le1, Le2, and Le3 under the same
basis. Henceforth, for brevity, we shall often write this matrix as [Le1,Le2,Le3], which we
may confuse with the linear transformation L itself when we fix and work only with one set
of basis {ei}.

For a linear transformation L on V , we define the mapping LT : V −→ V by

〈LT a,b〉 = 〈a,Lb〉 or LT a · b= a ·Lb (1.7)

for any vectors a and b in V . It is straightforward to show that the mapping LT thus defined
is linear. Under an orthonormal basis {ei}, we have

(LT )ij = ei ·LT ej = ej ·Lei = Lji, (1.8)

where (LT )ij denotes the ij -th entry of the matrix [LT e1,L
T e2,L

T e3] representing LT .
Thus LT is represented by the transpose of the matrix (Lij )1≤i,j≤3 that represents L. We call
LT the transpose of L.

A linear transformation L on V is symmetric (resp. skew-symmetric) if it satisfies
the condition L = LT (resp. L = −LT ). The entries of the matrix [Lij ] that represents
a symmetric (resp. skew-symmetric) linear transformation L under the orthonormal basis
{ei : i = 1,2,3} satisfies the condition Lij = Lji (resp. Lij =−Lji ).

For linear transformations L, L1 and L2 on V and a real number α, we denote by L1+L2

and αL the linear transformations defined by

(L1 +L2)a =L1a +L2a, (1.9)

(αL)a = α(La) (1.10)

1 Parametrization of Rotations
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for each vector a in V , respectively. With addition and scalar multiplication defined as in
(1.9) and (1.10), we see that the set of linear transformations on V constitutes itself a vector
space over R. We denote this vector space by Lin.

Let Sym and Skw be the set of symmetric and skew-symmetric linear transformations
on V , respectively. It is easy to verify that both Sym and Skw are linear subspaces of Lin.

For L1 and L2 in Lin, we denote by L2L1 the composition L2 ◦L1 defined by

(L2L1)a = (L2 ◦L1)a =L2(L1a) (1.11)

for each vector a in V . It is clear that the mapping L2L1 is linear.

1.1.2 Tensor Product of Two Vectors

For two vectors a and b in V , the tensor product a ⊗ b is the linear transformation defined
by

(a⊗ b)c= (b · c)a (1.12)

for each vector c in V . Under the orthonormal basis {ei}, a⊗ b is represented by the matrix
whose ij -th entry is

ei · (a⊗ b)ej = 〈ei , (b · ej )a〉 = (b · ej )(ei · a)= aibj . (1.13)

In particular, we have ei ⊗ ej represented by the matrix with its ij -th entry equal to 1
and all other entries zero. Since (a ⊗ b)(c ⊗ d)f = (a ⊗ b)((d · f )c) = (d · f )(b · c)a =
(b · c)((a⊗ d)f ) for each vector f in V , we have

(a⊗ b)(c⊗ d)= (b · c)a⊗ d. (1.14)

Another property of a⊗ b that we shall sometimes use below is

(a⊗ b)T = b⊗ a, (1.15)

the validity of which is obvious.
We call the linear space over R generated by the tensor products of two vectors in V

the space of second-order tensors, which we denote by V ⊗ V . By definition, every tensor
product of two vectors a⊗ b ∈ V ⊗V is in Lin. Clearly we have V ⊗V ⊂ Lin. On the other
hand, let {ei} be a right-handed, orthonormal basis in V . Each linear transformation on V

may be written as

L=
∑

i,j

Lijei ⊗ ej , where Lij = ei ·Lej , (1.16)

as a glance at the matrix representing L under {ei} reveals. Thus Lin ⊂ V ⊗ V . It follows
that V ⊗ V = Lin.

For any two linear transformations L and M on V , we have

LM =
⎛

⎝
∑

i,j

Lijei ⊗ ej

⎞

⎠
(
∑

k,l

Mklek ⊗ el

)

=
∑

i,j

∑

k,l

LijMkl

(
ei ⊗ ej

)
(ek ⊗ el )

1.1 Preliminaries in Vector Algebra
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=
∑

i,j

∑

k,l

LijMklδjkei ⊗ el

=
∑

i,l

(
∑

k

LikMkl

)
ei ⊗ el .

It follows that the ij -th entry of the matrix representing LM under {ei} is

(LM)ij = ei ·LMej =
3∑

k=1

LikMkj , (1.17)

which defines the rule of multiplication between the matrices [Le1,Le2,Le3] and
[Me1,Me2,Me3].

Let I : V −→ V be the identity mapping, i.e., Ia = a for each vector a in V . It is easy
to verify that

I =
3∑

i=1

ei ⊗ ei . (1.18)

1.1.3 Change of Orthonormal Basis

Let {e′i : i = 1,2,3} be another right-handed orthonormal triad, and let P be the linear trans-
formation on V that satisfies

Pei = e′i for i = 1,2,3. (1.19)

Let a =∑
i aiei and b=∑

j bjej be vectors in V . Then Pa =∑
i aie

′
i and Pb=∑

j bje
′
j .

We observe that P satisfies

Pa ·Pb= a · b (1.20)

for any two vectors a and b in V .
A linear transformation Q on V which, like P , satisfies (1.20) is said to be orthogonal. It

follows from (1.7) and (1.20) that QT Qa · b= a · b for all vectors a,b ∈ V , which implies

QT Q= I . (1.21)

Equation (1.21) shows that QT =Q−1, the inverse of Q. Thus we have also QQT = I .
Let detQ denote the determinant of Q. Taking the determinant of both sides of (1.21), we
obtain

(detQT )(detQ)= (detQ)2 = 1, or detQ=±1. (1.22)

By (1.20), we see that ‖Qa‖ = ‖a‖ for each vector a in V and

Qa ·Qb

‖Qa‖‖Qb‖ =
a · b
‖a‖‖b‖

for a �= 0 and b �= 0. Thus Q preserves the lengths of vectors and the angles between them.

1 Parametrization of Rotations
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An orthogonal transformation R which satisfies detR = 1 is called a rotation. For the
orthogonal transformation P defined by (1.19), which pertains to a change of right-handed
orthonormal basis, we have detP = detP T = Pe1 · (Pe2×Pe3)= e′1 · (e′2×e′3)= 1. Hence
the orthogonal transformation P that defines a change of right-handed orthonormal basis in
(1.19) is a rotation.

Expanding Pei as a linear combination of the basis e1, e2, and e3, we recast (1.19) as

e′j =
3∑

i=1

(ei ·Pej )ei =
3∑

i=1

Pijei , (1.23)

where Pij = ei · Pej and [P ] := [Pij ] is called the matrix of change of basis from {ei} to
{e′i}. For a ∈ V , let ai = a ·ei and a′i = a ·e′i be the components of a with respect to the bases
{ei} and {e′i}, respectively. Writing a as linear combinations of the two bases, we obtain

∑

i

aiei =
∑

j

a′je
′
j =

∑

j

a′j

(
∑

i

Pijei

)
=

∑

i

⎛

⎝
∑

j

Pij a
′
j

⎞

⎠ ei ,

which implies

ai =
3∑

j=1

Pija
′
j , (i = 1,2,3) (1.24)

or
⎛

⎜⎝

a1

a2

a3

⎞

⎟⎠=
⎛

⎜⎝

e1 ·Pe1 e1 ·Pe2 e1 ·Pe3

e2 ·Pe1 e2 ·Pe2 e2 ·Pe3

e3 ·Pe1 e3 ·Pe2 e3 ·Pe3

⎞

⎟⎠

⎛

⎜⎝

a′1
a′2
a′3

⎞

⎟⎠ . (1.25)

Note that

e′i ·Pe′j = Pei ·PPej = ei ·Pej for all 1≤ i ≤ 3, 1≤ j ≤ 3. (1.26)

Hence the matrix that represents P under the basis {e′i} is the same as that under {ei}.
Under different bases, the same linear transformation L is represented by different ma-

trices. The ij -th entry L′ij of the matrix representing L under the basis {e′i} is related to the
elements Lkl of the matrix representing L under {ei} by

L′ij = e′i ·Le′j = Pei ·LPej

= ei ·P T LPej =
∑

k,l

PkiPljLkl (1.27)

= ei ·P−1LPej =
∑

k,l

P−1
ik LklPlj . (1.28)

When there is no confusion about the specific basis chosen, we shall denote the matrix
representing linear transformation L under the given basis by (Lij )1≤i,j≤3 or simply by [L]
or [Lij ]. We shall write this matrix as [Le1,Le2,Le3] if we want to specify the orthonormal
basis {ei} in question.

1.1 Preliminaries in Vector Algebra
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Remark 1.1 In line with the convention commonly adopted in the literature of crystallog-
raphy (see, e.g., [133, 241]), we shall, in some contexts where no confusion should arise,
let P denote the matrix P := [Pij ] and a′, a stand for the column vectors [a′i], [aj ], which
represent the same vector under the bases {e′i} and {ei}, respectively, and write (1.25) as

a = Pa′. (1.29)

It follows from (1.29) that

a′ = P−1a or a′ = P T a, (1.30)

because P is a rotation. In contrast to (1.19), where P is a linear transformation that maps
each basis vector ei (i = 1,2,3) to a new basis vector e′i , in equations (1.29) and (1.30)
P stands for the matrix [P ] or [Pij ] of change of basis, which relates the coordinates of
the same vector in V under the two orthonormal basis {e′i} and {ei}. Under this convention,
equation (1.28) is transcribed as

L′ = P−1LP , (1.31)

which means the matrix equation

[Le′1,Le′2,Le′3] = [P ]−1[Le1,Le2,Le3][P ] (1.32)

when written in full. �

1.2 Affine Coordinate Systems

In crystallography it is essential to adopt a coordinate system adapted to the transla-
tional symmetries of the crystal in question. That means, in most cases, a suitable ba-
sis in V will not be orthonormal. Let f j (j = 1,2,3) be three vectors in V such that
J := f 1 · f 2 × f 3 > 0. They constitute a right-handed basis in V . The choice of an ori-
gin O and a right-handed basis {f i} in V defines an (right-handed) affine coordinate system
in E3. Under this choice, each place in E3 is specified by a position vector

x = x1f 1 + x2f 2 + x3f 3, (1.33)

and the map x �→ (x1, x2, x3) sets up a one-to-one correspondence between E3 and R
3.

In this section we adopt the Einstein summation convention, namely: whenever an index
appears twice in an expression, that index is to be summed over all its possible values. For
example, δii = δ1

1 + δ2
2 + δ3

3 = 3, and (1.33) appears as x = xif i under this convention.

1.2.1 Basis and Reciprocal Basis

Define three vectors f i (i = 1,2,3) in V by the equations

f 1 = f 2 × f 3

J
, f 2 = f 3 × f 1

J
, f 3 = f 1 × f 2

J
. (1.34)

By the vector identity (u× v)×w = (u ·w)v− (v ·w)u, it is easy to verify that

f 1 · f 2 × f 3 = 1

J
; (1.35)

1 Parametrization of Rotations
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thus {f i : i = 1,2,3} also constitutes a right-handed basis in V . Using again the aforemen-
tioned vector identity and (1.34), we easily obtain by direct computations that

f 1 = J (f 2 × f 3), f 2 = J (f 3 × f 1), f 3 = J (f 1 × f 2). (1.36)

The bases {f i} and {f j } satisfy the equations

f i · f j = f i · f j = δij = δ
j

i =
{

1 if i = j ,

0 if i �= j ,
for all i, j = 1,2,3 (1.37)

and are said to be reciprocal to each other.
Any vector u ∈ V can be written as

u= uif i and u= uif
i , (1.38)

where ui and ui (i = 1,2,3) are called the contravariant and covariant components of u,
respectively. It follows from (1.37) and (1.38) that

ui = f i · u, ui = f i · u, for i = 1,2,3 (1.39)

and

u= (u · f i )f i = (u · f i )f
i . (1.40)

From (1.40) we observe that

I = f i ⊗ f i = f i ⊗ f i . (1.41)

Let L : V → V be a linear transformation on V . Let v =Lu. Then we have

vkf k =L(ujf j ).

Taking the dot product of both sides of the preceding equation with f i , we obtain

f i · vkf k = f i ·L(ujf j ),

or

vkδik = (f i ·Lf j )u
j .

Thus follows the equation

vi = Li
ju

j = (f i ·Lf j )u
j , (1.42)

where Li
j := f i ·Lf j is the ij -th entry of the matrix [Li

j ] that represents the linear trans-

formation L under the basis {f i ⊗ f j }.

1.2 Affine Coordinate Systems
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1.2.2 Change of Basis

Let {gi : i = 1,2,3} be another right-handed basis in V and {gl} the corresponding recipro-
cal basis. Let A,B : V → V be defined by

gi =Af i = (f j ·Af i )f j =A
j

if j , (1.43)

gl =Bf l = (f k ·Bf l )f k = B l
k f k, (1.44)

where A=A
j

if j ⊗ f i , B = B l
k f k ⊗ f l , A

j

i = f j ·Af i , and B l
k = f k ·Bf l . Note that

δli = gl · gi = B l
k f k ·Aj

if j

= B l
k A

j

iδ
k
j

=Ak
iB

l
k = (AT ) k

i B
l
k , (1.45)

where we have appealed to the fact that

Ak
i = f k ·Af i = f i ·AT f k = (AT ) k

i . (1.46)

It follows from (1.45) that

AT B = I or AT =B−1. (1.47)

Note that by (1.43), (1.44), and (1.47) there holds

f j ·Af i =B−1gj · gi = gj ·Agi . (1.48)

Hence the entries Ai
j of [Ai

j ], which is called the matrix of the basis transformation from
{f i} to {gk}, are independent of whether the basis {f i} or the basis {gi} is used to define
them.

We proceed to examine the transformations of components of a vector due to change of
bases. Let

v = vif i = ṽigi (1.49)

= vif
i = ṽig

i . (1.50)

By (1.43) and (1.49), we have

vif i = ṽjAi
jf i , (1.51)

which implies

vi =Ai
j ṽ

j . (1.52)

Similarly, by (1.44) and (1.50), we get

vjf
j = ṽiB

i
j f j , (1.53)

which implies

vj = B i
j ṽi or ṽi = (AT )

j

i vj , (1.54)

1 Parametrization of Rotations
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where have made use of the fact that AT =B−1. Note that (1.52) and (1.54) reduce to (1.29)
and (1.30), respectively, when the basis {f i} is orthonormal.

Let L̃k
l := gk ·Lgl . Using (1.40) and (1.42), we obtain

L̃k
l = (gk · f i )f

i ·L(gl · f j )f j = (gk · f i )(f
i ·Lf j )(gl · f j )

= (gk · f i )L
i
j (f

j · gl )= (A−1)kiL
i
jA

j

l, (1.55)

where we have made use of the identities

gl · f j =Af l · f j = f j ·Af l =A
j

l,

gk · f i =Bf k · f i = f k ·BT f i = f k ·A−1f i = (A−1)ki .

Remark 1.2 In the literature of crystallography a commonly used convention is to use bold-
faced letters to denote column vectors and matrices (cf. Remark 1.1). Under this convention,
equations (1.52) and (1.55) appear as

v =Aṽ and L̃=A−1LA, (1.56)

respectively. �

1.3 Space of Linear Transformations

Let {ei} be an orthonormal basis in V . We have already seen in Sect. 1.1.1 that the set
of linear transformations on V is itself a vector space, which we call Lin. Because each
L in Lin can be expressed (see (1.16)) as a linear combination of ei ⊗ ej (i, j = 1,2,3),
which are linearly independent in Lin, we conclude that Lin is a 9-dimensional vector space.
Parallel to the definition of the dot product of vectors in V , we define the dot product of
L=∑

i,j Lijei ⊗ ej and M =∑
k,l Lklek ⊗ el by

L ·M =
∑

i,j

LijMij = tr(LMT ), (1.57)

where tr(·) denotes the trace of the linear transformation in question. By the intrinsic defi-
nition of the trace of a linear transformation, we see that definition (1.57) is independent of
the basis we choose in Lin. It is straightforward to verify that this definition indeed satisfies
all the properties we require of a dot product. Under this definition, a linear transformation
L has its norm given by

‖L‖F =
√

tr(LLT ), (1.58)

and the nine tensor products ei ⊗ ej (i, j = 1,2,3) constitute an orthonormal basis in Lin.
Equipped with this norm, called the Frobenius norm (or Euclidean norm), Lin becomes a
metric space, where the distance between L,M ∈ Lin is ‖L−M‖F .

To prepare for defining the exponential function and logarithmic function of L, we state
some basic definitions and facts that concern infinite sequences and series of linear operators
in Lin. A sequence {Lk} in Lin converges to L if and only if

lim
k→∞

‖Lk −L‖F = 0. (1.59)

1.3 Space of Linear Transformations
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A sequence {Lk} converges to a limit if and only if it satisfies the Cauchy criterion, i.e., for
every ε > 0 there exists an integer N > 0 such that

‖Lj −Lk‖F < ε if j ≥N and k ≥N. (1.60)

An infinite series
∑∞

k=0 Lk of linear operators in Lin is said to converge to S in Lin if its
sequence of partial sums {Sn}, where Sn =∑n

k=0 Lk , converges to S, and we write

∞∑

k=0

Lk = S. (1.61)

Applying the Cauchy criterion to the sequence of partial sums {Sn}, we observe that the
infinite series

∑∞
k=0 Lk converges to a limit if and only if for every ε > 0 there is an integer

N > 0 such that

‖Lm+1 +Lm+2 + · · · +Ln‖F < ε if n >m>N. (1.62)

A series
∑∞

k=0 Lk is said to be absolutely convergent if the series of real numbers
∑∞

k=0 ‖Lk‖
is convergent. It follows easily from the Cauchy criterion that a series is convergent if it is
absolutely convergent.

As Lin is a finite-dimensional vector space, all norms on Lin are equivalent (see, e.g.,
[155, p. 78] in the following sense: Given two norms ‖ · ‖1 and ‖ · ‖2 on Lin, there exist two
constants α > 0, β > 0 such that

α‖L‖1 ≤ ‖L‖2 ≤ β‖L‖1, for each L ∈ Lin. (1.63)

It follows from (1.63) that all norms define the same topology on Lin. For instance, all
the definitions and facts stated above remain valid if the Frobenius norm in the statements
is replaced by any other norm on Lin; see [155, Chap. 5, Sect. 2]. Henceforth in Part I,
where we will use only the Frobenius norm, except for some instances of emphasis we will
suppress the subscript “F ” and write ‖ · ‖ to mean the Frobenius norm ‖ · ‖F .

1.4 Exponential and Logarithmic Function of a Matrix

1.4.1 Basic Definitions

In this section we choose and fix a right-handed orthonormal basis ei (i = 1,2,3) in V and
identify each A ∈ Lin with the matrix A := [Aij ] that represents A under the chosen basis.
Then Lin is identical to M3(R), the space of 3× 3 matrices with real entries. For later use,
we will consider also matrices in M3(C), the space of 3× 3 matrices with complex entries,
where the Frobenius norm of C ∈M3(C) is defined as

‖C‖F :=
√∑

i,j

CijCij ; (1.64)

here Cij denotes the complex conjugate of Cij . Note that M3(R) ⊂M3(C) and (1.64) re-
duces to (1.58) for C ∈M3(R). Henceforth in Part I, except for Sects. 1.9 and 1.10 we will
suppress the subscript “F ” and use ‖ · ‖ to denote the Frobenius norm ‖ · ‖F in M3(C).

The following lemma and theorem will be instrumental to our definition of the exponen-
tial and the logarithmic function of a matrix in M3(R) or in M3(C).

1 Parametrization of Rotations
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Lemma 1.3 For any A,B ∈ M3(K), where K= R,or C, we have

‖AB‖ ≤ ‖A‖‖B‖. (1.65)

Proof For any A,B ∈ M3(K), the ij -th entry of the product AB satisfies

|(AB)ij |2 = |
∑

k

AikBkj |2 ≤
(
∑

k

|Aik|2
)(

∑

k

|Bkj |2
)
,

where |x|means the absolute value (resp. the modulus) of x (resp. z) for x ∈ R (resp. z ∈ C),
and we have appealed to the Cauchy-Schwarz inequality. Hence

‖AB‖2 =
∑

i,j

|(AB)ij |2

≤
∑

i,j

((
∑

k

|Aik|2
)(

∑

k

|Bkj |2
))

=
(
∑

i,k

|Aik|2
)⎛

⎝
∑

k,j

|Bkj |2
⎞

⎠= ‖A‖2‖B‖2.

Inequality (1.65) then follows easily. �

In what follows A0 = I , the identity matrix. We phrase the next theorem so that it covers
also the case where A ∈M3(C). An infinite series

∑∞
k=0 Ck , where Ck ∈M3(C) for each k,

is said to be absolutely convergent if the series of real numbers
∑∞

k=0 ‖Ck‖, where ‖Ck‖ is
defined by (1.64), is convergent.

Theorem 1.4 Let f (z) =∑∞
k=0 ckz

k (resp. f (x) =∑∞
k=0 ckx

k) be a complex (resp. real)
power series with radius of convergence R > 0. Then

f (A)=
∞∑

k=0

ckA
k (1.66)

is absolutely convergent for any matrix A ∈M3(C) (resp. A ∈M3(R)) with ‖A‖<R.

Proof By the given assumption, the power series f (‖A‖)=∑∞
k=0 ck‖A‖k is absolutely con-

vergent for any A ∈M3(C) (resp. A ∈M3(R)) with ‖A‖<R. Let

Sn =
n∑

k=0

ckA
k, sn =

n∑

k=0

|ck|‖A‖k.

Let ε > 0 be given. Since {sn} is a Cauchy sequence, there exists an N > 0 such that if
m,n >N we have |sm − sn|< ε. Without loss of generality, consider m> n>N . We have

‖Sm − Sn‖ = ‖
m∑

k=n+1

ckA
k‖ ≤

m∑

k=n+1

|ck|‖Ak‖

≤
m∑

k=n+1

|ck|‖A‖k = |sm − sn|< ε,
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where we have appealed to (1.65). Therefore {Sn} is a Cauchy sequence in M3(C) (resp.
M3(R)), and

∑∞
k=0 ckA

k is absolutely convergent in M3(C) (resp. M3(R)) for any A with
‖A‖<R. �

Parallel to the power series

ez =
∞∑

k=0

1

k!z
k, log(1+ z)=

∞∑

k=0

(−1)k−1

k
zk, (z ∈ C)

which has radius of convergence R =+∞ and R = 1, respectively, we define

expA :=
∞∑

k=0

1

k!A
k, (1.67)

which by the preceding theorem converges absolutely for all A ∈M3(C), and

logA :=
∞∑

k=0

(−1)k−1

k
(A− I )k, (1.68)

which converges absolutely for those A ∈M3(C) that satisfies ‖A− I‖< 1.

Proposition 1.5 For A ∈M3(C) the following identities are valid:

log(expA)=A for ‖A‖< log 2, (1.69)

exp(logA)=A for ‖A− I‖< 1. (1.70)

Proof As a power series in expA, log(expA) converges absolutely for those A that satisfies
‖ expA− I‖< 1. A sufficient condition to this effect follows from the estimate

‖ expA− I‖ = ‖
∞∑

k=1

Ak

k! ‖ ≤
∞∑

k=1

‖A‖k
k! = e‖A‖ − 1 < 1

if ‖A‖ < log 2. As a double series in A that converges absolutely, the sum of log(expA)
does not change under rearrangement. By collecting terms in like powers of A, we observe
that

log(expA)=
∞∑

k=1

(−1)k−1

k

( ∞∑

n=1

An

n!

)k

=
(
A+ A2

2! +
A3

3! + · · ·
)

− 1

2

(
A+ A2

2! +
A3

3! + · · ·
)(

A+ A2

2! +
A3

3! + · · ·
)

+ 1

3

(
A+ A2

2! + · · ·
)(

A+ A2

2! + · · ·
)(

A+ A2

2! + · · ·
)
+ · · ·

=A+
(

1

2
− 1

2

)
A2 +

(
1

6
− 1

2
+ 1

3

)
A3 + · · ·

=A+ 0+ 0+ · · · .
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We know that the coefficient of each term in a higher power of A is zero because it is the
same as that of the corresponding term in the expansion log(expx) for a real x. Hence we
have proved (1.69).

Applying a similar argument to the double series

exp(log(I +B))=
∞∑

k=0

1

k!

( ∞∑

n=1

(−1)n−1

n
Bn

)k

, (‖B‖< 1)

we obtain

exp(log(I +B))= I +B.

Putting B =A− I in the preceding identity leads to (1.70). �

Remark 1.6 The mapping (Aij ) �→ (A11,A12,A13,A21, . . . ,A33) from M3(R) to R
9 de-

fines a global chart on M3(R) and makes it an analytic manifold. The exponential map
exp :M3(R)→M3(R) is analytic. Likewise the map log : D→M3(R), where D = {B ∈
M3(R) : ‖B − I‖< 1}, is also analytic. If we take the global chart as defining a C∞ differ-
entiable structure on M3(R), the maps exp and log are of class C∞. �

1.4.2 Properties of the Matrix Exponential

Recall that M3(C) denotes the space of 3× 3 matrices with complex entries. We say that a
matrix A ∈M3(C) is diagonalizable if A= P diag(λ1, λ2, λ3)P

−1 for some P ∈M3(C) and
some complex numbers λi (i = 1,2,3).

Proposition 1.7 The following three assertions are valid:

(i) Let P ∈M3(C) be invertible. Then

exp(PAP−1)= P (expA)P−1 for each A ∈M3(C). (1.71)

(ii) For any A,B ∈M3(C), if AB = BA, then

exp(A+B)= expA expB. (1.72)

(iii) Let A ∈M3(C) be diagonalizable.6 There holds

det(expA)= exp(trA). (1.73)

Proof (i) Since (PAP−1)k = PAkP−1 for each natural number k, we have

∞∑

k=1

(PAP−1)k

k! = P

∞∑

k=1

(
Ak

k!
)
P−1.

(ii) The scalar case, i.e., ez1ez2 = ez1+z2 , where zi ∈ C (i = 1,2), can be justified by the
theorem that the product of two absolutely convergent series

∑∞
j=0 aj = a and

∑∞
k=0 bk = b

6This condition can be relaxed. Formula (1.73) in fact holds for all A ∈M3(C); see, e.g., [138] for an al-
gebraic proof, or [310, p. 88] for a proof that invokes matrix calculus. Since we shall use this formula for
diagonalizable matrices only, we add this condition to get a simple proof.
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can be written as an absolutely convergent series
∑∞

l=0 cl = c called their Cauchy product,
where cl =∑l

j=0 ajbl−j and c = ab. When z1, z2 ∈ C in the preceding assertion are re-
placed by A,B ∈M3(C), the resulting assertion remains valid and its proof is essentially
the same as the scalar case.7

Here we have

expA expB =
( ∞∑

r=0

Ar

r!

)( ∞∑

s=0

Bs

s!

)

=
∞∑

n=0

(
n∑

r=0

Ar

r! ·
Bn−r

(n− r)!

)
,

which is the Cauchy product of the two infinite series that define expA and expB , respec-
tively. On the other hand,

exp(A+B)=
∞∑

n=0

(A+B)n

n!

=
∞∑

n=0

(
n∑

r=0

Ar

r! ·
Bn−r

(n− r)!

)
,

where we have used in the last step the hypothesis that AB = BA.

(iii) Since A= P diag(λ1, λ2, λ3)P
−1 for some P ∈M3(C) and some complex numbers

λi (i = 1,2,3), we obtain

det(expA)= det
(
exp(P diag(λ1, λ2, λ3)P

−1)
)

= det
(
P exp(diag(λ1, λ2, λ3))P

−1
)

= det(diag(eλ1 , eλ2 , eλ3))= eλ1 eλ2 eλ3

= eλ1+λ2+λ3 = etrA,

where we have appealed to (i) in the second step. �

1.5 Active Versus Passive View of Rotations

An orthogonal linear transformation R on the translation space V of physical space E3 is a
rotation if it further satisfies detR = 1. The set of all rotations is denoted by SO(3). Under
a chosen orthonormal basis {ei : i = 1,2,3} in V , each rotation R is represented by an
orthogonal matrix [Rij ] with unit determinant, the entries of which are given by the formula
Rij = ei ·Rej . Before and after the rotation R, a vector a has components ei · a and ei ·Ra

for i = 1,2,3, respectively. Note that the basis vectors ei remain unchanged, whereas the
vector a moves to Ra under the rotation. This treatment of rotations is called the active
view.

7See, e.g., [121, Theorem 16.4a]. While the proof there is for the real scalar case, the same proof works if the
absolute value | · | is interpreted as the modulus for the complex scalar case or is replaced by the appropriate
norm ‖ · ‖ for M3(R) and M3(C), respectively.

1 Parametrization of Rotations
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But there is another characterization, called the passive view of rotations, which was
adopted by Bunge and by Roe in their pioneering work on quantitative texture analysis and
has remained predominant in the literature of this field. In the words of Morrison and Parker
[238],

a passive rotation is a rotation of the coordinate system. ... Under a passive rotation, the
vector remains fixed, but the point it defines receives new labels. That is, the numbers
that describe the location of the point change from those appropriate to the (initial)
unrotated frame to the (final) rotated frame.

The passive rotation R(p) that corresponds to the active rotation R is determined by
the following requirement: For each vector a ∈ V , the components of a under the basis
R(p)e1,R

(p)e2,R
(p)e3 are exactly the same as the components of Ra under the original

basis e1, e2, e3, i.e.,

R(p)ei · a = ei ·Ra (i = 1,2,3). (1.74)

It follows that we have

R(p) =RT =R−1. (1.75)

Remark 1.8 The active view of rotations, which is consistent with all mathematical treat-
ments of transformations on a space,8 has long been the choice of the mathematics commu-
nity. In physics both the active and the passive views have been widely used, with the active
view gaining more practitioners in the last three or four decades.9 There are instances where
authors who adopt the passive viewpoint make major errors in their publications. The most
notable of those are two classic books on angular momentum in quantum mechanics by Ed-
monds [98] and by Rose [274], respectively. As pointed out by Bouten [39] and by Wolf
[343], there is a major inconsistency in Edmonds’s treatment of passive rotations, which
leads to errors. In response to the critiques, Edmonds makes corrections in the 1974 printing
[99] of his book. Bouten also finds that Rose’s treatment suffers from the same confusion as
Edmonds’s, which results in two errors that cancel and yields a correct formula for active
rotations. In texture analysis Matthies and coworkers, while adopting the passive view of
rotations, at places make use of formulas for active rotations, which lead to ambiguities for
the reader; see Sect. 4.5.4 for more details. Nevertheless the active and passive viewpoints
are equivalent, so long as the rules and procedures of each are followed consistently (cf.
[207, 238]). In this exposition we adopt the active view of rotations for consistency with and
smooth transition to the mathematical literature. �

1.5.1 Product of Rotations

Given two rotations R1,R2, their product R = R2R1 : V → V is the linear transformation
defined by

Ra =R2(R1a) for each a ∈ V . (1.76)

8Note that coordinate systems are out of the question for most spaces, abstract or otherwise.
9See, e.g., [28, 51, 238, 313, 352]. The long 2017 pedagogical article by P.P. Man [207], which discusses in
detail the Wigner active and passive rotation matrices in quantum mechanics, lists at least 27 and 12 references
that adopt the active and passive viewpoint, respectively.

1.5 Active Versus Passive View of Rotations
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It is easily checked that R is orthogonal and detR = 1. Hence R2R1 is a rotation, the effect
of which on each vector a is the same as that of two successive rotations, R1 followed by
R2.

Let R(p), R
(p)

1 , and R
(p)

2 be the passive rotation corresponding to R, R1, and R2, respec-
tively. Then we have

R(p) = (R2R1)
−1 =R−1

1 R−1
2 =R

(p)

1 R
(p)

2 . (1.77)

In this exposition we follow what has become the standard convention in mathematics
and a common practice in physics and use active rotations. One advantage of doing so is
that we can easily adopt, without modification, formulas available in the mathematics and
physics literature or compare with them those we derive. On the other hand, we should also
be acquainted with passive rotations, as they are predominantly used in the literature of
texture analysis.

1.6 Euler’s Theorem

A line � in V is called an axis of the rotation R if every point in � remains invariant under
the action of R, i.e., Ra = a for each a in �.

Lemma 1.9 Every rotation R has an axis. If R �= I , it has a unique axis.

Proof It is easy to see that det(R−I )= 0 from the following string of simple computations:
det(R − I )= det((R − I )T )) = det(RT − I )= det(RT (I −R))= (detRT )det(I −R)=
−det(R− I ). Hence there exists a vector a such that (R− I )a = 0 or Ra = a, and the line
�= {αa : α ∈ R} is an axis of R.

Now we proceed to prove the second part of the lemma. Suppose R has another axis
{βb : β ∈ R}, where b is linearly independent of a. Let Π be the plane subtended by a
and b. Let c be a vector orthogonal to Π such that a, b, and c constitute a right-handed
triad. Since R is a rotation, Rc is perpendicular to both Ra = a and Rb = b, ‖Rc‖ = ‖c‖,
and a, b, and Rc also form a right-handed triad. Therefore Rc = c, and we conclude that
R = I . �

Let n be a unit vector on the axis of the rotation R. We pick e1 = n and choose two unit
vectors e2, e3 such that {ei : i = 1,2,3} constitutes a right-handed orthonormal triad. Under
the basis {ei}, R is represented by the matrix

⎛

⎜⎝
1 0 0

0 a b

0 c d

⎞

⎟⎠ , (1.78)

where the real numbers a, b, c, and d satisfy

a2 + c2 = 1, ab+ cd = 0, b2 + d2 = 1, ad − bc= 1. (1.79)

As −1≤ a ≤ 1, we may write a = cosω for some angle ω. By exploiting conditions (1.79),
we observe that matrix (1.78) must be of either of the following two forms:

(i)

⎛

⎜⎝
1 0 0

0 cosω − sinω

0 sinω cosω

⎞

⎟⎠ ; (ii)

⎛

⎜⎝
1 0 0

0 cosω sinω

0 − sinω cosω

⎞

⎟⎠ . (1.80)

1 Parametrization of Rotations
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If we follow the convention that ω > 0 means a counter-clockwise rotation about n accord-
ing to the right-hand rule, a convention we shall henceforth adopt, it is easy to see that forms
(i) and (ii) describe a rotation about e1 by an angle ω and by an angle −ω, respectively. If
we allow ω to run from −∞ to ∞, it suffices to adopt form (i) to cover all the rotations
about e1.

Let S2 be the unit sphere in V . Henceforth, unless explicitly stated otherwise, by R(n,ω)

we mean the rotation with axis and sense specified by the unit vector n ∈ S2 and rotation
angle given by ω ∈ (−∞,∞) with sign convention specified just following (1.80). Note that

R(n,ω)=R(−n,−ω). (1.81)

Hence it suffices to let n run over the unit sphere and restrict ω to the interval [0,π ] to cover
all the rotations. For ω in (0,π), the correspondence (n,ω) �→ R(n,ω) is one-to-one. For
ω = 0 and ω = π , we have R(n,0) = I and R(n,π) = R(−n,π) for each unit vector n,
respectively.

The following theorem is instrumental for us to express the matrix representation of
R(n,ω) in terms of Euler angles.

Theorem 1.10 (Euler’s theorem) For any rotation Q,

QR(n,ω)Q−1 =R(Qn,ω). (1.82)

Proof It is easy to see that Qn defines an axis for QR(n,ω)Q−1. Take e1 = n. Let e2 and
e3 be a pair of unit vectors such that e1 = n, e2, and e3 form a right-handed orthonormal
basis in V . Under this basis, R(n,ω) is represented by the matrix

⎛

⎜⎝
1 0 0

0 cosω − sinω

0 sinω cosω

⎞

⎟⎠ .

The triad {Qei : i = 1,2,3} also constitutes a right-handed orthonormal basis in V .
Under this new basis, QR(n,ω)Q−1 is represented by the same matrix above. Hence
QR(n,ω)Q−1 is the rotation with axis Qn and angle ω, i.e., R(Qn,ω). �

1.7 Parametrization of Rotations by Euler Angles

Let E3 be the three-dimensional physical space and V be its translation space. Let {ei :
i = 1,2,3} be a chosen right-handed, orthonormal triad in V . All matrix representations of
rotations below, unless explicitly specified otherwise, will refer to this triad as the chosen
basis in V .

Each rotation g on V acts on the triad {ei} to produce another orthonormal triad {gei :
i = 1,2,3}, which defines the rotation g itself. Indeed g is represented under the basis {ei}
by the matrix [ge1, ge2, ge3] with gei as the ith column.

When ge3 �= ±e3, we may specify g by the Euler angles (ψ, θ,φ) as follows (see Fig. 1,10

where the plane subtended by e1 and e2, by e3 and ge3, and by ge1 and ge2 is shaded with
horizontal lines, shaded with vertical lines, and left without shading, respectively). Let O be

10This figure is adapted from Fig. 18 of [350], which is apparently an improved version of Figs. 9-1 and 9-2
of [209], for our present notation of Euler angles.

1.7 Parametrization of Rotations by Euler Angles
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Fig. 1 Definition of the Euler
angles ψ , θ , and φ

the origin of a coordinate system such that the tips of the vectors ei and gei all lie on the unit
sphere centered at O . The plane containing ge1 and ge2 meet the one containing e1 and e2

along a line called the line of nodes, which intersects the unit sphere at two points. One of
these points will be called L, which is defined by certain conditions given below. We begin
by picking arbitrarily one of the two points where the line of nodes meets the unit sphere
and temporarily call it L. The Euler angles (ψ, θ,φ) are defined by the following sequence
of rotations which brings the triad {ei} to the triad {gei}:
1. Rotate about e3 by an angle 0≤ ψ < 2π so that e2 falls on OL. The new position of e1

is called OM. Since e3, ge3, and OM are perpendicular to OL, they lie in the plane A

orthogonal to OL.
2. Rotate about OL by an angle θ so that e3 falls on ge3. There is only one choice of L

so that 0 < θ < π . If the original choice doesn’t lead to a θ in (0,π), choose the other
point where the line of nodes meets the unit sphere as L. Note that the definition of L
determines ψ . If the original choice of L is incorrect, then the angle ψ must be revised
so that it corresponds to the correct L.

3. After the rotation R(OL, θ), let M fall on N . The vector ON is perpendicular to OL and
ge3; it lies in plane A and in the plane spanned by ge1 and ge2. Rotate about ge3 by an
anlge φ (0≤ φ < 2π ) so that ON and OL fall on ge1 and ge2, respectively.

Obviously we have

g =R(ge3, φ)R(OL, θ)R(e3,ψ). (1.83)

Note that

OL=R(e3,ψ)e2, ge3 =R(OL, θ)R(e3,ψ)e3. (1.84)

Hence by Euler’s theorem (see Theorem 1.10), we have

R(ge3, φ)= (R(OL, θ)R(e3,ψ))R(e3, φ) (R(OL, θ)R(e3,ψ))−1 , (1.85)

1 Parametrization of Rotations
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and

R(OL, θ)=R(e3,ψ)R(e2, θ)R(e3,ψ)−1. (1.86)

Substituting (1.85) and then (1.86) into (1.83), we obtain the formula

g =R(e3,ψ)R(e2, θ)R(e3, φ). (1.87)

Under the basis {ei}, the rotation g is represented by the matrix

⎛

⎝
cosψ − sinψ 0
sinψ cosψ 0

0 0 1

⎞

⎠

⎛

⎝
cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞

⎠

⎛

⎝
cosφ − sinφ 0
sinφ cosφ 0

0 0 1

⎞

⎠ (1.88)

or

R(ψ, θ,φ)

=
⎛

⎝
cosψ cos θ cosφ − sinψ sinφ − cosψ cos θ sinφ − sinψ cosφ cosψ sin θ
sinψ cos θ cosφ + cosψ sinφ − sinψ cos θ sinφ + cosψ cosφ sinψ sin θ

− sin θ cosφ sin θ sinφ cos θ

⎞

⎠ ,

(1.89)

which gives the parametrization of rotations by Euler angles (ψ, θ,φ).

Remark 1.11 Both the conventions adopted here (i) for using active rotations g in (1.87)
and (ii) for definition of Euler angles (ψ, θ,φ) as above are common in the present-day
physics literature (see, e.g., [28, 313], where the Euler angles are often written as (α,β, γ )
instead. Hielscher and Schaeben [151] also use the same conventions as those of the physics
literature in their paper on the MTEX algorithm. �

When ge3 = e3, the Euler angles ψ and φ are not uniquely defined. Indeed, in this case,
we have g =R(e3, β) for some angle 0≤ β < 2π . As θ→ 0 in (1.89), we observe that the
matrix representing g tends to

⎛

⎝
cos(ψ + φ) − sin(ψ + φ) 0
sin(ψ + φ) cos(ψ + φ) 0

0 0 1

⎞

⎠ (1.90)

in the limit. Hence the only requirement on ψ and φ is ψ +φ = β . Equation (1.87) remains
valid if we take θ = 0 and any ψ and φ that satisfy ψ + φ = β . In fact, we have g =
R(e3,ψ + φ). This conclusion is also obvious from the geometrical meaning of the Euler
angles.

When ge3 = −e3, we must take θ = π . As θ → π in (1.89), the matrix representing g

approaches

⎛

⎝
− cos(ψ − φ) − sin(ψ − φ) 0
− sin(ψ − φ) cos(ψ − φ) 0

0 0 −1

⎞

⎠ . (1.91)

Equation (1.87) remains valid if we take θ = π and ψ − φ = β , where R(e3, β) takes e2 to
ge2.

1.7 Parametrization of Rotations by Euler Angles
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Note that (1, θ,ψ) gives the spherical coordinates of ge3.
When the rotation matrix [Rij ] is given, the corresponding Euler angles can be computed

as follows: first θ is found from the equation R33 = cos θ ; then ψ and φ are determined from

R13 = sin θ cosψ, R23 = sin θ sinψ,

and

R31 =− sin θ cosφ, R32 = sin θ sinφ,

respectively.
For a rotation g defined by the Euler angles (ψ, θ,φ), a glance at (1.87) reveals that

g−1 =R(e3,−φ)R(e2,−θ)R(e3,−ψ). (1.92)

Let us determine the Euler angles (ψ#, θ#, φ#) pertaining to g−1, where 0 ≤ ψ# < 2π , 0≤
θ# ≤ π , and 0≤ φ# < 2π .

Since R(e3,π)e2 =−e2 and R(e3,π)=R(e3,π)
−1, we observe that

R(e2,−θ)=R(−e2, θ)

=R(e3,π)R(e2, θ)R(e3,π), (1.93)

where we have appealed to Euler’s theorem in the last step. Therefore we have

g−1 =R(e3,−φ)R(e3,π)R(e2, θ)R(e3,π)R(e3,−ψ)

=R(e3,π − φ)R(e2, θ)R(e3,π −ψ). (1.94)

Taking into account the range of the Euler angles, we should take

ψ# =
{

π − φ when 0≤ φ ≤ π

3π − φ when π < φ < 2π ,
(1.95)

θ# = θ, (1.96)

φ# =
{

π −ψ when 0≤ψ ≤ π

3π −ψ when π <ψ < 2π .
(1.97)

For simplicity, however, it is usual to write

(ψ#, θ#, φ#)= (π − φ, θ,π −ψ), (1.98)

as R(e3,3π − φ)=R(e3,π − φ) and R(e3,3π −ψ)=R(e3,π −ψ).

1.8 Comparison with Other Conventions

In the literature of quantitative texture analysis, the reader will usually encounter the passive
view of rotations and see another convention adopted for the definition of Euler angles. In
this section we present some other conventions, which are most commonly found in the
literature of texture analysis, for comparison with ours.

1 Parametrization of Rotations
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1.8.1 Convention Adopted by Roe and by Matthies

Roe [270] defines the Euler’s angles as we did in Sect. 1.7, but he adopts the passive view of
rotations. A passive rotation R(p)(ψ, θ,φ) and its active counterpart R(ψ, θ,φ) are related
by (cf. (1.75))

R(p)(ψ, θ,ψ)=R(ψ, θ,φ)T . (1.99)

Under the chosen orthonormal basis {ei : i = 1,2,3}, while R(ψ, θ,φ) is represented by the
matrix (1.89), R(p)(ψ, θ,φ)—denoted by T in Roe’s paper—is represented by the matrix

⎛

⎝
cosφ cos θ cosψ − sinφ sinψ cosφ cos θ sinψ + sinφ cosψ − cosφ sin θ
− sinφ cos θ cosψ − cosφ sinψ − sinφ cos θ sinψ + cosφ cosψ sinφ sin θ

sin θ cosψ sin θ sinψ cos θ

⎞

⎠ .

(1.100)
Matthies [215] and Matthies et al. [224, p. 7] use the same conventions on Euler an-

gles and passive rotations as those of Roe [270], although the Euler angles are denoted by
(α,β, γ ). Roe [272, p. 131], however, changes his notation of the Euler angles to (α,β, γ )

in his book published in 2000.

1.8.2 Conventions Adopted by Bunge and Gel’fand et al.

Bunge [60] adopts a different definition of the Euler angles than (ψ, θ,φ). For the non-
degenerate cases the Euler angles (ϕ1,Φ,ϕ2) are specified by modifying the procedure that
delivers (ψ, θ,φ) in Sect. 1.7, as follows (cf. Fig. 1):

1. Rotate about e3 by an angle 0≤ ϕ1 < 2π so that e1 falls on OL, the line of nodes.
2. Rotate about OL by an angle Φ so that e3 falls on ge3. There is only one choice of L so

that 0 <Φ < π .
3. Rotate about ge3 by an angle 0≤ ϕ2 < 2π so that

g =R(ge3, ϕ2)R(OL,Φ)R(e3, ϕ1). (1.101)

It is easy to see that the angles (ϕ1,Φ,ϕ2) are related to (ψ, θ,φ) by the following formulas:

ϕ1 =ψ + π

2
, Φ = θ, ϕ2 = φ − π

2
. (1.102)

For active rotations, by an argument similar to that which leads from (1.83) to (1.87), we
derive from (1.101) the formula

g =R(e3, ϕ1)R(e1,Φ)R(e3, ϕ2). (1.103)

Bunge, however, adopts the passive view of rotations. His rotation matrix [60, p. 21] is that
of g(p) = gT = g−1. Similar to the derivation of (1.94), we obtain from (1.103) that

g(p) = g−1 =R(e3,−ϕ2)R(e1,−Φ)R(e3,−ϕ1)

=R(e3,π − ϕ2)R(e1,Φ)R(e3,π − ϕ1), (1.104)

1.8 Comparison with Other Conventions
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and Bunge’s rotation matrix R(p)(ϕ1,Φ,ϕ2) explicitly reads:
⎛

⎝
− sinϕ1 cosΦ sinϕ2 + cosϕ1 cosϕ2 cosϕ1 cosΦ sinϕ2 + sinϕ1 cosϕ2 sinϕ2 sinΦ
− sinϕ1 cosΦ cosϕ2 − cosϕ1 sinϕ2 cosϕ1 cosΦ cosϕ2 − sinϕ1 sinϕ2 cosϕ2 sinΦ

sinϕ1 sinΦ − cosϕ1 sinΦ cosΦ

⎞

⎠ .

(1.105)
It follows also from (1.104) that

(
R(p)(ϕ1,Φ,ϕ2)

)−1 =R(p)(π − ϕ2,Φ,π − ϕ1). (1.106)

Before Bunge, Gel’fand et al. [125] use the convention described above for the definition
of Euler angles, which they denote by (ϕ1, θ, ϕ2). On the other hand, they adopt the active
view of rotations. Thus their rotation matrix [125, p. 6] is that of g in (1.103) and is the
transpose of that given in (1.105).

1.9 Description of Rotations by Axis-Angle Parameters

Let {ei : i = 1,2,3} be a right-handed orthonormal basis in V , and let S2 be the unit sphere.
Let n ∈ S2, and let n1, n2, n3 be the components of n under the given basis, i.e., n= n1e1+
n2e2 + n3e3. Note that n1, n2, and n3 are not independent; they must satisfy the relation
n2

1 + n2
2 + n2

3 = 1. In this section we find the matrix which represents R(n,ω) under the
basis {ei : i = 1,2,3} and has its entries parametrized by n and ω.

We begin with a simple lemma and its corollary.

Lemma 1.12 Let Q=R(e3,ω), where ω ∈ (−∞,∞). Then

Qe1 = (cosω)e1 + (sinω)(e3 × e1).

Proof We have Qe1 =∑
i (ei ·Qe1)ei = (cosω)e1 + (sinω)e2. �

Corollary 1.13 Let n and m be a pair of orthonormal vectors, and let Q = R(n,ω). Then
Qm= (cosω)m+ (sinω)(n×m). �

Each vector x in V can be written as x = (x ·n)n+ (x − (x ·n)n). Let a = x − (x ·n)n
and m= a/‖a‖. For each n ∈ S2, ω ∈ (−∞,∞), and x in V , we have

R(n,ω)x =R(n,ω)((x · n)n+ a)

= (x · n)n+ ‖a‖R(n,ω)m

= (x · n)n+ ‖a‖ ((cosω)m+ sinω(n×m))

= (x · n)n+ (cosω)a + sinω(n× a)

= (x · n)n+ (cosω)(x − (x · n)n)+ sinω(n× x)

= (cosω)x + (1− cosω)(n⊗ n)x + (sinω)n× x. (1.107)

Equation (1.107) is known as the Rodrigues rotation formula. It follows from (1.107) that we
have two other versions of the Rodrigues formula as follows: For n ∈ S2 and ω ∈ (−∞,∞),

R(n,ω)= cosωI + (1− cosω)n⊗ n+ sinωN (1.108)

= I + sinωN + (1− cosω)N2, (1.109)

1 Parametrization of Rotations
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where the linear transformation N is given by the matrix
⎛

⎜⎝
0 −n3 n2

n3 0 −n1

−n2 n1 0

⎞

⎟⎠ (1.110)

under the basis {ei}. In components, (1.108) reads

Rij = cosωδij + (1− cosω)ninj − (sinω)εijknk, (1.111)

where the alternator

εijk =

⎧
⎪⎨

⎪⎩

1 if (i, j, k) is a cyclic permutation of (1,2,3)

−1 if (i, j, k) is a non-cyclic permutation of (1,2,3)

0 if i, j, k are not distinct.

Under the basis {ei}, equation (1.108) is given by the matrix equation

R = cosω

⎛

⎜⎝
1 0 0

0 1 0

0 0 1

⎞

⎟⎠+ (1− cosω)

⎛

⎜⎝
n2

1 n1n2 n1n3

n2n1 n2
2 n2n3

n3n1 n3n2 n2
3

⎞

⎟⎠+ sinω

⎛

⎜⎝
0 −n3 n2

n3 0 −n1

−n2 n1 0

⎞

⎟⎠ .

(1.112)
From (1.112) we observe that

trR = 1+ 2 cosω, or cosω= 1

2
(trR− 1), (1.113)

from which we can determine ω if the matrix [Rij ] is given. Similarly from (1.112) we
obtain

n1 sinω= 1

2
(R32 −R23), n2 sinω= 1

2
(R13 −R31), n3 sinω= 1

2
(R21 −R12), (1.114)

from which we can compute n1, n2, n3 after we have determined ω. Also, it follows imme-
diately from (1.108) that

R(n,π)=R(−n,π)=−I + 2n⊗ n. (1.115)

As mentioned in Sect. 1.6, the rotation R(n,ω) with axis and sense specified by the unit
vector n and rotation angle ω is well defined for any n ∈ S2 and any −∞ < ω <∞. On
the other hand, the set {R(n,ω) : n ∈ S2,ω ∈ [0,π ]} already covers all rotations, and the
correspondence (n,ω) �→R(n,ω) is one-to-one for ω ∈ (0,π). We may use spherical coor-
dinates (Θ,Φ) on the unit sphere S2 to describe n: thus, n1 = sinΘ cosΦ , n2 = sinΘ sinΦ ,
and n3 = cosΘ . Then the rotations are parametrized by the angles ω, Θ , and Φ .

Definition 1.14 Let R(ω;Θ,Φ) := R(n(Θ,Φ),ω), where 0 ≤ ω ≤ π , 0 ≤ Θ ≤ π , and
0 ≤ Φ < 2π . We call the map (ω;Θ,Φ) �→ R(ω;Θ,Φ) the parametrization of rotations
by the axis-angle parameters (ω;Θ,Φ). �

By direct computations, we obtain from (1.110) that

N2 = n⊗ n− I . (1.116)

1.9 Description of Rotations by Axis-Angle Parameters
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By (1.109), we have

R(n,ω)+R(n,−ω)= 2I + 2(1− cosω)N2. (1.117)

For later use we introduce another second-order tensor

Z⊥(n,ω) := 2I −R(n,ω)−R(n,ω)−1. (1.118)

By (1.116) and (1.117), we see that

Z⊥(n,ω)= λ(ω)(I − n⊗ n), where λ(ω)= 2(1− cosω). (1.119)

Let

Z‖(n,ω) := λ(ω)I −Z⊥(n,ω)= λ(ω)n⊗ n. (1.120)

For each x ∈ V , we have

Z⊥(n,ω)x = λ(ω)x⊥, Z‖(n,ω)x = λ(ω)x‖, (1.121)

where

x⊥ = x − (x · n)n, and x‖ = (x · n)n, (1.122)

are the components of x perpendicular and parallel to n, respectively.
Note that N is skew. It is often referred to as the skew tensor corresponding to the unit

vector n, which defines the axis of the rotation R(n,ω), because

Na = n× a for any a ∈ V .

To emphasize the relationship between N and n, in what follows we shall often simply put
n× for N . Under a right-handed orthonormal basis {ei} with e1 = n, the skew tensor N or
n× is represented by the matrix

⎛

⎜⎝
0 0 0

0 0 −1

0 1 0

⎞

⎟⎠ .

It is easily verified by direct computation that under the aforementioned basis

exp(ωN)=
∞∑

n=0

ωnNn

n! =
⎛

⎜⎝
1 0 0

0 cosω − sinω

0 sinω cosω

⎞

⎟⎠=R(n,ω). (1.123)

Since R, N , and exp(ωN) are linear transformations, it is clear that the equality R(n,ω)=
exp(ωN) holds under all coordinate systems. As the sine and cosine functions are periodic
with period 2π , the formula R(n,ω) = exp(ωn×) makes sense for all ω ∈ (−∞,∞). On
the other hand, R(n,π) = R(−n,π), R(n,0) = I for any unit vector n, and all rotations
are covered by {(n,ω) : n ∈ S2,ω ∈ [0,π ]}. We record these findings as a theorem.

1 Parametrization of Rotations
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Theorem 1.15 All rotations R(n,ω) in SO(3) can be expressed in the form

R(n,ω)= exp(ωn×), where 0≤ ω ≤ π and n ∈ S2. (1.124)

For each unit vector n, exp(πn×)= exp(−πn×). �

By Theorem 1.15, SO(3) can be depicted as a closed ball Bπ of radius π : each point ωn

(0≤ ω < π ) in the open ball Bπ stands for a rotation, namely R(n,ω); each pair of antipodal
points πn and −πn of Bπ , as shown by (1.115), represent the same rotation −I + 2n⊗ n.
As mentioned above, R(n,ω) is a periodic function of ω with period 2π . Consider a steady
rotation with axis and sense defined by n and with ω increasing with time t as ω = t . At
t = 0, the point that represents R(n,0)= I in Bπ is at the center O of Bπ . Let the diameter
specified by n meet the surface of Bπ at the antipodal points P and P ′, where OP = n.
Note that the two antipodal points should be identified. As time progresses from t = 0, the
point that represents R(n, t) in Bπ moves towards P and reaches P at t = π . But point P is
identified with P ′. As time advances beyond t = π , the point that represents R(n, t) moves
from P ′ towards O and it reaches O at t = 2π , which completes one cycle. The cycle is
then repeated without end with time.

Since ωn× is skew for any 0 ≤ ω ≤ π and any unit vector n, the preceding theorem
implies that SO(3)⊂ exp(Skw). In fact, we have:

Proposition 1.16 exp(Skw)= SO(3).

Proof It suffices to prove that exp(Skw) ⊂ SO(3). Let A ∈ Skw be given. Under an or-
thonormal basis {ej }, A is represented by a matrix of the form

⎛

⎜⎝
0 −a3 a2

a3 0 −a1

−a2 a1 0

⎞

⎟⎠ , (1.125)

where aj ∈ R for j = 1,2,3. It is straightforward to show that A has three distinct eigenval-

ues: 0, iα, and −iα, where α =
√
a2

1 + a2
2 + a2

3 . Hence A is diagonalizable. By (1.72) we
have

exp(A)(exp(A))T = exp(A) exp(AT )= exp(A) exp(−A)= exp(0)= I .

Moreover, it follows from (1.73) that det(expA)= etr A = e0 = 1. Hence exp(A) ∈ SO(3).
�

For later convenience we choose a norm ‖ · ‖ = 1√
2
‖ · ‖F in M3(R) so that

E1 =−e2⊗ e3+ e3⊗ e2, E2 =−e3⊗ e1+ e1⊗ e3, E3 =−e1⊗ e2+ e2⊗ e1 (1.126)

constitute an orthonormal basis in Skw. Using (1.110), we obtain by direct computations
that

‖n× ‖= ‖N‖ = 1. (1.127)

1.9 Description of Rotations by Axis-Angle Parameters
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Let A= a1E1 + a2E2 + a3E3 ∈ Skw. Then ‖A‖ =
√
a2

1 + a2
2 + a2

3 := α, and A= αN .
Since the Rodrigues formula is valid for any rotation axis and angle, by (1.109) we have

exp(A)=R(n, α)= I + sinα

α
A+ 2 sin2(α/2)

α2
A2, (1.128)

which is often called the Rodrigues formula in the literature. Note that formula (1.128) is
valid for α ∈ (−∞,∞) as A/α =N and ‖N‖ = 1.

While the map exp : Skw → SO(3) is surjective, it is clearly not injective; see Theo-
rem 1.15. The exponential function exp, however, is injective if we suitably restrict its do-
main.

Proposition 1.17 Let B= {ωn×∈ Skw : n ∈ S2,0≤ ω < π}. The exponential function exp
is injective on B.

Proof Suppose ωi ∈ (0,π), ni ∈ S2 for i = 1,2, and exp(ω1n1×) = exp(ω2n2×). Then
R(n1,ω1) = R(n2,ω2), which implies either n1 = n2 or n1 = −n2. If n1 = n2, then we
have R(n1,ω1)=R(n1,ω2), which implies ω1 = ω2 because both ω1,ω2 ∈ (0,π). If n1 =
−n2, then by (1.81) we have R(n1,ω1)= R(−n1,ω2)= R(n1,−ω2), which is impossible
because ω1,ω2 ∈ (0,π). Hence under the asserted hypothesis, the relations n1 = n2 and
ω1 = ω2 hold.

If one of the angles is zero, say ω1 = 0, then exp(ω1n1×) = exp(0) = I for any n1.
Suppose exp(ω2n2×)= I . Choose a Cartesian coordinate system such that n2 = e1 and the
matrix [Pij ] that represents exp(ω2n2×) under the chosen Cartesian coordinate system has
entries P32 =−P23 = sinω2; cf. (1.123). The hypothesis that exp(ω2n2×)= I implies that
ω2 = 0 and thence ω2n2×= 0 for any n2. �

Let Log : exp(B)→B be defined11 by Log= (
exp

∣∣
B

)−1
. Here we derive some explicit

expressions for LogR.
Since Log= (

exp
∣∣
B

)−1
and R(n,ω) ∈ exp(B) means that R(n,ω)= exp(ωn×), clearly

we have

LogR(n,ω)= ωn×= ωN , for R ∈ exp(B). (1.129)

Let W = 1
2 (R−RT ). From the Rodrigues formula (1.108) and from (1.127) we deduce that

W = sinωN , ‖W‖ = sinω. (1.130)

It follows that W/‖W‖ =N . By (1.129) and (1.130) we obtain the formula [162, eq. (B.14)]

LogR(n,ω)= sin−1(‖W‖) · W

‖W‖ , for R ∈ exp(B). (1.131)

For yet another version of the same formula, we start with a slightly recast version of
(1.130)1:

R −RT = 2 sinωN . (1.132)

11We use different notations for the Log function here and the log function defined by the convergent power
series in (1.68), because Proposition 1.5 only guarantees log(expA) = A for A ∈M3(C) if ‖A‖F < log 2.
The two functions certainly agree where their domains of definition overlap.

1 Parametrization of Rotations
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For ω �= 0,π , we multiply both sides of (1.132) by ω/(2 sinω) to obtain from (1.129) the
formula

LogR(n,ω)=
⎧
⎨

⎩

ω

2 sinω

(
R −RT

)
for R �= I

0 for R = I ,
for R ∈ exp(B). (1.133)

Note that we have

‖LogR(n,ω)‖ = ω, for R ∈ exp(B). (1.134)

1.10 Misorientation and Distance Between Two Rotations

Given two rotations P and Q, the rotation

M (̃n, ω̃) :=QP T , (1.135)

which takes P to Q, is called the misorientation of Q with respect to P . The rotation
axis (as specified by the unit vector ñ) and rotation angle ω̃ pertaining to M are called the
misorientation axis and misorientation angle, respectively. By (1.113), the misorientation
angle is given by the formula

ω̃= cos−1

(
1

2

(
tr(QP T )− 1

))
. (1.136)

It turns out that the misorientation angle is a distance function on the set of rotations SO(3).
To proceed further, let us introduce the definition of distance function or metric on a set.

Definition 1.18 Let X be a set. A distance function or metric on X is a mapping
d :X×X→ R, (p, q) �→ d(p,q), such that the following conditions are satisfied:

(a) d(p,q) > 0 if p �= q; d(p,p)= 0;
(b) d(p,q)= d(q,p);
(c) d(p,q)≤ d(p, r)+ d(r, q), for any r ∈X.

The number d(p,q) is called the distance from p to q . �

Let dSO(3) : SO(3)× SO(3)→ R be defined by

dSO(3)(P ,Q)= cos−1

(
1

2

(
tr(QP T )− 1

))
. (1.137)

As a misorientation angle, we have dSO(3)(P ,Q) ∈ [0,π ], and dSO(3)(P ,Q)= 0 if and only
if P = Q. Hence condition (a) of distance function is satisfied by dSO(3). Condition (b)
follows easily from the property of trace that trR = trRT for each rotation R. Condition (c)
for dSO(3)(·, ·) is an immediate consequence of the following lemma.

Lemma 1.19 Let P , Q, and R be rotations, and let QP T = M1(̃n1, ω̃1), RQT =
M2(̃n2, ω̃2), PRT =M3(̃n3, ω̃3). Then ω̃3 ≤ ω̃1 + ω̃2.

1.10 Misorientation and Distance Between Two Rotations
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Proof Note that MT
3 =M2M1 and MT

3 has the same rotation angle ω̃3 as M3. By formula
(11.19), which we shall prove in Sect. 11.1.2, we have

cos
ω̃3

2
= cos

ω̃2

2
cos

ω̃1

2
− sin

ω̃2

2
sin

ω̃1

2
(̃n2 · ñ1). (1.138)

Since ñ2 · ñ1 ≤ 1, we observe from (1.138) that

cos
ω̃3

2
≥ cos

ω̃2

2
cos

ω̃1

2
− sin

ω̃2

2
sin

ω̃1

2
= cos

ω̃1 + ω̃2

2
, (1.139)

which implies ω̃3 ≤ ω̃1+ ω̃2, because the cosine function is strictly decreasing on [0,π ] and
ω̃i ∈ [0,π ] for i = 1,2,3. �

In Sect. 10.2 we shall show that dSO(3)(·, ·), as defined by (1.137), is the Riemannian
distance on SO(3) as a Riemannian manifold.12 Several distance functions on SO(3) have
been proposed in the literature; cf. [161] for a comparison and analysis.

It follows easily from definition (1.137) and the properties of trace that

dSO(3)(P
T ,QT )= dSO(3)(P ,Q), (1.140)

and that the distance function dSO(3)(·, ·) is bi-invariant, i.e.,

dSO(3)(RP ,RQ)= dSO(3)(P ,Q), (1.141)

dSO(3)(PR,QR)= dSO(3)(P ,Q), (1.142)

for all P ,Q, and R in SO(3).

12This will also show that the metric topology defined by dSO(3) is the same as the manifold topology of
SO(3); see, e.g., [186, p. 278].
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Chapter 2

2 Ideal Crystals and the Crystallographic Groups

In this chapter we cover, for later use, some basics on crystallography and crystallographic
groups. Prerequisites in elementary group theory are presented in Appendix A. In particular,
in Sect. A.1 we use a review of the fundamental concepts of sets, relations, and functions to
specify terminology and notation.

2.1 Preliminaries

Mathematically the set of non-singular linear transformations on V constitutes a group (cf.
Definition A.1 in Appendix A) under the binary operation of “composition of mappings”,
i.e.,

1. The composition of two non-singular linear transformations is still a non-singular linear
transformation.

2. The composition of mappings is associative.
3. The identity map is a non-singular linear transformation.
4. Each non-singular linear transformation has an inverse, which is itself a non-singular

linear transformation.

We denote by GL(3) the group of non-singular linear transformations on V .
Any subset of a group G, which itself constitutes a group under the same binary operation

in G, is called a subgroup of G. A linear transformation Q on V is said to be orthogonal if
it preserves the inner product, i.e.,

Qu ·Qv = u · v for any vectors u, v ∈ V . (2.1)

Let O(3) ⊂ GL(3) be the set of orthogonal transformations on V . It follows immediately
from (2.1) that every Q ∈O(3) satisfies

QQT =QT Q= I , QT =Q−1, and detQ= detQT =±1. (2.2)

By (2.1) and (2.2) it is easy to verify that O(3) is a subgroup of GL(3).
Recall that rotations are orthogonal transformations with determinant equal to 1.

If R, R1 and R2 are rotations, we have det(R−1) = det(RT ) = 1, and det(R2R1) =
det(R2)det(R1)= 1. Hence the set of rotations

SO(3) := {R ∈O(3) : detR = 1} (2.3)

is a subgroup of O(3) and of GL(3). Rotations are also called proper orthogonal transforma-
tions.

Let Q ∈O(3) and let I := −I be the inversion. Clearly I ∈O(3). Moreover, we have

Q=
{

R, for some rotation R if detQ= 1
IR, for some rotation R if detQ=−1.

(2.4)

Indeed suppose detQ=−1. Then det(IQ)= 1 and IQ=R for some rotation R. Hence
Q = IR, which is called a roto-inversion. Orthogonal transformations with determinant
equal to −1 are said to be improper.
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Table 1 Multiplication table of
group D3

e r r2 s sr sr2

e e r r2 s sr sr2

r r r2 e sr2 s sr

r2 r2 e r sr sr2 s

s s sr sr2 e r r2

sr sr sr2 s r2 e r

sr2 sr2 s sr r r2 e

Subgroups of O(3) which are (resp. are not) subgroups of SO(3) are said to be proper
(resp. improper).

In what follows we present the multiplication table of a finite subgroup of the rotation
group, which we shall use later for illustrative purposes.

Example 2.1 Consider the set of rotations D3 = {e, r, r2, s, sr, sr2}, where e = I , r =
R(n,2π/3), s = R(m,π), and m and n are two given orthogonal unit vectors. Note that
for each k = 0,1,2, we have

srkn=−n, (srk)2n= n. (2.5)

Let L be the axis of rotation of srk . Then it is also the axis of rotation of (srk)2. Equations
(2.5)1 and (2.5)2 say that n is perpendicular to L and that it defines an axis of rotation for
(srk)2, respectively. Hence (srk)2 has two distinct axes of rotation, which implies (srk)2 = e.
It follows that for k = 0,1,2,

s2 = e, sr = r2s, sr2 = rs, (2.6)

respectively. With the help of (2.6), we can easily construct the multiplication table for D3;
see Table 1. In the table the rows (resp. columns) are listed from top to bottom (resp. from
left to right) under g1 = e, g2 = r , . . . , g6 = sr2. The (i, j)-th entry of the table is the product
gigj . For example, the (3,4)-th entry gives the product r2s = sr . Note that {r, s} is a set of
generators for D3.

For m= e1 and n= e3, D3 is the rotational symmetry group of the equilateral triangle in
the 1-2 plane which has its centroid at the origin and one vertex at (1,0,0). In other words,
the equilateral triangle in question remains invariant under the rotations in D3.

The symmetry of a physical object should not be affected by a rotation of the object.
Suppose the equilateral triangle, which lies in the plane containing the origin and normal to
n and has a vertex located at the point with position vector m, undergoes a rotation Q about
the origin. After the rotation, the rotational symmetry group G of the equilateral triangle is
generated by r ′ =R(Qn,2π/3) and s ′ =R(Qm,π). By Euler’s theorem (1.82), we have

r ′ =QR(n,2π/3)Q−1 =QrQ−1, s ′ =QR(m,π)Q−1 =QsQ−1. (2.7)

The multiplication table of G is that which results after r and s in Table 1 are replaced by
r ′ and s ′, respectively, and we have G=QD3Q

−1, i.e., G and D3, as subgroups of SO(3),
are conjugate13 to each other. As G and D3 describe the same symmetry, we will regard

13Cf. Sect. A.3.2 for definition of conjugacy relation and of conjugacy classes.
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them as equivalent. Henceforth we will use the symbol D3 to denote any subgroup of SO(3)
generated by r =R(n,2π/3) and s =R(m,π), where m and n are any two orthogonal unit
vectors. In fact it is customary to use the symbol D3 to denote also the conjugacy class of the
aforementioned equivalent groups. Whether the symbol D3 stands for the conjugacy class
or a specific group in the class should be clear from the context where it appears. �

Remark 2.2 In general two conjugate subgroups G1 and G2 of SO(3) are regarded as equiv-
alent, i.e., if there is a rotation Q such that G2 =QG1Q

−1. If we adopt the passive view of
rotations, the preceding assertion will be reworded as follows: Two subgroups G1 and G2 of
SO(3) are regarded as equivalent if there is a passive rotation Q(p) (as defined by a rotation
of the Cartesian coordinate system) such that G2 = (Q(p))−1G1Q

(p). In other words, the
two groups G1 and G2 are equivalent if they can be taken as describing the symmetry of the
same physical object under two Cartesian coordinate systems. �

2.2 The Euclidean Group

Consider a body C in a given placement14 κ0, under which it occupies the entire Euclidean
point space E3, i.e., κ0(C) = E3. We shall refer to the body C in the placement κ0 as
(C, κ0) but shall suppress κ0 when no confusion should arise. We label each point in C by
the location x ∈E3 that it occupies under κ0. A transplacement h : κ0(C)→E3 of C (i.e.,
h :E3 →E3, x �→ h(x)) is said to be rigid (or isometric) if it is distance-preserving,15 i.e.,

‖h(x)− h(y)‖ = ‖x − y‖ for each x, y ∈E3. (2.8)

We shall show presently that the isometries on E3 under the operation of composition con-
stitute a group, which we call the Euclidean group E(3).

For convenience of further discussions, we choose a Cartesian coordinate system in E3

(with origin O and right-handed orthonormal basis e1, e2, e3) and henceforth identify each
x ∈E3 with its position vector (x1, x2, x3) ∈ R

3, where xi = x ·ei (i = 1,2,3).16 Since posi-
tion vectors are in the translation space17 V of E3, through the chosen Cartesian coordinate
system we have established one-to-one correspondences among E3, V , and R

3. For simplic-
ity we shall still denote by x the position vector that represents the location x ∈ E3 under
the chosen coordinate system. Whether the symbol x stands for a location in E3 or for the
position vector of that location should be clear from the context where it appears. We shall
write out x ∈ E3, x ∈ V , x ∈ R

3, etc., explicitly whenever we want to emphasize the space
in question for clarity.

Each rigid transplacement h of C can be taken as an isometric mapping on R
3, for which

the following representation theorem [322, pp. 45, 344–345]) is well known:

14Here we adopt the terminology in continuum mechanics as regards the terms body, placement, and
transplacement; see Truesdell [322].
15What we call rigid transplacements here are given various other names in the literature, e.g., rigid motions
([66, p. 25], [232, p. 23]), rigid transformations [268, p. 16], Euclidean motions [304, p. 309], etc. As time is
not involved, referring to a distance-preserving bijective mapping as “motion” is a misnomer.
16The Cartesian coordinate system here serves only as a means to establish one-to-one correspondences
among the Euclidean point space E3, its translation space V , and R

3. As we shall use the direct notation in
all our discussions and proofs, all the equations and assertions in the rest of this section remain valid under
all affine coordinate systems.
17See, e.g., [40, p. 297] for definition.
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Theorem 2.3 Let h : R3 → R
3 be an isometry, i.e., it satisfy (2.8). There is a unique orthog-

onal linear transformation Q : R3 → R
3 such that for each x ∈ R

3

h(x)= v +Qx, where v = h(0). (2.9)

Proof Let Q(x)= h(x)− h(0). Then Q(0)= 0. By (2.8), we have (i) ‖Q(x)‖ = ‖x‖ for
each x ∈ R

3. By expanding both sides of the equation ‖Q(x)−Q(y)‖2 = ‖x − y‖2 and
appealing to (i), we obtain (ii) Q(x) ·Q(y) = x · y for all x,y ∈ R

3. By (i) and (ii) it is
straightforward to verify that ‖Q(x + y) − [Q(x) +Q(y)]‖2 = 0 for all x,y ∈ R

3, and
‖Q(λx)− λQ(x)‖2 = 0 for each λ ∈ R and x ∈ R

3. Hence Q : R3 → R
3 is linear and, by

(ii), is orthogonal. The uniqueness of Q that satisfies (2.9) is obvious. �

Remark 2.4 If we forgo the identifications of E3 and V with R
3, then we should write

h : E3 → E3 and Q : V → V . While a coordinate system is no longer needed, we still
have to specify a fixed point O in E3 to relate V and E3. Under this setting, formula (2.9)
for the isometry h is replaced by

h(x)− h(O)=Q(x −O) for each x ∈E3. (2.10)

Note that in (2.10), x −O ∈ V and h(x)− h(O) ∈ V . After some slight and obvious mod-
ifications the preceding proof for (2.9) remains valid as one for (2.10). �

From (2.9) we observe that each rigid transplacement is bijective and h−1, the inverse of
h given in (2.9), is defined by the formula

h−1(x)=−QT v+QT x for each x ∈ R
3. (2.11)

Through (2.9) each rigid transplacement h of C is defined by a pair (v,Q) : R3 → R
3,

where v ∈ R
3 and Q ∈O(3), such that

(v,Q)x = v+Qx. (2.12)

In this notation we have

h= (v,Q), h−1 = (−QT v,QT ). (2.13)

Moreover, let hi = (vi ,Qi ) for i = 1,2. From

(h2 ◦ h1)x = (v2,Q2)(v1,Q1)x

= (v2,Q2)(v1 +Q1x)

= v2 +Q2v1 +Q2Q1x for each x ∈R
3, (2.14)

we get

(v2,Q2)(v1,Q1)= (v2 +Q2v1,Q2Q1), (2.15)

which remains a rigid transplacement. Note that each rigid transplacement is a mapping and
the composition of mappings is associative. Indeed we may verify by direct computation
that

(
(v3,Q3)(v2,Q2)

)
(v1,Q1)= (v3,Q3)

(
(v2,Q2)(v1,Q1)

)

= (v3 +Q3v2 +Q3Q2v1,Q3Q2Q1). (2.16)

2 Ideal Crystals and the Crystallographic Groups
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Also, as (0, I )x = 0+Ix = x for each x ∈ R
3, (0, I ) is clearly the identity rigid transplace-

ment. Hence the rigid transplacements of C, with composition of mappings as the group
operation, constitute a group, which we call the Euclidean group E(3).

Remark 2.5 The representation h = (v,Q), where v ∈ V and Q ∈ O(3), depends on the
coordinate system chosen. Change of coordinate system will be discussed in Sect. 2.3.5. �

By (2.15) each rigid transplacement (v,Q) can be uniquely decomposed as a succession
of two operations as follows:

(v,Q)= (v, I )(0,Q), (2.17)

where (0,Q) is a rotation, inversion, or roto-inversion with the origin O as a fixed point,
and (v, I ) is a translation. Note that the order of the two operations generally cannot be
reversed, as (0,Q)(v, I )= (Qv,Q) �= (v,Q) unless Qv = v. Let

T(3) := {(v, I ) ∈ E(3) : v ∈ V } (2.18)

be the subgroup of translations in E(3), and let18

Ô := {(0,Q) ∈ E(3) :Q ∈O(3)} (2.19)

be the subgroup of rotations or roto-inversions in E(3) which have the origin O as fixed
point. Then T(3)Ô = E(3) and T(3) ∩ Ô = {(0, I )}, where (0, I ) is the identity in E(3).
Moreover, we have

(0,Q)(v, I )(0,Q)−1 = (0,Q)(v, I )(0,Q−1)= (Qv, I ) ∈ T(3) (2.20)

for any (v, I ) ∈ T(3) and (0,Q) ∈ Ô. Hence there holds

E(3)= T(3)∧ Ô, (2.21)

i.e., the Euclidean group is the semidirect product (cf. Definition A.28 in Appendix A) of
T(3) and Ô, where Ô acts on T(3) by conjugation (2.20).

Note that Ĝ := {(0,Q) :Q ∈G}, where G is a subgroup of O(3), has at least one point
in E3, namely the origin O , as a fixed point. Hence every subgroup of O(3) is called a point
group.

2.3 Ideal Crystals and Crystallographic Groups

2.3.1 Lattice Groups and Lattices

Our main reference for this section is Miller [232, pp. 23–24, 34–37].
Consider (C,κ0), i.e., the body C in the placement κ0, as discussed in Sect. 2.2. Hence-

forth in this chapter we restrict attention to a special class of systems (C,κ0) called ideal
crystals, which will be characterized in Definition 2.10.

Let (C,κ0) be an ideal crystal, and let G ⊂ E(3) be the set of all rigid transplacements that
leave (C,κ0) invariant. In other words, there is no operational way of distinguishing (C,κ0)

18Some authors (see, e.g., [232, p. 21]) do not distinguish (0,Q) from Q. Then Ô is the same as O(3).
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before and after a rigid transplacement h ∈ G . The set G of such rigid transplacements clearly
constitutes a subgroup of E(3), and it is called the complete symmetry group of (C,κ0)

(with respect to rigid transplacements). As G has (0, I ) as a member, it is non-empty. In
what follows we assume that G is non-trivial, i.e., G �= {(0, I )}.

Let L = G ∩ T(3) be the subgroup of translations in G . For any (u, I ), (v, I ) ∈ L, we
have (u − v, I ) ∈ L because L is a subgroup of T(3), and ‖u − v‖ cannot be arbitrarily
small because the crystal C comprises of atoms or molecules, which have finite sizes. Thus
there is an ε > 0 such that

‖u− v‖ ≥ ε for all translations (u, I ), (v, I ) ∈ L. (2.22)

Next we define what we mean by saying that L is discrete, for which we use an assertion
equivalent to (2.22), and that L is three-dimensional.

Definition 2.6 A subgroup L of T(3) is discrete if it satisfies the following condition: Let
r > 0 and Br := {v ∈ V : ‖v‖ ≤ r}; for any r > 0, the set {u ∈ Br : (u, I ) ∈ L} is finite. It is
three-dimensional if there are three linearly independent vectors f i (i = 1,2,3) in V such
that (f i , I ) ∈ L for each i. �

Definition 2.7 A subgroup L of T(3) is said to be a lattice group19 if it is discrete and three-
dimensional. �

Theorem 2.8 Let L be a lattice group. Then there exists a right-handed triad of linearly
independent vectors b1, b2, and b3 ∈ V such that

L= {(u, I ) ∈ G : u= u1b1 + u2b2 + u3b3, where u1, u2, u3 ∈ Z}, (2.23)

where Z denotes the set of integers.

Proof By assumption there are three linearly independent vectors f i ∈ V (i = 1,2,3) such
that (f i , I ) ∈ L. Without loss of generality, we choose a labeling so that f 1,f 2, and f 3

constitute a right-handed triad in V . Recall that we have chosen a Cartesian coordinate
system in E3 and identify V with R

3 (see Sect. 2.2). Henceforth in this proof we will write
R

3 for V whenever no confusion should arise. Moreover, let L := {u ∈ R
3 : (u, I ) ∈ L}.20

Let Π [f 1,f 2,f 3] be the closed parallelepiped in R
3 subtended by f 1, f 2, and f 3.

Since L is discrete, the number of vectors u ∈ L ∩ Π [f 1,f 2,f 3] is finite. Let b1 be
the shortest vector in L that is parallel to f 1; clearly b1 ∈ Π [f 1,f 2,f 3]. Let P [f 1,f 2]
be the closed parallelogram subtended by f 1 and f 2. Let A = {u ∈ L ∩ P [f 1,f 2] :
u and b1 are linearly independent}. The set A is non-empty because f 2 ∈ A. Choose an
element b2 ∈ A such that among the parallelograms P [b1,u] (u ∈ A), P [b1,b2] has the
smallest non-zero area. Among the vectors in L∩Π [f 1,f 2,f 3] choose one, which we call
b3, such that the parallelepiped Π[b1,b2,b3] has the smallest non-zero volume. Clearly
b1, b2, and b3 constitute a right-handed triad of linearly independent vectors in L, and
Π [b1,b2,b3] ⊂Π [f 1,f 2,f 3].
19Here we adopt the terminology of Yale [349, Sect. 3.3] and Miller [232, p. 34]. The term “lattice group”,
however, has been used by Ericksen [107], Pitteri and Zanzotto [260, p. 73], and others to mean what is called
“Bravais group” in the sixth edition (2016) of the ITA [301, p. 29]).
20Later we shall identify L as the lattice that represents L.
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Let u ∈ L and u = u1b1 + u2b2 + u3b3, where ui ∈ R for i = 1,2,3. Let [ui] be the
integral part of ui , i.e., [ui] is the largest integer such that [ui] ≤ ui < [ui] + 1. Let βi =
ui − [ui] for each i. Then 0≤ βi < 1. Since L is a subgroup of T(3), we have

b := u−
3∑

i=1

[ui]bi =
3∑

i=1

βibi ∈ L. (2.24)

Note that b ∈Π [b1,b2,b3] ⊂Π [f 1,f 2,f 3]. We claim that βi = 0 for each i.
Suppose 0 < β3 < 1. Then the parallelepiped Π [b1,b2,b] has volume

(b1 × b2) · b= β3(b1 × b2) · b3,

which is smaller than that of Π [b1,b2,b3]. This contradicts the fact that b3 ∈ L is chosen
to make Π [b1,b2,b3] have the smallest volume among its peers. Hence we conclude that
β3 = 0.

Now suppose 0 < β2 < 1. Then P [b1, β1b1 + β2b2] has an area equal to β2‖b1 × b2‖,
which is smaller than that of P [b1,b2]. This contradicts the fact that b2 ∈ L is chosen to
make P [b1,b2] have the smallest area. Therefore there must hold β2 = 0.

Finally, suppose 0 < β1 < 1. Then b= β1b1 is parallel to f 1 and is shorter than b1, which
is again a contradiction. Thus we have also β1 = 0.

In conclusion u= u1b1 + u2b2 + u3b3, where ui = [ui] ∈ Z for each i. �

Clearly the conclusion of Theorem 2.8 is equivalent to the assumption that L is non-
trivial, discrete, and three-dimensional. An alternate approach is to adopt assertion (2.23)
directly as the starting point. In that approach assertion (2.23) is sometimes called the Lattice
Postulate.

Definition 2.9 A subgroup G of the Euclidean group E(3) is said to be a space group if
L := G ∩ T(3) is a lattice group. �

Definition 2.10 A body C in a placement κ0 such that κ0(C) = E3 is said to be an ideal
crystal if its complete symmetry group G under rigid transplacements is a space group. �

Let x be a point in κ0(C). The orbit of x under the action of L, namely

L(x)= {(u, I )x : (u, I ) ∈ L}
= {x + u1b1 + u2b2 + u3b3 : u1, u2, u3 ∈ Z} (2.25)

is called a lattice of the ideal crystal (C,κ0) in E3. By definition of L, every point in the
L-orbit of x is equivalent to x. The lattice L(x) may be taken as a graphical representation
of the lattice group L. In this sense we may choose any specific x and take L(x) as the
representative lattice, and the locations of the lattice points in E3 has no particular mean-
ing. On the other hand, for a given ideal crystal (C,κ0) with specific crystal structure (i.e.,
arrangement of atoms, ions, or molecules that comprise the crystal), there may be special
locations in the crystal (see Sect. 2.10.2 for an example) which, for convenience of descrip-
tion and computations, are the best candidates to serve as both the origin O of the chosen
Cartesian coordinate system (see Sect. 2.2) and the starting point x of a lattice. Under this
choice, x = 0= (0,0,0) and the (representative) lattice of the ideal crystal is

L := L(0)= {s ∈ R
3 : s = s1b1 + s2b2 + s3b3,where s1, s2, s3 ∈ Z}. (2.26)
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Then the position vectors of lattice points in L are exactly the same vectors in R
3 which

define the translations in L. The vector s = s1b1+s2b2+s3b3 for some specific s1, s2, s3 ∈ Z

is called a lattice vector. If (u, I ) ∈ L, then (u, I )s = u+ s ∈ L. Hence we have

(u, I )L= (u, I )L(0)= L(0)= L. (2.27)

Thus the lattice L remains invariant under the translations (u, I ) ∈ L. By abuse of language
we shall, for convenience, treat the assertions (u, I ) ∈ L and u ∈ L as synonymous and use
them interchangeably.

Remark2.11 The lattice group L= T(3)∩G of an ideal crystal (C,κ0) describes the periodic
translational symmetry of the crystal, whereas the space group G covers the full symmetry
of the crystal structure (or crystal pattern) under rigid transplacements. The lattice L =
L(0) is a mathematical construct that serves as a graphical depiction of L. In particular,
the elements of L, i.e., the lattice points, should not be confused with the locations of the
physical constituents (atoms, ions, etc.) of C. For instance, the lattice points of the hexagonal
close-packed structure (see Sect. 2.10.2) are usually chosen such that they are all located
within the interstitial voids. �

2.3.2 Primitive Unit Cells

Definition 2.12 The lattice vectors b1, b2, b3 in (2.23) and (2.26) are said to constitute a
primitive lattice basis of L, and they are called primitive lattice vectors. The parallelepiped21

Π [b1,b2,b3] := {u1b1 + u2b2 + u3b3 : 0≤ ui < 1 for i = 1,2,3} (2.28)

is called a primitive unit cell of lattice L. �

Every translate of Π under L, i.e., hΠ , where h ∈ L, is also called a primitive unit cell.
Note that hΠ contains only one lattice point, namely h0, and that h1Π∩h2Π = ∅ if h1 �= h2.
Moreover, as R

3 =⋃
h∈L hΠ , the entire space R

3 can be covered by stacking translates of
Π together. Given a translation subgroup L of G , however, the linearly independent basis
that generates L and its associated lattice L through (2.23) and (2.26), respectively, is not
unique. For instance, we may replace the triad b1,b2,b3 by b′1,b2,b3, where b′1 = b1+b2. In
fact, the possible choices of basis are infinite. In general, a primary lattice basis b1,b2,b3 of
L can be chosen as follows (cf. proof of Theorem 2.8): Pick any three linearly independent
lattice vectors f 1,f 2,f 3 such that f 1 × f 2 · f 3 > 0. Let Π[f 1,f 2,f 3] be the closed
parallelepiped that they subtend. Choose the shortest non-zero lattice vector parallel to f 1

as b1. In the closed parallelogram spanned by f 1 and f 2, choose a lattice vector b2 such
that the parallelogram spanned by b1 and b2 has the smallest non-zero area. Finally pick a
lattice vector b3 in Π [f 1,f 2,f 3] such that the parallelepiped Π [b1,b2,b3] has the smallest
non-zero volume. Then b1,b2,b3 will serve as a primitive lattice basis of L.

Let f 1, f 2, and f 3 be a right-handed triad of lattice vectors. Given a primitive lattice
basis b1, b2, and b3 of L, we may express each f i in terms of the primitive basis. By (1.43)

21Here we follow [344, p. 723]; see also [241, p. 14, Definition 2.8]. In the literature the unit cell is seldom
explicitly defined but is often implicitly meant to be a translate under L of the closed parallelepiped Π =
{u1b1+u2b2+u3b3 : 0≤ ui ≤ 1 for i = 1,2,3}. While each such unit cell hΠ (h ∈ L) contains eight lattice
points located at its vertices, it is said that each lattice point at a vertex is shared by eight unit cells, which
works out to one lattice point per unit cell.
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f i = P
j

ibj , for some P
j

i ∈ Z (1 ≤ i ≤ 3,1 ≤ j ≤ 3), and the summation convention is in
force. Let P = [(P T )

j

i ]—cf. (1.46)—be the matrix of the change of basis from {bi} to {f i},
and let V(·) denote the volume of the parallelepiped in question. We have

V(Π [f 1,f 2,f 3])= (f 1 × f 2) · f 3

= (Pf 1 ×Pf 2) ·Pf 3

= (detP )
(
(f 1 × f 2) · f 3

)

= (detP )V(Π [b1,b2,b3]). (2.29)

It follows that

V(Π [b1,b2,b3])≤V(Π [f 1,f 2,f 3]) (2.30)

because detP is a positive integer. If {f i} is also a primitive lattice basis, reversing the
roles of {bi} and {f i} in (2.30) yields V(Π [f 1,f 2,f 3])≤V(Π [b1,b2,b3]). Combining the
preceding inequality with (2.30), we conclude that V(Π [f 1,f 2,f 3]) = V(Π [b1,b2,b3]).
Hence every primitive unit cell of lattice L has the same volume.

Remark 2.13 In crystallography, besides primitive unit cells, it is standard practice to use
also non-primitive lattice bases and centered unit cells to increase the symmetry of the cell
and to get the simplest formulas for the calculation of distances and angles. In general,
a set of symmetry-adapted conventional basis vectors a1, a2, and a3 is chosen, and the
(conventional) unit cell is defined by

Π [a1,a2,a3] := {u1a1 + u2a2 + u3a3 : 0≤ ui < 1 for i = 1,2,3}. (2.31)

See Sect. 2.8. �

Remark 2.14 In physics texts the term “basis” is sometimes used (see, e.g., [37, p. 23], [128,
p. 1-26]) in the description of crystal structure as follows [68, p. 19]: “The crystal structure
can be described by associating with each lattice point a group of atoms. This group of
atoms is called the basis of the structure. Thus, a crystal structure is made up of a lattice and
a basis. Another way of putting this is to say that a crystal structure is obtained by repeating,
throughout space, a unit cell and the atoms [i.e., the basis] within.” We shall adopt this
description of crystal structure at our convenience. �

2.3.3 Crystallographic Point Groups

Let π : E(3)→O(3) be the mapping (v,Q) �→Q. By (2.15) we have

π((v2,Q2)(v1,Q1))= π((v2 +Q2v1,Q2Q1))

=Q2Q1 = π((v2,Q2))π((v1,Q1)). (2.32)

Hence π is a homomorphism.22 It follows that the kernel

π−1(I )= {(v, I ) ∈ E(3) : v ∈ V } = T(3), (2.33)

the subgroup of translations in E(3).

22Cf. Sects. A.3 and A.4 in Appendix A for definitions of the terms homomorphism, isomorphism, kernel,
normal subgroup, and quotient group.
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Let G be a space group and L := G ∩T(3) the lattice group pertaining to G . For any g ∈ G
and h ∈ L, since π(h)= I we have

π(ghg−1)= π(g)π(h)π(g−1)= π(g)π(g−1)= I , (2.34)

which implies ghg−1 ∈ L. Hence gLg−1 = L for each g ∈ G , i.e., L is a normal subgroup
of G . Consider the restriction of π to G ⊂ E(3), which is still a homomorphism. The image

K := π(G)= {Q ∈O(3) : (v,Q) ∈ G for some v ∈ V } (2.35)

is a subgroup of O(3), and K ∼= G/L, i.e., K is isomorphic to the quotient group G/L; cf.
Appendix A.

Let g = (v,Q) ∈ G and h = (u, I ) ∈ L. By (2.34), we know that ghg−1 ∈ L. Let us
compute the explicit form of the element ghg−1. Using (2.13), we have

ghg−1 = (v,Q)(u, I )(−QT v,QT )

= (v,Q)(u−QT v,QT )

= (v+Qu− v, I )= (Qu, I ). (2.36)

Hence (u, I ) ∈ L implies that (Qu, I ) ∈ L for Q ∈ K = π(G). Or, in terms of position
vectors s of lattice points in L= L(0), we have

s ∈ L=⇒Qs ∈ L or QL⊂ L for each Q ∈K. (2.37)

For Q ∈ K, we have Q−1 ∈ K. By (2.37), Q−1L ⊂ L, which implies Q(Q−1L)⊂QL or
L⊂QL. Hence we conclude that

QL= L for each Q ∈K, (2.38)

i.e., the crystal lattice L is invariant under the action of the group K. Note that by our choice
of coordinate system, the lattice point 0 is a fixed point of K.

Definition 2.15 Let G be the space group of an ideal crystal (C,κ0). The group K= π(G)⊂
O(3) is called the crystallographic point group of G (or of the ideal crystal (C,κ0)). �

We summarize (2.38) as the first part of the following proposition.

Proposition 2.16 Let K and L be the crystallographic point group and lattice group, respec-
tively, which pertain to the space group G of an ideal crystal (C,κ0). Let L= L(0) be the
lattice chosen to represent L. Then QL= L for each Q ∈K, and K is finite.

Proof We have already proved the first part of the proposition in (2.38). Let us proceed
to prove that K is finite. Let {bi : i = 1,2,3} be a primitive lattice basis of L. For each
Q ∈ K ⊂ O(3), ‖Qbi‖ = ‖bi‖ and Qbi ∈ L. Conversely, the three position vectors Qbi

determine Q as follows. Let b1, b2, and b3 be the basis reciprocal to b1, b2, and b3. By (1.42),
the matrix [Qi

j ] which represents Q under the basis bi ⊗ bj has entries Qi
j = bi ·Qbj .

Since L is discrete, on the sphere S ri of radius ri = ‖bi‖ there is only a finite number
of points s ∈ L. Thus the set {Qbi ∈ L :Q ∈ K and i = 1,2,3} is finite, which implies
that there is only a finite number of rotations or roto-inversions Q which satisfy, for all
i = 1,2,3, Qbi ∈ L∩ S ri for ri = ‖bi‖. Hence the crystallographic point group K has only
a finite number of elements. �
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Remark 2.17 As mentioned in Footnote 18, some authors identify O(3) with Ô ⊂ E(3), the
subgroup of isometries on E3 which are rotations or roto-inversions with the origin as fixed
point. In the same vein, a crystallographic point group is defined as a group of isometries
on E3 which brings a translation lattice L into self-coincidence and leaves at least one point
fixed (see, e.g., [101, p. 90]). By Proposition 2.16, K̂ := {(0,Q) :Q ∈ K} is a crystallo-
graphic point group in this sense if and only if K is one under Definition 2.15. �

2.3.4 Characterization of Elements of Space Group

Let G ⊂ E(3) be the space group (i.e., the complete symmetry group) of an ideal crystal
(C, κ0). As shown in Sect. 2.3.3, the translations L = G ∩ T(3) in G constitute a normal
subgroup of G , which we call the lattice group of G . Moreover the quotient group

G/L= {(v,Q)L : (v,Q) ∈ G}, (2.39)

under the map (v,Q)L �→Q, is isomorphic to the crystallographic point group K of G . The
space group G is partitioned into a disjoint union of left cosets:23 The elements (v,Q) in the
same coset have the same rotation or roto-inversion Q ∈K, and they differ from each other
by having different translations v.

Let us examine more closely the elements in the left coset (v,Q)L ∈ G/L, where
(v,Q) ∈ G and Q ∈K. Let (u, I ) ∈ L. We have

(v,Q)(u, I )= (v +Qu,Q). (2.40)

Since u ∈ L and Q ∈K, by Proposition 2.16 we see that Qu ∈ L. Moreover, as u runs over
the lattice L, Qu also runs over L. As R3 =⋃

h∈L hΠ (cf. Sect. 2.3.2), there clearly exists a
unique vector α in the primitive unit cell Π (i.e., α = α1b1+α2b2+α3b3, where 0≤ αi < 1
for i = 1,2,3) such that v = α + s for some s ∈ L. Then

v+Qu= α + s +Qu= α + t for some t ∈ L. (2.41)

Since (−Q−1t, I ) ∈ L,

(v,Q)(−Q−1t, I )= (α,Q) ∈ (v,Q)L. (2.42)

Hence each coset (v,Q)L has a representative of the form (α,Q), where α ∈Π .
The discussion above indicates also that for each Q ∈ K there is only one element

(α,Q) ∈ G with α ∈Π . Let us prove the preceding assertion in another way. Let α,β ∈Π .
Suppose that both (α,Q) and (β,Q) are in G . Then (α,Q)(β,Q)−1 ∈ G . But

(α,Q)(β,Q)−1 = (α,Q)(−Q−1β,Q−1)= (α − β, I ) ∈ L. (2.43)

For each i, the components αi and βi of α and β with respect to the basis b1,b2, and b3

satisfy −1 < αi − βi < 1. Thus the only possibility for α − β ∈ L is α = β .
The findings in the present section can be summarized as follows. Let G be the space

group of a given ideal crystal (C,κ0), and let L be the lattice group and K the crystal-
lographic point group of G . The space group G can be taken as a disjoint union of left
cosets. Each coset consists of elements of the form (α+ t,Q) with the following properties:

23Cf. Sect. A.3.1 in Appendix A on coset decomposition.
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(i) Q ∈K is the same for all elements in the same coset and is different for elements belong-
ing to different cosets. (ii) α ∈Π , where the primitive unit cell Π is defined in Sect. 2.3.2,
and it is the same for all elements of the same coset. (iii) t ∈ L, and it runs over the lattice
group to cover all the elements of the same coset.

Note that (0,Q), where Q ∈ K, need not be an element of G . Before we discuss further
on space groups, we should add an interlude on change of coordinate system.

2.3.5 Change of Coordinate System

Suppose we start working with an affine coordinate system with origin O and right-handed
basis f 1, f 2, and f 3. Consider another affine coordinate system with origin at some O ′ ∈ L
and a right-handed triad f ′i (i = 1,2,3) as basis. Let f ′i = Pf i (i = 1,2,3), where P

is the linear transformation that defines the change of basis (cf. (1.43) in Sect. 1.2). Let

p =−−→OO ′. Since both O and O ′ are in L, (p, I ) ∈ L and p ∈ L. Let x and x ′ be position
vectors that describe the same place in E3 under the original (unprimed) and new (primed)
coordinate systems. Note that x ∈ TOE3 and x ′ ∈ TO ′E3, where TOE3 and TO ′E3 are the
tangent spaces to E3 at O and O ′, respectively. Henceforth in this section we shall identify
TOE3 and TO ′E3 with R

3 and adopt the commonly used convention in the crystallography
literature (see, e.g., [133, 241]) where x, p, and x ′ are treated as column vectors in R

3 and
P as the matrix of change of basis from {f i} to {f ′i}; cf. Remarks 1.1 and 1.2. Since the
column vectors x − p and x ′ represent the same vector in V under the basis {f i} and {f ′i},
respectively, we have (cf. (1.56)1)

Px ′ = x − p or x = Px ′ + p, (2.44)

and

x ′ = P−1(x − p). (2.45)

Formally the preceding equation has the same form as that of a rigid transplacement. Using
the notation in Sect. 2.2, we have

x = (p,P )x ′ = (p, I )(0,P )x ′, (2.46)

and

x ′ = (p,P )−1x = (−P−1p,P−1)x. (2.47)

In (2.46)2 we have decomposed (p,P ) as a succession of two operations: First, the column
vector x ′ ∈ TO ′E3 under the basis {f ′i} is transformed by P so that it has the correct compo-
nents under the basis {f i}. Then the translation p is added to it so that the resulting vector
is in TOE3, the tangent space to E3 at O . Note that the order of the two operations cannot
be reversed.

Let h : κ0(C)→E3 be a rigid transplacement of a perfect crystal (C,κ0(C)). Under the
original (unprimed) and new (primed) affine coordinate system, the transplacement is given
by

y := h(x)= v+Qx = (v,Q)x, (2.48)

y ′ := h(x ′)= v′ +Q′x ′ = (v′,Q′)x ′, (2.49)
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respectively, where Q and Q′ are a rotation or roto-inversion centered at O and O ′, respec-
tively. From (2.48) and the rule (2.46) on change of coordinate system, we have

(p,P )y ′ = (v,Q)(p,P )x ′. (2.50)

Substituting the right-hand side of (2.49) for y ′ in the preceding equation, we obtain

(p,P )(v′,Q′)x ′ = (v,Q)(p,P )x ′ (2.51)

for all x ′ ∈ R
3. Hence we conclude that

(v′,Q′)= (p,P )−1(v,Q)(p,P )

= (−P−1p+P−1(v +Qp),P−1QP ), (2.52)

which implies

Q′ = P−1QP , (2.53)

v′ = −P−1p+P−1(v+Qp). (2.54)

At the end of Sect. 2.3, we prove that if (v,Q) ∈ G , the space group of ideal crystal
(C, κ0(C)), and if (u, I ) ∈ L, the lattice group of G , then (Qu, I )L = L. Under the new
coordinate system, the space group G becomes G ′, the elements (v′,Q′) of which are related
to those (v,Q) of G by equations (2.53) and (2.54). Likewise, by (2.45) the position vector
s of a lattice point in L becomes s ′ = P−1(s − p), the position vector of the same lattice
point under the new coordinate system.

Let L′ = {(u′, I ) : (u, I ) ∈ L} and K′ = {Q′ :Q ∈ K}. Let (u′, I ) ∈ L′ and Q′ ∈ K′.
Then we have

Q′u′ = P−1QP (P−1(u− p))

= P−1(Q(u− p)). (2.55)

Since Qu ∈ L and Qp ∈ L (because p ∈ L), Q(u− p) is a lattice point in L and Q′u′ is
simply the position vector of this lattice point in the new coordinate system. Thus Q′u′ ∈ L.

Hence it can be seen that our finding in Proposition 2.16 is independent of the affine
coordinate system chosen.

2.3.6 Space-Group Types and International Tables A

Here we adopt the same convention as that of Sect. 2.3.5. In particular the pair (p,P ),
where p denotes the column vector specifying a shift of the origin and P (with detP > 0)
is the matrix of change of basis in V , defines a change of the right-handed affine coordinate
system.

Definition 2.18 Two space groups G and G ′ are said to be equivalent if there is a change
(p,P ) of right-handed affine coordinate system such that

G ′ = (p,P )−1G(p,P )= {(p,P )−1(v,Q)(p,P ) : (v,Q) ∈ G}. (2.56)

Each equivalence class of space groups defines a space-group type. Two equivalent space
groups are of the same type. �
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Building on the contributions by Camille Jordan, Leonhard Sohncke, and others, Ergraf
Fedorov and Arthur Schöflies, who worked largely independently, successfully enumerated
all 230 space-group types in 1891 [21, 67]. By now various methods for derivation of the
230 space-group types are available; see, e.g., [66, 101, 176, 177, 354] and the references
therein. Derivation of the space-group types, however, is beyond the scope of this exposition.

The present exposition concerns texture analysis in the context of macroscopic physics.
Space groups need not be mentioned and are mostly not mentioned in the theoretical devel-
opment of macrotexture analysis (cf. Sect. 2.11 for further discussion), while point-group
symmetries figure prominently in that development. On the other hand, measurements of
macrotexture require knowledge on the structure of the crystallites that comprise the poly-
crystal in question. The space group G of an ideal crystal consists of symmetry operations
(v,Q) of its crystal structure, which provide some essential and useful information about
the structure. In fact the structure of a specific ideal crystal is often described succinctly by
specifying its space-group type and appealing to the wealth of information related to each
of the 230 space-group types given in International Tables A (ITA) [7, 133].

Take the mineral calcite (CaCO3) for example [129, pp. 156–157]. The unit cell has 30
atoms: 6 Ca, 6 C, and 18 O. To specify the crystal structure, it suffices to name its space-
group type (R3̄c, No. 167),24 provide the two metric parameters of the unit cell that are not
determined by symmetry, and give the position of one Ca, one C, and one O atom, respec-
tively. The positions of the other 27 atoms are determined by the space-group symmetry, all
relevant information of which can be found in ITA.

With applications to common metals such as aluminum, copper, steels, and titanium
in mind, we shall restrict attention to three simple crystal structures, namely: the face-
centered cubic structure (fcc), the body-centered cubic structure (bcc), and the hexagonal
close-packed structure (hcp). We shall study these three crystal structures at the end of this
chapter. Until then we will shift our focus to crystallographic point groups and other topics.

2.3.7 Point-Group Types and Conjugacy Classes of Subgroups of O(3)

Let K1 and K2 be subgroups of O(3). The subgroup K1 is said to be conjugate to K2 if there
is a rotation or roto-inversion Q ∈O(3) such that QK1Q

−1 =K2 as sets (cf. Definition A.9).
Such two subgroups are said to be conjugate subgroups of O(3). For a subgroup K of O(3),
the set {QKQ−1 :Q ∈O(3)} is called the conjugacy class of subgroups of O(3) represented
by K. It is easy to verify that two subgroups which belong to the same conjugacy class are
conjugate to each other.

Let K be a subgroup of O(3), and let Q= IR be a roto-inversion. Since

QKQ−1 = (IR)K(IR)−1 =RKR−1, (2.57)

it follows that

{QKQ−1 :Q ∈O(3)} = {RKR−1 :R ∈ SO(3)}. (2.58)

Each element g of K is either of the form P (n,ω) or IP (n,ω), where P is a rotation.
If the physical object of which K is its symmetry group undergoes a rotation R, then the
rotation P pertaining to the element g will become P (Rn,ω)= RP (n,ω)R−1, where we
have appealed to Euler’s theorem (1.82) at the last step; cf. Example 2.1 in Sect. 2.1 for a

24In [129] the space-group type in question is mistyped as R3c, which is No. 161.
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concrete illustration. Thus the symmetry group of the object after it undergoes a rotation R is
RKR−1. Hence we can say that two subgroups of O(3) which belong to the same conjugacy
class describe the same physical symmetry.

Alternatively, we may adopt the passive point of view: instead of rotating the object,
we let it remain as it is and consider change of coordinate system. We write RKR−1 =
(R(p))−1KR(p), where R(p) = R−1 is the passive rotation (cf. Sect. 1.5) pertaining to the
active rotation R. Under a given Cartesian coordinate system with origin at the common
fixed point of elements in O(3), each rotation or roto-inversion P ∈ K is given by a 3× 3
orthogonal matrix [Pij ]. Hence two subgroups in the same conjugacy class of O(3) may be
taken as representations of the symmetry group of the same physical object in two Cartesian
coordinate systems.

The equivalence of two space groups naturally leads to the equivalence of their associated
point groups.

Definition 2.19 Let K and K′ be point groups pertaining to space groups G and G ′, respec-
tively. The point groups K and K′ are equivalent or are of the same point-group type if G
and G ′ are of the same space-group type. �

Let G and G ′ be two equivalent space groups and G ′ = (p,P )−1G (p,P ); see Defini-
tion 2.18. Let K = {Q1, . . . ,Qn} and K′ = {Q′

1, . . . ,Q
′
n} be crystallographic point groups

that pertain to G and G ′, respectively. By (2.53), we may label the elements in K and K′ so
that

Q′
k = P−1QkP for k = 1, . . . , n. (2.59)

The following proposition, however, shows that the criterion for equivalence of point groups
can be sharpened.

Proposition 2.20 Let I be an index set. Let H = {Qα : α ∈ I } and H′ = {Q′
α : α ∈ I } be

subgroups of O(3) such that for some linear transformation F on V with detF > 0 there
holds

Q′
α = FQαF

−1 for each α ∈ I . (2.60)

Then there is a rotation R on V such that

Q′
α =RQαR

−1 for each α ∈ I . (2.61)

A version of this proposition for V being an n-dimensional space is the content of a
1947 paper by Bäbler [13]. However, as pointed out by C.C. MacDuffee in Mathematical
Reviews (MR0020541), what Bäbler did was to give “[a]n elementary proof of [a] theorem
of C. Jordan” ([168, p. 162] = p. 137 of Œuvres, Tome III). Here we give a proof that follows
the broad outline of the proof presented in Burckhardt [66, §7 of both editions] but, as we
are concerned only with the case n= 3, can be and is made considerably simpler. Before we
proceed to the proof, we should go over some mathematical prerequisites.

A second-order tensor S is symmetric if ST = S. It is positive definite if u · Su > 0 for
all u ∈ V \ {0}. By the spectral theorem, each symmetric tensor S can be written as

S = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3, (2.62)
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where {ei : i = 1,2,3} is a set of orthonormal eigenvectors of S and λi is the eigenvalue
associated with the eigenvector ei . Let

I1(S)= λ1 + λ2 + λ3, I2(S)= λ1λ2 + λ2λ3 + λ3λ1, I3(S)= λ1λ2λ3, (2.63)

which are called the principal invariants of the symmetric tensor S. The polynomial

f (λ) := (λ− λ1)(λ− λ2)(λ− λ3)= λ3 − I1(S)λ
2 + I2(S)λ− I3(S) (2.64)

is called the characteristic polynomial of S, and the equation f (λ) = 0 its characteristic
equation. Clearly the eigenvalues λ1, λ2, and λ3 are roots of the characteristic equation of
S. Let f (S)= S3 − I1(S)S

2 + I2(S)S − I3(S)I . For i = 1,2,3, it is easy to see that

f (S)ei = f (λi)ei = 0. (2.65)

Since {ei : i = 1,2,3} is a basis in V , we conclude that

S3 − I1(S)S
2 + I2(S)S − I3(S)I = 0, (2.66)

i.e., a symmetric tensor satisfies its characteristic equation.25

If the symmetric tensor S is positive definite, all its eigenvalues λi > 0. Then the tensor

U :=√
λ1 e1 ⊗ e1 +

√
λ2 e2 ⊗ e2 +

√
λ3 e3 ⊗ e3, (2.67)

is well defined, and it is symmetric and positive definite. Clearly we have U 2 = S, and it is
easy to show26 that U , as defined in (2.67), is the only symmetric and positive definite tensor
which satisfies the equation U 2 = S. We shall write U =√S and call it the square root of
S.

The following lemma will be instrumental in our proof of Proposition 2.20. The short
proof of this lemma presented here is taken from Ting [316].

Lemma 2.21 Let C be a symmetric and positive definite second-order tensor, and let U =√
C. Then U is given in terms of C by an explicit formula of the form

U = β0(λ1, λ2, λ3)I + β1(λ1, λ2, λ3)C + β2(λ1, λ2, λ3)C
2, (2.68)

where β0, β1, and β2 are explicit, scalar symmetric functions of the eigenvalues λi (i =
0,1,2) of U .

Proof Since U is symmetric, it satisfies its characteristic equation (cf. (2.66)):

U 3 − I1(U)U 2 + I2(U)U − I3(U)I = 0. (2.69)

25Of course, we may write down (2.66) immediately by appealing to the Cayley-Hamilton theorem (see, e.g.,
[33, p. 296], [40, p. 154]), which asserts that every real or complex square matrix satisfies its own character-
istic equation. But, as we shall need the Cayley-Hamilton equation (2.66) only for symmetric second-order
tensors and a proof for this special case is effortless, we include a proof here for completeness.
26The following short and elegant proof is due to Stephenson [303]. Let ei be an eigenvector of S with
positive eigenvalue λi . Then (U2 − λiI )ei = (U + √λiI )(U − √λiI )ei = (U + √λiI )vi = 0, where
vi = (U −√λiI )ei . If vi �= 0, then Uvi = −

√
λivi , i.e., U has a negative eigenvalue −√λi , which is a

contradiction. Hence it is necessary that vi = 0, i.e., Uei =
√
λiei .
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Multiplying both sides of (2.69) by U , we obtain

U 4 − I1(U)U 3 + I2(U)U 2 − I3(U)U = 0. (2.70)

Eliminating U 3 from (2.69) and (2.70), and substituting U 2 and U 4 by C and C2, respec-
tively, we arrive at an explicit formula of the form (2.68). �

Explicit formulas for the symmetric scalar functions βi (i = 1,2,3) are obtained at the
last step of the proof of the lemma. We do not present them here because these explicit
formulas are not needed for our proof of Proposition 2.20.

Proof of Proposition 2.20 Let C := F T F = U 2. Fix an α ∈ I . Substituting Q′
α = FQαF

−1

into the equation (Q′
α)

T Q′
α = I , we observe after a simple computation that CQα =QαC,

which together with (2.68) implies that UQα =QαU . Let R = FU−1. Then we have

RT R =U−T F T FU−1 =U−1U 2U−1 = I ,

where we have used the fact that U is symmetric, and detR = detF det(U−1) > 0. Hence
R is a rotation. Substituting F =RU into (2.60), we obtain

Q′
α =RUQαU

−1R−1 =RQαUU−1R−1 =RQαR
−1,

where R is a rotation on V . �

Note that we have put Proposition 2.20 in the context of active transformations, i.e.,
(2.60) is adopted in place of (2.59), where the transformation P arises from change of coor-
dinate system. Under the passive view, (2.61) is replaced by

Q′
α = (R(p))−1QαR

(p) for each α ∈ I , (2.71)

where R(p) defines a rotation of the coordinate system. Irrespective of whether one adopts
the active or passive view of transformations, a criterion for the equivalence of two crystal-
lographic point groups can be put as follows.

Corollary 2.22 Two crystallographic point groups K and K′ are equivalent or of the same
point-group type if they belong to the same conjugacy class of O(3), i.e., there exists a
rotation R on V such that K′ =RKR−1. �

In the literature it is usual to use the same name for a specific group in a conjugacy
class of O(3) and for the conjugacy class (or point-group type) represented by this specific
group. For instance, in Example 2.1 the group generated by the two rotations R(e3,2π/3)
and R(e1,π) is called D3. So is each group generated by R(n,2π/3) and R(m,π), where
n and m are two orthogonal unit vectors. Moreover, the conjugacy class or point-group
type that contains all the aforementioned groups as members is also called D3. Whether the
name D3 refers to a point-group type or a specific group of that type should be clear from
the context where the name appears.

2.4 Finite Subgroups of the Rotation Group

To prepare for our study of crystallographic point groups, in this section we enumerate the
conjugacy classes of finite rotation groups.

2.4 Finite Subgroups of the Rotation Group
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2.4.1 Poles, Stabilizers, and Rotations About the Same Axis

Let G be a finite subgroup of SO(3). We denote by |G| the number of elements in G. A point
b on the unit sphere S2 is a pole of G if gb= b for some g �= I ∈G. Each g �= I in G has a
rotation axis which meets S2 at two diametrically opposite poles.

Let a ∈ S2 be a pole of G. It is easy to verify that

Ga := {g ∈G : ga = a}, (2.72)

called the stabilizer of the pole a, is a non-trivial subgroup of G. If |Ga | = r , then a ∈ S2 is
called a pole of multiplicity r [339, p. 149] or an r-tuple pole (or a double, triple, quadruple
pole when r = 2,3,4, respectively) [353, second edition, p. 17], and the common axis L of
rotations g ∈Ga is called an axis of order r or an r-fold axis of G.

Proposition 2.23 Let G �= {I } be a finite group of rotations about the same axis, and let
|G| = n. Then there is a rotation P �= I such that G= {I ,P , . . . ,P n−1}.

Proof Let n be a unit vector that defines the axis of rotations in G. Then we can write
G = {R(n, ϕi) : i = 1, . . . , n}, where 0 ≤ ϕi < 2π . Without loss of generality, let ϕ1 = 0.
Then ϕi > 0 for i �= 1. Let θ �= 0 be the smallest of the non-zero rotation angles ϕi . Dividing
ϕi by θ , we obtain for a given 2≤ i ≤ n

ϕi = kθ + ϕr, where k ≥ 1 is a positive integer and 0≤ ϕr < θ is the remainder.

Thus we have

R(n, ϕi)=R(n, kθ + ϕr)=R(n, θ)kR(n, ϕr),

which implies

R(n, ϕr)=R(n, θ)−kR(n, ϕi) ∈G

as G is a group. Since θ is the smallest non-zero rotation angle among all ϕi and 0≤ ϕr < θ ,
we conclude that ϕr = 0. Let P =R(n, θ). Then G= {I ,P , . . . ,P n−1} and P n = I . �

The following corollary is an immediate consequence of Proposition 2.23.

Corollary 2.24 Let a ∈ S2 be a pole of the finite rotational group G. Then the stabilizer Ga

of a is a cyclic subgroup of G, with the common rotational axis L of R ∈Ga defined by a

and its diametrically opposite pole a′. Moreover, we have Ga =Ga′ . �

By Proposition 2.23, Ga has a single generator P , Ga = {I ,P , . . . ,P n−1}, and P n = I .
The element P ∈G is said to be of order n.

From the discussions above, clearly each element R �= I of a non-trivial finite rotation
group can be assigned a specific r ≥ 2 so that it has an r-fold axis and two r-tuple poles.

2 Ideal Crystals and the Crystallographic Groups
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2.4.2 Enumeration of Finite Rotational Groups

Let G �= {I } be a finite rotation group and let X be the set of poles of G, i.e.,

X = {x ∈ S2 : gx = x for some g �= e ∈G}, (2.73)

and let

Ω := {(g,x) : g ∈G,g �= I ,x ∈X, and gx = x}. (2.74)

We shall derive an equation, which will allow us to enumerate all conjugacy classes of finite
rotation groups, by counting in two different ways the number of elements in Ω . Note that
each element (g,x) ∈ Ω consists of a pole x ∈ X and a non-trivial rotation g ∈ Gx , the
stabilizer of x.

Before we proceed to do the counting, we have to go through some mathematical pre-
liminaries.

Lemma 2.25 Each g in G is a bijection on X.

Proof Each g ∈G is a bijection on S2 and, by restriction, is a bijection from X to its image
g(X). To show that g is a bijection on X, it suffices to show that g(X)⊂X. Let x ∈X and
g ∈G. Since x is a pole of G, there is some h �= e ∈G such that hx = x. Then ghg−1(gx)=
gh(x)= gx. Since ghg−1 ∈G, we conclude that gx is a pole of G. �

Let a ∈X be a pole of G. The set

G(a) := {ga ∈X : g ∈G} (2.75)

is called the G-orbit of a in X.

Lemma 2.26 X is a disjoint union of G-orbits.

Proof For each a ∈ X, G(a) ⊂ X; hence we have the union of G-orbits
⋃

a ∈X G(a) ⊂
X. Conversely, a ∈ G(a) for each a ∈ X, which implies X ⊂⋃

a ∈X G(a). Hence X =⋃
a∈X G(a). We claim that distinct G-orbits of X are disjoint. Indeed, if G(a) ∩G(b) �= ∅,

then there is some c ∈ X and g1, g2 ∈ G such that g1a = g2b = c. Thus a = g−1
1 g2b, b =

g−1
2 g1a, and a ∈G(b), b ∈G(a). It follows that G(a)=G(b). �

Lemma 2.27 If a and b lie in the same G-orbit, then |Ga | = |Gb|. In other words, every
pole in the same G-orbit has the same multiplicity.

Proof Let |Ga | = r , |Gb| = s, and Ga and Gb have generators R(a,2π/r) and R(b,2π/s),
respectively. Since a and b lie in the same G-orbit, there is a Q ∈G such that Qa = b. By
Euler’s theorem,

QR(a,2π/r)Q−1 =R(Qa,2π/r)=R(b,2π/r) ∈Gb.

It follows that r = s/m for some positive integer m≥ 1. On the other hand, since

Q−1R(b,2π/s)Q=R(Q−1b,2π/s)=R(a,2π/s) ∈Ga,

there holds s = r/n for some positive integer n ≥ 1. Hence we have m ≥ 1, n ≥ 1, and
mn= 1, which imply m= n= 1 and r = s. �

2.4 Finite Subgroups of the Rotation Group
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Proposition 2.28 Let |G(a)| be the number of elements in the G-orbit of pole a in X. There
holds |G(a)| = |G|/|Ga |.

Proof Let |G(a)| = p and G(a)= {b0,b1, . . . ,bp−1} ⊂X, where b0 = a. Let |Ga | = r . By
Proposition 2.23, we have Ga = {I ,P , . . . ,P r−1}, where P is the generator of Ga . For later
notational convenience, we put P 0 := I . Since G(a) is the G-orbit of a, there exists Qi ∈G

such that Qia = bi for i = 1, . . . , p−1. Let Q0 := I so that we have also Q0a = b0. By the
definition of G(a), for each g ∈G we have ga = bi =Qia for some i = 0,1, . . . , p − 1.
Hence Q−1

i ga = a, i.e., Q−1
i g ∈Ga , which implies g ∈QiGa for some i.

We claim that QiGa ∩ QjGa = ∅ for i �= j . Indeed, suppose h ∈ QiGa ∩ QjGa ,
and i �= j . Then h =QiP

k =QjP
l for some P k and P l in Ga . Since QiP

ka = bi and
QjP

la = bj , it follows that bi = bj and i = j , which contradicts the hypothesis.
By Lemma 2.27, each of the sets QiGa has r elements. Hence the disjoint union⋃p−1
i=0 QiGa has pr elements. We have already shown that for each g ∈G, g ∈QiGa for

some i. Therefore G ⊂ ⋃p−1
i=0 QiGa , which implies |G| ≤ pr . On the other hand, since

QiGa ⊂G for each i, we have
⋃p−1

i=0 QiGa ⊂G. Hence we have |G| ≥ pr . Thus we con-
clude that |G| = pr = |G(a)| |Ga |. �

Remark 2.29 For each 0 ≤ i ≤ p − 1, QiGa is a left coset of Ga in G. Moreover,⋃p−1
i=0 QiGa is a decomposition of G into a disjoint union of left cosets, and |G(a)| is

the index of Ga in G. From the proof of Lemma 2.27 we see that Gbi = {I ,QiPQ−1
i , . . . ,

QiP
r−1Q−1

i } for i = 0,1, . . . , p− 1. �

Remark 2.30 Lemma 2.26, Lemma 2.27, and Proposition 2.28 have their counterparts in
abstract group theory; see Sect. A.5 in Appendix A. An alternative approach is to appeal to
those theorems here. �

We are now ready to derive the required equation by counting the number of elements in
Ω in two ways.

In the first method of counting, we let g in the pair (g,x) runs over G \ {I }. Let n= |G|,
the order of G. Since there are n−1 non-trivial elements in G, each of which has two poles,
there are a total of 2(n− 1) pairs (g,x) in Ω .

In the second method, we take X as a disjoint union of G-orbits (cf. Lemma 2.26) and
count, orbit by orbit, the number of pairs (g,x) with x running over each orbit. Suppose
there are a total number K of G-orbits, say P1, . . . ,PK , in X. Then we have X =⋃K

i=1 Pi

and Pi ∩ Pj = ∅ if i �= j . For each i = 1, . . . ,K , we arbitrarily pick a pole xi in the i-th G-
orbit Pi . Let pi be the number of poles in Pi =G(xi ), the orbit of xi in X. Let ni = |Gxi

|,
where Gxi

denotes the stabilizer of xi . By Lemma 2.27, the number ni is independent of
the choice of xi in the orbit Pi . By Lemma 2.28, we have pi = |G(xi )| = |G|/|Gx i

| = n/ni .
For each y ∈ Pi , there are ni − 1 pairs of the form (g,y) in Ω . Since there are a total of pi

poles in Pi , there are pi(ni − 1) pairs of (g,y) ∈Ω such that y is a pole of g in the i-th
G-orbit Pi . Since X is a disjoint union of the G-orbits, the sum

∑K

i=1 pi(ni − 1) must be
equal to the total number of pairs (g,x) in Ω . Equating the results of the two methods of
counting, we have

2(n− 1)=
K∑

i=1

pi(ni − 1)=
K∑

i=1

n

ni

(ni − 1) (2.76)
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or

2

(
1− 1

n

)
=

K∑

i=1

(
1− 1

ni

)
. (2.77)

Example 2.31 For illustration, let us consider again the group G=D3 = {e, r, r2, s, sr, sr2},
where e = I , r = R(e3,2π/3), r2 = R(e3,4π/3), s = R(e1,π), sr = R(n,π), and
sr2 = R(m,π); here n = R(e3,2π/3)e1, m = R(e3,4π/3)e1. The set X of poles
of G has eight members, namely: N = (0,0,1), S = (0,0,−1), A = (1,0,0) A′ =
(−1,0,0), B = (−1/2,

√
3/2,0), B ′ = (1/2,−√3/2,0), C = (−1/2,−√3/2,0), and

C ′ = (1/2,
√

3/2,0). There are three G-orbits, namely (i) P1 := G(N) = {N,S}, (ii)
P2 := G(A) = {A,B,C}, and (iii) P3 = G(A′) = {A′,B ′,C ′}. The stabilizers of poles in
the first orbit are identical, with e, r , and r2 as its elements. Each of the stabilizers of the
poles in the second and the third orbit has two elements. Indeed we have GA =GA′ = {e, s},
GB =GB ′ = {e, sr}, and GC =GC′ = {e, sr2}. Now, consider the number of elements in the
set Ω = {(g,x) : g �= e ∈G,x ∈X, and gx = x}. If we gather the pairs under the elements
in G=D3, we easily see that there are 2× (6− 1)= 10 elements in the set Ω . In this way
of counting, we obtain the number 10 through the formula given by the left-hand side of
(2.77). Explicitly, the ten pairs in question are (r,N), (r, S), (r2,N), (r2, S), (s,A), (s,A′),
(sr,B), (sr,B ′), (sr2,C) and (sr2,C ′). For orbit P1, we have p1 = 2 and n1 = n/p1 = 3.
Similarly, for orbits P2 and P3, we note that p2 = p3 = 3 and n2 = n3 = 2. Hence by the
right-hand side of (2.76) we obtain

∑
i pi(ni − 1)= 2× 2+ 3× 1+ 3× 1= 10. �

Let us now proceed to determine the possible sets of solutions to (2.77). Setting aside the
trivial case where n= 1, we have n≥ 2 and thence

2 > 2

(
1− 1

n

)
≥ 1. (2.78)

Also, because ni ≥ 2, we observe that

1 > 1− 1

ni

≥ 1

2
, and K >

K∑

i=1

(
1− 1

ni

)
≥ K

2
. (2.79)

Thus the left-hand-side of equation (2.77) is in [1,2) and the right-hand side in [K/2,K).
These dictate that either K = 2 or K = 3.

Case I. K = 2. Then

2

n
= 1

n1
+ 1

n2
. (2.80)

Since 2≤ ni ≤ n, we must have n1 = n2 = n. As we shall demonstrate below, the conjugacy
classes under Case I are those of cyclic groups denoted by Cn in the Schönflies notation.27

Case II. K = 3. Then

2

n
= 1

n1
+ 1

n2
+ 1

n3
− 1. (2.81)

27It is customary to denote a conjugacy class of point groups and its members by the same symbol.
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Table 2 Conjugacy classes of
finite rotation groups K n1 n2 n3 n Conjugacy class

2 n n − n Cn (cyclic)

3 2 2 m 2m Dm (dihedral)

3 2 3 3 12 T (tetrahedral)

3 2 3 4 24 O (octahedral)

3 2 3 5 60 I (icosahedral)

Without loss of generality, let n1 ≤ n2 ≤ n3. Then 1/n1 ≥ 1/n2 ≥ 1/n3. If n1 ≥ 3, then
1/n1 ≤ 1/3 and we conclude from (2.81) that 2/n ≤ 0, which is impossible. Therefore we
must have n1 = 2.

For n1 = 2, (2.81) becomes

2

n
= 1

n2
+ 1

n3
− 1

2
. (2.82)

If n2 ≥ 4, (2.82) implies that 2/n≤ 0, which is again impossible. Therefore n2 ≤ 3.
If n2 = 2, then (2.82) reduces to 2/n= 1/n3 or n= 2m, where m := n3.
If n2 = 3, (2.82) reduces to

2

n
= 1

n3
− 1

6
, (2.83)

which implies n3 ≤ 5. There are three possibilities: n3 = 3,4, or 5, for which n= 12,24, or
60, respectively.

The solutions of Diophantine equation (2.77) are displayed in Table 2, which specifies
the attributes of possible finite rotation groups G. A finite rotation group that satisfies one
set of conditions on K , ni , and n given in Table 2 is the rotational symmetry group of a cer-
tain geometrical object (an n-pyramid, a dihedron,28 a tetrahedron, a cube, an icosahedron,
etc.) [6, 178, 232]. For example, as discussed in Examples 2.1 and 2.31, a rotation group
that satisfies the conditions K = 3, n1 = n2 = 2, n3 = 3, and n= 6 is the symmetry group
of a plane equilateral triangle, but the conditions do not specify the orientation of the plane
equilateral triangle with respect to a given Cartesian coordinate system. Thus those condi-
tions do not specify one rotation group but a conjugacy class of subgroups of O(3). Indeed,
for any orthonormal unit vectors n and m in R

3, the rotations R(n,2π/3) and R(m,π) gen-
erate a rotation group in the class D3. Similarly all rotation groups which satisfy the same
set of conditions on K , ni , and n given in Table 2 constitute a conjugacy class of subgroups
of O(3). The conjugacy classes are listed in the Schönflies notation in the table.

Remark 2.32 Table 2 provides a summary of the complete enumeration of finite rotation
groups. In the last column, the adjective given for a row describes not only the conjugacy
class defined by the parameters K , ni , and n of that row but also the members of the class
in question. Thus a rotation group that belongs to the tetrahedral class T is tetrahedral.
Moreover, a generic member of class Cn, Dm, T , . . . etc. is often referred to as “the cyclic

28In the words of Felix Klein [178, pp. 3–4], “... the plane regular n-gon [= n-sided polygon]. In fact, we can
denote this latter by considering the portion of the plane limited by the sides of the n-gon to be doubled, as
a regular solid—a dihedron, as we will say: only that this solid, contrary to the elementary notion of such,
encloses no space.”
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group Cn”, “the dihedral group Dm”, “the tetrahedral group T ”, . . . etc. In the same vein
Table 1 of Sect. 2.1 is called “multiplication table of group D3”. �

Let us proceed to examine what further information on a finite rotation group G can be
inferred from its values of K , ni , and n. Recall that K denotes the number of G-orbits Pi

in X, the set of poles of G; ni , where i = 1,2, or 3, is the multiplicity of any pole in orbit
Pi ; n= |G|, the number of elements in G. From this information, we obtain pi = n/ni , the
number of poles of multiplicity ni in orbit Pi . As it may occur that ni = nj for i �= j , for
r ≥ 2 the r-tuple poles should be grouped together. Let Nr be the total number of r-tuple
poles. Since two diametrically opposite r-tuple poles determine one r-fold axis, we can
infer that the number of r-fold axes in G is Nr/2. For illustration, consider the following
two examples:

1. Let G be a group of class Cn (n ≥ 2), for which K = 2 and n1 = n2 = n (see Table 2).
Hence G has two orbits, each of which has one n-tuple pole. As there are only two n-
tuple poles, they must be diametrically opposite to each other. It follows that G has one
n-fold axis.29

2. The tetrahedral group T has K = 3, n1 = 2, n2 = n3 = 3, and n= 12, which give p1 = 6,
p2 = p3 = 4. There are a total of 6 double poles and 8 triple poles. Hence the tetrahedral
group G has three 2-fold and four 3-fold rotational axes.

Note that a finite rotation group G, in general, may have an r-fold axis with two r-tuple
poles that lie in two different orbits. This fact is clearly exemplified by the groups Cn. It is
also illustrated by the tetrahedral group: each of its four 3-fold axes has one pole in orbit P2

and one in P3 (cf. Sect. 2.5.2).

Remark 2.33 The simple and elegant proof presented above to establish the enumeration
of finite rotation groups as summarized in Table 2 is commonly attributed (see, e.g., [79,
p. 275], [294], [295, p. 33] to Felix Klein [178, Part I, Chapter V, §2]. There Klein (p. 126)
sets out to determine “all finite groups of linear substitutions of a variable” (i.e., all finite
groups of linear fractional transformations of the Riemann sphere), a problem equivalent
to the enumeration of finite rotation groups (cf. [117, pp. 129–136], [320, Sects. 1.1–1.3]
for expositions of Klein’s proof). While it may not be difficult for the initiated to extract
from Klein’s proof the simple argument to derive Diophantine equation (2.77) in an en-
tirely elementary way, it won’t be an easy feat for those who lack the relevant mathematical
preparation to do the same. As for the elementary proof itself, it is difficult to pinpoint its
first appearance. The earliest instance that I could trace is the 1908 book by Harold Hilton
[154, Chapter VIII, §6–§7], where a proof written in a language that has become archaic30

but follows essentially the same argument as the one above is presented. Hilton, however,
does not cite any reference, perhaps because as he explains in the Preface “[i]n an elemen-
tary treatise references would be out of place” (p. iii). By the time when the elementary
proof appears in the 1937 book of Zassenhaus [353, Chap. 1, §6] and the 1952 book of
Weyl [339, Appendix A], it already assumes essentially the same form and content as that
presented above. In the last few decades this elementary proof (or a minor variant of it) has
been adopted in most books and texts on the subject; see, e.g., [6, 79, 232, 298]. Finally it

29The conclusion is valid for any group in the class Cn. It will save some writing if we start and end with
“the cyclic group Cn”, which means a generic member of class Cn.
30For instance, for what we call poles A, B , C or vectors OA, OB, OC, Hilton [154, p. 111] writes “lines
OA, OB , OC, . . . . We suppose these lines only drawn in one direction from O .”
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should be pointed out that other elementary proofs of the enumeration are available in the
literature; see, e.g., Engel [101, pp. 94–97], Hilton [153, Chapter V], and in particular Cox-
eter [79, §3.8], where the reader will find a proof which “is essentially that of Bravais [48]”
plus an “amplification”. �

2.5 The Crystallographic Point Groups

2.5.1 The Crystallographic Restriction

An orthogonal transformation Q is a symmetry operation on lattice L if it renders the
crystal lattice invariant, i.e., QL = L. By (2.4), for the symmetry operation Q, either
Q= R or Q= IR for some rotation R. For both instances we call R =Q and R = IQ

the rotation associated with Q, respectively. For either case we have RL =QL = L or
RL= IQL= IL= L. In what follows we show that the lattice structure of L imposes a
severe restriction on the possible values of rotation angle ω of the rotation R(n,ω) associ-
ated with the symmetry operation Q.

Let f 1 = a, f 2 = b, and f 3 = c be the basis lattice vectors of L. The matrix [R̃] repre-
senting R under the basis {f i} has entries (cf. (1.42))

R̃ij = f i ·Rf j , (2.84)

which are integers because R(n,ω) renders the lattice L invariant. Let e1, e2, e3 be any
chosen right-handed orthonormal triad. The matrix [R] representing R under the basis {ek}
has entries

Rkl = ek ·Rel = ek ·Rel . (2.85)

Let [A] be the matrix with entries Aij = ei · f j = ei · f j , which defines the change of basis
from {ek} to {f i}. There holds the relation (cf. (1.55))

[R̃] = [A]−1[R][A], (2.86)

from which follows the equation

tr[R̃] = tr[R] = 1+ 2 cosω (2.87)

or

cosω= tr[R̃] − 1

2
. (2.88)

Since tr[R̃] is an integer, within the range [0,π ] the possible values of ω are:

0,
π

3
,
π

2
,

2π

3
,π. (2.89)

This requirement on ω is called the crystallographic restriction on the rotation R(n,ω) as-
sociated with any orthogonal transformation Q that preserves a crystal lattice.

Recall that a rotation R(n,ω) �= I is said to be of order n if there is a positive integer n
such that Rn = I and Rk �= I for all 2≤ k < n. Let K be a crystallographic point group. The
crystallographic restriction dictates that any rotation R which satisfies R ∈K or IR ∈K is
of order 2, 3, 4, or 6.
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2.5.2 The Proper Crystallographic Point Groups

Subgroups of O(3) are called point groups (see the end of Sect. 2.2). Point groups which are
and those which are not subgroups of SO(3) are called proper and improper point groups,
respectively. Crystallographic point groups are point groups that satisfy the crystallographic
restriction.

Let G be a proper crystallographic point group. The crystallographic restriction requires
that the rotational axis of any R �= I ∈ G must be a 2-fold, 3-fold, 4-fold, or 6-fold axis.
A glance at Table 2 reveals (cf. the paragraph which immediately follows Remark 2.32) that
the icosahedral group I has six 5-fold axes, so it violates the crystallographic restriction.
Also, the dihedral group Dm has two m-tuple poles, i.e., one m-fold axis. Thus Dm is a
crystallographic point group if and only if m = 2,3,4,6. From (2.80) we observe that Cn

has an n-fold axis; see the paragraph on Cn below for a detailed discussion. It follows that
for n≥ 2 only those Cn with n= 2,3,4,6 are crystallographic. Hence the finite subgroups
of SO(3) which satisfy the crystallographic restriction are:

C1,C2,C3,C4,C6,D2,D3,D4,D6, T ,O,

where C1 = {I }.
We are now ready to examine the structure of each proper crystallographic point group

in turn. We shall largely follow the exposition [192] based on the outline in [353]; cf. also
[6].

The Cyclic Groups Cn

Consider the proper crystallographic point group Cn with n > 1 elements, which has
K = 2, n1 = n2 = n, and p1 = p2 = 1. There are two orbits, each of which has only 1
pole. As every non-trivial rotation has two poles, every non-trivial member of Cn has the
same axis defined by the two poles of Cn. By Lemma 2.23, there is a rotation P such
that Cn = {I ,P , . . . ,P n−1}. Moreover, if we choose a coordinate system such that the
poles of Cn are the points (0,0,1) and (0,0,−1), then P = R(e3,2π/n). Since Cn is a
crystallographic point group, the crystallographic restriction requires that n= 2,3,4, or 6.

It is easy to show that Cn (n≥ 3) is the rotational symmetry group of an n-pyramid, i.e.,
a right pyramid with a regular n-sided polygon as base and satisfying the condition � �= d ,
where � is the length of a side of the regular polygon and d the distance between the vertex
of the pyramid and a vertex of the base polygon. When n= 2, the n-pyramid degenerates to
an isosceles triangle and Cn is the rotational symmetry group of the isosceles triangle.

The Dihedral Groups Dm

Consider Dm, a group of n= 2m≥ 4 elements, which has K = 3, n1 = n2 = 2, n3 =m,
and p1 = p2 = m, p3 = 2. The crystallographic restriction requires that m = 2,3,4, or 6.
Let A and A′ be the two poles in the orbit P3. Let GA ⊂ G be the stabilizer of A, and
let σ ∈ GA. Then σA = A. Since A and A′ are the only two poles in the orbit P3, we
have either σA′ = A′ or σA′ = A. If σA′ = A, then A′ = σ−1A = A because σ−1 ∈ GA.
Since A �= A′, we conclude that σA′ = A′, GA =GA′ , A and A′ are diametrically opposite
to each other, and AA′ defines the m-fold axis of the rotations in GA. By Lemma 2.23,
GA = {r0, r1, . . . , rm−1}, where r is a rotation with the line defined by A and A′ as axis and
rotation angle equal to 2π/m, and r0 := I .

Let s ∈ G and s /∈ GA = GA′ . Since p3 = 2, we have G = GA ∪ sGA, and sA = A′,
sA′ =A. It follows that s2A=A and s2A′ =A′, which imply that the line AA′ is the axis of
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rotation of s2. Let L be the axis of rotation of s and thus also of s2. Since s2 has two distinct
axes of rotation, we conclude that s2 = I and L is a 2-fold axis. Note that sσ /∈GA for any
σ ∈GA. Hence by the same argument as that for s, we see that (sσ )2 = I , which implies

sσ = (sσ )−1 = σ−1s. (2.90)

For x, y ∈ {0,1, . . . ,m− 1}, let the binary operation of addition modulo m be defined as
follows:

x +m y :=
{
x + y if x + y <m

x + y −m if x + y ≥m.
(2.91)

The multiplication table for the group G = {r0, r1, . . . , rm−1, sr0, sr1, . . . , srm−1} can be
readily written down with the help of the following formulas:

rkrl = rk+ml, (srk)rl = srk+ml,

rk(srl)= sr(m−k)+ml, (srk)(srl)= r(m−k)+ml.

Without loss of generality, let us choose a Cartesian coordinate system such that A =
(0,0,1) and A′ = (0,0,−1). Since s interchanges A and A′, the 2-fold rotation axis L of s
lies in the equatorial plane. Let us pick one of the two points at which L meets the equator
and call it x. For m≥ 3, we have

‖x − r(x)‖ = ‖r(x)− r2(x)‖ = · · · = ‖rm−1(x)− x‖.

Hence x, r(x), . . . , rm−1(x) are the vertices of a regular m-sided polygon Π in the equatorial
plane. Clearly Π is invariant under each rotation rk (0≤ k ≤m− 1). Moreover, since

srk(x)= rm−ks(x)= rm−k(x),

the regular polygon Π remains invariant under each rotation srk (0≤ k ≤m− 1). Thus Dm

is the rotational symmetry group of the m-sided polygon Π .
For m = 2, the m-sided regular polygon Π degenerates to the diametric line-segment

[x, r(x)], which connects the poles x and r(x) of s. Let us choose the Cartesian co-
ordinate system such that in addition to A = (0,0,1) and A′ = (0,0,−1) we have x =
(1,0,0)= e1 and r(x)= (−1,0,0). Then r =R(e3,π), s =R(e1,π), sr =R(e2,π), and
D2 = {I , r, s, sr} is the rotational symmetry group of the diametric line-segment [x, r(x)].
The Tetrahedral Group T

The group T , a group of 12 elements, has K = 3, n1 = 2, n2 = n3 = 3, and p1 = 6,
p2 = p3 = 4. Let the poles in the orbit P3 be labelled by the letters A,B,C, and D.
To each rotation R ∈ T corresponds a permutation of the poles A,B,C, and D, and the
correspondence is clearly one-to-one. Let us denote this correspondence by f : T → S4,
R �→ σ , where S4 denotes the symmetric group of permutations of the four poles. If
Ri �→ σi (i = 1,2), then R2R1 �→ σ2σ1. Hence f is a homomorphism. However, there does
not exist a rotation R ∈ T which corresponds to a 4-cycle. Indeed suppose, for example,
Q ∈ T �→ τ := (ABCD) ∈ S4, which satisfies τA = B , τB = C, τC = D, and τD = A.
The 4-cycle permutation τ , just as all other 4-cycle permutations of {A,B,C,D}, satisfies
τ 4 = e, where e is the identity permutation. Then the rotation Q corresponding to τ , i.e.,
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Q= f −1(τ ), satisfies Q4 = I , and its axis of rotation is a 4-fold axis. But there does not ex-
ist in T any rotation that has a 4-fold axis, so Q /∈ T . Also, there is no rotation P ∈G which
corresponds to a single transposition, e.g., η = (AB), which observes ηA = B , ηB = A,
ηC = C, ηD =D. For this η, we have η2 = e, P 2 = I , and |GC | = |GD| = 2, which contra-
dicts the fact that |GC | = |GD| = 3. The same argument applies to any rotation in T which
purportedly corresponds to a single transposition of {A,B,C,D}.

After deleting the 4-cycles and single transpositions from the symmetric group S4 of the
set {A,B,C,D}, we are left with the alternating group A4 of even permutations, which has
12 elements, namely:

e, (AB)(CD), (AC)(BD), (AD)(BC),

(ABC), (ABD), (ACD), (BCD),

(ACB), (ADB) (ADC), (BDC).

(2.92)

Since T also has 12 elements, the one-to-one correspondence between T and A4 must be
bijective and the two groups are isomorphic.

From the list (2.92) of group elements in T , it is clear that the lengths of the line segments
AB , AC, AD, BC, BD, and CD are equal. Hence the poles A, B . C, and D are the vertices
of a regular tetrahedron, and T is its rotational symmetry group. The group has four 3-fold
axes and three 2-fold ones. Each 3-fold axis passes through a vertex, the center of the unit
sphere S2, and the center of the opposite face, which is an equilateral triangle; it is also
perpendicular to the opposite face. Each 2-fold axis is determined by the mid-points of two
opposite edges; i.e., the three 2-fold axes pass through the mid-points of AB and CD, AC
and BD, AD and BC, respectively. The orbit P1 has 6 poles, which are the points where the
three 2-fold axes meet the unit sphere S2. The orbit P3 have 4 poles, which are the vertices
A, B , C, and D of the regular tetrahedron. The orbit P2 have 4 poles, namely A′, B ′, C ′,
and D′, which are the points diametrically opposite to A, B , C, and D, respectively.

The Octahedral Group O

We begin our discussion with a simple lemma.

Lemma 2.34 Let a,a′ and b,b′ be two pairs of diametrically opposite poles of the finite
rotation group G. Suppose Qa = b for some Q ∈G. Then Qa′ = b′.

Proof Given a pole a ∈ S2, its diametrically opposite pole is a′ = −a. Similarly we have
b′ = −b. Suppose Qa = b for some Q ∈G. Then Qa′ =Q(−a)=−Qa =−b= b′. �

The group O , a group of n = 24 elements, has K = 3, n1 = 2, n2 = 3, n3 = 4, and
p1 = 12, p2 = 8, p3 = 6. The orbit P2 has 8 triple poles in 4 diametrically opposite pairs,
which we call bi , b′i (i = 1,2,3,4). The line segments Li := [bi ,b

′
i] are two-sided, i.e.,

[bi ,b
′
i] = [b′i ,bi] for each i. A rotation R ∈O leads to a permutation of the aforementioned

8 poles. By Lemma 2.34, each rotation R ∈O in fact corresponds to a permutation σ of the
line segments L1,L2,L3, and L4. Let S4 be the symmetric group of permutations of the line
segments Li (i = 1,2,3,4). Let f :O→ S4, R �→ σ , where σ = f (R) is the permutation
of the line segments Li that results from the rotation R ∈O . It is easy to see that if Rj �→ σj
(j = 1,2), then R2R1 �→ σ2σ1. Hence the mapping f is a homomorphism. Note that if
R ∈ O �→ σ ∈ S4 and σLi = Lj , either Rbi = bj , Rb′i = b′j or Rbi = b′j , Rb′i = bj may
happen.

We claim that if Q ∈O keeps all the line segments Li invariant (i.e., Q �→ e, the identity
in S4), then Q= I . We prove the preceding claim by contradiction. Indeed, suppose Q �→ e
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and Q �= I . Since Q �= I has only two poles, it can at most keep the poles of one line
segment invariant. Hence, after renaming the 8 triple poles if necessary there are only two
possibilities:

(i) Qbi = b′i , Qb′i = bi for i = 1,2,3; Qb4 = b4,Qb′4 = b′4.
(ii) Qbi = b′i , Qb′i = bi for i = 1,2,3,4.

Under Case (i), we have Q2 = I . Hence b4 and b′4 are double poles, contradicting the
fact that they are triple poles.

Under Case (ii), Q exchanges each pair of diametrically opposite poles. Let P �= I be
an arbitrary non-trivial rotation in O . For each i = 1,2,3,4, Pbi and Pb′i are a pair of
diametrically opposite poles of the line segments Li , and we have

(PQP−1)Pbi = Pb′i , (PQP−1)Pb′i = Pbi . (2.93)

Thus, like Q, PQP−1 also exchanges each pair of diametrically opposite poles of the line
segments Li . Then QPQP−1 keeps all eight poles unchanged, which implies

QPQP−1 = I or QPQ= P . (2.94)

Now pick a P �= I ∈O such that b1 and b′1 are its triple poles. Then we have

QPb1 = b′1, QPb′1 = b1, (2.95)

and

(QP )2b1 = b1, (QP )2b′1 = b′1. (2.96)

Equation (2.96) dictates that either (QP )2 = I or (QP )2 has the line containing L1 as its
axis of rotation. The latter contradicts (2.95) because QP has the same axis of rotation as
(QP )2. The former can be recast as QPQP = I , which leads to the equation

QPQ= P−1. (2.97)

Combining (2.94)2 and (2.97), we conclude that P 2 = I and that b1,b
′
1 are double poles,

contradicting the fact that they are triple poles. Therefore, if Q ∈O �→ e ∈ S4, then Q= I .
Suppose under the homomorphism f :O→ S4, R �→ σ , we have f (R1)= f (R2)= σ .

Then f (R−1
2 )= σ−1. It follows that

f (R−1
2 R1)= f (R−1

2 )f (R1)= σ−1σ = e.

Hence R−1
2 R1 = I or R1 =R2, and the homomorphism f is one-to-one. Since both O and

S4 have 24 elements, the map f :O→ S4 is bijective and is an isomorphism.
Since the alternating group A4 is a subgroup of the symmetric group S4, let us start with

the regular tetrahedron discussed in the paragraphs under the tetrahedral group. We rename
the vertices A, B , C, and D of the regular tetrahedron by b1, b2, b3, and b4, respectively. The
diametrically opposite points A′, B ′, C ′, and D′ are renamed as b′i (i = 1,2,3,4) accord-
ingly. For each i = 1,2,3,4, join b′i to bj for all j �= i by straight line segments. The 8 poles
bi , b′i (i = 1,2,3,4) are the vertices of the cube that results. The line segments L1, L2, L3,
and L4 are diagonals and O is the group of rotational symmetry of this cube about its cen-
ter. The group O has three 4-fold axes, four 3-fold axes, and six two-fold axes. Each 4-fold
axis passes through the centers of two opposite square faces. The 3-fold axes are the four
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diagonals of the cube. Each 2-fold axis passes through the mid-points of two non-coplanar
parallel edges that lie in two opposite faces. For example, one 2-fold axis passes through the
mid-points of [b1,b

′
2] and [b′1,b2]. The 12 poles in orbit P1 are those of the six 2-fold axes.

The 8 poles in orbit P2 are the vertices of the cube. The 6 poles in orbit P3 are those of the
three 4-fold axes.

The centers of the six faces of the cube are the vertices of a regular octahedron. Any rota-
tion which leaves the cube invariant also keeps the regular octahedron invariant. Hence O is
also the rotational symmetry group of the regular octahedron, which explains the rationale
behind the name “octahedral group” for O .

2.5.3 The Improper Crystallographic Point Groups

We now turn to obtain a complete enumeration of the conjugacy classes of improper crys-
tallographic point groups. To this end, one way to proceed is to start from the following
observation: “The rotations of G [i.e., any improper point group] form a normal subgroup
H of index 2 ..., and G is completely given when we know H and a single rotatory-inversion
of G.” The preceding citation [154, p. 114] is taken from a 1908 “elementary treatise”
(p. iii) on group theory by Harold Hilton. Hence the method in question, which is entirely
elementary, has been around for a long time, and it has been widely adopted (see, e.g.,
[78, 229, 232, 277, 339]). The method is based on the following theorem, which provides a
straightforward procedure to derive all the improper crystallographic point groups.

Recall that I =−I , where I is the second-order identity tensor, and each Q ∈ O(3) is
either a rotation with detQ= 1 or a roto-inversion with detQ=−1.

Theorem 2.35 Let G be a finite point group. Then H :=G ∩ SO(3) is a normal subgroup
of G, and there are three possibilities:

– Case 1: H =G, i.e., G is a proper point group.

If H �=G, then H ⊂G is a normal subgroup of index 2 in G. Moreover, we have

– Case 2: H �=G and I ∈G. Then G=H ∪ IH .
– Case 3: H �= G and I /∈ G. Let H+ = {IQ :Q ∈ G \ H }. Then G+ = H ∪ H+ is a
proper point group isomorphic to G.

Proof Let Z be the group that consists of the integers 1 and −1 under multiplication. Let
h : G→ Z be the function defined by h(Q) = detQ. Clearly h is a homomorphism, and
H :=G∩SO(3)=Kerh. Hence H is a normal subgroup of G, and the quotient group G/H

is isomorphic to h(G). Note that either h(G)= {1} or h(G)= Z, and we distinguish three
possibilities.

Case 1. h(G)= {1}. Then H =G and G is a proper point group.

Both the other two possibilities have h(G)= Z and |G/H | = |h(G)| = |Z| = 2, which
dictates that H is a normal subgroup of index 2 in G. See Proposition A.13 in Appendix A.

Case 2. h(G)=Z and I ∈G \H . Then G=H ∪ IH .

Case 3. h(G)= Z and I /∈G. For each Q ∈G \H , detQ=−1. Hence IQ ∈ SO(3) and
G+ =H ∪H+ ⊂ SO(3). In fact, G+ is a subgroup of SO(3), as we shall now show. To this
end, let

η(Q)= 1

2
(1− detQ)=

{
0 for Q ∈H

1 for Q ∈G \H .
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It is easily verified that

η(Q1Q2)= η(Q1)+ η(Q2) for all Q1,Q2 ∈G.

Let σ :G→G+ be defined by

σ(Q)= Iη(Q)Q.

It is clear that σ is bijective. Moreover for any Q1,Q2 ∈G, we have

σ(Q1)σ (Q2)= Iη(Q1)Q1Iη(Q2)Q2

= Iη(Q1)+η(Q2)Q1Q2 = Iη(Q1Q2)Q1Q2

= σ(Q1Q2).

Hence G+ is a proper point group isomorphic to G. �

Let us examine Case 3 in more detail. Let H = {R1, . . . ,Rn}, where Ri ∈ SO(3) for
each i. Since H =G ∩ SO(3) is a subgroup of index 2 in G, G is the union of H and a set
of n roto-inversions, i.e.,

G= {R1, . . . ,Rn,IP 1, . . . ,IP n}, where P i ∈ SO(3) for each i.

We claim that P i /∈H for all i. Indeed, if P i ∈H , then P i =Rj for some j . Then IRj =
IP i ∈G, which implies (IRj )R

−1
j = I ∈G, which contradicts the hypothesis that I /∈G.

Note that by definition H+ = {P 1, . . . ,P n} and

G+ = {R1, . . . ,Rn,P 1, . . . ,P n}
is a proper point group. Since H is also a normal subgroup of index 2 in G+, we have

G+ =H ∪PH, and G=H ∪ IPH, (2.98)

where P is an arbitrarily chosen element of H+. To find all groups of Type III, we can
examine each proper crystallographic point group to see if it can be decomposed as G+ in
(2.98), where H is a subgroup of index 2. Note that a subgroup of index 2 in a group is a
normal subgroup of that group (see, e.g., [6, p. 82, Theorem 15.4]).

2.6 Geometric Crystal Classes and Laue Classes

2.6.1 The 32 Crystallographic Point-Group Types

Crystallographic point groups that pertain to Cases 1, 2, and 3 in Theorem 2.35 are said to
be of Type I, Type II, and Type III, respectively. Every crystallographic point group belongs
to one of these three types.

Those of Type I are proper. We have already determined all the proper crystallographic
point groups in Sect. 2.5.2: there are 11 conjugacy classes of them.

Those of Type II are improper. They are of the form G=H ∪IH , where H is of Type I.
Hence there are also 11 conjugacy classes of Type II crystallographic point groups.

By (2.98), each group of Type III, which is improper, has a subgroup H which is a
normal subgroup of index 2 in some group G+ of Type I. Following the discussion at the
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Table 3 Representatives of the 32 crystallographic point-group types

Type I Type II Type III

C1 Ci = C1 ∪IC1

C2 = C1 ∪R(e3,π)C1 C2h =C2 ∪IC2 Cs = C1 ∪IR(e3,π)C1

C3 C3i =C3 ∪IC3

C4 = C2 ∪R(e3,
π
2 )C2 C4h =C4 ∪IC4 S4 = C2 ∪IR(e3,

π
2 )C2

C6 = C3 ∪R(e3,π)C3 C6h =C6 ∪IC6 C3h = C3 ∪IR(e3,π)C3

D2 =C2 ∪R(e1,π)C2 D2h =D2 ∪ID2 C2v =C2 ∪IR(e1,π)C2

D3 =C3 ∪R(e1,π)C3 D3d =D3 ∪ID3 C3v =C3 ∪IR(e1,π)C3

D4 =C4 ∪R(e1,π)C4 D4h =D4 ∪ID4 C4v =C4 ∪IR(e1,π)C4

D4 =D2 ∪R(e3,
π
2 )D2 D2d =D2 ∪IR(e3,

π
2 )D2

D6 =D3 ∪R(e3,π)D3 D6h =D6 ∪ID6 D3h =D3 ∪IR(e3,π)D3

D6 =C6 ∪R(e1,π)C6 C6v =C6 ∪IR(e1,π)C6

T Th = T ∪IT

O = T ∪R(e3,
π
2 )T Oh =O ∪IO Td = T ∪IR(e3,

π
2 )T

All the matrix groups in this table refer to the same Cartesian coordinate system: C1 = {I }; Cn, where
n= 2,3,4,6, is the cyclic group generated by R(e3,2π/n); T is the tetrahedral group generated by R(e3,π)
and R(m,2π/3), where m= (e1 + e2 + e3)/

√
3. With Cn and T specified, the other representative groups

in the table are well defined by the formulas given in the table. See Remark 2.36 for further comments

end of Sect. 2.5.3, we determine the groups of Type III from those of Type I by inspection. It
turns out that out of the 11 groups of Type I, C1, C3, and T do not have a normal subgroup of
index 2 while D4 and D6 have two such decompositions and each of the rest has one. Hence
there are 11− 3+ 2= 10 conjugacy classes of Type III crystallographic point groups.

Thus there are 32 types of crystallographic point groups in total. In Table 3 a representa-
tive of each point-group type is given.

Remark 2.36 The representatives of point-group types in Table 3 are selected to facilitate
the discussion of Bravais lattice types in Sect. 2.8. Because of our definition of Euler angles,
later when we discuss crystallite and sample symmetries of orientation distribution functions
with Euler angles as parameters, it will be more convenient to replace each representative
group with explicit appearance of R(e1,π) in the table by its peer that has R(e2,π) serve
the same role instead. Note also that in (2.98) P is an arbitrary element in H+. When H+
has more than one element, i.e., when H �=C1, the choice of P is not unique. �

Definition 2.37 Two ideal crystals (as characterized by their space groups) are said to belong
to the same geometric crystal class if their point groups are of the same type. �

Since there are 32 point-group types, there are 32 geometric crystal classes, each of which
is denoted by the same symbol as the corresponding point-group type.

All 32 (geometric)31 crystal classes are exemplified in nature. According to Newnham
[248], a survey of 127,000 inorganic and 156,000 organic compounds shows that about
82% among inorganic and about 75% among organic crystals are centrosymmetric, i.e., of
Type II. Higher symmetry crystals are more abundant among metals, oxides and halides.

31We shall often suppress the adjective “geometric” in “geometric crystal class”.
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Table 4 The 11 Laue classes
1. C1, Ci 7. D3, C3v , D3d

2. C2, Cs , C2h 8. D4, C4v , D2d , D4h

3. C3, C3i 9. D6, C6v , D3h, D6h

4. C4, S4, C4h 10. T , Th
5. C6, C3h, C6h 11. O, Td , Oh

6. D2, C2v , D2h

Most metals have face centered-cubic (fcc), body-centered cubic (bcc), or hexagonal close-
packed (hcp) structure, which are centrosymmetric and have Oh or D6h as their point group.
We shall study these crystal structures in Sect. 2.10.

2.6.2 The 11 Laue Classes

In X-ray crystallography, when Friedel’s rule applies, the diffraction pattern from a crys-
tal with space group G is the same as that which results if a center of inversion is added
to the generators of G .32 Thus under Friedel’s rule X-ray diffraction effects are inherently
centrosymmetric. They belong to the class of tests which, in the words of Buerger [54], “in-
herently involve certain symmetry themselves and this prevents one from judging whether
the symmetry resulting from such a test derives from the symmetry of the crystal or from
the test.”

If we add the inversion I as a generator to each of the 21 non-centrosymmetric Type I or
Type III point groups, then a Type II point group will result in each instance. This leads to
another classification of crystallographic point groups, in which the 32 members are divided
into 11 Laue classes. Each Laue class is named after the Type II group in that class. Each
non-centrosymmetric member in a Laue class is either a Type I or a Type III group which
becomes the Type II namesake of that class after the inversion I is added as a generator to
the group. See Table 4, where the members of each of the 11 Laue classes are listed. For each
Laue class, the name of the class (i.e., the Type II point group in the class) is underlined.

Except for situations where Friedel’s rule breaks down, X-ray diffraction effects can only
reveal the Laue class to which the crystal belongs.

As we shall see in Chap. 9, Friedel’s rule, which applies to the diffraction intensity mea-
surements in the routine preparations of X-ray pole-figures, leads to a major problem in
measurements of texture by inversion of X-ray pole-figures.

2.7 Holohedries

Let G be the space group (i.e., the complete symmetry group with respect to rigid transplace-
ments) of an ideal crystal (C,κ0), L the lattice group of G , K the crystallographic point
group of G , and L := L(0) the lattice of the ideal crystal.33 Let

HL = {Q ∈O(3) :QL= L}, (2.99)

32See Sect. D.6 for more information on Friedel’s rule and the assertion here.
33We assume that a Cartesian coordinate system has been chosen, under which each Q ∈ K maps R

3 onto
R

3. The L-orbit of any s ∈ κ0(C) is a lattice of the ideal crystal (C, κ0). We restrict our choice of coordinate
system such that the origin O is located at a lattice point x, which is assigned the coordinates (0,0,0) := 0,
and we take L := L(0) as the lattice of the ideal crystal. See Sect. 2.3.1.
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be the point group of the lattice L, which is the largest crystallographic point group that
leaves L invariant. In Proposition 2.16 we prove that QL = L for each Q ∈ K. Hence
K ⊂HL. On the other hand, since the crystallographic point group K of an ideal crystal is
defined through the space group G that describes the symmetry of the crystal structure (or
crystal pattern) and not that of the lattice L, K need not be equal to HL, i.e., it need not
contain all the Q ∈O(3) that preserves the lattice.34

Definition 2.38 The point group K of an ideal crystal with lattice L is said to be holohedral
if it is the same as the point group of the lattice, K=HL.

A geometric crystal class is called a holohedry if its members (i.e., ideal crystals as
characterized by their space groups) have point groups that are holohedral. A crystal class
is merohedral if its members have point groups K and lattice point groups HL such that
K�HL. �

We begin with a simple lemma and a theorem, which together will cut down the number
of holohedries to seven.

Lemma 2.39 The inversion I belongs to the lattice point group HL of any lattice L.

Proof Let L = L(0) be a lattice and {bi : i = 1,2,3} be a set of basic lattice vectors of L.
Then L= {s ∈ R

3 : s = s1b1+ s2b2+ s3b3, where s1, s2, s3 ∈ Z}. Let KL be its lattice point
group. For s ∈ L, we have Is = (−s1)b1 + (−s2)b2 + (−s3)b3 ∈ L. Hence I ∈HL. �

Lemma 2.40 Let L be a lattice, and let K be a crystallographic point group such that QL=
L for each Q ∈ K. If K has an axis � of order k = 2,3,4 or 6, then L has a lattice vector
normal to � and a lattice vector parallel to �. Moreover, the plane that is normal to � and
contains 0 is a lattice plane.

Proof Let n be a unit vector parallel to �, and Let s �= 0 be a lattice vector which is neither
parallel nor perpendicular to �. Then R(n,2π/k) ∈K, Rs ∈ L, and s −Rs ∈ L. Since

n · (s −Rs)= n · s − n ·Rs = n · s −R(n,−2π/k)n · s = 0,

s −Rs is a non-zero lattice vector perpendicular to �.
Let P := I +R + · · · +Rk−1. Then RP = P , and R(Ps)= Ps. Hence Ps is a lattice

vector parallel to �. Moreover, let s = s‖ + s⊥, where s‖ and s⊥ stand for the component of
s parallel and perpendicular to �, respectively. Then Ps = ks‖ �= 0.

Let u be a lattice vector parallel to �, and let s and t be lattice vectors such that s, t , and
u are linearly independent. Then s − Rs and t − Rt are two linearly independent lattice
vectors that lie in the plane that is normal to u and contains 0. �

Lemma 2.39 dictates that only crystal classes defined by point groups of Type II could
be holohedries. That leaves only eleven possibilities for holohedries. We proceed to show
that four of the eleven crystal classes defined by Type II groups, namely C3i , C4h, C6h, and
Th cannot be holohedries. Before we prove this fact, we go over some preliminaries.

34See [6, pp. 146–147] for a simple example where K � HL in the context of two-dimensional wallpaper
groups. On the other hand, clearly K=HL for an ideal crystal where identical atoms occupy one-to-one the
nodes of the lattice.
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For k = 2,3,4 or 6, let � be a k-fold rotational axis of the lattice point group HL of
lattice L, and let n be a unit vector parallel to �. Then R(n,2π/k) ∈ HL. The following
operators, which are special instances of Z⊥(n,ω) and Z‖(n,ω) in (1.118) and (1.120), will
play a crucial role in our discussions of holohedries and Bravais lattice types. Let

Z⊥k := Z⊥(n,2π/k)= 2I −R(n,2π/k)−R−1(n,2π/k), (2.100)

Z
‖
k := Z‖(n,2π/k)= λkI −Z⊥k , where λk := 2(1− cos(2π/k)). (2.101)

Note that

λ2 = 4, λ3 = 3, λ4 = 2, λ6 = 1. (2.102)

For each s ∈ L, it follows from (1.121), (2.100) and (2.101) that

Z⊥k s = λks
⊥ ∈ L, Z

‖
ks = λks

‖ ∈ L. (2.103)

In particular for k = 2, R(n,π)=R(n,π)−1, so we have

Z⊥2 = 2I − 2R(n,π), Z
‖
2 = 2I + 2R(n,π). (2.104)

It follows that

1

2
Z⊥2 s = (I −R(n,π))s ∈ L,

1

2
Z
‖
2s = (I +R(n,π))s ∈ L. (2.105)

Theorem 2.41 Let HL be the lattice point group of lattice L, which has a subgroup Ck with
an axis � of order k = 3,4 or 6. Then HL has a subgroup Dk ⊃ Ck with a two-fold axis that
lies in the lattice plane normal to � and is parallel to one of the shortest lattice vectors in
that plane.

Proof Let the subgroup Ck in question be generated by R(n,2π/k), where n is a unit vector
parallel to �. Henceforth in the proof we will simply write R for R(n,2π/k). Let Σ be the
plane that passes through the origin and is normal to n. By Lemma 2.40, Σ is a lattice
plane, because it contains a lattice vector b and another lattice vector Rb, which together
span Σ . Pick one of the shortest lattice vectors in Σ and call it b1. Let b2 = Rb1. The
closed parallelogram spaned by b1 and b2 contains no lattice points other than the vertices.
Indeed if there is another lattice point c inside the parallelogram in question, then one of the
following four lattice vectors in Σ , namely c, b1− c, b2− c, and b1+b2− c, will be shorter
than b1. Let b3 be a lattice vector such that the parallelepiped Π [b1,b2,b3] has the smallest
volume. Then b1,b2, and b3 constitute a primitive lattice basis.

Let σ be the reflection with respect to the plane that contains � and is normal to b1. We
claim that σL= L, i.e., σ ∈HL. To this end, it suffices to show that σbi ∈ L for i = 1,2,3.
It is easy to see that

σb1 =−b1 for k = 3,4,6, σb2 =
⎧
⎨

⎩

b1 + b2, for k = 3
b2, for k = 4

b2 − b1, for k = 6.
(2.106)

Hence σb1 ∈ L and σb2 ∈ L for k = 3,4,6. Let us proceed to consider σb3. Let b3 = u+v,
where u := b

‖
3 and v := b⊥3 are the component of b3 parallel to n and the projection of b3

onto the lattice plane Σ , respectively. If we can prove that σb3 ∈ L, then the claim that
σ ∈HL is valid. We break down our discussion into three cases:
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For k = 6, by (2.102) λ6 = 1, and by (2.103) and the fact that v ∈Σ we have

Z⊥6 b3 = v ∈ L∩Σ. (2.107)

Hence u= b3 − v ∈ L, and v = n1b1 + n2b2 for some n1, n2 ∈ Z. It follows then that
σb3 = σu+ σv = u+ n1σb1 + n2σb2 ∈ L.

For k = 4, similarly we have λ4 = 2 and

Z⊥4 b3 = 2v ∈ L∩Σ. (2.108)

Hence we have

v = n1

2
b1 + n2

2
b2, for some specific n1, n2 ∈ Z. (2.109)

It follows from (2.106) and (2.109) that

σv =−n1

2
b1 + n2

2
b2, (2.110)

Subtracting (2.109) from (2.110), we obtain

σv − v =−n1b1. (2.111)

Then we see that σb3 = σu+ σv = u+ v− n1b1 = b3 − n1b1 ∈ L.

For k = 3, note that Rb1 = b2 and Rb2 =−(b1 + b2). Let v = αb1 + βb2, where α,β ∈ R.
Then Rv =−βb1 + (α − β)b2. Since v−Rv = b3 −Rb3 ∈ L∩Σ , we have

v−Rv = (α+ β)b1 + (2β − α)b2

= n1b1 + n2b2 for some n1, n2 ∈ Z. (2.112)

Hence we have

α+ β = n1, 2β − α = n2. (2.113)

By (2.106), we obtain

σv = σ (αb1 + βb2)= (β − α)b1 + βb2. (2.114)

It follows that

σv− v = (β − 2α)b1 = (n2 − n1)b1, (2.115)

where we have appealed to (2.113). Hence we conclude that σb3 = σu+ σv = u+ v

+ (n2 − n1)b1 = b3 + (n2 − n1)b1 ∈ L.

In summary, we have proved that σ ∈HL as asserted for all cases in question.
Let m = b1/‖b1‖. By Lemma 2.39, I ∈ HL. Then R(m,π) = Iσ ∈ HL. The rota-

tional group generated by R(n,2π/k) and R(m,π) is the dihedral group Dk (k = 3,4,6)
described in the statement of the theorem. �
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Remark 2.42 The proof of Theorem 2.41 further implies that b2 = R(n,2π/k)b1 defines a
rotational symmetry axis of order (at least) 2. Indeed, let m′ := b2/‖b2‖ = R(n,2π/k)m.
Then

R(m′,π)=R(R(n,2π/k)m,π)=R(n,2π/k)R(m,π)R(n,2π/k)−1,

which implies R(b2/‖b2‖,π)=R(m′,π) ∈HL. �

A glance at the structures of the Type II crystal classes given in Table 3 reveals that C3i ,
C4h, C6h, and Th cannot be holohedries, because their member groups contain as subgroup
C3, C4, C6, and C3, respectively, but not D3, D4, D6, and D3, respectively. That leaves seven
holohedries, namely: triclinic (Ci ), monoclinic (C2h), orthorhombic (D2h), tetragonal (D4h),
trigonal (D3d ), hexagonal (D6h), and cubic (Oh).

2.8 The Bravais Lattices

As shown in Sects. 2.5 and 2.6.1, the requirement that QL= L for each Q in the crystallo-
graphic point group K, i.e., each rotation or roto-inversion Q in K preserves the lattice L,
delimits K ⊂ O(3) to belong to one of 32 possible point-group types. Conversely, we know
that there are seven holohedries. Can the point-group symmetry of a lattice L, as embodied
in the holohedral group K=HL, be used to derive all possible lattice types? An affirmative
answer to this question was first given by Auguste Bravais [49]. He classified all lattices into
a total of 14 lattice types, which are now named after him. In this section we shall present
a derivation of the 14 Bravais lattice types. Our main references for this section are: Kim
[177, Sects. 13.3–13.4] and Miller [232, Sect. 2.8].

Note that we use the same Schönflies symbol to denote a geometric crystal class, the
point-group type of that class, and specific groups of that point-group type. Whether a sym-
bol, e.g., D3, stands for the geometric crystal class, the point-group type, or a specific point
group will be clear by the context where that symbol appears. Whenever confusion might
arise, we will spell out explicitly what the symbol denotes.

2.8.1 Lattice Types

Let G and G ′ be two equivalent space groups, i.e., they are of the same space-group type; see
Definition 2.18. Then their point groups K and K′ are equivalent or are of the same point-
group type; see Definition 2.19. Such equivalence should be extended to the lattice groups
L and L′ pertaining to G and G ′, respectively.

Definition 2.43 Let L and L′ be the lattice groups associated with space group G and G ′,
respectively. The groups L and L′ (or the lattices L := L(0) and L′ := L′(0)) are of the same
lattice type if G and G ′ are of the same space-group type. �

Consider an equivalence class of space groups. Within this equivalence class, all space
groups have point groups of the same point-group type and lattices of the same lattice type.
Let G be a space group of this class and K and L be its point group and lattice, respectively.
To determine the possible lattice types, it suffices to restrict attention to the cases where K
belongs to some holohedry and K=HL, the lattice point group of L. Any other space group
G ′ in the same equivalence class has its point group, say K′, being of the same point-group
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type as that of K. By Corollary 2.22, there is a rotation R such that K′ =RKR−1, i.e., each
Q′ ∈K′ can be written as Q′ =RQR−1 for some Q ∈K. Then we have

Q′(RL)=RQR−1(RL)=RQL=RL, for each Q′ ∈K′. (2.116)

Since K is the lattice point group of L, it follows easily from (2.116) that K′ is the lattice
point group of RL, the lattice that results after lattice L is rotated by R. While RL need not
be equal to the lattice L′ of space group G ′, it is the lattice of (0,R)G(0,R−1). Hence by
Definition 2.18 and 2.43, RL and L are of the same lattice type.

For a point group K in a holohedry, suppose we can determine all types of lattices L such
that K =HL. Let us call the set of all such lattices A . If K is replaced by one of its peers
K′ in the same holohedry, then K′ = RKR−1 for some rotation R, and the set of lattices
L′ that satisfy K′ =HL′ is none other than {RL : L ∈ A }, which delivers the same lattice
types. Hence, to determine all lattice types pertaining to a holohedry, it suffices to solve the
following problem:

– For one specific group K in the holohedry, construct all lattices L such that K=HL.

In what follows we shall determine all Bravais lattice types by solving the preceding problem
for the namesake point groups given in Table 3 for the seven holohedries Ci , C2h, D2h, D4h,
D3d , D6h, and Oh.

2.8.2 Conventional Lattice Basis and Unit Cell

In Sects. 2.3.1 and 2.3.2, we have learned that every lattice L has an abundance of primitive
lattice bases, each of which can be used to define the lattice L. However, given a holohedral
group K, it is not obvious how one should proceed to determine primitive lattice bases for
lattices L which have K as their lattice point group. On the other hand, there is a three-step
procedure to construct such lattices, which circumvents the finding of primitive lattice bases.

Step 1 of this procedure is to use some of the rotational operations of K to determine
what is called a conventional lattice basis a1,a2,a3 of L. Let us set aside K= Ci = {I ,I},
a trivial case that we will consider in Sect. 2.8.5. For the other holohedries, the point group
K has at least one rotational axis of order 2, 3, 4, or 6. We construct a (symmetry-adapted)
conventional lattice basis {a1,a2,a3} for L as follows. Among the rotational axes of K, pick
one with the highest order, and call it �. For example, if K=D3d , pick the 3-fold axis as �;
if K =Oh, pick one of the 4-fold axes as �. Let the order of � be k. By Lemma 2.40 L has
a lattice vector u parallel to � and a lattice plane, say Σ , which contains 0 and is normal to
u. Let a3 be the shortest lattice vector in the direction of u. Pick a planar primitive lattice
basis a1 and a2 in Σ such that they are symmetry-adapted to K in the sense to be discussed
under Case (i) and Case (ii) below, and that a1, a2, and a3 constitute a right-handed triad.

Case (i): The axis of highest rotational symmetry has its order k = 3,4, or 6. For this case the
conventional basis vectors a1, a2 are chosen to be symmetry-adapted to K in the following
sense: Let a1 be one of the shortest lattice vector in the plane Σ , and let a2 =R(n,2π/k)a1,
where n = u/‖u‖. Then a1 and a2 constitute a primitive lattice basis in Σ . Moreover, a1

and a2 define axes of rotational symmetry of HL. In fact, we have already applied this
construction in our proof of Theorem 2.41; cf. also Remark 2.42. The unit cell Π [a1,a2,a3]
is not primitive unless it happens that

V(Π [a1,a2,a3])≤V(Π [a1,a2,f ]) (2.117)
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for any lattice vector f such that V(Π [a1,a2,f ]) > 0, where V(·) denotes the volume of
the parallelepiped in question; see Sect. 2.3.2.

Consider the group of translations

L(p) = {s ∈ R
3 : s = s1a1 + s2a2 + s3a3, where s1, s2, s3 ∈ Z}. (2.118)

Unless the conventional basis {a1,a2,a3} is primitive, the orbit L(p)(0) is a proper sublattice
of L. Hence, in general, the unit cell Π [a1,a2,a3] may contain lattice points other than 0.
Let

t = t1a1 + t2a2 + t3a3 (0≤ ti < 1 for i = 1,2,3). (2.119)

Step 2 of the procedure concerns the problems to find the conditions on ti (i = 1,2,3) such
that t ∈ L and to determine the possible lattice vectors t . We shall solve these problems
for each holohedry in question. For brevity, we shall henceforth write t = (t1, t2, t3) for the
equation in (2.119) when no confusion should arise on the basis in question.

In Steps 1 and 2 we use the requirement QL = L for Q in the holohedral group K to
generate necessary conditions for the lattice L, which lead to one or more lattices of the
form L(p)(0), L(p)(0) ∪ L(p)(t), etc. that satisfy those conditions. In Step 3 we check for
each derived lattice L whether HL =K.

Remark 2.44 For Case (i) the conventional lattice basis a1, a2, and a3 delivered by the pro-
cedure outlined above for a lattice L such that K=HL will enjoy the following properties:

1. The lattice vectors ai (i = 1,2,3) constitute a right-handed triad.
2. The lattice basis is symmetry-adapted to the lattice point group HL in the sense that a3

lies along an axis of highest rotational symmetry of HL, whereas a1 and a2 are along
axes of rotational symmetry of HL, and a2 =R(a3/‖a3‖,2π/k)a1.

3. Among basis vectors that are symmetry-adapted to HL in the preceding sense, the unit
cell Π [a1,a2,a3] is one with the smallest volume. �

Case (ii): The axis of highest rotational symmetry has its order k = 2. There are only two
holohedries which fit this description, namely D2h and C2h. If the lattice point group HL
is of type D2h, then it has three orthogonal 2-fold axes of rotational symmetry. Choose a
right-handed triad, each of which is along one of the 2-fold axes and is the shortest lattice
vector in its direction. The lattice vectors ai (i = 1,2,3) form a conventional lattice basis
that satisfies all the properties listed in Remark 2.44.

If HL is of type C2h, then it has only one 2-fold rotational axis. Choose one of the two
shortest lattice vectors along the 2-fold axis as a3. Pick a primitive basis a1, a2 in the lattice
plane Σ normal to a3 such that a1, a2, and a3 constitute a right-handed triad. We may still
assert that the chosen basis is symmetry-adapted to HL, the point group of lattice L, as it
has only one axis of rotational symmetry.

The vectors of the conventional basis a1, a2, and a3 are commonly written as a,b, and
c, respectively. The lengths of these lattice vectors are: a := ‖a‖, b := ‖b‖, and c := ‖c‖.
The angle between b and c, c and a, a and b are named α, β , γ , respectively. The variables
a, b, c,α,β , and γ are called cell parameters.

We will now turn to work out for the seven holohedries what follows:35

35The lattice types derived for a holohedry are independent of the specific point group chosen to represent
that holohedry. See Sect. 2.8.1.
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– For each holohedral group K given in Table 3 (i.e., K = Ci , C2h, D2h, D4h, D3d , D6h,
or Oh there), follow the procedure given earlier in the present section to determine all
types of lattices L, called Bravais lattice types, for which K=HL, i.e., QL= L for each
Q ∈K.

It turns out that the procedure described above delivers for each holohedry (except the trig-
onal36) a primitive lattice type L(p)(0)—see (2.118), where the conventional lattice basis is
primitive. The primitive lattice types are: aP , mP , oP , tP , hP , and cP .37 For the mono-
clinic, orthorhombic, tetragonal, and cubic holohedries, the primitive lattice L(p)(0) serves
also as a sublattice for centered lattice types (base-centered, body-centered, or face-centered)
of the form L(p)(0)∪L(p)(t), etc., where the centering vectors t satisfy (2.119). The centered
lattice types for these holohedries are: mS, oS, oF , oI , tI , cF , and cI . The lattice types per-
taining to the same holohedry together constitute a lattice system. Thus we have the triclinic,
monoclinic, orthorhombic, tetragonal, hexagonal, and cubic lattice systems, which include
lattice types that pertain to the Ci , C2h, D2h, D4h, D6h, and Oh holohedry, respectively. For
the trigonal (D3d ) holohedry, Steps 1 and 2 lead to two lattice types, namely the primitive
hexagonal (hP ) of the hexagonal lattice system, and the rhombohedral hexagonal (hR),38

which we assign to the rhombohedral lattice system.

2.8.3 The Hexagonal, Tetragonal, and Rhombohedral Lattice Systems

We discuss the hexagonal, tetragonal, and rhombohedral lattice systems together, because
the mathematical derivations are similar. For each of these cases, let a1, a2, and a3 be con-
structed by following the recipe described in the preceding subsection.

In what follows, k = 3,4, or 6; n := a3/‖a3‖; when the arguments of R are not specified,
R =R(n,2π/k). Using the formulas Ra1 = a2, Ra3 = a3, and (see (2.100))

Ra2 =
(
2I −R−1 −Z⊥k

)
a2 = 2a2 − a1 − λka2, (2.120)

we obtain the equation

t −R(n,2π/k)t = (t1 + t2)a1 + (λkt2 − (t1 + t2))a2, (2.121)

where t is given in (2.119). Since t − R(n,2π/k)t ∈ L and a1, a2 constitute a primitive
basis in the lattice plane Σ , we have t1 + t2 ∈ Z and λkt2 − (t1 + t2) ∈ Z, where λk is given
in (2.102). Hence λkt2 =m for some m ∈ Z. Since 0≤ ti < 1 for i = 1,2, we conclude that

t1 =
{

0 if t2 = 0
1− t2 if t2 �= 0,

t2 = m

λk

, where m ∈ Z and 0≤m< λk. (2.122)

Applying the operator Z
‖
k to both sides of (2.119), we get (cf. (2.103)2)

Z
‖
kt = λkt3a3. (2.123)

36The primitive lattice type L(p)(0) obtained from Step 1 of the procedure for the holohedry D3d consists
of hexagonal lattices of type hP with holohedral groups of type D6h. In Step 2, addition of two suitable
centering lattice vectors in the unit cell leads to lattices of type hR with holohedral groups of type D3d .
37Here we adopt the system of abbreviations given in International Tables for Crystallography A [133, p.
15].
38The hR lattice type is sometimes called double-centered hexagonal; see [177, p. 360]. See also Footnote
36.
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Since Z
‖
kt ∈ L and a3 is the shortest lattice vector in the direction of n, we see that λkt3 =m′

for some m′ ∈ Z, which we rewrite as

t3 = m′

λk

, where m′ ∈ Z and 0≤m′ < λk. (2.124)

When m> 0, it is necessary that m′ ≥ 1, because {a1,a2} is a primitive basis in the lattice
plane Σ .

The Hexagonal System

For the hexagonal system, k = 6 and λ6 = 1 in (2.122) and (2.124). Hence m=m′ = 0,
t1 = t2 = t3 = 0, t = 0, and L = L(p)(0). There is only one Bravais lattice type for the
hexagonal system, which is named primitive hexagonal (hP ).

Note that if we replace a2 by a′2 = a2 − a1, the lattice L remains unchanged. In fact, the
standard practice in crystallography is to take a = a1, b = a′2 =R(n,2π/3)a1, and c = a3.
The restrictions on cell parameters are then: a = b, α = β = π/2, and γ = 2π/3. Two
parameters, namely a and c, are required to specify a primitive hexagonal unit cell.

Let us prove that the holohedry of the hP lattice type is D6h. Let ei (i = 1,2,3) be
the right-handed orthonormal triad defined by e3 := n= a3/‖a3‖, e1 := a1/‖a1‖. We take
R(e3,π/3), R(e1,π), and I as the generators of the group D6h given in Table 3. By
Lemma 2.39, IL= L. Hence it suffices to show that R(e3,π/3)L= L and R(e1,π)L= L.
Since

R(e3,π/3)a1 = a1 + a′2, R(e3,π/3)a′2 =−a1, R(e3,π/3)a3 = a3,

R(e1,π)a1 = a1, R(e1,π)a
′
2 =−a1 − a′2, R(e1,π)a3 =−a3, (2.125)

we conclude that R(e3,π/3)L = L and R(e1,L) = L. Since there is no crystallographic
point group that contains D6h as a proper subgroup, we have HL =D6h.

The Tetragonal System

For the tetragonal system, k = 4 and λ4 = 2 in (2.122) and (2.124). Hence 0 ≤ m < 2
and 0 ≤ m′ < 2. As pointed out after equation (2.124), the case (m,m′) = (1,0), which
leads to t = (1/2,1/2,0) ∈Σ , is impossible, because a1 and a2 constitute a primitive basis
in the lattice plane Σ . Similarly, the case (m,m′) = (0,1) is impossible, because it leads
to t = (0,0,1/2), which is parallel to and shorter than a3, the shortest lattice vector in its
direction. That leaves only two possible cases:

(i) Primitive tetragonal (tP ): (m,m′) = (0,0), and t = 0. Here L = L(p)(0). The restric-
tions on cell parameters are: a = b, α = β = γ = π/2. Two undetermined parameters a
and c specify a primitive tetragonal unit cell.

(ii) Body-centered tetragonal (tI ): (m,m′)= (1,1), and t = (1/2,1/2,1/2). The lattice is
L= L(p)(t)∪L(p)(0). The restrictions on cell parameters and undetermined parameters
are the same as those for the primitive tetragonal lattice.

We proceed to show that the holohedry of both the tP and tI lattice types is D4h. Let
ei (i = 1,2,3) be the right-handed orthonormal triad defined by e3 := n= a3/‖a3‖, e1 :=
a1/‖a1‖. We take R(e3,π/2), R(e1,π), and I as the generators of the group D4h given in
Table 3. By Lemma 2.39, to prove that QL= L for each Q ∈D4h, it suffices to show that
R(e3,π/2)L= L and R(e1,π)L= L. For the conventional basis a1,a2, and a3 in question
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we have

R(e3,π/2)a1 = a2, R(e3,π/2)a2 =−a1, R(e3,π/2)a3 = a3,

R(e1,π)a1 = a1, R(e1,π)a2 =−a2, R(e1,π)a3 =−a3. (2.126)

For the tP lattice type, it follows immediately from (2.126) that R(e3,π/2)L(p)(0) =
L(p)(0).

For the tI lattice type, (2.126) implies that

R(e3,π/2)t = 1

2
a2 − 1

2
a1 + 1

2
a3 = t − a1, (2.127)

R(e1,π)t = 1

2
a1 − 1

2
a2 − 1

2
a3 = t − a2 − a3. (2.128)

Hence there holds also R(e3,π/2)L(p)(t)= L(p)(t) and R(e1,π)L(p)(t)= L(p)(t).
Thus R(e3,π/2)L = L and R(e1,π)L = L for both the tP and the tI lattice types.

Moreover, since the holohedral group which contains the D4h group in question as a proper
subgroup is of type Oh and requires the metric restriction a = b = c, we conclude that the
holohedry of both the tP and tI lattice types is D4h.

The Rhombohedral System

Here we have k = 3 and λk = 3. By (2.122), (2.124), and the requirement that m′ ≥ 1
if m > 0, there are the following possibilities for t : (i) (0,0,0), (ii) (2/3,1/3,1/3), (iii)
(1/3,2/3,2/3), (iv) (2/3,1/3,2/3), (v) (1/3,2/3,1/3). Cases (ii) and (iii) correspond to
(m,m′)= (1,1) and (2,2), respectively, whereas cases (iv) and (v) to (m,m′)= (1,2) and
(2,1), respectively.

No new Bravais lattice type arises from the case t = 0, because it leads to the same hP

lattice type of the hexagonal system. This is an exceptional case: We follow our recipe and
start from a lattice vector a3, which defines a 3-fold axis � that is presumed to have the
highest rotational symmetry in the holohedral group, but end up with a lattice where � is an
axis of 6-fold symmetry.

We now consider the other cases. Let t = 2
3 a1 + 1

3 a2 + 1
3 a3 and t ′ = 1

3a1 + 2
3a2 + 2

3a3.
Since t + t ′ = a1 + a2 + a3, we see that t ′ ∈ L(p)(t), t ∈ L(p)(t ′), and L(p)(t) = L(p)(t ′).
Hence cases (ii) and (iii) give rise to the same rhombohedral lattice (hR) with “hexagonal
axes” and “triple obverse cell”: L = L(p)(t) ∪ L(p)(0). The restrictions on cell parameters
for this description of the hR lattice are: a = b, α = β = π/2, γ = 2π/3. The undetermined
cell parameters are a and c.

Consider now the following change of lattice basis: a′1 = −a1, a′2 = −a2, and a′3 =
a3. Let t = 1

3a′1 + 2
3 a′2 + 1

3a′3 and t ′ = 2
3 a′1 + 1

3a′2 + 2
3a′3, which under the primed basis

correspond to Cases (iv) and (v), respectively. A moment of examination reveals that under
the primed basis we have t ′ ∈ L(p)(t), t ∈ L(p)(t ′), and L(p)(t)= L(p)(t ′); moreover, L :=
L(p)(t)∪L(p)(0) is the same hR lattice which still has “hexagonal axes” but a different unit
cell called “triple reverse cell”. While the “obverse” and “reverse” descriptions of the hR

lattice are equivalent, it is customary in practice to keep to the obverse setting unless there
are special reasons to do otherwise.
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There is another description of the hR lattice where the unit cell is primitive and rhom-
bohedral. Let n= a3/‖a3‖, and let

b1 = 2

3
a1 + 1

3
a2 + 1

3
a3,

b2 =R (n,2π/3)b1 =−1

3
a1 + 1

3
a2 + 1

3
a3,

b3 = (R (n,2π/3))2 b1 =−1

3
a1 − 2

3
a2 + 1

3
a3, (2.129)

where a1, a2, and a3 are the conventional basis vectors of the obverse-triple-cell description.
Since b1 = t and R(n,2π/3) is a symmetry operation of the hR lattice, bi (i = 1,2,3) are
lattice vectors. Note that det(b1,b2,b3)= det(a1,a2,a3)/3 > 0, and

a1 = b1 − b2, a2 = b2 − b3, a3 = b1 + b2 + b3,

t = b1, t ′ = b1 + b2. (2.130)

By (2.130) every lattice vector in the hR lattice can be expressed as a linear combination of
the right-handed triad b1, b2, and b3 with coefficients being integers. Since

‖b1‖ = ‖R(n,2π/3)b1‖ = ‖(R(n,2π/3))2b1‖, (2.131)

b1 ·R(n,2π/3)b1 =R(n,2π/3)b1 · (R(n,2π/3))2b1 = (R(n,2π/3))2 · b1, (2.132)

the restrictions on the rhombohedral cell parameters are: a = b = c, α = β = γ . The unde-
termined cell parameters are a and α.

See [308, pp. 51–53] for some good depictions of the obverse, reverse, and rhombohedral
unit cells of the rhombohedral lattice.

To prove that the holohedry of the hR lattice type is D3d , it suffices to restrict attention to
the obverse-triple-cell description. Let ei (i = 1,2,3) be the right-handed orthonormal triad
defined by e3 := n= a3/‖a3‖, e1 := a1/‖a1‖. We take R(e3,2π/3), R(e1,π), and I as the
generators of the group D3d given in Table 3. By Lemma 2.39, to prove that QL = L for
each Q ∈D3d , it suffices to show that for the hR lattice R(e3,2π/3)L= L and R(e1,π)L=
L. For the conventional basis vectors a1,a2, a3 and for the lattice vector t in question we
have

R(e3,2π/3)a1 = a2, R(e3,2π/3)a2 =−a1 − a2, R(e3,2π/3)a3 = a3,

R(e1,π)a1 = a1, R(e1,π)a2 =−a1 − a2, R(e1,π)a3 =−a3, (2.133)

R(e3,2π/3)t = t − a1, R(e1,π)t = t ′ − a2 − a3. (2.134)

It follows from (2.133) and (2.134) that

R(e3,2π/3)L(p)(0)= L(p)(0), R(e1,π)L(p)(0)= L(p)(0),

R(e3,2π/3)L(p)(t)= L(p)(t), R(e1,π)L(p)(t)= L(p)(t ′)= L(p)(t).

Hence we conclude that for the hR Bravais lattice QL = L for all Q ∈ D3d . The only
crystallographic point groups that contain D3d are of type D6h or Oh. The axis defined by
a3, which is a 6-fold axis of the hexagonal sub-lattice, becomes a 3-fold axis because of the
presence of t and t ′ in the unit cell. There is no 4-fold axis of rotational symmetry. Hence
there is no crystallographic point group larger than D3d which keeps the hR lattice invariant.
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2.8.4 The Orthorhombic and Cubic Lattice Systems

The Orthorhombic System

Let the three orthogonal 2-fold axes be �i (i = 1,2,3). Pick one of the two shortest lattice
vectors in �i as ai and, if necessary, relabel i so that {ai} constitutes a right-handed triad.
Let ei = ai/‖ai‖. Apply the operator 1

2 Z
‖
2(e3,π) to both sides of (2.119), which yields (cf.

equation (2.105)2)

(I +R(e3,π)) t = 2t3a3. (2.135)

Since (I +R(e3,π)) t ∈ L and a3 is the shortest lattice vector in the direction of a3, we have
2t3 = m3 or t3 = m3/2 for some m3 ∈ Z. It follows then from 0 ≤ t3 < 1 that 0 ≤ m3 < 2.
Similarly, we can show for i = 1,2 that ti =mi/2 for some integer mi which satisfies 0 ≤
mi < 2. In summary, we have deduced that

t = m1

2
a1 + m2

2
a2 + m3

2
a3, where mi ∈ Z and 0≤mi < 2 for i = 1,2,3. (2.136)

There are four possible Bravais lattice types:39

(i) Primitive orthorhombic (oP ): (m1,m2,m3)= (0,0,0), t = 0, and L= L(p)(0).
(ii) Based-centered orthorhombic (oA, oB , oC; or oS): (m1,m2,m3)= (0,1,1), (1,0,1),

and (1,1,0) for the oA, oB , oC lattice, respectively. There is one additional lattice
point in the unit cell, which is placed at the center of the A face (t1 = 0) for oA,
the B face (t2 = 0) for oB , and the C face (t3 = 0) for oC, respectively, for which
t = (0,1/2,1/2), (1/2,0,1/2), and (1/2,1/2,0), respectively. For all three subcases,
the lattice L= L(p)(0)∪ L(p)(t).

The oA, oB , and oC lattices are equivalent because they can be taken as different
names, which depend on how the three orthogonal 2-fold axes are labelled, given to the
same lattice oS.

(iii) Face-centered orthorhombic (oF ): If tA := (0,1/2,1/2) and tB := (1/2,0,1/2) are in
lattice L, then tC := (1/2,1/2,0)= (1,0,0)+ tA− tB is in L. Thus it can be seen that
if the unit cell Π [a1,a2,a3] (see (2.31) for definition) has lattice points at the center
of two of its faces, then it must also have a lattice point at the center of the remaining
face. The face-centered orthorhombic (oF ) lattice is given by

L= L(p)(tA)∪ L(p)(tB)∪ L(p)(tC)∪ L(p)(0).

(iv) Body-centered orthorhombic (oI ): (m1,m2,m3) = (1,1,1), t = (1/2,1/2,1/2), and
L= L(p)(t)∪ L(p)(0).

The restrictions on cell parameters for all four lattice types of the orthorhombic system
are: α = β = γ = π/2. The undetermined cell parameters are a, b, and c.

Let us show that the holohedry of the oP , oS, oF , and oI lattice types is D2h. We take
R(e1,π), R(e3,π), and I as the generators of group D2h in Table 3. By Lemma 2.39,
IL= L for any lattice L. Hence it suffices to show that R(e1,π)L= L and R(e3,π)L= L

39The cases where (m1,m2,m3)= (1,0,0), (0,1,0), or (0,0,1) are impossible, because ±ai are the short-
est lattice vectors in �i for each i.
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for lattice L of each type in the orthorhombic system. To this end, we shall use the following
relations on the conventional basis vectors:

R(e1,π)a1 = a1, R(e1,π)a2 =−a2, R(e1,π)a3 =−a3,

R(e3,π)a1 =−a1, R(e3,π)a2 =−a2, R(e1,π)a3 = a3. (2.137)

For the oP lattice, by (2.137) we immediately see that

R(ei , π)L=R(ei , π)
(
L(p)(0)

)= L, for i = 1,3. (2.138)

For the oS (or oA,oB,oC) and oF lattices, by (2.137) we obtain

R(e1,π)tA = tA − a2 − a3, R(e1,π)tB = tB − a3, R(e1,π)tC = tC − a2,

R(e3,π)tA = tA − a2, R(e3,π)tB = tB − a1, R(e1,π)t3 = tC − a1 − a2.

(2.139)

By (2.138) and (2.139), we have for the oC lattice

R(ei , π)L=R(ei , π)
(
L(p)(tC)∪ L(p)(0)

)= L, for i = 1,3.

Similarly, for the oA and oB lattices we conclude that R(ei , π)L= L for i = 1,3. Likewise,
for the oF lattice, by (2.138) and (2.139) we have

R(ei , π)L=R(ei , π)
(
L(p)(tA)∪ L(p)(tB)∪ L(p)(tC)∪ L(p)(0)

)= L, for i = 1,3.

For the oI lattice, by (2.137) we obtain the following relations:

R(e1,π)t =R(e1,π)

(
1

2
a1 + 1

2
a2 + 1

2
a3

)
= 1

2
a1 − 1

2
a2 − 1

2
a3 = t − a2 − a3,

R(e3,π)t =−1

2
a1 − 1

2
a2 + 1

2
a3 = t − a1 − a2. (2.140)

By (2.138) and (2.140) we conclude that for the oI lattice

R(ei , π)L=R(ei , π)
(
L(p)(t)∪ L(p)(0)

)= L, for i = 1,3.

Since α = β = γ = π/2 and there is no restriction on a, b, and c, there is no crystal-
lographic point group larger than D2h that preserves the lattice types in the orthorhombic
system.

The Cubic System

The cubic system can be taken as a special case of the orthorhombic system where the
cell parameters satisfy a = b = c. Except for this constraint, which can also be written
as ‖a1‖ = ‖a2‖ = ‖a3‖, and for one further exception, which we shall specify presently,
much of what we assert about the orthorhombic system formally apply to the cubic system.
The further exception is: the cubic system does not include the based-centered lattice type
because the 3-fold rotation R((e1+e2+e3)/

√
3,2π/3) ∈Oh, where ei = ai/a (i = 1,2,3),

leads to a cyclic permutation (ABC) of the three faces of the unit cell (see the proof below
for details). Thus there are three Bravais lattice types in the cubic system, namely:
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(i) Primitive cubic (cP ), with lattice L= L(p)(0).
(ii) Face-centered cubic (cF ), with lattice L = L(p)(tA) ∪ L(p)(tB) ∪ L(p)(tC) ∪ L(p)(0),

where tA = 1
2 a2 + 1

2a3, tB = 1
2a3 + 1

2 a1, and tC = 1
2 a1 + 1

2a2.
(iii) Body-centered cubic (cI ), with lattice L= L(p)(t) ∪ L(p)(0), where t = 1

2 a1 + 1
2a2 +

1
2 a3.

In the list above, the components of the lattice vectors t , tA, tB , and tC with respect to the
basis a1, a2, and a3 are the same as their corresponding counterparts in the orthorhombic
system.

The restrictions on cell parameters for all lattice types in the cubic system are: a = b= c,
α = β = γ = π/2. There is only one undetermined parameter a.

Let us prove that the holohedry of the cP , cF , and cI Bravais lattice types is Oh. In
what follows all matrix representations of group elements in Oh of Table 3 refer to the
right-handed orthonormal basis ei = ai/a (i = 1,2,3). Let m= (e1+ e2+ e3)/

√
3. We take

R(m,2π/3)=
⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ , R(e3,π/2)=
⎛

⎝
0 −1 0
1 0 0
0 0 1

⎞

⎠ , (2.141)

and the inversion I as the generators of Oh. By Lemma 2.39, every lattice remains in-
variant under the inversion I . To establish what we want to prove, it suffices to show that
R(m,2π/3)L= L and R(e3,π/2)L= L for the cP , cF , and cI Bravais lattice L, respec-
tively. The following relations, which can be easily obtained by inspection or by direct com-
putations, will be instrumental for our analysis:

R(m,2π/3)a1 = a2, R(m,2π/3)a2 = a3, R(m,2π/3)a3 = a1,

R(e3,π/2)a1 = a2, R(e3,π/2)a2 =−a1, R(e3,π/2)a3 = a3. (2.142)

For the primitive cubic (cP ) lattice, it follows clearly from (2.142) that

R(m,2π/3)L(p)(0)= L(p)(0), R(e3,π/2)L(p)(0)= L(p)(0). (2.143)

For the face-centered cubic (cF ) lattice, by (2.142) we have

R(m,2π/3)tA = tB, R(m,2π/3)tB = tC, R(m,2π/3)tC = tA, (2.144)

and

R(e3,π/2)tA =−1

2
a1 + 1

2
a3 = tB − a1,

R(e3,π/2)tB = 1

2
a3 + 1

2
a2 = tA,

R(e3,π/2)tC = 1

2
a2 − 1

2
a1 = tC − a1. (2.145)

It follows from (2.143), (2.144), and (2.145) that

R(m,2π/3)L=R(m,2π/3)
(
L(p)(tA)∪ L(p)(tB)∪ L(p)(tC)∪ L(p)(0)

)= L,

and R(e3,π/2)L= L.
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For the body-centered cubic (cI ) lattice, by (2.142) we obtain

R(m,2π/3)t =R(m,2π/3)

(
1

2
a1 + 1

2
a2 + 1

2
a3

)
= t,

R(e3,π/2)t = 1

2
a2 − 1

2
a1 + 1

2
a3 = t − a1. (2.146)

By (2.143) and (2.146) we see that

R(m,2π/3)L=R(m,2π/3)
(
L(p)(t)∪ L(p)(0)

)= L,

and R(e3,π/2)L= L.
For later use, we write down a primitive lattice basis for the cF and cI lattice, respec-

tively. For the face-centered cubic (cF ) lattice, let

b1 = tA = 1

2
a2 + 1

2
a3, b2 = tB = 1

2
a3 + 1

2
a1, b3 = tC = 1

2
a1 + 1

2
a2. (2.147)

We have

a1 =−b1 + b2 + b3, a2 = b1 − b2 + b3, a3 = b1 + b2 − b3. (2.148)

Hence every lattice vector s of the cF lattice can be expressed as s = s1b1 + s2b2 + s3b3,
where si ∈ Z (i = 1,2,3). Thus b1, b2, and b3 constitute a primitive lattice basis of the cF

lattice.
For the body-centered cubic (cI ) lattice, let

b1 =−1

2
a1 + 1

2
a2 + 1

2
a3 = t − a1, b2 = 1

2
a1 − 1

2
a2 + 1

2
a3 = t − a2,

b3 = 1

2
a1 + 1

2
a2 − 1

2
a3 = t − a3. (2.149)

Clearly bi (i = 1,2,3) are lattice vectors of the cI lattice. Moreover, we have

a1 = b2 + b3, a2 = b3 + b1, a3 = b1 + b2, t = b1 + b2 + b3. (2.150)

Hence the lattice vectors bi (i = 1,2,3) constitute a primitive lattice basis of the cI lattice.

2.8.5 The Monoclinic and Triclinic Lattice Systems

The Monoclinic System

Let � be the 2-fold rotational axis. By Lemma 2.40, there is a lattice vector parallel to �

and the plane, say Σ , which is normal to � and contains the origin 0, is a lattice plane. Let
a3 be one of the two shortest lattice vectors parallel to �.40 Pick two vectors a1 and a2 in
Σ such that the parallelogram subtended by a1 and a2 is primitive in Σ , and that a1,a2,a3

constitute a right-handed triad. We want to investigate what additional lattice point(s) can
be added to the unit cell Π [a1,a2,a3]; cf. Sect. 2.8.2.

40By convention a2 is usually taken, in crystallography, as the basis vector parallel to the 2-fold axis � of the
monoclinic lattice types. Here we elect to replace a2 by a3, which is taken to be parallel to a rotational axis
of the highest order for the holohedry in question for the other crystal systems.
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Let t = t1a1 + t2a2 + t3a3, where 0≤ ti < 1 (i = 1,2,3) be a lattice vector. By (2.102)1,
(2.103), and (2.105), we obtain the equations

1

2
Z⊥2 t = 2(t1a1 + t2a2) ∈ L,

1

2
Z
‖
2t = 2t3a3 ∈ L. (2.151)

Because a1 and a2 are primitive basis vectors in the lattice plane Σ , and because a3 is a
shortest lattice vector parallel to �, we have 2t1 =m1, 2t2 =m2, and 2t3 =m3, where mi ∈ Z

and 0≤mi < 2 for i = 1,2,3. By our definition of ai (i = 1,2,3), the cases where t has one
and only one non-zero component are impossible. The case t = (t1, t2, t3)= (1/2,1/2,0) is
also impossible, because it is at the center of the primitive parallelogram spanned by a1 and
a2 in Σ . Thus there seem to be four possible cases: (i) t = 0; (ii) t = (1/2,0,1/2); (iii)
t = (0,1/2,1/2); (iv) t = (1/2,1/2,1/2). But, in fact there are only two, because case (ii),
(iii), and (iv) are equivalent, as we shall explain.

The two cases are:

(i) Primitive monoclinic (mP ), with L= L(p)(0).
(ii) Base-centered monoclinic (mA, mB , mI ; or mS). Let tA = 1

2a2+ 1
2 a3, tB = 1

2a1+ 1
2a3,

and t I = 1
2a1 + 1

2a2 + 1
2a3. The lattices in question are all given by the formula L =

L(p)(t)∪L(p)(0), where t = tA, tB, t I for the mA, mB , and mI lattice, respectively. An
mA and an mI lattice under the conventional basis {ai} becomes an mB lattice under
the basis a′1 = a2, a′2 = −a1, a′3 = a3 and the basis a′′1 = a1, a′′2 = a1 + a2, a′′3 = a3,
respectively. Hence the mA, mB , and mI lattices can be taken as different descriptions
of the same lattice, which is called mS.

The restrictions on cell parameters for the mP and mS (mA, mB , mI ) lattices are: α =
β = π/2. The undetermined cell parameters are a, b, c, and γ .

Let us show that the holohedry of the mP and mS (mA, mB , mI ) lattice types is C2h:
Let n = a3/‖a3‖. Let ei (i = 1,2,3) be the right-handed orthonormal triad defined by
e3 := a3/‖a3‖, e1 := a1/‖a1‖. We take R(e3,π) and I as the generators of the group C2h

given in Table 3. Since IL = L for any lattice L (see Lemma 2.39), it suffices to show
that R(e3,π) preserves the mP and mB lattices. That R(e3,π) renders the mP lattice
L= L(p)(0) invariant is clear from the following relations:

R(e3,π)a1 =−a1, R(e3,π)a2 =−a2, R(e3,π)a3 = a3. (2.152)

For the mB lattice, L= L(p)(tB) ∪ L(p)(0). Since R(e3,π)L(p)(0)= L(p)(0), to show that
R(e3,π)L = L we just need to prove that R(e3,π)L(p)(tB) = L(p)(tB). But that follows
immediately from the relation R(e3,π)(tB)= tB − a1, which we can easily obtain from the
definition of tB and the formulas in (2.152).

Because a, b, c, and γ are undetermined, there is no crystallographic point group larger
than C2h which preserves the mP and the mS lattice.

The Triclinic System

All lattices L not belonging to any of the other six lattice systems are in the triclinic
system. We choose a primitive lattice basis for L and call the lattice type primitive triclinic
or primitive anorthic (aP ). The aP lattice has no axis of rotational symmetry but is invariant
under the inversion I (see Lemma 2.39). Hence its holohedry is Ci . There is no restriction on
the parameters of the unit cell. All the cell parameters a, b, c, α,β , and γ are undetermined.
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Table 5 The seven lattice systems

Lattice system Cell parameters Bravais lattice types Holohedry

Triclinic a, b, c, α, β, γ aP Ci

Monoclinic a, b, c, α = β = π
2 , γ mP,mS (mA,mB,mI) C2h

Orthorhombic a, b, c, α = β = γ = π
2 oP,oS (oA,oB,oC), oI, oF D2h

Tetragonal a = b, c, α = β = γ = π
2 tP , tI D4h

Rhombohedral a = b, c, α = β = π
2 , γ = 2π

3 hR
(hexagonal axes)

(rhombohedral axes)

D3d

a = b= c, α = β = γ

Hexagonal a = b, c, α = β = π
2 , γ = 2π

3 hP D6h

Cubic a = b= c, α = β = γ = π
2 cP, cI, cF Oh

Remark 2.45 In this section we have derived the 14 Bravais lattice types and presented a
conventional lattice basis for each lattice. But every lattice L of each Bravais lattice type
has a primitive basis, say b1, b2, and b3, such that (bi , I ) (i = 1,2,3) span the lattice group
L of the space group in question, and L= L(0). We have not discussed primitive bases for
the Bravais lattices except for three lattice types, namely: the rhombohedral (hR), the face-
centered cubic (cF ), and the body-centered cubic (cI ). For further information on Bravais
lattices and their primitive bases, see [177, pp. 295–313]. �

2.8.6 Summary. Metric Specialization

We summarize our findings on lattice systems in Table 5. Displayed there are the seven
lattice systems, their associated Bravais lattice types and holohedries, and the restrictions
imposed by symmetry on the metric parameters of the conventional unit cells. Some authors
add further metric conditions on the unit cells to distinguish the lattice systems. For example,
for the triclinic system, instead of the absence of any restriction on metric parameters, the
conditions are written as a �= b �= c and α �= β �= γ �= π/2. For the tetragonal system, the
conditions on the lengths of the conventional basis vectors are put as a = b �= c, instead
of allowing c to be a free undetermined parameter. Such additional restrictions sometimes
appear with the caution that the “ �=” sign or its equivalent should be interpreted as meaning
“not necessarily equal to” [129, p. 43] or “not constrained by symmetry to equal” [183,
p. xxii]. As such these additional conditions aren’t restrictions. They are unnecessary and
should simply be deleted.

As pointed out in Remark 2.11, the lattice L= L(0) of an ideal crystal with space group
G is a mathematical construct that serves as a graphical depiction of the lattice group L =
T(3) ∩ G , which describes the translational symmetry of the crystal structure in question.
The lattice L has no physical meaning independent of G , the complete symmetry group of
the crystal structure. Consider, for instance, a crystal C whose point group is of type D4h. It
is possible that when the metric parameters of the unit cell are determined in some ranges of
temperature and pressure, the lengths a, b, and c are found to be equal within experimental
precision. Such “accidental” increase in lattice symmetry is called metric specialization,
“a phenomenon more frequent than is commonly thought” (see [246] and the references
therein). On the other hand, under metric specialization the crystal structure of C has not
changed, and the crystal still has the same space group, point group, and lattice group. The
crystal has not undergone a tetragonal to cubic phase transition.
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For each lattice system the restrictions on the cell parameters of a lattice L as given in
Table 5 are imposed by the symmetry operations of the corresponding holohedral group HL.
Extraneous restrictions to disallow metric specialization are discarded.

2.9 The Seven Crystal Systems

In the preceding section we use holohedry, conventional lattice basis, and centering to clas-
sify lattices into 14 Bravais lattice types and 7 lattice systems. Here we classify the geometric
crystal classes into seven crystal systems.

In this section, unless explicitly stated otherwise, all groups including generic ones such
as K or those denoted by Schönflies symbols refer to the specific groups given in Table 3 that
represent crystal classes. Let ei (i = 1,2,3) be the right-handed orthonormal basis under
which the matrix groups in Table 3 are defined. We use the same generic or Schönflies
symbol (e.g., K, D3) to denote a crystal class and the specific group which represents that
class in Table 3. Whether the symbol refers to a crystal class or its representative given in
Table 3 should be clear from the context. When confusion might arise, we will spell out
what the symbol stands for.

Let A and B be subgroups of O(3). Then A⊂ B , i.e., A is a subset of B , implies that A
is a subgroup of B . Among the holohedral groups in Table 3 we have the following subset
relations:

Ci ⊂C2h ⊂D2h ⊂D4h ⊂Oh, Ci ⊂C2h ⊂D3d ⊂Oh, (2.153)

Ci ⊂ C2h ⊂D2h ⊂D6h, Ci ⊂ C2h ⊂D3d ⊂D6h. (2.154)

Definition 2.46 A holohedry H is said to be subordinate to a holohedry H′ (or H′ domi-
nates H) if (i) H ⊂H′, where the same symbols of the holohedries are used to denote the
holohedral groups in Table 3 that represent them, respectively; (ii) a lattice type pertain-
ing to holohedral group H′ can be converted to one pertaining to H by an arbitrarily small
continuous transformation of the basis vectors. �

It is easy to see that each subset relation of the holohedral groups in (2.153)–(2.154),
with one exception, can be read also as a subordinate relation between the corresponding
holohedries. The exception is D3d ⊂D6h, for which condition (ii) in Definition 2.46 is not
satisfied.

Let K be a crystallographic point group, H a holohedral group, and K⊂H. Clearly any
lattice L invariant under the action of H are unchanged under K. But there may exist lattices
which remain unchanged under the action of K but are not invariant under H. For instance,
D2 ⊂D4h; clearly any lattice that is invariant under the action of group D4h remains so for
group D2. On the other hand, consider a lattice of type oP with conventional basis vectors
a1 = ae1, a2 = be2, a3 = ce3, and a �= b �= c. Such a lattice is invariant under the action of
D2 but not under D4h.

Here we will present a classification of crystal classes into seven crystal systems, in which
each holohedry defines a crystal system. The outstanding problem is how the merohedral
crystal classes should be assigned to the seven crystal systems. To describe precisely what
we are going to do, we introduce another definition.

Let a Cartesian coordinate system be chosen. In the definition below the matrix groups
that represent the 32 crystal classes are those given in Table 3. All of them are defined with
respect to the chosen Cartesian coordinate system. The 14 lattice types are those described
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in Sect. 2.8. There, for each lattice type, the orthonormal basis vectors ei (i = 1,2,3) are ex-
pressed in terms of the conventional lattice basis vectors ai , from which the inverse relations
follow immediately.

Definition 2.47 A crystal class represented by point group K is said to be compatible with
a lattice type if there is a space group G with associated point group K and lattice L of the
given type. �

We want to assign the merohedral crystal classes into the seven crystal systems such that
the representative groups of crystal classes in the same crystal system are compatible with
the same lattice types. A necessary condition for a merohedral crystal class to be compatible
with a lattice type is clearly that the representative point group of the merohedral class be a
subgroup of the representative holohedral group of the lattice type in question.

Let K be the representative point group of a merohedral class, H be the smallest holohe-
dral group that contains K as a subgroup, and H′ be another holohedral group that contains
K. Then we have K⊂H⊂H′. Consider, for example, D2 ⊂D2h ⊂D4h, where H=D2h is
the smallest holohedral group that contains K=D2 as a subgroup and H′ =D4h. Note that
D2h is subordinate to the holohedry D4h. Putting the D2 class in the crystal system defined
by the D4h holohedry would result in an unstable arrangement because a lattice of type D4h

would be reduced to one of type D2h by an arbitrarily small continuous transformation of
the basis vectors a or b that yields a �= b. A similar assertion applies to the cases where
H′ =D6h or Oh, each of which dominates D2h. Because of this, and because symmetry re-
strictions allow metric specialization, the lattice types compatible with the D2 class should
be those pertaining to the D2h holohedry. In general, if H is the smallest holehedral group
containing the merohedral class K, and if H is subordinate to any holohedral group H′ that
contains it as a subgroup, then K is assigned to the crystal system defined by H, and the
lattice types compatible with the crystal class K are those pertaining to the holohedral class
H.

The only instance that requires separate consideration is H=D3d and H′ =D6h, where
D3d ⊂D6h but D3d is not subordinate to D6h. In this case each merohedral class K which
has D3d as the smallest holehedral group containing it is still assigned to the crystal system
defined by D3d . The lattice types compatible with the crystal class K, however, are hP and
hR.

We formalize in Definition 2.48 the afore-described way of classifying crystal classes
into crystal systems. Recall that for a finite group G, |G| stands for the number of elements
in G.

Definition 2.48 Each holohedry defines a crystal system. A crystal class specified by repre-
sentative group K belongs to the crystal system defined by the holohedry with representative
group H if

(i) K is a subgroup of H;
(ii) the number |H|/|K| is as small as possible. �

Table 6 displays the seven crystal systems and the crystal classes assigned to them ac-
cording to conventions (i) and (ii) in Definition 2.48. In the table are also listed the lattice
types which are compatible with the members of each crystal system.
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Table 6 The seven crystal systems and their crystal classes

Crystal system Crystal classes Compatible lattice types

Triclinic C1, Ci aP

Monoclinic C2, Cs , C2h mP , mS (mA,mB,mI)

Orthorhombic D2, C2v , D2h oP , oS (oA,oB,oC), oI , oF

Tetragonal C4, S4, C4h, D4, C4v , D2d , D4h tP , tI

Trigonal C3, C3i , D3, C3v , D3d hP , hR

Hexagonal C6, C3h, C6h, D6, C6v , D3h, D6h hP

Cubic T , Th, Td , O, Oh cP , cI , cF

The holohedries are underlined

2.10 Some Crystal Structures and their Space Groups

In this exposition we shall restrict attention to three simple crystal structures, namely: the
face-centered cubic structure (fcc), the body-centered cubic structure (bcc), and the hexag-
onal close-packed structure (hcp). About 50% of the elements crystallize in one of these
structures under room temperature and normal pressure [308, Table 14, p. 88]. In particu-
lar, these three crystal structures are of prime importance in metallurgy. To wit, austenitic
steels, aluminum, copper, nickel, silver, etc. have fcc structure. Ferritic steels, β titanium,
chromium, molybdenum, tungsten, etc. have bcc structure. Magnesium, α titanium, zinc,
cobalt, cadmium, etc. have hcp structure.

The bonding between metal atoms is typically metallic. “Because the valence electrons
are in conduction bands and are free to migrate throughout the structure, the metal atoms
tend to pack together in highly ordered arrangements that minimize void space.” ([247,
p. 57]; see also [198, pp. 178–180]). As far as crystal structure of a pure metal is concerned,
a simple model which works quite well is to take the metal atoms as impenetrable hard
spheres of a given radius. Under this hard-sphere model, the atoms in a metal crystal are
congruent spheres, and the tightness of packing is described by a parameter called packing
density. Let S be a packing of hard spheres, Π [a1,a2,a3] the conventional unit cell, and
V(·) the Euclidean volume. The packing density is defined as41

D := V(Π [a1,a2,a3] ∩S )

V(Π [a1,a2,a3]) . (2.155)

Remark 2.49 Mathematical studies on the packing of congruent (or “equal”) spheres have
a long history [135]. Packings where the centers of the spheres form a three-dimensional
lattice are called regular or lattice packings. Those aren’t are called irregular or nonlattice
packings. Definition 2.155 for the packing density clearly covers lattice packings and more
(e.g., the hcp structure is a nonlattice packing, but its packing density is given by (2.155)).
In 1831 Gauss [123] proved that among all lattice packings the face-centered cubic (fcc)
structure is the densest with D = π/

√
18≈ 0.74048 · · · . 42

41Here we use the conventional unit cell for convenience in computations. The value of D remains unchanged
if we use any primitive unit cell instead.
42The original proof by Gauss is based on the theory of the arithmetic reduction of a ternary form. Dempster
[87] provides an elementary proof, which John Todd describes in Mathematical Reviews (MR0085281) as
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In 1611 Kepler [174] published a booklet in which he posed several deep scientific ques-
tions and offered some insightful speculations. Among the topics covered is the packing
of equal spheres. Kepler examines sphere packings whose centers occupy lattices that are
simple cubic, face-centered cubic (examined twice, in two perspectives), and hexagonal,
where each sphere touches six, twelve, and eight neighboring spheres, respectively. He as-
serts [174, p. 57] that the fcc packing “is the tightest possible arrangement, and no other
could fit more spheres in the same container.” Mathematicians have rewritten this assertion
in various mathematically precise ways to obtain different versions of Kepler’s conjecture.
One version, after the definition of packing density is extended to cover infinite nonlattice
packings in E3, is called “the Kepler conjecture” [134]: “No packing of congruent balls
in Euclidean three-space has density greater than that of the face-centered cubic packing.”
Likewise, one may consider [156, Chap. 1] finite sphere packings without container. For
our purposes, we need not go into the intricate mathematics of general sphere packings. It
suffices to note what follows. Mathematical studies on infinite sphere packings and finite
packings without container have all led to the inequality D ≤ π/

√
18, where D is some

suitably defined packing density for the setting in question. Moreover, the maximum value
of D = π/

√
18 is attained by the close-packed structures, to which we now turn. �

2.10.1 Close-Packed Structures

The close-packed structures are what Barlow and Pope [20] call “the closest packed homo-
geneous assemblages of equal spheres” in their 1907 paper.

All three-dimensional close-packed structures are built up of planar layers of congruent
hard spheres. In each layer the hard spheres are packed together in the densest way so that
each sphere is surrounded by six of its peers.43 Take one layer, and denote by Σ the plane
that contains all the centers of spheres pertaining to the layer in question. We choose a unit
normal n to Σ so that the top and bottom of the layer are well defined. Fix one sphere in
the layer, and call its center O . Let the centers of the six spheres that surround the one with
center O be A1,A2, . . . ,A6 (going counter-clockwise about n at O), respectively. The line
segments A1A2,A2A3, . . . ,A6A1 are the sides of a regular hexagon. This hexagon will be
divided into six equilateral triangles if line segments OAi (i = 1, . . . ,6) are added to join
its vertices to O .

To understand how different three-dimensional close-packed structures can be con-
structed from the same building element, i.e., the planar layer described in the preceding

“very simple ..., using extremely elementary geometrical methods.” Coxeter [78, pp. 335–337] adds three
figures and a few more explanations to Dempster’s proof, which further enhances its readability. Hales [136,
pp. 13–14] presents “a short proof that does not require any calculations.” That proof starts from the densest
packing of equal spheres along an infinite linear string, then proceeds to the densest packing of such parallel
strings to form a sheet, and finally advances to the densest stacking of such sheet layers to form the densest
three-dimensional lattice packing of the spheres. The argument is similar to a discussion of Hilbert and
Cohn-Vossen [152, pp. 45–46]. However Dempster, who was clearly aware of the discussion of Hilbert and
Cohn-Vossen, seemed to have found the argument still wanting and proceeded to devise another proof.
43The packing of a planar layer of congruent hard spheres is densest if the packing of their circular cross-
sections is closest in the plane that contains the centers of the spheres. For two-dimensional lattice packings
it is easy to prove (see, e.g., [152, pp. 35–36]) that the packing is closest if and only if the lattice is built
up of equilateral triangles, where each circle touches six neighbors, i.e., the packing is hexagonal. After the
definition of packing density is extended to cover nonlattice packings, Thue’s theorem asserts that a packing
of congruent hard disks in the plane is densest among all possible packings if and only if the packing is
hexagonal. For an elementary proof of Thue’s theorem, see Hales [136, pp. 14–15] for a sketch and Casselman
[72] for more details; information on Voronoi cell decomposition of the plane (R2) can be read off from [136,
pp. 146–148], where parallel information for R

3 is given.
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paragraph, we have to examine the geometry of the planar layer more carefully. Let us go
back to the layer discussed above, which we call the A-layer. The centers of all the hard
spheres in the A-layer constitute a two-dimensional lattice in Σ , which we shall also call
an A-plane. Let a1 := OA1 and a2 := OA3. Note that ‖a1‖ = ‖a2‖ = a is the diameter of
the spheres, and the angle between a1 and a2 is 2π/3. The two-dimensional lattice of the
A-centers in Σ is LA := {s1a1 + s2a2 : s1, s2 ∈ Z}. The two-dimensional primitive unit cell
of the lattice LA is the parallelogram P [a1,a2] = {t1a1+ t2a2 : 0≤ ti < 1 (i = 1,2)}, which
consists of two equilateral triangles. In the unit cell P [a1,a2] there are two hollow areas,
with centers located at OB := 2

3a1+ 1
3a2 and OC := 1

3a1+ 2
3a2, which are the centers of the

two equilateral triangles that make up P , respectively. We call OB and OC the B-center and
C-center of the unit cell P , respectively. Let L2 := {s1a1+ s2a2 : s1, s2 ∈ Z} be the group of
two-dimensional translations such that L2(0)= LA. The elements of L2(OB) and L2(OC)
are the B-centers and C-centers of the translates of P , respectively.

There are two possible ways to add a second close-packed layer of spheres on top of the
A-layer so that the distance between the two planes of centers is shortest, namely: the centers
of all the spheres of the second layer are either (i) directly above the B-centers or (ii) above
the C-centers of the A-plane (i.e., plane Σ ). For case (i) and case (ii), we call the second
layer a B-layer and a C-layer, respectively, and we denote the sequence of layers AB and
AC, respectively. For definiteness, let us consider the AB (resp. AC) layer sequence and
examine the B-plane (resp. C-plane) that contains the centers of spheres in the B (resp. C)
layer. It is easily seen from the geometry that the hollow areas in the B-plane have their
centers located directly above the A-centers and C-centers (resp. B-centers) of the plane Σ .

When a third close-packed layer is added on top of the B-layer (resp. C-layer) of the
AB (resp. AC) layer sequence, there are again two possibilities: the centers of the spheres
of the third layer can be placed either directly above the A-centers or above the C-centers
(resp. B-centers) of the plane Σ , thus resulting in the ABA or ABC (resp. ACA or ACB)
three-layer sequence.

It should now be clear that a great variety of three-dimensional close-packed structures is
possible. In what follows we shall study in more detail the following close-packed structures
and their space groups:

– the hexagonal close-packed (hcp) structure, with layer sequence · · ·ABABAB · · · ;
– the cubic close-packed (ccp) structure, with layer sequence · · ·ABCABC · · · , which is

better known as the face-centered cubic (fcc) structure.

Barlow and Pope [20] call the ccp and hcp structures cubic closest packing and hexagonal
closest packing, respectively. Just like Kepler before and others (see, e.g., [37, pp. 248–249],
[247, p. 57]) after them, they chose the superlative “closest” to describe the packing of
spheres in the ccp and hcp structures. Their choice could only have been guided by a con-
viction based on observations and physical intuition. After the proof [134, 137] of the Kepler
conjecture, however, this conviction has gained a mathematical justification.

2.10.2 Hexagonal Close-Packed Structure

The hexagonal close-packed (hcp) structure was first noticed by Barlow [19]. It has the layer
sequence · · ·ABABAB · · · . Clearly its Bravais lattice is of the primitive hexagonal type. In
Sect. 2.10.1 we have defined the primitive basis vectors a1 and a2 in the A-plane Σ . The
primitive basis vector a3 is parallel to the unit normal n to the plane Σ . Let us determine its
length ‖a3‖ = c. In what follows a position vector t = t1a1 + t2a2 + t3a3 will be written as
(t1, t2, t3).
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By symmetry the distance between the A- and B-plane of two contiguous layers is equal
to c/2. Consider the sphere with center A := O= (0,0,0) (which is an A-center) in the plane
Σ and its contiguous peer with center B := ( 2

3 ,
1
3 ,

1
2 ) in the neighboring B-layer, which is

directly above a B-center in Σ . Let P := ( 2
3 ,

1
3 ,0) be the projection of B onto the plane Σ .

Consider the right-angled triangle BPO. The length of the hypotenuse OB is a, as it is the
distance between the centers of two touching spheres. The length of BP is c/2, which is the
perpendicular distance between the A- and B-plane in question. Since P is the center and O
a vertex of an equilateral triangle (with the length of each side equal to a) in the plane Σ ,
the length of OP is 2

3 ×
√

3
2 × a = a/

√
3. By Pythagoras theorem, we get c=√8/3a.

The lattice group of the hcp structure is L = {(u, I ) : u = u1a1 + u2a2,+u3a3, ui ∈
Z for i = 1,2,3}.

The family of lines {( 1
3 ,

2
3 , t) + (u1, u2, u3) : −∞ < t <∞}, where (u1, u2, u3) ∈ Z

3,
contains the C-centers of all the A- and B-planes. None of the lines in this family intersects
any of the spheres in the hcp structure. Since

(0,I)B= (0,I)( 2
3 ,

1
3 ,

1
2 )= (− 2

3 ,− 1
3 ,− 1

2 )= ( 1
3 ,

2
3 ,− 1

2 )+ (−1,−1,0),

it is in one of the lines that does not intersect any of spheres in the hcp structure. Hence the
origin O isn’t a center of inversion of the structure. But, in fact, we can move the origin of
the affine coordinate system to an inversion center of the structure.

Indeed, let O = ( 1
3 ,

2
3 ,

1
4 ). When the origin of the affine coordinate system is moved to

O , the coordinates of the A-center and B-center in the original unit cell are:

A := (0,0,0)− ( 1
3 ,

2
3 ,

1
4 )= (− 1

3 ,− 2
3 ,− 1

4 )
∼= ( 2

3 ,
1
3 ,

3
4 ),

B := ( 2
3 ,

1
3 ,

1
2 )− ( 1

3 ,
2
3 ,

1
4 )= ( 1

3 ,− 1
3 ,

1
4 )
∼= ( 1

3 ,
2
3 ,

1
4 ),

where the symbol “∼=” here signifies that L(A) (resp. L(B)) remains the same irrespective
of whether (− 1

3 ,− 2
3 ,− 1

4 ) or ( 2
3 ,

1
3 ,

3
4 ) (resp. ( 1

3 ,− 1
3 ,

1
4 ) or ( 1

3 ,
2
3 ,

1
4 )) is used to represent

A (resp. B). After moving the origin to O , all lattice points in L = L(O) are located in
the C-hollows. Under the new coordinate system, the unit cell Π [a1,a2,a3] has the atoms
(i.e., the spheres in the model) centered at A= ( 2

3 ,
1
3 ,

3
4 ) and B = ( 1

3 ,
2
3 ,

1
4 ) as “basis”.44 The

entire hcp structure is: L(A) ∪ L(B). For each s = ( 2
3 ,

1
3 ,

3
4 )+ (u1, u2, u3) ∈ L(A), where

(u1, u2, u3) ∈ Z
3, we have

(0,I)s = (− 2
3 ,− 1

3 ,− 3
4 )+ (−u1a1 − u2a2 − u3a3)

= ( 1
3 ,

2
3 ,

1
4 )+ (−(u1 + 1)a1 − (u2 + 1)a2 − (u3 + 1)a3) ∈ L(B) (2.156)

Similarly, we can easily show that if s ∈ L(B), then (0,I)s ∈ L(A). Hence

(0,I)L(A)= L(B) (0,I)L(B)= L(A),

which imply

(0,I) (L(A)∪ L(B))= L(A)∪ L(B).

Therefore (0,I) ∈ G , the space group of the ideal crystal with the hcp structure.

44Cf. Remark 2.14 for the meaning of the term “basis” here.
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Next consider the rigid transplacements (cn/2,R(n,π/3)), where n = a3/c, and
(0,R(a1/a,π)). The former isometry is called a screw rotation, because it is a rota-
tion coupled with a translation along the rotation axis, and the latter is a rotation about
a1 by angle π . Let us examine the effects of these isometries on an arbitrary vector
x := x1a1 + x2a2 + x3a3 ∈E3. First recall that for the isometry (v,Q),

(v,Q)x = v +Qx = v+ x1Qa1 + x2Qa2 + x3Qa3. (2.157)

For the two rigid transplacements in question, we observe that

R(n,π/3)(a1,a2,a3)= (a1 + a2,−a1,a3), (2.158)

R(a1/a,π)(a1,a2,a3)= (a1,−a1 − a2,−a3). (2.159)

For s = ( 2
3 ,

1
3 ,

3
4 )+ (u1, u2, u3) ∈ L(A), by (2.157)–(2.159) we have

(a3/2,R(a3/c,π/3))s = (0,0, 1
2 )+ ( 2

3 + u1)(1,1,0)+ ( 1
3 + u2)(−1,0,0)

+ ( 3
4 + u3)(0,0,1)

= ( 1
3 ,

2
3 ,

1
4 )+ (u1 − u2, u1, u3 + 1) ∈ L(B); (2.160)

(0,R(a1/a,π))s = ( 2
3 + u1)(1,0,0)+ ( 1

3 + u2)(−1,−1,0)+ ( 3
4 + u3)(0,0,−1)

= ( 1
3 ,

2
3 ,

1
4 )+ (u1 − u2,−(u2 + 1),−(u3 + 1)) ∈ L(B). (2.161)

Similarly, for s = ( 1
3 ,

2
3 ,

1
4 )+ (u1, u2, u3) ∈ L(B), by (2.157)–(2.159) we obtain

(a3/2,R(n,π/3))s = ( 2
3 ,

1
3 ,

3
4 )+ (u1 − u2 − 1, u1, u3) ∈ L(A); (2.162)

(0,R(a1/a,π))s = ( 2
3 ,

1
3 ,

3
4 )+ (u1 − u2 − 1,−(u2 + 1),−(u3 + 1)) ∈ L(A). (2.163)

Hence the rigid transplacements (a3/2,R(a3/c,π/3)) and (0,R(a1/a,π)) preserve the
crystal pattern L(A) ∪ L(B) of the hcp structure, and they are in the space group G of
the ideal crystal in question. Also, it is obvious that the translations (a1, I ), (a2, I ), and
(a3, I ) are in the same space group G .

In fact the six rigid transplacements (a3/2,R(a3/c,π/3)), (0,R(a1/a,π)), (0,I),
(a1, I ), (a2, I ), and (a3, I ) generate the space group P 63/mmc (no. 194) [133, pp.
600–601].

2.10.3 Interlude: Symmorphic Types of Space Groups

Let L be a Bravais lattice which has its lattice point group HL given by a holohedral group
in Table 3. Recall that each holohedral group in Table 3 is a matrix group defined with
respect to a Cartesian coordinate system, which has its origin O located at a lattice point of
the lattice L in question and has its orthonormal basis {ei} defined by their relations with
the conventional basis {ai} of L; see Sect. 2.8. Let L be the lattice group corresponding to
L and L(0)= L. Let K⊂HL be a crystallographic point group that leaves L invariant, and
let

K̂ := {(0,Q) ∈ E(3) :Q ∈K}. (2.164)
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Note that K̂ is the subgroup of isometries on E3 which consists of rotations or roto-
inversions with the origin O as a fixed point, is isomorphic to K, and leaves the lattice
L invariant. Instead of K, some authors refer to K̂ as crystallographic point group; cf. Re-
mark 2.17. We shall follow this convention at times when it is convenient to do so.

Both L and K̂ are subgroups of the Euclidean group E(3). Let

G := {(v, I )(0,Q) : (v, I ) ∈ L, (0,Q) ∈ K̂}. (2.165)

Since (v, I )(0,Q)= (v,Q) ∈ E(3), clearly G ⊂ E(3). For (vi ,Qi ) ∈ G (i = 1,2), by (2.15)
we have (v2,Q2)(v1,Q1) = (v2 +Q2v1,Q2Q1) ∈ G , because QL = L for each Q ∈ K.
Also, for (v,Q) ∈ G , by (2.13) we have (v,Q)−1 = (−Q−1v,Q−1) ∈ G . Hence G is a
subgroup of E(3).

For (v,Q) ∈ G and (u, I ) ∈ L, by the same calculations as those in (2.36) we obtain

(v,Q)(u, I )(v,Q)−1 = (Qu, I ) ∈ L. (2.166)

Hence L is a normal subgroup of G . It is easy to see that L = G ∩ T(3) and the quotient
group

G/L= {(0,Q)L :Q ∈K} (2.167)

is isomorphic to K. Thus G is a space group with lattice group L and crystallographic point
group K.

In the discussion above, we have also shown that G is the semi-direct product (see [42,
p. 14] and Definition A.28 in Appendix A) of L and K̂, i.e.,

G = L∧ K̂. (2.168)

A space group G which is the semi-direct product of its lattice group L and its crystallo-
graphic point group K̂ is said to be symmorphic. A space-group type is symmorphic if its
members are equivalent symmorphic space groups. Clearly an ordered pair such as (aP,C1)

or (cF,Oh), where the second entry is a representative point group of a crystal class and the
first entry is a lattice type compatible with the group in question, defines a symmorphic type
of space groups. From Table 6 of Sect. 2.9, we see that there are 66 such pairs. If each
pair gives rise to one symmorphic type of space groups, there will be 66 symmorphic types.
A closer examination, however, reveals that there are seven pairs which correspond to two
distinguished crystal patterns. Take the pairing of the group C2v and the base-centered or-
thorhombic lattice type oS (oA,oB,oC) for example. If the directions specified by e1, e2,
and e3 are equivalent, then the base-centered orthorhombic lattice types oA, oB , and oC

are equivalent. They may all be called oS. The group C2v given in Table 3, however, has
only one 2-fold axis, which is parallel to e3. Then the pairs (oC,C2v) and (oA,C2v), which
have the 2-fold axis perpendicular and parallel to the centered face, respectively, specify
two different symmorphic types, namely Cmm2 (no. 35) and Amm2 (no. 38) in the ITA
[133, pp. 238–239, 244–245], respectively. In what follows all page numbers refer to those
in the fifth edition of ITA [133]. The other six pairings which yield two symmorphic types
are as follows: (tP ,D2d): P 4̄2m (no. 111) and P 4̄m2 (no. 115), pp. 406–407 and 414–415,
respectively; (tI,D2d): I 4̄2m (no. 119) and I 4̄m2 (no. 121), pp. 422–423 and 426–427,
respectively; (hP,D3): P 312 (no. 149) and P 321 (no. 150), pp. 504–505 and 506–507,
respectively; (hP,C3v): P 3m1 (no. 156) and P 31m (no. 157), pp. 520–521 and 522–523,
respectively; (hP,D3d): P 3̄1m (no. 162) and P 3̄m1 (no. 164), pp. 530–537 and 540–541,
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respectively; (hP,D3h): P 6̄m2 (no. 187) and P 6̄2m (no. 189), pp. 586–587 and 590–591,
respectively.

There are thus a total of 73 symmorphic types of space groups. They are listed and their
ITA numbers given, e.g., in Table 5.1 and Appendix 7 of [129, pp. 92, 337–345].

2.10.4 Face-Centered Cubic Structure

In the face-centered cubic (fcc) or cubic close-packed (ccp) structure, the centers of hard
spheres, which model atoms, occupy the nodes of a face-centered cubic lattice (cF ) so that
each sphere touches 12 of its peers. For definiteness, consider a specific cF lattice and
Cartesian coordinate system as described in Sect. 2.8.4. Then we have ‖ai‖ = a, ei = ai/a

(i = 1,2,3). Let r be the radius of the spheres. The spheres with centers located at (0,0,0)
and (a, a,0) touch the one centered at (a/2, a/2,0), which implies a = 4r cos(π/4) or
a = 2

√
2r . It follows that the packing density of the face-centered cubic structure is (cf.

(2.155))

D = 4 · 4
3πr

3

(2
√

2r)3
= π√

18
= 0.74048 · · · , (2.169)

the maximum density of all packings of equal spheres (cf. Remark 2.49).
Note that the lattice vectors (cf. (2.147))

b1 = (0, a/2, a/2), b2 = (a/2,0, a/2), b3 = (a/2, a/2,0) (2.170)

constitute a primitive lattice basis that generate the cF lattice in question. These points are
the vertices of an equilateral triangle of side 2r in the lattice plane x+ y+ z= a. Hence the
spheres centered at bi (i = 1,2,3) define a planar close-packed layer of spheres. Consider
the family of lattice planes Σm defined by the equations x + y + z = ma, where m ∈ Z.
The vector n = (1,1,1)/

√
3 is a unit normal of all the lattice planes in the family. The

distance between two consecutive planes Σm and Σm+1 in the family is a/
√

3 = √8/3 r ,
which is exactly the distance between the planes of centers of two consecutive layers in a
close-packed structure. Hence the face-centered cubic structure is a close-packed structure.

The sphere with center (0,0,0) belongs to the Σ0 layer, say, of type A. Let us call the Σ1

layer, which contains the points bi (i = 1,2,3), of type B . None of the centers of spheres in
the Σ2 plane, which include the points (a, a/2, a/2), (a/2, a, a/2), and (a/2, a/2, a), after
perpendicular projection to the Σ0 plane, falls on the origin (0,0,0). Indeed the only point in
the Σ2 plane which falls onto (0,0,0) under perpendicular projection is (2a/3,2a/3,2a/3),
which is not the center of any sphere in the Σ2 layer. Hence the Σ2 layer cannot be of type
A. Then it must be of type C; cf. Sect. 2.10.1. On the other hand, the point (a, a, a) is the
center of a sphere in the Σ3 layer and its projection to the Σ0 plane is the origin. Thus
the Σ3 layer is of type A. By symmetry of the crystal structure under the translation b1 +
b2 + b3 = (a, a, a), the face-centered cubic structure is close-packed with layer sequence
· · ·ABCABC · · · .

The space group of the fcc structure described above is the semi-direct product G =
LF ∧ Ôh, where LF is the lattice group generated by (bi , I ) (i = 1,2,3), Ôh = {(0,Q) ∈
E(3) :Q ∈Oh}, and Oh has R((e1+ e2+ e3)/

√
3,2π/3), R(e3,π/2), and I as generators.

The space-group type is Fm3̄m (no. 225) in the ITA [133, pp. 688–691].
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2.10.5 Body-Centered Cubic Structure

In the body-centered cubic (bcc) structure, the centers of hard spheres, which model atoms,
occupy the nodes of a body-centered cubic lattice (cI ) such that each pair of diagonally
opposite spheres in the unit cell touch the central one. For definiteness, consider a specific cI
lattice and Cartesian coordinate system as described in Sect. 2.8.4. Then we have ‖ai‖ = a,
ei = ai/a (i = 1,2,3). Let r be the radius of the spheres. The spheres with centers located at
(0,0,0) and (a, a, a) touch the one centered at (a/2, a/2, a/2), which implies 3a2 = (4r)2

or a = 4r/
√

3. It follows that the packing density of the body-centered cubic structure is (cf.
(2.155))

D = 2 · 4
3πr

3

(4r/
√

3)3
=
√

3π

8
= 0.68017 · · · . (2.171)

Recall that the lattice vectors (cf. (2.8.4))

b1 = (−a/2, a/2, a/2), b2 = (a/2,−a/2, a/2), b3 = (a/2, a/2,−a/2) (2.172)

constitute a primitive lattice basis that generate the cI lattice in question. The space group
of the bcc structure described above is the semi-direct product G = LI ∧ Ôh, where LI is
the lattice group generated by (bi , I ) (i = 1,2,3), Ôh = {(0,Q) ∈ E(3) :Q ∈Oh}, and Oh

has R((e1+ e2+ e3)/
√

3,2π/3), R(e3,π/2), and I as generators. The space-group type is
Im3̄m (no. 229) in the ITA [133, pp. 712–714].

2.11 Complete Symmetry Group of Single Crystal in Macroscopic Physics

In macroscopic physics, e.g., in continuum mechanics [322, pp. 264–270], an “undistorted”
single crystal (i.e., what we call an ideal crystal modeled at the macro-scale) is taken as a
homogeneous continuous medium, which is invariant under any translation (v, I ) ∈ T(3)
(where v ∈ V ) and has its complete symmetry group consist of elements of the form
(v, I )(0,Q)= (v,Q), where Q ∈ K, the crystallographic point group of the ideal crystal.
Let us see how this practice can be reconciled with the analysis so far in this chapter.

Recall that the space group G of an ideal crystal (C,κ0) can be taken as a disjoint union
of left cosets (see Sect. 2.3.4). Each coset consists of elements of the form (α+ t,Q), where
(α, I ), (t, I ) ∈ T(3) and Q ∈O(3), with the following properties: (i) Q ∈K, where K is the
crystallographic point group of G , is the same for all elements in the same coset and is
different for elements belonging to different cosets. (ii) α ∈Π , where the primitive unit cell
Π is defined in Sect. 2.3.2, and it is the same for all elements of the same coset but may be
different for different cosets. (iii) t ∈ L, the lattice group of G , and it runs over L to cover
all the elements of the same coset.

Let us examine the elements (α + t,Q) of the space group G more closely. For metallic
elements that crystallize in the bcc, fcc, or hcp structure, at room temperature and normal
pressure the lattice parameters ‖ai‖ (i = 1,2,3) are of the order of angstroms (Å; 1 Å
= 10−10 m); see, e.g., [308, Chapter III, Tables 9, 10, and 13]. Take, for example, an alu-
minum single crystal, which has face-centered cubic (fcc) structure (see Sect. 2.10.4). The
conventional lattice vectors are usually taken to be ai = aei (i = 1,2,3), where a is the
lattice parameter and ei are the orthonormal basis vectors of a Cartesian coordinate system.
A commonly adopted set of primitive basis vectors bi is given by (2.170). Accordingly we
have ‖b1‖ = ‖b2‖ = ‖b3‖ = a/

√
2≈ 2.86× 10−10 m, where the value of a ≈ 4.0496 Å is

taken from [308, p. 74, Table 10]. For the fcc structure, α = 0 for every coset. In general,
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since α ∈Π (the primitive unit cell), the magnitude of the vector α is either zero or of the
same order of the lattice parameters ‖bi‖. Hence, to the macroscopic observer, α is in ef-
fect zero. For each translation (v, I ) ∈ T(3), there are translations (t, I ) ∈ L which cannot be
distinguished from (v, I ) by macroscopic observations. A single crystal behaves macroscop-
ically as if it is homogeneous, and so is it modeled in macroscopic physics. The elements
of the complete symmetry group of the single crystal (C,κ0) appears macroscopically to be
(v,Q) = (v, I )(0,Q), where (v, I ) runs over T(3) and Q over the crystallographic point
group K in question. In other words, in macroscopic physics the complete symmetry group
of a single crystal is the semidirect product T(3) ∧ K̂, where K̂ = {(0,Q) ∈ E(3) :Q ∈ K}
and K is one of the 32 crystallographic point groups.45

The present exposition concerns texture analysis as a branch of macroscopic physics,
in which microscopic aspects of crystal structure (e.g., space groups, etc.) play a secondary
role in the theoretical development. On the other hand, measurements of macro-texture, be it
by X-ray diffraction (XRD) or by electron back-scatter diffraction (EBSD), rely on physics
at the atomic scale. In this regard, knowledge about certain microscopic aspects of crystal
structure becomes indispensable, and it will lead to deeper understanding of the subject.

Remark 2.50 An ideal crystal (C,κ0), at the macro-scale, becomes a homogenized version
of itself, which we denote for clarity by (C,κ0)mac; here the subscript “mac” means “the
homogenized crystal at the macro-scale”. While the complete symmetry group of the ideal
crystal (C,κ0) is its space group G , that of the undistorted single crystal (C,κ0)mac is the
semidirect product T(3) ∧ K̂, where K is the crystallographic point group of G .46 In this
exposition we study texture analysis as a branch of macroscopic physics. Henceforth in the
theoretic development of texture analysis, we shall mostly work with the macroscopic ver-
sion (C,κ0)mac of the single crystal in question. But we shall have to refer also to the ideal
crystal at the atomic scale when we discuss measurements of crystallographic texture that
are made possible by microscopic observations. For simplicity we shall drop the subscript
“mac” and denote the ideal crystal modeled at the macro-scale also by (C,κ0) when no con-
fusion should arise. Whenever clarity is called for, we will either revert to using (C,κ0)mac

or state explicitly what the symbol (C,κ0) denotes. �

45Cf. Miller [232, p. 55] for a similar discussion.
46For classical texture analysis, K is restricted to be one of the 11 finite rotation groups that satisfy the
crystallographic restriction; thus Q is a rotation in that context.
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Chapter 3

3 The Invariant Integral on SO(3)

For a first reading, the reader may glance over the introductory remarks in Sect. 3.1, stop
after reading Sect. 3.1.2, skip the proofs, accept explicit formulas (3.36) and (3.49) for the
invariant integral on SO(3), read Sect. 3.6 and accept the properties of the invariant integral
summarized there, and move on to Chap. 4.

3.1 Introductory Remarks on OrientationMeasures

Throughout this exposition we shall restrict our attention to polycrystals whose constituting
crystallites are all of the same kind. For motivation of what we shall do in this chapter, it
suffices to restrict attention to a substance S whose crystallites are triclinic.47

3.1.1 Crystallite Orientation at a Point in a Polycrystalline Sample

In first approximation, a polycrystalline sample P of substance S can be taken as an aggre-
gate of single crystallites of S, which have different orientations in space and are separated
by grain boundaries. The preceding assertion, however, will make sense only after the word
“orientation” is defined.

Let X be a point in the polycrystalline sample P , which does not fall on a grain bound-
ary. To define crystallite orientation at the point X, we start by choosing a reference ideal
single crystal (C,κ0). As discussed in Remark 2.50, as far as macroscopic response of the
ideal crystal is concerned, the fine details of crystal structure are blurred out; the ideal crys-
tal behaves as if it is homogeneous (i.e., invariant under translations). In fact the symbol
(C, κ0)mac is introduced in Remark 2.50 to denote the ideal crystal (C,κ0) in macroscopic
physics. In classical texture analysis, the complete symmetry group of (C,κ0)mac consists
elements of the form (v, I )(0,R), where (v, I ) is any translation in T(3) and R is a rota-
tion in K, the crystallographic point group of the ideal crystal (restricted to be one of the
11 finite rotation groups that satisfy the crystallographic restriction). Suppose we can iden-
tify a right-handed triad {f i : i = 1,2,3} attached to any point in (κ0(C))mac—recall that
at the macros-scale the reference single crystal is translation-invariant—and at the point X
the corresponding triad becomes {Rf i : i = 1,2,3} (we take X as the starting point of this
triad), where R is a rotation. Then with respect to the reference single crystal the crystallite
orientation at X is defined by the rotation R. While following this outline to ascertain the
crystallite orientation at X by macroscopic measurements is difficult, individual orientation
measurements can be made with microscopic techniques, e.g., via orientation imaging mi-
croscopy (OIM; see Chap. 8). At the length scale of angstroms, we can choose a lattice in
κ0(C), say with conventional basis vectors {ai : i = 1,2,3}. Then the rotation R that takes
the lattice basis vectors {ai} in κ0(C) to their counterparts {Rai} at X can be inferred from
OIM measurements. The triad of lattice basis vectors {ai} can be taken as one choice of {f i}
at the macro-scale, and the rotation R, which takes {ai} to {Rai}, defines also the crystallite
orientation at X with respect to the reference single crystal (κ0(C))mac.

From the preceding discussion, it is clear that there is a one-to-one correspondence be-
tween rotations and the orientations of the triclinic crystallite with respect to the chosen
reference. Thus the rotation group SO(3) can be identified with the space of all possible
orientations of the triclinic crystallite. We proceed next to have a first look at orientation
measures defined on the orientation space SO(3) of the triclinic crystallite.

47As we shall see, the triclinic case occupies a central position in the Roe approach to texture analysis.
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3.1.2 Orientation Measures

Consider a manufacturing process P which produces polycrystalline samples of a substance
S that can be taken as macroscopically identical. In texture analysis, we assume that each
of the samples produced by process P is a realization of what we call the (theoretical)
polycrystal P specific to P, and P is a mathematical idealization. In what follows we shall
use the term “polycrystal P” in two senses: (1) We take P geometrically as a set of points
(similar to an abstract body in continuum mechanics), which is mapped bijectively onto
each sample or realization, say Pβ , of it. Thus for a point X in P, we can identify the
corresponding point in each Pβ , which we denote also by X for simplicity. (2) We take P
as a probability space (see Definition C.7 in Appendix C), the sample space of which is
the set of all its possible realizations. In general, in which sense we mean when we refer to
polycrystal P should be clear from the context. To proceed further, one could (or should, if
the preference is to go logically from the general to the particular) start with a mathematical
model of a polycrystal P as a probability space (see e.g., Paroni [253, Sect. 2]). As our
objective here, namely to present the rudiments of classical texture analysis, has a very
limited scope, we take an easier route.

Take an ensemble E = {Pα} of samples produced by P and measure the crystallite ori-
entation Rα at the same location X within each sample Pα of the ensemble. By discarding a
sample from the ensemble if the point X in that sample falls on a grain boundary,48 we can
say that a measurement at X on each Pα delivers a well-defined crystallite orientation Rα .
The resulting orientations Rα will vary over the ensemble. In fact, if the ensemble does not
show any preferred orientations at X, the set of data points {Rα} will largely distribute in
SO(3) evenly. A fundamental assumption in classical texture analysis is that the set of data
points {Rα} is characterized by a probability measure ℘(·;X) on SO(3) that pertains to the
polycrystal P specific to the process P. We call ℘(·;X) the orientation (probability) mea-
sure at X, which defines the crystallographic texture at X. Mathematically there is a large
collection B of subsets A of SO(3) called Borel sets49 which are measurable, i.e., for which
℘(A;X), the probability that the crystallite orientation R at X belongs to A, is defined. In
particular, for any orientation measure ℘(·;X) :B→[0,1], the empty set ∅ and the rotation
group SO(3) itself are measurable, and

℘(∅;X)= 0, ℘ (SO(3);X)= 1, (3.1)

which say that the probability of finding the crystallite orientation at X does not and does
belong to SO(3) is 0 and 1, respectively. If the orientation measure ℘(·;X) remains the same

48Grain boundaries are not explicitly specified in the theoretical polycrystal P, but they may and generally
will appear in realizations of P. We assume that in every realization the set of points in grain boundaries is
of zero volume in three-dimensional space. They do not play any role in macro-texture analysis and will be
ignored in this exposition.
49See Definition C.2 in Appendix C. In Appendices B and C the reader will find some basic definitions in
topology and measure theory, respectively. The following brief description is meant for readers unfamiliar
with measure theory, an intuitive grasp of which should suffice for reading the main contents of Part I (cf.
also Footnote 50). The term “measure” is a technical description of “volume”, and “measurable set” is a
set which has a well-defined measure. Probability measures and volume measures cannot be assigned to all
subsets of the rotation group SO(3) so that they enjoy properties necessary for the definition of the Lebesgue
integral. Hence we restrict our discussion to a family B, albeit a large family, of “measurable” sets called
the Borel sets of SO(3). Here we need not go into technical details about Borel sets. Suffice it to say that the
empty set ∅, the entire space SO(3), all open subsets and all closed subsets of SO(3) belong to B; so are the
union, intersection, and set difference of two Borel sets. Moreover, for every topological space its Borel sets
are well defined.
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for all X in a polycrystal P, we say that the polycrystal P has a statistically homogeneous
crystallographic texture, in which case we will write ℘(·) for ℘(·;X). In what follows, for
simplicity we shall suppress the general dependence of ℘ on the point X in question except
for occasions that we want to emphasize that dependence. A formula where ℘(·) appears
will be applicable to both the cases that the orientation measure pertains to a point X ∈P or
to a statistically homogeneous P.

A simple example of orientation measure is that which pertains to a single triclinic crystal
with orientation Ro with respect to the chosen reference (C,κ0), where we have suppressed
the subscript “mac”. Note that at the macro-scale κ0(C) is homogeneous. For the ensemble
in question, the orientation measure is given by the Dirac measure at Ro, i.e.,

℘(A)= δRo (A) :=
{

1 if Ro ∈A

0 if Ro /∈A,
for each measurable A⊂ SO(3). (3.2)

Consider another ensemble QE obtained by letting each sample in E undergo a rotation
Q. A sample Pα in E with crystallite orientation Rα at X has orientation R = QRα at
the same point in sample QPα of ensemble QE . Let ℘̀ and ℘ be the orientation measures
which characterize crystallographic texture at X for the ensemble QE and E , respectively.
Let A⊂ SO(3) be measurable and QA := {QR :R ∈A}. Clearly, we have

℘(A)= ℘̀(QA) for each Q ∈ SO(3) and each measurable A⊂ SO(3). (3.3)

For the special case where all orientations are equally probable at X, let ℘iso be the orienta-
tion measure in question. From its physical meaning, we expect that ℘iso should satisfy the
requirement

℘iso(A)= ℘iso(QA) for each Q ∈ SO(3) and each measurable A⊂ SO(3). (3.4)

In the ensemble E = {Pα}, the rotation Rα which describes the crystallite orientation at X
of sample Pα depends also on the choice of the reference configuration κ0(C) for the single
crystal. Suppose another configuration Q ◦ κ0(C), which results after the homogeneous
configuration κ0(C) undergoes a rotation Q, is chosen as reference. With respect to the new
reference, the crystallite orientation at X of Pα is described by the rotation R = RαQ

−1,
and the orientation measure at X of the polycrystal is also changed. It is ℘̌ defined by

℘̌(A)= ℘(AQ) for each measurable A⊂ SO(3), (3.5)

where AQ = {RQ : R ∈ A} and ℘ is the orientation measure of the polycrystal at X with
respect to the original reference κ0(C). For the special case where ℘ = ℘iso, clearly there
holds ℘̌ = ℘iso. By (3.5), we have

℘iso(A)= ℘iso(AQ) for each Q ∈ SO(3) and each measurable A⊂ SO(3). (3.6)

A positive measure μ on the measurable space (SO(3),B) is said to be left-invariant
(resp. right-invariant) if it, like ℘iso, satisfies (3.4) (resp. (3.6)). The measure μ is bi-invariant
(or invariant, for short) if it is both left- and right-invariant. The discussions above indicate
that our physical formulation demands the existence of an invariant probability measure on
the rotation group SO(3).50

50The main contents of Part I of this exposition have been written such that no prior preparations in general
topology and measure theory would be necessary for reading. On the other hand, a number of sections and
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Remark 3.1 As we shall explain in Chap. 10 of Part II, the rotation group is a compact topo-
logical group (cf. Definitions C.12 and C.13). It is well known (see Theorem C.14 and Corol-
lary C.15 in Appendix C) that every compact topological group has a unique bi-invariant
probability measure called the normalized Haar measure. In this exposition, however, we
shall avoid dwelling into abstract mathematical theory as far as possible. In this chapter we
will focus on the rotation group SO(3). �

3.1.3 Ensemble Average and Volume Average

In a thought experiment, the orientation measure ℘(·;X) at a point X of a polycrystal P
can be determined on a countably infinite ensemble E = {Pα} of macroscopically identical
samples of P. In practice, of course that can not be done. If the samples are statistically
homogeneous, the question arises whether making orientation measurements at X of each
Pα of the ensemble could be replaced by making suitable measurements on one sample.

One possibility is suggested by a version of the ergodic theorem. Consider a polycrystal
P of triclinic crystallites that pertains to a given manufacturing process P. We model the
polycrystal as a probability space (Ξ,S, P̃ ); see Definition C.7 in Appendix C. In our model
each sample or realization of polycrystal P occupies the entire 3-dimensional space, which
we denote by R

3 after we have chosen a Cartesian coordinate system. For each realization
of P, at each X ∈ R

3 is specified an orientation �(X) ∈ SO(3) with respect to the chosen
reference. Hence the sample space Ξ , i.e., the set of all possible realizations of P, is the set
of all mappings � : R3 → SO(3). We identify each map � with a sample of the polycrystal
P. The construction of the σ -algebra S of measurable subsets of Ξ and the definition of the
probability measure P̃ are too technical to be presented here.51 We are content just to give
a prime example to illustrate their meaning. Let {X1, . . . ,Xn} be any finite set of points in
R

3. Given a sample � of P, measurements at the points Xi (i = 1, . . . , n) yield orientations
given by rotations �(Xi ) with respect to the reference. If we repeat the measurements on
another sample � ′, the resulting orientation � ′(Xi ) at the point Xi will generally be different
from �(Xi ). However, we assume what follows: Specific to the process P, the probability
℘(A1, . . . ,An;X1, . . . ,Xn) of finding �(Xi ) ∈ Ai (i = 1, . . . , n) is well defined for each
choice of Borel sets Ai . For a given set {Xi} of points in R

3 and a given set {Ai} of Borel
sets in SO(3), the set {� ∈Ξ :�(X1) ∈A1, . . . ,�(Xn) ∈An} is P̃ -measurable and

P̃ ({� ∈Ξ :�(X1) ∈A1, . . . ,�(Xn) ∈An})= ℘(A1, . . . ,An;X1, . . . ,Xn). (3.7)

In classical texture analysis we are interested only in the “one-point correlation” measure
℘(·;X). Under the mathematical model of P described above and under suitable mathemat-
ical assumptions, a version of the ergodic theorem suggests the possibility that ℘ could be
determined by measurements on only one sample. The first assumption is the statistical ho-
mogeneity of P, the exact definition of which we need not go into here. But suffice it to say
statistical homogeneity does imply that ℘ is independent of X. The second assumption is that
the polycrystal P is an ergodic system. Again we will skip the mathematical definition of
the term “ergodic”. Instead we will state a proposition that follows from these assumptions
(see Paroni [253, Lemma 2.1]).

several paragraphs/remarks in Part I are written for readers who have had the equivalent of a first-year grad-
uate course in analysis. Readers who find those sections, paragraphs, or remarks incomprehensible may just
skip them.
51See Paroni [253, Sect. 2] for details.
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Proposition 3.2 Let � ∈Ξ and let A be a Borel set in SO(3). For X ∈ R
3, let

χA(�(X))=
{

1, if �(X) ∈A

0, if �(X) /∈A.
(3.8)

Then for almost every sample � ∈Ξ (i.e., except for samples in a set of P̃ -measure zero in
Ξ ), we have

℘(A)= lim
r→∞

1

V(Br )

ˆ

Br

χA(�(X))dV(X), (3.9)

where V and Br denote the three-dimensional Euclidean volume and the ball of radius r
centered at the origin, respectively. �

In the literature assertions such as Proposition 3.2 are sometimes put forth as conse-
quences of an “ergodic hypothesis” for statistically homogeneous media, namely that “the
result of averaging over all realizations of the ensemble is equivalent to averaging over the
volume for one realization in the infinite-volume limit.” [319, p. 29] And systems which
satisfy the ergodic hypothesis are called “ergodic media” [319, p. 30].

At any rate, should (3.9) be valid for a statistically homogeneous polycrystal P, then
its orientation measure ℘ could be determined through volume averaging by measurements
on one sufficiently large sample. In Chap. 9 we shall discuss measurement of ℘ of such
polycrystal P by inversion of X-ray pole figures, where (3.9), if valid, would indeed serve as
a theoretical basis (see Sect. 9.3). On the other hand, in Chap. 8 we shall present the Bunge–
Haessner method that estimates ℘ of such P by individual orientation measurements, which
has a different mathematical basis (see Sect. 8.5.1).

3.2 The Haar Integral on SO(3)

In Chap. 10, we shall construct a bi-invariant volume measure on the rotation group SO(3).
In this chapter we will follow an alternate approach. Here we will outline the mathematical
basis of this alternate approach.

Let f : SO(3)→ R. For each Q ∈ SO(3), we define two new functions L Qf and RQf

on SO(3) as follows: For each R in SO(3),

(L Qf )(R)= f (Q−1R), (RQf )(R)= f (RQ). (3.10)

Let C (SO(3),R) be the space of real-valued continuous functions defined on the rotation
group SO(3). Suppose a bi-invariant finite positive measure52 μ on (SO(3),B) is given. For
each continuous function f in C (SO(3),R), its (Lebesgue) integral on SO(3) with respect
to the measure μ is defined. Let I : C (SO(3),R)→ R be defined by

I (f )=
ˆ

SO(3)

f (R)dμ(R) :=
ˆ

SO(3)

f dμ. (3.11)

52Some basic definitions in measure theory are given in Appendix C.
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The functional I (·) is said to be left-invariant and right-invariant, respectively, if it satisfies
for each f ∈ C (SO(3),R) and each Q ∈ SO(3),

I (L Qf )=
ˆ

SO(3)

f (Q−1R)dμ(R)=
ˆ

SO(3)

f (R)dμ(R)= I (f ) (3.12)

and

I (RQf )=
ˆ

SO(3)

f (RQ)dμ(R)=
ˆ

SO(3)

f (R)dμ(R)= I (f ), (3.13)

respectively; I (·) is said to be bi-invariant if it is both left-invariant and right-invariant. By
the definition of the integral and the properties of the bi-invariant measure μ, it is easy to
verify that the functional I (·) satisfies the following properties:

(i) I (·) is linear, i.e., it satisfies

I (c1f1+ c2f2)= c1f1+ c2f2, for each f1, f2 ∈ C (SO(3),R) and each c1, c2 ∈ R;
(3.14)

(ii) I (·) is positive, i.e., I (f )≥ 0 for f ≥ 0;
(iii) I (·) is bi-invariant,53 i.e.,

I (L Qf )= I (f )= I (RQf ) for each f ∈ C (SO(3),R) and each Q ∈ SO(3).
(3.15)

If μ is a probability measure on SO(3), then I (·) satisfies the condition

(iv) I (1)= 1.

In general, we call any functional I (·) on C (SO(3),R) that observes assertions (i)–(iii)
a Haar functional on C (SO(3),R). If I (·) also satisfies (iv), then we call it a normalized
Haar functional. A Haar functional I (·) is said to be non-trivial if and only if there is an
f ∈ C (SO(3),R) such that I (f ) > 0. A normalized Haar functional is clearly non-trivial.

Conversely, suppose a Haar functional I (·) is given on C (SO(3),R). Since SO(3) is a
compact metric space (see Sects. 1.10 and 10.1), by Theorem C.8 (i.e., Riesz representation
theorem I; see Appendix C) there exists a unique finite positive measure μ on (SO(3),B)

such that I (f ) is given by

I (f )=
ˆ

SO(3)

f dμ for each f in C (SO(3),R). (3.16)

Moreover, the left- and right-invariance of I (·)—see (3.12) and (3.13)—dictate that the
measure μ is bi-invariant. We call the integral in (3.16) that represents the Haar functional
I (·) the invariant integral or the Haar integral, and the finite, bi-invariant positive Borel

53The weaker condition that I (·) is left-invariant (resp. right-invariant) suffices here. Left-invariance (resp.
right-invariance) and the normalization I (1)= 1 lead to uniqueness of the Haar functional [185, pp. 353–354]
and its right-invariance (resp. left-invariance) [305, p. 15], where the references cited cover the Haar integral
on any compact topological group G. We shall prove the same assertion later in this chapter (see Sects. 3.2.1
and 3.5.1) for the special instance that G = SO(3). We write condition (iii) as it stands because we are
following von Neumann [328], where a bi-invariant positive linear functional I (·) on C (G,R) is constructed
such that (3.15) follows by definition.
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measure μ the corresponding Haar measure. If the Haar functional I (·) is normalized (i.e.,
I (1)= 1), then the corresponding Haar measure μ is normalized, i.e., it satisfies μ(SO(3))=
1. Also, by (3.16) we see that I (·) is non-trivial if and only if I (1) > 0.

Remark 3.3 Note that the invariant integral I (f ), as given by the right-hand side of (3.16),
is nothing but the Lebesgue integral of f on SO(3) with respect to the Haar measure μ; it is
defined if f is integrable. In particular, let A be a Borel set in (i.e., a measurable subset of)
SO(3), and let

χA(R)=
{

1 if R ∈A

0 otherwise
(3.17)

be the characteristic function of A. Then χA is integrable, and I (χA)= μ(A). Also, we have
I (1)= μ(SO(3)). �

Remark 3.4 As mentioned at the end of Sect. 3.1, the rotation group is a compact topolog-
ical group. In 1935 von Neumann [328] provided an elementary proof of the theorem (see
Sect. C.3 in Appendix C for more details) that for each compact topological group G there
is a unique normalized Haar functional I (·) on C (G,R) and thence a unique bi-invariant
probability measure on G. Applying this theorem to G = SO(3), we see that there is a
unique normalized Haar measure on SO(3). In this exposition we will not go into a proof of
this general theorem. Instead, we will first prove a uniqueness theorem on Haar functionals
and then construct an explicit Haar integral on SO(3) as parametrized by the Euler angles
(ψ, θ,φ) and by the axis-angle parameters (n(Θ,Φ),ω), which satisfies defining properties
(i)–(iv). Note that even if we appeal to the general theorem, we still have to derive an ex-
plicit expression of the Haar functional for the rotation group SO(3), which we will need for
computations in applications. �

3.2.1 Uniqueness

We will prove next that two Haar functionals I (·) and J (·) on C (SO(3),R) necessarily
observe the relation I (·) = cJ (·), where c = I (1)/J (1) > 0. Thus there can only be one
Haar functional I (·) with I (1)= 1. Or, in the language of Haar measures, there can only be
one bi-invariant probability measure on the rotation group SO(3).

The following proof54 on uniqueness is based on the bi-invariance of the Haar functional
and Fubini’s theorem on double and iterated integrals.

Proposition 3.5 Let I (·) and J (·) be two Haar functionals on C (SO(3),R) with correspond-
ing Haar measures μ and ν, respectively, i.e.,

I (f )=
ˆ

SO(3)

f dμ, J (f )=
ˆ

SO(3)

f dν, for each f ∈ C (SO(3),R), (3.18)

and let J (·) be normalized, i.e., J (1)= 1. Then I (·)= cJ (·), where c= μ(SO(3)).
In particular, if I (·) is also normalized, then I (·) = J (·). Thus there can only be one

bi-invariant probability measure on SO(3).

54This simple proof of uniqueness appeals to both the left- and right-invariance of the normalized Haar
functional. In Sect. 3.5.1 we shall prove that left-invariance implies right-invariance.
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Proof For each f ∈ C (SO(3),R), we observe that

ˆ

SO(3)

f (R)dμ(R)=
⎛

⎝
ˆ

SO(3)

dν(Q)

⎞

⎠

⎛

⎝
ˆ

SO(3)

f (R)dμ(R)

⎞

⎠

=
⎛

⎝
ˆ

SO(3)

dν(Q)

⎞

⎠

⎛

⎝
ˆ

SO(3)

f (RQ)dμ(R)

⎞

⎠

=
ˆ

SO(3)

⎛

⎝
ˆ

SO(3)

f (RQ)dν(Q)

⎞

⎠dμ(R),

= μ(SO(3))
ˆ

SO(3)

f (Q)dν(Q), (3.19)

where we have appealed to the right-invariance of I (·) at the second step, Fubini’s theorem
at the third step, and the left invariance of J (·) at the final step. Hence we conclude that

I (·)= cJ (·), where c= μ(SO(3)). (3.20)

If μ and ν are probability measures, i.e., μ(SO(3))= ν(SO(3))= 1, we get

ˆ

SO(3)

f (R)dμ(R)=
ˆ

SO(3)

f (R)dν(R) for each f ∈ SO(3), (3.21)

which implies μ = ν. Therefore there can only be one bi-invariant probability measure on
the rotation group SO(3). �

Corollary 3.6 Let I (·) and J (·) be two non-trivial Haar functionals on C (SO(3),R). Then
I (·)= cJ (·), where c= I (1)/J (1) > 0.

Proof Since I (·) and J (·) are non-trivial Haar functionals, by (3.18) I (1)= μ(SO(3)) > 0
and J (1) = ν(SO(3)) > 0. Let Ĩ (·) := I (·)/I (1) and J̃ (·) := J (·)/J (1). Both Ĩ and J̃ are
normalized Haar functionals on C (SO(3),R). By Proposition 3.5, we have Ĩ (·)= J̃ (·), i.e.,
I (·)= cJ (·), where c= I (1)/J (1) > 0. �

3.3 Left-Invariant Integral in Euler Angles

We now proceed to construct an explicit expression for a Haar functional I (·) on
C (SO(3),R). Then I (·)/I (1) will provide an explicit expression for the unique normal-
ized Haar functional. To start with, we parametrize SO(3) with the Euler angles and seek,
as an expression for a left-invariant positive linear functional, a left-invariant integral of a
continuous function with respect to the Euler angles on SO(3).

3 The Invariant Integral on SO(3)
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In terms of Euler angles, the problem to find a left-invariant functional on SO(3) is tan-
tamount to seeking a weight function ρ(ψ, θ,φ) such that

2πˆ

0

π̂

0

2πˆ

0

f (QT R(ψ, θ,φ))ρ(ψ, θ,φ)dψdθdφ

=
2πˆ

0

π̂

0

2πˆ

0

f (R(ψ, θ,φ))ρ(ψ, θ,φ)dψdθdφ (3.22)

for each rotation Q in SO(3). We proceed to construct a weight function ρ which satisfies
(3.22).

Let S2 be the unit sphere. Let (1, θ,ψ) (0≤ θ ≤ π,0≤ψ < 2π) be spherical coordinates
of points in S2 and m(θ,ψ) be the position vector of the point (1, θ,ψ). Let h : S2 → R be
integrable and Q be a rotation. In our construction of a left-invariant integral on the rotation
group SO(3), the formula below will be instrumental:

2πˆ

0

π̂

0

h(QT m(θ,ψ)) sin θdθdψ =
2πˆ

0

π̂

0

h(m(θ,ψ)) sin θdθdψ, (3.23)

for each Q ∈ SO(3). This formula follows from the invariance of surface area of sets in S2

under rotation. Indeed let m̃=QT m. In Cartesian coordinates, m= (sin θ cosψ, sin θ sinψ,
cos θ). Let

dA=
∥∥∥∥
∂m

∂θ
× ∂m

∂ψ

∥∥∥∥dθdψ = sin θdθdψ, (3.24)

and

dÃ=
∥∥∥∥
∂m̃

∂θ
× ∂m̃

∂ψ

∥∥∥∥dθdψ (3.25)

be the element of surface area of S2 at m and m̃, respectively. Since

∥∥∥∥
∂m̃

∂θ
× ∂m̃

∂ψ

∥∥∥∥=
∥∥∥∥QT ∂m

∂θ
×QT ∂m

∂ψ

∥∥∥∥=
∥∥∥∥QT

(
∂m

∂θ
× ∂m

∂ψ

)∥∥∥∥=
∥∥∥∥
∂m

∂θ
× ∂m

∂ψ

∥∥∥∥ , (3.26)

we have dÃ= dA. It follows that
ˆ

S2

h(QT m)dA=
ˆ

S2

h(m̃)dÃ=
ˆ

S2

h(m)dA. (3.27)

Each rotation g ∈ SO(3) is characterized by the pair of unit vectors ge3 and ge1 (see
Fig. 1). Consider those rotations g with ge3 �= ±e3 so that its Euler angles (ψ, θ,φ) are well
defined. The angles (θ,ψ) specify the spherical coordinates (1, θ,ψ) of m := ge3 on the
unit sphere S2. The unit vector ge1 lies in the great circle C (specified by the points N and L

in Fig. (1))—parametrized by φ—whose plane is perpendicular to ge3. Let S(θ,ψ)= {g ∈
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SO(3) : ge3 = (1, θ,ψ)}; clearly the set of rotations S(θ,ψ) is parametrized by φ ∈ [0,2π).
Given f : SO(3)→ R, we define a new function f ∗ defined on S2 by

f ∗(m(θ,ψ))=
2πˆ

0

f (R(ψ, θ,φ))dφ, (3.28)

where R(ψ, θ,φ) denotes the rotation with Euler angles (ψ, θ,φ). Thus f ∗(m(θ,ψ)) is
equal to 2π times the integral average of f (R(ψ, θ,φ)) with respect to φ on the set S(θ,ψ).
For a given rotation Q, let R̃(ψ̃, θ̃ , φ̃) := QT R(ψ, θ,φ), where (ψ̃, θ̃ , φ̃) are the Euler
angles of R̃. The point

m̃ := R̃e3 =QT Re3 =QT m (3.29)

has spherical coordinates (1, θ̃ , ψ̃); it is the place which the point (1, θ,ψ) moves to after
the unit sphere undergoes a rotation specified by QT . Likewise, under the rotation QT the
great circle C which contains Re1 becomes the great circle C̃ =QT C which contains R̃e1.
Let

f̃ ∗(m̃(θ̃ , ψ̃))=
2πˆ

0

f (R̃(ψ̃, θ̃ , φ̃))dφ̃. (3.30)

Clearly we have

f̃ ∗(m̃)= f ∗(QT m). (3.31)

Since the elements of arc length dφ and dφ̃ for the great circles C and C̃, respectively, do
not change under rotation, we have

dφ = dφ̃. (3.32)

Hence we may rewrite (3.30) as

f ∗(QT m(θ,ψ))=
2πˆ

0

f (QT R(ψ, θ,φ))dφ. (3.33)

By (3.23), (3.28) and (3.33) we have

2πˆ

0

π̂

0

f ∗(QT m(θ,ψ)) sin θdθdψ =
2πˆ

0

π̂

0

f ∗(m(θ,ψ)) sin θdθdψ, (3.34)

or

2πˆ

0

π̂

0

2πˆ

0

f (QT R(ψ, θ,φ)) sin θdψdθdφ =
2πˆ

0

π̂

0

2πˆ

0

f (R(ψ, θ,φ)) sin θdψdθdφ. (3.35)
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It follows that the weight function ρ(ψ, θ,φ) = sin θ satisfies (3.22). Hence the func-
tional I (·) : C (SO(3),R)→ R defined by

I (f )=
2πˆ

0

π̂

0

2πˆ

0

f (R(ψ, θ,φ)) sin θdψdθdφ (3.36)

is left-invariant. We shall prove in Sect. 3.5 that I (·) is also right-invariant. Moreover it
clearly satisfies the linearity and positivity requirements (i) and (ii) on Haar functionals.

Remark 3.7 Our construction of the left-invariant integral (3.36) on SO(3) follows largely
the presentations by Gel’fand et al. [125] and Naimark [244]. In fact this construction is an
application of a method based on a theorem (see Knightly and Li [179, p. 78, Lemma 7.11],
Rossmann [276, p. 176, Proposition 5]) on left-invariant integrals on locally compact groups,
which when applied to the compact group SO(3), asserts that if there is a closed subgroup
H of SO(3) such that left-invariant measures dh and d(gH) exist on H and on the space of
left cosets SO(3)/H = {gH : g ∈ SO(3)}, respectively, then there is a left SO(3)-invariant
measure μ on SO(3) such that

ˆ

SO(3)

f (g)dμ(g)=
ˆ

SO(3)/H

⎛

⎝
ˆ

H

f (gh)dh

⎞

⎠ d(gH), for each f ∈ C (SO(3),R).

(3.37)
Note that because of the left-invariance of the measure dh the expression in parentheses in
(3.37) depends only on the cosets in SO(3)/H . For the present application, H = SO(2) =
{h ∈ SO(3) : he3 = e3}, and SO(3)/SO(2) is identified with the unit sphere S2. Moreover, in
(3.37)

ˆ

H

f (gh)dh=
2πˆ

0

f (R(ψ, θ,φ)R(e3, φ1))dφ1

=
2πˆ

0

f (R(e3,ψ)R(e2, θ)R(e3, φ)R(e3, φ1))dφ1

=
2πˆ

0

f (R(ψ, θ,φ + φ1))dφ1

=
2πˆ

0

f (R(ψ, θ,φ))dφ, (3.38)

and

ˆ

SO(3)/H

⎛

⎝
ˆ

H

f (gh)dh

⎞

⎠ d(gH)=
2πˆ

0

π̂

0

2πˆ

0

f (R(ψ, θ,φ)) sin θdφdθdψ. (3.39)

�
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For each positive constant c, the weight function ρ = c sin θ obviously also satisfies
(3.22) and cI (·) is also a Haar functional on C (SO(3),R). By giving c a specific value,
we assign a total group “volume” to SO(3). In classical texture analysis there are two com-
monly used conventions. One convention—initiated by Roe [270]—takes c= 1 and assigns
to SO(3) the total volume

V(SO(3))=
2πˆ

0

π̂

0

2πˆ

0

sin θdψdθdφ = 8π2. (3.40)

Under this convention we write

dV = sin θ dψdθdφ. (3.41)

Another convention—adopted by Bunge [60]—chooses c= 1/(8π2) so that the total group
volume of SO(3) is 1. This convention is in line with the mathematical literature on the
theory of group representations on compact topological groups. We will denote by g the
volume measure under this convention and write

dg= 1

8π2
sin θ dψdθdφ. (3.42)

We have introduced in Sect. 3.1 the orientation measure ℘iso, which is a bi-invariant
probability measure that pertains to the case where all crystallite orientations are equally
probable. By its physical meaning, for a measurable A⊂ SO(3), ℘iso(A) should be propor-
tional to the “size” or volume of A. The volume of A, however, is not a number until we
specify a unit of volume by choosing a standard set and assign it a number for its volume.
A convenient option is to choose SO(3) itself as the standard set. By the uniqueness of the
bi-invariant probability measure on the rotation group SO(3), we have

℘iso = g. (3.43)

3.4 Invariant Integral in Axis-Angle Parameters

As preparation for a proof of right-invariance of the functional I (·) defined in (3.36), we
derive an alternate expression of I (f ) in terms of axis-angle parameters, which is of interest
in itself.

To rewrite the left-invariant integral in (3.36) in terms of the axis-angle parameters, we
compute the absolute value of the Jacobian determinant ∂(ψ, θ,φ)/∂(ω,Θ,Φ). To this end,
first we seek three independent equations which relate the two sets of parameters.

By comparing the trace of the rotation matrix in the two sets of parameters (see (1.89)
and (1.113)), we find

cosω= 1

2
(cos θ + (1+ cos θ) cos(ψ + φ)− 1) ,

which can be recast as

cos
ω

2
=

(
cos

θ

2

)∣∣∣∣cos
ψ + φ

2

∣∣∣∣ . (3.44)
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A comparison of the R33 term delivers the relation

cos θ = (1− cosω) cos2 Θ + cosω,

which can be simplified as

sin
θ

2
= sinΘ sin

ω

2
. (3.45)

From (1.114) we observe that

tanΦ = R13 −R31

R32 −R23
= cosψ + cosφ

sinφ − sinψ
= cot

φ −ψ

2
.

Without loss of generality, we let Φ take value in [−π/2,3π/2) and simplify the preceding
equation as

Φ = π

2
+ ψ − φ

2
. (3.46)

For later use, we deduce from (3.44) and (3.45) the relation
∣∣∣∣sin

ψ + φ

2

∣∣∣∣=
| cosΘ| sin(ω/2)

cos(θ/2)
. (3.47)

Now let (see (3.44)–(3.46))

F1 = cos
ω

2
−

(
cos

θ

2

)∣∣∣∣cos
ψ + φ

2

∣∣∣∣ ,

F2 = sin
θ

2
− sinΘ sin

ω

2
,

F3 =Φ − π

2
− ψ − φ

2
.

After some easy computations we find

∂(F1,F2,F3)

∂(ω,Θ,Φ)
= 1

2
sin2 ω

2
cosΘ,

∂(F1,F2,F3)

∂(ψ, θ,φ)
= 1

4
cos2 θ

2
sin

ψ + φ

2
sgn

(
cos

ψ + φ

2

)
.

Therefore we have
∣∣∣∣
∂(ψ, θ,φ)

∂(ω,Θ,Φ)

∣∣∣∣=
∣∣∣∣−

∂(F1,F2,F3)

∂(ω,Θ,Φ)

/
∂(F1,F2,F3)

∂(ψ, θ,φ)

∣∣∣∣

= 4 sin2(ω/2)| cosΘ|
2 cos2(θ/2)| sin((ψ + φ)/2)|

= 4 sin2(ω/2) sinΘ

sin θ
,
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where we have used (3.45) and (3.47) in the last step. Hence we conclude that

dψdθdφ = 4 sin2(ω/2) sinΘ

sin θ
dωdΘdΦ,

or

dV = sin θdψdθdφ = 4 sin2 ω

2
sinΘdωdΘdΦ. (3.48)

Thus, in terms of the axis-angle parameters, the left-invariant integral I (f ) of a function f

over the rotation group—see (3.36)—assumes the form

I (f )= 4

2πˆ

0

π̂

0

π̂

0

f (R(n(Θ,Φ),ω)) sin2 ω

2
sinΘdωdΘdΦ, (3.49)

which is the alternate expression for I (f ) that we seek.

3.5 Further Properties of the Invariant Integral

3.5.1 Right-Invariance

The functional given by (3.36) is right-invariant if it satisfies

I (RQf )=
ˆ

SO(3)

f (RQ)dV(R)=
ˆ

SO(3)

f (R)dV(R)= I (f ) (3.50)

for each rotation Q in SO(3) and for each continuous function f on SO(3). Note that right-
invariance of the Haar integral plays an essential role in our proof of its uniqueness in
Sect. 3.2.1. Let us demonstrate (3.50) by using the alternate expression (3.49) for I (f ).
Indeed we have for each Q ∈ SO(3) and f ∈ C (SO(3),R),

I (RQf )= 4

2πˆ

0

π̂

0

π̂

0

f (R(n(Θ,Φ),ω)Q) sin2 ω

2
sinΘdωdΘdΦ

= 4

2πˆ

0

π̂

0

π̂

0

f (QT R(n(Θ,Φ),ω)Q) sin2 ω

2
sinΘdωdΘdΦ

= 4

2πˆ

0

π̂

0

π̂

0

f (R(QT n(Θ,Φ),ω)) sin2 ω

2
sinΘdωdΘdΦ

= 4

π̂

0

⎛

⎝
2πˆ

0

π̂

0

f (R(QT n(Θ,Φ),ω)) sinΘdΘdΦ

⎞

⎠ sin2 ω

2
dω

= 4

π̂

0

⎛

⎝
2πˆ

0

π̂

0

f (R(n(Θ,Φ),ω)) sinΘdΘdΦ

⎞

⎠ sin2 ω

2
dω

3 The Invariant Integral on SO(3)
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= 4

2πˆ

0

π̂

0

π̂

0

f (R(n(Θ,Φ),ω)) sin2 ω

2
sinΘdωdΘdΦ

= I (f ), (3.51)

where we have appealed to what follows: the left invariance of I (f ); Euler’s theorem; for-
mula (3.23) by taking h= f ◦R(·,ω) : S2 → R.

As the functional I (f ) on C (SO(3),R) defined by (3.36) or (3.49) linear, positive, and
both left-invariant and right-invariant, it is a Haar functional. By the uniqueness property
discussed in Sect. 3.2.1, Haar functionals on SO(3) are unique up to a positive multiplicative
constant. The assignment of total group volume of SO(3) will define the Haar integral on
SO(3) uniquely. The formulas (3.36) and (3.49) correspond to the choice of I (1)= 8π2 and
the volume measure V . The choice of total group volume equal to 1 delivers the unique
bi-invariant probability measure (or normalized Haar measure) g on SO(3).

3.5.2 Inverse-Invariance

From the left- and right-invariance of the integral I (f ) = ´SO(3) f dV follows its inverse-
invariance, i.e., it enjoys the identity

ˆ

SO(3)

f (R−1)dV(R)=
ˆ

SO(3)

f (R)dV(R) for each f ∈ C (SO(3),R). (3.52)

Since we have already obtained explicit expressions (3.36) and (3.49) for I (f ), we can
prove its inverse-invariance directly. We shall do this presently and add a remark at the end
of the section to discuss the inverse-invariance of the normalized Haar integral on a general
compact group.

We use expression (3.49) to prove its inverse-invariance. First note that

R(n(Θ,Φ),ω)−1 =R(n(π −Θ,Φ + π),ω). (3.53)

Let Θ̃ = π −Θ,Φ̃ = π +Φ . Then sin Θ̃ = sinΘ , dΘ̃ =−dΘ , and dΦ̃ = dΦ . Hence we
have

ˆ

SO(3)

f (R−1)dV(R)= 4

2πˆ

0

π̂

0

π̂

0

f (R(n(Θ̃, Φ̃),ω)) sin2 ω

2
sinΘdωdΘdΦ

= 4

3πˆ

π

0ˆ

π

π̂

0

f (R(n(Θ̃, Φ̃),ω)) sin2 ω

2
sin Θ̃dω(−dΘ̃)dΦ̃

= 4

2πˆ

0

π̂

0

π̂

0

f (R(n(Θ̃, Φ̃),ω)) sin2 ω

2
sin Θ̃dωdΘ̃dΦ̃

=
ˆ

SO(3)

f (R)dV(R) for each f ∈ C (SO(3),R). (3.54)

3.5 Further Properties of the Invariant Integral
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Remark3.8 Inverse-invariance of the invariant integral will play an important role in Chap. 4
when we compare various formulations of the orientation distribution function and its series
expansion in Wigner D-functions or their variants. �

Remark 3.9 Here we show that left- and right-invariance imply inverse-invariance for a
Haar functional I (·) defined on C (G,R), where G is any compact group G. For con-
venience, we shall use the same symbols as before, e.g., the elements of G are denoted
by R, Q, etc., and the normalized Haar measure by g. Let I (f ) = ´

G
f (R)dg(R) and

J (f ) = ´
G
f (R−1)dg(R). We will show that the functional J (·) satisfies all the condi-

tions for a Haar functional. Then we have I (·)= J (·) by uniqueness of the normalized Haar
functional, as the argument for uniqueness given in Sect. 3.2.1 goes through for any compact
group G.

As it is obvious that J (·) satisfies conditions (i) and (ii) in Sect. 3.2, it suffices to prove
that J (·) is both left- and right-invariant. Let J : G→ G be defined by J (R) = R−1.
Then J (f )= ´

G
(f ◦J )(R)dg(R). We have for each Q ∈G

J(L Qf )=
ˆ

G

f (Q−1R−1)dg(R)=
ˆ

G

f ((RQ)−1)dg(R)

=
ˆ

G

(f ◦J )(RQ)dg(R)=
ˆ

G

(f ◦J )(R)dg(R)= J (f ), (3.55)

where we have used the right-invariance of I (·). Similarly, we can use the left-invariance of
I (·) to prove the right-invariance of J (·). �

3.6 Integrals with Complex-Valued Integrands

Later we shall have to consider functions which are complex-valued. Let i := √−1 be the
imaginary unit. Each function f : SO(3)→ C gives rise to two real-valued functions Ref :
SO(3)→ R and Imf : SO(3)→ R defined by

f (R)=Ref (R)+ iImf (R), for each R ∈ SO(3) (3.56)

and are called the real part and the imaginary part of f , respectively. A complex-valued
function f is continuous on SO(3) if and only if its real part Ref and imaginary part Imf

are continuous on SO(3). The integral of f with respect to the normalized Haar measure g
on a measurable set E ⊂ SO(3) is defined by

ˆ

E

f (R) dg(R) :=
ˆ

E

Ref (R) dg(R)+ i

ˆ

E

Imf (R) dg(R). (3.57)

Let C (SO(3),C) be the set of all continuous functions f : SO(3)→ C, and let

I (f )=
ˆ

SO(3)

f (R) dg(R) for each f ∈ C (SO(3),C). (3.58)

The complex-valued functional I (·) is linear in the sense that

I (c1f1 + c2f2)= c1f1 + c2f2, for each f1, f2 ∈ C (SO(3),C) and each c1, c2 ∈ C.
(3.59)

3 The Invariant Integral on SO(3)
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Condition (ii) for real-valued Haar functionals no longer makes sense for complex-valued
functionals, but it is valid for both the real part Ref and imaginary part Imf of f . Since
Ref and Imf are bi-invariant and inverse-invariant, I (·) as a complex-valued functional
remains bi-invariant and inverse-invariant, i.e., we have

ˆ

SO(3)

f (R) dg(R)=
ˆ

SO(3)

f (Q−1R) dg(R)=
ˆ

SO(3)

f (RQ) dg(R), (3.60)

and
ˆ

SO(3)

f (R−1) dg(R)=
ˆ

SO(3)

f (R) dg(R), (3.61)

for each Q ∈ SO(3) and each f ∈ C (SO(3),C). Moreover, clearly I (1)= 1.

3.6 Integrals with Complex-Valued Integrands
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Chapter 4

4 Orientation Distribution Function

Readers who have no prior exposure to quantitative texture analysis or have no strong urge
to study at once various formulations and conventions (including those of Bunge and Roe)
may skip Sects. 4.1.1, 4.4, and 4.5 on a first reading.

4.1 Definition of the ODF for Aggregates of Triclinic Crystallites

Mass density is a basic concept in continuum mechanics. It arises from a basic assumption
on the mass and volume measures of a body.55 Consider a body B that occupies a bounded
region Ω in the physical space E3. All the measurable subsets of Ω are bounded. Mass
and volume are two positive finite measures defined on Ω . For a measurable subset E of
B, let M(E) and V(E) be the mass and volume of E, respectively. A basic assumption in
continuum mechanics is the absolute continuity of the mass measure with respect to the
volume measure, i.e.,

M(E)= 0 for each measurable E for which V(E)= 0. (4.1)

Under this assumption, the Radon-Nikodym derivative dM/dV of the measure M with re-
spect to the measure V is well defined at almost every x ∈ B (i.e., except possibly for a set
of zero volume) as follows. At almost every x ∈ B, for every sequence of Borel sets {En}
that “shrinks nicely” to x,56

lim
n→∞

M(En)

V(En)
exists and is equal to the same number which we denote by ρ(x). (4.2)

The function

ρ(x) := dM

dV
(x), (x ∈ B) (4.3)

called the mass density, is integrable on Ω and satisfies

M(E)=
ˆ

E

ρ dV (4.4)

for each measurable subset E of Ω .
In texture analysis, for aggregates of triclinic crystallites the orientation distribution func-

tion (ODF) is a Radon-Nikodym derivative analogous to the mass density ρ. As a first step,
we focus our attention in this chapter to aggregates of triclinic crystallites (whose group of
crystallite symmetry Gcr = C1 = {I }) for the following reasons:

1. Analysis of such aggregates is conceptually the simplest.
2. It can serve as the basis upon which analysis for aggregates with non-trivial crystallite

symmetry is built.

55Cf. Footnote 49 of Chap. 3 for comments on the terms “measure”, “measurable”, and “Borel set”.
56See Rudin [278, p. 140] for a precise definition of “shrinking nicely”. What is important here is the general
idea, not the mathematical details. An example of Borel sets that shrink nicely to x is a sequence of open
balls Bn(x; rn) centered at x with radius rn such that rn→ 0 as n→∞.
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3. In some problems of texture analysis the solution for aggregates of crystallites with any
Gcr can be obtained by applying restrictions imposed by crystallite symmetry to the cor-
responding solution for aggregates of triclinic crystallites. In other words, we can largely
solve each of such problems for all polycrystalline aggregates in one stroke by solving
the corresponding problem for aggregates of triclinic crystallites.

For aggregates of triclinic crystallites, once a reference ideal crystal (C,κ0) has been cho-
sen, the crystallographic orientation at a sampling point X in a polycrystalline sample is
defined by a rotation R that takes the chosen lattice basis vectors of the reference ideal crys-
tal to their counterparts at X (cf. Sect. 3.1.1 for a more detailed discussion). Hence the space
of orientations in question is given by the rotation group SO(3).

In texture analysis of aggregates of triclinic crystallites, there are then two basic measures
on the space of orientations SO(3), namely the orientation (probability) measure ℘ and
the chosen bi-invariant volume measure, two common choices of which are V and g with
V(SO(3)) = 8π2 and g(SO(3)) = 1, respectively. Under situations where the probability
measure ℘ is absolutely continuous with respect to the group volume V (resp. g),57 i.e.,

℘(A)= 0 for each Borel set A⊂ SO(3) for which V(A)= 0, (4.5)

the orientation distribution function w(a) (resp. f(a)) is defined as the Radon-Nikodym
derivative of ℘ with respect to V (resp. g), i.e.,

w(a)(R) := d℘

dV
(R)

(
resp. f(a)(R) := d℘

dg
(R)

)
(4.6)

so that for a Borel subset A of SO(3)

℘(A)=
ˆ

A

w(a) dV

⎛

⎝resp. ℘ (A)=
ˆ

A

f(a) dg

⎞

⎠ (4.7)

gives the probability of finding the lattice orientation at the sampling point in question to be
in A. Since dV = 8π2dg, we have

w(a) = 1

8π2
f(a). (4.8)

In this exposition, we will take w(a) as the orientation distribution function, except when
we discuss the formulations (e.g., Bunge’s) that use f(p) := f(a) ◦J , where J :R �→R−1

is the inversion map on SO(3). We shall suppress the superscript “(a)” in w(a) and “(p)”
in f(p), respectively, i.e., writing w for w(a) and f for f(p), after we explain in Sect. 4.1.1
the two conventions of using active and passive rotations, respectively, as arguments of the
ODF.

Remark 4.1 Roe [270, 271] and Bunge [56, 60] call their w and f the “crystallite orientation
distribution function” and “orientation distribution function”, respectively, irrespective of
the point group symmetry of the crystallites in question. Some authors elect to call these
functions “orientation density function (ODF)”. By (4.6) such renaming of these functions

57Note that a Dirac measure on SO(3) is not absolutely continuous with respect to V .

4 Orientation Distribution Function
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is clearly apt for aggregates of triclinic crystallites. For aggregates of crystallites with non-
trivial symmetry, however, SO(3) is not the space of crystallite orientations (see Chap. 6). In
the Roe approach the orientation distribution function w is always defined on SO(3), and it
is not an orientation probability density there unless the crystallites in question are triclinic.
In the Bunge approach the preference is to take f as defined on the orientation space, which
Bunge [60] identifies with a suitable “asymmetric unit” or fundamental domain (see Chap. 6)
in SO(3). With a suitable volume measure defined on the orientation space, f can indeed
be interpreted as an orientation (probability) density function. In this exposition we follow
the Roe approach. Henceforth we will follow Roe and call w the orientation distribution
function and reserve the initialism ODF to mean that. �

4.1.1 ODF Under the Active and Passive View of Rotations

Consider the orientation of a right-handed orthonormal triad {e′i : i = 1,2,3} with respect
to a fixed right-handed orthonormal triad {ei : i = 1,2,3}; see Fig. 1, where e′i = gei
(i = 1,2,3). The orientation can be described by various choices of Euler angles, and we
have presented two main choices in the literature, namely (ψ, θ,φ) and (ϕ1,Φ,ϕ2). The set
of all such orientations is the set of all rotations SO(3). There are, however, two conven-
tions in assigning a rotation matrix to describe a given orientation g ∈ SO(3). As shown in
Sect. 1.7, under the convention of active rotations, the orientation of the triad {gei : 1,2,3}
with respect to the triad {ei : i = 1,2,3} in Fig. 1 is described by the matrix R(ψ, θ,φ)

given in (1.89). On the other hand, under the convention of passive rotations the same ori-
entation g is described by the matrix R(p) =R−1. When SO(3) is parametrized by the Euler
angles (ψ, θ,φ) (resp. (ϕ1,Φ,ϕ2)), there holds R(p)(ψ, θ,φ)=R(π − φ, θ,π −ψ) (resp.
R(p)(ϕ1,Φ,ϕ2)= (π − ϕ2,Φ,π − ϕ1)), which is given explicitly in (1.100) (resp. (1.105)).

We use active rotations in this exposition, under which g(ψ, θ,φ) ∈ SO(3) is repre-
sented by the active rotation matrix R(ψ, θ,φ). Under this convention the ODF w(a) :
R(ψ, θ,φ) �→ w(a)(R(ψ, θ,ψ)), where the superscript “(a)” indicates that the domain of
the ODF w(a) consists of the active rotation matrices.

Under the convention of passive rotations, the orientation g(ψ, θ,φ) is represented by the
passive rotation matrix R(p)(ψ, θ,φ)=R−1(ψ, θ,φ), and the ODF w(p) :R(p)(ψ, θ,φ) �→
w(p)(R(p)(ψ, θ,φ)). Since w(a)(R(ψ, θ,φ)) and w(p)(R(p)(ψ, θ,φ)) give the same proba-
bility density of finding the orientation being g(ψ, θ,φ) at the sampling point in question,
they are equal, i.e.,

w(a)(R(ψ, θ,φ))=w(p)(R−1(ψ, θ,φ))) for each R ∈ SO(3). (4.9)

Clearly we have

w(p) =w(a) ◦J , w(a) =w(p) ◦J , where J :R �→R−1. (4.10)

Mathematically w(a) : SO(3)→ R and w(p) : SO(3)→ R are two different functions but are
related by (4.9) and (4.10).

In this exposition we will use w(a) as the primary ODF. For simplicity we will suppress
the superscript and henceforth the ODF w will always mean w(a).

Similarly, let f(p) be the ODF under the convention of passive rotations and the choice
that the bi-invariant group volume g(SO(3)) = 1. Since f := f(p) is, after the works of
Bunge and his coworkers (in particular, Bunge’s influential treatise [60]), the most com-
monly used ODF in the literature of texture analysis, we will henceforth write f for f(p).

4.1 Definition of the ODF for Aggregates of Triclinic Crystallites
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Let f(a) be the corresponding ODF under the convention of active rotations. Then we have

f(a) = f ◦J , f= f(a) ◦J , where J :R �→R−1. (4.11)

Moreover, if the generic orientation g is denoted by the Euler angles (ψ, θ,φ) (resp.
(ϕ1,Φ,ϕ2)) when w (resp. f) is used as the ODF, there holds

w(R(ψ, θ,φ))= 1

8π2
f(a)(R(ψ, θ,φ))= 1

8π2
f(R−1(ϕ1,Φ,ϕ2))=w(p)(R−1(ϕ1,Φ,ϕ2)).

(4.12)

Remark 4.2 The awareness that there are two types of ODF which have the active and the
passive rotation matrices as arguments, respectively, will be the key to understanding of the
interrelationships between various formulations of the ODF and texture coefficients in the
literature. �

Remark 4.3 Every function f : SO(3) → K, where K = R or C, can be taken as defined
on the active rotation matrices R (i.e., f = f (a)) or on the passive rotation matrices R(p)

(i.e., f = f (p)). While f (a)(R)= f (p)(R−1) for each rotation R, f (a) and f (p) are different
functions. Using the same symbol to denote these two functions will lead to ambiguity and
confusion; cf. Sect. 4.5.4.

In this exposition we take the active view of rotations. Unless stated explicitly otherwise
(e.g., the Bunge ODF f is a notable exception), by a real- or complex-valued function f (·)
defined on SO(3) we will mean f (a)(·) defined on the active rotation matrices with the
superscript “(a)” suppressed. �

4.2 TheWigner D-Functions

The Wigner D-functions, which were introduced by Eugene P. Wigner in quantum theory
of angular momentum, play a central role in classical texture analysis. We shall derive in
Chap. 14 of this exposition all the formulas pertaining to the Wigner D-functions that we
need. Here we will summarize some essential facts about them.

Let C be the set of complex numbers. For α ∈ C, we denote by α, |α|, Reα, and Imα

the complex conjugate, the modulus, the real part, and the imaginary part of α, respectively.
Let L2(SO(3),C) be the space of square-integrable complex-valued functions on SO(3),

i.e., those f : SO(3)→ C with

ˆ

SO(3)

|f (R)|2dV(R) <+∞.

Addition and scalar multiplication in this space are defined by

(f1 + f2)(R)= f1(R)+ f2(R),

(αf )(R)= αf (R)

4 Orientation Distribution Function
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for α ∈ C and f , f1, and f2 ∈ L2(SO(3),C). Under the (Hermitian) inner product58

〈f1, f2〉 =
ˆ

SO(3)

f1(R)f2(R) dV(R), (4.13)

L2(SO(3),C) becomes a Hilbert space. For f ∈ L2(SO(3),C), henceforth we shall write
‖f ‖ =√〈f,f 〉 and call it the norm of f .

The most essential attribute of the Wigner D-functions is captured by the following as-
sertion:

(*) The Wigner D-functions Dl
mn : SO(3)→ C, R �→Dl

mn(R) (l = 0,1,2, . . . ;−l ≤
m≤ l,−l ≤ n≤ l) are the matrix elements of a complete set of pairwise-inequivalent,
continuous, irreducible unitary representations Dl of the rotation group SO(3).

A proof of this assertion will be given in Part III of this exposition. There all the technical
terms of this assertion will be defined and its main consequences derived. Here we shall
be content to explain about the unitary representations Dl and list some essential facts and
formulas on the Wigner D-functions:59

1. For each l and each rotation R, Dl
mn(R) is the mn-th entry of a (2l+1)× (2l+1) matrix,

which we denote by [Dl(R)]. In exhibiting these matrices, we let the indices m and n

run from l to −l when reading from top to bottom and when reading from left to right,
respectively.60 For instance, [D1(R)] is shown as

⎛

⎜⎝
D1

11(R) D1
10(R) D1

11̄
(R)

D1
01(R) D1

00(R) D1
01̄
(R)

D1
1̄1
(R) D1

1̄0
(R) D1

1̄1̄
(R)

⎞

⎟⎠ .

The matrices [Dl(R)] are unitary, i.e.,

([Dl(R)]−1)mn =Dl
nm(R), (4.14)

where ([Dl(R)]−1)mn denotes the mn-th entry of the inverse matrix of [Dl(R)].
2. As stated in assertion (*), the correspondence R �→ [Dl(R)] is a representation of the

rotation group SO(3). It satisfies

R2R1 �→ [Dl(R2R1)] = [Dl(R2)][Dl(R1)] (4.15)

58Here we follow Roe [270] and assign to SO(3) the bi-invariant volume measure V that satisfies V(SO(3))=
8π2. The number 8π2 arises in Roe’s work because he uses Euler angles as parameters of SO(3). In Part III,
where we shall present general theorems on group representations, the only reasonable volume measure that
applies to all compact groups alike is their respective normalized Haar measure (see Sect. C.3 of Appendix C),
which for SO(3) is g= V/(8π2).
59Following usual practice, when an integer m appears as an index such as in Dl

mn , we write m̄ for−m. Thus
D3

1̄2̄
denotes the Wigner D-function with l = 3, m=−1, and n=−2.

60Here we follow the standard convention in the physics literature; see, e.g., Biedenharn and Louck [28,
p. 46].
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for each R1 and R2 in SO(3). In terms of the entries of the matrices [Dl(R)], we have61

Dl
mn(R2R1)=

l∑

k=−l
Dl

mk(R2)D
l
kn(R1). (4.16)

By putting R1 = I and R1 =R−1
2 in (4.15), we obtain

Dl
mn(I )= δmn, and [Dl(R−1)] = [Dl(R)]−1, (4.17)

respectively. The representation R �→ [Dl(R)] is said to be unitary because the matrix
[Dl(R)] is unitary.

3. The property described by assertion (*), however, does not define the Wigner D-functions
uniquely. For instance, if {Dl

mn} is one valid set of Wigner D-functions, then the set
{(−1)m+nDl

mn} will work as well. In this exposition we will follow the convention most
commonly adopted in the physics literature in the last three decades. Under this conven-
tion, when active rotations R are parametrized by the Euler angles (ψ, θ,φ), the Wigner
D-functions are given by the explicit formula62

Dl
mn(R(ψ, θ,φ))= e−imψdl

mn(θ)e
−inφ, (4.18)

where ψ ∈ [0,2π), θ ∈ [0,π ], φ ∈ [0,2π),

dl
mn(θ)=

∑

k

(−1)m−n+k
√
(l +m)!(l −m)!(l + n)!(l − n)!

k!(l + n− k)!(l −m− k)!(m− n+ k)!

×
(

cos
θ

2

)2l+n−m−2k (
sin

θ

2

)2k+m−n
,

(4.19)

and the summation in (4.19) extends over integer values of k that satisfy

k ≥ 0, k ≤ l + n, k ≤ l −m, k ≥ n−m. (4.20)

Note that the function dl
mn is real-valued and the inequalities (4.20) guarantee that the

power of cos(θ/2) and of sin(θ/2) in (4.19) are non-negative. We will derive in Chap. 14
formulas (4.18) and (4.19) from the attribute of Wigner D-functions stated in assertion
(*).

In quantum mechanics, the matrices [Dl
mn(ψ, θ,φ)] are called Wigner (active) rota-

tion matrices;63 Dl
mn(ψ, θ,φ) are the rotation matrix elements, and dl

mn(θ) are called the
reduced matrix elements.

61Equation (4.16) is often called the addition theorem in the literature.
62The formulas for Dl

mn and dlmn here are the same as those in Biedenharn and Louck [28, equations (3.59)
and (3.65)], Rose [274, equations (4.12) and (4.13)], and Varshalovich et al. [325, pp. 76–77, equations (1)
and (5)]. In [207], there are 27 references which adopt active rotations with (4.18) here for Dl

mn and (4.19)
or (14.43) for dlmn . In comparison, there are 12 references which use the corresponding formulas for passive
rotations, i.e., for Dl

mn ◦J , etc., where J :R �→R−1.
63As we take the active view of rotations, the adjective “active” will be suppressed except at places where we
discuss it with its passive counterpart.

4 Orientation Distribution Function

124



Reprinted from the journal 1 3

4. The Wigner D-functions Dl
mn : SO(3)→ C, where l = 0,1,2, . . . ,−l ≤m≤ l, and−l ≤

n ≤ l, constitute an orthogonal basis in L2(SO(3),C). They satisfy the orthogonality
relation

〈Dl
mn,D

l′
m′n′ 〉 =

ˆ

SO(3)

Dl
mn(R)Dl′

m′n′(R) dV(R)

=
2πˆ

0

π̂

0

2πˆ

0

Dl
mn(ψ, θ,φ)D

l′
m′n′(ψ, θ,φ) sin θdψdθdφ

= 8π2

2l + 1
δll′δmm′δnn′ , (4.21)

where we have appealed to assertion (*), (3.41), (3.42), and Theorem 13.20. Each func-
tion f in L2(SO(3),C) can be expressed as an infinite series

f (R)=
∞∑

l=0

l∑

m=−l

l∑

n=−l
clmnD

l
mn(R), (4.22)

where

clmn =
2l + 1

8π2

2πˆ

0

π̂

0

2πˆ

0

f (ψ, θ,φ)Dl
mn(ψ, θ,φ) sin θdψdθdφ; (4.23)

see Corollary 15.8. The series on the right of (4.22) converges to f in the sense that

lim
N→∞

‖f −
N∑

l=0

l∑

m=−l

l∑

n=−l
clmnD

l
mn‖ = 0. (4.24)

From (4.18) and (4.21) follows immediately the orthogonality relation for the functions
dl
mn:

〈dl
mn, d

l′
mn〉 =

π̂

0

dl
mn(θ)d

l′
mn(θ) sin θdθ = 2

2l + 1
δll′ . (4.25)

By (4.19) we have

d0
00(θ)≡ 1. (4.26)

From (4.25) and (4.26) we obtain for l �= 0

π̂

0

dl
00(θ) sin θdθ =

π̂

0

dl
00(θ)d

0
00(θ) sin θdθ = δl0 = 0. (4.27)
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From (4.18) and (4.27) we observe that

ˆ

SO(3)

Dl
mn(R)dV(R)=

2πˆ

0

π̂

0

2πˆ

0

Dl
mn(ψ, θ,φ) sin θdψdθdφ

=
⎛

⎝
2πˆ

0

e−imψdψ

⎞

⎠

⎛

⎝
π̂

0

dl
mn(θ) sin θdθ

⎞

⎠

⎛

⎝
2πˆ

0

e−inφdφ

⎞

⎠

= 0 (4.28)

unless l = 0, m= 0, and n= 0.
Note that with the Euler angles as parameters, by (4.17)1 we have

Dl
mn(0,0,0)= dl

mn(0)= δmn. (4.29)

Also, it follows from (4.18) and (4.26) that

D0
00(ψ, θ,φ)≡ 1. (4.30)

4.2.1 Symmetry Properties of dl
mn

As formula (4.19) makes sense for all θ ∈ (−∞,∞), we extend the domain of dl
mn(·) from

[0,π ] to (−∞,∞). For later use, we derive several symmetry properties observed by the
functions dl

mn(·):
dl
m̄n̄(θ)= dl

nm(θ), dl
mn(−θ)= (−1)m−ndl

mn(θ), (4.31)

dl
mn(θ)= (−1)m−ndl

nm(θ), dl
mn(−θ)= dl

nm(θ), (4.32)

dl
mn(π − θ)= (−1)l+mdl

mn̄(θ)= (−1)l+ndl
m̄n(θ). (4.33)

The two equations in (4.31) can be read off from formula (4.19) by inspection. Equa-
tion (4.32)1 follows from the fact that the matrix [Dl

mn] is unitary and the function
dl
mn(·) is real-valued. Indeed, since R(e2,−θ) = R(e2, θ)

−1 and by (1.93) R(e2,−θ) =
R(e3,π)R(e2, θ)R(e3,π), we have

[Dl
mn(R(e2,−θ))] = [Dl

mn(R(e2, θ))]−1, (4.34)

or

e−imπdl
mn(θ)e

−inπ = dl
nm(θ)= dl

nm(θ). (4.35)

Equation (4.32)2 is an immediate consequence of (4.31)2 and (4.32)1.
To prove (4.33), first note that by formula (4.19) we have

dl
mn(π − θ)=

∑

k

(−1)m−n+k
√
(l +m)!(l −m)!(l + n)!(l − n)!

k!(l + n− k)!(l −m− k)!(m− n+ k)!

×
(

sin
θ

2

)2l+n−m−2k (
cos

θ

2

)2k+m−n
.

(4.36)
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Changing the running parameter from k to k′ = l−m− k, we get l+ n− k =m+ n+ k′ =
m − n̄ + k′, m − n + k = l + n̄ − k′, 2l + n − m − 2k = m − n̄ + 2k′, 2k + m − n =
2l + n̄−m− 2k′, and

dl
mn(π − θ)=

∑

k′
(−1)l+n̄−k

′
√
(l +m)!(l −m)!(l + n)!(l − n)!

k′!(l + n̄− k′)!(l −m− k′)!(m− n̄+ k′)!

×
(

cos
θ

2

)2l+n̄−m−2k′ (
sin

θ

2

)2k′+m−n̄

= (−1)l+n̄(−1)m+n̄dl
mn̄(θ)

= (−1)l+mdl
mn̄(θ). (4.37)

Substituting (4.31)1 into (4.32)2 and using (4.31)2, we observe that

dl
mn(θ)= (−1)m−ndl

m̄n̄(θ). (4.38)

Substituting (4.38) into the right-hand side of (4.37) with n̄ replacing n, we obtain

dl
mn(π − θ)= (−1)l+m(−1)m+ndl

m̄n(θ)= (−1)l+ndl
m̄n(θ). (4.39)

4.2.2 Symmetry Properties ofDl
mn

From the definition Dl
mn(ψ, θ,φ) = e−imψdl

mn(θ)e
−inφ and the symmetry properties of the

functions dl
mn, we can easily derive symmetry properties of the Wigner D-functions. Here

are some examples:

Dl
m̄n̄(ψ, θ,φ)=Dl

mn(−ψ,−θ,−φ)= (−1)m−nDl
mn(ψ, θ,φ), (4.40)

Dl
n̄m̄(ψ, θ,φ)= (−1)m+nDl

mn(π − φ, θ,π −ψ), (4.41)

Dl
nm(ψ, θ,φ)= (−1)n−mDl

mn(φ, θ,ψ), (4.42)

Dl
mn(ψ,π − θ,φ)= (−1)l+mDl

mn̄(ψ, θ,−φ)= (−1)l+nDl
m̄n(−ψ,θ,φ). (4.43)

Long lists of symmetry properties of dl
mn and Dl

mn can be found in Sect. 4.4 of [325].

4.3 Series Expansion and Texture Coefficients

As pointed out in Sects. 3.1 and 4.1, once a reference placement of an ideal crystal has been
chosen for the description of orientations by rotations, the texture of a material point in a
polycrystalline aggregate of triclinic crystallites is described by an orientation probability
measure ℘ defined on the rotation group SO(3). If ℘ is absolutely continuous with respect
to the bi-invariant volume measure V , the texture can be described by the orientation dis-
tribution function (ODF). The ODF w is a real-valued function defined on SO(3) and, as a
probability density function, it satisfies the constraint

ˆ

SO(3)

w(R)dV(R)= 1. (4.44)

4.3 Series Expansion and Texture Coefficients
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For w ∈ L2(SO(3),C), we can expand the ODF as an infinite series in terms of the Wigner
D-functions (see Remark 15.9 for justification):

w(R(ψ, θ,φ))=
∞∑

l=0

l∑

m=−l

l∑

n=−l
clmnD

l
mn(R(ψ, θ,φ)), (4.45)

where the expansion coefficients clmn are called the texture coefficients of the ODF w. (Note
that whenever the Euler angles are introduced, it is understood that a fixed spatial coordinate
system has been chosen.)

As w is real-valued, we observe from formula (4.23) and symmetry condition (4.38) that
the coefficients in the preceding expansion satisfy the condition

clm̄n̄ =
2l + 1

8π2

2πˆ

0

π̂

0

2πˆ

0

w(ψ, θ,φ)eimψdl
m̄n̄(θ)e

inψ sin θdψdθdφ

= 2l + 1

8π2

2πˆ

0

π̂

0

2πˆ

0

w(ψ, θ,φ)eimψdl
m̄n̄(θ)e

inψ sin θdψdθdφ

= (−1)n−m
2l + 1

8π2

2πˆ

0

π̂

0

2πˆ

0

w(ψ, θ,φ)e−imψdl
mn(θ)e

−inψ sin θdψdθdφ

= (−1)n−mclmn

or

clm̄n̄ = (−1)n−mclmn. (4.46)

Conversely, if condition (4.46) is satisfied by the coefficients clmn, we have

clm̄n̄D
l
m̄n̄(R(ψ, θ,φ))= (−1)n−mclmne

imψdl
m̄n̄(θ)e

inφ

= clmne
imψdl

mn(θ)e
inφ

= clmnD
l
mn(R(ψ, θ,φ)),

so the function w in (4.45) is real.

Remark 4.4 By (4.46) the independent real parameters that define the ODF w can be taken
as cl00, Re clmn, Im clmn (l ≥ 1,−l ≤m≤ l,1≤ n≤ l; and for n= 0,0 <m≤ l). �

Let us now examine the integral condition (4.44). Equations (4.28) and (4.30) assert that

ˆ

SO(3)

Dl
mn(R)dV(R)= 0 unless l =m= n= 0 (4.47)
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and D0
00 ≡ 1, which imply

ˆ

SO(3)

wdV =
ˆ

SO(3)

(
c0

00 +
∞∑

l=1

l∑

m=−l

l∑

n=−l
clmnD

l
mn(R)

)
dV(R)= c0

00

ˆ

SO(3)

dV = 8π2c0
00.

(4.48)
Hence condition (4.44) dictates that the constant term in the expansion (4.45), which is none
other than c0

00, must be equal to 1/(8π2). Thus we may recast (4.45) as

w(R(ψ, θ,φ))= 1

8π2
+

∞∑

l=1

l∑

m=−l

l∑

n=−l
clmnD

l
mn(R(ψ, θ,φ)). (4.49)

From the preceding discussion (cf. (4.47) in particular) we observe also that the normaliza-
tion condition (4.44) does not impose any restriction on the texture coefficients clmn with
l ≥ 1.

When the crystallites in the polycrystal whose texture is described by the ODF w have
no preferred orientations, we have w = constant= 1/(8π2), so all the coefficients clmn with
l ≥ 1 vanish. We call clmn (l ≥ 1) the texture coefficients. By (4.23) and (4.45), the texture
coefficients are given by the formula

clmn =
2l + 1

8π2

2πˆ

0

π̂

0

2πˆ

0

w(ψ, θ,φ)Dl
mn(ψ, θ,φ) sin θdψdθdφ. (4.50)

4.4 Alternate Expressions for theWigner D-functions

Bunge [60] and Roe [270] independently pioneered the development of quantitative texture
analysis in the 1960s by proposing essentially the same experimental method to ascertain
the ODF of a polycrystalline sample through inversion of measured X-ray pole figures.
Their method starts by expanding the ODF in terms of some orthogonal basis T mn

l [60] and
Zlmn(cos θ)e−imψe−inφ [270] in L2(SO(3),C), which are different functions but are given
the same name “generalized spherical harmonics” by Bunge and Roe, respectively. Both
sets of generalized spherical harmonics are different from but are closely related to the
Wigner D-functions Dl

mn, and the series expansions of the ODF by Bunge and by Roe are
comparable to our (4.45). Before we can compare the series expansions, we should first look
at some alternate expressions for the Wigner D-functions.

It has long been pointed out by Wigner ([340], p. 231; [341], p. 215) that the functions
Dl

mn(ψ, θ,φ) = eimψdl
mn(θ)e

inφ , which we have recast in our present notation, are energy
eigenfunctions of the symmetric top in quantum mechanics.64 The Schrödinger equation
in question was first solved independently by Reiche and Rademacher [269] and by Kronig
and Rabi [182]. The procedure of separation of variables leads to the following second-order
differential equation that governs the reduced matrix elements dl

mn:

(
d2

dθ2
+ cot θ

d

dθ
+

[
l(l + 1)− m2 − 2mn cos θ + n2

sin2 θ

])
dl
mn = 0. (4.51)

64See Zare [352, pp. 104–105] for a proof in our present convention on active rotations and Euler angles,
except that (ψ, θ,φ) is written as (φ, θ,χ).
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For θ ∈ [0,π ], let

x = cos θ, t = (1− x)/2; (4.52)

Then x ∈ [−1,1] and t = sin2 θ
2 ∈ [0,1]. By putting

dl
mn =N(l,m,n)t |m−n|/2(1− t)|m+n|/2f (t), (4.53)

in (4.51), where N(l,m,n) is a constant, we observe [269] that the function f satisfies the
hypergeometric equation

t (1− t)
d2f

dt2
+ [c− (1+ a + b)t]df

dt
− abf = 0, (4.54)

with the coefficients a, b, c given by the formulas

a =−l + 1

2
(|m− n| + |m+ n|) , b= l + 1

2
(|m− n| + |m+ n|)+ 1, c= |m− n| + 1.

(4.55)
Note that c ≥ 1 is a positive integer, and 1

2 (|m− n| + |m+ n|) is equal to the larger of the
two integers m and n (resp. −m and −n) if m+ n ≥ 0 (resp. m+ n ≤ 0); thus a ≤ 0 is a
non-positive integer, and b ≥ 1 is a positive integer. Henceforth we divide our discussion
into four cases, namely: (i) m+ n ≥ 0 and m− n ≥ 0; (ii) m+ n ≥ 0 and m− n ≤ 0; (iii)
m+ n≤ 0 and m− n≥ 0; (iv) m+ n≤ 0 and m− n≤ 0.

Roe [270, Appendix] defines his generalized spherical harmonics first for what we call
case (i), where m− n ≥ 0 and m+ n ≥ 0. Here for the purpose of comparison let us start
our discussion also with this case. When m− n≥ 0 and m+ n≥ 0,65 the coefficients a, b,
and c in (4.54) are given by

a =−l +m, b= l +m+ 1, c=m− n+ 1, (4.56)

and the hypergeometric equation that governs the function f becomes66

t (1− t)
d2f

dt2
+ [(m− n+ 1)− 2(m+ 1)t]df

dt
+ [l(l + 1)−m(m+ 1)]f = 0. (4.57)

We are interested in solutions defined for t ∈ [0,1]. By recasting the equation in question as

t2 d
2f

dt2
+ [(m− n+ 1)− 2(m+ 1)t]

1− t
t
df

dt
+ [l(l + 1)−m(m+ 1)]t

1− t
f = 0, (4.58)

we see that it has a regular singular point at t0 = 0. The indicial polynomial r(r − 1)+ (m−
n+ 1)r has roots r1 = 0 and r2 = n−m≤ 0. By the Frobenius method, we know that there
are (see, e.g., [73, p. 165]) two linearly independent solutions, one of which is in the form
f1 = t r1

∑∞
k=0 βkt

k , and the other of which depends on whether r1 − r2 is or is not zero or
a positive integer. For the present case, r1 − r2 =m− n is either zero or a positive integer.
For both of these cases, the second solution f2 has a singularity at t = 0 and is not defined
there (see [73], [182]). Hence any physically acceptable solution to (4.57) is the first solution
times some constant.

65Note that Roe mentions only the condition m≥ n in his paper.
66This equation corresponds to equation (A4) of Roe’s paper but has two typos there corrected.
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To obtain the first solution, we substitute f =∑∞
k=0 βkt

k in (4.57), determine the con-
stants βk , and find that the solution is an arbitrary constant times the hypergeometric function
[266, 300] 2F(a, b; c; t)1—or F(a, b; c; t) for simplicity—defined by

F(a, b; c; t)= 1+
∞∑

k=1

(a)k(b)kt
k

(c)kk! , (4.59)

where for γ = a, b, c and for k ≥ 1,

(γ )k = γ (γ + 1)(γ + 2) · · · (γ + k − 1). (4.60)

Since a =−l+m is a non-positive integer and c ≥ 1 is a positive integer, the hypergeometric
series F(−l+m, l+m+ 1;m−n+ 1; (1− x)/2) terminates and is a polynomial of degree
l −m. In fact it is some constant times a Jacobi polynomial in x. The Jacobi polynomials
can be defined (see, e.g., [80, pp. 373, 398], [266, pp. 253, 257]) by

P (α,β)
s (x) := (1+ α)s

s! F(−s,1+ α + β + s;1+ α; (1− x)/2) (4.61)

= (−1)s(1− x)−α(1+ x)−β

2ss!
ds

dxs
[(1− x)s+α(1+ x)s+β]. (4.62)

For the present case (i.e., m+ n≥ 0 and m− n≥ 0, which imply m≥ 0), we have

α =m− n, β =m+ n, s = l −m, (4.63)

and

F(−l +m, l +m+ 1;m− n+ 1; (1− x)/2)= (l −m)!(m− n)!
(l − n)! P

(m−n,m+n)
l−m (x). (4.64)

Substitution of (4.64) into (4.53) yields the expression

dl
mn(x)=N(l,m,n)(1− x)(m−n)/2(1+ x)(m+n)/2

× F(−l +m, l +m+ 1;m− n+ 1; (1− x)/2) (4.65)

= N(l,m,n)(l −m)!(m− n)!
2m(l − n)! (1− x)(m−n)/2(1+ x)(m+n)/2P

(m−n,m+n)
l−m (x). (4.66)

For α >−1 and β >−1, the Jacobi polynomials satisfy the orthogonality relation (see,
e.g., [80, pp. 397–401], [266, pp. 258–260])

1ˆ

−1

(1− x)α(1+ x)βP (α,β)
r (x)P (α,β)

s (x) dx = 21+α+β(α + s)!(β + s)!
(1+ α+ β + 2s)s!(α+ β + s)!δrs . (4.67)

We proceed to use (4.25) and (4.67) to evaluate N(l,m,n) in (4.66). On the one hand, by
(4.25) we have

1ˆ

−1

[dl
mn(x)]2dx =

2

2l + 1
. (4.68)
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On the other hand, we have

(
N(l,m,n)(l −m)!(m− n)!

2m(l − n)!
)2

1ˆ

−1

(1− x)m−n(1+ x)m+n[P (m−n,m+n)
l−m (x)]2dx

=
(
N(l,m,n)(l −m)!(m− n)!

2m(l − n)!
)2

· 21+2m(l − n)!(l + n)!
(2l + 1)(l −m)!(l +m)!

=N(l,m,n)2 · 2

2l + 1
· (l −m)!(l + n)!
(l +m)!(l − n)! · [(m− n)!]2. (4.69)

Equating the right-hand side of (4.68) and that of (4.69) yields

N(l,m,n)=±
√
(l +m)!(l − n)!
(l −m)!(l + n)! ·

1

(m− n)! (4.70)

for the case m− n≥ 0 and m+ n≥ 0. Substituting (4.70) back into (4.66), we obtain

dl
mn(θ)=±

√
(l +m)!(l − n)!
(l −m)!(l + n)!

1

(m− n)!
(

1− cos θ

2

)(m−n)/2 (1+ cos θ

2

)(m+n)/2

× F(−l +m, l +m+ 1;m− n+ 1; sin2 θ

2
) (4.71)

=±
√
(l −m)!(l +m)!
(l − n)!(l + n)!

(
sin

θ

2

)m−n (
cos

θ

2

)m+n
P

(m−n,m+n)
l−m (cos θ) (4.72)

for the case m− n≥ 0 and m+ n≥ 0, where we have used the trigonometric identities

1− cos θ

2
= sin2 θ

2
,

1+ cos θ

2
= cos2 θ

2
(4.73)

in the last step. For each (l,m,n), the dl
mn function given in (4.72) is defined only up to an

arbitrary sign. On the other hand, in formula (4.19) we have already adopted a convention
on the choice of sign for dl

mn. As we shall prove presently, we have to choose the sign in
(4.72) as shown in the formula

dl
mn(θ)= (−1)m−n

√
(l −m)!(l +m)!
(l − n)!(l + n)!

(
sin

θ

2

)m−n (
cos

θ

2

)m+n
P

(m−n,m+n)
l−m (cos θ),

(4.74)
for it to agree with (4.19) when m− n ≥ 0 and m+ n ≥ 0. The proof will follow from an
alternate expression that we now derive for dl

mn, which agrees with (4.19) for all −l ≤m≤ l

and −l ≤ n≤ l, irrespective of the sign of m− n and m+ n.
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In this paragraph we let α =m− n, β =m+ n, s = l −m, −l ≤m≤ l, and −l ≤ n≤ l,
but we do not put any restriction on the sign of α and of β . Under the present assumptions,
we have s ≥ 0, α+ s = l−n≥ 0, and β+ s = l+n≥ 0. By Leibniz’s rule of differentiation,
we observe that

ds

dxs

[
(1− x)α+s(1+ x)β+s

]

=
s∑

k=0

s!
k!(s − k)!

[
(1− x)α+s

](s−k) [
(1+ x)β+s

](k)

=
∑

k

s!
k!(s − k)! · (−1)s−k

(α + s)!
(α + k)! (1− x)α+k · (β + s)!

(β + s − k)! (1+ x)β+s−k

= (−1)s(1− x)α(1+ x)β(α + s)!(β + s)!s!
∑

k

(x − 1)k(1+ x)s−k

k!(s − k)!(α+ k)!(β + s − k)! , (4.75)

where the unspecified summation on k is extended over all its integral values for which the
arguments of the factorials in the denominator are non-negative, i.e. k satisfies the inequali-
ties

k ≥ 0, k ≤ s, k ≥−α, k ≤ β + s. (4.76)

Substituting α =m− n, β =m+ n, and s = l −m into (4.75) yields

dl−m

dxl−m
[
(1− x)l−n(1+ x)l+n

]= (−1)l−m(1− x)m−n(1+ x)m+n(l −m)!(l − n)!(l + n)!

×
∑

k

(x − 1)k(1+ x)l−m−k

k!(l −m− k)!(m− n+ k)!(l + n− k)! ,
(4.77)

where the summation in (4.77) extends over the values of k that satisfies

k ≥ 0, k ≤ l −m, k ≥ n−m, k ≤ l + n. (4.78)

Putting x = cos θ in (4.77) and comparing the resulting equation with (4.19), we obtain the
following alternate expression for dl

mn:

dl
mn(θ)=

(−1)l−n

2l
(1− x)−(m−n)/2(1+ x)−(m+n)/2

√
(l +m)!

(l −m)!(l + n)!(l − n)!

× dl−m

dxl−m
[
(1− x)l−n(1+ x)l+n

]
, where x = cos θ and θ ∈ [0,π ]. (4.79)
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Using the identity dl
mn = (−1)m−ndl

nm, we obtain from (4.79) yet another expression:

dl
mn(θ)=

(−1)l−n

2l
(1− x)−(n−m)/2(1+ x)−(n+m)/2

√
(l + n)!

(l − n)!(l +m)!(l −m)!

× dl−n

dxl−n
[
(1− x)l−m(1+ x)l+m

]
, where x = cos θ and θ ∈ [0,π ]. (4.80)

When α = m − n ≥ 0 and β = m + n ≥ 0, k runs from 0 to s = l − m. For this case,
substituting (4.75) into (4.62) yields

P
(m−n,m+n)
l−m (x)= (l − n)!(l + n)!

l−m∑

k=0

( x−1
2 )k( 1+x

2 )l−m−k

k!(l −m− k)!(m− n+ k)!(l + n− k)! . (4.81)

Setting x = cos θ in (4.81) and comparing the resulting equation with (4.19) confirms the
correctness of the sign convention we have chosen for dl

mn in (4.72) so that it agrees with
(4.19).

For case (ii) m − n ≤ 0 and m + n ≥ 0, which imply n ≥ 0, the differential equation
(4.54) has the coefficients

a =−l + n, b= l + n+ 1, c= n−m+ 1 (4.82)

so that it assumes the form

t (1− t)
d2f

dt2
+ [(n−m+ 1)− 2(n+ 1)t]df

dt
+ [l(l + 1)− n(n+ 1)]f = 0, (4.83)

which is none other than (4.57) with m and n exchanged. Following the same argument that
leads to (4.72), we obtain the formula

dl
mn(θ)=±

√
(l − n)!(l + n)!
(l −m)!(l +m)!

(
sin

θ

2

)n−m (
cos

θ

2

)n+m
P

(n−m,n+m)
l−n (cos θ). (4.84)

Applying Leibniz rule to the derivative dl−n[(1−x)l−m(1+x)l+m]/dxl−n in P
(n−m,n+m)
l−n just

as what we did in (4.77), and comparing the resulting equation with (4.80), we obtain the
formula

dl
mn(θ)=

√
(l − n)!(l + n)!
(l −m)!(l +m)!

(
sin

θ

2

)n−m (
cos

θ

2

)n+m
P

(n−m,n+m)
l−n (cos θ) (4.85)

when m− n≤ 0 and m+ n≥ 0.
In addition to the two combinations of signs of m−n and m+n that we have considered,

there are two more combinations, namely cases (iii) and (iv), each of which results in one
expression for dl

mn(θ). These two formulas can be obtained from (4.74) and (4.85) through
symmetry property (4.31)1, i.e., dl

mn(θ)= dl
n̄m̄(θ). For case (iii) m+ n≤ 0 and m− n≥ 0,

the defining inequalities can be recast as

n̄+ m̄≥ 0, and n̄− m̄≥ 0, which imply n̄≥ 0. (4.86)
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Under the condition given by (4.86), the expression for case (i) applies to dl
n̄m̄(θ). Hence we

have for case (iii):

dl
mn(θ)= dl

n̄m̄(θ)

= (−1)n̄−m̄
√

(l − n̄)!(l + n̄)!
(l − m̄)!(l + m̄)!

(
sin

θ

2

)n̄−m̄ (
cos

θ

2

)n̄+m̄
P

(n̄−m̄,n̄+m̄)
l−n̄ (cos θ)

= (−1)m−n
√

(l + n)!(l − n)!
(l +m)!(l −m)!

(
sin

θ

2

)m−n (
cos

θ

2

)n̄+m̄
P

(m−n,n̄+m̄)
l−n̄ (cos θ). (4.87)

Similarly, we recast the defining inequalities m+ n≤ 0 and m− n≤ 0 for case (iv) as

n̄+ m̄≥ 0, and n̄− m̄≤ 0, which imply m̄≥ 0. (4.88)

Under the condition given by (4.88), the expression for case (ii) applies to dl
n̄m̄(θ). Hence it

follows that for case (iv) we have

dl
mn(θ)= dl

n̄m̄(θ)

=
√
(l − m̄)!(l + m̄)!
(l − n̄)!(l + n̄)!

(
sin

θ

2

)m̄−n̄ (
cos

θ

2

)m̄+n̄
P

(m̄−n̄,m̄+n̄)
l−m̄ (cos θ)

=
√
(l +m)!(l −m)!
(l + n)!(l − n)!

(
sin

θ

2

)n−m (
cos

θ

2

)m̄+n̄
P

(n−m,m̄+n̄)
l−m̄ (cos θ). (4.89)

The four expressions (4.74), (4.85), (4.87), and (4.89) can be combined into one general
formula that covers all combinations of the signs of m− n and m+ n as follows (cf. [325,
p. 78, Eqs. (13)–(15)]):

dl
mn(θ)= ηmn

√
s!(s + α+ β)!
(s + α)!(s + β)!

(
sin

θ

2

)α (
cos

θ

2

)β

P (α,β)
s (cos θ), (4.90)

where

α = |m− n|, β = |m+ n|, s = l − 1

2
(α + β), ηmn =

{
(−1)m−n if m≥ n

1 if n≥m.
(4.91)

4.4.1 Generalized Spherical Functions of Gel’fand and Šapiro

For details about his generalized spherical harmonics, Bunge [57, p. 215] refers to the 1952
paper67 of Gel’fand and Šapiro [124] and to the book by Gel’fand, Minlos, and Shapiro
[125], Part 1 of which concerns the rotation group and is a slightly edited version of the
1952 paper. Gel’fand and Šapiro use the Euler angles (cf. Sect. 1.8.2)

ϕ1 =ψ + π

2
, θ = θ, ϕ2 = φ − π

2

67All references to [124] in this exposition refer to the 1956 English translation.
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to define their “generalized spherical functions of order l” ([125, p. 85], [124, p. 278]) as
follows:68,69

T l
mn(ϕ1, θ, ϕ2)= e−imϕ1P l

mn(cos θ)e−inϕ2; (4.92)

here we have followed the notation in Gel’fand et al. [125], and

P l
mn(x)=

(−1)l−min−m

2l
(1− x)−(n−m)/2(1+ x)−(n+m)/2

√
(l + n)!

(l − n)!(l +m)!(l −m)!

× dl−n

dxl−n
[
(1− x)l−m(1+ x)l+m

]
, where x = cos θ and θ ∈ [0,π ].

(4.93)

Comparing (4.93) with (4.80), we observe that

P l
mn(cos θ)= (−i)n−mdl

mn(θ), where θ ∈ [0,π ]. (4.94)

From (4.94) and the symmetry properties of dl
mn (see Sect. 4.2.1) follow the symmetry prop-

erties of P l
mn. For example, we have

P l
mn = P l

nm, P l
m̄n̄ = P l

mn, P l
nm = (−1)m−nP l

mn. (4.95)

It follows also from (4.94) that if (ϕ1,Φ,ϕ2) ≡ (ϕ1, θ, ϕ2) and (ψ.θ,φ) refer to the same
rotation g, then

T l
mn(ϕ1,Φ,ϕ2)= e−im(ψ+ π

2 )P l
mn(cos θ)e−in(φ−

π
2 )

= (
i−me−imψ

)
(−i)n−mdl

mn(θ)
(
ine−inφ

)

=Dl
mn(ψ, θ,φ). (4.96)

Hence the generalized spherical functions of Gel’fand and Šapiro are none other than the
Wigner D-functions with the rotations parameterized by the Euler angles (ϕ1,Φ,ϕ2).

68As pointed out in a “Translator’s note” [124, p. 211], Gel’fand and Šapiro have inadvertently reversed
the correct order of writing the product of matrices in our (1.103) as g = R(e3, ϕ2)R(e1, θ)R(e3, ϕ1). As
a result many formulas in their paper are incorrect but can be made correct by interchanging ϕ1 and ϕ2.
When the contents of [124] are transferred to the book [125], many but not all of the incorrect formulas are
corrected. Unfortunately the erroneous formula T l

mn(ϕ1, θ, ϕ2)= e−imϕ2P l
mn(cos θ)e−inϕ1 that defines the

generalized spherical functions in [124, p. 278], where the angles ϕ1 and ϕ2 should have been interchanged,
gets through to the book [125, p. 85] without correction. In comparison, see, in particular, equation (15) on
page 82 of [125], which reads

Tmn(ϕ1, θ, ϕ2)= e−imϕ1umn(θ)e
−inϕ2 ;

the function umn(θ) in the equation is determined on p. 84 to be P l
mn(cos θ). Note that on page 275 of

Gel’fand and Šapiro [124] the same equation (15) for Tmn has ϕ1 and ϕ2 erroneously interchanged. This
mistake is corrected in the book [125]. But the incorrect formula for T l

mn in [124] remains unchanged in
[125]. In what follows we will make silent corrections so that all the formulas of Gel’fand and Šapiro [124]
and Gel’fand et al. [125] presented here are correct. At places where we want to display an erroneous formula,
we will say so explicitly.
69Cf. also Lyubarsii [195, p. 204], where T l

mn is written as D
(j)
km

, P l
mn as Pkm,j , ϕ1 as ψ , and ϕ2 as ϕ;

Vilenkin [327, p. 120, Eq. (6); p. 121, Eq. (3)], where T l
mn is written as t lmn, ϕ1 as ϕ, and ϕ2 as ψ .
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4.5 Alternate Formulations of the Series Expansion

From the beginning of quantitative texture analysis (i.e., the 1960s) up to the present, re-
searchers in the field predominantly employ passive rotations (see Sect. 1.5). In this exposi-
tion we use active rotations to conform to the mathematics and physics literature of the last
few decades. The series expansion (4.45) of the ODF, i.e.,

w(R(ψ, θ,φ))=
∞∑

l=0

l∑

m=−l

l∑

n=−l
clmnD

l
mn(R(ψ, θ,φ)), (4.97)

is valid for every rotation R. It can certainly be rewritten as

w(R−1(ψ, θ,φ))=
∞∑

l=0

l∑

m=−l

l∑

n=−l
clmnD

l
mn(R

−1(ψ, θ,φ)). (4.98)

Equation (4.98), however, should not be confused with the series expansion

w(p)(R−1(ψ, θ,φ))=
∞∑

l=0

l∑

m=−l

l∑

n=−l
cl,(p)mn Dl

mn(R
−1(ψ, θ,φ)), (4.99)

because w(R−1) �= w(p)(R−1), as w = w(p) ◦J , where J : R �→ R−1 (see Sect. 4.1.1).
On the other hand, from the fact (see (4.12) that w(R)=w(p)(R−1) we can easily determine
how the two sets of texture coefficients clmn and c

l,(p)
mn are related.

First, note that

Dl
mn(R

−1(ψ, θ,φ))=Dl
mn(R(π − φ, θ,π −ψ))

= e−im(π−φ)dl
mn(θ)e

−in(π−ψ)

= (−1)m+neimφdl
mn(θ)e

inψ

= (−1)m+ne−in̄ψdl
mn(θ)e

−im̄φ

= (−1)m+ne−in̄ψdl
n̄m̄(θ)e

−im̄φ

= (−1)m+nDl
n̄m̄(R(ψ, θ,φ)), (4.100)

where we have appealed to (4.31)1 to get the identity dl
mn(θ)= dl

n̄m̄(θ). Thus series expan-
sion (4.99) may be recast as

w(p)(R−1(ψ, θ,φ))=
∞∑

l=0

l∑

m=−l

l∑

n=−l
cl,(p)mn (−1)m+nDl

n̄m̄(R(ψ, θ,φ)). (4.101)

Replacing w(R) in (4.50) by w(p)(R−1) and using the series expansion (4.101), we obtain
for l ≥ 1

clmn =
2l + 1

8π2

ˆ

SO(3)

w(p)(R−1)Dl
mn(R) dV(R),
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= 2l + 1

8π2

ˆ

SO(3)

( ∞∑

l=1

l∑

m=−l

l∑

n=−l
cl,(p)mn (−1)m+nDl

n̄m̄(R(ψ, θ,φ))

)
Dl

mn(R) dV(R)

= (−1)m+ncl,(p)n̄m̄ , (4.102)

or

cl,(p)mn = (−1)m+ncln̄m̄. (4.103)

In the literature some authors, while using passive rotations, in effect write the series
expansion of the ODF in (or in some variant of) the form70

w(p)(R−1)=
∞∑

l=0

l∑

m=−l

l∑

n=−l
clmnD

l
mn(R). (4.104)

The right-hand side of (4.104) is the series expansion of w(R). Hence, in writing down
(4.104) the authors are in fact making use of equality (4.12), i.e., w(p)(R−1)=w(R).

After making the substitutions

w(R)= 1

8π2
f(a)(R), w(p)(R−1)= 1

8π2
f(R−1),

the discussion above applies verbatim to the pair f(a) and f.

4.5.1 Roe’s Generalized Spherical Harmonics and Texture Coefficients

Roe [270] writes the ODF in an infinite series as follows:

w(ψ, θ,φ)=
∞∑

l=0

l∑

m=−l

l∑

n=−l
WlmnZlmn(cos θ)e−imψe−inφ (4.105)

= 1

8π2
+

∞∑

l=1

l∑

m=−l

l∑

n=−l
WlmnZlmn(cos θ)e−imψe−inφ , (4.106)

where Wlmn are texture coefficients and Zlmn(cos θ)e−imψe−inφ are his generalized spherical
harmonics. While Roe works with passive rotations R(p), the right-hand side is in fact an
expansion in terms of the Wigner D-functions Dl

mn(R(ψ, θ,φ)), as we shall explain in detail
below. Hence Roe’s series expansion (4.105) is an example of expansion of the type (4.104).

Roe [270, Appendix] defines his generalized spherical harmonics first for the case m−
n≥ 0 and m+ n≥ 0 (cf. Footnote 65 in Sect. 4.4). For that case, he has

Zlmn(cos θ) := Ñ(l,m,n)

(
1− cos θ

2

)(m−n)/2 (1+ cos θ

2

)(m+n)/2

× F

(
−l +m, l +m+ 1;m− n+ 1; 1− cos θ

2

)
,

70Specific examples will be given in Sects. 4.5.1 and 4.5.4.
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= Ñ(l,m,n)

(
1− cos θ

2

)(m−n)/2 (1+ cos θ

2

)(m+n)/2

× (l −m)!(m− n)!
(l − n)! P

(m−n,m+n)
l−m (x), (4.107)

where we have appealed to (4.64) at the last step, and the constant Ñ(l,m,n) is determined
up to its sign from the normalization condition

1ˆ

−1

Z2
lmn(x)dx = 1 (4.108)

so that71

Ñ(l,m,n)2 = 2l + 1

2
· (l +m)!(l − n)!
(l −m)!(l + n)! ·

1

[(m− n)!]2 . (4.109)

Noting that there is an ambiguity in sign for Ñ(l,m,n) because the normalization condition
(4.108) does not determine its sign, Roe [270, eq. (A11)] adopts the convention that

Zlmn = (−1)m+nZlnm, (4.110)

which, as he seems to suggest, would clear up the ambiguity. Unfortunately the convention
adopted by Roe does not really resolve the problem at issue, which may have led to some
confusion in the literature (see Remark 4.6), as different choices for the sign convention
of Roe’s normalization constant Ñ(l,m,n) satisfy (4.110). On the other hand, in a later
paper Roe [271, Eq. (10)] does give an explicit expression for Zlmn(0), i.e., the value of
Zlmn(cos θ) at θ = π/2, namely:

Zlmn(0)=
√

2l + 1

2
· 1

2l
·
∑

k

(−1)k
√
(l +m)!(l −m)!(l + n)!(l − n)!

k!(l + n− k)!(l −m− k)!(m− n+ k)! ; (4.111)

he cites as reference (Rose [274, Eq. (4.13)]) a formula of dl
mn(θ) which is none other than

our (4.19). A comparison of (4.111) with that which results after substitution of θ = π/2
into (4.19) reveals that

dl
mn(π/2)= (−1)m−n

√
2

2l + 1
Zlmn(0). (4.112)

Substituting θ = π/2 in (4.74) and (4.107), we obtain from (4.112) the formula

Ñ(l,m,n)=
√

2l + 1

2
·
√
(l +m)!(l − n)!
(l −m)!(l + n)! ·

1

(m− n)! . (4.113)

Thus Roe’s expression (4.111) for Zlmn(0) in [271] has revealed the sign convention he
adopts for the normalization constant Ñ(l,m,n).

71See Roe [270, eq. (A8)], where the constant Ñ(l,m,n) is denoted as Nlmn.
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Remark 4.5 Note that (4.113) simply gives Ñ(l,m,n) as the positive square-root of the
right-hand side of (4.109) for all (l,m,n). The method presented by Roe [270, Appendix] to
derive the functions Zlmn, as a factor in the energy eigenfunctions of the quantum symmetric
top, can be traced back to the 1926 paper of Reiche and Rademacher [269]. There the nor-
malization constant equivalent to Ñ(l,m,n) is explicitly given—see their equations (33b)
and (34), which is none other than that given by (4.113) here. At the end of the Appendix of
Roe’s paper [270], he writes: “[t]he function Zlmn arises in the Schrödinger wave function of
a symmetric rotator16−18 ...”. His reference 16 is the paper of Reiche and Rademacher [269].
His reference 18 is a paper by Nielsen [249], where the normalization constant in question
is also explicitly given as that given by (4.113)—see Nielsen’s equation (III.31). In fact, in
presentations of the energy eigenfunctions of the quantum symmetric top which are derived
by separation of variables, the normalization constant in question is often given as (4.113);
see, e.g., Pauling and Wilson [256, equation (36–14)]. �

It follows from (4.71), (4.74), (4.107), and the choice (4.113) for Ñ(l,m,n) that

dl
mn(θ)= (−1)m−n

√
2

2l + 1
Zlmn(cos θ) for m− n≥ 0 and m+ n≥ 0. (4.114)

As mentioned in Sect. 4.2.1, the dl
mn functions satisfy the relations

dl
mn(θ)= dl

n̄m̄(θ)= (−1)m−ndl
nm(θ)= (−1)m−ndl

m̄n̄(θ), (4.115)

by which the values of dl
mn for (i) m− n≤ 0 and m+ n≥ 0, (ii) m− n≤ 0 and m+ n≤ 0,

(iii) m−n≥ 0 and m+n≤ 0 can be expressed in terms of those for the case m−n≥ 0 and
m+ n≥ 0. In fact, Roe also has his Zlmn functions satisfy the same relations:

Zlmn(cos θ)=Zln̄m̄(cos θ)= (−1)m−nZlnm(cos θ)= (−1)m−nZlm̄n̄(cos θ). (4.116)

Hence, for all combinations of the signs of m− n and m+ n, we have

dl
mn(θ)= (−1)m−n

√
2

2l + 1
Zlmn(cos θ) (4.117)

under the sign convention that the value of Ñ(l.m,n) is given by (4.113). Substituting
(4.117) into (4.45) and comparing the resulting equation with (4.99) leads to the formula
(cf. [157, 199, 204])

Wlmn = (−1)m−n
√

2

2l + 1
clmn. (4.118)

By (4.32)2, dl
mn = (−1)m+ndl

nm for all −l ≤m≤ l and −l ≤ n≤ l. Hence formula (4.117) is
consistent with the convention (4.110) adopted by Roe.

In this exposition we will take (4.117) to be the defining equation for Roe’s “augmented
Jacobi polynomials”72 Zlmn, which leads to (4.118) as the relation between the texture co-
efficients Wlmn and clmn. By (4.118), the reality condition (4.46) on w, when expressed in

72A name that appears in Morris [236]. In the same paper Morris gives “Pmn
l

(α)=√(2/(2l + 1)Zlmn(α)”
as the equation that relates Zlmn to the “generalized Legendre functions” Pmn

l
of Bunge [56]. The equation

given by Morris, however, is clearly erroneous, because Zlmn is real-valued whereas the value of Pmn
l

(α) is

a multiple of the imaginary
√−1 when m− n is odd (see (4.93) and Sect. 4.5.3)).
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terms of the coefficients Wlmn, reads

Wlmn = (−1)m−nWlm̄n̄. (4.119)

Remark 4.6 Bunge [60, p. 97] and Esling et al. [110, p. 99] assert without proof or refer-
ence73 the relation

Zlmn(cos θ)= in−m
√

2l + 1

2
P l
mn(cos θ). (A)

By (4.94), assertion (A) is equivalent to the expression

dl
mn(θ)=

√
2

2l + 1
Zlmn(cos θ), (B)

which corresponds to adoption of the value of Ñ(l,m,n) as given by

Ñ(l,m,n)= (−1)m−n
√

2l + 1

2
·
√
(l +m)!(l − n)!
(l −m)!(l + n)! ·

1

(m− n)! . (C)

It can easily be checked that expression (B) is also consistent with the convention (4.110)
adopted by Roe [270, eq. (A11)]. Under assertion (A), the relation between Wlmn and clmn

is:

Wlmn =
√

2

2l + 1
clmn. (D)

But assertion (A) is equivalent to equation (B), which contradicts the formula of Zlmn(0)
given by Roe [271, Eq. (10)]. Since relation (D) is based on (B), the “Wlmn” of Bunge [60]
and Esling et al. [110] in (D) aren’t really Roe’s Wlmn as claimed. �

4.5.2 Viglin’s Generalized Spherical Functions and Texture Coefficients

The idea of describing crystallographic texture by a probability density function defined
on the space of orientations was first expressed by Bitter [32, §64, pp. 214–215] in his
1937 book on ferromagnetism. By then the mathematical apparatus needed for development
of this idea along the lines presented in the present chapter had already been created in
quantum mechanics by Wigner and others. But, as is evident from §64 of his book, Bitter
was unfamiliar with the mathematics required. Moreover, his idea pertaining to description
of texture remained undeveloped as no one took it up. Many years later it was Viglin [326],
another researcher in polycrystalline ferromagnetics, who independently came up with “the
idea of describing texture by means of distribution functions” in 1959/60 and then found
that the same idea “had been mentioned earlier” by Bitter.

Equipped with mathematical tools provided by the 1952 paper of Gel’fand and Šapiro
[124, §7], Viglin [326] expanded the general “texture function” p, i.e., the ODF in his nota-
tion, which depends on the orientation g, in a series of generalized spherical functions Tl,m,n

73Bunge [60, p. 352] does cite Morris [236] for “the so-called augmented Jacobi polynomials” Zlmn. But, as
mentioned in Footnote 13, Morris’s equation that relates Zlmn to Bunge’s Pmn

l
is erroneous.
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as follows (cf. his equations (2.2) and (A.13)):

p(g)=
∞∑

l=0

l∑

m=−l

l∑

n=−l
Cl,m,nTl,m,n(g), (4.120)

where Cl,m,n are the coefficients of the expansion. Besides making a few minor changes
in notation, Viglin largely adopted the formulas given by Gel’fand and Šapiro, correct or
otherwise, as they stand in [124], and he used the same convention on Euler angles, which
are denoted by (ϕ1, θ, ϕ2). But he did make a doubly erroneous tweak, which through Bunge
has left its mark on the texture literature to this day. In contrast to Gel’fand and Šapiro, who
adopted the active view of rotations, Viglin elected to use passive rotations to represent
orientations. He defined his generalized spherical functions as follows (see his equation
(A.4)):

Tl,m,n(ϕ1, θ, ϕ2)= eimϕ2Pl,m,n(cos θ)einϕ1 , (4.121)

where Pl,m,n is Viglin’s notation for Gel’fand and Šapiro’s P l
mn (see (4.93)). He explained

[326, p. 2204] that to obtain the version of (4.121) for active rotations,

it is essential to make the replacement in the right hand side of (A.4) [= (4.121)]:
ϕ1 →−ϕ1, θ→−θ and ϕ2 →−ϕ2.

The preceding assertion of Viglin on transformation from R−1 to R is incorrect; the rule
of transformation should have been: ϕ1 → π − ϕ2, θ→ θ and ϕ2 → π − ϕ1. Nevertheless,
if we follow Viglin’s assertion and use the notation of Gel’fand and Šapiro, then (4.121)
becomes

T l
mn(ϕ1, θ, ϕ2)= e−imϕ2P l

mn(cos θ)e−inϕ1 , (4.122)

which is exactly the original erroneous formula of Gel’fand and Šapiro with the angles ϕ1

and ϕ2 interchanged (cf. Footnote 68 for more details). Thus Viglin arrived at his formula
(4.121) for the generalized spherical functions through two mistakes. First, he started with
the incorrect formula (4.122). Then he followed an erroneous protocol for the transformation
of Euler angles between active and passive rotations.

Following Gel’fand and Šapiro [124, p. 284], Viglin gave an incorrect formula (A.12) for
the orthogonality relation of the generalized spherical functions: the right-hand side of his
(A.12) is too large by a factor of 2. As a result, the right-hand side of his formula (A.14) for
the texture coefficients Cl,m,n should be multiplied by a factor of 2.

Viglin’s formulation has been subsumed by that of Bunge and, by now, is seldom men-
tioned in the texture literature. On the other hand, understanding what Viglin did will shed
light on a starting point of Bunge’s formulation, which we shall discuss next.

4.5.3 Bunge’s Generalized Spherical Harmonics and Texture Coefficients

Bunge ([60, p. 47]; see also [56], [57, p. 20]) cites Viglin’s paper [326] when he asserts
that “[a] function f (g) ... can be developed in a series of generalized spherical harmon-
ics”. He adopts [56] (see also [57, p. 215], [60, p. 351]) Viglin’s formula (4.121)—without
mentioning Viglin—as definition for what he calls generalized spherical harmonics:74

T mn
l (R(p)(ϕ1,Φ,ϕ2))= eimϕ2Pmn

l (cosΦ)einϕ1 , (4.123)

74In his 1965 paper Bunge [56] refers the reader to the Russian original of Gelfand and Šapiro [124] for the
definition of Pmn

l
. In the 1982 English revised version of his treatise he cites [60, p. 47 and p. 351] the book
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where the functions Pmn
l are the same as Viglin’s Pl,m,n or Gel’fand and Šapiro’s P l

mn defined
in (4.93).

As mentioned in Sect. 4.5.2 Viglin arrived at his formula (4.121) for the generalized
spherical functions Tl,m,n by committing two errors. There arises the question whether
Bunge’s generalized spherical functions T mn

l , which are none other than Viglin’s Tl,m,n,
would enjoy the mathematical properties expected of them, e.g., whether the mapping
Q �→ [T mn

l (Q)] for Q ∈ SO(3) is an irreducible unitary representation of the rotation group.
Fortunately the answer is affirmative.

To demonstrate this, we start by determining how the generalized spherical harmonics
T mn
l are related to Gel’fand and Šapiro’s T l

mn and to the Wigner D-functions Dl
mn. Indeed

by (4.92) and (4.123) we have

T l
mn(R

−1(ϕ1, θ, ϕ2))= e−im(π−ϕ2)P l
mn(cos θ)e−in(π−ϕ1)

= (−1)m+nT mn
l (R−1(ϕ1,Φ,ϕ2)). (4.124)

Since the preceding equation holds for all R−1 in the rotation group SO(3) and by (4.96)
T l
mn(R)=Dl

mn(R), we may recast (4.124) as

T mn
l (R(ϕ1,Φ,ϕ2))= (−1)m+nT l

mn(R(ϕ1, θ, ϕ2)) (4.125)

= (−1)m+nDl
mn(R(ψ, θ,φ)) for each R ∈ SO(3). (4.126)

It follows from (4.126), inverse-invariance of the Haar integral, and the orthogonality of the
Wigner D-functions (4.21) that the functions T mn

l obey the orthogonality relation
ˆ

SO(3)

T mn
l (R−1)T m′n′

l′ (R−1) dg(R)= 1

2l + 1
δll′δmm′δnn′ , (4.127)

where g is the normalized Haar measure on the rotation group SO(3).
Since the matrix [Dl(R)] is unitary, it follows that [Tl(R(p))] is unitary for each rotation

R. Moreover, let Q1 and Q2 be rotations. By (4.126) we obtain the addition theorem for
T mn
l (·):

T mn
l (Q1Q2)= (−1)m+nDl

mn(Q1Q2)

= (−1)m+n
l∑

s=−l
Dl

ms(Q1)D
l
sn(Q2)

= (−1)m+n
l∑

s=−l
(−1)m+sT ms

l (Q1)(−1)s+nT sn
l (Q2)

=
l∑

s=−l
T ms
l (Q1)T

sn
l (Q2). (4.128)

of Gel’fand et al. [125] for “the properties of the functions Pmn
l

(Φ) as well as T mn
l

(g)” and for “detailed
representations of these functions and their properties”. In the corresponding section of the 1969 German
edition of the book, he refers also to the 1952 paper of Gel’fand and Šapiro [124]. In fact, as explained in
Footnote 68, the part of the book [125] on the rotation group is just a partially corrected version of the 1952
paper [124]. On p. 215 of [57] and p. 351 of [60] Bunge cites also the 1931 book of Wigner [340] and the 1965
Russian original of Vilenkin [327]. But his definition of the Pmn

l
functions clearly indicates that Gel’fand

and Šapiro [124] and Gel’fand et al. [125] were his main references.
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Let [Tl(Q)] be the (2l + 1)× (2l + 1) matrix with entries T mn
l (Q). By (4.128) and (4.126)

the map Q �→ [Tl(Q)] is an irreducible representation of the rotation group.
Bunge [60] adopts the normalized Haar measure g as the volume measure for the rotation

group SO(3) and uses f= 8π2w(p) as the orientation distribution function. He expands the
ODF f as an infinite series in terms of the T mn

l functions:

f(R(p)(ϕ1,Φ,ϕ2))= 1+
∞∑

l=1

l∑

m=−l

l∑

n=−l
Cmn

l T mn
l (R(p)(ϕ1,Φ,ϕ2)), (4.129)

where Cmn
l are the texture coefficients in Bunge’s formulation. By (4.100) and (4.126), we

observe that Bunge’s series expansion (4.129) can be recast as

f(R(p)(ϕ1,Φ,ϕ2))= 1+
∞∑

l=1

l∑

m=−l

l∑

n=−l
Cmn

l (−1)m+nDl
mn((R(ψ, θ,φ))−1)

= 1+
∞∑

l=1

l∑

m=−l

l∑

n=−l
Cmn

l Dl
n̄m̄(R(ψ, θ,φ)), (4.130)

where the Euler angles (ϕ1,Φ,ϕ2) and (ψ, θ,φ) pertain to the same orientation. On the
other hand, we have

f(R(p))= f(a)(R)= 8π2w(R)= 1+
∞∑

l=1

l∑

m=−l

l∑

n=−l
8π2clmnD

l
mn(R(ψ, θ,φ)). (4.131)

Following the same procedure as that in the derivation of (4.103), we deduce from (4.130)
and (4.131) that the texture coefficients Cmn

l and clmn are related by the formula

Cmn
l = 8π2cln̄m̄. (4.132)

As it is pointed out in Sect. 4.5.1, Roe [270] does not unambiguously assign the sign of
the normalization constant Ñ(l,m,n) in formula (4.107) for his functions Zlmn. The formula
he obtained is that of Ñ(l,m,n)2; see (4.109). Nevertheless, there is direct (see Roe [271,
Eq. (10)] and discussions in Sect. 4.5.1) and indirect evidence (see Remark 4.5) which show
clearly that for Roe Ñ(l,m,n) is always the non-negative square root of the right-hand side
of (4.109), i.e.,

Ñ(l,m,n)=
√

2l + 1

2
·
√
(l +m)!(l − n)!
(l −m)!(l + n)! ·

1

(m− n)! , (4.113)

which leads to (4.118). Inserting (4.132) into (4.118), we obtain

Wlmn = (−1)m−n · 1

8π2

√
2

2l + 1
Cn̄m̄

l , (4.133)

which is the relation between the texture coefficients of Roe and of Bunge. On the other
hand, if we adopt assertion (A) of Bunge [60] and of Esling et al. [110] (see Remark 4.6 for
more details), which the authors introduce without proof or reference, then

Ñ(l,m,n)= (−1)m−n
√

2l + 1

2
·
√
(l +m)!(l − n)!
(l −m)!(l + n)! ·

1

(m− n)! , (C)
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and we have (D), which leads to the formula

Wlmn = 1

8π2

√
2

2l + 1
Cn̄m̄

l , (E)

as Bunge [60, p. 97] and Esling et al. [110] claimed. But the “Wlmn” of Bunge and of Esling
et al. aren’t Roe’s Wlmn.

4.5.4 The D-Functions, ODF Expansion, and Texture Coefficients of Matthies

The reader will likely find the presentation of the D-functions in Matthies [215] and
Matthies et al. [224] hard to follow, because the same symbol Dl

m,n(·) is used to denote two
functions, which take arguments in active and passive rotations, respectively (cf. Sect. 4.1.1).
In the physics literature (see P.P. Man [207] and the references therein) the two functions
in question are entries of what are called the Wigner active and passive rotation matrices,
respectively.

Citing the Russian original of the book by Varshalovich et al. [325], Matthies [215, see
equations (1.26), (1.27), and (A1.5)] writes the D-functions as follows (see also Matthies
et al. [224, equation (11.18)]):

Dl
m,n(g)=Dl

m,n(ψ, θ,φ)= e−imψdl
m,n(θ)e

−inφ, (F)

where we have replaced Matthies’s (α,β, γ ) with our notation (ψ, θ,φ) for the Euler angles
defined in the same way (cf. Sect. 1.8.1). A glance at (F) and the citation of Varshalovich
et al. [325], where the formulas for the Wigner D-functions pertain to active rotations, sug-
gest that (F) and (4.18) are the same equation. A check on the formulas75 for dl

m,n(θ) con-
firms this hunch. Hence the symbol “g” in (F) denotes an active rotation. There are other
formulas in the two works cited (e.g., [215, equation (A.1.10)], which expresses the spher-
ical harmonics in terms of Dl

m,0 (see (9.13)); [215, equation (A1.4)] and [224, equation
(11.11)], which describe the transformation of spherical harmonics under rotation of coor-
dinate system), where Dl

m,n(·) are clearly defined on active rotations.
In (F) we have kept the original notation of Matthies for the D-functions, where there is

a comma between m and n in the suffix. If the domain of Matthies’s Dl
m,n is consistently

the active rotations, by the defining formula (F) we have Dl
m,n(·) =Dl

mn(·) and we should
just drop the comma between m and n for notational consistency. There is, however, other
evidence that leads to the opposite conclusion. Consider the formula

Dl
m,n(g2g1)=

l∑

k=−l
Dl

m,k(g1)D
l
k,n(g2) for each g1, g2 ∈ SO(3), (4.134)

which appears in Matthies [215, equation (A1.12)] and Matthies et al. [224, equation
(11.21)]. If the Dl

m,n(·) here are defined on active rotations, then (4.134) contradicts the
important formula

Dl
mn(R2R1)=

l∑

k=−l
Dl

mk(R2)D
l
kn(R1), (4.16)

75See Matthies et al. [224, equations (11.19) and (11.20)]. The same equations are given as (A1.6) and (A1.7)
in [215], but equation (A1.7) has a typo. The analog of these equations for passive rotations can be found in
Edmonds [98]; see his equations (4.5.2) and (4.5.3).
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which follows from the fundamental attribute of the Wigner D-functions that for active
rotations the correspondence R �→ [Dl(R)] is a representation of the rotation group SO(3).
For (4.134) to be valid, the symbol “g” there must stand for a passive rotation. In Matthies
et al. [224, Eq. (11.26)]) there is also the following formula which shows how Dl

m,n is related
to Bunge’s T mn

l :

T mn
l (R(ϕ1,Φ,ϕ2))= (−1)m+nDl

m,n(R
−1(ψ, θ,φ)). (4.135)

A comparison of (4.135) with (4.126) indicates that

Dl
m,n(R

−1)=Dl
mn(R) for each R ∈ SO(3); (4.136)

in other words, Dl
m,n(·) in (4.135) is defined on passive rotations.76 Given this confusing sit-

uation, for clarity we will henceforth do what follows: Wherever we are sure that Matthies’s
Dl

m,n is meant to be defined on active rotations, we will write Dl
mn for Dl

m,n. If we are confi-
dent that Dl

m,n is meant to be defined on passive rotations, we will denote it by a new symbol
as follows:

D
l
mn :=Dl

m,n =Dl
mn ◦J , where J :R �→R−1. (4.137)

For an orientation g defined by the Euler angles (ψ, θ,φ), we have

D
l
mn(g(ψ, θ,φ))=D

l
mn(ψ, θ,φ)=Dl

mn(π − φ, θ,π −ψ)= eimφdl
mn(−θ)einψ , (4.138)

which are the Wigner D-functions for passive rotations.77 We will keep using Matthies’s
notation Dl

m,n for any D-function before its true specific meaning is identified.
Using our new notation regarding Wigner D-functions for passive rotations, we rewrite

(4.135) as

T mn
l (g(ϕ1,Φ,ϕ2))= (−1)m+nDl

mn(g
−1(ψ, θ,φ)). (4.139)

Also if Dl
m,n(·)=Dl

mn(·) in (4.134), then (4.134) follows immediately from (4.16) because
[Dl (g)] = [Dl(g−1)] for each g ∈ SO(3). Indeed we have

[Dl (g2g1)] = [Dl((g2g1)
−1)] = [Dl(g−1

1 g−1
2 )] = [Dl(g−1

1 )][Dl(g−1
2 )] = [Dl (g1)][Dl (g2)].

(4.140)
Equation (4.140), which is equivalent to (4.134) after Dl

m,n(·) there is replaced by D
l
mn(·),

can be called the addition theorem for D
l
mn(·). In quantum mechanics, the matrices

[Dl
mn(g(ψ, θ,φ))] are called the Wigner passive rotation matrices, where the matrix ele-

ment Dl
mn(g(ψ, θ,φ)) is given by (4.138).78

76By substituting in (4.135) any specific R which observes R �=R−1, we can show directly that the interpre-
tation Dl

m,n(·)=Dl
mn(·) is untenable here.

77The Wigner D-functions for passive rotations, have been used for long in the physics literature. See [207]
for references.
78See [207] for detailed discussions on Wigner active and passive rotation matrices.
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Using passive rotations, Matthies et al. [224, equation (11.43)] (see also Matthies [214,
215]) expand the ODF as the series79

f(R(p))=
∞∑

l=0

l∑

m=−l

l∑

n=−l
C

m,n
l Dl

m,n((R
(p))−1)=

∞∑

l=0

l∑

m=−l

l∑

n=−l
C

m,n
l D

l
mn((R

(p))−1)

=
∞∑

l=0

l∑

m=−l

l∑

n=−l
C

m,n
l Dl

mn(R
(p)) (4.141)

for every passive rotation R(p); here we are certain that Dl
m,n in (4.141)1 means D

l
mn in

(4.141)2 because the authors invoke (4.135) as motivation to define the series expansion
as given so that the texture coefficients C

m,n
l differ from Bunge’s Cmn

l only by a factor of
(−1)m+n. Using (4.126), (4.141), and the fact that Matthies takes the volume of SO(3) as 1,
we recast (4.141) as

f(R(p))= 1+
∞∑

l=1

l∑

m=−l

l∑

n=−l
C

m,n
l (−1)m+nT mn

l (R(p)). (4.142)

A comparison of (4.142) with (4.129) indicates that

C
m,n
l = (−1)m+nCmn

l = (−1)m+n · 8π2cln̄m̄, (4.143)

where we have appealed to (4.132) at the last step.
By the inverse invariance of the Haar integral and the orthogonality relation (4.21), we

obtain from (4.141)3 the formula

C
m,n
l = 2l + 1

8π2

ˆ

SO(3)

f(R−1)Dl
mn(R

−1) dV(R)

= (2l + 1)
ˆ

SO(3)

f(R)Dl
mn(R) dg(R). (4.144)

79Note that Matthies’s C
m,n
l

is distinguished from Bunge’s Cmn
l

by the comma between m and n in the
superscript.
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Chapter 5

5 Texture and Crystallite Symmetries

In Chaps. 3 and 4 we consider polycrystalline aggregates of triclinic crystallites (whose
group of crystallite symmetry Gcr = C1 = {I }.80 Most polycrystals in the physical world,
however, consist of crystallites with non-trivial symmetry, i.e., Gcr �= {I }. Moreover, manu-
factural processes often impart macroscopic sample symmetry to their products. For in-
stance, after passes of cold or hot rolling and subsequent annealing, samples of sheet metals
often exhibit (imperfect) orthorhombic symmetry, with the rolling-, transverse-, and normal-
direction of the sheet being axes of two-fold rotational symmetry.

In this chapter we study textures of polycrystals with non-trivial crystallite symmetry
and/or sample symmetry. Working within the context of classical texture analysis, we shall
restrict our discussion to the cases where Gcr is a proper crystallographic point group (see
Sect. 2.5.2) and Gtex,81 the group of texture (or sample) symmetry, a subgroup of SO(3).
Moreover, in this chapter we shall follow the approach initiated by Roe [270, 271], which
works with ODFs introduced in the context of Gcr = {I } and Gtex = {I } and accounts for
the effects of crystallite and sample symmetry by imposing suitable constraints on the tex-
ture coefficients of the ODF defined on the rotation group SO(3).82 By the reference single
crystal we mean the ideal crystal (C,κ0) at the macro-scale (cf. Remark 2.50), under which
its configuration κ0(C) is homogeneous and its complete symmetry group is given (see
Sect. 2.11) by the semi-direct product

T(3)∧ Ĝcr = {(v, I )(0,R) : (v, I ) ∈ T(3) and R ∈Gcr}, (5.1)

where T(3) is the subgroup of translations in E(3) (the Euclidean group of rigid transplace-
ments on the three-dimensional physical space E3; see Sect. 2.2).

5.1 Transformation Formulas

5.1.1 Rotation of Polycrystal

Consider a polycrystal P and a sampling point X in P. Let a reference ideal crystal (C,κ0)

be chosen (cf. Definition 2.10), and let w : SO(3) → R be the ODF83 that specifies the
texture of P at X. After the polycrystal undergoes a rotation Q at X, its texture at X is
clearly described by a new ODF ẁ, which is related to the ODF w of the polycrystal before
rotation by the equation

ẁ(QR)=w(R) for each rotation R. (5.2)

80See (5.18) for definition of Gcr.
81See (5.16) for definition of Gtex.
82In Chap. 6 we shall see that Roe’s ODF w, which is defined on SO(3), isn’t generally an orientation
probability density. There we will detail how Roe’s w is related to the orientation probability density ŵ

defined on the space of orientations for crystallites with non-trivial symmetry.
83By calling this w an ODF we follow Roe and customary usage in the texture literature. In Chap. 6, where we
discuss the Roe approach thoroughly, we shall see that except for the case where the crystallites are triclinic
Roe’s ODF isn’t an orientation probability density on SO(3).
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After a change of variables, the preceding equation can be recast as

ẁ(R)=w(Q−1R) for each rotation R. (5.3)

Let c̀lmn and clmn be the texture coefficients pertaining to ẁ and w, respectively. We can easily
derive from (5.3) the relationship between these two sets of texture coefficients.

Indeed, by (4.16), we have

ẁ(R)=w(Q−1R)

=
∞∑

l=0

l∑

m=−l

l∑

n=−l
clmnD

l
mn(Q

−1R)

=
∞∑

l=0

l∑

m=−l

l∑

n=−l
clmn

(
l∑

s=−l
Dl

ms(Q
−1)Dl

sn(R)

)

=
∞∑

l=0

l∑

s=−l

l∑

n=−l

(
l∑

m=−l
clmnD

l
ms(Q

−1)

)
Dl

sn(R). (5.4)

Hence we obtain the relation

c̀lsn =
l∑

m=−l
clmnD

l
ms(Q

−1) (5.5)

or, by renaming indices,

c̀lmn =
l∑

p=−l
clpnD

l
pm(Q

−1). (5.6)

From (4.18), (4.117) and (4.118), we obtain for Roe’s coefficients the formula

Ẁlmn =
√

2

2l + 1

l∑

p=−l
WlpnZlpm(cosβ)e−ipαe−imγ , (5.7)

where (α,β, γ ) are the Euler angles pertaining to Q−1.

Remark 5.1 Note that Q is a rotation of the polycrystal at the sampling point X in question,
and that Euler angles (e.g., in (5.7)) are defined with respect to some chosen right-handed
orthonormal triad {ei : i = 1,2,3} fixed to the tangent space of polycrystal P at X before
rotation. In the presence of texture symmetry, the triad {ei} should be chosen judiciously
to simplify the texture coefficients as much as possible. For example, for sheet metals ei
(i = 1,2,3) should be chosen to be parallel to the three axes of two-fold rotational symmetry,
respectively. On the other hand, Roe’s approach to texture analysis remains valid even if
a suboptimal coordinate system is chosen and simplification by texture symmetry is not
exploited to the fullest. �
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5.1.2 Rotation of Reference Ideal Crystal

Similarly, when the reference ideal crystal (C,κ0) of the crystallites undergoes a rotation
P , the ODF of the polycrystal becomes w̌, which is related to the original ODF w by

w̌(RP−1)=w(R) for each rotation R, (5.8)

which is equivalent to the equation

w̌(R)=w(RP ) for each rotation R. (5.9)

The transformation formula for the texture coefficients can likewise be deduced from (5.9).
Thus we have

w̌(R)=w(RP )

=
∞∑

l=0

l∑

m=−l

l∑

n=−l
clmnD

l
mn(RP )

=
∞∑

l=0

l∑

m=−l

l∑

n=−l
clmn

(
l∑

s=−l
Dl

ms(R)Dl
sn(P )

)

=
∞∑

l=0

l∑

m=−l

l∑

s=−l

(
l∑

n=−l
clmnD

l
sn(P )

)
Dl

ms(R). (5.10)

Hence we obtain the relation

člms =
l∑

n=−l
clmnD

l
sn(P ) (5.11)

or, by renaming indices,

člmn =
l∑

p=−l
clmpD

l
np(P ). (5.12)

Let (α#, β#, γ #) and (α,β, γ ) be the Euler angles pertaining to P and P−1, respectively.
From the symmetry relation (4.32)1 and the relationship between the two sets of Euler an-
gles, we have

Dl
np(P )= e−inα

#
dl
np(β

#)e−ipγ
#

= (−1)neinγ (−1)n−pdl
pn(β)(−1)peipα

= einγ dl
pn(β)e

ipα. (5.13)

For the Roe coefficients we obtain from (4.18), (4.117), (4.118), and (5.12) the transforma-
tion formula

W̌lmn =
√

2

2l + 1

l∑

p=−l
WlmpZlpn(cosβ)eipαeinγ . (5.14)
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Remark 5.2 As the Euler angles of P are defined with respect to some right-handed or-
thonormal triad {ěi : i = 1,2,3} fixed to the reference ideal crystal (C,κ0), the triad ěi
should be chosen so that crystallite symmetry could be exploited most efficiently. For exam-
ple, for cubic crystallites ěi (i = 1,2,3) should be chosen to be parallel to the three axes of
four-fold rotational symmetry, respectively. When non-trivial crystallite and sample symme-
tries are present, we should choose both orthonormal triads {ei} and {ěi} judiciously to take
advantage of both symmetries to simplify the ODF (see Remark 5.4). Nevertheless Roe’s
approach to texture analysis is valid irrespective of the coordinate systems chosen for the
polycrystal and for the ideal reference crystal. �

5.2 Restrictions on Texture Coefficients Imposed by Sample and Crystallite
Symmetries

Let w be the ODF characterizing the texture of a polycrystal P at sampling point X. A
rotation Q at X is a symmetry operation for this texture if w remains unchanged when the
polycrystal P undergoes the rotation Q, i.e., (cf. (5.3))

ẁ(R)=w(QT R)=w(R) (5.15)

for each R in SO(3). The collection of such texture-preserving rotations Q clearly forms a
subgroup of rotations

Gtex = {Q ∈ SO(3) :w(QT R)=w(R) for each R ∈ SO(3)}, (5.16)

which we call the group of texture (or sample) symmetry of P.
Similarly, when the crystallites constituting P possess symmetry operations described by

a subgroup of rotations Gcr, a rotation of the reference orientation by P ∈Gcr will not affect
w, i.e., (cf. (5.9))

w̌(R)=w(RP )=w(R) (5.17)

for each R in SO(3). Thus the group of crystallite symmetry of P is defined by

Gcr = {P ∈ SO(3) :w(RP )=w(R) for each R ∈ SO(3)}. (5.18)

Remark 5.3 The symmetry operations in Gtex and Gcr are restricted to be rotations because
in classical texture analysis the ODF w is defined on the rotation group SO(3). In particular
we assume henceforth that Gcr is the Type I point group in the Laue class that contains
the crystallographic point group K of the crystallites which constitute the polycrystal P in
question. �

Equations (5.15) and (5.17) impose restrictions that the ODF w must satisfy in the pres-
ence of texture and crystal symmetries. These restrictions translate into requirements on the
texture coefficients clmn and Wlmn. Indeed by (5.6), (5.15), (5.12), and (5.17) we observe that
the texture coefficients satisfy the restrictions

clmn =
l∑

p=−l
clpnD

l
pm(Q

−1) for each Q ∈Gtex (5.19)

5 Texture and Crystallite Symmetries
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and

clmn =
l∑

p=−l
clmpD

l
np(P ) for each P ∈Gcr. (5.20)

In computations to determine explicit restrictions for specific instances, suitable coordinate
systems and the reference ideal crystal (C,κ0) (see Remarks 5.1 and 5.2) should be chosen
so that Gcr and Gtex have as many common elements as possible.

Remark 5.4 It can be seen from (5.19) and (5.20) that texture and crystallite symmetry im-
poses restrictions on the index m and index n in the texture coefficients clmn, respectively.
When non-trivial crystallite and sample symmetries are present, we should take advantage
of both (5.19) and (5.20) to simplify the ODF. To this end, after we have chosen an “opti-
mal” orthonormal triad {ei} and {ěi}, which are attached to the sample and to the reference
ideal crystal, respectively, we can always choose a configuration (or orientation) of the ideal
reference crystal so that ěi agrees with ei for each i. Then the Euler angles of Q in (5.19)
and of P in (5.20) are referred to the same coordinate system. �

Remark 5.5 Restrictions on the texture coefficients Cmn
l imposed by texture and crystallite

symmetry can be inferred from those on clmn through formula (4.132), i.e., Cmn
l = 8π2cln̄m̄.

By Remark 5.4, texture and crystallite symmetry imposes restrictions on the index n and
index m in the texture coefficients Cmn

l , respectively.
If one elects to work with f(R(p)) as the primary ODF, formulas that deliver the restric-

tions on Cmn
l can be derived directly. Let us illustrate with crystallite symmetry. There the

basic restriction is:

f(R−1)= f(a)(R)= f(a)(RP )= f((RP )−1) for each P ∈Gcr. (5.21)

Comparing the equations

f(R−1)=
∞∑

l=0

l∑

m=−l

l∑

n=−l
Cmn

l T mn
l (R−1), (5.22)

f((RP )−1)=
∞∑

l=0

l∑

m=−l

l∑

n=−l
Cmn

l T mn
l (P−1R−1)

=
∞∑

l=0

l∑

m=−l

l∑

n=−l
Cmn

l

(
l∑

s=−l
T ms
l (P−1)T sn

l (R−1)

)

=
∞∑

l=0

l∑

m=−l

l∑

n=−l

⎛

⎝
l∑

p=−l
C

pn

l T
pm

l (P−1)

⎞

⎠T mn
l (R−1), (5.23)

after renaming some repeated indices we obtain the restriction

Cmn
l =

l∑

p=−l
C

pn

l T
pm

l (P−1) for each P ∈Gcr. (5.24)

5.2 Restrictions on Texture Coefficients Imposed by Sample and Crystallite ...
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It is easy to show that restrictions on Cmn
l imposed by (5.24) is equivalent to those on clmn

imposed by (5.20). Indeed by (4.100) and (4.126), we have

T
pm

l (P−1)= (−1)p+mDl
pm(P

−1)=Dl
m̄p̄(P ). (5.25)

Substituting (4.132) and (5.25) into (5.24), we obtain

8π2cln̄m̄ =
l∑

p=−l
8π2cln̄p̄D

l
m̄p̄(P ) for each P ∈Gcr, (5.26)

which reduces to (5.20) after simplification and renaming of some repeated indices. �

5.3 Examples of Low Symmetry

Derivations of the restrictions imposed by texture and crystal symmetries are simple for the
cases of low symmetry, i.e., when the symmetry groups involved are C2, C3, C4, C6, D2,
D3, D4, or D6. In this section we shall restrict our attention to these cases of low symmetry.
A few examples will suffice to illustrate the method to derive the restrictions for all these
cases.

5.3.1 Orthorhombic Texture Symmetry

Here Gtex = D2. Let the spatial coordinate system be chosen so that the elements of Gtex

are: I , Q(e1,π), Q(e2,π), and Q(e3,π). Orthorhombic texture symmetry dictates that
c̀lmn = clmn for Q−1 given by the Euler angles (0,π,π), (0,π,0), and (0,0,π), respectively.

For convenience of the reader, we begin by recapitulating a few formulas (see (4.29),
(4.33)1, (4.118) and (5.6)), which we shall use in the derivations below:

dl
mn(0)= δmn, dl

mn(π − θ)= (−1)l+mdl
mn̄(θ),

clmn = (−1)m−n
√

2l + 1

2
Wlmn, c̀lmn =

l∑

p=−l
clpnD

l
pm(Q

−1),

where c̀lmn are the texture coefficients pertaining to the rotated orientation distribution func-
tion ẁ defined by

ẁ(R)=w(Q−1R) for each rotation R.

For Q−1 given by (0,π,0), we have

clmn =
∑

p

clpnD
l
pm(0,π,0)=

∑

p

clpnd
l
pm(π)

=
∑

p

clpn(−1)l+pdl
pm̄(0)= (−1)l−mclm̄n. (5.27)

In terms of the Roe coefficients, (5.27) reads:

Wlmn = (−1)l−mWlm̄n. (5.28)
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For Q−1 given by (0,0,π), we have

clmn =
∑

p

clpnD
l
pm(0,0,π)=

∑

p

clpnd
l
pm(0)e

−imπ = clmn cos(mπ). (5.29)

Equation (5.29) dictates that

clmn = 0 (or equivalently, Wlmn = 0) if m is odd. (5.30)

For Q−1 given by (0,π,π), we have

clmn =
∑

p

clpnD
l
pm(0,π,π)=

∑

p

clpnd
l
pm(π)e

−imπ

=
∑

p

clpn(−1)l+pdl
pm̄(0)e

−imπ

= (−1)l−mclm̄n cos(mπ)= (−1)lclm̄n, (5.31)

which translates to

Wlmn = (−1)lWlm̄n (5.32)

for the Roe coefficients.
When all three symmetries are present, we have

clmn =
{
(−1)lclm̄n for even m

0 for odd m
or Wlmn =

{
(−1)lWlm̄n for even m

0 for odd m.
(5.33)

Note that the computations involving the Euler angles (0,π,π) for Q−1 are in fact re-
dundant, for this symmetry operation is generated by those with Euler angles (0,π,0) and
(0,0,π). Also, (5.33) is valid only for the particular spatial coordinate systems where the
coordinate axes are the axes of orthorhombic texture symmetry.

5.3.2 Orthorhombic Crystallite Symmetry

To derive implications of crystal symmetry, (5.12), namely

člmn =
l∑

p=−l
clmpD

l
np(P )

is crucial. As the reader will see, the derivation of restrictions imposed by D2 crystal sym-
metry is completely parallel to that for D2 texture symmetry above.

Let the reference ideal crystal (C,κ0) of the crystallites and the coordinate system for
the definition of Euler angles be chosen so that

Gcr = {I ,R(ě1,π),R(ě2,π),R(ě3,π)}. (5.34)

Orthorhombic crystal symmetry dictates that člmn = clmn for R given by the Euler angles
(0,π,0), (0,0,π), and (0,π,π), respectively.
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For R given by (0,π,0), we have

clmn =
∑

p

clmpD
l
np(0,π,0)=

∑

p

clmpd
l
np(π)

=
∑

p

clmp(−1)l+ndl
np̄(0)= (−1)l+nclmn̄, (5.35)

which, in terms of the Roe coefficients, reads

Wlmn = (−1)l+nWlmn̄. (5.36)

For R given by (0,0,π), we have

clmn =
∑

p

clmpD
l
np(0,0,π)=

∑

p

clmpd
l
np(0)e

−ipπ = clmn cos(nπ). (5.37)

Therefore

clmn = 0 (or equivalently,Wlmn = 0) if n is odd. (5.38)

Combining the preceding two requirements, we obtain the constraint

clmn =
{
(−1)lclmn̄ for even n

0 for odd n
or Wlmn =

{
(−1)lWlmn̄ for even n

0 for odd n.
(5.39)

Note also that by (5.39) we have

clm0 = 0 for odd l and for each m. (5.40)

Again the validity of the preceding formulas are predicated upon the choice of the reference
ideal crystal (C,κ0) and of the coordinate system for the definition of Euler angles so that
Gcr is given by (5.34) above. A similar caveat will apply, even if there is no explicit warning,
to all our further discussions on restrictions on texture coefficients imposed by texture and/or
crystallite symmetry.

5.3.3 Orthorhombic Aggregates of Orthorhombic Crystallites

When both D2 texture symmetry and D2 crystal symmetry are present, we choose the ref-
erence ideal crystal (C,κ0) and the basis vectors {ei} and {ěi}, which pertain to the sample
and to the reference ideal crystal, respectively, so that

ei = ěi for i = 1,2,3, (5.41)

Gtex =Gcr = {I ,R(e1,π),R(e2,π),R(e3,π)}. (5.42)

Then both the constraints (5.33) and (5.39) are valid. Moreover, we can combine them with
the reality condition (4.119) to show that all the texture coefficients clmn are real. Indeed,
from the requirements (5.33) and (5.39) imposed by texture and crystal symmetry, we ob-
serve that

clm̄n̄ = (−1)lclmn̄ = (−1)2lclmn = clmn. (5.43)

5 Texture and Crystallite Symmetries

156



Reprinted from the journal 1 3

On the other hand, combining (5.43) with the reality condition (4.119), we have

clmn = (−1)m−nclm̄n̄ = clmn, (5.44)

because the constraints (5.33) and (5.39) imposed by the orthorhombic symmetries dictate
that clmn = 0 unless both m and n are even.

In summary, for orthorhombic aggregates of orthorhombic crystallites, the independent
texture coefficients (with l ≥ 1) are:

clmn ∈ R where m≥ 0 and n≥ 0 are even, and l = 2,3,4, . . ., (5.45)

excluding all clm0 and cl0n with odd l, which are equal to zero. The non-trivial dependent
texture coefficients are:

clm̄n = (−1)lclmn, clmn̄ = (−1)lclmn, clm̄n̄ = clmn, (5.46)

where m≥ 0 and n≥ 0 are even, and l = 2,3,4, . . .. Parallel statements in terms of the Roe
coefficients can be easily obtained by changing each clmn in assertions (5.45) and (5.46) to
Wlmn.

5.3.4 Trigonal, Tetragonal, and Hexagonal Crystallite Symmetries

For trigonal, tetragonal, and hexagonal crystallite symmetries, here we restrict attention to
the cases where Gcr = D3, D4, or D6. We discuss these three cases together because we
can write our derivation of restrictions imposed by Gcr on clmn in terms of a parameter
α = 3,4,6, which will cover the case of Gcr =Dα , respectively.

Let the reference ideal crystal (C,κ0) and the orthonormal basis {ěi : i = 1,2,3} attached
to it be chosen such that R(ě2,π) and R(ě3,2π/α) are the generators of the Gcr = Dα

group, where α = 3,4,6, which covers the case of trigonal, tetragonal and hexagonal crys-
tallite symmetry, respectively.84

The restriction imposed by R(ě2,π) is given by (5.35) above. Now, for the restrictions
imposed by R(ě3,2π/α), where α = 3,4,6, by (5.20) we obtain for Gcr =Dα what follows:

clmn =
∑

p

clmpD
l
np(0,0,2π/α)=

∑

p

clmpd
l
np(0)e

−i2pπ/α = clmne
−in2π/α. (5.47)

Hence for trigonal, tetragonal, and hexgonal crystallite symmetry, clmn = 0 unless n = αk

for some k ∈ Z, where Z denotes the set of integers.
In conclusion, we deduce the following restriction imposed by trigonal, tetragonal, and

hexagonal crystallite symmetry for the case of α = 3,4,6, respectively:

clmn =
{
(−1)l+nclmn̄ for n= αk, k ∈ Z

0 for n �= αk, k ∈ Z,
(5.48)

or

Wlmn =
{
(−1)l+nWlmn̄ for n= αk, k ∈ Z

0 for n �= αk, k ∈ Z.
(5.49)

84Here we use R(ě2,π) instead of R(ě1,π), which we employ in Chap. 2, as a generator of Dα (α = 3,4,6),
because our definition of Euler angles renders this choice more convenient. In what follows we will keep this
choice in all discussions that involve the ODF with Euler angles as parameters.

5.3 Examples of Low Symmetry

157



Reprinted from the journal1 3

The restrictions (5.48) are valid for the choice of reference ideal crystal (C,κ0) and of the
orthonormal basis given at the beginning of this subsection. One consequence of (5.48) that
we shall use later is:

clm0 = 0 for odd l and for each m, (5.50)

which holds for Gcr =D3,D4, or D6. Earlier we have seen in (5.40) that the same relation
is valid for Gcr =D2.

5.4 Some Cases Frequently Encountered in Applications

5.4.1 Fiber Textures

A material point X in a polycrystal is said to have fiber texture (or has transversely-isotropic
texture symmetry) if the ODF w(·;X) remains invariant under all rotations about some axis
through X. As Gtex in classical texture analysis is restricted to be a subgroup of SO(3), there
are only two types of fiber textures. The first, which is said to be of type C∞, has

Gtex = {R(n, ϑ) : n is a unit vector, ϑ ∈ R}, (5.51)

where n specifies the distinguished axis of rotation. The second, which is of type D∞, has
Gtex being the group that results by adding the generator R(m,π) to the group defined by
the right-hand-side of (5.51), where m is a unit vector orthogonal to n. For brevity, in what
follows we shall simply write Gtex = C∞ and Gtex =D∞ to mean that Gtex is of type C∞
and of type D∞, respectively.

Let us now proceed to derive the restrictions that the two types of fiber texture impose on
texture coefficients, respectively.

Gtex = C∞

We choose a sample orthonormal triad ei (i = 1,2,3) such that e3 = n. Then

Gtex = {R(e3, ϑ) : ϑ ∈ R}. (5.52)

For R−1 = (0,0, ϑ), by (5.19) we have

clmn =
l∑

p=−l
clpnD

l
pm(0,0, ϑ)=

l∑

p=−l
clpnd

l
pm(0)e

−imϑ = clmne
−imϑ for each ϑ ∈ R.

(5.53)
Hence we conclude that m= 0 for each clmn.

Gtex =D∞

We choose the sample orthonormal triad such that e2 =m and e3 = n. Since R(e3, ϑ) ∈
Gtex for each ϑ , we know from the derivation above that m= 0 for each clmn. We just need to
determine the restriction imposed by the generator R(e2,π) in Gtex. In fact we have already
obtained the required restriction in (5.27), i.e.,

clmn = (−1)l−mclm̄n. (5.54)

Since m= 0 for each clmn, we conclude from (5.54) that

cl0n = 0 for odd l and for each n. (5.55)
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5.4.2 Orthorhombic Aggregates of Hexagonal Crystallites

The sampling point X of the given polycrystal has orthorhombic sample symmetry. We
choose a right-handed orthonormal basis {ei : i = 1,2,3} for the tangent space of the sam-
ple at X so that Gtex =D2 = {I ,R(e1,π),R(e2,π),R(e3,π)}. We select a reference ideal
crystal (C,κ0) and a right-handed orthonormal triad {ěi : i = 1,2,3} for the definition of
Euler angles for rotations of (C,κ0) such that ěi = ei for each i, and Gcr =D6 is generated
by R(e2,π) and R(e3,π/3). Then Gtex is clearly a subgroup of Gcr.

Since Gtex in Sect. 5.3.3 is the same as the Gtex here and Gcr =D2 there is a subgroup of
the Gcr =D6 here, all the restrictions on texture coefficients that we derive for orthorhombic
aggregates of orthorhombic crystallites remain valid here. We just need to add the restric-
tions imposed by R(e3,π/3) ∈Gcr, which are given by (5.48).

In summary, for orthorhombic aggregates of hexagonal crystallites, the independent tex-
ture coefficients (with l ≥ 1) are:

clmn ∈ R where m≥ 0 are even and n= 6k for some integer k ≥ 0, and l �= 1,3,5,
(5.56)

excluding all clm0 and cl0n with odd l, which are equal to zero. The non-trivial dependent
texture coefficients are:

clm̄n = (−1)lclmn, clmn̄ = (−1)lclmn, clm̄n̄ = clmn, (5.57)

where m≥ 0 are even and n= 6k for some integer k ≥ 0, and l �= 1,3,5. Parallel statements
in terms of the Roe coefficients can be easily obtained by changing each clmn in assertions
(5.56) and (5.57) to Wlmn.

5.4.3 Cubic Crystallite Symmetry

We choose an orthonormal basis {ěi : i = 1,2,3} attached to the reference ideal crystal
(C, κ0) such that they agree with the three four-fold axes of cubic symmetry of (C,κ0).
Under this choice, the group Gcr = O of octahedral crystallite symmetry is generated by
R(ě2,π/2) and R(ě3,π/2), and it contains as a subgroup the group Gcr =D4 of tetragonal
crystallite symmetry studied in Sect. 5.3.4. Hence the restriction

clmn =
{
(−1)lclmn̄ for n= 4k, k ∈ Z

0 for n �= 4k, k ∈ Z
(5.58)

imposed by tetragonal crystallite symmetry remains valid in the present context. We just
need to add new restrictions imposed by the generator R(ě2,π/2), which are embodied in
the equation

clmn =
l∑

p=−l
clmpD

l
np(0,π/2,0)=

l∑

p=−l
clmpd

l
np(π/2). (5.59)

Note that in (5.59) both n and p are even. By (4.33) we have

dl
np(π/2)= (−1)ldl

np̄(π/2)= (−1)ldl
n̄p(π/2) (5.60)
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for even n and p. Combining (5.58) with (5.60)1, we recast (5.59) as follows:85

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

dl
00(π/2)− 1 2dl

04(π/2) . . . 2dl
0N(π/2)

dl
40(π/2) 2dl

44(π/2)− 1 . . . 2dl
4N(π/2)

. . . . . .

. . . . . .

dl
N0(π/2) 2dl

N4(π/2) . . . 2dl
NN(π/2)− 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

clm0

clm4

clm8

...

clmN

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= 0; (5.61)

here N is the largest positive integer that satisfies N ≤ l and N = 4k for some positive
integer k. Equation (5.61) is valid for both even and odd l. For odd l, however, (5.60) dictates
that

dl
np(π/2)=−dl

np̄(π/2), dl
np(π/2)=−dl

n̄p(π/2), (5.62)

which implies that

dl
n0(π/2)= 0, dl

0p(π/2)= 0 for odd l and even n, even p. (5.63)

Hence for odd l, the matrix in (5.61) reduces to the form

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 . . . 0

0 2dl
44(π/2)− 1 . . . 2dl

4N(π/2)

. . . . . .

. . . . . .

0 2dl
N4(π/2) . . . 2dl

NN(π/2)− 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (5.64)

and since cl0n = 0 for odd l by (5.58), it suffices to consider those texture coefficients clmn in
(5.61) with m > 0. Equation (5.61), of course, may be expressed in terms of Roe’s Zlmn’s
and Wlmn ’s. In that context, (5.61) was solved numerically by Roe [271] for even l up to
l = 22 and by P.R. Morris [237] for odd l up to l = 23. Their findings are tabulated in their
papers. Equation (5.61) can also be solved exactly by symbolic computation.

In Table 7, we list the exact relations imposed by (5.61) on clmn for 1≤ l ≤ 15, −l ≤m≤
l, and n≥ 0. The non-trivial clmn with n < 0 can be determined from those in Table 7 through
formula (5.58). The relations given in the table are obtained through a Maple program,86

which delivers also the relations for higher l. With increasing l, however, the exact relations
soon become too complicated and unwieldy for practical use.

5.4.4 Orthorhombic Aggregates of Cubic Crystallites

We choose an orthonormal basis {ei : i = 1,2,3} at the sampling point X of the poly-
crystal such that they agree with the axes of orthorhombic texture symmetry, i.e., Gtex =
{I ,R(e1,π),R(e2,π),R(e3,π)}, and choose a reference ideal crystal (C,κ0) for the cubic
crystallites such that the three four-fold axes of cubic symmetry of Gcr are parallel to the
unit vectors ei (i = 1,2,3). Under the given Gtex and Gcr, which includes R(e2,π) and

85Cf. Roe [271, Eq. (7)].
86Written by Mojia Huang.
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Table 7 Relations imposed by (5.61) on the texture coefficients clmn of aggregates of cubic crystallites with
arbitrary sample anisotropy for 1≤ l ≤ 15, −l ≤m≤ l, and n≥ 0. The linearly independent coefficients are
selected so that they have the smallest possible n’s. For those 1 ≤ l ≤ 15 not given in the table, all clmn are
zero. Also, cl

m0 = 0 for odd l. The corresponding table for the Roe coefficients can be obtained by replacing

each clmn with Wlmn

l Linearly indep. coeff. Linearly depend. coeff.

4 c4
m0 c4

m4 =
√

70
14 c4

m0

6 c6
m0 c6

m4 = −√14
2 c6

m0

8 c8
m0 c8

m4 =
√

154
33 c8

m0

c8
m8 =

√
1430
66 c8

m0

9 c9
m4 c9

m8 = −√119
17 c9

m4

10 c10
m0 c10

m4 = −√4290
65 c10

m0

c10
m8 = −√1430

√
17

130 c10
m0

12 c12
m0 c12

m8 =
√

1938
646 (

√
143 c12

m0 − 8
√

7 c12
m4)

c12
m4 c12

m12 =
√

323
√

23
7429 (4

√
91 c12

m0 + 9
√

11 c12
m4)

13 c13
m4 c13

m8 = 2
√

190
95 c13

m4

c13
m12 =−

√
253
√

19
95 c13

m4

14 c14
m0 c14

m4 =− 3
√

1309
√

65
1190 c14

m0

c14
m8 =−

√
19
√

39
√

1190
1190 c14

m0

c14
m12 =−

√
19
√

2737
238 c14

m0

15 c15
m4 c15

m8 =− 2
√

966
23 c15

m4

c15
m12 =

√
1495
23 c15

m4

R(e3,π/2) as members, the combination of all restrictions on texture coefficients which we
derive earlier for orthorhombic aggregates and for tetragonal crystallites remains in force
here, i.e.,

(i) all clmn are real;
(ii) clmn = 0 unless m is even and n= 4k for some integer k;

(iii) clmn = (−1)lclm̄n = (−1)lclmn̄ = clm̄n̄.

In addition there are:

(iv) the restrictions imposed by (5.61).

The non-trivial texture coefficients (l ≥ 1;−l ≤m≤ l,−l ≤ n≤ l) are:

– clmn ∈ R where m is even and n= 4k for some k ∈ Z, and l �= 1,2,3,5,7,11,

5.4 Some Cases Frequently Encountered in Applications
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excluding all clm0 and cl0n with odd l, which are equal to zero. Among the non-trivial texture
coefficients, we may select the independent ones as follows: For each l, m ≥ 0, and n ≥ 0
where there are non-trivial clmn’s, determine from (5.61) linear relations between the non-
trivial clmn’s. Select the smallest subset of texture coefficients with the smallest n’s in terms
of which the linear relations from (5.61) will deliver the other non-trivial clmn’s. Take the
members of this smallest subset as the independent coefficients for the given l and m ≥ 0,
n≥ 0.

Once the independent coefficients with a given l, m ≥ 0, and n ≥ 0 are determined, the
dependent coefficients with the same l and m ≥ 0 are given by the linear relations from
(5.61). The non-trivial clm̄n, clmn̄, and clm̄n̄ are determined from clmn through the equations
given in requirement (iii).

5 Texture and Crystallite Symmetries
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Chapter 6

6 Orientation Space for Polycrystals with Crystallite Symmetry

6.1 Introduction

In Chap. 4 we have introduced an ODF w : SO(3) → R to describe the crystallographic
texture at a sampling point X for a triclinic aggregate of triclinic crystallites, i.e., where
Gcr = {I } and Gtex = {I }.87 In Chap. 5 we follow Roe, who in his two seminal papers
[270, 271] shows that the presence of non-trivial sample and/or crystallite symmetries leads
to restrictions that the texture coefficients must satisfy. There the main problem that Roe in
effect studied is: inversion of X-ray pole figures to estimate the texture coefficients of even
l = 0,2,4, . . . up to a certain lmax (say lmax = 22). In Roe’s treatment of the inverse problem,
the ODF of a polycrystal is, irrespective of the absence or presence of any crystallite and/or
sample symmetry, always defined on the rotation group. The effects of a non-trivial Gcr or
Gtex are accounted for by the restrictions that the symmetries impose on the texture coeffi-
cients. For problems where such a treatment works, the Roe approach indicates a possible
way to solve the problem for all crystallite and sample symmetries in one stroke.88

While the mathematical treatments of crystallite and sample symmetry in Chap. 5 are
entirely analogous, these two types of symmetry arise for different reasons and play different
roles in the physical theory. As pointed out by Roe [270, p. 2028], members of Gtex are
“symmetry elements in the statistical distribution of crystallites” that “are introduced into
the sample in its fabrication process regardless of the nature of crystallites. For example, in a
uniaxially stretched sample there is cylindrical symmetry around the axis.” Thus Gtex is the
symmetry group of the macro-texture. In contrast, Gcr is none other than the crystallographic
point group of the crystallites. Its elements are symmetry elements of crystal structure as
manifested at the macro-scale. In fact, Gcr affects the definition of crystallite orientation for
the polycrystal in question.

6.1.1 Introductory Remarks on Orientation Space

For a triclinic crystal, once a reference single crystal is chosen, the (relative) crystallite
orientation at a sampling point X in a polycrystal is defined by a rotation R (see Sect. 3.1.1).
For a Type I crystal with symmetry group

Gcr = {P 1, . . . ,PNcr} ⊂ SO(3), where P 1 = I and Ncr = |Gcr|, (6.1)

the reference single crystal remains unchanged under any rotation P i ∈ Gcr. Hence, if R

specifies the crystallite orientation at X with respect to the reference, so does RP i for all
P i ∈Gcr. Thus the crystallite orientation at X is in fact defined by the set

RGcr := {RP i : P i ∈Gcr} (6.2)

of equivalent rotations. In the mathematics literature, RGcr is called the left coset of R

modulo Gcr (or the orbit of R in SO(3) under the right-action of Gcr). Note that no two

87Hencefoth we shall suppress the dependence on the sampling point X in w(·;X) except at places where we
want to emphasize the dependence.
88Roe’s papers [270, 271] on inversion of X-ray pole figures provide one example. See [202] for another.
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left cosets intersect, and every rotation belongs to one of the cosets (see Sect. A.3.1 in
Appendix A). The collection of all possible crystallite orientations is given by the set of left
cosets, i.e., the quotient set

SO(3)/Gcr := {RGcr :R ∈ SO(3)}. (6.3)

As we shall see, SO(3)/Gcr inherits natural mathematical structures from SO(3), with which
it is called a quotient space. For us the elements of SO(3)/Gcr are crystallite orientations;
thus we will refer to it as the orientation space.

Let P be a polycrystal with Gcr �= {I }. Clearly the orientation (probability) measure ℘̂

of P and its corresponding orientation density function ŵ should be defined on the orien-
tation space. In Roe’s papers, however, the quotient space SO(3)/Gcr is never mentioned.
Under the situation at hand, in the Roe approach the polycrystal P will have its orientation
distribution function w : SO(3)→ R, but w satisfies the restriction

w(R)=w(RP ) for each R ∈ SO(3) and P ∈Gcr. (6.4)

In this chapter we shall develop a formulation of texture analysis for polycrystals with
non-trivial Gcr and/or Gtex by defining crystallite orientations as equivalence classes of ro-
tations. We shall gain, through the perspective of this formulation, a deeper understanding
of the Roe approach, i.e., the approach in which the ODF (albeit with texture coefficients
observing restrictions imposed by crystallite and sample symmetries) is always defined on
SO(3).

6.2 Polycrystals with Non-trivial Crystallite Symmetry

We start by giving an overview of the basic concepts and main findings, which serves as a
reader’s guide to the rest of this chapter and Appendices B and C, where most of the proofs
are given. We restrict the overview to the case Gcr �= {I } without considering the effects
of sample symmetry for simplicity, conceptual clarity, and the importance of this case (see
Remark 6.1). On one hand doing so can be taken as restricting the discussion to the special
case Gcr �= {I } and Gtex = {I }, in the context of which we shall discuss the Roe approach
in Sect. 6.3. On the other hand, even if Gtex �= {I }, the orientation space is still SO(3)/Gcr

and what we shall present in this section remains valid, although a treatment that includes
the effects of sample symmetry (see Sect. 6.5) would usually be more preferable.

Remark 6.1 An important method for determination of texture in samples is by single-
orientation measurements (see Chap. 8). Each measurement at a sampling point delivers
a crystallite orientation in the orientation space SO(3)/Gcr. The measurements altogether
result in a set of data points in SO(3)/Gcr, which correspond to the case Gtex = {I } as they
stand. The data points may be used as they are or be symmetrized with respect to a suitable
Gtex if they suggest its presence or if there are other reasons for doing so (e.g., as suggested
by the processing history of the sample, for modeling, etc.). �

Remark6.2 Sample symmetry is a statistical symmetry, while crystallite symmetry is a man-
ifestation at the macro scale of an intrinsic material symmetry at the micro scale. In prac-
tice the assumption that a sample has a Gtex �= {I } is an idealization, which helps simplify
the problem in question when it is a good approximation. The group Gtex has no bearing
on the definition of crystallite orientation. Ignoring the possibility that the sample may be
taken as having a non-trivial texture symmetry and working solely with the orientation space

6 Orientation Space for Polycrystals with Crystallite Symmetry
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SO(3)/Gcr (and not with (SO(3)/Gcr)/Gtex as in Sect. 6.5) could complicate problems un-
necessarily but does not abuse any logical or physical principle. If one adopts this standpoint,
then Gtex = {I } and Gcr �= {I } covers all cases other than Gcr = {I }. �

6.2.1 Fundamental Domains

As pointed out in Sect. 6.1.1, for a polycrystal P with Gcr �= {I }, the quotient set SO(3)/Gcr

should be taken as the space of crystallite orientations.
Let π : SO(3)→ SO(3)/Gcr be the projection defined by

π(R)=RGcr for each R ∈ SO(3); (6.5)

cf. (6.1)–(6.3). The function π is clearly surjective, and it is often called the natural sur-
jection. We make SO(3)/Gcr a topological space by giving it the quotient topology: i.e.,
U ⊂ SO(3)/Gcr is said to be open if and only if π−1(U) is open in SO(3). With the quotient
topology defined on SO(3)/Gcr, the projection π is continuous. Moreover, as SO(3)/Gcr is
a topological space, the family B̂ of Borel sets in SO(3)/Gcr is well defined.

Definition 6.3 A subset F ⊂ SO(3) is said to be a strict fundamental domain89 in SO(3) for
SO(3)/Gcr if

(i) the restriction π |F : F → SO(3)/Gcr is bijective;
(ii) F is a Borel set in SO(3). �

The existence of strict fundamental domain for the orientation space SO(3)/Gcr is proved
in Appendix B. If F is a strict fundamental domain for SO(3)/Gcr, clearly so are its right
translates FP j for j = 2, . . . ,Ncr. Moreover, FP i and FP j are disjoint if P i �= P j , and
the rotation group is a disjoint union of the fundamental domains FP j , i.e.,

SO(3)=
Ncr⋃

j=1

FP j . (6.6)

For a subset Â⊂ SO(3)/Gcr, by (6.6) we have

π−1(Â)= π−1(Â)∩
Ncr⋃

j=1

FP j =
Ncr⋃

j=1

(
π−1(Â)∩FP j

)
, (6.7)

i.e., π−1(Â) is a disjoint union of Ncr subsets of SO(3), namely Aj := π−1(Â) ∩ FP j ⊂
FP j for j = 1, . . . ,Ncr. Note that for each j = 1, . . . ,Ncr,

(π−1(Â))P j = π−1(Â) and (π−1(Â)∩F)P j =Aj . (6.8)

Let f ∈ L2(SO(3),C). By (6.6), we have

ˆ

SO(3)

f (R)dV(R)=
Ncr∑

j=1

ˆ

FP j

f (R)dV(R). (6.9)

89Here and in Definition 6.4 we specialize to SO(3) the definitions in [179, p. 96]; cf. [50, p. 101] for another
definition. In texture analysis, instead of fundamental domain, many names have been used, some of which
are: asymmetric domain [235], asymmetric unit of ODF [337, p. 601], elementary region [224], fundamental
unit [324, p. 250], fundamental zone [3], etc.

6.2 Polycrystals with Non-trivial Crystallite Symmetry
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Integral formula (6.9) remains valid if the strict fundamental domain F in these formulas
is replaced by another measurable subset of SO(3) which differs from it by a set of measure
zero in the bi-invariant volume V . We call such sets fundamental domains for SO(3)/Gcr,
for which we introduce the following definition.

Definition 6.4 A subset Ω ⊂ SO(3) is a fundamental domain in SO(3) for SO(3)/Gcr if Ω
differs from a strict fundamental domain F in SO(3) for SO(3)/Gcr by a set of measure zero
in the measure space (SO(3),B,V). �

In practice it will be much easier to determine a fundamental domain than a strict fun-
damental domain for SO(3)/Gcr. See Sects. 6.6.1 and 6.6.2 for examples of fundamental
domains.

6.2.2 Quotient Measure, Orientation Density Function, and Roe’s ODF

Let P be a polycrystal of crystallites with Gcr �= {I } (cf. the first paragraph of Sect. 6.2 as
regards Gtex), and let a reference single crystal be chosen. As pointed out in Sect. 6.1.1,
the orientation space of the crystallites of the polycrystal should be SO(3)/Gcr. In parallel
to what we did in Sect. 3.1.2 for the case Gcr = {I }, we assume that the crystallographic
texture of P at a point X in P is defined by an orientation (probability) measure ℘̂(·;X)
on SO(3)/Gcr: For each Borel set Â⊂ SO(3)/Gcr, ℘̂(Â;X) gives the probability of finding
the crystallite orientation at X in Â. A polycrystal P is said to have a homogenous texture
if its orientation measure ℘̂ is independent of the sampling point X. For simplicity, even if
the polycrystal P in question has an inhomogeneous texture, we shall suppress the depen-
dence of ℘̂ on X except at places where confusion might arise or we want to emphasize the
dependence.

Before we can define an orientation probability density ŵ : SO(3)/Gcr → R pertaining
to ℘̂, we have to settle on a volume measure V̂ on the orientation space SO(3)/Gcr. Let B̂
be the family of Borel sets in SO(3)/Gcr. Consider a Borel set Â ∈ B̂. After the polycrystal
undergoes a rotation Q, Â becomes QÂ. Any acceptable volume measure ν̂ on SO(3)/Gcr

should satisfy the requirement

ν̂(QÂ)= ν̂(Â) for each Q ∈ SO(3) and Â ∈ B̂. (6.10)

A finite positive measure ν̂ on SO(3)/Gcr is said to be left SO(3)-invariant if it satisfies
(6.10). It turns out that the left SO(3)-invariant measure on SO(3)/Gcr is unique up to a
multiplicative positive constant (see Proposition C.19 in Appendix C for a proof), and that
the quotient measure V̂ on SO(3)/Gcr defined by

V̂(Â)= V
(
π−1(Â)

)
for each Borel set Â ∈ B̂ (6.11)

is left SO(3)-invariant (see Sect. C.4 and Proposition C.18). Hence we may choose the quo-
tient measure V̂ as the volume measure on the orientation space SO(3)/Gcr, which we will
do.90 We are now ready to define what we mean by the orientation density function and
Roe’s ODF on the orientation space and on SO(3), respectively.

90A left SO(3)-invariant volume measure ν̂ can be distinguished from its peers by the value ν̂(SO(3))/Gcr).
By (6.11) we see that V̂(SO(3))/Gcr)= V(SO(3))= 8π2.

6 Orientation Space for Polycrystals with Crystallite Symmetry

166



Reprinted from the journal 1 3

Definition 6.5 Let P be a polycrystal with orientation space SO(3)/Gcr and texture defined
by orientation measure ℘̂. If ℘̂ is absolutely continuous with respect to the quotient measure
V̂ on SO(3)/Gcr, the Radon-Nikodym derivative of ℘̂ with respect to V̂ , namely

ŵ(RGcr) := d℘̂

dV̂
(RGcr), (6.12)

is called the orientation (probability) density function pertaining to ℘̂. Roe’s orientation
distribution function (ODF) for polycrystal P is defined by

w := ŵ ◦ π, (6.13)

where π : SO(3)→ SO(3)/Gcr is the natural surjection. �

Let Gcr = {P 1, . . . ,PNcr} (cf. (6.1)), where P 1 = I . It follows immediately from (6.13)
that

w(R)= (ŵ ◦ π)(R)= ŵ(RGcr) for each R ∈ SO(3), (6.14)

and that

w(RP j )= ŵ(RP jGcr)= ŵ(RGcr)=w(R) for each P j ∈Gcr, (6.15)

which is none other than (6.4), the restriction that Roe put on the ODF w because of crys-
tallite symmetry.

Since ℘̂ is a probability density, definition (6.12) implies that the orientation density
function ŵ ≥ 0 and satisfies the normalization condition

ˆ

SO(3)/Gcr

ŵ dV̂ = 1. (6.16)

Similarly, by (6.11) and (6.14) we observe that the orientation distribution function w ≥ 0
and the normalization condition ˆ

SO(3)

wdV = 1. (6.17)

Remark 6.6 We have shown that each orientation density function ŵ : SO(3)/Gcr → R de-
termines through (6.13) a unique ODF w : SO(3)→ R that is non-negative and satisfies the
restriction (6.15) and the normalization condition (6.17). Conversely, it is easy to verify that
each given ODF w which is non-negative and satisfies (6.15) and the normalization condi-
tion (6.17) determines through (6.13) a unique orientation density function ŵ defined on the
quotient space SO(3)/Gcr which is non-negative and satisfies (6.14) and the normalization
condition (6.16). �

For each Borel set Â ∈ B̂, π−1(Â) is a Borel set in SO(3). Let F ⊂ SO(3) be a chosen
strict fundamental domain for SO(3)/Gcr. For a Borel set Â ⊂ SO(3)/Gcr, by (6.7), (6.8),
and (6.11) we have

V̂(Â)= V

⎛

⎝
Ncr⋃

j=1

(
π−1(Â)∩FP j

)
⎞

⎠=NcrV(A1), where A1 = π−1(Â)∩F . (6.18)

6.2 Polycrystals with Non-trivial Crystallite Symmetry
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Given an orientation density function ŵ, the orientation measure ℘̂ on SO(3)/Gcr defined
by ŵ is given by

℘̂(Â)=
ˆ

Â

ŵ(RGcr) dV̂(RGcr)

=
ˆ

π−1(Â)

w(R) dV(R), for each Borel set Â⊂ SO(3)/Gcr, (6.19)

where (6.19)2 follows from (6.14) and from the defining equation (6.11) of the quotient
measure.

Also, by (6.4), (6.7), (6.8), (6.19)2, and the right-invariance of the volume measure V ,
we observe that

℘̂(Â)=
Ncr∑

j=1

ˆ

A1P j

w(R)dV(R)=
Ncr∑

j=1

ˆ

A1

w(RP j )dV(RP j )=Ncr

ˆ

A1

w(R)dV(R), (6.20)

where A1 = π−1(Â)∩F .

6.2.3 Orientation Averaging and Texture Coefficients

The orientation average of a function F̂ : SO(3)/Gcr → R with respect to the orientation
measure ℘̂ in (6.19) is given by

ˆ

SO(3)/Gcr

F̂ (RGcr)ŵ(RGcr) dV̂(RGcr)=
ˆ

SO(3)

F (R)w(R)dV(R), (6.21)

where F = F̂ ◦ π satisfies restriction (6.4).
Conversely, let Ncr be the order of Gcr and Gcr = {P 1, . . . ,PNcr}. Given a function F :

SO(3)→ R, by the right-invariance of the volume measure V and restriction (6.4), we obtain

ˆ

SO(3)

F (R)w(R)dV(R)=
ˆ

SO(3)

1

Ncr

⎛

⎝
∑

j

F (RP j )w(RP j )

⎞

⎠dV(R)

=
ˆ

SO(3)

1

Ncr

⎛

⎝
∑

j

F (RP j )

⎞

⎠w(R)dV(R)

=
ˆ

SO(3)

F(R)w(R)dV(R), (6.22)

where F(R) := (
∑

j F (RP j ))/Ncr, a function which obviously satisfies restriction (6.4). It
follows from (6.21) that

ˆ

SO(3)

F(R)w(R)dV(R)=
ˆ

SO(3)/Gcr

F̂(RGcr)ŵ(RGcr) dV̂(RGcr), (6.23)

6 Orientation Space for Polycrystals with Crystallite Symmetry
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where F= F̂ ◦ π . On the other hand, by (6.9) we have

ˆ

SO(3)

F(R)w(R)dV(R)=
Ncr∑

j=1

ˆ

FP j

F(R)w(R)dV(R)

=
Ncr∑

j=1

ˆ

F

F(RP j )w(RP j )dV(RP j )

=Ncr

ˆ

F

F(R)w(R)dV(R), (6.24)

where we have appealed to the fact that w(RP ) = w(R) and F(RP ) = F(R) for each
P ∈Gcr as well as the right-invariance of the volume measure V . By combining (6.23) and
(6.24) we obtain the formula

ˆ

SO(3)/Gcr

F̂(RGcr)ŵ(RGcr) dV̂(RGcr)=Ncr

ˆ

F

F(R)w(R)dV(R). (6.25)

Consider the case where the function F is complex-valued. Then we have F =ReF +
iImF : SO(3)→ C (see Sect. 3.6), where ReF and ImF are the real and imaginary parts
of F , respectively. Note that F is linear in F , and that each integral in (6.21)–(6.25) is linear
in F , F̂ , F, or F̂. Since each equation in (6.21)–(6.25) is valid for the real and imaginary
parts of F , F̂ , F, and F̂, respectively, they remain valid for complex-valued F , F̂ , F, and F̂

by linearity.
In his treatment of polycrystals with non-trivial crystallite symmetry, Roe [270, 271]

never mentions the orientation density function ŵ and, in effect, makes use of the func-
tion w = ŵ ◦ π : SO(3)→ R as the ODF instead. All functions w ∈ L2(SO(3),C) can be
expanded as an infinite series of the form (see (4.45))

w(R(ψ, θ,φ))=
∞∑

l=0

l∑

m=−l

l∑

n=−l
clmnD

l
mn(R(ψ, θ,φ)). (6.26)

By the orthogonality relation (4.21) of the Wigner D-functions, the expansion coefficients
are given by

clmn =
2l + 1

8π2

ˆ

SO(3)

Dl
mn(R)w(R) dV(R), (6.27)

which correspond through (4.118) to the texture coefficients Wlmn that Roe assigns to all
polycrystals irrespective of the presence or absence of texture and/or crystallite symmetry.

Let F
l
mn(R) := (

∑
j D

l
mn(RP j ))/Ncr. In the presence of crystallite symmetry, since

Roe’s ODF w satisfies restriction (6.4), by (6.21)–(6.24) we obtain from (6.27)

clmn =
2l + 1

8π2

ˆ

SO(3)

F
l
mn(R)w(R) dV(R)

= 2l + 1

8π2

ˆ

SO(3)/Gcr

F̂
l

mn(RGcr)ŵ(RGcr) dV̂(RGcr)

6.2 Polycrystals with Non-trivial Crystallite Symmetry

169



Reprinted from the journal1 3

= 2l + 1

8π2
·Ncr

ˆ

F

F
l
mn(R)w(R) dV(R), (6.28)

where F
l
mn = F̂

l

mn ◦π . Equation (6.28)2 shows that formula (6.27), where ŵ does not appear
explicitly, delivers in the presence of crystallite symmetry texture coefficients clmn which
depend only on quantities defined on SO(3)/Gcr. By (6.28)3, to evaluate the texture coeffi-
cients clmn, it suffices to compute the appropriate integral over the chosen strict fundamental
domain F . In fact, as mentioned in the paragraph that immediately follows (6.9), we may
replace the strict fundamental domain F in (6.28)3 by a fundamental domain Ω that differs
from F by a set of measure zero in the bi-invariant volume V .

6.3 The Roe Approach

For a polycrystal P of crystallites with Gcr �= {I } and Gtex = {I }, it is natural to characterize
its crystallographic texture by an orientation density function ŵ : SO(3)/Gcr → R, where
SO(3)/Gcr is the space of crystallite orientations, and ŵ as a probability density is non-
negative and satisfies the normalization condition

ˆ

SO(3)/Gcr

ŵ(RGcr)dV̂(RGcr)= 1. (6.29)

In the Roe approach, however, we work instead with

w := ŵ ◦ π : SO(3)→ R, where π : SO(3)→ SO(3)/Gcr is the natural surjection.
(6.30)

It follows immediately from the definition of w in (6.30) that w is non-negative, satisfies the
constraint (6.4), and observes the normalization condition

´
SO(3) w(R)dV(R) = 1. In fact,

through (6.30) the two functions ŵ and w determine each other uniquely.
In what sense can ŵ be replaced by w as a descriptor of crystallographic texture that

pertains to polycrystal P with Gcr �= {I }? To start with, there exists in SO(3) a strict fun-
damental domain F such that π |F : F → SO(3)/Gcr is a bijection. Thus each crystallite
orientation of P is represented by a rotation in F . Let ℘̂ be an orientation measure on the
space of crystallite orientations SO(3)/Gcr defined by ℘̂(Â) = ´

Â
ŵdV̂ for each Borel set

Â⊂ SO(3)/Gcr. In terms of w, by (6.19) and (6.20) we have
ˆ

Â

ŵ dV̂ =Ncr

ˆ

(π |F )−1(Â)

w dV for each Borel set Â⊂ SO(3)/Gcr. (6.31)

For a function F̂ : SO(3)/Gcr → C, F := F̂ ◦ π satisfies restriction (6.4). By (6.21) and
(6.24), the orientation average with respect to the orientation measure ℘̂ in (6.31) is given
by

ˆ

SO(3)/Gcr

F̂ (RGcr)ŵ(RGcr) dV̂(RGcr)=Ncr

ˆ

F

F(R)w(R)dV(R)

=
ˆ

SO(3)

F (R)w(R)dV(R), (6.32)
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where we have appealed to the fact that F can be taken as F in (6.24) because F satis-
fies restriction (6.4). Hence in texture analysis of polycrystals with non-trivial crystallite
symmetry, we can choose a strict fundamental domain F in SO(3), use F and w in place
of SO(3)/Gcr and ŵ, respectively, and work with the right-hand side of (6.31) and (6.32)1

instead of their counterparts on the left-hand side, respectively.
The crux of the Roe approach, however, is to use, as far as possible, w defined on the

entire rotation group SO(3), series expansion (6.26), and formula (6.27) for texture coeffi-
cients, i.e., the same formulas that apply to all cases of crystallite and sample symmetries.
For instance, in orientation averaging use (6.32)2 instead of (6.32)1. In using (6.32)2 the do-
main of integration is fixed; if a computer program has been written for triclinic aggregates
of triclinic crystallites, for other crystallite or sample symmetries, we just need to include
the appropriate restrictions on texture coefficients. In contrast, every pair of (Gcr,Gtex) has
its own fundamental domain F in the appropriate form of (6.32)1.

On the other hand, while ŵ is a genuine orientation density function on the orientation
space SO(3)/Gcr, Roe’s ODF w := ŵ ◦π isn’t an orientation probability density defined on
SO(3). For instance, let P be a polycrystal with non-trivial crystallite symmetry, and let E
be a Borel set in SO(3) such that E �= π−1(Â) for any Borel set Â in SO(3)/Gcr. Then the
integral

´
E
w(R) dV(R) makes no physical sense. Roe’s ODF w can be used to compute

probabilities as follows. Let F be a strict fundamental domain in SO(3) for SO(3)/Gcr.
Then each rotation in F represents a crystallite orientation. If E is a Borel set in F , the
probability of finding the crystallite orientation in E at a sampling point of a sample of P is
Ncr

´
E
w(R) dV(R).

Remark 6.7 In the 1960s Bunge [56, 57] and Roe [270] independently proposed what is
now commonly called the harmonic method for determination of crystallographic texture
by inversion of X-ray pole figures. In what follows we describe the different approaches in
effect adopted by Roe and by Bunge, respectively, albeit the descriptions are restricted to the
present context (i.e., Gtex = {I }, Gcr �= {I }) and are reworded in the convention and notation
of this exposition. In the Roe approach, texture analysis is based on the ODF w = ŵ ◦ π
defined on SO(3), which satisfies the constraints (6.4) imposed by crystallite symmetry.
Under the harmonic method, the ODF w is expanded in the infinite series displayed in (6.26).
In practice, the infinite series (6.26) is truncated after some selected suitable l = lmax. The
texture coefficients clmn of w from l = 1 to l = lmax are to be estimated from measurement
data (e.g., X-ray pole figures). In the Bunge approach, texture analysis is in effect based
on the ODF ŵ defined on SO(3)/Gcr. The ODF ŵ is expanded in an orthogonal series of
functions defined on SO(3)/Gcr (see Sect. 6.8). Again, the texture coefficients cμν of the
truncated expansion of ŵ from l = 1 to l = lmax are to be estimated from measurement data.

In principle the Roe approach and the Bunge approach are equivalent. In execution, how-
ever, there is one big difference. In the Roe approach the ODFs for all crystallite symmetries
are in the same space L2(SO(3),C), and the basis functions Dl

mn work for all crystallite
symmetries. Moreover, as far as the texture coefficients are concerned, for instance those
of an ODF that pertains to a polycrystal with Gcr = O can be looked upon as a special
case of their counterparts that pertain to one with Gcr = {I } which happen to observe the
required restrictions (6.4). In some problems, it may be possible to obtain solutions for all
crystallite symmetries by solving the triclinic case and getting solutions for each case of
non-trivial crystallite symmetry by imposing appropriate restrictions on the texture coeffi-
cients. In the Bunge approach the spaces L2(SO(3)/Gcr,C) that contain the ODF ŵ are
different for different Gcr. The possible convenience described above for the Roe approach
will be impossible for the Bunge approach.

6.3 The Roe Approach

171



Reprinted from the journal1 3

In this exposition we follow the Roe approach but will illustrate the Bunge approach by
one concrete example in Sect. 6.8. �

6.4 Disorientation Angle as Distance Function on Orientations

In Sect. 1.10, the misorientation angle of two rotations defines a distance function dSO(3) on
SO(3). In this section we show that the angle of disorientation91 of two orientations defines
a distance function on the orientation space SO(3)/Gcr.

Let Gcr = {P 1, . . . ,PNcr}. For brevity, in what follows we shall sometimes write M for
SO(3)/Gcr, particularly when it is used as a subscript. Given two orientations R1Gcr and
R2Gcr in SO(3)/Gcr, their disorientation angle is given by92

ω̃d :=min{dSO(3)(R1P i ,R2P j ) : P i ,P j ∈Gcr}. (6.33)

By (1.142), we can simplify (6.33) a little as follows:

ω̃d =min{dSO(3)(R1,R2P jP
T
i ) : P i ,P j ∈Gcr}

=minP∈GcrdSO(3)(R1,R2P ). (6.34)

Let dM : SO(3)/Gcr × SO(3)/Gcr → R be defined by

dM(R1Gcr,R2Gcr)=minP∈GcrdSO(3)(R1,R2P ), (6.35)

where the right-hand side is none other than the disorientation angle of the two orientations
in question.

We claim that dM is a distance function on the orientation space SO(3)/Gcr. By definition
of the disorientation angle 6.33 and the properties of dSO(3), dM clearly satisfies conditions
(a) and (b) of Definition 1.18 for a distance function. It remains to show that dM observes
the triangle inequality, i.e., for any R1,R2 and R3 in SO(3),

dM(R1Gcr,R2Gcr)+ dM(R2Gcr,R3Gcr)≥ dM(R1Gcr,R3Gcr). (6.36)

To prove (6.36), note that by (6.34) we have

dM(R1Gcr,R2Gcr)= dSO(3)(R1,R2P a) for some P a ∈Gcr. (6.37)

Similarly, by (6.34) and (1.142) we obtain

dM(R2Gcr,R3Gcr)= dSO(3)(R2,R3P b) for some P b ∈Gcr

= dSO(3)(R2P a,R3P bP a)

= dSO(3)(R2P a,R3P c), where P c = P bP a ∈ SO(3). (6.38)

91The term “angle of disorientation” was introduced by MacKenzie and Thomson [197] in a paper on geo-
metrical probability to mean “the least angle of rotation required to rotate a crystal into the same orientation
as a neighboring crystal” (see also [196]). By now it has been used widely in the literature of texture analysis
(see, e.g., [86, 104, 333]). Some authors (see, e.g., [235]), however, elect to use the word “misorientation” in
the sense of disorientation here.
92Recall that dSO(3)(R1P i ,R2P j ) is the misorientation angle of the two rotations R1P i and R2P j .
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Combining (6.37) and (6.38)3, we conclude that

dM(R1Gcr,R2Gcr)+ dM(R2Gcr,R3Gcr)= dSO(3)(R1,R2P a)+ dSO(3)(R2P a,R3P c),

≥ dSO(3)(R1,R3P c)

≥minP∈GcrdSO(3)(R1,R3P )

= dM(R1Gcr,R3Gcr). (6.39)

In Sect. 10.4 we shall see that the orientation space SO(3)/Gcr is a Riemannian manifold
with dM as its Riemannian distance function.

6.5 Polycrystals with Non-trivial Sample Symmetry

6.5.1 Sample Symmetry Revisited

For a polycrystal P with non-trivial crystallite symmetry, we see in Sect. 6.1.1 that the
crystallite orientation at a point X in P is characterized by a set of equivalent rotations RP i

(P i ∈ Gcr), each of which brings the reference single crystal to the crystallite orientation
at X. The crystallite orientation at X is then denoted by RGcr, and the set of all possible
orientations as R runs over SO(3) is the orientation space SO(3)/Gcr.

Suppose the polycrystal P also has non-trivial sample symmetry defined by Gtex. Hence-
forth in this chapter we assume that Gtex = {Q1, . . . ,QNtex

} is a finite rotation group, ex-
cept when we introduce the term “isotropic texture” or “random texture”. Since w(R) =
ŵ(RGcr) for each R ∈ SO(3), the definition of Gtex in (5.16) can be recast as

Gtex = {Q ∈ SO(3) : ŵ(QT RGcr)= ŵ(RGcr) for each RGcr ∈ SO(3)/Gcr}, (6.40)

For brevity in further discussions, let M := SO(3)/Gcr be the orientation space with the
quotient topology (see Sect. 6.2.1). Equation (6.40) indicates that the orientations QT RGcr

(Q ∈Gtex) are equivalent as far as the orientation density function ŵ is concerned. In anal-
ogy to the definition of the orientation space M , we introduce the Gtex equivalence classes
of orientations

[RGcr] = {QT RGcr :Q ∈Gtex} = {QT
1 RGcr, . . . ,Q

T
Ntex

RGcr} (6.41)

and the space of such equivalence classes

M/Gtex = {[RGcr] :RGcr ∈M} (6.42)

with the quotient topology.

Remark 6.8 An alternate view of M/Gtex is as follows. Let T : Gtex × M → M be the
mapping defined by

T (Q,RGcr)=QRGcr. (6.43)

In Sect. B.2 of Appendix B, it is shown that T is a continuous left action of the group Gtex

on the orientation space M and that for each Q ∈ Gtex the map T Q :M →M defined by
T Q(RGcr) :=QRGcr is a homeomorphism on M . The Gtex-orbit of orientation RGcr ∈M ,
namely {QRGcr :Q ∈Gtex} is none other than [RGcr] and the space of Gtex-orbits in the
orientation space M is the quotient space M/Gtex. �
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Definition 6.9 Let P be a polycrystal with its Gtex �= {I } being a finite rotation group. Let
M := SO(3)/Gcr be its orientation space. For each R ∈ SO(3), the equivalence class [RGcr]
as defined by (6.41) is called the Gtex-orbit of R in M . The quotient space M/Gtex as defined
by (6.42) is called the space of Gtex-orbits in M . �

Remark6.10 The mathematics behind the equivalence classes RGcr and the space SO(3)/Gcr

on one hand and that of [RGcr] and M/Gtex on the other are similar (cf. Sect. B.2). But there
is a basic difference in the physics. The concepts of crystallite orientation and orientation
space are central to quantitative texture analysis, while those of Gtex-orbits in M and the
space of such orbits are important and useful but less fundamental. Cf. Remarks 6.1 and
6.2. �

Let π̂ :M→M/Gtex, RGcr �→ [RGcr] be the natural surjection, and let w̃ :M/Gtex →
R be the unique function defined by ŵ = w̃ ◦ π̂ . The three ODFs w, ŵ, and w̃ are related as
follows:

w = ŵ ◦ π, ŵ = w̃ ◦ π̂ , w = w̃ ◦ π̃ , (6.44)

where π̃ = π̂ ◦ π : SO(3)→ (SO(3)/Gcr)/Gtex, and

w(R)= ŵ(RGcr)= w̃([RGcr]), for each R ∈ SO(3). (6.45)

Note that for each Q ∈Gtex, P ∈Gcr, and R ∈ SO(3), we have

w(QT RP )= ŵ(QT RPGcr)= ŵ(QT RGcr)= ŵ(RGcr)=w(R), (6.46)

where we have appealed to (6.40) at the third step.

Example6.11 Let ei (i = 1,2,3) be a right-handed orthonormal triad. Consider a monoclinic
aggregate P of orthorhombic crystallites with

Gtex =C2 = {I ,R(e3,π)}, Gcr =D2 = {I ,R(e1,π),R(e2,π),R(e3,π)}.
Suppose P has a homogeneous texture p̃ = δ[RoD2] on M/Gtex, where Ro is a rotation with
respect to the triad {ei} and M = SO(3)/Gcr. Note that

[RoD2] = {RoD2,R(e3,π)RoD2}.
In single-orientation measurements, each measurement at a sampling point X of P will de-
liver one orientation, which is either RoD2 or R(e3,π)RoD2, and the probability of getting
either one is 1/2. For the elements of Gtex, let

Q1 = I , Q2 =R(e3,π).

For the elements of Gcr, let

P 1 = I , P j =R(ej−1,π), (j = 2,3,4).

On the orientation space M , the orientation (probability) measure of the crystallographic
texture in question is:

℘̂ = 1

2

(
δRoD2 + δQ2RoD2

)
.
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As represented on SO(3), the orientation measure in question is given by

℘ = 1

8

2∑

i=1

4∑

j=1

δQiRoP j
.

Note that crystallite symmetry is intrinsic. Every single orientation measurement gives
one orientation, e.g., RoD2, not one of the equivalent rotations in the equivalence class
RoD2 = {Ro,RoP 2,RoP 3,RoP 4}. In contrast, texture symmetry is statistical and is often
imperfect in practice. The ODF with the requisite sample symmetry is usually obtained ei-
ther by symmetrization of raw data before inversion to get the ODF or by symmetrization of
the raw ODF after inversion. �

Before we close this section, we define what we mean by the term “isotropic texture” or
“random texture”.

Definition 6.12 A polycrystal P is said to have an isotropic texture at a sampling point X if
its Gtex = SO(3) at X. �

For a polycrystal with its Gtex = SO(3), we write its orientation density function ŵ as
ŵiso. Let RGcr and PGcr be two arbitrary crystallite orientations in SO(3)/Gcr. By definition
of wiso and (6.40), we have

ŵiso(PGcr)= ŵiso((PRT )T PGcr)= ŵiso(RGcr). (6.47)

Hence ŵiso is a constant function on the orientation space SO(3)/Gcr. By the normalization
condition

´
SO(3)/Gcr

ŵ dV̂ = 1, we see that

ŵiso = 1

V̂(SO(3)/Gcr)
= 1

V(SO(3))
= 1

8π2
. (6.48)

In the Roe approach, since wiso = ŵiso ◦ π , it follows from (6.48) that wiso = 1/(8π2).

6.5.2 Fundamental Domains

To examine fundamental domains for polycrystals with Gtex �= {I }, we start by extending
our discussions in Sect. 6.2.1. Henceforth until the end of this chapter, we assume that Gtex

is a finite rotation group and Gcr a Type I crystallographic point group.
Let π : SO(3)→ SO(3)/Gcr, R �→RGcr. For brevity let M := SO(3)/Gcr be the orienta-

tion space and M/Gtex the space of Gtex-orbits in M ; see Sect. 6.5.1. Let π̂ :M→M/Gtex,
RGcr �→ [RGcr], where [RGcr] denotes the Gtex-orbit of RGcr (see (6.41)). In Sect. B.3 of
Appendix B, it is shown that there exist strict fundamental domains F ⊂ SO(3) for M and
F̂ ⊂M for M/Gtex such that F and F̂ are Borel sets in SO(3) and in M , respectively, and
the maps π |F : F→M and π̂ |F̂ : F̂→M/Gtex are bijective.

Let F̃ = (π |F )−1(F̂). As π |F : F →M is a bijection and F̂ ⊂M , we see that F̃ =
π−1(F̂) ∩ F , where F is a Borel set in SO(3). Since F̂ is a Borel set in M and π is a
continuous surjection, it follows from Proposition C.16 (i) of Appendix C that π−1(F̂) is a
Borel set in SO(3). Hence F̃ is a Borel set in SO(3).

Let π̃ = π̂ ◦ π . As the maps π : SO(3) → M and π̂ : M → M/Gtex are continuous,
open, and surjective, so is the mapping π̃ : SO(3)→M/Gtex, R �→ [RGcr]. Moreover, since

6.5 Polycrystals with Non-trivial Sample Symmetry

175



Reprinted from the journal1 3

F̃ ⊂ F , π |F̃ is injective, and π |F̃ (F̃)= F̂ , the mapping π̃ |F̃ = π̂ ◦ π |F̃ : F̃ →M/Gtex is
bijective.

Comparing the properties of F̃ and those of F in Definition 6.3, we introduce the fol-
lowing definition.

Definition 6.13 A subset F̃ ⊂ SO(3) is said to be a strict fundamental domain in SO(3) for
M/Gtex if

(i) the restriction π |F̃ : F̃ →M/Gtex is bijective;
(ii) F̃ is a Borel set in SO(3). �

Since F is a strict fundamental domain in SO(3) for the orientation space M and F̂ is
a strict fundamental domain in M for the space of Gtex-orbits, we observe (cf. (6.6)) that
SO(3) and M can be expressed as the following disjoint unions, respectively:

SO(3)=
Ncr⋃

j=1

FP j , M =
Ntex⋃

i=1

QT
i F̂ , (6.49)

where we have put93 QT
i =Q−1

i for Qi in (6.49)2 for later convenience. On the other hand,
we have

F = (π |F )−1(M)=
Ntex⋃

i=1

QT
i (π |F )−1(F̂)=

Ntex⋃

i=1

QT
i F̃ . (6.50)

Substituting (6.50)3 into (6.49)1, we obtain the following decomposition of SO(3) as a dis-
joint union of translates of a chosen strict fundamental domain F̃ :

SO(3)=
Ntex⋃

i=1

Ncr⋃

j=1

QT
i F̃P j . (6.51)

Definition 6.14 A subset Ω ⊂ SO(3) is a fundamental domain in SO(3) for M/Gtex if Ω
differs from a strict fundamental domain F̃ in SO(3) for M/Gtex by a set of measure zero
in the measure space (SO(3),B,V). �

Remark 6.15 As mentioned earlier, in applications it will often suffice to use a fundamental
domain in place of a strict fundamental domain (cf. Definitions 6.13 and 6.14). To determine
a fundamental domain in practice, we may seek a measurable Ω ⊂ SO(3) such that

(a) for each (Qi ,P j ) �= (I , I ), where Qi ∈ Gtex and P j ∈ Gcr, Ω ∩QiΩP j is a set of
V -measure zero in SO(3);94

(b) there holds

Ntex⋃

i=1

Ncr⋃

j=1

QT
i ΩP j = SO(3) \Z, (6.52)

where Z is a set of V-measure zero in SO(3).

93Doing so does not change the disjoint union in (6.49)2. As the rotations Qi run over Gtex there, so do

Q−1
i

.
94Note that the empty set ∅ is a set of V -measure zero in SO(3).
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It is straightforward to show that such a set Ω can differ from a strict fundamental do-
main only by a set of V-measure zero. Indeed, since R ∈ QT

i1
ΩP j1 ∩QT

i2
ΩP j2 if and

only if Qi1
RP T

j1
∈ Ω ∩Qi1

QT
i2
ΩP j2P

T
j1

, condition (a) implies that after a suitable set
of V-measure zero, say E, is deleted from Ω , the sets QT

i (Ω \E)P j (i = 1, . . . ,Ntex; j =
1, . . . ,Ncr) are disjoint. Condition (b) guarantees that the disjoint union

⋃Ntex
i=1

⋃Ncr
j=1 QT

i (Ω \
E)P j can differ from SO(3) only by a set of V-measure zero. Thus Ω can differ from a strict
fundamental domain only by a set of V-measure zero. �

6.5.3 Quotient Measure and Texture Coefficients

Physically crystallite symmetry is intrinsic and texture symmetry is statistical. Mathemati-
cally, however, their effects on the ODF mirror each other (cf. Chap. 5). Moreover, we can
often account for their effects together.

In the presence of non-trivial texture symmetry, we may still work with the orientation
space M := SO(3)/Gcr and use orientation density functions ŵ that satisfy ŵ(QT RGcr)=
ŵ(RGcr) for Q ∈ Gtex (see (6.40)). Alternatively, we may work with the quotient space
M/Gtex, which we call the space of Gtex-orbits of orientations. As shown in Appendix C,
the quotient measure on M/Gtex can be similarly defined in parallel to its counterpart on
SO(3)/Gcr, i.e.,

Ṽ(Ã)= V̂(π̂−1(Ã)) for each Borel set Ã⊂M/Gtex, (6.53)

where π̂ :M →M/Gtex is the natural surjection. Because of this, and because of (6.51)
and the existence of a strict fundamental domain for M/Gtex in SO(3), all formulas derived
in Sects. 6.2.2 and 6.2.3 where the quotient space in question is SO(3)/Gcr, after obvious
modifications, will be valid for the present context. Likewise, after replacing SO(3)/Gcr

by M/Gtex in Section (6.3), everything said about the Roe approach there after obvious
modifications applies to the case where Gtex �= {I }.

Remark 6.16 Each single-orientation measurement at a point X of a sample of polycrystal
P yields an orientation, say, RGcr. However, if P has non-trivial sample symmetry, the
measurement result can be interpreted as the equivalence class or Gtex-orbit [RGcr]. Let Ã
be a Borel set in M/Gtex. The probability of finding [RGcr] in Ã is

℘̃(Ã)=
ˆ

π̂−1(Ã)

ŵ dV̂ =
ˆ

Ã

w̃ dṼ . (6.54)

It can be seen that w̃ is a probability density function on M/Gtex. As we follow the Roe
approach, we will not pursue the properties of w̃ further. �

As illustration, let us give a couple of examples. For a function F̃ :M/Gtex → C and
F := F̂ ◦ π , which satisfies restriction (6.46), in parallel to (6.32) we have

ˆ

M/Gtex

F̃ ([RGcr])w̃([RGcr]) dṼ([RGcr])=Ntex ·Ncr

ˆ

F̃

F(R)w(R)dV(R), (6.55)

where [RGcr] is a generic element in the space M/Gtex of Gtex-orbits of orientations and F̃
is a chosen strict fundamental domain for M/Gtex in SO(3).
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For F : SO(3)→ C, its symmetrized version

F(R)= 1

NtexNcr

⎛

⎝
Ntex∑

i=1

Ncr∑

j=1

F(QT
i RP j )

⎞

⎠ ,

and an ODF w(·) that satisfies the constraint w(QT RP ) = w(R) for each Q ∈ Gtex and
P ∈Gcr, we have

ˆ

SO(3)

F (R)w(R)dV(R)

=
ˆ

SO(3)

F(R)w(R)dV(R)=
Ntex∑

i=1

Ncr∑

j=1

ˆ

QT
i F̃P j

F(R)w(R)dV(R)

=
Ntex∑

i=1

Ncr∑

j=1

ˆ

F̃

F(QT
i R̃P j )w(QT

i R̃P j )dV(QT
i R̃P j ), where R̃ =QiRP T

j ∈ F̃

= Ntex ·Ncr

ˆ

F̃

F(R)w(R)dV(R), (6.56)

where F̃ is the chosen strict fundamental domain, and we have appealed to the bi-invariance
of the volume measure V , the fact that F(QT RP )= F(R) for each Q ∈Gtex and P ∈Gcr,
and a change of dummy variable from R̃ to R at the last step.

Appying (6.56) to formulas (6.27) for clmn, where F(R) is Dl
mn(R), we have

clmn =
2l + 1

8π2
·Ntex ·Ncr

ˆ

F̃

F
l
mn(R)w(R) dV(R), (6.57)

where F
l
mn(R) =

(∑Ntex
i=1

∑Ncr
j=1 D

l
mn(Q

T
i RP j )

)
/(NtexNcr). Hence, to evaluate the texture

coefficients clmn, it suffices to compute the appropriate integral over the chosen strict fun-
damental domain F̃ . In fact, it is obvious that the strict fundamental domain F̃ in formula
(6.57) can be replaced by any fundamental domain Ω ⊂G (cf. Definition 6.4) which differs
from F̃ by a set of zero bi-invariant volume V .

6.6 Examples of Explicit Fundamental Domains

In this section we will follow the guidelines given in Remark 6.52 to construct, for various
Gcr and Gtex, explicit fundamental domains for SO(3)/Gcr or (SO(3)/Gcr)/Gtex in SO(3).
Henceforth we will say that two subsets A1 and A2 of SO(3) are essentially disjoint if A∩B

is a set of V-measure zero in SO(3). Condition (a) in Remark 6.52 can then be paraphrased
as the requirement that the sets QT

i ΩP j (i = 1, . . . ,Ntex; j = 1, . . . ,Ncr) are pairwise es-
sentially disjoint.

6.6.1 Triclinic Aggregates of Crystallites with a Dihedral-Group Symmetry

Consider the cases where Gcr is the dihedral group Dk (k = 2,3,4 or 6), which has
R(e3,2π/k) and R(e2,π) as generators. Since Dk = {P 1, . . . ,P 2k} has order 2k, once a
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fundamental domain Ω for SO(3)/Gcr is chosen, the set of rotations SO(3) is, up to a set of
V-measure zero, the union of 2k regions ΩP j (j = 1, . . . ,2k), which are pairwise essen-
tially disjoint (see Remark 6.15).

The following lemma will be instrumental to our discussion below.

Lemma 6.17 R(e3,ψ)R(e2, θ)R(e3, φ)R(e2,π)=R(π +ψ,π − θ,π − φ).

Proof The proof below appeals to (1.81), (1.93), and the identity R(e3, φ)R(e2,π) =
R(e2,π)R(e3,−φ), which follows easily from (1.81) and Euler’s theorem (1.82). Indeed
we have

R(e3,ψ)R(e2, θ)R(e3, φ)R(e2,π)=R(e3,ψ)R(e2, θ)R(e2,π)R(e3,−φ)
=R(e3,ψ)R(e2, θ − π)R(e3,−φ)
=R(e3,ψ)R(−e2,π − θ)R(e3,−φ)
=R(e3,ψ)R(e3,π)R(e2,π − θ)R(e3,π)R(e3,−φ)
=R(π +ψ,π − θ,π − φ), (6.58)

where we have also used the fact that R(e2,π)=R(e2,−π)= (R(e2,π))
−1. �

The procedure to arrive at a fundamental domain for SO(3)/Gcr is essentially the same
for all cases of Gcr =Dk (k = 2,3,4 or 6). For a generic rotation R(ψ0, θ0, φ0) in an as yet
undetermined fundamental domain Ω , determine the location of R(ψ0, θ0, φ0)P for each
P ∈Gcr. From the locations of the 2k rotations in Euler space, make a guess on a possible
fundamental domain. Use the criteria given in Remark 6.15 to check whether the guess is
acceptable. If it isn’t, make adjustments and check again.

Remark 6.18 Here we want to write SO(3) as an essentially-disjoint union of sets of the form
ΩP j , where P j ∈Gcr. Hence we examine

R(ψ0, θ0, φ0)P =R(e3,ψ0)R(e2, θ0)R(e3, φ0)P for P ∈Gcr. (6.59)

When we consider the effects of texture symmetry, we shall consider QT R(ψ0, θ0, φ0) (or
equivalently QR(ψ0, θ0, φ0)) for Q ∈Gtex. �

To illustrate the procedure, let us examine in detail the simplest case, i.e., triclinic aggre-
gates of orthorhombic crystallites, where

Gcr =D2 = {I ,R(e1,π),R(e2,π),R(e3,π)}.

Let R(ψ0, θ0, φ0) be a generic point in the as yet undetermined fundamental domain Ω . By
using Lemma 6.17 and the fact that R(e1,π)=R(e2,π)R(e3,π), we have

R(ψ0, θ0, φ0)R(e3,π)=R(ψ0, θ0,π + φ0),

R(ψ0, θ0, φ0)R(e2,π)=R(π +ψ0,π − θ0,π − φ0),

R(ψ0, θ0, φ0)R(e1,π)=R(π +ψ0,π − θ0,2π − φ0). (6.60)

6.6 Examples of Explicit Fundamental Domains
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Note that (6.60)1 and (6.60)2−3 suggest that we may restrict Ω to the ranges 0≤ φ < π and
0≤ θ ≤ π/2, respectively. Thus we let Ω ⊂ SO(3) be defined by

Ω = {R(ψ, θ,φ) : 0≤ψ < 2π,0≤ θ ≤ π/2,0≤ φ < π}. (6.61)

By (6.60) and the definition of Ω we obtain

ΩR(e3,π)= {R(ψ, θ,φ) : 0≤ψ < 2π,0≤ θ ≤ π/2,π ≤ φ < 2π},
ΩR(e2,π)= {R(ψ, θ,φ) : 0≤ψ < 2π,π/2≤ θ ≤ π,0 < φ ≤ π},
ΩR(e1,π)= {R(ψ, θ,φ) : 0≤ψ < 2π,π/2≤ θ ≤ π,π < φ ≤ 2π}. (6.62)

It follows that

Ω ∩ΩR(e3,π)= ∅,
Ω ∩ΩR(e2,π)= {R(ψ, θ,φ) : 0≤ψ < 2π, θ = π/2,0 < φ < π},
Ω ∩ΩR(e1,π)= {R(ψ, θ,φ) : 0≤ψ < 2π, θ = π/2, φ = 0}, (6.63)

which are all of V-measure zero in SO(3). Moreover, there holds

Ω ∪
(

3⋃

i=1

ΩR(ei , π)

)
= SO(3). (6.64)

Hence by Remark 6.15, Ω as given by (6.61) is a fundamental domain for SO(3)/Gcr in
SO(3) for triclinic aggregates of orthorhombic crystallites.

For triclinic aggregates of crystallites with Gcr =Dk for k = 3,4,6, let r =R(e3,2π/k),
s =R(e2,π). Then the elements of Gcr are:

P 1 = e, P 2 = r, · · · P k = rk−1,

P k+1 = s, P k+2 = sr, · · · P 2k = srk−1.

After considerations parallel to those taken in the case of Gcr =D2, we let95

Ω = {R(ψ, θ,φ) : 0≤ψ < 2π,0≤ θ ≤ π/2,0≤ φ < 2π/k}. (6.65)

In what follows we will put e= r0 when it is more convenient to do so. For R(ψ0, θ0, φ0) ∈
Ω and α = 0,1, . . . , k − 1, we have

R(ψ0, θ0, φ0)r
α =R(ψ0, θ0, φ0 + α · 2π/k) ∈Ωrα, (6.66)

R(ψ0, θ0, φ0)sr
α =R(π +ψ0,π − θ0,π − φ0 + α · 2π/k) ∈Ωsrα (6.67)

describe the same orientation as that of R(ψ0, θ0, φ0). Moreover, it is easily checked that
the sets Ωrα , Ωsrα , where α runs from 0 to k − 1, i.e., the sets ΩP j (j = 1, . . . ,2k),
are pairwise essentially disjoint, and

⋃
j ΩP j = SO(3). Hence Ω , as given by (6.65), is

a fundamental domain for SO(3)/Gcr in SO(3) for triclinic aggregates of crystallites with
Gcr =Dk (k = 2,3,4,6).

95Note that (6.65) reduces to (6.61) when k = 2.
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6.6.2 Triclinic Aggregates of Cubic Crystallites

Let Gcr = O be the group that contains D4 (generated by R(e3,π/2) and R(e2,π)) as a
subgroup and R(m,2π/3), where m= (−e1 + e2 + e3)/

√
3, as a generator. The subgroup

D4 has the region B defined by (ψ, θ,φ) ∈ [0,2π)× [0,π/2] × [0,π/2] as a fundamental
domain, which is divided under O into three equivalent regions. Since we are examining
the effects of crystallite symmetry, we may restrict attention (cf. Remark 6.18) to the cross-
section S := {(θ,φ) : 0 ≤ θ ≤ π/2,0 ≤ φ ≤ π/2} of B for each ψ . Note that S can be
represented as the spherical triangle in the unit sphere S2 that lies in the first octant and
has vertices (1,0,0), (0,1,0), (0,0,1) and sides being parts of great circles. Let P ∈Gcr

be P = R(m,2π/3), where m = (−1,1,1)/
√

3. Under the basis {ei : i = 1,2,3}, P is
represented by the matrix

[Pij ] =
⎛

⎝
0 −1 0
0 0 1
−1 0 0

⎞

⎠ . (6.68)

The rotation P generates a right translation in SO(3). Let R(α,β, γ ) be a generic rotation
with Euler angles (α,β, γ ) before the right translation, and let

R(ψ, θ,φ)=R(α,β, γ )P . (6.69)

By (1.89) and (6.68), we obtain the equations

sin θ cosφ = cosβ, sin θ sinφ = sinβ cosγ, cos θ = sinβ sinγ, (6.70)

which can be given as
⎛

⎝
sin θ cosφ
sin θ sinφ

cos θ

⎞

⎠=
⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠

⎛

⎝
sinβ cosγ
sinβ sinγ

cosβ

⎞

⎠=R(n,ω)

⎛

⎝
sinβ cosγ
sinβ sinγ

cosβ

⎞

⎠ , (6.71)

where n= (1,1,1)/
√

3 and ω = 2π/3. Hence P induces a transformation (β, γ ) �→ (θ,φ)

on S defined by the rotation R((1,1,1)/
√

3,2π/3). For i = 1,2,3, let Ci be the part of the
great circle that lies in the spherical triangle S and passes through ei and n = (e1 + e2 +
e3)/

√
3. Clearly C3 = {(θ,φ) ∈ S2 : φ = π/4,0 ≤ θ ≤ π/2}. The equations that specify C1

and C2 in the coordinates (θ,φ), respectively, can be obtained as follows.
Let e′1 = e2, e′2 = e3, and e′3 = e1. Under the primed coordinate system defined by e′i (i =

1,2,3), a generic point a ∈ C1 has spherical coordinates (r ′, θ ′, φ′) = (1, θ ′,π/4), where
0≤ θ ′ ≤ π/2. We have

a = 1√
2

sin θ ′e′1 +
1√
2

sin θ ′e′2 + cos θ ′e′3

= 1√
2

sin θ ′e2 + 1√
2

sin θ ′e3 + cos θ ′e1

= sin θ cosφ e1 + sin θ sinφ e2 + cos θ e3. (6.72)

Hence C1 is given by the equation sin θ sinφ = cos θ , i.e.

tan θ = 1

sinφ
or cos θ = sinφ√

1+ sin2 φ
. (6.73)

6.6 Examples of Explicit Fundamental Domains

181



Reprinted from the journal1 3

Similarly, we can show that C2 is given by the equation

tan θ = 1

cosφ
or cos θ = cosφ√

1+ cos2 φ
. (6.74)

Hence we have

C1 =
{
(θ,φ) ∈ S2 : cos θ = sinφ√

1+ sin2 φ
,0≤ φ ≤ π

2

}
, (6.75)

C2 =
{
(θ,φ) ∈ S2 : cos θ = cosφ√

1+ cos2 φ
,0≤ φ ≤ π

2

}
. (6.76)

There are many possible choices of fundamental domains, two of which are:

Ω1 =
{

R(ψ, θ,φ) : 0≤ψ < 2π, cos−1

(
cosφ√

1+ cos2 φ

)
≤ θ ≤ π

2
,0≤ φ ≤ π

4

}
, (6.77)

Ω2 =
{

R(ψ, θ,φ) : 0≤ψ < 2π, cos−1

(
sinφ√

1+ sin2 φ

)
≤ θ ≤ π

2
for 0≤ φ ≤ π

4
,

cos−1

(
cosφ√

1+ cos2 φ

)
≤ θ ≤ π

2
for

π

4
≤ φ ≤ π

2

}
.

(6.78)

Note that the two-fold domain Ω2 is often preferred in practice for “simplifying calculations
in a grid with equidistant steps for the Euler angles” [224, p. 25].

6.6.3 Orthorhombic Aggregates

We consider aggregates with Gtex = D2 = {I ,R(e1,π),R(e2,π),R(e3,π)}. Our discus-
sions below (cf. Remark 6.18) are based on a lemma parallel to Lemma 6.17, which can be
proved similarly.

Lemma 6.19 R(e2,π)R(e3,ψ)R(e2, θ)R(e3, φ)=R(π −ψ,π − θ,π + φ). �

Orthorhombic Aggregates of Triclinic Crystallites

Let us start with orthorhombic aggregates of triclinic crystallites.
For a generic rotation R(ψ0, θ0, φ0) in an as yet undetermined fundamental domain Ω ,

we appeal to Lemma 6.19 and obtain the following relations:

R(e3,π)R(ψ0, θ0, φ0)=R(π +ψ0, θ0, φ0),

R(e2,π)R(ψ0, θ0, φ0)=R(π −ψ0,π − θ0,π + φ0)

R(e1,π)R(ψ0, θ0, φ0)=R(e3,π)R(e2,π)R(ψ0, θ0, φ0)

=R(2π −ψ0,π − θ0,π + φ0). (6.79)

6 Orientation Space for Polycrystals with Crystallite Symmetry

182



Reprinted from the journal 1 3

Thus, if R0 :=R(ψ0, θ0, φ0) has its Euler angle ψ = ψ0 in the interior of the first quadrant
(i.e., 0 < ψ0 < π/2), then R(e2,π)R0, R(e3,π)R0, and R(e1,π)R0 have their respec-
tive Euler angle ψ in the interior of the second, third, and fourth quadrant, respectively.
This observation suggests that a possible fundamental domain for (SO(3)/Gcr)/Gtex, where
Gcr = {I } and Gtex =D2, is:

Ω = {R(ψ, θ,φ) : 0≤ψ < π/2,0≤ θ ≤ π,0≤ φ < 2π}. (6.80)

Noting that (R(ei , π))
T = R(ei , π) for i = 1,2,3, we use (6.79) and (6.80) to obtain the

formulas

Ω ∩ (R(e3,π))
T Ω = ∅, Ω ∩ (R(e2,π))

T Ω = ∅,
Ω ∩ (R(e1,π))

T Ω = {R(ψ, θ,φ) :ψ = 0,0≤ θ ≤ π,0≤ φ < 2π}, (6.81)

which are all of V-measure zero in SO(3). Moreover, there holds

Ω ∪
(

3⋃

i=1

(R(ei , π))
T Ω

)
= SO(3) \Z, (6.82)

where Z = {R(ψ, θ,φ) : ψ = π/2 or 3π/2,0 ≤ θ ≤ π,0 ≤ φ < 2π} is of V-measure
zero in SO(3). Hence by Remark 6.15, Ω as defined by (6.80) is a fundamental do-
main for (SO(3)/Gcr)/Gtex in SO(3) for orthorhombic aggregates of triclinic crystallites
(Gtex =D2,Gcr = {I }).

There are, of course, numerous choices of fundamental domain. For instance, we may
replace (6.80) by

Ω = {R(ψ, θ,φ) : 0≤ψ ≤ π,0≤ θ ≤ π/2,0≤ φ < 2π}, (6.83)

the analogs of which often appear under other conventions (in the choice of Euler angles,
etc.) in the literature of texture analysis.

Orthorhombic Aggregates of Hexagonal Crystallites

We may combine (6.65) for the case k = 6 and (6.80) to get

Ω = {R(ψ, θ,φ) : 0≤ψ < π/2,0≤ θ ≤ π/2,0≤ φ < π/3} (6.84)

as a fundamental domain for (SO(3)/Gcr)/Gtex in SO(3) for orthorhombic aggregates of
hexagonal crystallites (Gtex =D2,Gcr =D6).

Orthorhombic Aggregates of Cubic Crystallites

We may combine (6.78) and (6.80) to obtain

Ω =
{

R(ψ, θ,φ) : 0≤ψ < π/2, cos−1

(
sinφ√

1+ sin2 φ

)
≤ θ ≤ π

2
for 0≤ φ ≤ π

4
,

cos−1

(
cosφ√

1+ cos2 φ

)
≤ θ ≤ π

2
for

π

4
≤ φ ≤ π

2

}
(6.85)

as a fundamental domain for (SO(3)/(Gcr)/Gtex in SO(3) for orthorhombic aggregates of
cubic crystallites (Gtex =D2,Gcr =O).
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6.7 Spaces of Symmetrized Functions

Functions which satisfy restriction (6.4) and lie in the (2l+ 1)2-dimensional subspace Dl of
L2(SO(3),C) generated by Dl

mn (−l ≤ m ≤ l, −l ≤ n ≤ l) constitute a linear subspace Sl

of Dl , and because of the restriction(s) imposed by (6.4) dimSl < dimDl if Gcr �= {I }. By
(6.4), we observe that

w(R)=w(RP j )=
∞∑

l=0

l∑

m=−l

l∑

n=−l
clmnD

l
mn(RP j ), for each P j ∈Gcr and R ∈ SO(3).

(6.86)
It follows that

w(R)=
∞∑

l=0

l∑

m=−l

l∑

n=−l
clmn

⎛

⎝ 1

Ncr

Ncr∑

j=1

Dl
mn(RP j )

⎞

⎠

=
∞∑

l=0

l∑

m=−l

l∑

n=−l
clmnF

l
mn(R), (6.87)

where

F
l
mn(R)= 1

Ncr

Ncr∑

j=1

Dl
mn(RP j ) (6.88)

is the symmetrization of the corresponding Dl
mn with respect to the group Gcr. Equation

(6.87) shows that the ODF w can be written as an infinite series of the symmetrized Wigner
D-functions F

l
mn (l = 0,1,2, . . .; −l ≤ m ≤ l, −l ≤ n ≤ l). On the other hand, because

F
l
mn ∈ Sl for all m and n, and because dimSl < dimDl unless Gcr = {I }, the functions

F
l
mn are not linearly independent.

When there is also non-trivial sample symmetry, i.e., Gtex �= {I } and is of order Ntex <∞,
the ODF w satisfies in addition the restriction (5.19). Then we have

w(R)=w(QT
i RP j )=

∞∑

l=0

l∑

m=−l

l∑

n=−l
clmnD

l
mn(Q

T
i RP j ),

for each Qi ∈Gtex, P j ∈Gcr and R ∈ SO(3).
(6.89)

It follows that

w(R)=
∞∑

l=0

l∑

m=−l

l∑

n=−l
clmn

⎛

⎝ 1

Ntex
· 1

Ncr

Ntex∑

i=1

Ncr∑

j=1

Dl
mn(Q

T RP j )

⎞

⎠

=
∞∑

l=0

l∑

m=−l

l∑

n=−l
clmnF

l
mn(R), (6.90)

and

F
l
mn(R)= 1

Ntex
· 1

Ncr

Ntex∑

i=1

Ncr∑

j=1

Dl
mn(Q

T
i RP j ) (6.91)
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is the symmetrization of the corresponding Dl
mn with respect to the groups Gtex and Gcr. Let

Sl be the linear subspace of Dl which consists of functions that satisfy (6.46)4. By (6.90)
the ODF w can be expanded as an infinite series of the symmetrized Wigner D-functions
F
l
mn for all m and n. However, when Gtex �= {I } or Gcr �= {I }, since dimSl < dimDl , the

functions Sl are not linearly independent. In Sect. 6.8 we shall illustrate by an example how
a basis in Sl can be constructed from the Dl

mn’s after the restrictions imposed by sample
and crystallite symmetry on the texture coefficients clmn have already been ascertained.

Remark 6.20 Note that the symmetrized functions F
l
mn in (6.88) and in (6.91) satisfy

the restrictions (6.4) and (6.46), respectively. Hence they are in effect defined on the
orientation space SO(3)/Gcr and the space (SO(3)/(Gcr)/Gtex of Gtex-orbits of orienta-

tions, respectively. Indeed by the formula F
l
mn = F̂

l

mn ◦ π (resp. Fl
mn = F̃

l

mn ◦ π̃ ), where
π (resp. π̃ ) maps SO(3) onto SO(3)/Gcr (resp. (SO(3)/Gcr)/Gtex), Fl

mn in (6.88) (resp.

(6.91)) specifies a complex-valued function F̂
l

mn (resp. F̃
l

mn) defined on SO(3)/Gcr (resp.
(SO(3)/Gcr)/Gtex). The expansion (6.90) can be interpreted as one concerning functions
defined on (SO(3)/(Gcr)/Gtex, namely

w̃([RGcr])=
∞∑

l=0

l∑

m=−l

l∑

n=−l
clmnF̃

l

mn([RGcr]), (6.92)

where [RGcr] is the Gtex-orbit of the orientation RGcr in (SO(3)/Gcr)/Gtex. Likewise, the
expansion (6.87) can be interpreted similarly. In a theory that works only with functions
defined on the orientations or the Gtex-orbits of orientations, one should proceed further to
construct a set of basis functions in each Sl and study their properties. This is in line with
the Bunge approach to texture analysis, to which we now turn. �

6.8 The Bunge Approach: Symmetric Generalized Spherical Functions

In this exposition we mainly follow the approach initiated by Roe [270, 271], where the
ODF w is always defined on SO(3) and the effects of sample and crystallite symmetry are
accounted for through the restrictions that the symmetries impose on texture coefficients.
Bunge [56, 57, 60], on the other hand, elects to work with functions symmetrized with
respect to Gtex and Gcr that include bases in the spaces Sl , which he calls “symmetric
generalized spherical functions”. Since we are not going to follow Bunge’s approach in this
exposition, we shall be content to illustrate by one concrete example how a basis in Sl

can be constructed from the Dl
mn’s after the restrictions imposed by sample and crystallite

symmetry on the texture coefficients clmn have already been ascertained.
Passive rotations are used in Bunge’s original formulation. In this exposition, however,

we have followed the recent trend in mathematics, physics, and chemistry and use active
rotations. We will keep using active rotations in our illustration on construction of symmet-
ric generalized spherical functions. While reading the rest of this section, the reader should
keep in mind that what is presented is a rewrite of Bunge’s formulation in terms of active ro-
tations and the conventions (i.e., the ODF w, Wigner D-functions Dl

mn, bi-invariant volume
measure V on SO(3), etc.) adopted in this exposition.

6.8 The Bunge Approach: Symmetric Generalized Spherical Functions
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Consider an orthorhombic aggregate of cubic crystallites. Let us focus our attention on
the terms with l = 4 and m= 0 in the following expansion of the ODF:

w(R)=
∞∑

l=0

l∑

m=−l

l∑

n=−l
clmnD

l
mn(R)

= · · · + c4
00D

4
00(R)+ c4

04D
4
04(R)+ c4

04̄D
4
04̄(R)+ · · ·

= · · · + c4
00

(
D4

00(R)+
√

70

14
D4

04(R)+
√

70

14
D4

04̄(R)

)
+ · · · (6.93)

where we have appealed to the fact that c4
04 = c4

04̄
=

√
70

14 c4
00. Note that the first step of the

procedure is to write down all terms with non-trivial clmn. For the case (l = 4, m= 0) in ques-
tion, the non-trivial texture coefficients clmn are c4

00, c4
04, and c4

04̄
; see Sect. 5.4.4. The second

step is to express the dependent texture coefficients in terms of the independent ones. For
orthorhombic aggregates of cubic crystallites, the number of linear independent coefficients
for 1≤ l ≤ 15 and for a fixed m are given in Table 7 of Sect. 5.4.3. By convention, for a fixed
l and m the non-trivial texture coefficient with the lowest (resp. second, third, . . . ) n≥ 0 is
taken as the first (resp. second, third, . . . ) independent coefficient, etc., and the assignment
of independent coefficients is stopped when the number of independent coefficients is met.
For the present case, the independent non-trivial coefficient is c4

00, whereas c4
04 and c4

04̄
are

the dependent ones. In Table 7 is also listed the relations that express the dependent non-
trivial texture coefficients with n≥ 0 in terms of the independent ones. The linear relations
between c4

04 and between c4
04̄

and c4
00 are exploited in (6.93). Let

D11
4

:.
(R)=N11

4

(
D4

00(R)+
√

70

14
D4

04(R)+
√

70

14
D4

04̄(R)

)
, (6.94)

where N11
4 is a normalization constant that renders

〈D11
4

:.
, D11

4

:. 〉 =
ˆ

SO(3)

D11
4

:.
(R)D11

4

:.
(R) dV(R)= 8π2

2× 4+ 1
.

Thus we have

|N11
4 |2 = (1+ 2× 70

142
)−1 = 7

12
.

Since D4
00 is real and D4

04(R)=D4
04̄
(R), D11

4

:.
is a real-valued function if we choose N11

4 to
be real, which we will do. Then N11

4 is specified to within a sign. By convention we choose
N11

4 =√7/12. Note that because of the texture and crystallite symmetry the ODF satisfies

w(QT
i RP j )=w(R) (6.95)

for each Qi ∈ Gtex, P j ∈ Gcr, and R ∈ SO(3). Since c4
00 is an independent coefficient, it

follows that the function D11
4

:.
also enjoys the texture and crystal symmetries in question, i.e.,

D11
4

:.
(QT

i RP j )=D11
4

:.
(R) (6.96)

for each Qi ∈Gtex, P j ∈Gcr, and R ∈ SO(3).
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Now we consider the terms in the expansion of the ODF with l = 4 and m= 2 or −2:

c4
20D

4
20(R)+ c4

24D
4
24(R)+ c4

24̄D
4
24̄(R)+ c4

2̄0D
4
2̄0(R)+ c4

2̄4D
4
2̄4(R)+ c4

2̄4̄D
4
2̄4̄(R)

= c4
20

(
D4

20(R)+D4
2̄0(R)+

√
70

14

(
D4

24(R)+D4
24̄(R)+D4

2̄4(R)+D4
2̄4̄(R)

)
)
.

Let

D12
4

:.
(R)=N12

4

(
D4

20(R)+D4
2̄0(R)+

√
70

14

(
D4

24(R)+D4
24̄(R)+D4

2̄4(R)+D4
2̄4̄(R)

)
)
,

(6.97)
where N12

4 is a normalization constant. Again, we choose a real N12
4 so that

〈D12
4

:.
, D12

4

:. 〉 = 8π2

2× 4+ 1

or

|N12
4 |2 = (2+ 4× 70

142
)−1 = 7

24
.

By convention we take N12
4 =√7/24 here. Similar to D11

4

:.
, as c4

20 is an independent coeffi-

cient, the function D12
4

:.
observes the same texture and crystallite symmetries (cf. (6.96)).

Likewise, we consider the remaining terms in the expansion of the ODF with l = 4, i.e.,
those with m= 4 or −4, and we define the function

D13
4

:.
(R)=

√
7

24

(
D4

40(R)+D4
4̄0(R)+

√
70

14

(
D4

44(R)+D4
44̄(R)+D4

4̄4(R)+D4
4̄4̄(R)

)
)
,

(6.98)
which satisfies

〈D13
4

:.
, D13

4

:. 〉 = 8π2

2× 4+ 1

and enjoys the texture and crystallite symmetries. Note that the functions D11
4

:.
, D12

4

:.
and D11

4

:.
are orthogonal in the space L2(SO(3),C).

For orthorhombic aggregates of cubic crystallites, it should now be clear how to proceed

to choose a sequence of real-valued basis functions D
μν

l

:.
(l = 0,1,2,3,4, . . .) which enjoy

the texture and crystal symmetries and satisfy the orthogonality relation

〈Dμν

l

:.
, D

μ′ν′
l

:. 〉 = 8π2

2l + 1
δll′δμμ′δνν′ . (6.99)

In terms of the basis Dμν

l

:.
, the expansion of the ODF now reads:

w(R)=
∞∑

l=0

M(l)∑

μ=1

N(l)∑

ν=1

cμν

l D
μν

l

:.
(R). (6.100)
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Table 8 Values of M(l) and N(l)

for 1≤ l ≤ 15 for orthorhombic
aggregates of cubic crystallites

l 4 6 8 9 10 12 13 14 15

M(l) 1 1 1 1 1 2 1 1 1

N(l) 3 4 5 5 6 7 7 8 8

Here for l = 0, there is only one term c11
0 D11

0

:. = 1/(8π2). In general, for each l, M(l) is
the number of linearly independent coefficient clmn for a fixed m, and N(l) is the number of
non-negative integers k for which 2k ≤ l. For 1≤ l ≤ 15, the values of M(l) can be read off
from Table 7. These values and those of the corresponding N(l)’s are displayed in Table 8.
For those 1 ≤ l ≤ 15 that are not included in this table, no term of such l’s appears in the
series expansion (6.100) of the ODF.

For each l and m, we take the non-trivial coefficient(s) clmn with the lowest n(’s) as the
linearly independent coefficient(s). For instance, for l = 4, we take c4

m0; for l = 12, we take
c12
m0 and c12

m4. We assign the indices ν and μ in the order of increasing m and of increasing
n in the linearly independent coefficients, respectively. For instance, c12

8 , c15
9 and c24

12 in
the cμν

l series correspond to c8
20, c9

84, and c12
64 in the clmn series, respectively. In general, by

convention of how the normalization constants Nμν

l are defined, we have

cμν

l = the corresponding clmn

N
μν

l

, (6.101)

where N
μν

l is the normalization constant in the definition of Dμν

l

:.
. For instance, we have

c11
4 =

√
12

7
c4

00, c12
4 =

√
24

7
c4

20, c13
4 =

√
24

7
c4

40.

In summary, by (4.118) and (6.101) the chosen independent clmn and Wlmn are related to
the corresponding cμν

l as follows:

clmn =N
μν

l cμν

l , (6.102)

Wlmn = (−1)m−n
√

2

2l + 1
N

μν

l cμν

l . (6.103)
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Chapter 7

7 Reciprocal Space and Reciprocal Lattice

7.1 Dual Space

Let V be the translation space of E3. Let V ∗ be the set of linear mappings from V to the
reals R. We define addition and scalar multiplication in V ∗ by

(F1 + F2)(u)= F1(u)+ F2(u) for any F1,F2 ∈ V ∗, and u ∈ V , (7.1)

(cF )(u)= cF (u) for any c ∈R, F ∈ V ∗, and u ∈ V , (7.2)

and define the zero vector O ∈ V ∗ as the zero mapping

O(u)= 0 for any u ∈ V (7.3)

so that V ∗ is a vector space. Each F ∈ V ∗ is a vector, the magnitude or norm of which is
defined by

‖F‖ =max {|F(u)| : u ∈ V and ‖u‖ = 1}. (7.4)

After a right-handed basis, say {f j : j = 1,2,3}, is chosen for V , each F ∈ V ∗ is repre-
sented by a 1× 3 matrix. The linear maps Hi : V → R (i = 1,2,3) defined by

Hi(f j )= δij for i, j = 1,2,3 (7.5)

clearly constitute a basis in V ∗. Hence dimV ∗ = 3. In mathematics, V ∗ is called the dual
space of V and {Hi}, as defined by (7.5), the dual basis with respect to {f j }.

Let 〈·, ·〉 : V ∗ × V → R be defined by

〈F,u〉 = F(u) for each F ∈ V ∗ and each u ∈ V . (7.6)

The notation given in (7.6) emphasizes the symmetry between V ∗ and V : while each F ∈ V ∗

is a real-valued linear mapping on V , each u ∈ V can likewise be taken as a real-valued
linear mapping on V ∗. In fact, it can be shown that V ∗∗ := (V ∗)∗ = V . Under the notation
defined in (7.6), (7.5) reads:

〈Hi,f j 〉 = δij for i, j = 1,2,3, (7.7)

which asserts that {Hi} and {f j } are dual bases of each other.
For F ∈ V ∗ and c ∈ R, the set Π(F,c) = {u ∈ V : 〈F,u〉 = c} is a continuous family of

parallel planes in V . In particular, Π(F,0) is the plane in the family that passes through 0, the
zero vector of V .

Note that each u ∈ V denotes a translation. Hence the magnitude ‖u‖ has the physical
dimension of length L and the direction of u is dimensionless. Since the real number c in
the expression 〈F,u〉 = c is dimensionless, the magnitude ‖F‖ of the vector F in V ∗ carries
the dimension of L−1.
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7.2 Reciprocal Space

In crystallography, V is called the direct space. The dual space V ∗ of V , however, is given
an alternate description, which is based on the following mathematical observation.

Proposition 7.1 For each F ∈ V ∗, there is a unique vF ∈ V such that

F(w)= vF ·w for each w ∈ V , (7.8)

and ‖vF‖ = ‖F‖.

Proof Existence of vF . If F = O , then vF = 0 satisfies (7.8). Suppose F �= O . Then the
equation F(u)= 〈F,u〉 = 0 defines a plane Π(F,0) through the origin in V . For simplicity,
we will write Π for Π(F,0) for the rest of this proof. Let w ∈ V be given. Pick one of the two
unit normals of Π and call it n. Then we have

w =w‖ +w⊥ = (w · n)n+ (w− (w · n)n) , (7.9)

where w‖ = (w ·n)n is the component of w normal to Π and w⊥ is the projection of w onto
Π . Since w⊥ ∈Π and F(u)= 0 if u ∈Π , we obtain

F(w)= F(w‖)= (w · n)F (n)= F(n)n ·w. (7.10)

As w in (7.10) is an arbitrary vector in V , (7.8) holds with vF = F(n)n.
Uniqueness of vF . Let F(w)= vF ·w = v′F ·w for each w ∈ V . Then (vF − v′F ) ·w = 0

for each w ∈ V , which implies vF = v′F .
As for the equality of the norms, we have ‖vF ‖ = √F(n)n · F(n)n = |F(n)|. On the

other hand, let m ∈ V such that ‖m‖ = 1. Then by (7.10), |F(m)| = |F(n)n ·m| ≤ |F(n)|,
which by (7.4) implies ‖F‖ = |F(n)|. �

The preceding proposition is the finite-dimensional version of the Riesz representation
theorem for Hilbert spaces (see, e.g., [273, p. 351]). Let τ : V ∗ → V be defined by

τ(F )= vF , for each F ∈ V ∗. (7.11)

Clearly the mapping τ is linear. By (7.7) and (7.11),

〈Hi,f j 〉 = τ(H i) · f j = δij for i, j = 1,2,3. (7.12)

It follows that τ(H i) = f i (i = 1,2,3), the basis reciprocal to f j (j = 1,2,3) in V

(see Sect. 1.2.1), as the reciprocal basis is uniquely defined by the orthonormality rela-
tions (7.12)2. Hence τ is an isomorphism. Let us define an inner product 〈·, ·〉 on V ∗ by
〈F1,F2〉 = τ(F1) · τ(F2). Since ‖F‖ = ‖τ(F )‖ for each F ∈ V ∗, we obtain [273, p. 211] the
following corollary.

Corollary 7.2 The linear mapping τ : V ∗ → V defined by (7.11) is an isometric isomor-
phism. �

The representation τ(V ∗) of the dual space V ∗ is called the reciprocal space of the direct
space V .

7 Reciprocal Space and Reciprocal Lattice

190



Reprinted from the journal 1 3

Remark 7.3 Proposition 7.8 and Corollary 7.2 assert that the dual space V ∗ can be repre-
sented by V as the reciprocal space τ(V ∗). However, it should be emphasized that physically
the reciprocal space τ(V ∗) and the direct space V are completely different spaces. A vec-
tor v ∈ V denotes a translation with its magnitude ‖v‖ carrying the physical dimension of
length L. The same vector v ∈ τ(V ∗) is a representation of the linear mapping τ−1(v) ∈ V ∗;
its magnitude ‖v‖ = ‖τ−1(v)‖ has the physical dimension of L−1. This fact can also be
easily read off from (1.34), the equation that defines the reciprocal basis vectors in terms of
the direct basis vectors. On the other hand, mathematically the direct and reciprocal basis
vectors are elements of the same vector space V which are related through (1.34) and (1.36).
In Sect. 7.5 we will exploit the intimate relationship between the two sets of basis vectors to
derive useful mathematical formulas. �

7.3 Reciprocal Lattice

Our discussions henceforth in this chapter refer equally well to crystal lattices L as de-
scribed in Sect. 2.3.1 and to the primitive sublattices L(p) := L(p)(0) of Bravais lattices (see
Sect. 2.8.2). For simplicity we will refer to them all as lattices L.

Let Z be the set of integers, L a lattice or primitive sublattice, and a,b, c ∈ V a right-
handed triad of lattice basis vectors for L. The lattice L is then given by the collection of
points in V located at

u= ua + vb+wc, (7.13)

where u,v, and w run over Z. Each vector of the form (7.13) is called a lattice vector.
The right-handed basis in V reciprocal to the triad a,b, and c is given (see Sect. 1.2.1)

by the vectors

a∗ = b× c

a · (b× c)
, b∗ = c× a

b · (c× a)
, c∗ = a × b

c · (a × b)
, (7.14)

which satisfy the following conditions:

a∗ · a = 1, a∗ · b= 0, a∗ · c= 0,
b∗ · a = 0, b∗ · b= 1, b∗ · c= 0,
c∗ · a = 0, c∗ · b= 0, c∗ · c= 1.

(7.15)

The reciprocal lattice L∗ corresponding to L is defined by

L∗ = {H ∈ τ(V ∗) :H= ha∗ + kb∗ + lc∗,where h, k, l ∈ Z}. (7.16)

Any vector H in L∗ is called a reciprocal lattice vector. In mathematics, L∗ is called the dual
lattice (see, e.g., [295, p. 53]).

Remark 7.4 Here we have adopted a system of notations common in crystallography. At
times we will use the index notation instead (see Sect. 1.34) when it is particularly conve-
nient to do so. Then, for instance, for the primitive sublattice of a Bravais lattice, we shall
write a1, a2, and a3 for a, b, and c, respectively, and a1, a2, and a3 for a∗, b∗, and c∗,
respectively. �

7.3 Reciprocal Lattice
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7.4 Families of Parallel Lattice Planes

We shall phrase our discussion below in the context of a lattice L with a primitive lattice ba-
sis bi (i = 1,2,3). The discussion, however, applies equally well for the primitive sublattice
L(p) of a Bravais lattice with a conventional lattice basis ai (i = 1,2,3).

Let L = {u ∈ V : u = ub1 + vb2 + wb3,where u,v,w ∈ Z} be a lattice. Let h, k, and
l be three coprime integers, i.e., they have their greatest common divisor gcd(h, k, l) = 1.
Consider the family Fhkl of planes Πm (m ∈ Z) in V defined by

Πm = {u ∈ V : u= ub1 + vb2 +wb3, (u, v,w) ∈ R
3, and hu+ kv + lw =m}. (7.17)

The family of planes Fhkl enjoys the following properties:

(i) The planes in Fhkl are parallel, with the same distance between any two adjacent
planes.

(ii) Every lattice point is contained in one of the planes in the family. Thus the union of
planes in Fhkl covers the lattice L.

(iii) Since gcd(h, k, l)= 1, for each m ∈ Z the linear diophantine equation

hu+ kv+ lw =m (7.18)

is solvable and has an infinite number of solutions (u, v,w) ∈ Z
3 (see, e.g., [5, p. 70]).

Hence each member of Fhkl is a lattice plane96 that contains an infinite number of
lattice points.

In what follows we shall call the members of Fhkl the (hkl) planes.97

7.4.1 Distance Between Two Adjacent Lattice Planes

Let Π0 ∈ Fhkl be the plane defined by the equation hu+ kv + lw = 0; see (7.17). Let Hhkl

be the reciprocal lattice vector defined by Hhkl = hb∗1+kb∗2+ lb∗3. For each u ∈Π0, we have
Hhkl · u= hu+ kv+ lw = 0. Hence the reciprocal lattice vector Hhkl is normal to the (hkl)

lattice planes.
To determine the distance between two adjacent (hkl) planes, it suffices to find the dis-

tance of the origin O ∈Π0 from Π1. Let P ∈Π1. The required distance is

dhkl =
∣∣∣∣
Hhkl

‖Hhkl‖ ·OP

∣∣∣∣=
1

‖Hhkl‖ . (7.19)

We summarize these findings as a proposition.

Proposition 7.5 (a) The reciprocal lattice vector Hhkl = hb∗1 + kb∗2 + lb∗3 is normal to the
(hkl) planes. (b) The distance between two adjacent (hkl) planes is dhkl = 1/‖Hhkl‖. �

96Any plane in V which contains a lattice point is called a lattice plane.
97For a given m ∈ Z, if gcd(h, k, l)= n > 1 and m is not divisible by n, the linear diophantine equation (7.18)
does not have a solution. Hence the coprime condition on the integers h, k, l here is essential in defining the
(hkl) lattice planes.

7 Reciprocal Space and Reciprocal Lattice
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7.4.2 Fictitious Lattice Planes and Higher-Order Bragg Reflections

In 1912 W.L. Bragg [43] pointed out that when an X-ray beam falls on a crystal, if the
wavelength λ and the angle of incidence π/2− θ of the incident beam satisfy the equation
(now called the Bragg equation)

2dhkl sin θ = nλ, (n= 1,2,3, . . .) (7.20)

then constructive interference of secondary radiations from the atoms of the crystal will
result in a “reflected” beam that obeys Snell’s law as if the parallel (hkl) planes of the
crystal serve as atomic mirrors. The natural number n in (7.20) specifies the order of the
Bragg reflection in question. See Sect. D.4.2 for more details.

In (7.20), dhkl satisfies (7.19) and the integers h, k, and l are coprime, i.e., their greatest
common divisor satisfies gcd(h, k, l)= 1. Consider (h′, k′, l′) ∈ Z

3 such that

(h′, k′, l′)= (nh,nk,nl)= n(h, k, l), where n≥ 2. (7.21)

Since ‖Hh′k′l′ ‖ = n‖Hhkl‖, equation (7.19) formally gives dh′k′l′ = dhkl/n. By rewriting
(h′, k′, l′) as (h, k, l) and by relaxing the condition that gcd(h, k, l)= 1, we recast the Bragg
equation as

2dhkl sin θ = λ, (7.22)

and we define n := gcd(h, k, l) as the order of the Bragg reflection. For a monochromatic in-
cident beam, different orders of Bragg reflection correspond to different Bragg angles θ and
thence different spots or locations in the diffraction pattern. By rewriting the Bragg equation
as (7.22) and relaxing the coprime requirement on the indices h, k, l so that different recip-
rocal lattice vectors Hhkl are assigned to different orders of Bragg reflection, we open up the
entire reciprocal lattice and reciprocal space for the description of X-ray diffraction. On the
other hand, it should be noted that an (hkl) plane with gcd(h, k, l) ≥ 2 need not contain a
lattice point and hence need not be a real lattice plane.

Remark 7.6 Let (H,K,L)= (h, k, l)/gcd(h, k, l). Henceforth we will denote by FHKL the
family of real lattice planes to which the reciprocal lattice vector Hhkl is normal. Cf. Footnote
97. �

7.5 Metric Tensors

In this section (except for Examples 7.7 and 7.8) we shall use the index notation (i.e., a1 for
a, a1 for a∗, a2 for b, etc.) and the Einstein summation convention for vectors and tensors
(see Sect. 1.2).

Let {ai} be the chosen lattice basis of the primitive sublattice L(p) of a Bravais lattice,
and let {ai} be the corresponding reciprocal basis. Let

gij := ai · aj , gij := ai · aj . (7.23)

Note that the expressions gij and gij are symmetric, i.e., gij = gji and gij = gji for all i and
j . For u= uiai and v = vjaj in the direct space V , we have

u · v = uiai · vjaj = uivj (ai · aj )= giju
ivj . (7.24)

7.5 Metric Tensors
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Similarly, for u= uia
i and v = vja

j in the reciprocal space τ(V ∗), we obtain

u · v = uia
i · vjaj = uivj (a

i · aj )= gijuivj . (7.25)

The second-order symmetric tensors

G := gija
i ⊗ aj , G∗ := gijai ⊗ aj (7.26)

are called the metric tensors in the direct space V and reciprocal space τ(V ∗), respectively.
The dot products in (7.24)–(7.25) can be written in terms of the metric tensors as follows:

u · v = u ·Gv = uiai ·
(
gkla

k ⊗ al
)
vjaj = giju

ivj in V ; (7.27)

u · v = u ·G∗v = uia
i · (gklak ⊗ al

)
vja

j = gijuivj in τ(V ∗). (7.28)

Since τ(V ∗)= V , mathematically a vector u ∈ V is also an element of τ(V ∗) and vice versa.
As a vector in V , u= uiai ; as a member of τ(V ∗), u= uia

i . By (1.39), (1.40), and (7.23),
we have

giju
j = (ai · aj )u

j = ai · u= ui, (7.29)

gijuj = (ai · aj )uj = ai · u= ui. (7.30)

Thus gij and gij can be used to lower and raise the component index of a vector, respectively.
Similarly for any u ∈ V ,

.
(
gija

j
) · u= giju

j = ui = ai · u, (7.31)
(
gijaj

) · u= gijuj = ui = ai · u. (7.32)

As the vector u is arbitrary in (7.31) and (7.32), we obtain

gija
j = ai , gijaj = ai . (7.33)

Moreover, we have

G(ukak)= (gija
i ⊗ aj )ukak = gij δ

j

ku
kai = giju

jai = uia
i , (7.34)

where we have used (7.29) at the last step. Similarly, there holds

G∗(uka
k)= uiai . (7.35)

For each v ∈ V , since

gij gjkv
k = gij vj = vi and δikv

k = vi, (7.36)

we have

gij gjk = δik. (7.37)

Thus we arrive at the matrix equation

[gij ][gjk] = [δij ], or [gij ] = [gij ]−1. (7.38)

7 Reciprocal Space and Reciprocal Lattice
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Example7.7 Consider a lattice L that belongs to a Bravais lattice type in the cubic system. Its
sublattice L(p) has only one undetermined cell parameter, namely a. We choose a Cartesian
coordinate system with orthonormal basis ei (i = 1,2,3) such that the lattice basis vectors
of L(p) are as follows:

a = a e1, b= a e2, c= a e3. (7.39)

It follows immediately that the corresponding reciprocal basis is given by the vectors

a∗ = 1

a
e1, b∗ = 1

a
e2, c∗ = 1

a
e3. (7.40)

Following common practice in crystallography, we use the symbols G, G∗ for the metric
tensors to denote also the matrices [gij ] and [gij ] that represent them under the direct and
reciprocal basis, respectively. Thus by (7.23), (7.39), and (7.40), we obtain

G= [gij ] = diag[a2, a2, a2], G∗ = [gij ] = diag[1/a2,1/a2,1/a2]. (7.41)

For reciprocal lattice vector Hhkl = ha∗ + kb∗ + lc∗, we have

‖Hhkl‖2 =Hhkl ·G∗Hhkl = 1

a2

(
h2 + k2 + l2

)
, (7.42)

which by (7.19) delivers the formula

dhkl = a√
h2 + k2 + l2

(7.43)

for the distance between two adjacent (hkl) planes. �

Example 7.8 The hexagonal crystal system has only one Bravais lattice type, namely prim-
itive hexagonal (hp). An hp lattice L has two undetermined cell parameters, namely a and
c. We choose a Cartesian coordinate system with orthonormal basis ei (i = 1,2,3) such that
the lattice basis vectors of L are as follows:

a = a e1, b= a

(
−1

2
e1 +

√
3

2
e2

)
, c= c e3. (7.44)

Substituting (7.44) into (7.14), we obtain

a∗ = 1

a

(
e1 + 1√

3
e2

)
, b∗ = 2

a
√

3
e2, c∗ = 1

c
e3. (7.45)

Using (7.23), (7.44), and (7.45), we obtain the matrices [gij ] and [gij ] as follows:

G=

⎛

⎜⎜⎝

a2 − a2

2 0

− a2

2 a2 0

0 0 c

⎞

⎟⎟⎠ , G∗ =
⎛

⎜⎝

4
3a2

2
3a2 0

2
3a2

4
3a2 0

0 0 1
c2

⎞

⎟⎠ . (7.46)

For reciprocal lattice vector Hhkl = ha∗ + kb∗ + lc∗, we have

‖Hhkl‖ =
√
Hhkl ·G∗Hhkl =

√
4(h2 + hk+ k2)

3a2
+ l2

c2
, (7.47)

from which we obtain an explicit formula for dhkl = 1/‖Hhkl‖. �
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7.6 Description of Orientations of Lattice Basis by Miller Indices

Let L be the chosen lattice of an ideal crystal with basis a, b, and c, and let a spatial Cartesian
coordinate system be given. The Miller indices (HKL)[UVW ] provide a simple way to
describe the orientation of the basis a, b, and c of L with respect to the given Cartesian
coordinate system.

In the Miller indices (HKL)[UVW ] the symbol (HKL), where H , K , and L are meant
to be coprime integers (i.e., their greatest common divisor gcd(H,K,L)= 1), refers to the
family of (HKL) lattice planes, to which the non-trivial reciprocal lattice vector H=Ha∗+
Kb∗ + Lc∗ is normal.98 Let Π0 = {u ∈ V : H · u = 0} the lattice plane that is orthogonal
to H and passes through the origin. The lattice plane Π0 contains an infinite number of
lattice points (cf. assertion (iii) in Sect. 7.4). The symbol [UVW ], where U , V , and W

are also coprime integers, denotes the lattice direction in L specified by a lattice vector
Ua + V b + Wc ∈ Π0. Thus the two 3-tuples (H,K,L) and (U,V,W) ∈ Z

3 satisfy the
condition that HU +KV +LW = 0.

The ordered sextet (HKL)[UVW ] gives the Miller indices of the orientation of L such
that the reciprocal lattice vector Ha∗ +Kb∗ + Lc∗ and the lattice vector Ua + V b +Wc

point in the 3- and 1-direction of the given Cartesian coordinate system, respectively. In the
symbol (HKL)[UVW ], the negative sign of a negative integer is shown as an overhead bar;
e.g., 1̄ stands for −1.

As the numbers in (HKL)[UVW ] are integers, it is clear that not all orientations can
be described exactly by this notation. But, under some precise sense (cf. Sect. 1.10), any
orientation of a crystal can be approximated as closely as we please by some orientation
defined by the Miller indices.

7.6.1 Cubic Crystallites in a Sheet Metal

Let C be an ideal crystal,99 the Bravais lattice of which can be of type cP (primitive),
cF (face-centered), or cI (body-centered). We shall be concerned only with the primitive
sublattice L(p). The basis lattice vectors a, b, c of L(p) are orthogonal and of the same length.
By changing the unit of length, we may treat the basis vectors as a right-handed orthonormal
triad, which we will do. Under this choice of unit of length, the reciprocal lattice is identical
to the crystal lattice. In fact, we have a∗ = a, b∗ = b, and c∗ = c, so we need not distinguish
reciprocal lattice vectors from direct lattice vectors.

Sheet metals have three distinct directions: the rolling (RD), transverse (TD), and normal
direction (ND). Whenever we talk about sheet metals, unless stated otherwise we shall use
a spatial coordinate system whose 1-, 2-, and 3-axis coincides with RD, TD, and ND, re-
spectively. Let e1, e2, and e3 be orthonormal basis vectors associated with the chosen spatial
coordinate system.

Consider a sheet metal, which is a polycrystalline aggregate of cubic crystallites of the
same kind as C. To describe the orientation of a crystallite Bα in the polycrystalline metal
sheet, we choose a reference placement κ0 of C such that the basis lattice vectors a, b, and c

agree with the spatial basis e1, e2, and e3, respectively. We imagine that the crystallite Bα in
question be extended by periodicity so that it occupies all space and can be taken as a rotated
copy of C. The orientation of Bα in the metal sheet is then characterized by the rotation R

which takes the basis vectors a, b, and c of C to their rotated counterparts, respectively. The

98See Sect. 7.4 and, in particular, Remark 7.6.
99The reference placement κ0 of C will be chosen later.
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rotation R can be described by Euler angles or by the axis-angle parameters (n,ω) as dis-
cussed in Sects. 1.7 and 1.9, respectively. Here we determine the rotation matrix pertaining
to the orientation defined by the Miller indices (HKL)[UVW ].

Under the present circumstances, the notation (HKL)[UVW ] describes the orientation
which has the following properties: the (HKL) planes of the crystallite are parallel to the
sheet plane, and the [UVW ] crystal direction agrees with the rolling direction. Note that the
first condition is equivalent to the requirement that the (H,K,L) vector points in the normal
direction. Since RD⊥ND, the requirement that

(H,K,L) · (U,V,W)= 0 (7.48)

is verified.
Let ẽ3 = (H/M,K/M,L/M), ẽ1 = (U/N,V/N,W/N), and ẽ2 = ẽ3 × ẽ1, where M =√
H 2 +K2 +L2 and N =√U 2 + V 2 +W 2. Then R is defined by Rẽi = ei for i = 1,2,3.

Under the basis {ei}, the rotation R is represented by the matrix [ei ·Rej ] = [(RT ei ) · ej ] =
[̃ei · ej ] or

⎛

⎜⎜⎝

U
N

V
N

W
N

KW−LV
MN

LU−HW
MN

HV−KU
MN

H
M

K
M

L
M

⎞

⎟⎟⎠ . (7.49)

In materials science, particular orientations (HKL)[UVW ] of cubic crystallites are
given proper names. For example, Cube = (100)[001]; R-Cube = (100)[011]; Goss =
(110)[001]; Copper = (112)[111̄]; S = (123)[634̄]; Brass = (110)[1̄12].

Example 7.9 Let us determine the Euler angles (ψ, θ,φ) and axis-angle parameters (n,ω)

pertaining to the Goss orientation (110)[001].

By expression (7.49), the rotation matrix defining the (110)[001] orientation is

⎛

⎜⎜⎝

0 0 1
1√
2
− 1√

2
0

1√
2

1√
2

0

⎞

⎟⎟⎠ .

Comparing the third row of this matrix with that of expression (1.89), we have

R31 =− sin θ cosφ = 1√
2
, R32 = sin θ sinφ = 1√

2
, R33 = cos θ = 0,

from which we conclude that θ = π/2 and φ = 3π/4. Similarly, by comparing the third
column of the two matrices we obtain

R13 = sin θ cosψ = 1, R23 = sin θ sinψ = 0.

Since θ = π/2, we must have ψ = 0.
From (1.113), we observe that

cosω= 1

2
(− 1√

2
− 1).
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Therefore ω≈ 148.6 ◦. From (1.114), we obtain

(n1, n2, n3)= (
1√

5− 2
√

2
,

√
2− 1√

5− 2
√

2
,

1√
5− 2

√
2
)

≈ (0.6786,0.2811,0.6786),

and Θ ≈ 47.27 ◦,Φ = 22.5 ◦.
While the algebraic method used above for finding the Euler angles corresponding to

a given rotation matrix is generally preferable, it is instructive to repeat this simple ex-
ample by determining (ψ, θ,φ) geometrically. Let ẽ1 = (0,0,1), ẽ3 = (1,1,0)/

√
2, and

ẽ2 = ẽ3 × ẽ1 = (1,−1,0)/
√

2. The rotation R we seek satisfies Rẽi = ei for each i. It is
easier to determine first the Euler angles (ψ#, θ#, φ#) pertaining to R−1 and then use formu-
lae (1.95)–(1.97) to find those pertaining to R. For the present example, clearly the line of
nodes lies in the X1-X2 plane and is given by the equation x2 =−x1. Hence either ψ# = π/4
or ψ# = 3π/4. A simple trial and error shows that the correct OL= (−1,−1,0)/

√
2, ψ# =

π/4, R(OL,π/2)e3 = ẽ3, and R(OL,π/2)R(e3,π/4)e1 =−e3. Finally it is easy to see that
R(̃e3,π)OL = ẽ2, and R(̃e3,π)(−e3) = e3 = ẽ1. Therefore (ψ#, θ#, φ#) = (π/4,π/2,π)
and (ψ, θ,φ)= (0,π/2,3π/4). �
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Chapter 8

8 Texture Approximation by Individual OrientationMeasurements

8.1 Introduction

So far we have been talking about orientation measures defined by square-integrable orien-
tation distribution functions w, each of which can be taken as being specified by its texture
coefficients clmn. An example discussed in Sect. 3.1, however, concerns an ensemble of a
single triclinic crystal C at orientation Ro with respect to the chosen reference configura-
tion κ0(C). There it is pointed out that the orientation measure in question should be the
Dirac measure δRo as given by (3.2), which cannot be expressed in terms of a continuously
distributed density function. How can we resolve this conceptual gap?

As we shall see in Sect. 8.2, a so-called “vague topology” can be defined on the space
of orientation measures under which both the ODFs and the discrete orientation measures
℘ =∑

i aiδxi (where xi denote orientations;
∑

i ai = 1, ai > 0 for each i) constitute “dense”
subsets. Some consequences are:

1. Each Dirac measure can be unambiguously assigned its texture coefficients as the limits
of corresponding clmn of orientation measures defined by ODFs.

2. Every orientation measure, including those defined by ODFs, in principle can be approx-
imated by individual orientation measurements.

Assertion 2 above serves as the theoretical basis for texture evaluation by individual ori-
entation measurements, including the EBSD (electron backscatter diffraction) or OIM (ori-
entation imaging microscopy) technique, which, as compared with inversion of X-ray pole
figures, enjoys the advantage that no “ghost correction” is necessary.

8.1.1 EBSD and “Ghost Correction”

The introduction of the orientation distribution function (ODF) and of the harmonic method
for evaluation of texture coefficients through inversion of X-ray pole figures marked the
birth of quantitative texture analysis (QTA) in the 1960s. For an ODF w, let w(e) be the
corresponding “reduced” ODF which results when the terms with odd l in the series expan-
sion

∑
l

∑
m,n c

l
mnD

l
mn of w are deleted, i.e., w(e) is the l-even part of the “true” ODF w. In

routine preparations of X-ray pole figures in the laboratory, Friedel’s rule (see Sect. D.6 in
Appendix D) is in force. The physics of X-ray diffraction (XRD) then dictates the mathe-
matical consequence (see Sect. 9.3) that pole figures depend only on texture coefficients clmn

with even l, and that they do not carry any information on texture coefficients with odd l.
Unfortunately, while Bunge [57] and Roe [270]—pioneers of the harmonic method—were
aware of Friedel’s rule and its effects on pole figures, both initially imposed the l-even prop-
erty of pole figures as an intrinsic restriction to the series expansion of the ODF. As a result,
in the 1960s and much of the 1970s, although the ODFs reproduced from pole figures were
the “reduced” ODFs w(e), they were commonly regarded as the “true” ODFs w. In practice
anomalies sometimes arose (see, e.g., [193] and the references therein): Such ODFs, in addi-
tion to the true maxima (but with heights reduced), included false maxima (called “ghosts”),
“strong fluctuations at low intensities and even rather strong negative values of the ODF”,
which were sometimes attributed to truncation error of the ODF series expansion [59, 63].
After Matthies [214] and others (see, e.g., [193]) showed definitively that the ghost phenom-
ena were caused by the unwitting replacement of the ODF w by its l-even part w(e), various
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“ghost-correction” methods and algorithms100 for inversion of pole figures were proposed
in the 1980s and 1990s. Meanwhile, single-orientation measurements by electron backscat-
ter diffraction (EBSD) in the scanning electron microscope (SEM), which enjoy the major
advantage over inversion of pole figures in that they deliver direct approximations to the
“true” ODF w (i.e., no ghost-correction is necessary), has gradually emerged as the prefer-
able method for determination of texture of materials that the technique is applicable (cf.
[291], [293, Sect. 1.6]).

It has long been demonstrated that the ODF can be determined experimentally by single-
orientation measurements. For instance Bunge and Haessner [63], in a 1968 paper, compare
the ODFs of a cold-rolled copper as determined by single-orientation measurements through
selected-area electron diffraction and by inversion of X-ray pole figures. But up until the end
of the 1980s, as remarked by Wright and Adams [346], “the number of single orientation
measurements required to calculate a statistically reliable ODF has generally been consid-
ered too large to practically obtain.” The situation began to change in the 1990s when EBSD
in the SEM became a fully automated technique. Subsequent technological and software ad-
vances have made EBSD a common laboratory-based tool for orientation microscopy today.
By means of EBSD, large quantity of individual orientation data of a sample can now be
collected and analyzed online so rapidly [52, 251, 292, 293] that the speed of measurement
has become a distinct advantage of EBSD over the route through preparation of X-ray pole
figures.

In this chapter we shall examine the mathematical basis behind and several issues around
determination of an approximate ODF from single-orientation measurements in general and
such measurements by EBSD in particular. Before we do that in Sect. 8.5, we derive some
formulas that we shall use there. In particular, in Sect. 8.4 we introduce the notions of model
functions and texture components, which we shall also need when we discuss inversion of
X-ray pole figures in the next chapter.

8.2 Mathematical Preliminaries

In this section we introduce some mathematical terms so that our discussion can be put in
a precise language. Readers who elect not to go into mathematical details may skip this
section, go directly to Sect. 8.3, and return to read this section as necessary.

The rotation group SO(3) is a compact101 metric space. The distance function dSO(3)(·, ·)
is the misorientation angle between two rotations (see Sect. 1.10). It is also the Riemannian
distance when SO(3) is taken as an embedded submanifold of M(3), the linear space of 3×3
real matrices with inner product defined by A · B = 1

2 tr(ABT ); see Sects. 10.1 and 10.2.
The orientation space M := SO(3)/Gcr is compact because the projection π : SO(3)→M

is a continuous open surjection. It is also a metric space. The distance function dM(·, ·)
on M is the disorientation angle between two orientations (see Sect. 6.4), which is also the
Riemannian distance when M is given the Riemannian metric such that the natural surjection
π : SO(3)→M is a local isometry (see Sect. 10.4). Since the projection π̂ :M→M/Gtex

is also a continuous open surjection, M/Gtex (i.e., the space of Gtex-orbits of orientations
in M) is compact and has a countable base [97, p. 174]. Moreover, by Proposition B.19

100We shall discuss a couple of these methods in Chap. 9.
101There are two different definitions of “compact topological space” in the references cited in the bibliog-
raphy of this exposition. Here we adopt the one given in Definition B.6, which seems to have increasingly
gained wider acceptance. Some authors who use the other definition call a space that satisfies Definition B.6
“quasi-compact”. To these authors “compact” means “quasi-compact and Hausdorff”. See Remark B.7 for
more details.
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in Appendix B, M/Gtex is a Hausdorff space. Hence M/Gtex is metrizable (see Theorem
B.10).

Let X be a compact metric or metrizable space, and let C (X) be the space of real-valued
continuous functions defined on X. A (positive) Radon measure102 on X is a positive linear
functional μ : C (X)→ R, f �→ 〈μ,f 〉, such that 〈μ,f 〉 ≥ 0 whenever f ≥ 0. Let M+(X)

be the set of positive Radon measures on X. By the Riesz representation theorem (see The-
orem C.8 in Appendix C), each Radon measure μ on C (X) determines a unique finite,
positive Borel measure (cf. Definition C.4) on X, which we denote also by μ (cf. Remark
C.10), such that for each f ∈ C (X) the value of the Radon measure μ at f is given by the
Lebesgue integral with respect to the corresponding Borel measure:

〈μ,f 〉 =
ˆ

X

f dμ. (8.1)

In the context of general probability theory, a probability space is a triple (Ω,M,P ),
where Ω is a set called the sample space, M a σ -algebra of subsets of Ω , and P a positive
measure on Ω that satisfies P (Ω) = 1. In our present context where the sample space X

is a compact metric space, we may say that a probability space is an ordered pair (X,μ),
where μ ∈M+(X) is a positive Radon measure that satisfies 〈μ,1〉 = 1. Alternatively, the
probability space can be described as (X,B,μ), where B is the Borel σ -algebra in X and μ

(with μ(X)= 1) is the Borel measure on B corresponding to its Radon-measure namesake.
In either representation we call μ a probability measure on X and denote by P(X) the set
of probability measures on X.

The Dirac measure at x ∈X, namely δx , is the probability measure defined as follows:

δx(A) :=
{

1 if x ∈A

0 if x /∈A,
for each Borel set A⊂X. (8.2)

It follows immediately from (8.1) and (8.2) that

〈δx, f 〉 = f (x) (8.3)

A probability measure μ of the form

μ=
K∑

i=1

aiδxi ,

(
x1, . . . , xK ∈X;

K∑

i=1

ai = 1, ai > 0 for each i

)
, (8.4)

i.e., a convex combination of Dirac measures, is said to be discrete. Let Pd(X) ⊂P(X)

denote the set of discrete probability measures. We endow P(X) with a topology, called the
vague topology,103 under which P(X) is compact and metrizable [25, p. 208]. Moreover,
Pd(X) is dense in P(X) in the following sense: For any given probability measure μ ∈
102The term “Radon measure” has been used in different senses. Our usage here follows that of the French
school (cf. the remarks and references at the end of each chapter in Part 1 of [318]). Another common
usage takes a Radon measure as a Borel measure that satisfies certain regularity conditions; see, e.g., [25, p.
155]. When X is a compact metrizable space, the Borel measure on the right-hand side of (8.1) is a Radon
measure in this sense [25, p. 185]. See Remarks C.9, C.10, and the paragraph that contains equation (C.4) in
Appendix C for more detailed discussions.
103Cf. [206] and the references therein for details and proofs. Note that in [206] a compact space is a Haus-
dorff space that satisfies Definition B.6.
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P(X), there is a sequence of discrete probability measures μn (n = 1,2, . . .) in Pd(X)

such that μn→ μ vaguely, i.e.,

lim
n→∞

ˆ

X

f dμn =
ˆ

X

f dμ, for each f ∈ C (X). (8.5)

Let C (X,C) be the set of complex-valued continuous functions on X (cf. Sect. 3.6). It
follows from (8.5) that if the sequence of discrete probability measures {μn} converges
vaguely to μ ∈P(X), then

lim
n→∞

ˆ

X

f dμn = lim
n→∞

ˆ

X

(Ref + iImf )dμn

=
ˆ

X

Ref dμ+ i

ˆ

X

Imf dμ

=
ˆ

X

f dμ, for each f ∈ C (X,C). (8.6)

8.3 Texture Coefficients of Discrete Orientations

8.3.1 Texture Coefficients of a Single Crystal

Consider a single triclinic crystal C, a reference configuration κ0(C) of which has been
chosen. The orientation space of the single crystal is then the rotation group SO(3). Suppose
the single crystal in question has orientation defined by a rotation R0 with respect to the
chosen reference configuation κ0(C). As described in Sect. 3.1, the orientation measure of
the single triclinic crystal is δR0 , the Dirac measure at R0. For an orientation measure ℘

defined by a square-integrable ODF w, the texture-coefficients pertaining to ℘ are given by
the formula (cf. (4.50) and (6.27))

clmn =
2l + 1

8π2

ˆ

SO(3)

Dl
mn(R)w(R) dV(R)= 2l + 1

8π2

ˆ

SO(3)

Dl
mn(R) d℘ (R), (8.7)

because w = d℘/dV . Can texture coefficients be assigned naturally and unambiguously to
the Dirac measure δR0 ?

The answer is affirmative. Indeed, the set of orientation measures defined by square-
integrable ODFs is dense in P(SO(3)) with respect to the vague topology (see [254] and
Proposition 2.2 of [206]). Hence for any probability measure μ, there exists a sequence of
probability measures μn, which are defined by square-integrable probability densities and
converge vaguely to μ. In particular, there exists a sequence of orientation measures ℘n

defined by ODFs wn such that ℘n → δR0 vaguely as n→∞. The texture coefficients that
pertain to the Dirac measure δR0 are then given by

clmn = lim
n→∞

2l + 1

8π2

ˆ

SO(3)

Dl
mn(R) d℘n(R)= 2l + 1

8π2
〈δR0 ,D

l
mn(R)〉 = 2l + 1

8π2
Dl

mn(R0).

(8.8)

8 Texture Approximation by Individual Orientation Measurements
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For a single crystal C with chosen reference configuation κ0(C) and Gcr = {P 1, . . . ,

PNcr} ⊂ SO(3), where P 1 = I and Ncr denotes the order of Gcr, the orientation space is
SO(3)/Gcr = {RGcr :R ∈ SO(3)}, where

RGcr = {RP 1, . . . ,RPNcr} (8.9)

is the orientation specified by the rotation R with respect to the reference configuration. The
orientation measure of a single crystal with orientation R0Gcr is the Dirac measure δR0Gcr

at R0Gcr in the orientation space SO(3)/Gcr. If we follow Roe’s approach and use SO(3)
as the underlying space, by (6.28) the texture coefficients of a square-integrable ODF w are
given the formula

clmn =
2l + 1

8π2

ˆ

F

⎛

⎝
Ncr∑

j=1

Dl
mn(RP j )

⎞

⎠w(R) dV(R) (8.10)

where F is a chosen strict fundamental domain for SO(3)/Gcr in SO(3). Because the map
π |F : F → SO(3)/Gcr is a bijection, one of the equivalent rotations in R0Gcr falls in the
strict fundamental domain F . As we are free to rename the elements of R0Gcr, there is no
loss in generality to let R0 ∈ F . Then, following an argument similar to that used in the
derivation of (8.8), by (8.10) we see that the texture coefficients pertaining to the single
crystal with orientation R0Gcr are given by

clmn =
2l + 1

8π2
〈 1

Ncr
δR0 ,

Ncr∑

j=1

Dl
mn(RP j )〉 = 2l + 1

8π2
· 1

Ncr

Ncr∑

j=1

Dl
mn(R0P j ). (8.11)

Alternatively, formula (8.11) can be obtained by writing down the orientation measure per-
taining to the single crystal in question directly, which by symmetry is clearly the discrete
measure on SO(3) given by

℘ = 1

Ncr

Ncr∑

j=1

δR0P j
. (8.12)

Using (8.8) and (8.12), we obtain

clmn =
2l + 1

8π2
〈℘,Dl

mn(R)〉, (8.13)

which is the same as (8.11)
Formulas (8.11) and (8.12) reduce to the corresponding formulas for a triclinic crystal

when Gcr = {I }.

8.3.2 Texture Coefficients of Ideal Orientations

In texture analysis, a polycrystal with sample and crystallite symmetry groups Gtex and
Gcr, respectively, is said to have an ideal orientation if its orientation measure is the Dirac
measure δ[R0Gcr] for some [R0Gcr] ∈M/Gtex (see Sect. 6.5.1), where M := SO(3)/Gcr is
the space of crystallite orientations. If we follow Roe’s approach and take SO(3) as the
underlying space, similar to the derivation of their counterparts in Sect. 8.3.1, we obtain what

8.3 Texture Coefficients of Discrete Orientations
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follows. The orientation measure in P(SO(3)) that corresponds to δ[R0Gcr] in P(M/Gtex)

is:

℘ = 1

NtexNcr

Ntex∑

i=1

Ncr∑

j=1

δQT
i R0P j

. (8.14)

The texture coefficients pertaining to the orientation measure (8.14) are:

clmn =
2l + 1

8π2
· 1

NtexNcr

Ntex∑

i=1

Ncr∑

j=1

Dl
mn(Q

T
i R0P j ). (8.15)

When Gtex = {I }, equations (8.14) and (8.15) reduce to (8.12) and (8.11), respectively.
Hence, orientations of single crystals are, according to the present terminology, also ideal
orientations.

Remark 8.1 The formula for texture coefficients of ideal orientations that corresponds to
(8.15) in Bunge’s approach already appears in his works [56, 57] in the 1960s (cf. also [60, p.
50]). Here we present a derivation in Roe’s approach made precise through the mathematical
notions of probability measures, Dirac measures, and vague convergence. �

As we shall discuss in more details in the next section, the ODFs of sheet metals of-
ten have peaks at some specific ideal orientations, which are given common names and
are specified by the Miller indices of a rotation in the class of equivalent rotations pertain-
ing to the ideal orientation in question. For example, for orthorhombic aggregates of cubic
crystallites, Cube = (100)[001], Goss = (110)[001], Copper = (112)[111̄], etc., are ideal
orientations. The ideal orientation “Cube” specifies one point in (SO(3)/O)/D2, 4 equiva-
lent single-crystal orientations in SO(3)/O , and 4× 24= 96 equivalent rotations in SO(3),
one of which is the rotation (100)[001]. As an illustration, we list in Table 9 the values of
(Roe’s) texture coefficients W4m0 (m = 0,2,4) and W6m0 (m = 0,2,4,6) for several ideal
orientations in orthorhombic sheets of cubic metals.104 Our usual choice of reference orien-
tation and spatial coordinate system for such sheet metals (cf. Sect. 7.6.1) is in force here.
Note that for orthorhombic aggregates of cubic crystallites each Wlmn is real and, by (8.15),
is a continuous function defined on SO(3). Hence it attains its maximum and minimum val-
ues on SO(3). Let Wlmn (max) and Wlmn (min) denote the maximum and minimum value
of Wlmn, respectively. A comparison with the analysis of Paroni [254] reveals what follows.
The Cube orientation gives W400 (max), W440 (max), W640 (min); R-Cube: W400 (max), W440

(min), W640 (max); Goss: W420 (min), W600 (min); Brass: W600 (min).

8.4 Model Functions and Texture Components

The ODF w is specified, through its series expansion in terms of the Wigner D-functions, by
an infinite number of texture coefficients clmn. Even if it would be adequate in applications
to truncate the series at l = 34, l = 22, or in some cases even at l = 16, a large number
of texture coefficients with no direct physical meaning are still involved. Tracking texture
evolution through these changing numbers is uninspiring.

Textures of materials that have undergone specific processing treatments often exhibit
definite patterns. In some cases (e.g., in fully annealed aluminum alloy sheets), the texture

104We use Roe’s coefficients here to facilitate comparison with papers in the literature.
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Table 9 Texture coefficients of
several ideal orientations for
orthorhombic aggregates of cubic
crystallites. Cube = (100)[001];
R-Cube = (100)[011]; Goss
= (110)[001]; Copper
= (112)[111̄]; S = (123)[634̄];
Brass = (110)[1̄12]

Cube R-Cube Goss Copper S Brass

W400 .0313 .0313 -.0078 -.0078 -.0078 -.0078

W420 0 0 -.0248 .0083 .0003 -.0083

W440 .0187 -.0187 .0140 -.0109 -.0090 -.0109

W600 .0081 .0081 -.0131 .0041 -.0009 -.0131

W620 0 0 .0052 .0109 .0075 .0017

W640 -.0151 .0151 .0094 -.0027 -.0047 -.0073

W660 0 0 .0077 .0071 -.0029 -.0065

can be qualitatively described as a superposition of several ideal orientations with some
spread about them, which before the advent of quantitative texture analysis were called
“texture components”. The following remarks on texture components are taken from Bunge
[62, p. 99]:

“It may be assumed that the crystallites of a component have been brought into their
orientations by the same physical process. This process is further understood as leading to
an ideal orientation go which is, however, not reached completely (due to some disturbing
effects) so that some spread about it occurs.
“The spread function can be described by a simple mathematical function. This facilitates
the mathematical description of a component. It is also assumed that the form of the
spread function follows from the physical process which formed the component.”

Bunge [57] was the first to introduce a model ODF as mathematical description of such
texture components. Bunge’s model ODF is within the class of central functions, which we
shall examine in detail next. Other central functions, which use a spread function differ-
ent than Bunge’s, have been proposed [216, 224, 225] for the same purpose. Other classes
of model ODFs, commonly simply called model functions, have been introduced as mathe-
matical descriptions of texture patterns other than ideal orientations with spread. As we shall
see, model functions provide a possible means not only for “data compression” [224, p. 13]
but also for the reproduction of the true ODF from pole figures [193, 194].

8.4.1 Texture Components Defined by Central Functions

Here we study central functions, which are mathematical models for texture components
that can be roughly described as ideal orientations with spread. To start with, we consider
triclinic aggregates of triclinic crystallites. It will be straightforward to rewrite the resulting
formulas for the case where Gtex �= {I } and/or Gcr �= {I }.

Let R0 ∈ SO(3), and let M (̃n, ω̃) = RRT
0 be the misorientation (see Sect. 1.10) that

takes R0 to the rotation R. A model ODF or model function is called a central function if it
assumes the form

w(R;κ)=w(M (̃n, ω̃)R0)= z(ω̃;κ); (8.16)

here R0 is the ideal orientation in question; κ is a parameter; z, the “spread function”, is a
non-negative function chosen so that the model function w(·;κ) satisfies the normalization
condition (cf. (4.44))

ˆ

SO(3)

w(R;κ)dV(R)= 1 for each κ (8.17)
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and the following

– Convergence condition: Let ℘κ be the orientation measure defined by w(·;κ); see (4.7).
There exists an extended real number a ∈ R ∪ {−∞,∞} such that ℘κ → δR0 vaguely in
the space P(SO(3)) of probability measures as κ→ a.

In (8.16), each orientation R is taken as a deviation from the ideal orientation R0 by a
rotation M (̃n, ω̃) acting on the left. The value of w depends on the “spread angle” ω̃ and is
independent of the unit vector ñ that defines the axis of the rotation M . Thus (8.16) describes
isotropic spreading of the orientation density around R0.

Remark8.2 As the model function (8.16) is meant to be a description of an “ideal orientation
with spread”, for each κ the spread function z(·;κ) should assume its maximum at ω̃ = 0
and decrease rather rapidly to zero (or some negligible value) as ω̃ increases. Moreover, the
parameter κ , which controls the sharpness of the texture or the extent of the spread, should
be close to the extended real number a given in the convergence condition. �

We now proceed to evaluate the texture coefficients pertaining to the ODF w given by
(8.16). For the expansion w(R)=∑

l,m,n c
l
mnD

l
mn(R), we have (cf. (4.23))

clmn =
2l + 1

8π2

ˆ

SO(3)

w(R)Dl
mn(R)dV(R), (8.18)

where
´

SO(3) · · · dV(R) is given by

4

2πˆ

0

π̂

0

π̂

0

· · · sin2 ω

2
sinΘ dωdΘdΦ

if SO(3) is parametrized by the axis-angle parameters (n(Θ,Φ),ω). Using the fact that

Dl
mn(R)=Dl

mn(MR0)=
l∑

p=−l
Dl

mp(M)Dl
pn(R0),

we may recast (8.18) as

clmn =
2l + 1

8π2

l∑

p=−l
Dl

pn(R0)

ˆ

SO(3)

w(M (̃n, ω̃)R0)Dl
mp(M)dV(MR0)

= 2l + 1

8π2

l∑

p=−l
Dl

pn(R0)

ˆ

SO(3)

w(M (̃n, ω̃)R0)Dl
mp(M)dV(M), (8.19)

where we have used the right invariance of the measure V at the last step. Let R(Φ,Θ,0)
be the rotation defined by the Euler angles (ψ, θ,φ)= (Φ,Θ,0). Clearly we have

R(Φ,Θ,0)e3 = ñ(Θ,Φ). (8.20)

By Euler’s theorem,

M (̃n(Θ,Φ), ω̃)=R(Φ,Θ,0)M(e3, ω̃)R(Φ,Θ,0)−1.
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Moreover, there holds

Dl
mp(M (̃n(Θ,Φ), ω̃))=

l∑

r=−l

l∑

s=−l
Dl

mr(R(Φ,Θ,0))Dl
rs(M(0,0, ω̃))Dl

sp(R(Φ,Θ,0)−1)

=
l∑

r=−l

l∑

s=−l
Dl

mr(R(Φ,Θ,0))δrse
isω̃Dl

ps(R(Φ,Θ,0))

=
l∑

r=−l
Dl

mr(R(Φ,Θ,0))Dl
pr(R(Φ,Θ,0))eirω̃, (8.21)

where we have appealed to (4.14), (4.18), and (4.29)2. Substituting (8.16) and (8.21) into
the integrand of (8.19), we obtain

ˆ

SO(3)

w(M (̃n, ω̃)R0)Dl
mp(M)dV(M)

= 4

π̂

0

⎛

⎝z(ω̃;κ)
⎛

⎝
l∑

r=−l
eirω̃

2πˆ

0

π̂

0

ei(m−p)Φdl
mr(Θ)dl

pr (Θ) sinΘdΘdΦ

⎞

⎠

⎞

⎠ sin2 ω̃

2
dω̃

= 4

π̂

0

z(ω̃;κ)
(

l∑

r=−l
eirω̃δmp · 2π · 2

2l + 1

)
sin2 ω̃

2
dω̃, (8.22)

where we have used the orthogonality relation (4.25). It follows then from (8.19) that

clmn =
2

π

⎛

⎝
π̂

0

z(ω̃;κ) sin

(
2l + 1

2
ω̃

)
sin

ω̃

2
dω̃

⎞

⎠Dl
mn(R0)

=Z l (κ)Dl
mn(R0) (8.23)

where we have made use of the trigonometric identity

l∑

r=−l
eirω̃ = sin( 2l+1

2 ω̃)

sin ω̃
2

and put

Z l (κ)= 2

π

⎛

⎝
π̂

0

z(ω̃;κ) sin

(
2l + 1

2
ω̃

)
sin

ω̃

2
dω̃

⎞

⎠ . (8.24)

Note that the function Z l depends only on the spread function z and is independent of
the ideal orientation R0. A comparison of (8.23) with (8.8) reveals that the convergence
condition on the model function w(·;κ) requires that the spread function z(ω̃;κ) satisfies
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the condition

lim
κ→a

Z l (κ)= lim
κ→a

2

π

⎛

⎝
π̂

0

z(ω̃;κ) sin

(
2l + 1

2
ω̃

)
sin

ω̃

2
dω̃

⎞

⎠= 2l + 1

8π2
. (8.25)

For polycrystals with both Gtex and Gcr being finite groups, it suffices to consider only
rotations R0 in the chosen strict fundamental domain. Let Gtex = {Qi : i = 1, . . . ,Ntex}
and Gcr = {P j : j = 1, . . . ,Ncr}, where Ntex and Ncr denote the order of Gtex and of Gcr,
respectively. It is obvious that the texture coefficients of the central function which models
an “ideal orientation with spread” are:

clmn = Z l (κ) · 1

NtexNcr

Ntex∑

i=1

Ncr∑

j=1

Dl
mn(Q

T
i R0P j ). (8.26)

8.4.2 Bunge’s “Gaussian” Components

We begin again our discussion with triclinic aggregates of triclinic crystallites.
As a model ODF for texture components that pertain to ideal orientations with spread,

Bunge [57, 60] proposed (8.16) with the spread function given by

z(ω̃;κ)= S(κ)e−ω̃
2/κ2

, (κ > 0) (8.27)

which he called “Gaussian distribution”. The function S(κ) in (8.27) is to be determined by
the normalization condition (4.44) on the model ODF w(·;κ). Accordingly, we have

ˆ

SO(3)

w(R;κ)dV(R)= 4

⎛

⎝
π̂

0

S(κ)e−ω̃
2/κ2

sin2 ω̃

2
dω̃

⎞

⎠

⎛

⎝
2πˆ

0

π̂

0

sinΘdΘdΦ

⎞

⎠= 1, (8.28)

which gives

S(κ)= 1

8π

⎛

⎝
π̂

0

e−ω̃
2/κ2

(1− cos ω̃)dω̃

⎞

⎠
−1

. (8.29)

We are primarily interested in the case that κ � π (say, κ < π/12). Hence we may obtain
a good approximation of the integral in (8.29) by extending its upper limit to ∞. It follows
that

S(κ)≈ 1

8π

⎛

⎝
∞̂

0

e−ω̃
2/κ2

(1− cos ω̃)dω̃

⎞

⎠
−1

= 1

4π
√
πκ

(
1− e−κ

2/4
)−1

, (8.30)

where we have appealed to the integral formulas

∞̂

0

e−ax
2
dx = 1

2

√
π

a
,

∞̂

0

e−ax
2

cosbx dx = 1

2

√
π

a
e−b

2/4a.
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Let us proceed to evaluate the function Z l (κ). Using the trigonometric identity

sinA sinB = 1

2
(cos(A−B)− cos(A+B)),

we recast (8.24) and obtain

Z l (κ)= 2

π

⎛

⎝
π̂

0

z(ω̃;κ) · 1

2

(
cos lω̃− cos(l + 1)ω̃

)
dω̃

⎞

⎠

≈ 2S(κ)

π

⎛

⎝
∞̂

0

e−ω̃
2/κ2 · 1

2

(
cos lω̃− cos(l + 1)ω̃

)
dω̃

⎞

⎠

= S(κ)κ

2
√
π

(
e−l

2κ2/4 − e−(l+1)2κ2/4
)
. (8.31)

Substituting formula (8.30) for S(κ) into the preceding equation, we arrive at the formula

Z l (κ)≈ 1

8π2

e−l2κ2/4 − e−(l+1)2κ2/4

1− e−κ2/4
. (8.32)

Substituting (8.32) into (8.23), we obtain

clmn(R0;κ)≈ 1

8π2

e−l2κ2/4 − e−(l+1)2κ2/4

1− e−κ2/4
·Dl

mn(R0), (8.33)

which delivers the texture coefficients of the Gaussian texture component centered at R0

and with spread parameter κ . Taking the limit as κ→ 0 on both sides of formula (8.33), we
observe that

clmn(R0,0)= 2l + 1

8π2
Dl

mn(R0), (8.34)

where we have replaced the “≈” sign with the “=” sign, because the approximation (8.31)
becomes exact as κ→ 0. Note that (8.34) delivers the texture coefficients for the orientation
measure pertaining to the ideal orientation at R0 for triclinic crystallites, which agree with
(8.8) as expected. By (4.118), we can easily recast (8.33) and (8.34) in Roe’s notation. Thus
we have

Wlmn(R0;κ)≈ 1

2l + 1

e−l2κ2/4 − e−(l+1)2κ2/4

1− e−κ2/4
·Wlmn(R0;0), (8.35)

Wlmn(R0;0)= 1

4π2
Zlmn(cos θ0)e

imψ0einφ0 ,

= (−1)n−m

4π2

√
2l + 1

2
dl
mn(θ0)e

imψ0einφ0 , (8.36)

where (ψ0, θ0, φ0) are the Euler angles pertaining to R0.
Consider now the case that both Gtex and Gcr are finite groups. Let Gtex = {Qi : i =

1,2, . . . ,Ntex} and Gcr = {P j : j = 1,2, . . . ,Ncr}, where Ntex and Ncr are the order of Gtex

and Gcr, respectively. We may restrict our attention to rotations R0 in the chosen strict
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fundamental domain. The texture coefficients of the ideal orientation at R0 and the Gaussian
texture component (R0, κ) are clearly given by the formulas

clmn(R0;0)= 2l + 1

8π2
· 1

Ntex

1

Ncr

Ntex∑

i=1

Ncr∑

j=1

Dl
mn(Q

T
i R0P j ), (8.37)

clmn(R0;κ)≈ 1

2l + 1
· e
−l2κ2/4 − e−(l+1)2κ2/4

1− e−κ2/4
· clmn(R0;0), (8.38)

respectively.

8.5 The Bunge–Haessner Method and Its Modification

A commonly-adopted protocol (see, e.g., [104, p. 268]) to infer an approximate ODF from
individual orientation data obtained by ESBD measurements still follows in broad outline
what Bunge and Haessner [63] did in their 1968 paper. In short, Bunge and Haessner’s indi-
rect method is to get (in the convention and notation adopted in this exposition) estimates of
all non-trivial texture coefficients clmn that appear in the series expansion (4.49) of the ODF
truncated at a selected l = L (e.g., L= 22, L= 34, etc.), i.e., put w =∑L

l=0

∑
m,n c

l
mnD

l
mn,

which is presumed to give a good representation of the texture in question.
In their paper Bunge and Haessner [63] did not explain why the method and formula

they used to estimate the texture coefficients clmn (1 ≤ l ≤ L) would work, except for the
following remark in the introduction where they listed and briefly described the two indirect
methods available then for inferring the ODF from results of single-orientation measure-
ments:

... one may measure the orientation parameters for as large a number of crystallites as
is practicable and then determine the relative frequency of specific orientations.

Bunge and Haessner’s assertion cited above is unclear on how they would treat the single-
orientation data, but what they do in practice is apparent from their paper.

We will now present the method of Bunge and Haessner, with an emphasis on its mathe-
matical foundations.

8.5.1 Mathematical Basis

Consider a sequence {Pn} of single-phase polycrystalline samples of the same chemical
composition (e.g., aluminum plates), which are produced by the same manufacturing pro-
cess and are geometrically congruent to each other. We take the samples Pn as macro-
scopically equivalent representatives of one polycrystal P. Let X0 be a point in P, and we
call the corresponding point in each Pn the same name X0. Suppose the texture at X0 is
given by orientation measure ℘̂, which is defined on orientation space SO(3)/Gcr, where
Gcr = {P 1, . . . ,PNcr}. In a thought experiment E , we conduct single-orientation measure-
ment E n at point X0 of each Pn (n= 1,2,3, . . .), which is similar to tossing identical dices
in a sequence. Each individual orientation measurement delivers an orientation RGcr or,
equivalently, a Dirac measure δRGcr , where R ∈ SO(3). Thus we obtain a sequence of Dirac
measures δR1Gcr , δR2Gcr , δR3Gcr , . . . on SO(3)/Gcr, where R1Gcr, R2Gcr, · · · are indepen-
dent random variables. For k = 1,2, . . ., the empirical measures μ̂k are defined by

μ̂k := 1

k

(
δR1Gcr + δR2Gcr + · · · + δRkGcr

)
. (8.39)
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Under a natural mathematical setting (see Remark 8.3), there is probability 1 that the se-
quence of empirical measures μ̂k converges vaguely to ℘̂ as k→∞ in P(SO(3)/Gcr).

Remark8.3 For each single-orientation measurement E n, the probability space is (M, B̂, ℘̂),
where we have put M := SO(3)/Gcr for brevity, B̂ is the Borel σ -algebra in M , and ℘̂ the
orientation measure. Alternatively, we can put the probability space as (M, ℘̂), where the
probability measure ℘̂ is treated as a Radon measure on M (cf. Sect. 8.2). In what follows
we start by taking this alternate representation. Let x ∈ M denote the elementary events
(i.e., the crystallite orientations). We write the probability space for measurement E n as
(Mn, ℘̂n), where Mn =M and ℘̂n = ℘̂ for each n= 1,2,3, . . .. For the experiment E , there
is a natural probability space (Ω,P ) as follows. Each elementary event ω ∈Ω is a sequence
(x1, x2, x3, . . .), where xn ∈Mn for each n ∈ N. Hence Ω =∏∞

n=1 Mn, where Mn =M for
each n, is the countably-infinite Cartesian product. Since M is a compact metric space,
so is Ω (see, e.g., [102, pp. 112, 178]). There is a unique probability (Radon) measure
P =⊗∞

n=1 ℘̂n on Ω , called the product measure of ℘̂1, ℘̂2, . . ., such that for (x1, x2, . . .) ∈Ω

the random variables x1, x2, . . . are independent with probability measures ℘̂1, ℘̂2, . . ., re-
spectively. At this point it is easier to explain the assertion that follows (8.39) if we revert
to writing the probability space (Ω,P ) as (Ω,BΩ,P ), where BΩ is the Borel σ -algebra
in Ω and P : BΩ → [0,1] the Borel measure pertaining to the Radon measure P (cf.
Sect. 8.2). Under this setting, it can be proved (see [96, p. 399]; [318, pp. 130–131]) that
P ({ω ∈Ω : μ̂k(ω)→ ℘̂}) = 1. The main tool in the proof is the strong law of large num-
bers. �

Let ℘ and μk be the orientation measures on SO(3) that pertain to ℘̂ and μ̂k on
SO(3)/Gcr, respectively. Note that δRGcr and μ̂k on SO(3)/Gcr correspond to

1

Ncr

Ncr∑

j=1

δRP j
and μk = 1

k

k∑

s=1

⎛

⎝ 1

Ncr

Ncr∑

j=1

δRsP j

⎞

⎠ (8.40)

on SO(3), respectively. If μ̂k → ℘̂ vaguely as k→∞, then μk → ℘ vaguely as k→∞.
Thus we have

clmn =
2l + 1

8π2

ˆ

SO(3)

Dl
mn(R) d℘ (R)= 2l + 1

8π2
〈℘,Dl

mn〉 = lim
k→∞

2l + 1

8π2
〈μk,Dl

mn〉. (8.41)

Let ε > 0 and a natural number L := lmax > 1, which is the maximum value of l above
which we shall truncate the ODF series expansion (4.49), be given. For a complex number
z, let |z| =√

(Re z)2 + (Im z)2 be its modulus. By (8.41) for each (l,m,n), where 1 < l ≤
L,−l ≤m≤ l, and −l ≤ n≤ l, there is a number Kl

mn > 0 such that
∣∣∣∣c

l
mn −

2l + 1

8π2
〈μk,Dl

mn〉
∣∣∣∣< ε for all k >Kl

mn. (8.42)

Let K =max{Kl
mn : 1 < l ≤ L,−l ≤m≤ l,−l ≤ n≤ l}. Then for k >K , we have

∣∣∣∣c
l
mn −

2l + 1

8π2
〈μk,Dl

mn〉
∣∣∣∣< ε for all clmn with 1 < l ≤ L. (8.43)

Hence a procedure to obtain from single-orientation measurements an approximate ODF
for a polycrystalline sample with a homogeneous texture is as follows. Choose a natural
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number L (e.g., L= 22, or L= 34, etc.) such that truncation of the series expansion (4.49) at
l = L will give a good enough approximation of the ODF w. Make a sufficient large number
N of individual orientation measurements that deliver independent orientations specified
by the rotations Rs (s = 1,2, . . . ,N) in the chosen strict fundamental domain, and put for
1 < l ≤ L

clmn ≈
2l + 1

8π2
〈μN,Dl

mn〉 =
2l + 1

8π2
· 1

N

N∑

s=1

⎛

⎝ 1

Ncr

Ncr∑

j=1

Dl
mn(RsP j )

⎞

⎠ . (8.44)

Remark 8.4 Note that formula (8.44) remains unchanged if Rs is replaced by RsP k for any
P k ∈Gcr. Hence Rs in (8.44) should read any rotation in RsGcr. Specification of a chosen
strict fundamental domain is unnecessary. �

If it is desirable that sample symmetry be imposed on the single-orientation data, then
(8.44) should be replaced by the formula

clmn ≈
2l + 1

8π2
〈μN,Dl

mn〉 =
2l + 1

8π2
· 1

N

N∑

s=1

⎛

⎝ 1

NtexNcr

Ntex∑

i=1

Ncr∑

j=1

Dl
mn(Q

T
i RsP j )

⎞

⎠ , (8.45)

where Qi (i = 1, . . . ,Ntex) are elements of Gtex. Similar to the observation in Remark 8.4,
the rotation Rs in (8.45) should read any rotation in GtexRsGcr.

Note that the choice of L and of ε defines through (8.43) the desired resolution of our
single-orientation measurements of the ODF w. For N ∈ N, let

wN(R)= 1

8π2
+

L∑

l=1

l∑

m=−l

l∑

n=−l
c̃lmn(N)Dl

mn(R), (8.46)

where the texture coefficients

c̃lmn(N)= 2l + 1

8π2
〈μN,Dl

mn〉 (8.47)

are given by the right-hand side of either (8.44) or of (8.45) as appropriate. For the poly-
crystalline sample in question, the function wN given by (8.46) is a good approximation of
the ODF w, i.e., it satisfies the resolution defined by (8.43), if N is sufficiently large. Given
a (finite but sufficiently long) sequence of independent single-orientation measurements, in
Sect. 8.6.2 we shall discuss the problem how to determine the critical number NC such that
all N ≥NC are sufficiently large for wN to be a good approximation to the true ODF w.

Bunge and Haessner [63] used, in essence, the parallels of (8.45) and (8.46) in Bunge’s
formulation (cf. [60, pp. 50–51]) to treat their single-orientation data (k = 512, L = 22),
with one difference: They erroneously put all texture coefficients with odd l equal to zero,
which until the late 1970s was a common mistake in the literature of quantitative texture
analysis. While they noticed that their calculated ODF “contained negative values of about
20% of the maximum value”, they attributed the unphysical negative values to experimental
error and truncation error.

Henceforth by “the method of Bunge and Haessner” or “the Bunge–Haessner method”
we mean treatment of single-orientation data that is based on either (8.44) or (8.45) and
(8.46).
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Remark 8.5 We have presented above a possible mathematical basis of the Bunge–Haessner
method for inference of an approximate ODF from single-orientation data. One of our basic
assumptions is that the measured orientations constitute a sequence of independent random
variables, which is certainly valid for the setting of our thought experiment. In reality, how-
ever, single-orientation measurements are performed on one sample and results of measure-
ments made at points within the same grain are not independent. We shall return to discuss
this and some other issues in EBSD measurements in Sect. 8.6. �

8.5.2 Modification of the Bunge–Haessner Method

In the method of Bunge and Haessner, each single-orientation measurement delivers a Dirac
measure with texture coefficients that pertain to an ideal orientation. When Pospiech and
Lücke [263] applied the Bunge–Haessner method to treat the single-orientation data of Perl-
witz et al. [257] from selected-area electron diffraction, they modified the method by replac-
ing each measured ideal orientation by the corresponding Gaussian component centered at
that ideal orientation. Hence in our notation and convention, while formula (8.46) is kept,
(8.45) and (8.47) on c̃lmn(N) is replaced by105

c̃lmn(N)= 1

8π2
· e
−l2κ2/4 − e−(l+1)2κ2/4

1− e−κ2/4
· 1

N

N∑

s=1

⎛

⎝ 1

NtexNcr

Ntex∑

i=1

Ncr∑

j=1

Dl
mn(Q

T
i RsP j )

⎞

⎠ ;

(8.48)
cf. (8.38). They took the spread parameter κ = 5◦, and they did not explain why they made
such a modification.

A plausible explanation for the modification was provided by Wagner et al. [330, p. 273].
They write:

This [i.e., the analog of (8.45) in Bunge’s formulation] can be understood as the
expansion of an ODF which consists of N Dirac functions situated in N points gi
in Euler space. Unfortunately a truncation error arises because the C

μn

l coefficients
are necessarily calculated up to a finite order lmax for l. This error is important be-
cause the convergence of the series is very poor when representing Dirac functions.
An illustration of this fact can be seen in Fig. 3a. It represents the section ϕ1 = 60◦
of a theoretical ODF which is composed of three ideal orientations g1, g2, g3, calcu-
lated using formula (4) [i.e., the analog of (8.45)] up to lmax = 22. Although up to
lmax = 22 ... truncation errors exist and negative values appear for the ODF which is
meaningless.

To overcome such difficulties it is advantages to use Gauss functions, instead of
Dirac functions, to represent the measurements (mathematicians call this regularizing
the function).

They proceed to show that when the aforementioned three ideal orientations g1, g2, g3 are
replaced by their corresponding Gaussian components with spread parameter equal to 10◦,
“the negative values have disappeared” from the modified theoretical ODF truncated at
lmax = 22.106

105Note that if sample symmetry is not imposed on the orientation data, the modified formula is that which
results by putting Gtex = {I }, Ntex = 1, and Q1 = I in (8.48).
106The counter-example of three ideal orientations given by Wagner et al. is unconvincing. If one substitutes
formally into the series expansion (4.49) of the ODF the texture coefficients that pertain to a Dirac measure,
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For the value of κ to be used in the modified recipe of the Bunge–Haessner method,
Wagner et al. [330] proposed a heuristic formula, which in its corrected form [329, p. 120]
reads:107

κ =
(

6πp

MN

)1/3

, (8.49)

where M := NtexNcr is “the multiplicity of an orientation in the Euler space”,108 N is the
number of “individual orientation measurements” (called “individual crystal measurements”
in Wagner et al. [330, p. 274]), and p is “an empirical parameter between 0 and 1 which
takes into account the ‘sharpness’ of the texture”. Typical values of p are: “p = 1 for weak
textures”, p = 0.5 for what Wagner et al. [330] call “intermediate textures”, and “p = 0.2
for sharp textures.” Formula (8.49), in its original erroneous form (see Footnote 107), was
adopted in a number of studies on texture determination by EBSD in the 1990s and beyond
(cf. e.g., [22, 23, 346–348]). However, it is problematic to use formula (8.49) as a guide to
determine the spread angle κ in (8.48) for the texture coefficients clmn; see Remark 8.6 for
further discussions in this regard.

8.5.3 Ideal Orientations Versus Gaussian Components

As pointed out by Hutchinson et al. [160] in 1999, the argument of Wagner et al. in sup-
port of replacing the ideal orientations by Gaussian components is fundamentally flawed.
Let us recast the counter-argument of Hutchinson et al. in our present language, which
slightly sharpens their counter-argument and renders it mathematically rigorous, but keep
their crucial starting point, namely: “consider a material having a texture of typical sever-
ity which can properly be described by a limited number of terms (e.g. Lmax = 22) in the
standard manner.” In other words, suppose for some lmax an ODF of the form w(R) =

1
8π2 +

∑lmax
l=1

∑l

m=−l
∑l

n=−l c
l
mnD

l
mn(R) gives a good description of the texture of the ma-

terial. Note that this ODF w is completely specified by the texture coefficients clmn for
1 ≤ l ≤ lmax. In Sect. 8.5.1 we have learned that by making a sufficiently large number
of independent single-orientation measurements the relevant texture coefficients (i.e., those
with 1≤ l ≤ lmax) can be approximated arbitrarily closely by their namesakes which pertain
to suitable empirical discrete orientation measures μN (cf. (8.40)2 for the case Gtex = {I })
obtained from such measurements. The texture coefficients with l > lmax of such μN are ir-
relevant. Whether the formal expansion of μN in terms of Wigner D-functions is convergent
or divergent is also irrelevant. As far as the single-orientation measurements are concerned,

the series becomes divergent. We do not expect that any truncated version of the formal series which includes
terms up to some lmax, no matter how large, could serve as an acceptable approximation to the density of the
Dirac measure. Hence the “theoretical ODF” in question isn’t an ODF in the usual sense of the term, i.e., a
square-integrable probability density which can be expanded as a convergent series in terms of the Wigner
D-functions (or in other conventions, the generalized spherical harmonics, etc.). See the first paragraph of
Sect. 8.5.3 for further discussions.
107There is an error in [330] on the computation of the volume of a ball of radius R0 in SO(3) so that the
resulting formula for κ is too large by a factor of 21/3 ≈ 1.26. While Wagner silently presented the corrected
form of the formula in 1986, unfortunately it was the erroneous form, particularly that which pertains to
aggregates of cubic crystallites without enforcement of sample symmetry, namely κ = (πp/2N)1/3, that
propagated in the texture literature up to at least 2007 [348].
108This quotation and, unless stated explicitly otherwise, all the quotations in the rest of this paragraph are
from Wagner [329].
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the important points are: (i) the measurements are independent; (ii) the number of Dirac
measures involved in the composition of μN is sufficiently large.

After presenting their counter-argument to refute the claim of Wagner et al., Hutchinson
et al. [160, p. 36] conclude as follows:

... nothing is achieved by describing the individual gaussians with a longer series
expansion than that necessary for the texture of the material as a whole. The angle of
spread may therefore be reduced, even to zero, without introducing any error ...

If oscillations or negative density values result from the calculations, these must
imply that the number of measurements is too small.

Remark 8.6 Suppose a number of independent single-orientation measurements have been
made on a statistically homogeneous sample. There are two possibilities. (1) The number
of measurements made is sufficiently large to deliver an empirical orientation measure μN

which gives a good description of the texture of the material in question. If we replace each
ideal orientation in μN by a Gaussian component with a spread angle κ given by (8.49),
the resulting ODF will be flatter than it should be. (2) If the number of measurements is
insufficient, it is extremely unlikely that the practice of changing κ in (8.48) from zero to
the value given by (8.49) will make the resulting ODF a good description of the texture of
the material. In case (1), following the scheme suggested by Wagner et al. [330] will degrade
the outcome; in case (2), the practice will not miraculously deliver the texture sought. �

There is one issue that remains to be clarified. In the 1990s and 2000s when XRD and
EBSD were the established and the emergent technique for texture determination, respec-
tively, there were several comparative studies of the two techniques with the XRD results
serving as the standard against which the quality of the EBSD findings was assessed. In
most of those studies, the modified Bunge–Haessner method was used for treatment of the
EBSD data with κ “ranging in values from 3 to 10 deg” [348, p. 1845]. In some cases where
the number of measurements seemed to be sufficient, it was found that assigning κ in (8.48)
a suitable value ≥ 3◦ gave a better fit to the XRD results than putting κ = 0◦ there. How
could such findings be explained?

This query has been answered by Hutchinson et al. [160, p. 35]:

... x-ray textures also suffer from instrument broadening which causes the measure-
ments to be less sharp than the true texture. ... conventional goniometers typically
have a full-width-half maximum (FWHM) breadth of about 3◦. ... The intrinsic res-
olution of the method is considerably less (by a factor of about six) than that of an
EBSP measurement.

The authors proceed to present an example of a recrystallized IF steel containing a sharp
〈111〉/ND fiber texture (γ -fiber). The texture of the material was determined by XRD and
EBSD measurements. In a figure the authors show plots of orientation density with vary-
ing Euler angle109 Φ (ϕ1 = 0◦, ϕ2 = 45◦) as determined by the XRD and EBSD measure-
ments, where the plots of the EBSD data pertain to results delivered by the modified Bunge–
Haessner method with Gaussian spreads of 0◦, 3◦, 5◦, 10◦, and 20◦, respectively. It turns out
[160, p. 39] that

the curve for the x-ray diffraction measurements coincides quite closely with the
EBSP results for a gaussian spread of about 4◦.

109Here the Euler angles are expressed in the convention adopted by Bunge and Gel’fand et al. (see
Sect. 1.8.2).
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But, as noted by the authors, “it is ... logical that the [XRD] results should correspond to
those of EBSP measurements when the same degree of instrumental broadening (gaussian
spread) is applied to these data.”

The conclusions of Hutchinson et al. were confirmed by an experimental study by
Schwarzer [291].

In summary, as we have shown in Sect. 8.5.1, in theory each single-orientation measure-
ment delivers an ideal orientation; by making a sufficiently large number of independent
measurements, for any chosen lmax we can obtain estimates of texture coefficients clmn for
1≤ l ≤ lmax to any degree of accuracy and arrive at an approximate ODF (8.46) for the poly-
crystalline material in question. This is none other than the Bunge–Haessner method. There
is no place for Bunge’s Gaussian components in this theoretical scheme.

EBSD measurements, of course, also carry uncertainty or “instrument broadening”. The
angular resolution for orientation measurement by EBSD has been found to be approxi-
mately 0.5◦–1.0◦ (see, e.g., Brough et al., [53], Demirel et al. [86, p. 68], Engler and Randle
[104, p. 224], Humphreys [159, pp. 172, 179], Hutchinson et al. [160, p. 35], Schwarzer
[291, p. 1387], Wright et al. [348, p. 1845]). This suggests the question whether, for each
individual measurement, it would be beneficial to replace the ideal orientation in question
by its corresponding Gaussian component with a small spread angle κ . In Remark 8.7 we
shall discuss this question further in a broader perspective.

8.6 Further Issues Concerning the Bunge–Haessner Method in Practice

The method of Bunge and Haessner for determination of the ODF from single-orientation
measurements is based on three premises:

1. The ODF is a square-integrable function defined on SO(3). Its series expansion (4.49)
converges in the sense of (4.24). Truncation of the series at some finite L := lmax gives a
good approximation of the ODF.

2. The individual orientation measurements deliver orientations that are independent ran-
dom variables.

3. Data for a sufficiently large number of measured orientations are available.

In a thought experiment, we can easily imagine that we are provided with an unlimited sup-
ply of nominally identical samples (i.e., all produced by the same manufacturing process,
with the same chemical composition, the same physical dimensions, etc.), and that we make
single-orientation measurement at the same location in each sample. Similar to the toss-
ing of identical dices, measurements on different but nominally identical samples Pα of a
polycrystal P are clearly independent. In applications, however, we are often provided with
one sample or a small number of nominally identical samples. Even if the polycrystal P in
question can be taken as statistically homogeneous, orientation measurements at two points
within the same grain of a sample are not independent. Hence premise 2 is a concern that
should be addressed when we consider applications.

Premise 3 begs the following question: Given a sample of a polycrystal which can be
taken as statistically homogeneous, how many single-orientation measurements will be suf-
ficiently large for determination of its ODF? This question drew the attention of researchers
when automation of the EBSD technique in the 1990s showed promise that it might someday
become a common tool and, as compared with X-ray diffraction, a more preferable means
for determination of texture at least in some types of polycrystalline samples. This promise
has been borne out by the rapid advancement of the EBSD technique in the last two decades.
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We shall discuss these two issues in this section. In what follows whenever we talk about
single-orientation measurements in practice we mean EBSD measurements made on a sam-
ple P of a statistical homogeneous polycrystal P.

8.6.1 “Grains” and Independence in Orientation Measurements by EBSD

As our objective is just to give an introduction of the subject, we shall consider only the
simplest case and restrict attention to EBSD orientation measurements made on fully re-
crystallized polycrystalline materials. For such measurements, EBSD indexing rate is high,
orientation maps of good quality are routinely obtained, and an ASTM standard protocol for
determination of average grain size is available [8].

EBSD orientation measurements110 are made at a regular grid of scan points in a planar
surface of a specimen after suitable preparation. The scan points are typically centers of a
repeating pattern of regular hexagons or squares which, if continued indefinitely, would fill
out the entire plane. In the literature each regular hexagon or square that contains a sampling
point is sometimes called a “pixel”. At each sampling point an EBSD pattern is obtained,
from which the lattice orientation at that point could be inferred if the crystal structure of
the specimen is known.111 A disorientation tolerance112 (angle) is set by the operator. Two
neighboring sampling points (and the two pixels to which they pertain) are taken as belong-
ing to the same “grain” if their disorientation angle is not bigger than the preset tolerance. It
is also common to refrain from calling a group of pixels a “grain” unless the number of scan
points contained in the group exceeds a certain prescribed minimum. To complete the orien-
tation map, scan points which are non-indexed, mis-indexed, or otherwise left unclassified,
are assigned to existing grains by some cleanup routine (e.g., grain dilation [345], where the
unclassified pixels are iteratively assigned to neighboring grains via some chosen scheme).
The distance between two neighboring sampling points is called the step size. Clearly for
a fixed disorientation tolerance, reducing the step size will, in general, increase the average
number of sampling points contained in a grain. With the present-day EBSD technology,
more than a million of orientations can be ascertained within a score of minutes. Hence it
is typical, for construction of orientation maps with sufficient accuracy, to select a step size
substantially smaller than the average grain size. Thus a grain will contain tens or hundreds
of scan points.113 On the other hand, for the determination of ODF a primary requirement
for the single-orientation measurements which define the sequence of empirical measures
(8.39) is that they be independent. As measurements at scan points within the same grain
cannot be expected to be independent, it raises the questions whether and how data from
EBSD measurements made for construction of orientation maps, microstructural studies, or

110For more information on EBSD orientation measurements, see Engler and Randle [104] and the references
therein.
111For our present purpose we need not go into details on indexing, treatment of non-indexed or mis-indexed
points, and cleanup to arrive at an orientation map, where the sampling area is partitioned into a union of
individual grains.
112By “disorientation tolerance” is meant the largest distance (cf. Sect. 6.4) between the orientations at two
adjacent sampling points above which the two pixels containing the points are assigned to different “grains”. It
is often called “misorientation tolerance” in the literature; see, e.g., the assertion quoted from [8] in Footnote
113. Since the distance between two orientations is at issue, “misorientation tolerance” is a misnomer.
113For instance, in ASTM Standard E2627-13 [8], which pertains to determination of average grain size in
fully recrystallized polycrystalline materials by EBSD, “[a] misorientation tolerance value of 5◦ is recom-
mended”; moreover, an EBSD scan be set up “so that the average grain contains about 500 [scan] points” and
“[e]xclude grains with point counts less than 100.”
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evaluation of average grain size could and should be treated for ODF determination. In this
regard an experimental study by Engler [103] provides an illustrative example.

Engler compared ODFs (truncated at L := lmax = 22) obtained by EBSD and by X-ray
diffraction (XRD) for an Al–1%Mg alloy (AA 5005) sheet in various back-annealed states
from the as-rolled material (temper H18) to the fully annealed, recrystallized material (O
temper). Here we restrict attention to Engler’s work on the fully recrystallized O-temper
material. The AA 5005-O material had an average grain size of about 20 µm and “a quite
strong cube recrystallization texture”. The EBSD scan was performed with a step size of
2 µm, and it included in excess of 3 × 105 sampling points. By his “highly simplified”
estimate, “the number of actual grains” covered by the scan “was only about 3000.” As
for ghost-correction (see Chap. 9) in the X-ray texture analysis, Engler used the positivity
method of Dahms and Bunge [84] (cf. Sect. 9.6) to estimate the texture coefficients with odd
l < 22.

To investigate the number of EBSD single-orientation measurements necessary for ad-
equate description of a texture represented by an XRD-determined ODF (with L = 22),
Engler examined the evolution of the parameter114

ρ(N) :=
ˆ

SO(3)

(fN(R
(p))− fXRD(R

(p)))2dg(R(p))

/ ˆ

SO(3)

(fXRD(R
(p)))2dg(R(p))

=
ˆ

SO(3)

(wN(R)−wXRD(R))2dV(R)

/ ˆ

SO(3)

(wXRD(R))2dV(R) (8.50)

as the number N of EBSD single-orientation measurements used increases. In (8.50), wN

is the approximate ODF from EBSD with L = 22 and texture coefficients clmn given by
(8.48), where the spread parameter κ is taken as 2.5◦;115 wXRD is the ODF (truncated at
L= lmax = 22) from X-ray measurements. Clearly

ρ(N)=
(‖wN −wXRD‖L2

‖wXRD‖L2

)2

(8.51)

is the square of the relative error in L2-norm of wN with respect to wXRD. Citing supporting
references, Engler [103, p. 1149] asserts what follows: “According to former experience, ρ
values of 0.1–0.2 ... provide a good accuracy for subsequent texture and/or property simu-
lation”.

Engler found [103, pp. 1151–1152]:

The ODF computed from all EBSD-derived single orientations (N ≈ 300 000 orienta-
tions; ...) is very similar to the corresponding macrotexture of the recrystallized sam-
ple AA 5005-O ... [and] the resulting ρ value of 0.096 – i.e. a deviation below 10% –
substantiates the high accuracy of EBSD measurements for macrotexture analysis.

On the other hand, the parameter ρ was found to decrease rather slowly with N :

114Here we rewrite Engler’s expression (8.50)1, which is in Bunge’s convention and notation for the ODF, in
our present convention and notation. Note that Engler’s ρ(N) is a slightly modified version of the parameter
ρ0,N introduced by Pospiech et al. [264] in 1994, where fXRD is written as f0 and the integrand of the
denominator is (fN)2 instead of (f0)

2.
115In view of our discussions in Sect. 8.5.3, the value of κ chosen by Engler is reasonable.
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At 10 000 orientations ... the texture peaks appear to be displaced and their relative
intensities are wrong ... This is reflected in a very high ρ value of 0.50. ... [A]t N =
50 000 the ODF is much closer to the X-ray macrotexture ... and ρ has dropped to 0.2.
... [I]t is only at N values in excess of 150 000 that the ρ value levels at about 0.1 ...

As pointed out by Engler, “[i]t appears that the above numbers of N necessary to provide
a reasonable macrotexture description are larger by several orders of magnitude than the
values of the order of 1000 grains reported earlier”.116 He attributed “the (on first sight)
surprising slow convergence of the ρ parameter” to the fact that “although [the] scan gives
a very satisfactory detailed orientation map ..., the statistical relevance of the data is not
that good,” because “each grain is on average measured 100 times, producing a very large
number of redundant data.” In comparison, he explored treating the EBSD data in two other
ways:

– First, a second “scan” with a step size of 10 µm “was performed by picking the corre-
sponding orientations from the data set of the first, fine, EBSD map.” For this second
“scan”, “the ρ parameter drops much faster, reaching values of 0.1 after only 5000 mea-
surement points”.

– Second, “the fine EBSD data set (2 µm step width) was re-shuffled with a random gen-
erator, and the evolution of ρ with N was again computed for these randomized data.
Here, ρ converges much faster, and only ∼ 1000 orientations are required to get a sound
description of the corresponding macrotexture”.

The first procedure, where a coarser measuring grid with respect to average grain size is cho-
sen so that each grain would be hit at most a few times, has long been established (see, e.g.,
[106, 222, 291]) as one way to enhance statistical relevance of the EBSD single-orientation
measurements. The second procedure is based on the simple idea of artificial randomization
of data. It is in the same spirit as but easier to implement than the suggestion of “a stochastic
scanning of the same area” [222]. As shown by Engler, it produces independent single-
orientation data out of detailed EBSD scans meant for high-quality orientation maps. For
texture determination this procedure will be applicable to any data file “as long as enough
grains (i.e. not measured points) have been record in the EBSD scan” [103].

8.6.2 Minimum Number of Independent Single-Orientation Measurements Required

Soon after the indexing of EBSD patterns became automated in the early 1990s [2], there
began the appearance of papers117 which address questions concerning the “critical” or min-
imum number NC of independent118 single-orientation measurements required for determi-
nation of the texture of a sample. For definiteness, let us consider a polycrystal P, which
is statistically homogeneous and has orientation measure ℘̂ on SO(3)/Gcr, where Gcr is its

116Earlier in the same paper Engler [103, p. 1147] asserted that “for cubic materials with reasonably sharp
textures ... a statistically sound representation of the textures required 500–1000 orientations. He cited several
earlier studies [22, 23, 105, 346] to support his assertion.
117As early examples, see [23, 105, 169, 188, 221, 264, 347], which were published in 1994–96.
118As discussed in Sect. 8.5.1 on the mathematical basis of the Bunge-Haessner method, independence of
the single-orientation measurements is a pre-requisite for the method to work. Without the adjective “in-
dependent”, NC need not exist. For example, making every measurement on the same grain in a sample
of a polycrystal, irrespective of the number of measurements, will not deliver the ODF of the polycrystal.
As shown by Engler [103], independence in single-orientation measurements can be simulated by artificial
randomization of the order of the measurements.
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group of crystallite symmetry. In the context of our discussion on the mathematical basis of
the Bunge–Haessner method (see Sect. 8.5.1), an experiment E to determine an approximate
ODF for the orientation measure ℘̂ of P by single-orientation measurements will result in
a sequence of Dirac measures {δRiGcr : i = 1,2,3, . . .} so that the sequence of empirical
measures μ̂N := 1

N
(δR1Gcr + · · · + δRNGcr) converges vaguely to ℘̂ as N →∞.119 Before

NC can be defined, the resolution required of the experiment has to be prescribed. Under
the setting of Sect. 8.5.1, the resolution of the single-orientation measurements is specified
by the pair of numbers (L, ε), where L := lmax is the highest value of l that the texture
coefficients c̃(N)lmn of the approximate ODF wN in (8.46) are allowed to be non-zero, and
ε > 0 as shown in (8.43), which can be rewritten as |clmn − c̃lmn(N)|< ε, gives the tolerated
uncertainly in each of the texture coefficient in the approximate ODF. With the resolution
defined by (L, ε) chosen, NC is the smallest positive integer K that (8.43) is valid for all
N >K , 1≤ l ≤ L, −l ≤m≤ l, and −l ≤ n≤ l. Clearly NC depends on the resolution de-
fined by (L, ε). But it depends also on crystallite and/or sample symmetry (the presence of
which reduces the number of independent texture coefficients and makes the requirement
that inequalities (8.43) be observed less stringent), on the sequence of measured individual
orientations {δRiGcr} (cf. [332, p. 93]), and most significantly on the orientation measure ℘

of P (e.g., if P is a single crystal, then NC = 1).
As noted by Matthies and Wagner [221] in 1996, a problem of “practical importance”

in single-orientation measurements was “to stop at [N ≥ NC ] the expensive determination
of grain orientations in a sample with an unknown texture”. In the 1990s and 2000s several
studies [23, 103, 105, 106, 346–348] were set out to estimate NC of a sample by using
wXRD or wnd, the ODF as obtained by XRD or neutron diffraction measurements with series
expansion (4.49) truncated at a selected l = lmax, as the standard for comparison. In what
follows we briefly summarize the main assumptions and some findings of these papers.

1. All the cited studies refer to NC as the minimum number of grains included in the scan.
2. To evaluate the approximate wN from the EBSD measurements, all those studies used

the modified Bunge–Haessner method with various values of the spread parameter κ .
3. The samples used in the studies were those of cubic or hexagonal metals, and most of

them had (approximate) orthorhombic sample symmetry.
4. As for the truncation parameter for the series expansion of w, most papers used L =

lmax = 22.
5. Most of the cited studies obtained NC by following the evolution of some scalar param-

eter of N as N increases. For definiteness, let us use ρ(N) as defined in (8.50) as exam-
ple for illustration. If we follow the evolution of ρ(N) as N increases to a sufficiently
large number, and if we ignore minor local fluctuations, typically we shall see that ρ(N)

largely decreases as N increases and comes to a constant value, say ρ∞, after N crosses
a critical number Nc , which is taken as an estimate of NC . Moreover, if ρ∞ ≤ 0.2, wN

for N ≥ Nc would usually give a good representation of wXRD. This number Nc is taken
as NC . The following description remains valid if ρ(N) is replaced by any other scalar
parameter used in the studies.120

119In practice the experiment will be discontinued at some N >NC .
120As mentioned in Footnote 114, the original version of ρ(N) in (8.50) was introduced by Pospiech et al.
[264], which they denote by ρ0,N , and w0 is their notation for wXRD in our present context. The parameter
ρ0,N was used in [23, 105]. Other scalar parameters used included those relating to the texture symmetry of
the sample [348]. Wright and Kocks [347, p. 60], however, warned about “the danger of using a single scalar
parameter to describe the difference between two ODs [i.e., wN and wXRD]”.
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6. The number NC obtained, with other factors that affect it kept the same, depends signifi-
cantly on the orientation measure ℘ in question. In general, the sharper (resp. weaker) the
texture, the smaller (resp. larger) is NC . For instance, for cubic metals with approximate
orthorhombic sample symmetry, NC was found to run from about 1,000 grain orienta-
tions for samples with “reasonably sharp textures” (see [103] and the references therein)
to 10,000 grain orientations for a rolled stainless steel of “moderate texture strength”
[348].

Many papers that addressed the comparison of EBSD and XRD measurements were
published in the 1990s and 2000s.121 Those papers show general agreement between the
EBSD and XRD results, provided that a sufficiently large number of grains are sampled
in the EBSD scan and allowance is made on texture difference between the surface and
the bulk. Hence single-orientation measurements by EBSD has already passed the test as a
technique for texture determination. Further justification by comparison with XRD results
is unnecessary. Moreover, as pointed out in Sect. 8.5.3, texture determination by EBSD is
intrinsically more accurate than determination by XRD because the former has significantly
smaller “instrument broadening”. In fact in the 1990s and 2000s, there were already papers
[41, 221, 222, 332] exploring methods for the determination of NC from EBSD data.

On the other hand, while it was of practical importance in 1996 to stop the “the ex-
pensive determination of grain orientations in a sample with an unknown texture” when
N ≥NC [221], the situation has completely changed. Today a large amount of EBSD single-
orientation data can be obtained quickly and inexpensively. In practice one may just made
grain-orientation measurements at so huge a number N that leaves little doubt for N ≥NC .
In fact EBSD data now usually contain such a large number of data points that they must be
significantly reduced to be used for micromechanical computation of polycrystalline mate-
rial response. As a result research efforts have recently been made [31, 100, 167] to investi-
gate various methods that reduce EBSD data but preserve their important characteristics and
enhance computational efficiency.

Remark 8.7 In this chapter we have covered only the original and the modified Bunge–
Haessner method for treatment of single-orientation data, which played a dominant role in
the area until serious attempts were made to develop better methods in the 2010s. The orig-
inal Bunge-Haessner method makes no provisions for “instrument broadening” and other
errors/uncertainties in the single-orientation measurements. In the modified method, each
ideal orientation in the original method is replaced by a corresponding Gaussian compo-
nent of Bunge with a spread angle. While it remains unclear why Pospiech and Lücke [263]
first made this change, its subsequent widespread and sustained acceptance by texture re-
searchers could be understood as the result of two possible reasons: (i) The change provides
one way to account for the effects of instrument broadening. (ii) Making the modification
could, in comparative studies, give better fits of EBSD results with textures determined by
XRD, which has significant instrument-broadening issues itself. The change is, however,
entirely ad hoc. There is no theoretical basis that the modified Bunge-Haessner method is
the optimal way to treat orientation data from EBSD measurements. Several other methods,
which could possibly improve on the original and the modified Bunge-Haessner method,
have been proposed recently (see, e.g., [150, 250, 333]). Another recent paper of related
interest is one [267] on error analysis of the crystal orientations and disorientations obtained
by the classical EBSD technique. �

121Cf. Wright et al. [348, Introduction], where the authors assert that they perused over 50 papers.

8.6 Further Issues Concerning the Bunge–Haessner Method in Practice
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Chapter 9

9 Determination of Texture Coefficients via X-Ray Diffraction

The harmonic or series expansion method, which was independently introduced by Bunge
[56] and by Roe [270] for inference of texture coefficients from X-ray pole figures, marks the
birth of quantitative texture analysis in 1965. Since then, various other methods have been
proposed and developed, including the WIMV (Williams–Imhof–Matthies–Vinel) method
([219, 223, 226]; cf. also [170] for an exposition and comments), which is implemented in
the Los Alamos texture software package popLA [171, 172].122 In this exposition we will
restrict our attention to the harmonic method. Some basic information on X-ray diffraction
(XRD) by crystals is given in Appendix D.

In this chapter we will follow the Roe approach. Unless stated explicitly otherwise, all
theoretical discussions and derivations will pertain to triclinic aggregates of triclinic crystal-
lites (i.e., with Gtex = {I } and Gcr = {I }). The general formulas derived will be applicable
to polycrystals with non-trivial texture and/or crystallite symmetry after the requisite restric-
tions on texture coefficients imposed by Gtex and/or Gcr are implemented in the formulas.

9.1 Representation of Orientations in Pole Figures

9.1.1 Stereographic Projection and Pole Figures

Let (C,κ0) be the reference configuration of an ideal triclinic crystal, and let L be its chosen
lattice. Let h be the unit normal to the family of (hkl) planes of the ideal crystal. Consider
a transplacement (see Sect. 2.2) g : κ0(C)→ E3 and a Cartesian coordinate system in the
codomain E3 of g such that g maps the origin of L to the origin of the Cartesian coordinate
system and g = (0,R), where R : R3 → R

3 is a rotation such that Rh = n = (n1, n2, n3)

with n3 ≥ 0.
Let S2 be the unit sphere. The stereographic projection of n to the equatorial plane is

defined as follows. Let N = (0,0,1) and S = (0,0,−1) be the north and south pole of
the unit sphere, respectively. Let (1, α,β), where α is the polar angle and β the azimuthal
angle, be the spherical coordinates of P := (n1, n2, n3) ∈ S2 with n3 ≥ 0. The two sets of
coordinates are related by the equations

n1 = sinα cosβ, n2 = sinα sinβ, n3 = cosα. (9.1)

Consider the cross-section of the unit ball that includes the origin O and the great circle
of S2 defined by the azimuthal angle β , which contains the points N , S, and P . Let the
line segment SP meet the equatorial plane at the point with polar coordinates (r̂, θ̂ ). Since
 SOP is isosceles with OS =OP and α = ∠NOP is the exterior angle adjacent to ∠O
of the triangle, we have ∠OSP = α/2. It follows that

r̂ = tan
α

2
= sinα

1+ cosα
, θ̂ = β. (9.2)

122During 1997–2007 when the research group of the author undertook also experimental work in texture
analysis, we used popLA and in-house Fortran and Maple programs (written by Mojia Huang) based on the
harmonic method for inversion of X-ray pole figures. We checked the results from the two methods against
each other on a few cases. The findings from the two were found to be consistent.
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For the triclinic ideal crystal, what we shall obtain in X-ray measurements of (hkl) pole
figures will be a picture of the unit disc in the equatorial plane with the intensity at the
location (r̂, θ̂ ) (or equivalently (α,β)) ascertained empirically.

9.1.2 Pole Figure of a Cubic Crystallite in a Sheet Metal

Suppose a cubic crystallite in a sheet metal has the orientation R = (HKL)[UVW ]. Where
will this orientation show up in an (hkl) pole figure of the crystallite?

Let h be the unit vector normal to the (hkl) crystal planes which has a non-negative
spatial 3-component n3 in the (HKL)[UVW ] orientation. Without loss of generality, say
h = (h, k, l)/

√
h2 + k2 + l2 in the crystal frame. In the (HKL)[UVW ] orientation, h has

spatial components given by the column vector

⎛

⎜⎜⎝

n1

n2

n3

⎞

⎟⎟⎠=
1√

h2 + k2 + l2

⎛

⎜⎜⎝

U
N

V
N

W
N

KW−LV
MN

LU−HW
MN

HV−KU
MN

H
M

K
M

L
M

⎞

⎟⎟⎠

⎛

⎜⎜⎝

h

k

l

⎞

⎟⎟⎠ . (9.3)

Here we assume that n3 ≥ 0; otherwise we just replace h by −h.
The location of (HKL)[UVW ] in the (hkl) pole figure is given by the stereographic

projection of (n1, n2, n3) in the spatial equatorial plane. Under a polar coordinate system
where the polar axis runs in the rolling direction, the (HKL)[UVW ] orientation is repre-
sented by the point with polar coordinates (r̂, θ̂ ) given by (9.2). Note that all orientations
obtained by rotating the orientation (HKL)[UVW ] about the axis defined by the spatial
vector n= (n1, n2, n3) are represented by the same point in the (hkl) pole figure. Thus there
is some loss of information when we depict the three-dimensional manifold of orientations
by a two-dimensional pole figure.

Example 9.1 In this example we treat the cubic crystallite as if it were triclinic. We will
consider the effects of crystal symmetry in the next subsection. In the (111) pole figure the
orientation (110)[001] of a triclinic crystallite is given by the stereographic projection of the
spatial vector

1√
3

⎛

⎜⎜⎝

0 0 1
1√
2
− 1√

2
0

1√
2

1√
2

0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1

1

1

⎞

⎟⎟⎠=

⎛

⎜⎜⎜⎝

√
1
3

0
√

2
3

⎞

⎟⎟⎟⎠ .

Thus cosα =√2/3 and β = 0. In the (111) pole figure the orientation (110)[001] is located
at the point with polar coordinates (1/(

√
3+√2),0)≈ (0.3178,0). �

9.1.3 Effects of Crystal Symmetry

Because of crystal symmetry, the orientation of a cubic crystallite is not described by one
rotation R but by 24 equivalent rotations RQα (α = 1, . . . ,24), where Qα ∈O . Hence, in a
pole figure, a cubic crystallite shows up as spots of equal intensity at a number of locations.
The number of spots depends on the orientation of the crystallite and on the (hkl) pole figure
in question.

9 Determination of Texture Coefficients via X-Ray Diffraction

224



Reprinted from the journal 1 3

Example 9.2 Consider a cubic crystallite in the Cube or (001)[100] orientation. By formula
(7.49), the rotation R corresponding to the orientation (001)[100] is simply the identity I .
For the (111) pole figure, h = (1,1,1)/

√
3. To find the locations in the (111) pole figure

where this cubic crystallite will contribute to the X-ray intensity, we compute RQαh for
Qα ∈O . While the group O has 24 elements Qα , we find that in the present case there are
only 4 distinct vectors RQαh with a non-negative 3-component. They are:

1√
3
(1,1,1),

1√
3
(1,−1,1),

1√
3
(−1,1,1), and

1√
3
(−1,−1,1).

Hence the (111) pole figure of this cubic crystallite consists of 4 spots located at

(

√
2√

3+√2
,
π

4
), (

√
2√

3+√2
,

3π

4
), (

√
2√

3+√2
,

5π

4
), and (

√
2√

3+√2
,

7π

4
). �

9.1.4 Effects of Texture Symmetry

An X-ray pole figure in fact shows the responses of all the crystallites within a sampling
volume. These crystallites, as a whole, may exhibit texture symmetry. By means of the
orientation distribution function (ODF) we have already defined precisely in Chap. 5 what
we mean by texture symmetry. Here we give a heuristic discussion in the context of pole-
figure measurements.

Let Ω be the sampling volume of a measurement, which we simply call the sample in
question. Consider triclinic crystallites Bk (k = 1,2, . . . , n) contained in Ω . Suppose the
sample Ω undergoes a rotation Q. We denote by TQΩ the new configuration of the sam-
ple after the rotation. A crystallite Bk whose orientation is specified by Rk in the origi-
nal configuration has orientation QRk in the rotated configuration. The (hkl) pole figure
of Ω and of TQΩ shows X-ray intensities at the spots corresponding to the orientations
{R1,R2, . . . ,Rn} and {QR1,QR2, . . . ,QRn}, respectively. Suppose Q ∈Gtex. Strict tex-
ture symmetry will require that the (hkl) pole figure for TQΩ be the same as its counterpart
for Ω , i.e., for each spot P with non-zero intensity in the pole figure for Ω , a corresponding
spot shows up at the same location as P in the pole figure for TQΩ , and the two spots have
the same intensity. Clearly, this will not occur in practice exactly. Hence texture symmetry
should be understood only in a probabilistic sense.

Example 9.3 Suppose Gtex = {I ,R(e1,π)} for a sample that consists of triclinic crystal-
lites as discussed in Example 9.1. In Example 7.9, we have already shown that in Eu-
ler angles (ψ, θ,φ) the orientation (110)[001] is given by R(0,π/2,3π/4). By texture
symmetry, measurement at a sampling point has the same chance of yielding orientation
R(0,π/2,3π/4) or orientation R(0,π,π)R(0,π/2,3π/4), because R(e1,π) has Euler an-
gles (0,π,π). A straightforward computation indicates that in the (111) pole figure orienta-
tion R(0,π,π)R(0,π/2,3π/4) is located at the spot (r̂, θ̂ )= (−1/(

√
3+√2),0). Thus by

texture symmetry the (111) pole figure of the given sample should have the same intensity
at two spots, namely (r̂, θ̂ )= (1/(

√
3+√2),0) and (r̂, θ̂ )= (−1/(

√
3+√2),0). �

For more information on representing ideal orientations of an orthorhombic aggregate of
cubic crystallites in pole figures and in Euler space (i.e., the (ψ, θ,φ) space), see Hansen
et al. [140].

9.1 Representation of Orientations in Pole Figures
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Fig. 2 Setup for measurement of X-ray pole figures by the reflection method

9.2 Rotation of Sample in Pole-Figure Measurements

In what follows we are concerned only with obtaining information about the crystallographic
texture of a sheet metal by X-ray diffraction (XRD). Moreover, we restrict our attention to
the reflection method. Pole figures of the given sheet sample are measured under the reflec-
tion geometry. These pole figures are the experimental data from which the texture of the
sample is to be inferred. When the orientations of the crystallites in a polycrystalline sample
are ascertained, all the pole figures of the sample are determined, and it is then straightfor-
ward to carry out the easy computations to obtain a specific pole figure. The inverse problem
of inferring texture from pole figures is much more difficult and was for almost three decades
one of the central problems in quantitative texture analysis.

We will follow the Roe approach in the theoretical development in this chapter. As the
first step, all the general formulas will be derived for triclinic aggregates of triclinic crys-
tallites. Corresponding formulas for polycrystals with non-trivial Gtex and/or Gcr will be
obtained simply from the general formulas by applying appropriate restrictions imposed by
symmetry to the texture coefficients in the general formulas.

In the reflection method, the diffractometer is set up such that the incident X-ray beam
from the source S and the reflected beam towards the detector D lie in the horizontal plane.
Let θB be the Bragg angle pertaining to the (hkl) pole figure. We select a spatial coordinate
system with orthonormal basis {ei} which satisfies the following conditions (see Fig. 2):

1. The basis vector e1 points vertically up.
2. Should we put a mirror in the 1-2 plane, e3 would bisect the angle between the incident

and the reflected beam.
3. The incident beam and the reflected beam propagate in the directions

(0,− cos θB,− sin θB) and (0, cos(π − θB), sin(π − θB)), respectively.

9 Determination of Texture Coefficients via X-Ray Diffraction
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Fig. 3 Sequence of rotations that brings n to e3

The sample sheet—a triclinic aggregate of triclinic crystallites—is initially mounted so that
it lies in the 1-2 plane with the rolling direction parallel to e1. In this setting a crystallite
whose (hkl) planes are normal to e3 will contribute to the intensity of the signal picked up
by the detector.

Let L be the lattice of the reference ideal triclinic crystal, and let L∗ be the reciprocal
lattice of L with basis vectors a∗, b∗, and c∗. Let H= ha∗ + kb∗ + lc∗. Then the unit vector
h := H/‖H‖ is normal to the (hkl) planes in the configuration of the reference crystal.
Consider a crystallite Bo whose orientation in the sample sheet is defined by the rotation Ro

with respect to the reference crystal. The vectors Roh and−Roh are the two unit normals to
the (hkl) planes in Bo. Let n=Roh. Without loss of generality, suppose n3 ≥ 0 (otherwise
we just define123 n = −Roh). Let (1, α,β), where 0 ≤ α ≤ π/2 and 0 ≤ β < 2π , be the
spherical coordinates of n in the upper hemisphere. When the sample undergoes a rotation
defined by R(e2,−α)R(e3,−β), the unit vector e3 becomes normal to the (hkl) planes of
Bo (see Fig. 3). This rotation can be accomplished by first rotating the sample an angle α

about −e2, and then rotating it by an angle −β about its new normal R(−e2, α)e3 (see
Fig. 4), because by Euler’s theorem (1.82) we have

R(R(−e2, α)e3,−β)R(−e2, α)=R(−e2, α)R(e3,−β)R(−e2, α)
−1R(−e2, α)

=R(e2,−α)R(e3,−β). (9.4)

123This will be justified by Friedel’s rule in Sect. 9.3.

9.2 Rotation of Sample in Pole-Figure Measurements
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Fig. 4 Rotations of sample in
measurement of pole figures

Remark 9.4 Unless Roh or −Roh is sufficiently close124 to e3, the (hkl) planes of
Bo will not act as Bragg mirrors to reflect the incident X-ray beam. The rotation
R(e2,−α)R(e3,−β) of the sample renders either Roh or −Roh, one of the unit normals
of the (hkl) planes in Bo, parallel to e3, and thus make those planes Bragg mirrors. In
fact the (hkl) planes of any crystallite in the sampling volume, which after the rotation
R(e2,−α)R(e3,−β) of the sample have one of its unit normals sufficiently close to e3,
will become Bragg mirrors in the pole-figure measurement. By (D.96), the integrated inten-
sity125 of the reflected beam in question would be proportional to the total volume of such
crystallites in the sampling volume. �

Remark 9.5 The integrated intensity of the X-ray radiation that reaches the detector D in
Fig. 2, however, requires corrections before it can be used in theoretical analysis. The theory
of X-ray diffraction by crystals, as outlined in Appendix D, is based on elastic scattering
of X-ray by the target atoms. However, even if the detector is at a position for which ac-
cording to the theory it should not receive any elastically scattered X-ray, the intensity of
radiation received by the detector is non-zero. That is called the background intensity, one
source of which is inelastic scattering. In general, when X-rays fall on a substance, they
are partly scattered inelastically. Besides the background error, correction has to be made to
mitigate the defocusing error, namely that the measured intensity as recorded by the detector
is strongly dependent on the tilt angle α and the Bragg angle θB . This error arises because
the shape of the irradiated spot depends on α and θB , whereas the detector, equipped with
a system of receiving slits sees only a small, constant area of the sample surface. For fur-
ther discussions on the background error, the defocusing error, and their corrections, see
Humbert [158] and Engler and Randle [104, Sect. 4.3.6]. Henceforth when we refer to the
intensity I (α,β;Θ,Φ) of the reflected beam, we mean the intensity after correction. �

124See Sect. D.4 and particularly (D.67) in Appendix D for a quantitative description. Henceforth we will
write Roh≈ e3 if Roh is “sufficiently close” to e3.
125See Footnote 194 in Appendix D for definition.

9 Determination of Texture Coefficients via X-Ray Diffraction
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9.3 Pole Figures and the Orientation Distribution Function

Following the Roe approach, we restrict attention to a polycrystal P of substance S which
is a triclinic aggregate of triclinic crystallites (i.e., with Gtex = {I } and Gcr = {I }). Let the
texture of P, with respect to a chosen reference126 perfect crystal C, be described by an ori-
entation distribution function w. The orientation space for the polycrystal is SO(3), and each
orientation is defined by one rotation R. We assume the polycrystal P is statistically homo-
geneous so that w is independent of the sampling point and is a function of the orientation
R only.

To motivate what we shall do, let us re-examine (3.9) in Proposition 3.2. The ball Br

in (3.9) can be interpreted as the sampling volume. Let A be a Borel set in SO(3). If the
sampling volume Br is large enough, (3.9) can be interpreted as

ˆ

A

w(R)dV(R)≈ V({X ∈ Br :R(X) ∈A})
V(Br)

, (9.5)

where V is the three-dimensional Euclidean volume. In words, on the left-hand side is the
probability of finding R(X) ∈A for any X ∈ Br ; on the right-hand side is the volume fraction
of Br where R(X) ∈A. Formula (9.5) follows from the ergodic hypothesis or the assumption
that the polycrystal P is an ergodic system. Nevertheless it does suggest that the ODF is
related to some appropriate volume fraction. As each X-ray (hkl) pole figure can be taken
as a catalogue of normalized intensities p(αi, βi) on an (almost) equal-area grid {(αi, βi) :
i = 1, . . . , n} [104, Sect. 4.3.3], which give the volume fraction (with respect to the sampling
volume) of crystallites with either of the two unit normals of their (hkl) planes sufficiently
close to the unit vector n(αi, βi) (see Remarks 9.4 and D.8), the possible relation between
p and w should be investigated thoroughly, which is what we shall do next.

Henceforth we adopt a spatial Cartesian coordinate system (with basis vectors e1, e2 and
e3) as defined by the geometry of the X-ray diffractometer (cf. Fig. 2).

Let L be the chosen lattice for C and {bi : i = 1,2,3} be a right-handed triad of primi-
tive basis vectors of L. The corresponding reciprocal lattice and reciprocal basis vectors are
denoted by L∗ and {b∗i : i = 1,2,3}, respectively. We choose a Cartesian coordinate system
in C such that it has the same orthonormal basis ei (i = 1,2,3)) as that of the spatial coor-
dinate system. Let h and −h be the unit normals to the family of (hkl) planes127 of C, i.e.,
h=Hhkl/‖Hhkl‖, where Hhkl = hb∗1 + kb∗2 + lb∗3 is a reciprocal lattice vector. Let (1,Θ,Φ)

be the spherical coordinates of h. Let (1, α,β) be the spherical coordinates of a spatial unit
vector n. Let us begin by asking the following question:

– Given that the ODF is given by w, what is the probability density q(n;h) or q(α,β;Θ,Φ)

that at a sampling point the unit plane-normal h := Hhkl/‖Hhkl‖ is pointing in the n

direction in space?

In the preceding question, we let n range over the entire unit sphere without restriction. The
function q(n;h) is called the plane-normal distribution by Roe [270].

Let P be a polycrystalline sample of P. Given a reciprocal lattice vector Hhkl , we con-
sider an XRD experiment on P to produce an (hkl) pole figure by Bragg reflection. In

126For simplicity we will write C both for (C, κ0) and for (C, κ0)mac in this chapter. Whether C stands for
(C, κ0) or for (C, κ0)mac should be clear from the context.
127An (hkl) plane is a lattice plane if the integers h, k, and l are coprime. It is a fictitious lattice plane for a
higher-order Bragg reflection if h, k, and l are not coprime. Cf. Sect. 7.4.

9.3 Pole Figures and the Orientation Distribution Function
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Remark D.8 in Appendix D we observe that in an (hkl) pole figure the normalized intensity

p(αi, βi;Θ,Φ)= I (αi, βi;Θ,Φ)/
∑

i

I (αi, βi;Θ,Φ) (9.6)

gives the volume fraction on an equal-area grid {(αi, βi) : i = 1, . . . , n}, with respect to
the sampling volume, of C(αi, βi)—the set of crystallites which contribute to the integrated
intensity of the reflected beam when the sample is at the configuration specified by the angles
(αi, βi). Let ni be the unit vector with spherical coordinates (1, αi, βi), where 0 ≤ αi ≤
π/2 and 0 ≤ βi < 2π . By the discussion in the preceding section, it is clear that C(αi, βi)

includes crystallites whose orientation in the initial configuration of the sample is given by
any Ro such that ni ≈Roh (cf. Footnote 9.4 for the meaning of “≈” here). For routine XRD
measurements, however, Friedel’s rule is valid, which implies that XRD does not distinguish
any reciprocal vector H from −H. Then C(αi, βi) consists of crystallites in the sampling
volume whose orientation in the sampling volume is given by any Ro such that ni ≈±Roh.

Let us recast (9.6) into its continuous form for further theoretical discussion. We write

p(α,β;Θ,Φ)= I (α,β;Θ,Φ)´ 2π
0

´ π/2
0 I (α,β;Θ,Φ) sinα dαdβ

, where 0≤ α ≤ π
2 , 0≤ β < 2π,

(9.7)
which we call the density of normalized intensity. Let A ⊂ S2

+ := {n ∈ S2 : n3 ≥ 0}. The
quantity

¨

A

p(α,β;Θ,Φ) sinα dαdβ (9.8)

gives the volume fraction of crystallites in the sampling volume whose initial orientation
Ro in SO(3) satisfies n ≈ ±Roh for n ∈ A. Noting our discussion on (9.5), the physical
meaning of q(n;h), and the effect of Friedel’s rule, we assume that

p(n;h)= q(n;h)+ q(n;−h) (9.9)

for n ∈ S2
+.

We proceed to find a formula for p(n;h) by deriving one for q(n;h). For the special
case where h= n= e3 (cf. Schaeben and Boogaart [284, p. 257]), it is clear that

q(e3; e3)=
2πˆ

0

w(0,0, φ)dφ

= 1

4π
+

∞∑

l=1

l∑

m=−l

l∑

n=−l
clmn

2πˆ

0

Dl
mn(0,0, φ)dφ

= 1

4π
+

∞∑

l=1

l∑

m=−l

l∑

n=−l
clmnδmn

2πˆ

0

e−inφdφ

= 1

4π
+ 2π

∞∑

l=1

cl00. (9.10)

The general q(n;h) can be obtained from (9.10) by a simple trick.
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Let Q be a rotation of the sample which brings the spatial unit vector n to e3, and let Qr

be a rotation of C which brings the reciprocal lattice vector h to e3. We may take Q and
Qr to be the rotation whose transpose QT and QT

r has Euler angles (β,α,0) and (Φ,Θ,0),

respectively. Let `̌w be the ODF of the Q-rotated sample with respect to the Qr -rotated
reference, and let `̌clmn be the corresponding texture coefficients. Then

q(α,β;Θ,Φ)= 1

4π
+ 2π

∞∑

l=1

`̌cl00

= 1

4π
+ 2π

∞∑

l=1

l∑

m=−l
člm0d

l
m0(α)e

−imβ

= 1

4π
+ 2π

∞∑

l=1

l∑

m=−l

l∑

n=−l
clmnd

l
m0(α)d

l
n0(Θ)e−imβeinΦ, (9.11)

where we have appealed to transformation formulas for texture coefficients (5.6), (5.12), and
the symmetry property (4.32)1 of dl

mn. By (4.27), we observe that the function q satisfies the
normalization condition

2πˆ

0

π̂

0

q(α,β;Θ,Φ) sinαdαdβ = 1. (9.12)

In terms of the spherical harmonics

Ylm(α,β) :=
√

2l + 1

4π
dl
m0(α)e

imβ, (9.13)

which satisfy the orthonormality condition

2πˆ

0

π̂

0

Ylm(α,β)Yl′m′(α,β) sinαdαdβ = δll′δmm′ , (9.14)

we may recast (9.11) as

q(α,β;Θ,Φ)= 1

4π
+

∞∑

l=1

l∑

m=−l

l∑

n=−l

8π2

2l + 1
clmnYlm(α,β)Yln(Θ,Φ). (9.15)

By (9.9), (9.11) and the identities128

dl
n0(π −Θ)= (−1)l+ndl

n0(Θ) and einπ = (−1)n, (9.16)

128Identity (9.16)1 is a special case of (4.33)1.
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we have

p(α,β;Θ,Φ)= 1

2π
+ 2π

∞∑

l=1

(1+ (−1)l)

(
l∑

m=−l

l∑

n=−l
clmnd

l
m0(α)d

l
n0(Θ)e−imβeinΦ

)

= 1

2π
+ 4π

∞∑

even l≥2

l∑

m=−l

l∑

n=−l
clmnd

l
m0(α)d

l
n0(Θ)e−imβeinΦ, (9.17)

where 0≤ α ≤ π/2 and 0≤ β < 2π . Equation (9.17) shows how the density of normalized
intensity of the (hkl) pole figure is related to the ODF. By (4.33)2, we have for even l

dl
m̄0(θ)= (−1)mdl

m0(θ). (9.18)

By (4.46) and (9.18), we obtain

clm̄n̄d
l
m̄0(α)d

l
n̄0(Θ)e−im̄βein̄Φ = clmn · ((−1)mdl

m0(α)) · ((−1)ndl
n0(Θ)) · e−imβeinΦ

= clmnd
l
m0(α)d

l
n0(Θ)e−imβeinΦ. (9.19)

Thus we have verified that p(α,β;Θ,Φ) is real-valued.

Remark 9.6 Using (9.19), we can easily show by direct computations that the sum

clmnd
l
m0(α)d

l
n0(Θ)e−imβeinΦ + clm̄n̄d

l
m̄0(α)d

l
n̄0(Θ)e−im̄βein̄Φ

= 2dl
m0(α)d

l
n0(Θ)

(
cos(nΦ −mβ)Re clmn − sin(nΦ −mβ)Im clmn

)
.

Hence for a given (α,β;Θ,Φ), the independent real parameters for p(α,β;Θ,Φ) in the
case where Gtex = {I } and Gcr = {I } can be taken as cl00, Re clmn, Im clmn for even l ≥ 2 and
either −l ≤m≤ l, 0 < n≤ l or 0 <m≤ l, n= 0. �

Note that the function q satisfies the relation

q(n;−h)= q(−n;h). (9.20)

As a result, the function p satisfies the normalization condition

2πˆ

0

π/2ˆ

0

p(α,β;Θ,Φ) sinαdαdβ

=
2πˆ

0

π/2ˆ

0

q(α,β;Θ,Φ) sinαdαdβ +
2πˆ

0

π/2ˆ

0

q(π − α,π + β;Θ,Φ) sinαdαdβ

=
2πˆ

0

π/2ˆ

0

q(α,β;Θ,Φ) sinαdαdβ +
2πˆ

0

π̂

π/2

q(α,β;Θ,Φ) sinαdαdβ

=
2πˆ

0

π̂

0

q(α,β;Θ,Φ) sinαdαdβ = 1, (9.21)
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where we have appealed to (9.12) at the last step. Alternatively, (9.17) may be rewritten in
terms of the spherical harmonics as

p(α,β;Θ,Φ)= 1

2π
+

∞∑

even l≥2

l∑

m=−l

l∑

n=−l

16π2

2l + 1
clmnYlm(α,β)Yln(Θ,Φ), (9.22)

or in Roe’s notation as (see (4.117) and (4.118))

p(α,β;Θ,Φ)= 1

2π
+ 4π

∞∑

even l≥2

l∑

m=−l

l∑

n=−l

√
2

2l + 1
WlmnZlm0(cosα)Zln0(cosΘ)e−imβeinΦ.

(9.23)

Remark 9.7 Since q is a probability density, we have q ≥ 0, which implies that p ≥ 0. When
w =wiso, all texture coefficients are zero. Hence all pole figures p(α,β;Θ,Φ)= piso = 1

2π .
When the texture of a sample is the mixture of a random part with volume fraction 0 < r < 1
and a non-random part with volume fraction 1− r , the ODF of the sample is

w = rwiso + (1− r)w̃, (9.24)

where w̃ is the ODF of the non-random part with the usual normalization; see Sect. 9.6.2
for further discussion. Then the pole figures of the sample are given by

p(α,β;Θ,Φ)= rpiso + (1− r)p̃(α,β;Θ,Φ), (9.25)

where p̃(α,β;Θ,Φ) denote the pole figures pertaining to w̃. As p̃ ≥ 0, we observe that
p ≥ r/(2π) for the mixture that contains a random part. �

9.4 Pole Figures of Sheet Metals

Sheet metals often inherit orthorhombic texture symmetry from their thermomechanical pro-
cessing histories. As a result, pole figures of sheet metals usually enjoy the following sym-
metry relations:

p(α,β;Θ,Φ)= p(α,−β;Θ,Φ)= p(α,π − β;Θ,Φ)= p(α,π + β;Θ,Φ), (9.26)

i.e., such pole figures are symmetric under reflection about the two axes defined by the
rolling (RD) and the transverse direction (TD), respectively.

To prove the preceding relations, we appeal to the equality

clmn =
{
clm̄n for even l and m

0 for odd m,
(9.27)

which follows from the orthorhombic texture symmetry (cf. (5.33)1), as well as the property

dl
m0(α)= dl

m̄0(α) for even m (9.28)

observed by the dl
mn(·) functions (cf. (4.33)2), and recast formula (9.17) for p as follows:

p(α,β;Θ,Φ)= 1

2π
+ 4π

∑

even l≥2

∑

n

dl
n0(Θ)einΦ

(
∑

even m

clmnd
l
m0(α)e

−imβ
)

= 1

2π
+ 4π

∑

even l≥2

∑

n

dl
n0(Θ)einΦ

(
cl0nd

l
00(α)+

(
cl2nd

l
20(α)e

−i2β
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+ cl
2̄n
dl

2̄0
(α)ei2β

)+ · · · + (
clknd

l
k0(α)e

−ikβ + cl
k̄n
dl

k̄0
(α)eikβ

))

= 1

2π
+ 4π

∑

even l≥2

∑

n

dl
n0(Θ)einΦ

(
cl0nd

l
00(α)+ 2cl2nd

l
20(α) cos 2β

+ · · · + 2clknd
l
k0(α) cos kβ

)
, (9.29)

where k = 2s is the largest even integer ≤ l. The symmetry relations (9.26) follow immedi-
ately from (9.29) because the cosine function is even and is periodic with period 2π .

If we obtain from experimental measurement a pole figure which does not obey (9.26),
i.e., if it is not symmetrical under reflections about the axes defined by RD and TD, then
either the sample does not enjoy orthorhombic texture symmetry or something is wrong
with the measurement.

9.5 Inversion of Pole Figures for l-Even Part of ODF

We write a given ODF as

w(R)=w(e)(R)+w(o)(R)≥ 0, where R ∈ SO(3); (9.30)

w(e)(R)=
∞∑

even l≥0

l∑

m=−l

l∑

n=−l
clmnD

l
mn(R), w(o)(R)=

∞∑

odd l≥1

l∑

m=−l

l∑

n=−l
clmnD

l
mn(R),

(9.31)

where w(e) and w(o) are called the l-even and l-odd part of w, respectively.
Formula (9.17) clearly shows that pole figures do not carry any information on texture

coefficients clmn with odd l. Inferring l-even texture coefficients from measured pole figures,
however, has remained an important topic in quantitative texture analysis for the following
reasons:

– Some applications require only knowledge of texture coefficients of even orders. For ex-
ample, in the theory of acoustoelasticity proposed by Man and Paroni [200, 205, 255]
for weakly-textured materials, only texture coefficients of order l = 4,6 and l = 2,4,6
bear on the acoustoelastic effect in aggregates of cubic and hexagonal crystallites, respec-
tively.129

– Determination of the even-l coefficients up to a certain L := lmax serves as a starting point
or a basis for some “ghost-correcting” methods which provide estimates for the missing
odd-l coefficients. See Sect. 9.6.

– Texture coefficients obtained from X-ray measurements can be used for checking the
validity of the results of other techniques, particularly those still in development.

129This assertion follows from what follows. Man [199] showed that the sixth-order acoustoelastic tensor
for weakly-textured materials depends on texture coefficients clmn only in those with l ≤ 6. For aggregates of
cubic crystallites, clmn = 0 for l = 1,2,3,5; see Table 7. For aggregates of hexagonal crystallites, clmn = 0 for
l = 1,3,5; see (5.48) and (5.50). For the same reason, this assertion is also valid for weakly-textured materials
in the context of the classical acoustoelastic theory (see [321] and the references therein). In fact, with the help
of an analysis [203] more refined than that of [199], one can read off from the decomposition formula (16.51)
that, as far as the effect of texture coefficients on the acoustoelastic tensor in classical acoustoelastic theory is
concerned, only those with l = 2,4,6 are relevant for weakly-textured aggregates of tetragonal crystallites.

9 Determination of Texture Coefficients via X-Ray Diffraction

234



Reprinted from the journal 1 3

9.5.1 Inversion of Complete Pole Figures

For a given (Θ,Φ), we say that we have a complete pole figure if we know the values of the
function p(α,β;Θ,Φ) for 0≤ α ≤ π/2 and 0≤ β < 2π . In this section we discuss how we
could recover the texture coefficients clmn for even l ≥ 2 if we have complete pole figures at
our disposal.

For a given even l ≥ 2 and a given m, we obtain an equation in the unknowns clmn by
multiplying both sides of (9.17) with dl

m0(α)e
imβ and integrating the products over the upper

hemisphere:

2πˆ

0

π/2ˆ

0

p(α,β;Θ,Φ)dl
m0(α)e

imβ sinαdαdβ

= 4π
∞∑

even l′≥2

l′∑

s=−l′

l′∑

n=−l′
cl
′
snd

l′
n0(Θ)einΦ

π/2ˆ

0

dl
m0(α)d

l′
s0(α) sinα

⎛

⎝
2πˆ

0

ei(m−s)βdβ

⎞

⎠dα

= 8π2
∞∑

even l′≥2

l′∑

n=−l′
cl
′
mnd

l′
n0(Θ)einΦ

π/2ˆ

0

dl
m0(α)d

l′
m0(α) sinαdα

= 8π2

2l + 1

l∑

n=−l
clmnd

l
n0(Θ)einΦ, (9.32)

where we have appealed to (4.25), (4.27), and the fact that

π/2ˆ

0

dl
m0(α)d

l′
m0(α) sinαdα = 1

2

π̂

0

dl
m0(α)d

l′
m0(α) sinαdα = 1

2l + 1
δll′ (9.33)

for even l and l′, because

π̂

π/2

dl
m0(α)d

l′
m0(α) sinαdα =

π/2ˆ

0

dl
m0(π − α)dl′

m0(π − α) sinαdα

= (−1)l+l
′
π/2ˆ

0

dl
m0(α)d

l′
m0(α) sinαdα

=
π/2ˆ

0

dl
m0(α)d

l′
m0(α) sinαdα. (9.34)

In terms of the spherical harmonics, we may rewrite (9.32) as

8π2

2l + 1

l∑

n=−l
clmnYln(Θ,Φ)=

2πˆ

0

π/2ˆ

0

p(α,β;Θ,Φ)Ylm(α,β) sinαdαdβ. (9.35)
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Thus in the absence of crystallite symmetry (i.e., Gcr = C1), each complete pole figure
delivers through (9.32) or (9.35) one linear equation, which for each given even-l and −l ≤
m ≤ l relates a linear combination of 2l + 1 undetermined texture coefficients clmn (−l ≤
n≤ l) to a given complex number. Hence we shall need 2l+ 1 pole figures to determine the
2l + 1 coefficients clmn (−l ≤ n≤ l).

The inversion of complete pole figures simplifies considerably when the crystallites pos-
sess high crystal symmetry, which significantly reduces the number of independent texture
coefficients clmn for a given even-l and m. Consider, for instance, aggregates of cubic crys-
tallites and l = 4, m = 2. From Table 7 of Sect. 5.4.3, we observe that only one of the c4

2n
coefficients, for which we may pick c4

20, is independent. Hence all the c4
2n coefficients can

be determined from one pole figure. Indeed, a glance at Table 7 reveals that we may use the
same complete pole figure to recover, for orthorhomic aggregates of cubic crystallites, all
the clmn or Wlmn coefficients for l = 4,6,8,10,14. On the other hand, for l = 12, since there
are two independent coefficients c12m0 and c12m4 for each m, two complete pole figures will
be required for the determination of the c12mn coefficients.

For any given even-l and m, the number of independent clmn has been worked out for
any Gcr. The results are summarized in Table 11.1 in [224, p. 50].130 The recursion formula
for cubic crystallites is N(l + 12)=N(l)+ 1, where N is the number of independent clmn.
From Table 7 of Sect. 5.4.3, we observe that N(l) ≤ 1 for l < 12 and N(12) = N(0 +
12) = N(0) + 1 = 2. Hence by the recursion formula N(l) ≤ 2 for l < 24 and N(l) ≤ 3
for l < 36. Thus two and three complete pole figures will suffice to determine all clmn up to
L= lmax = 22 and L= 34, respectively.

Example 9.8 Let us write down, for orthorhombic aggregates of cubic crystallites, an explicit
formula for the recovery of the coefficient W420. Substituting l = 4 and m = 2 into (9.32),
we have

2πˆ

0

π/2ˆ

0

p(α,β;Θ,Φ)d4
20(α)e

i2β sinαdαdβ

= 8π2

9

(
c4

20d
4
00(Θ)+ c4

24d
4
40(Θ)ei4Φ + c4

24̄d
4
4̄0(Θ)e−i4Φ

)

= 8π2

9
c4

20

(
d4

00(Θ)+ 2 ·
√

70

14
· d4

40(Θ) cos 4Φ

)
, (9.36)

which implies

c420 = 9

8π2
·
´ 2π

0

´ π/2
0 p(α,β;Θ,Φ)d4

20(α)e
i2β sinαdαdβ

d4
00(Θ)+

√
70
7 d4

40(Θ) cos 4Φ
. (9.37)

Note that c420, as delivered by (9.37), is in general complex. However, it is real if
p(α,β;Θ,Φ) happens to be an even function of β for each α and (Θ,Φ), a property en-
joyed by p, e.g., if the sample in question is a sheet metal whose rolling direction is a 2-fold
axis of rotational symmetry. �

130But remember that in classical texture analysis a crystal with Type II or III point-group symmetry is treated
as if it were its Type I peer in the same Laue class.
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X-ray pole-figure measurements are made at isolated (αi, βj ) ’s. Hence integrals such as
that in (9.37) will have to be computed numerically. In the next section we shall present a
numerical method for the inversion of incomplete pole figures. The same numerical method,
which is none other than an application of the method of least squares, can be used also for
inversion of complete pole figures. However, when the numerical method in Sect. 9.5.2 is
used, it is customary to use more pole figures than the minimum required number as indi-
cated in the paragraph preceding Example 9.8. For example, for aggregates of cubic crystal-
lites, three (resp. four) pole figures are commonly used to determine texture coefficients clmn

up to L= 22 (resp. L= 34).

9.5.2 Inversion of Incomplete Pole Figures

When an X-ray pole figure is obtained by the reflection method, the geometry of the experi-
mental setup dictates that reliable measurement data cannot be obtained for the full range of
0≤ α ≤ 90◦. Usually, only the data for 0≤ β < 360◦ and 0≤ α ≤ αmax (where αmax = 70◦

for example) are taken, which constitute an incomplete pole figure. A number of methods
have been proposed in the literature to recover information on the ODF from incomplete pole
figures. Here we will rewrite only one version of the harmonic method [57, 58, 60, 262] in
the context of the Roe approach.

Following the general procedure of the Roe approach, we start by considering the case
where Gtex = {I } and Gcr = {I }. Suppose we obtain from X-ray measurements, one func-
tion for each incomplete pole figure, a total of K intensity functions Ik(α,β;Θk,Φk)

(k = 1,2, . . . ,K), where 0 ≤ α ≤ αmax, 0 ≤ β < 2π , and (1,Θk,Φk) specifies the spher-
ical coordinates of the unit normal hk to the (hkl) planes pertaining to the k-th pole figure.
We seek texture coefficients clmn in the theoretical formula (9.22) for pole figures such that
the objective function

F =
2πˆ

0

αmaxˆ

0

∑

k

(NkIk(α,β;Θk,Φk)− pth(α,β;Θk,Φk))
2 sinα dα dβ, (9.38)

assumes a minimum; here Nk denotes the undetermined normalization constant for the k-th
measured pole figure, and we have written pth for p in (9.22) to underscore that it denotes
the theoretical formula. For our present purpose it will be most convenient to rewrite (9.17)
explicitly in terms of the set of independent real texture coefficients given in Remark 9.6,
namely Re clmn and Im clmn (2 ≤ l ≤ L; (i)− l ≤ m ≤ l,1 ≤ n ≤ l or (ii) n = 0,0 ≤ m ≤ l

for Re clmn, 1≤m≤ l for Im clmn):

pth(α,β;Θ,Φ)= 1

2π
+ 8π

L∑

even l≥2

l∑

m=−l

l∑

n=0

dl
m0(α)d

l
n0(Θ)

(
cos(nΦ −mβ)Re clmn

− sin(nΦ −mβ)Im clmn

)
, (9.39)

where L is the highest order of l after which the series is truncated. Note that in (9.39)
all terms of the form Im cl00 drop out, because each is multiplied to a factor which is zero
when m = 0 and n = 0; in fact those terms by themselves will not appear, as Im cl00 = 0
for all l. It is readily seen that the total number of real independent texture coefficients is∑L

even l≥2(2l + 1)2.
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In practice, measurements are usually made at isolated points of (αi, βj ), say with αi and
βj starting from α0 = 0 and β0 = 0 and, in 5◦ increments, running to αmax and β72 = 355◦,
respectively. For definiteness, say αmax = α15 = 70◦. Then we replace the objective function
(9.38) by its discrete form

F =
K∑

k=1

15∑

i=0

32∑

j=0

(
NkIk(αi, βj ;Θk,Φk)− pth(αi, βj ;Θk,Φk)

)2
(cosαi − cosαi+1)!β,

(9.40)
where !β = βj+1− βj for all j is the uniform step length for β . In (9.40) we have replaced
sinαi!α by cosαi − cosαi+1 so that the experimental data for α = 0 (i.e., no tilting of
sample) are not inadvertently set aside unused. This step is equivalent to using x = cosα
instead of α as independent variable of the associated Legendre polynomials in the spherical
harmonics Ylm.

The best estimates of the normalization constants Nk and the independent texture coef-
ficients Re clmn and Im clmn in formula (9.39) for pth are those which render the objective
function F in (9.40) a minimum. They satisfy the equations

∂F

∂Nk

= 0,
∂F

∂(Re clmn)
= 0,

∂F

∂(Im clmn)
= 0, (9.41)

where each independent variable leads to one equation. Equation (9.41)1 leads to the formula

Nk =
∑

i,j pth(αi, βj ;Θk,Φk)Ik(αi, βj ;Θk,Φk)(cosαi+1 − cosαi)∑
i,j I

2
k (αi, βj ;Θk,Φk)(cosαi+1 − cosαi)

. (k = 1,2, . . .K)

(9.42)
Note that pth and thence each Nk is an affine function of the independent texture coefficients.
From (9.41)2 and (9.41)3 we obtain the equations

∑

i,j,k

(
NkIk(αi, βj ;Θk,Φk)− pth(αi, βj ;Θk,Φk)

)
dl
m0(αi)d

l
n0(Θk)

× cos(nΦk −mβj)(cosαi+1 − cosαi)= 0, (9.43)
∑

i,j,k

(
NkIk(αi, βj ;Θk,Φk)− pth(αi, βj ;Θk,Φk)

)
dl
m0(αi)d

l
n0(Θk)

×− sin(nΦk −mβj)(cosαi+1 − cosαi)= 0. (9.44)

Substituting (9.42) for Nk (k = 1,2, . . . ,K) in (9.43) and (9.44) leads to a system of∑L

even l≥2(2l + 1)2 inhomogeneous linear equations for the determination of the same num-
ber of independent real texture coefficients.

When Gtex �= {I } and/or Gcr �= {I }, we should add the restrictions imposed by texture
and crystallite symmetry to the procedure described above, which for high symmetries will
significantly reduce the number of independent texture coefficients. For instance, for or-
thorhombic aggregates of cubic crystallites the number of independent texture coefficients
is reduced to 124 for L = 22 after the imposition of symmetry restrictions (cf. Sect. 5.4.4
and [271, Table I] for the symmetry restrictions). For orthorhombic aggregates of hexagonal
crystallites, the number of independent texture coefficients is 239 for L= 22 (cf. (5.56) for
the symmetry restrictions).

For sheet metals that we want to model as having orthorhombic texture symmetry, im-
posing the Gtex =D2 restrictions on the undetermined texture coefficients in the procedure
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above will lead to a truncated w(e) from which any calculated pole figure will show or-
thorhombic symmetry as described in Sect. 9.4. Alternatively, we may start by symmetrizing
each pole figure p obtained from X-ray measurements by defining

p(s)(α,β;Θ,Φ)

= 1

4

(
p(α,β;Θ,Φ)+ p(α,−β;Θ,Φ)+ p(α,π − β;Θ,Φ)+ p(α,π + β;Θ,Φ)

)
.

(9.45)

Then we follow the procedure above with appropriate symmetry restrictions on independent
texture coefficients but, instead of the pole figures p in the range 0 ≤ β < 360◦, use the
symmetrized pole figures p(s) only in the range 0≤ β < 90◦.

9.6 Ghost Correction (I): Generalized Positivity Method

If Friedel’s rule is observed, X-ray pole figures will not carry any information on texture
coefficients clmn with odd l. As pointed out at the beginning of Chap. 8, in the early days of
quantitative texture analysis w(e), the l-even part of the ODF (i.e., that which results when all
terms with odd l in the series expansion

∑
l

∑
m,n c

l
mnD

l
mn of w are deleted), was commonly

misconstrued as the “true” ODF w. The substitution of w(e) for w sometimes led to anoma-
lous experimental findings such as false maxima (called “ghosts”), strong fluctuations at low
intensities, and rather strong negative values of the ODF. After the culprit behind such ghost
phenomena was determined [193, 214], various “ghost-correction” methods and algorithms
for inversion of pole figures were proposed in the 1980s and 1990s. In this section we will
outline one of those methods.

In this section we outline, in the context of the Roe approach, the general idea and pro-
cedure of the generalized positivity method131 proposed by Dahms and Bunge [83, 84] for
ghost correction. Again we focus on the general case where Gtex = {I } and Gcr = {I }. The
cases where Gtex �= {I } and/or Gcr �= {I } will be covered by enforcing the restrictions on
texture coefficients imposed by the non-trivial Gtex and/or Gcr in question.

9.6.1 The Positivity Method

As an introduction to the generalized positivity method, let us consider the positivity method
first.

Suppose by inversion of X-ray pole figures we have already determined a truncated series
of w(e) up to l = L, for some desirable even L. While w as a probability density should be
non-negative, it may happen that w(e)(R) < 0 in some region of SO(3). In the positivity
method, an iterative procedure is designed to compute from the truncated l-even part132

w(e)(R)=
L∑

even l≥0

l∑

m=−l

l∑

n=−l
clmnD

l
mn(R) (9.46)

131This term, introduced by Dahms and Bunge [84] to name what they mentioned in passing as a “slight
modification” of the positivity method in [83], is rarely used in the literature, where the term “positivity
method” usually encompasses both. We distinguish the two here, because the modification in the generalized
method, while mathematically trivial, immensely broadens the scope of the method in applications. Dahms in
his later papers [81, 82], in effect, refers to the generalized positivity method as the “iterative series-expansion
method”, a term used more broadly in [84] to mean a family of methods.
132Note that we have kept the same symbols w(e) and w(o) for the truncated series.
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a truncated series of the odd-part up to l =L+ 1,133 namely

w(o)(R)=
L+1∑

odd l≥1

l∑

m=−l

l∑

n=−l
clmnD

l
mn(R) (9.47)

until a parameter S−, which describes the size of w− (the negative part of w =w(e)+w(o)),
e.g.,

S− := ‖w−‖2 =
ˆ

SO(3)

(w−)2(R)dV(R), where w− = 1

2
(|w| −w)=

{
w if w < 0

0 if w ≥ 0,

(9.48)
is less than some selected tolerance value.134

The mathematics of the positivity method is based on the following proposition.

Proposition 9.9 Let u ∈ L2(SO(3),C), and let

S(o) =
{
s ∈ L2(SO(3),C) : s =

L+1∑

odd l≥1

l∑

m=−l

l∑

n=−l
clmnD

l
mn(R),

where clm̄n̄ = (−1)n−mclmn, for some clmn ∈C

}
, (9.49)

where L≥ 2 is the (even) order of l after which the series of w(e) is truncated. Then

û :=
L+1∑

odd l≥1

l∑

m=−l

l∑

n=−l
ĉlmnD

l
mn(R), (9.50)

where

ĉlmn =
2l + 1

8π2
〈u,Dl

mn〉 =
2l + 1

8π2

ˆ

SO(3)

u(R)Dl
mn(R) dV(R) (9.51)

is the element in S(o) that best approximates u in the sense that

‖u− û‖< ‖u− s‖ for all s �= û ∈ S(o). (9.52)

Proof This proposition is a direct application of the best-approximation theorem in inner

product spaces (see, e.g., [273, p. 219], [278, p. 83]). Note that by (4.21) {
√

2l+1
8π2 D

l
mn} is an

orthonormal set of vectors in L2(SO(3),C). Given u ∈ L2(SO(3),C), the best approxima-
tion to u in S(o) is given by

û=
L+1∑

odd l≥1

l∑

m=−l

l∑

n=−l
〈u,

√
2l + 1

8π2
Dl

mn〉
√

2l + 1

8π2
Dl

mn =
L+1∑

odd l≥1

l∑

m=−l

l∑

n=−l
ĉlmnD

l
mn(R), (9.53)

where ĉlmn is given by (9.51). �

133The choice of l = L+ 1 here will yield an S− that could be smaller and is definitely not larger than its
counterpart delivered by taking l = L− 1.
134Our reason for this choice of definition of S− will be clear in Sect. 9.6.3. As far as serving as a stopping
criterion is concerned, we may define S− as the norm ‖w−‖ or any other strictly increasing function of
‖w−‖. All these definitions with compatible tolerance values are clearly equivalent. Dahms and Bunge [83],
however, defines S− as

´
SO(3) w

−(R)dV (R).
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The procedure in the positivity method is as follows. In Step 1, let w0 =w(e) and let

u1(R)=
{−w0(R) if w0(R) < 0

0 if w0(R)≥ 0.
(9.54)

By Proposition 9.9, the best approximation to u1 in S(o) is

w
(o)
1 =

L+1∑

odd l≥1

l∑

m=−l

l∑

n=−l

(1)clmnD
l
mn, (9.55)

where the texture coefficients (1)clmn, with odd l, are given by

(1)clmn =
2l + 1

8π2

ˆ

SO(3)

u1(R)Dl
mn(R)dV(R). (9.56)

After w
(o)
1 is determined, write w1 = w0 + w

(o)
1 and proceed to Step 2. Note that´

SO(3) w1(R) dV(R)= 1.
In general at the beginning of Step k, where k ≥ 2, we have determined wk−1 =wk−2 +

w
(o)
k−1. Let

uk(R)=
{−wk−1(R) if wk−1(R) < 0

0 if wk−1(R)≥ 0.
(9.57)

By Proposition 9.9, the best approximation to uk in S(o) is

w
(o)
k =

L+1∑

odd l≥1

l∑

m=−l

l∑

n=−l

(k)clmnD
l
mn, (9.58)

where the texture coefficients (k)clmn, with odd l, are given by

(k)clmn =
2l + 1

8π2

ˆ

SO(3)

uk(R)Dl
mn(R)dV(R). (9.59)

After w
(o)
k is determined, write wk = wk−1 + w

(o)
k . Note that

´
SO(3) wk(R) dV(R) = 1 for

each k.
We use a discrete analog of (9.48) as the stopping criterion for the iteration procedure;

cf. [83, 331]. Let {Ri : 1 ≤ i ≤ N} be a fixed regular grid of rotations (e.g., the nearly
equal distant grid proposed by Helming [144] with resolution != 5◦ = π/36 radians) which
satisfies the following criterion: for any R ∈ SO(3), there is an Ri in the grid such that
dSO(3)(R,Ri ), the misorientation between R and Ri (see Sect. 1.10), is at most π/36. We
stop the procedure at the p-th step as soon as we obtain a wp such that

S−(wp) :=
N∑

i=1

(
w−p (Ri )

)2
(9.60)
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is less than some selected tolerance value. Then we take the “ghost-corrected” w =wp , i.e.,

w =w0 +w
(o)
1 + · · · +w(o)

p

=w(e) +
L+1∑

odd l≥1

l∑

m=−l

l∑

n=−l

(
p∑

k=1

(k)clmn

)
Dl

mn, (9.61)

where w(e) is obtained by inversion of X-ray pole figures and is given by (9.46).

Remark 9.10 The positivity method is basically a procedure to eliminate or substantially
mitigate the ghost phenomena that arise if there is a region in the orientation space where
w(e) < 0. If w(e) ≥ 0 everywhere, then Step 1 of the positivity method will not even start.
Given a w(e), the condition on w(o) that w =w(e) +w(o) ≥ 0 will generally allow more than
one solution. Moreover, if v1, v2 ∈ S(o) are two solutions, i.e., w(e)+ v1 ≥ 0 and w(e)+ v2 ≥
0, then their convex combination c1v1 + c2v2, where c1 ≥ 0, c2 ≥ 0 and c1 + c2 = 1 is also
a solution, because w(e) + c1v1 + c2v2 = c1(w

(e) + v1) + c2(w
(e) + v2) ≥ 0. Thus if there

are two solutions, then there will be an infinite number of solutions. Indeed Matthies and
Wagner [220] presents an explicit counter-example with an infinite number of solutions, and
w(e) ≥ 0 in their counter-example. �

Further restrictions on w(o) will have to come from additional conditions, to which we
now turn.

9.6.2 Inclusion of an Isotropic Component

Let 0≤ r < 1. Here we are primarily interested in the cases that r �= 0. The discussion below
reduces to the special case covered by the positivity method when r = 0.

Consider a sample, the texture of which is the mixture of a random part with volume
fraction r �= 0 and a non-random part with volume fraction 1− r .135 Let the ODF of the ran-
dom and of the non-random part be wiso and w̃, respectively, with the usual normalization.
The ODF of the sample in question is then given by

w = rwiso + (1− r)w̃. (9.62)

Substituting wiso and w̃ in (9.62) by their series expansions, respectively, we obtain

w = r

8π2
+ (1− r)

(
1

8π2
+

∞∑

l=1

l∑

m=−l

l∑

n=−l
c̃lmnD

l
mn

)

= 1

8π2
+

∞∑

l=1

l∑

m=−l

l∑

n=−l
clmnD

l
mn, where clmn = (1− r)̃clmn. (9.63)

Hence we may still write w as a sum of its l-even part w(e) and l-odd part w(o), as defined
by (9.31). But, as w̃ ≥ 0 in (9.62), we have

w(R)=w(e)(R)+w(o)(R)≥ r

8π2
, for each R ∈ SO(3). (9.64)

135The importance of including a random part is emphasized in Dahms [82].
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Suppose by inversion of X-ray pole figures we have already determined a truncated series
of w(e) up to l = L, for some desirable even L; cf. (9.46). We follow an iterative procedure
parallel to that of the positivity method to obtain truncated series for w(o)(R) (cf. (9.47)) so
that w(e) +w(o) satisfies inequality (9.64)2.

As the iteration procedure is entirely parallel to that of the positivity method, a brief
description will suffice. Let w0 =w(e). For Step k ≥ 1, let

uk(R)=
{−(w0(R)− r

8π2 ) if wk−1(R) < r

8π2

0 if wk−1(R)≥ r

8π2 .
(9.65)

By Proposition 9.9, the best approximation to uk in S(o) (see (9.49)) is

w
(o)
k =

L+1∑

odd l≥1

l∑

m=−l

l∑

n=−l

(k)clmnD
l
mn, (9.66)

where the texture coefficients (k)clmn, with odd l, are given by

(k)clmn =
2l + 1

8π2

ˆ

SO(3)

uk(R)Dl
mn(R)dV(R). (9.67)

After w
(o)
k is determined, write wk = wk−1 + w

(o)
k and proceed to Step k + 1. Note that´

SO(3) wk(R) dV(R)= 1 for each k.
The stopping criterion is also similar to that of the positivity method: Let {Ri : 1 ≤ N}

be the nearly equal distant grid in SO(3) mentioned just before (9.60). We stop the iteration
process at Step p as soon as we obtain a wp such that

S−(wp) :=
N∑

i=1

((
wp(Ri )− r

8π2

)−)2
(9.68)

is less than some selected tolerance value.
When Gtex �= {I } and/or Gcr �= {I }, appropriate symmetry restrictions should be imposed

on w(e) and all the elements of the subspace S(o). Following the same procedure as before,
we obtain at Step k the functions w(o)

k and wk =wk−1+w
(o)
k (k = 1,2,3, . . .), both of which

satisfy all the required symmetry restrictions.
Dahms and Bunge [84] call the procedure described in this subsection the generalized

positivity method. They further write:

By the choice of different r values, the ‘width’ of the solution range may thus be
estimated.

In the WIMV method [219] for reproduction of the ODF from pole figures, “ghost correction
is based on the assumption that within the range of variation of ODFs that are compatible
with pole figures, that one displaying the fewest peaks that concentrate a maximum of in-
tensity and possessing the maximum possible background is the correct one.” [223, p. 146]
Likewise, we may adopt the same assumption in selecting one solution from those deliv-
ered by the generalized positivity method for various r values. Note that “possessing the
maximum background” means the solution with the highest r value in the present context.
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9.6.3 An Improved Algorithm

Wagner et al. [331] propose an improved algorithm for the generalized positivity method.
What follows is a brief description of their algorithm.

Let 0 < r < 1 be given. We take w0 = w(e). Suppose w0 does not satisfy the stopping
criterion (9.68). We then start the following iteration procedure with k = 1. At Step k, instead
of following the original algorithm of the generalized positivity method by putting wk =
wk−1 +w

(o)
k , where w

(o)
k ∈ S(o) is given by (9.66), we seek a λ ∈ R such that

S−k (λ)=
ˆ

SO(3)

((
wk−1(R)+ λw

(o)
k (R)− r

8π2

)−)2
dV(R)

=
ˆ

Zk(λ)

(
wk−1(R)+ λw

(o)
k (R)− r

8π2

)2
dV(R) (9.69)

assumes a minimum as a function of λ; here

Zk(λ) := {R ∈ SO(3) :wk−1(R)+ λw
(o)
k (R)− r

8π2
≤ 0}; (9.70)

cf. (9.48) and (9.68). Note that w(o)
k is the element in S(o) that best approximates uk as given

by (9.65). When λ= 1, wk = wk−1 +w
(o)
k is the candidate function chosen by the original

algorithm of the generalized positivity method. But S−k (1) need not be the minimum value
of S−k (λ).

Since S−k (·) is a function of a real variable, to locate its minima we compute its first and
second derivatives. They are:

dS−k
dλ

= 2
ˆ

Zk(λ)

(
wk−1(R)+ λw

(o)
k (R)− r

8π2

)
w

(o)
k (R) dV(R), (9.71)

d2S−k
dλ2

= 2
ˆ

Zk(λ)

(
w

(o)
k (R)

)2
dV(R). (9.72)

The boundary terms in (9.71) and (9.72) do not appear because the integrand of (9.69) and
of (9.71) are zero at the boundary of Zk(λ).

Let Fk(λ)= dS−k /dλ. We follow Newton’s method to find a λ(k) that satisfies the equation
Fk(λ)= 0. Since we do not stop the iteration procedure at Step k− 1, wk−1 does not satisfy
the stopping criterion. Take λ

(k)

1 = 1. If wk−1) + λ
(k)

1 w
(o)
k satisfies the stopping criterion,

then we are done. If it doesn’t, then Zk(λ
(k)

1 ) has a positive volume. By (9.72), we have
F ′k(λ

(k)

1 ) > 0. We define λ
(k)

2 be the following formula:

λ
(k)

2 = λ
(k)

1 − Fk(λ
(k)

1 )

F ′k(λ
(k)

1 )
. (9.73)

In general, if we have already computed λ(k)
p and wk−1 + λ(k)

p w
(o)
k does not satisfy the stop-

ping criterion, we proceed to determine λ
(k)

p+1 by the recurrence relation

λ
(k)

p+1 = λ(k)
p − Fk(λ

(k)
p )

F ′k(λ
(k)
p )

. (9.74)
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We continue the computations to find a root for the equation Fk(λ)= 0 until we obtain a λk
q

which either wk−1 + λ(k)
q w

(o)
k satisfies the stopping criterion or λ(k)

q is an acceptable solution

of Fk(λ) = 0. In either case we put λk
q = λ(k) and wk = wk−1 + λ(k)w

(o)
k . If wk does not

satisfy the stopping criterion, then we proceed to Step k + 1 to compute wk+1.
The paper of Wagner et al. includes a couple of examples which suggest that the improved

algorithm delivers in fewer steps a lower S− (see (9.68)) than the original algorithm.

9.7 Ghost Correction (II): Method of Texture Components

The main assumption of this method is that we may adequately represent the unknown ODF
w as that of a mixture, by volume fractions, of the randomly oriented background and a
relatively small number (typically from 5 to 20 for a one-phase material) of suitable texture
components as described by model functions [145, 146, 148, 193, 194]:

w ≈ ν0wiso +
K∑

k=1

νkw
(m)
k ; (9.75)

here K is the number of texture components (excluding the random background); w
(m)
k

and νk are the model function and the volume fraction, respectively, that pertain to the i-
th texture component; ν0 is the volume fraction of the random background; the volume
fractions satisfy the equation

ν0 +
∑

k

νk = 1. (9.76)

Many model functions have been proposed in the literature, e.g., Bunge’s “Gaussian distri-
butions” (see Sect. 8.4.2), Matthies’s “Gaussian standard function” (including a modification
for description of fiber textures) and “Lorentzian standard function” ([216, 217], [224, pp.
87–106]), Helming’s “generalized Gauss components” [142, 143], and others [108, 143].
Since we have not covered any model function except those proposed by Bunge, we shall be
content, in our outline below to illustrate how the method could be used for ghost correction,
to take every model function in (9.75) as some Bunge Gaussian component.

Following the Roe approach, we will examine the case Gtex = {I } and Gcr = {I }. The
cases Gtex �= {I } and/or Gcr �= {I } will be covered by enforcing the appropriate restrictions
on the texture coefficients of all components used. Suppose the crystallographic texture of
the given sample can be taken as a mixture of the “random” background and Bunge Gaus-
sian components (R(k)

0 ;κk) (k = 1, . . . ,K), the ODF w
(m)
k of which has texture coefficients

clmn(R
(k)

0 ;κk) given by (8.33). Let

p[R(k)

0 ;κk](α,β;Θ,Φ)= 1

2π
+ 4π

∞∑

even l≥2

l∑

m=−l

l∑

n=−l
clmn(R

(k)

0 ;κk)dl
m0(α)d

l
n0(Θ)e−imβeinΦ

(9.77)
be the (Θ,Φ) pole figure pertaining to the Gaussian component (R(k)

0 ;κk). The pole figure
of the mixture is given by

K∑

k=0

νkp[R(k)

0 ;κk] = ν0 · 1

2π
+

K∑

k=1

νkp[R(k)

0 ;κk] =
1

2π
+

K∑

k=1

νk

(
p[R(k)

0 ;κk] −
1

2π

)
.

(9.78)
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Suppose we are given a total of M measured incomplete pole figures pm (m= 1, . . . ,M)
as follows. Let pm(α,β;Θm,Φm) = NmIm(α,β;Θm,Φm), where Im is the measured X-
ray intensity of the (Θm,Φm) incomplete pole figure, Nm is an undetermined normaliza-
tion constant, and 0 ≤ α ≤ αmax and 0 ≤ β < 2π . We seek normalization constants Nm

(m = 1, . . . ,M), volume fractions νk , ideal orientations R
(k)

0 , and spread parameters κk
(k = 1, . . . ,K) which minimize the objective function (cf. (9.38))

F =
2πˆ

0

αmaxˆ

0

(
M∑

m=1

NmIm − 1

2π
−

K∑

k=1

νj

(
p[R(k)

0 ;κk] −
1

2π

))2

sinαdαdβ. (9.79)

Since X-ray intensity measurements are made at isolated grid points, we work with a discrete
form of (9.79) instead. Parallel to (9.40) that pertains to a grid with uniform steps in α and
β ,136 here we have

F =
M∑

m=1

∑

i,j

(
NmIm(αi, βj ;Θm,Φm)− 1

2π
−

K∑

k=1

νk

(
p[R(k)

0 ;κk](αi, βj ;Θm,Φm)− 1

2π

))2

× (cosαi − cosαi+1)!β. (9.80)

As (cosαi − cosαi+1) > 0 and !β > 0, F is the sum of squares of functions, which are
linear in the parameters Nm, νk , and nonlinear in κk and the parameters that specify R

(k)

0 .
According to a general summary by Helming [145], one systematic way to solve the

present minimization problem in question will go through an iteration procedure as follows:

1. Estimate the number K , the centers R
(k)

0 , and the spreads κk of the Gaussian components
by inspection of the available incomplete pole figures.

2. Substitute these estimates into (9.80) and determine the parameters Nm, νk by linear least
squares.

3. Keep the values of Nm, νk found, use those obtained in Step 1 for K , R
(k)

0 , and κk as first
estimates and determine the refinements of R

(k)

0 and κk by some nonlinear optimization
procedure (e.g., the Levenberg-Marquardt method as reported in [143] and [147]).

The values of all parameters obtained after one iteration are used to compute the recalculated
pole figures, which are compared with the measured (but normalized) NmIm. Some criterion
(see, e.g., [224, pp. 76–77], [226, Sect. 4] for acceptable fit of pole figures is adopted. The
iteration procedure is stopped if the fit is satisfactory. Otherwise another iteration will begin
with Step 1, where suitable adjustments on K , R

(k)

0 , and κk are attempted.
The method outlined above, of course, can be used for any mixture of all types of texture

components. The procedure generally remains the same. In Step 1 we try to get an estimate
of the number and specifications of the required texture components. With these estimates,
Step 2 will definitely provide the corresponding values of the linear parameters. On the
other hand, whether Step 3 will deliver something meaningful depends on the quality of the
estimates in Step 1. Moreover, while Steps 2 and 3 will be done by the computer, Step 1 will
require manual operations and subjective judgement. More details on how Step 1 could be
executed are discussed in [143, 146].

136See the description before (9.40) for details of the grid used.
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Once we have found the best νj ’s from minimization of F in (9.80), we can write down
the texture coefficients of the predicted ODF w, namely:

clmn =
K∑

k=1

νkc
l
mn(R

(k)

0 ;κk), (9.81)

where the clmn(R
(k)

0 ;κ)’s are given by (8.33).
Note that the present method determines all the texture coefficients clmn of the unknown

ODF, including those with odd l, which represents a distinct advantage of this method. On
the other hand, the method at hand will work only for situations where the main assumption
given at the beginning of this subsection is valid and we know which particular Gaussian
components we should use as constituents of the mixture.

Remark 9.11 See Schaeben [283] for valuable comments on the method of components in
general. �
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PART II. MATHEMATICAL FOUNDATIONS AND EXTENSIONS

Chapter 10

10 SO(3) and O(3) as RiemannianManifolds

10.1 SO(3) and O(3) as Riemannian Submanifolds of M(3)

Let V be the translation space of the three-dimensional physical Euclidean space, and let Lin
be the space of linear transformations on V . We adopt and fix a right-handed orthonormal
basis {ei} (i = 1,2,3) in V , under which each linear transformation in Lin is represented by
a matrix in M3(R), which we will henceforth write as M(3) for short. In what follows we
shall identify each linear transformation A in Lin with its representative in M(3), which we
denote by the same symbol A.

We equip M(3) with the inner product defined by137

A ·B = 1

2
tr(ABT ) for A,B ∈ M(3). (10.1)

We choose and fix an orthonormal basis Ei (i = 1,2, . . . ,9) in M(3) as follows. Let

E1 =−e2 ⊗ e3 + e3 ⊗ e2, E2 =−e3 ⊗ e1 + e1 ⊗ e3, E3 =−e1 ⊗ e2 + e2 ⊗ e1,

E4 =
√

2(e1 ⊗ e1), E5 =
√

2(e2 ⊗ e2), E6 =
√

2(e3 ⊗ e3),

E7 = e2 ⊗ e3 + e3 ⊗ e2, E8 = e3 ⊗ e1 + e1 ⊗ e3, E9 = e1 ⊗ e2 + e2 ⊗ e1.

It is easy to verify that under the inner product (10.1) the matrices Ei (i = 1,2, . . . ,9)
constitute an orthonormal basis in M(3). Every X ∈M(3) can be written uniquely as a linear
combination X =∑

i XiEi , where Xi ∈ R for each i. Let ϕ :M(3)→ R
9 be defined by

ϕ(
∑

i

XiEi )= (X1,X2, . . . ,X9). (10.2)

The function ϕ, which is clearly a homeomorphism between M(3) and R
9, defines a global

chart on M(3) and a C∞ differentiable structure there. It is easy to show that this differen-
tiable structure is independent of the basis chosen in M(3). A function f :M(3)→ R is of
class C∞ if f ◦ ϕ−1 : R9 → R is of class C∞. A function F :M(3)→M(3) is of class C∞
if ϕ ◦ F ◦ ϕ−1 : R9 → R

9 is of class C∞. We take GL(3), the set of non-singular 3× 3 ma-
trices, as an open submanifold of M(3), and endow the subspaces Sym and Skw each with
the differentiable structure that make them embedded submanifolds of M(3). Henceforth we
use the adjective “smooth” to mean “of class C∞”. The subsets GL(3), Sym, and Skw are
smooth submanifolds of M(3).

Let Ψ :M(3)→ Sym be the function defined by

Ψ (A)=AAT . (10.3)

137We follow common practice and introduce the factor 1/2 here to simplify formulas. The Haar measure
on a compact group is unique up to a positive multiplicative constant. In this chapter we shall define the
Haar measure on SO(3) through the bi-invariant Riemannian metric of the group. Introducing the factor 1/2
in (10.1) is equivalent to adopting another choice of the positive multiplicative constant in defining the Haar
measure.
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It is clear that Ψ is of class C∞ and that Ψ −1(I ) = O(3). The differential of Ψ at A ∈
M(3),138 DΨ (A) :M(3)→ Sym, where we have identified the tangent spaces TAM(3) and
TΨ (A)Sym with M(3) and Sym, respectively, is given by the formula

DΨ (A)[H ] =AH T +HAT for any H ∈M(3). (10.4)

Let Q ∈ O(3) be arbitrarily given. For any C ∈ Sym, we have

DΨ (Q)[1
2
CQ] = 1

2
Q(CQ)T + 1

2
CQQT =C, (10.5)

which shows that DΨ (A) is surjective for each Q ∈ O(3). Hence I is a regular value of Ψ
and O(3) is an embedded smooth submanifold of M(3); cf. [186, p. 182, Corollary 8.9].

Since O(3) is a level set of the continuous function Ψ , it is a closed subset of M(3).
Moreover, O(3) is bounded in M(3) because ‖Q‖ =√3/2 for each Q ∈ O(3). Hence O(3)
is compact. As a closed and open subset of O(3), SO(3) is compact and is an embedded
smooth submanifold of M(3).

A smooth manifold M is said to be Riemannian if for each x ∈M the tangent space
TxM is equipped with an inner product 〈·, ·〉x which varies smoothly in the following sense:
For each coordinate chart (U, ξ ) of M such that ξ : U → ξ (U)⊂ R

n, x �→ (ξ1, . . . , ξn), the
components of the metric tensor

gij := 〈 ∂x
∂ξi

,
∂x
∂ξj
〉 (10.6)

are smooth functions on ξ (U). For each A ∈ M(3), TAM(3)—the tangent space to M(3)
at A—can be identified with M(3), which carries the inner product (10.1). Hence M(3)
is a Riemannian manifold. As embedded submanifolds of M(3), both O(3) and SO(3) are
Riemannian. Indeed for each Q ∈ O(3), TQO(3) is a linear subspace of TQM(3) and carries
the inner product induced by that of M(3), namely (10.1). A similar statement holds for the
tangent spaces to SO(3). Section 10.3 provides an example where SO(3) is the Riemannian
manifold and the components of the metric tensor gij are computed with the Euler angles
(ψ, θ,φ) serving as local coordinates.

10.1.1 Smooth Structure on SO(3) and on O(3)

For completeness we outline in this section the smooth structure on SO(3) and O(3). See,
e.g., [130, 276] for details.

There exists a neighborhood U of 0 ∈M(3) such that the exponential map exp : U →
exp(U) and its inverse log : exp(U)→U are diffeomorphisms. In fact we may take

U = {A ∈M(3) : 0≤ ‖A‖<√2 log 2},
which we will do below. Note that

U ∩ Skw= {W ∈ Skw : 0≤ ‖W‖<√2 log 2}
is a neighborhood of 0 ∈ Skw, and exp(U) is a neighborhood of I in GL(3). Since the map
exp :U→ exp(U) is bijective, we have

exp(U ∩ Skw)= exp(U)∩ exp(Skw)= exp(U)∩ SO(3), (10.7)

and exp(U ∩ Skw) is a neighborhood of I in SO(3).

138Other common notations of the differential of Ψ are dΨ , Ψ∗, etc.
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The pair (exp(U),ϕ ◦ log), where ϕ is defined in (10.2), defines a chart on GL(3)
that is compatible with its smooth structure as an open submanifold of M(3). Indeed, let
Y =∑

i YiEi ∈ exp(U). Under ϕ ◦ log, (Y1, . . . , Y9) is mapped to (X1, . . . ,X9), which are
the coordinates of X = logY . Both this coordinate transformation and its inverse, which
corresponds to the coordinate form of Y = expX, are of class C∞. In what follows we use
the chart (exp(U),ϕ ◦ log) and the left translations to construct a smooth atlas on GL(3),
with which we can obtain a smooth atlas for O(3) and one for SO(3).

For A ∈ GL(3), let UA := A exp(U), and let LA : GL(3)→ GL(3), H �→ AH , be the
left translations on GL(3). Let ϕA :UA → R

9 be defined by

ϕA = ϕ ◦ log◦L−1
A . (10.8)

For Y =∑
i YiEi ∈ A exp(U), ϕA ◦ (ϕ

∣∣
UA

)−1 maps (Y1, . . . , Y9) to (X1, . . . ,X9), which

are the coordinates of X = log(A−1Y ) ∈ exp(U). This coordinate transformation and its
inverse, which pertains to the correspondence Y �→ A expX, are of class C∞. Hence for
each A ∈ GL(3), (UA, ϕA) defines a smooth chart on the manifold GL(3). The union of the
domains of the charts Π := {(UA, ϕA) :A ∈GL(3)} clearly covers GL(3). We further claim
that these charts are smoothly compatible. Indeed, suppose UA ∩UB �= ∅ for some A and B

in GL(3). Since UA ∩ UB is open, log◦L−1
A (UA ∩ UB )⊂ U and log◦L−1

B (UA ∩ UB )⊂ U

are open. For each Y ∈ UA ∩ UB , there is a unique X ∈ log◦L−1
A (UA ∩ UB ) and a unique

X̃ ∈ log◦L−1
B (UA ∩UB ) such that

Y =A expX =B exp X̃,

which shows that X and X̃ are related by the formulas

X = log(A−1B exp X̃), X̃ = log(B−1A expX).

Hence the coordinate transformations in question are of class C∞, and the collection of
charts Π defines an atlas on the manifold GL(3), which defines a smooth structure on GL(3).

For each Q ∈ O(3), let WQ =Q(exp(U) ∩ SO(3)) and ψQ = ϕQ |WQ
. Then for each

Q ∈ O(3), Q ∈WQ and

ψQ(WQ)⊂ ϕ(Skw)⊂ {(X1, . . . ,X9) ∈ R
9 :X4 = · · · =X9 = 0}. (10.9)

Thus {(WQ,ψQ) :Q ∈ O(3)} (resp. {(WR,ψR) : R ∈ SO(3)}) serves as an atlas on O(3)
(resp. SO(3)) which defines the unique smooth structure that makes the inclusion of O(3)
(resp. SO(3)) in GL(3) a smooth embedding.

10.1.2 Bi-invariant Metric on O(3) and SO(3)

A smooth manifold G is a Lie group if the following two assertions hold:

1. G is a group.
2. The group operations G × G→ G, (x, y) �→ xy and G→ G, x �→ x−1 are smooth

functions.

For each a ∈G, we define the left translation La :G→G and right translation Ra :G→G

by

La(x)= ax for each x ∈G, (10.10)

10.1 SO(3) and O(3) as Riemannian Submanifolds of M(3)
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and

Ra(x)= xa for each x ∈G, (10.11)

respectively. It is clear that both La and Ra are smooth functions. The groups GL(3), O(3),
and SO(3) are examples of Lie groups.

Let G be a Lie group and a Riemannian manifold. Let 〈u,v〉x denote the inner product
of tangent vectors u, v in TxG. The Riemannian metric on G is said to be left-invariant if
each left-translation on G is an isometry, i.e.,

〈u,v〉x = 〈DLa(x)[u],DLa(x)[v]〉La(x)
for all a, x ∈G and u,v ∈ TxG, (10.12)

and right-invariant if each right-translation is an isometry. A Riemannian metric is bi-
invariant if it is both left-invariant and right-invariant.

In what follows we show that the Riemannian metric on O(3) is bi-invariant. To start
with, let us characterize the structure of the tangent spaces TQO(3), where Q ∈ O(3).

Consider a smooth curve B(t) in O(3) that passes through the element Q at t = 0, i.e.,
B(0) =Q. Then A(t) :=QT B(t) defines a smooth curve in O(3) that satisfies A(0) = I .
Differentiating both sides of the equation A(t)A(t)T = I with respect to t and then setting
t = 0, we obtain

Ȧ(0)A(0)T +A(0)Ȧ(0)T = 0,

which implies Ȧ(0) = −Ȧ(0)T or QT Ḃ(0) is skew. Thus there exists a skew matrix W

such that the tangent vector Ḃ(0) ∈ TQO(3) is given by Ḃ(0)=QW . Conversely, for each
W ∈ Skw, C(t) :=Q exp(tW ) defines a smooth curve in O(3) that satisfies C(0)=Q and
Ċ(0)=QW is a tangent vector in TQO(3). We conclude that

TQO(3)= {QW :W ∈ Skw}. (10.13)

In particular, TI O(3) is none other than the space of skew tensors Skw.
We proceed to show that the Riemannian metric on O(3) is left-invariant. For a given

A ∈O(3), we have by definition (10.10)

LA(Q)=AQ for each Q ∈O(3). (10.14)

Let W be skew and let QW be a tangent vector in TQO(3). It is easy to verify that

DLA(Q)[QW ] =AQW . (10.15)

To verify that the Riemannian metric on O(3) is left-invariant, we have to check that require-
ment (10.12) is observed. Let A, Q be in O(3), and let X and Y be skew. On the left-hand
side of requirement (10.12), we have

〈QX,QY 〉Q = 1

2
tr
(
QX(QY )T

)= 1

2
tr
(
XY T

)
.

On the right-hand side, there holds

〈DLA(Q)[QX],DLA(Q)[QY ]〉LA(Q) = 1

2
tr
(
AQX(AQY )T

)

= 1

2
tr
(
XY T

)
.
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Hence the Riemannian metric on O(3) is left-invariant. That it is also right-invariant can be
proved in a similar way. In conclusion, the Riemannian metric on O(3) is bi-invariant.

Similarly the Riemannian metric on SO(3) is also bi-invariant.

10.2 SO(3) as Metric Space

The rotation group SO(3), as a connected Riemannian manifold, is a metric space with the
metric dSO(3)(P ,Q) given by the infimum of the lengths of piecewise C1 curves from P

to Q. Moreover, the metric space topology agrees with its manifold topology. See, e.g.,
Boothby [36, pp. 189–191].

Let P ,Q ∈ SO(3), and let QP T =M (̃n, ω̃) ∈ SO(3) be the misorientation of Q with
respect to P (see Sect. 1.10). Since the right translation RP T : R �→ RP T on SO(3) is an
isometry, we have

dSO(3)(P ,Q)= dSO(3)(I ,QP T )= dSO(3)(I ,M (̃n, ω̃)). (10.16)

Note that M = exp(ω̃ñ×). Let α : [0,1]→ SO(3) be defined by

α(t)= exp(t ω̃ñ×). (10.17)

We distinguish two cases: (i) 0≤ ω̃ < π ; (ii) ω̃= π

Case (i): 0 ≤ ω̃ < π . Let B = {R(n,ω) ∈ SO(3) : n ∈ S2,0 ≤ ω < 2π}. The curve α is
the only geodesic in B from I to M ; cf. [36, p. 356]. Hence we have

dSO(3)(I ,M)=
1ˆ

0

〈α′(t),α′(t)〉1/2 dt

=
1ˆ

0

〈(ω̃ñ×) exp(t ω̃ñ×), (ω̃ñ×) exp(t ω̃ñ×)〉1/2 dt

=
1ˆ

0

〈ω̃ñ×, ω̃ñ×〉1/2 dt = ‖ω̃ñ× ‖= ω̃, (10.18)

where ω̃ is the misorientation angle between P and Q, and we have appealed to (1.127) and
the bi-invariance of the Riemannian metric.

Case (ii): ω̃ = π . There are two shortest geodesics from I to M , which are of equal
length π . They are: α defined in (10.17) and β : [0,1]→ SO(3) defined by

β(t)= exp(−t ω̃ñ×). (10.19)

In both cases we have dSO(3)(P ,Q)= ω̃. We summarize our finding as a theorem.

Theorem 10.1 Let P and Q be rotations, and let dSO(3)(P ,Q) be the Riemannian distance
between P and Q. Then dSO(3)(P ,Q)= ω̃, where ω̃ is the misorientation angle between P

and Q. �

10.2 SO(3) as Metric Space
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10.3 RiemannianMetric on SO(3) in Euler Angles

In this section we determine the explicit form of the metric tensor on SO(3) at points where
the Euler angles (ψ, θ,φ) can be used as local coordinates, and we compute the volume of
SO(3).

Let U be an open set in SO(3), and let ϕ :U→ R
3, R �→ (ξ1, ξ2, ξ3) be a chart on SO(3).

Let P ∈U and TP SO(3) be the tangent space to SO(3) at P . The vectors

∂R

∂ξ1
(P ),

∂R

∂ξ2
(P ),

∂R

∂ξ3
(P )

constitute a basis of the tangent space TP SO(3). Under local coordinates (ξ1, ξ2, ξ3), the
components of the metric tensor at P ∈U ⊂ SO(3) are given by

gij (P )= ∂R

∂ξi
(P ) · ∂R

∂ξj
(P ). (10.20)

In what follows (ξ1, ξ2, ξ3)= (ψ, θ,φ), the Euler angles which are defined in Sect. 1.7, and
ϕ(U)= {(ψ, θ,φ) : 0 <ψ < 2π,0 < θ < π,0 < φ < 2π}.

For later convenience, we list the chosen basis in Skw in matrix form:

E1 =
⎛

⎜⎝

0 0 0

0 0 −1

0 1 0

⎞

⎟⎠ , E2 =
⎛

⎜⎝

0 0 1

0 0 0

−1 0 0

⎞

⎟⎠ , E3 =
⎛

⎜⎝

0 −1 0

1 0 0

0 0 0

⎞

⎟⎠ . (10.21)

Note that under the inner product (10.1) we have Ei ·Ej = δij .
By (1.87) and (1.124), we have

R(ψ, θ,φ)= exp(ψE3) exp(θE2) exp(φE3). (10.22)

It follows that

∂R

∂φ
= exp(ψE3) exp(θE2) exp(φE3)E3, (10.23)

∂R

∂θ
= exp(ψE3) exp(θE2)E2 exp(φE3), (10.24)

∂R

∂ψ
= exp(ψE3)E3 exp(θE2) exp(φE3). (10.25)

After some algebraic manipulations, we get

R−1 ∂R

∂φ
=E3, (10.26)

R−1 ∂R

∂θ
= exp(−φE3)E2 exp(φE3)

=
⎛

⎜⎝

0 0 cosφ

0 0 − sinφ

− cosφ sinφ 0

⎞

⎟⎠= sinφE1 + cosφE2. (10.27)

10 SO(3) and O(3) as Riemannian Manifolds

254



Reprinted from the journal 1 3

R−1 ∂R

∂ψ
= exp(−φE3) exp(−θE2)E3 exp(θE2) exp(φE3)

=
⎛

⎜⎝

cos θ cosφ sinφ − sin θ cosφ

− cos θ sinφ cosφ sin θ sinφ

sin θ 0 cos θ

⎞

⎟⎠

⎛

⎜⎝

0 −1 0

1 0 0

0 0 0

⎞

⎟⎠

×
⎛

⎜⎝

cos θ cosφ − cos θ sinφ sin θ

sinφ cosφ 0

− sin θ cosφ sin θ sinφ cos θ

⎞

⎟⎠

=
⎛

⎜⎝

0 − cos θ sin θ sinφ

cos θ 0 sin θ cosφ

− sin θ sinφ − sin θ cosφ 0

⎞

⎟⎠

=− sin θ cosφE1 + sin θ sinφE2 + cos θE3. (10.28)

By using the fact that

R−1 ∂R

∂ξi
·R−1 ∂R

∂ξj
= ∂R

∂ξi
· ∂R
∂ξj

,

we obtain

(gij )=

⎛

⎜⎜⎜⎜⎜⎜⎝

∂R

∂ψ
· ∂R
∂ψ

∂R

∂ψ
· ∂R
∂θ

∂R

∂ψ
· ∂R
∂φ

∂R

∂θ
· ∂R
∂ψ

∂R

∂θ
· ∂R
∂θ

∂R

∂θ
· ∂R
∂φ

∂R

∂φ
· ∂R
∂ψ

∂R

∂φ
· ∂R
∂θ

∂R

∂φ
· ∂R
∂φ

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎝

1 0 cos θ

0 1 0

cos θ 0 1

⎞

⎟⎠ . (10.29)

In Euler angles, the volume element on SO(3) is then given by

√
det(gij )=

√
1− cos2 θ = sin θ. (10.30)

The set of points SO(3) \ U has zero group volume. Thus the group volume of SO(3) is
given by

V(SO(3))=
2πˆ

0

π̂

0

2πˆ

0

sin θ dψdθdφ = 8π2. (10.31)

For a Borel set A in SO(3), the normalized Haar measure is:

g(A)= 1

8π2

ˆ

A

sin θ dψdθdφ. (10.32)
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10.4 RiemannianMetric on Orientation Space

Let Gcr = {P 1, . . . ,PNcr} �= {I } be a Type I crystallographic point group, and let M :=
SO(3)/Gcr = {RGcr : R ∈ SO(3)} be the orientation space of crystallites with Gcr as their
group of rotational symmetry (see Sect. 6.1.1). The right action T (cr) : SO(3)×Gcr → SO(3)
of Gcr on SO(3) defined by

T (cr)(R,P )= T (cr)
P (R)=RP for each R ∈ SO(3) and P ∈Gcr (10.33)

is properly discontinuous; see Lemma B.17 in Appendix B. Moreover, for each P ∈Gcr the
map T (cr)

P : SO(3)→ SO(3) is a diffeomorphism and an isometry.
Let π : SO(3)→M , R �→RGcr be the projection. We give the orientation space M the

differentiable structure with respect to which π is a local diffeomorphism (see do Carmo
[71, pp. 22–23]), i.e.: For each RP i ∈ RGcr, there is an open neighborhood U of RP i in
SO(3) and an open neighborhood of RGcr in M such that π |U :U→ V is a diffeomorphism.
We make the orientation space M a Riemannian manifold by endowing it with the metric
induced by the projection π defined as follows (cf. [71, p. 165]): Let u and v be tangent
vectors in the tangent space TRGcrM . Pick an element RP j ∈ RGcr. We define the inner
product of u and v by

〈u,v〉RGcr
:= 〈(Dπ(RP j ))

−1[u], (Dπ(RP j ))
−1[v]〉RP j

. (10.34)

Since T (cr)
P : SO(3) → SO(3) is an isometry for each P ∈ Gcr, we can easily show that

(10.34) is well defined, as it is independent of the choice of RP j ∈RGcr, and that the pro-
jection π is a local isometry. Moreover, the Riemannian distance between two orientations
R1Gcr and R2Gcr is given by

dM(R1Gcr,R2Gcr)=min{dSO(3)(R1P i ,R2P j ) : P i ,P j ∈Gcr} = ω̃d , (10.35)

where ω̃d is the disorientation angle between the two orientations in question; see Godefroy
[130, pp. 63–67] for a proof.

10.5 RiemannianMetric on O(3)

For brevity we shall sometimes write G for SO(3) in this section. Let I =−I be the inver-
sion. Clearly we have

I ∈O(3), detI =−1, and IQ=QI for any Q ∈ O(3). (10.36)

Each Q ∈ O(3) is orthogonal. Thus detQ satisfies

(detQ)2 = (detQ)(detQT )= det(QQT )= det I = 1, (10.37)

which implies detQ=±1. If detQ= 1, then Q ∈ SO(3). If detQ=−1, then det(IQ)= 1
and there is an R ∈ SO(3) such that IQ= R or Q= IR. Since the map det : O(3)→ R,
Q �→ detQ, is continuous, O(3) is the disjoint union of G := SO(3) and

IG := {IR :R ∈ SO(3)}. (10.38)

The orthogonal group O(3) and rotational group SO(3), as embedded submanifolds in
M(3), inherit their Riemannian metric from M(3). The inherited Riemannian metric of
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SO(3), which we have studied in Sect. 10.2, is the same as that which SO(3) inherits from
O(3) as an open submanifold.

In Sect. 10.1.2 we have shown that every left-translation on O(3) is an isometry. In par-
ticular, the left-translation LI : O(3)→ O(3) is an isometry. Let VO(3) be the bi-invariant
volume measure on O(3) defined as follows:

Let A=A1 ∪A2 be a Borel subset of O(3), where A1 and A2 are Borel subsets of SO(3)
and ISO(3), respectively. Then

VO(3)(A)= V(A1)+ V(A2), (10.39)

where V is the Riemannian volume on SO(3). Since

LI (G)= IG, and LI (IG)=G, (10.40)

we see that the two sets G and IG have the same group volume. By (10.31) and (10.39),
we conclude that the group volume of O(3) is

VO(3)(O(3))= 16π2. (10.41)

Let g be the normalized Haar measure on O(3). Then we have

g(A)= 1

16π2
V(A), (10.42)

for each measurable subset of O(3).

10.5.1 O(3) as Metric Space

Let us see how we can define a distance function dO(3) :O(3)×O(3)→ R which agrees with
the Riemannian metric dSO(3) on SO(3), i.e.,

dO(3)(P ,Q)= dSO(3)(P ,Q) for P ,Q ∈ SO(3). (10.43)

Since the Riemannian metric on O(3) is bi-invariant (see Sect. 10.1.2), what follows should
hold:

dO(3)(IP ,IQ)= dSO(3)(P ,Q) for P ,Q ∈ SO(3). (10.44)

On the other hand, for P ∈ SO(3) and IQ ∈ ISO(3), dO(3)(P ,Q) is undefined.
A family of distance functions can be defined on O(3) by adding to (10.43) and (10.44)

the following assignment:

dO(3)(P ,IQ)= dSO(3)(P ,Q)+K where K > 0, for P ,Q ∈ SO(3). (10.45)

It is easily checked that with (10.43)–(10.45) dO(3) satisfies all the requirements in Defini-
tion 1.18 for distance function. A choice of K > π has the added benefit that dO(3)(P ,Q) >

π indicates that one of the two elements P and Q is in SO(3) and the other in ISO(3).

10.5 Riemannian Metric on O(3)
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10.6 Invariant Integration

10.6.1 On SO(3)

Let f ∈ L2(SO(3),C). The integral I (f ) := ´SO(3) f (R) dV(R) is said to be left-invariant if

I (f )=
ˆ

SO(3)

f (P−1R) dV(R) for each P ∈ SO(3); (10.46)

it is right-invariant if

I (f )=
ˆ

SO(3)

f (RP ) dV(R) for each P ∈ SO(3); (10.47)

see Sects. 3.2 and 3.6. The integral I (f ) is bi-invariant if it is both left-invariant and right-
invariant.

Since the Riemannian metric on SO(3) is bi-invariant, it follows easily that I (f ) is bi-
invariant. Indeed, to show that I (f ) is left-invariant, let R̃ = P−1R. Then R = PR̃, and

ˆ

SO(3)

f (P−1R) dV(R)=
ˆ

SO(3)

f (R̃) dV(PR̃)=
ˆ

SO(3)

f (R̃) dV(R̃)= I (f ). (10.48)

That I (f ) is also right-invariant can be shown similarly.

10.6.2 On O(3)

Definition 10.2 For f ∈ C (O(3),C), the normalized Haar integral I (f ) on O(3) is given by

I (f ) :=
ˆ

O(3)

f (Q) dg(Q), (10.49)

where g denotes the normalized Haar measure on O(3). �

Since O(3) is a compact topological group, the existence and uniqueness of the normal-
ized Haar integral (or equivalently, the normalized Haar measure) on O(3) is guaranteed
by the general theory (cf. Sect. C.3). In what follows, we will derive a formula for I (f ),
namely (10.53), that we shall use later. Before we proceed further, we need to introduce
another definition, which first appears in [109] in the context where f is an ODF.

Definition 10.3 Let f :O(3)→ C. Define f R/L : SO(3)→ C by

f R(R)= f (R), f L(R)= f (IR), for R ∈ SO(3). (10.50)

�

Remark 10.4 Clearly f is specified by the pair (f R,f L) and vice versa. Type I crystals
are enantiomorphic. They can exist in right- and left-handed forms. Polycrystalline ag-
gregates of right-handed and of left-handed crystallites have their ODFs w = (wR,0) and
w = (0,wL), respectively. We will discuss further about left-handed and right-handed crys-
tallites in Chap. 12. �

10 SO(3) and O(3) as Riemannian Manifolds
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Since O(3)= SO(3)∪ ISO(3), by (10.49) we have

I (f )=
ˆ

SO(3)

f (Q) dg(Q)+
ˆ

ISO(3)

f (Q) dg(Q). (10.51)

Let ϕI : SO(3) → ISO(3) be defined by ϕI (R) = IR. The function ϕI is a bijective
isometry and is measure-preserving, and f L = f ◦ ϕI . In terms of f R and f L, we recast
I (f ) as

I (f )=
ˆ

SO(3)

f R(R) dg(R)+
ˆ

SO(3)

f L(R) dg(R) (10.52)

= 1

16π2

( ˆ

SO(3)

f R(R) dV(R)+
ˆ

SO(3)

f L(R) dV(R)
)
, (10.53)

where V in (10.53) is the bi-invariant volume measure on SO(3) with V(SO(3))= 8π2.
For f : O(3)→ C and P ∈ O(3), let L P f and RP f be the functions resulted from f

after O(3) undergoes the left translation LP :Q �→ PQ and right translation RP :Q �→
QP , respectively, i.e.,

(L P f )(Q)= f (P−1Q), (RP f )(Q)= f (QP ). (10.54)

The integral I (f ) is left-invariant and right-invariant if I (f ) = I (L P f ) and I (f ) =
I (RP f ) for each P ∈O(3), respectively.

By the findings in Sect. 10.6.1 and by (10.53), clearly we have

I (f )= I (L P f ) and I (f )= I (RP f ) for each P ∈ SO(3). (10.55)

To prove that I (f ) is bi-invariant, it suffices to prove that I (f )= I ((L If )).
For f :O(3)→ C, we have

(L If )(Q)= f (I−1Q)= f (IQ). (10.56)

By (10.50), we observe that for each R ∈ SO(3),

(L If )
R(R)= f (IR)= f L(R), (L If )

L(R)= f (I2R)= f R(R). (10.57)

It follows that

I (L If )= 1

16π2

( ˆ

SO(3)

(L If )
R(R) dV(R)+

ˆ

SO(3)

(L If )
L(R) dV(R)

)

= 1

16π2

( ˆ

SO(3)

f L(R) dV(R)+
ˆ

SO(3)

f R(R) dV(R)
)
= I (f ), (10.58)

where we have appealed to (10.57). Hence the integral I (f ) is bi-invariant.

10.6 Invariant Integration
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Chapter 11

11 Rotations Revisited

11.1 Euler-Rodrigues Parameters

11.1.1 The Quaternions

A skew-field is a set K equipped with two operations called the addition “+” and the mul-
tiplication “·”, respectively, which satisfies what follows:

1. K is an abelian group under addition, with identity denoted as “0”.
2. K \ {0} is a group under multiplication, with identity denoted as “1”.
3. For all a, b, and c in K , the distributive laws hold, i.e.,

(a + b) · c= a · c+ b · c, and a · (b+ c)= a · c+ a · c.
A field is a skew-field with commutative multiplication.

Let R be the set of real numbers. We will introduce a rule of multiplication in R
4 so that

under this operation of multiplication and component-wise addition it becomes a skew-field
H whose elements are called the quaternions. We assign special symbols to the following
elements of H:

0= (0,0,0,0), 1= (1,0,0,0),

i = (0,1,0,0), j = (0,0,1,0), k = (0,0,0,1),

and denote its generic elements by roman letters such as

x = (x0, x1, x2, x3), y = (y0, y1, y2, y3),

etc. In H, the operation of addition “+” is defined component-wise:

(x0, x1, x2, x3)+ (y0, y1, y2, y3)= (x0 + y0, x1 + y1, x2 + y2, x3 + y3),

while the operation of multiplication “·” is defined by the rules

1 · 1= 1, 1 · i = i · 1= i, 1 · j = j · 1= j, 1 · k = k · 1= k,

i · i = j · j = k · k =−1,

i · j = k, j · k = i, k · i = j,

j · i =−k, k · j =−i, i · k =−j,
and by the distributive laws

x · (y + z)= x · y + x · z, (y + z) · x = y · x + z · x.
Thus, we have

x · y = (x0y0 − x1y1 − x2y2 − x3y3, x0y1 + x1y0 + x2y3 − x3y2, x0y2 + x2y0 + x3y1 − x1y3,

x0y3 + x3y0 + x1y2 − x2y1).

(11.1)
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Henceforth, whenever no confusion should arise, we shall suppress the “·” and write xy for
x · y, x2 for x · x, etc.

Each quaternion x can be written as a sum:

x = x0 + x,

where

x0 = (x0,0,0,0) and x = (0, x1, x2, x3)

are called the scalar and vector part of x, respectively. The reader may have already noticed
that we use the same symbol x0 to denote (i) the real number defining the scalar part of
a quaternion x and (ii) the quaternion with its scalar part defined by x0 and vector part
zero. Following usual practice, we shall also use the same symbol x to denote (i) the 3-
vector x = (x1, x2, x3) defining the vector part of a quaternion x and (ii) the quaternion with
its vector part defined by x and scalar part zero. Under this notation, the product of two
quaternions can be recast as

xy = x0y0 − x · y + x0y + y0x + x × y, (11.2)

where x ·y and x×y are, respectively, the usual scalar product and cross product of vectors
in R

3. Quaternions with their scalar part zero, e.g., i, j, k, are sometimes called “pure quater-
nions”. Under our present notation, for pure quaternions we have x = x. Thus, i = i, j = j ,
and k = k.

It follows from (11.2) that

xy − yx = 2x × y. (11.3)

Thus the product of two quaternions x and y is not commutative unless x × y = 0 (i.e.,
x = 0 or y = 0 or x ‖ y).

Given x = x0 + x1i + x2j + x3k ∈H, the quaternion

x = x0 − x1i − x2j − x3k (11.4)

is called the conjugate of x, and the non-negative real number

|x| =
√
x2

0 + x2
1 + x2

2 + x2
3 (11.5)

is called the norm of x. It follows immediately from definitions (11.4) and (11.5) that

(x)= x, |x| = |x|. (11.6)

Proposition 11.1 Let x, y ∈H. The following identities are valid:

xx = xx = |x|2, xy = y x, |xy| = |x||y|. (11.7)

Proof From (11.3) we observe that xx − xx =−2x × x = 0. That xx = |x|2 follows easily
by substituting x for y in (11.2). By (11.2) and (11.4) we have

y x = y0x0 − (−y) · (−x)+ y0(−x)+ x0(−y)+ (−y)× (−x)

= x0y0 − x · y − x0y − y0x − x × y = xy.

11 Rotations Revisited
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Finally, by appealing to (11.7)1 and (11.7)2, we get

|xy|2 = xyxy = xyy x = x|y|2x = |x|2|y|2. �

Note that H is an abelian group under addition, with 0 being the additive identity, and
H \ {0} is a (non-commutative) group under multiplication, with 1 being the multiplicative
identity and

x−1 = x

|x|2 (11.8)

being the multiplicative inverse of x �= 0. Hence H is a skew-field.
If we identify the reals R with {(x0,0,0,0) ∈ H : x0 ∈ R} and the complex numbers C

with {(x0, x1,0,0)} ∈H : x0, x1 ∈ R}, then we have

R⊂ C⊂H.

In closing this subsection, we prove a lemma for later use.

Lemma 11.2 If q ∈H commutes with every pure quaternion x, then its vector part q = 0.

Proof By hypothesis, q = q0 + q commutes with i, j , and k, respectively. If follows then
from (11.3) that

q × i = q × j = q × k = 0.

Hence q = 0. �

11.1.2 Rotations and the Symplectic Group Sp(1)

Let Sp(1) = {x ∈H : |x| = 1} be the set of quaternions with unit norm. We identify R
4 with

the skew-field of quaternions H by the mapping (x0, x1, x2, x3) �→ x0+ x1i+ x2j + x3k. As
a subset of R4, Sp(1) is nothing but S3, the 3-dimensional unit sphere. We endow Sp(1) with
the topology defined through the identification between Sp(1) and S3 (as a subspace of R4).
By (11.7)3, we observe that

x ∈ Sp(1) and y ∈ Sp(1)=⇒ xy ∈ Sp(1).

Moreover, by (11.6)2 and (11.8), we have

x ∈ Sp(1)=⇒ x−1 ∈ Sp(1).

Therefore Sp(1) is a subgroup of the multiplicative group of quaternions. It is called the
symplectic group of order 1.

Let q ∈ Sp(1) and let x be a pure quaternion. Using (11.2) we deduce by direct compu-
tations that

qxq = (q0 + q)(0+ x)(q0 − q)

= (q2
0 − |q|2)x + 2(q · x)q + 2q0(q × x)

= (2q2
0 − 1)x + 2(q · x)q + 2q0(q × x),

(11.9)

11.1 Euler-Rodrigues Parameters
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where we have made use of the vector identity

(q × x)× q = (q · q)x − (q · x)q.
If we interpret the pure quaternions q and x as 3-vectors and q0 as a real number, then the
right-hand side of (11.9) defines a 3-vector. Under this interpretation of qxq , the function
Rq : x �→ qxq is a mapping from R

3 to R
3. Moreover, a glance at (11.9) reveals that Rq is a

linear transformation. Under the standard basis i, j and k, Rq is represented by the matrix

(2q2
0 − 1)

⎛

⎜⎝
1 0 0

0 1 0

0 0 1

⎞

⎟⎠+ 2

⎛

⎜⎝
q2

1 q1q2 q1q3

q2q1 q2
2 q2q3

q3q1 q3q2 q2
3

⎞

⎟⎠+ 2q0

⎛

⎜⎝
0 −q3 q2

q3 0 −q1

−q2 q1 0

⎞

⎟⎠ ,

or

Rq =
⎛

⎜⎝
2q2

0 − 1+ 2q2
1 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 2q2
0 − 1+ 2q2

2 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 2q2
0 − 1+ 2q2

3

⎞

⎟⎠ . (11.10)

It is clear from the preceding formula that Rq =R−q . Note that for each q ∈ Sp(1)

Rqx = qxq for each x ∈ R
3, (11.11)

where we have identified pure quaternions with 3-vectors in R
3.

We claim that Rq is a rotation on R
3 for each q ∈ Sp(1). Indeed, for each x ∈ R

3 we
have

‖Rqx‖ = |qxq| = |q||x||q| = |x| = ‖x‖,
where we have appealed to (11.7)3. It follows that for x, y ∈ R

3,

〈Rqx,Rqy〉 = 1

4
(‖Rqx +Rqy‖2 − ‖Rqx −Rqy‖2)

= 1

4
(‖x + y‖2 − ‖x − y‖2)

= 〈x,y〉.
Therefore Rq is orthogonal, and detRq = ±1. From formula (11.10) we observe that the
mapping q �→ detRq from Sp(1) (or S3) to R is continuous. For q = 1, Rq = I and det Rq =
1. Since Sp(1) is connected, we have det Rq = 1 for all q ∈ Sp(1).

Let Ad : Sp(1)→ SO(3) be defined by

Ad(q)=Rq . (11.12)

We claim that the function Ad is a homomorphism. Indeed, for any x ∈ R
3 and q(1), q(2) ∈H,

we have

Ad(q(1)q(2))x =Rq(1)q(2)x = q(1)q(2)xq(1)q(2) = q(1)
(
q(2)xq(2)

)
q(1) = q(1)

(
Rq(2)x

)
q(1)

=Rq(1)Rq(2)x,

11 Rotations Revisited
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and thence

Ad(q(1)q(2))=Ad(q(1))Ad(q(2)). (11.13)

The homomorphism Ad, as defined by (11.12), is called the adjoint action or adjoint rep-
resentation of the group Sp(1). The following proposition characterizes the kernel of the
homomorphism Ad.

Proposition 11.3 Ker(Ad)= {1,−1}.
Proof Let q ∈ Ker(Ad), i.e., Ad(q) = I . Then for each pure quaternion x, by (11.11) we
have

Rqx = Ix = x = qxq.

Thus q commutes with every pure quaternion x. By Lemma 11.2, we conclude that q , the
vector part of q , is zero. Since q2

0 + q · q = 1, we conclude that q = (±1,0,0,0). �

For each q ∈ Sp(1), q2
0 + |q|2 = 1. Since −1≤ q0 ≤ 1, we may, without loss of general-

ity, put q0 = cos θ for some 0≤ θ ≤ π . Then |q| = sin θ . Thus every quaternion q �= ±1 in
Sp(1) can be put in the form

q = cos θ + sin θn, for some θ ∈ (0,π) (11.14)

where

n= q

‖q‖
is the direction of q . Substituting (11.14) into (11.9) leads to the formula

Rqx = (cos 2θ)x + (1− cos 2θ)(n⊗ n)x + (sin 2θ)n× x. (11.15)

A comparison of the preceding equation with the Rodrigues rotation formula (1.107) reveals
that for q �= ±1 ∈ Sp(1) with q0 = cos θ , Rq is the rotation of angle 2θ about the axis de-
fined by n= q/‖q‖, i.e., Rcos θ+sin θn =R(n,2θ). Conversely, given R(n,ω) �= I , define the
unit quaternion q = cos ω

2 + sin ω
2 n; then R(n,ω)=Rq . Earlier we have already mentioned

that for q = 1, Rq = I . Thus we have proved the following proposition.

Proposition 11.4 The homomorphism Ad : Sp(1)→ SO(3) is surjective. �

Gathering what we have learned about the homomorphism Ad, we conclude from general
theorems in group theory that Ker(Ad) is a normal subgroup of Sp(1)—an obvious fact for
the present case as Ker(Ad)= {1,−1}, and the quotient group Sp(1)/{±1} is isomorphic to
SO(3). Under the adjoint action Ad, two diametrically opposite points in S3 are mapped to
the same rotation in SO(3), a fact which we have alluded to earlier when we mention Rq =
R−q . We shall say more on this double covering of SO(3) by Sp(1) later in this exposition.

Definition 11.5 We call the pair (q0,q), where

q0 = cos
ω

2
, q = sin

ω

2
n (0≤ ω ≤ π), (11.16)

the Euler-Rodrigues parameters of the rotation R(n,ω). �

11.1 Euler-Rodrigues Parameters
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Note that formula (11.16) applies also to the identity I , which has ω = 0 and Euler-
Rodrigues parameters (q0,q)= (1,0). Under the Euler-Rodrigues parameters, rotations are
written R(q0,q), where q0 ∈ R, q ∈ R

3, and q2
0 + |q|2 = 1.

For two quaternions q(1), q(2) in Sp(1), and x ∈ R
3, we have

R(q
(2)
0 ,q(2))R(q

(1)
0 ,q(1))x = q(2)q(1)xq(1) q(2)

= q(2)q(1)xq(2)q(1)

=R(q
(3)
0 ,q(3))x,

(11.17)

q
(3)
0 = q

(2)
0 q

(1)
0 − q(2) · q(1), q(3) = q

(2)
0 q(1) + q

(1)
0 q(2) + q(2) × q(1). (11.18)

The preceding simple formula delivers in closed form the Euler-Rodrigues parameters of
the product of two given rotations. In particular, using (11.16), we may recast (11.18)1 as

cos
ω3

2
= cos

ω2

2
cos

ω1

2
− sin

ω2

2
sin

ω1

2
(n2 · n1). (11.19)

11.2 More on Sp(1)

11.2.1 Sp(1) as a Differentiable Manifold and a Lie Group

Geometrically we identify Sp(1) = {x ∈ H : |x| = 1} with S3, the unit sphere in R
4. As

an embedded submanifold of R4, the differentiable structure of S3 is defined by the atlas
{(U±

i , ϕi) : i = 0,1,2,3}, where

U+
i = {(x0, x1, x2, x3) ∈ S3 : xi > 0}, U−

i = {(x0, x1, x2, x3) ∈ S3 : xi < 0},
and ϕ±i is the projection of U±

i to the hyperplane xi = 0.
For later use we give S3 or Sp(1) a differentiable structure with an atlas containing two

charts defined through stereographic projections.
Let us call (1,0) and (−1,0) the “north pole” and the “south pole” of Sp(1) or S3,

respectively. Let UN = S3 \ {(1,0)} and US = S3 \ {(−1,0)}. We define a chart ϕN :UN →
R

3 through stereographic projection from the north pole as follows. For each point x ∈UN ⊂
S3, we draw a straight line that passes through the north pole (1,0) and x, and we define
ϕN(x) to be the point where this straight line meets the “equatorial (hyper)plane” {(0,w) :
w ∈ R

3}. The mapping ϕN is clearly a bijection. Let y = ϕN(x), where x = (x0,x) ∈ UN .
The straight line connecting (1,0) to (0,y) is specified parametrically by the equation

q(t)= t (0,y)+ (1− t)(1,0)= (1− t, ty), where −∞< t <∞.

This straight line meets the unit sphere S3 at those t for which |q(t)| = 1, i.e., at t = 0 and
t = 2/(‖y‖2+ 1). When t = 0, q(0) is none other than the north pole. When t = 2/(‖y‖2+
1), q is ϕ−1

N (y)= x. Some simple calculations lead to the formula

x = ϕ−1
N (y)= (‖y‖2 − 1,2y1,2y2,2y3)

‖y‖2 + 1
. (11.20)

Conversely, given x, by solving the preceding equation for y, we obtain

y = ϕN(x)= x

1− x0
. (11.21)

11 Rotations Revisited
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Similarly, we define the chart ϕS : US → R
3 through stereographic projection from the

south pole. For x ∈US , let ϕS(x)= z. We have

x = ϕ−1
S (z)= (1− ‖z‖2,2z1,2z2,2z3)

‖z‖2 + 1
, (11.22)

z= ϕS(x)= x

1+ x0
. (11.23)

From (11.20)–(11.23), we see that the transition maps ϕS ◦ϕ−1
N : R3 \ {0}→ R

3 \ {0} and
ϕN ◦ ϕ−1

S : R3 \ {0}→ R
3 \ {0} are given by the formula

z= ϕS ◦ ϕ−1
N (y)= y

‖y‖2
, (11.24)

and

y = ϕN ◦ ϕ−1
S (z)= z

‖z‖2
, (11.25)

respectively, and they are C∞ diffeomorphisms. Hence the atlas {(UN,ϕN), (US,ϕS)} de-
fines a C∞ differentiable structure on Sp(1). It can easily be shown that the differentiable
structure defined by this atlas is the same as that of S3 as an embedded submanifold of R4.

Now let us introduce “polar coordinates” on S3. For any x = (x0, x1, x2, x3) ∈ S3, since
x2

0 + x2
1 + x2

2 + x2
3 = 1, we have −1 ≤ x0 ≤ 1. Hence there exists a unique real number

θ1 ∈ [0,π ] such that x0 = cos θ1. Then (x1, x2, x3) satisfies

x2
1 + x2

2 + x2
3 = sin2 θ1.

In other words, (x1, x2, x3) is a point on the 2-dimensional sphere of radius sin θ1. Introduc-
ing the usual “spherical coordinates” on this 2-dimensional sphere, we have

x0 = cos θ1,

x1 = sin θ1 cos θ2,

x2 = sin θ1 sin θ2 cos θ3,

x3 = sin θ1 sin θ2 sin θ3,

(11.26)

where 0≤ θ2 ≤ π and 0≤ θ3 < 2π . The polar coordinates (θ1, θ2, θ3) are local coordinates
on S3. They are not defined for all points of S3. Indeed θ2 and θ3 are not defined when
θ1 = 0 or π ; θ3 is not defined when θ2 = 0 or π . A moment’s examination reveals that
the polar coordinates (θ1, θ2, θ3) are well defined on the domain Up = S3 \ {(x0, x1,0,0) :
x2

0 + x2
1 = 1}. The singular set may also be written as {(cos θ1,± sin θ1,0,0) : 0≤ θ1 ≤ π}.

We use (11.26) to define a chart (Up,ϕp), where ϕp : Up → R
3. Let Dp = {(θ1, θ2, θ3) :

0 < θ1 < π,0 < θ2 < π,0 ≤ θ3 < 2π} and X1 = {(x1,0,0) : x1 ∈ R}. It is easy to see that
Up ⊂UN , Up ⊂US , ϕN(Up)= ϕS(Up)= R

3 \X1, and ϕN ◦ϕ−1
p :Dp → R

3 \X1, ϕS ◦ϕ−1
p :

Dp → R
3 \X1 are C∞ diffeomorphisms. Hence the chart (Up,ϕp) is compatible with the

differentiable structure of S3 or Sp(1).
By formula (11.1) for the product of two quaternions, we see that the group operation

Sp(1) × Sp(1) → Sp(1), (x, y) �→ xy is of class C∞ or smooth. For x = (x0,x) in Sp(1),
we have x−1 = x = (x0,−x). Thus the group operation x �→ x−1 is also smooth. Hence
Sp(1) is a Lie group.

11.2 More on Sp(1)
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For a given q ∈ Sp(1), the right translation T r
q and left translation T l

q on Sp(1) are defined
by T r

q (x)= xq and T l
q (x)= qx for each x ∈ Sp(1), respectively. Clearly T r

q and T l
q are C∞

diffeomorphisms on Sp(1).

11.2.2 Sp(1) as a Riemannian Manifold with a Bi-invariant Metric

The unit sphere S3 is a submanifold in R
4. For each x ∈ S3, the tangent space to S3 at x,

which we denote by TxS3, is a linear subspace of TxR
4, the tangent space to R

4 at x. Now,
R

4 is a Euclidean space with the inner product

〈x, y〉 = x0y0 + x1y1 + x2y2 + x3y3. (11.27)

For every x ∈ R
4, we identify TxR

4 with R
4 and give it the same inner product (11.27). As

a linear subspace of TxR
4, TxS3 inherits an inner product from TxR

4. After we endow the
tangent spaces TxS3 at x ∈ S3 with the corresponding inner product inherited from TxR

4,
we have defined a second-order, symmetric and positive definite, covariant tensor field g(·)
on S3. We call g the metric tensor. Since the embedding of S3 into R

4 is smooth, g(·) is a
smooth tensor function on S3. The pair (S3,g) is then a Riemannian manifold.

In what follows we shall use bold-faced roman letters such as u,v,E, etc. to denote
4-vectors which lie in some given tangent space TxS3 of S3.

It is straightforward to derive explicit formulas for the components gij of the metric
tensor g under specific coordinate charts. For illustration, let us write down the formulas for
gij under the polar coordinates (θ1, θ2, θ3). For x ∈Up , the vectors

Ei = ∂x

∂θi
= (

∂x0

∂θi
,
∂x1

∂θi
,
∂x2

∂θi
,
∂x3

∂θi
) (i = 1,2,3) (11.28)

are linearly independent in TxS3. For two tangent vectors u, v ∈ TxS3, we have

u= u1E1 + u2E2 + u3E3,

v= v1E1 + v2E2 + v3E3.

It follows that

〈u,v〉 =
3∑

i,j=1

gijuivj , (11.29)

where

gij = 〈Ei ,Ej 〉 (11.30)

are the components of the metric tensor g under the polar coordinates (θ1, θ2, θ3). Explicitly,
we have

E1 = (− sin θ1, cos θ1 cos θ2, cos θ1 sin θ2 cos θ3, cos θ1 sin θ2 sin θ3),

E2 = (0,− sin θ1 sin θ2, sin θ1 cos θ2 cos θ3, sin θ1 cos θ2 sin θ3),

E3 = (0,0,− sin θ1 sin θ2 sin θ3, sin θ1 sin θ2 cos θ3),

11 Rotations Revisited
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and

g11 = E1 ·E1 = 1, g12 = E1 ·E2 = 0, g13 = E1 ·E3 = 0,

g22 = E2 ·E2 = sin2 θ1, g23 = E2 ·E3 = 0, g33 = E3 ·E3 = sin2 θ1 sin2 θ2.

As expected, it is clear from these formulas that the metric tensor g is smooth on the domain
Up of the coordinate chart in question. It is customary to denote

g = detg. (11.31)

From the formulas above, we obtain

g = sin4 θ1 sin2 θ2 (11.32)

under the polar coordinates (θ1, θ2, θ3). Hence the volume element on Sp(1) is
√

detg = sin2 θ1 sin θ2, (11.33)

and the volume of Sp(1) is

V (Sp(1))=
2πˆ

0

π̂

0

π̂

0

sin2 θ1 sin θ2dθ1dθ2dθ3 = 2π2. (11.34)

From formula (11.1) for the product of two quaternions, we observe that for a given
q = (q0, q1, q2, q3) ∈ H, the mapping x �→ qx from H to H can be looked upon as a linear
transformation on H. Indeed, we may write

qx =

⎛

⎜⎜⎜⎜⎝

q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

x0

x1

x2

x3

⎞

⎟⎟⎟⎟⎠
. (11.35)

Let us denote the 4× 4 matrix in (11.35) by Rl
q . Note that for q ∈ Sp(1),Rl

q is orthogonal
and thus detRl

q = ±1. Since the mapping q �→ detRl
q from Sp(1) to R is continuous and

detRl
q = 1 when q = (1,0,0,0), we have detRl

q = 1 for all q ∈ Sp(1). Therefore for q ∈
Sp(1), Rl

q is a rotation on R
4, i.e., Rl

q ∈ SO(4).
Similarly, from the representation

xq =Rr
qx =

⎛

⎜⎜⎜⎜⎝

q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

x0

x1

x2

x3

⎞

⎟⎟⎟⎟⎠
, (11.36)

we see that for a given q ∈ Sp(1) the mapping x �→ xq can be taken as a rotation Rr
q ∈ SO(4)

on R
4.

Clearly the left translation T l
q and right translation T r

q on Sp(1) are simply the restrictions
of the rotations Rl

q and Rr
q on S3, respectively.

11.2 More on Sp(1)
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A Riemannian metric on a Lie group G is said to be left-invariant if

〈u,v〉x = 〈DT l
q u,DT l

q v〉T l
q x

for all q, x ∈ G and u,v ∈ TxG. Similarly, a Riemannian metric is right-invariant if each
right translation T r

q : G→ G is an isometry. A metric on G that is both left-invariant and
right-invariant is said to be bi-invariant. Clearly the metric on S3 or Sp(1) is bi-invariant.

11.3 The Sp(1)→ SO(3) Double Covering

We have proved earlier that the map Ad : Sp(1)→ SO(3), x �→Rx , is a surjective homomor-
phism with Ker(Ad)= {1,−1}. From formula (11.10) for the double covering in question,
it is clear that Ad is a smooth map. In fact, Ad is a local diffeomorphism, i.e., for each x ∈
Sp(1) there exists a neighborhood Nx of x in Sp(1) such that Nx is diffeomorphic to Ad(Nx).
To prove the preceding assertion, we begin with a lemma.

Lemma 11.6 Consider the differential of Ad at the identity 1 ∈ Sp(1), i.e., D(Ad)(1) :
T1Sp(1)→ TI SO(3). We have

D(Ad)(1)[i] = 2E1, D(Ad)(1)[j ] = 2E2, D(Ad)(1)[k] = 2E3, (11.37)

where E1 =−e2 ⊗ e3 + e3 ⊗ e3, E2 =−e3 ⊗ e1 + e1 ⊗ e3, and E3 =−e1 ⊗ e2 + e2 ⊗ e1

are the chosen orthonormal basis tensors in Skw.

Proof For any smooth curve x(t) in Sp(1) with x(0)= 1, we have

D(Ad)(1)

[
dx

dt
(0)

]
= d

dt
Rx(t)

∣∣
t=0

.

The map x(t) = cos t + sin t i defines a smooth curve in Sp(1) that satisfies x(0) = 1 and
dx/dt (0)= i. Substituting x(t)= cos t + sin t i into (11.10), we get

Rx(t) =
⎛

⎜⎝

1 0 0

0 cos 2t − sin 2t

0 sin 2t cos 2t

⎞

⎟⎠ ,

which implies

d

dt
Rx(t)

∣∣
t=0
=

⎛

⎜⎝

0 0 0

0 0 −2

0 2 0

⎞

⎟⎠= 2E1.

Hence it follows that D(Ad)(1)[i] = 2E1. Similarly we obtain the remaining two formulas
in (11.37) by considering the smooth curves y(t)= cos t + sin t j and z(t)= cos t + sin t k.

�

Proposition 11.7 The double covering Ad : Sp(1)→ SO(3) is a local diffeomorphism.

11 Rotations Revisited

270



Reprinted from the journal 1 3

Proof It suffices to prove that the rank of the linear map D(Ad)(q) is 3 for each q ∈ Sp(1),
as the conclusion will then follow from the inverse function theorem. From the preceding
lemma, we see that rank(D(Ad(1)))= 3. We proceed to show that rank(D(Ad(q)))= 3 for
each q ∈ Sp(1).

For convenience, let i1 := i, i2 := j , and i3 := k. Let xj (t)= cos t+ sin t ij for j = 1,2,
3. For q ∈ Sp(1), consider the smooth curves qxj (t) (j = 1,2,3), which all passes q at
t = 0. Moreover, for j = 1,2,3, we have

d

dt
qxj (t)

∣∣
t=0
= qij ,

d

dt
Rqxj (t)

∣∣
t=0
= 2RqEj .

Note that {qij : j = 1,2,3} constitutes an orthonormal basis in TqSp(1) and {2RqEj : j =
1,2,3} an orthogonal basis in TRq

SO(3). Hence rank(D(Ad(q)))= 3. �

Let U ⊂ Sp(1) be an open set which satisfies the condition that if x ∈ U , then −x /∈ U .
Let (U,ϕ), where ϕ :U→ R

3, x �→ (ξ1(x), ξ2(x), ξ3(x)), be a chart on Sp(1). Since Ad
∣∣
U
:

U → Ad(U) is a diffeomorphism, (Ad(U),ϕ ◦ (Ad
∣∣
U
)−1) is a chart on SO(3). Under this

chart, Rx ∈ Ad(U) is mapped to (ξ1(x), ξ2(x), ξ3(x)). Let us investigate the relationship,
under the coordinates (ξ1, ξ2, ξ3), between the metric tensors g̃ and g on U ⊂ Sp(1) and
on Ad(U) ⊂ SO(3), respectively. To make the idea underlying the present discussion as
clear as possible, let us first assume that 1 ∈ U . In the tangent space T1Sp(1), each basis
vector ∂x/∂ξk can be written as a linear combination of the orthonormal basis vectors ij
(j = 1,2,3), say

∂x

∂ξk
=

3∑

j=1

αjkij . (11.38)

Then we have, in the tangent space TI SO(3),

∂Rx

∂ξk
=D(Ad)(1)

[
∂x

∂ξk

]
=D(Ad)(1)

⎡

⎣
3∑

j=1

αjkij

⎤

⎦

=
3∑

j=1

αjkD(Ad)(1)
[
ij

]= 2
3∑

j=1

αjkEj . (11.39)

Thus we obtain

g̃kl(1)= 〈 ∂x
∂ξk

,
∂x

∂ξl
〉1 =

3∑

i=1

αikαil, (11.40)

and

gkl(I )= 〈∂Rx

∂ξk
,
∂Rx

∂ξl
〉I = 4

3∑

i=1

αikαil . (11.41)

Hence we conclude that

gkl(I )= 4 g̃kl(1). (11.42)

11.3 The Sp(1) → SO(3) Double Covering
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Now consider any q ∈U . In the tangent space TqSp(1), each basis vector ∂x/∂ξk can be
written as a linear combination of the orthonormal basis vectors qij (j = 1,2,3), say

∂x

∂ξk
=

3∑

j=1

αjkqij . (11.43)

Then we have, in the tangent space TRq
SO(3),

∂Rx

∂ξk
=D(Ad)(q)

[
∂x

∂ξk

]
=D(Ad)(q)

⎡

⎣
3∑

j=1

αjkqij

⎤

⎦

=
3∑

j=1

αjkD(Ad)(q)
[
qij

]= 2
3∑

j=1

αjkRqEj . (11.44)

Thus we obtain

g̃kl(q)= 〈 ∂x
∂ξk

,
∂x

∂ξl
〉q =

3∑

i=1

αikαil, (11.45)

and

gkl(I )= 〈∂Rx

∂ξk
,
∂Rx

∂ξl
〉Rq

= 4
3∑

i=1

αikαil . (11.46)

Hence we conclude that

gkl(Rq)= 4 g̃kl(q), (11.47)

which implies
√

detg(ξ1, ξ2, ξ3) dξ1dξ2dξ3 = 8
√

det g̃(ξ1, ξ2, ξ3) dξ1dξ2dξ3. (11.48)

Note that if S3 \U has measure zero in S3, then Ad(S3 \U) has measure zero in SO(3).

11.3.1 Volume Element on SO(3) in Axis-Angle Parameters

As an application of (11.48) we use it to determine the volume element on SO(3) in axis-
angle parameters.

Recall that the pair (Up,ϕp), where Up = S3 \ {(x0, x1,0,0) : x2
0 + x2

1 = 1} and ϕp maps
each x ∈ Up to its polar coordinates (θ1, θ2, θ3)(x), is a chart on Sp(1). Let U+

p := Up ∩
{x ∈ S3 : x0 > 0}. Then (U+

p ,ϕp

∣∣
U+p ) is a chart on Sp(1) which satisfies the condition that

−x /∈ U+
p if x ∈ U+

p . Hence (Ad(U+
p ),ϕp ◦ (Ad

∣∣
U+p )

−1), Rx �→ (θ1, θ2, θ3)(x), is a chart on

SO(3).
Note that both the sets {(x0, x1,0,0) : x2

0 + x2
1 = 1} and {x ∈ S3 : x0 = 0} have measure

zero in S3. Hence Ad(U+
p ) has the same group volume as that of SO(3).

Let (n,ω) be the axis-angle parameters pertaining to Rx . We choose “spherical coordi-
nates” (Θ,Ψ ) for n, which are defined through the formulas

n1 = cosΘ, n2 = sinΘ cosΦ, n3 = sinΘ sinΦ.

11 Rotations Revisited
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By abuse of language, we refer to (ω;Θ,Φ) also as the axis-angle parameters of the rotation

R(n(Θ,Φ),ω). From the formula x = cos
ω

2
+ sin

ω

2
n (cf. (11.14)), we obtain:

x0 = cos
ω

2
,

x2 = sin
ω

2
sinΘ cosΦ,

x1 = sin
ω

2
cosΘ,

x3 = sin
ω

2
sinΘ sinΦ.

(11.49)

A comparison of (11.49) with formula (11.26), which gives x = (x0, x1, x2, x3) ∈ U+
p in

terms of its polar coordinates (θ1, θ2, θ3), reveals that the two formulas become the same if
we put

θ1 = ω

2
, θ2 =Θ, θ3 =Φ. (11.50)

By (11.14), (11.48), and (11.50), the volume element on SO(3) is given in axis-angle pa-
rameters by the formula

8 sin2 θ1 sin θ2 dθ1dθ2dθ3 = 4 sin2 ω

2
sinΘ dωdΘdΦ, (11.51)

the right-hand side of which in none other that dV in (3.48). Note that

Ad(U+
p )= {(ω;Θ,Φ) : 0 <ω < π,0 <Θ < π,0≤Φ < 2π}, (11.52)

and V(SO(3))= V(Ad(U+
p )). Hence we have

V(SO(3))= 4

2πˆ

0

π̂

0

π̂

0

sin2 ω

2
sinΘ dωdΘdΦ = 8π2. (11.53)

For 0≤ a < π , let Ba = {R(n,ω) : 0≤ ω ≤ a} be the ball of radius a centered at the identity
I .139 The volume of Ba is given by

V(Ba)= 4

2πˆ

0

π̂

0

aˆ

0

sin2 ω

2
sinΘ dωdΘdΦ = 8π(a − sina). (11.54)

For a = π/2, we have

V(Bπ/2)= 8π2

(
1

2
− 1

π

)
≈ 0.1817× V(SO(3)). (11.55)

11.4 SU(2)

The special unitary group of degree 2 or SU(2) consists of 2× 2 complex matrices A that
satisfy

A−1 =AT , and detA= 1. (11.56)

139The rotation group SO(3) is a metric space with the distance d(R1,R2) between two rotations R1 and
R2 given by the angle ω ∈ [0,π ] of the rotation R2RT

1 that takes R1 to R2. See Sects. 1.10 and 10.2.

11.4 SU(2)
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Let A=
(
z1 z2

z3 z4

)
, where zi ∈ C (i = 1,2,3,4). The requirements given in (11.56) dictate

that
(

z4 −z2

−z3 z1

)
=

(
z1 z3

z2 z4

)
,

which implies that

z4 = z1, z3 =−z2.

Hence we have

SU(2)=
{(

z w

−w z

)
: z,w ∈ C, |z|2 + |w|2 = 1

}
. (11.57)

11.4.1 Identification with Sp(1)

Proposition 11.8 Let Ψ : Sp(1)→ SU(2) be defined by

Ψ (x0 + x1i + x2j + x3k)=
(

x0 + x1i x2 + x3i

−x2 + x3i x0 − x1i

)
. (11.58)

Then Ψ is a homeomorphic isomorphism.

Proof By (11.57), Ψ (x) ∈ SU(2) for each x ∈ Sp(1). Clearly Ψ is injective and is linear, i.e.,

Ψ (x + y)= Ψ (x)+Ψ (y) for each x, y ∈ Sp(1), (11.59)

Ψ (λx)= λΨ (x) for each λ ∈R and x ∈ Sp(1). (11.60)

To see that Ψ is surjective, let g ∈ SU(2). By (11.57),

g =
(

z w

−w z

)
for some z,w ∈ C such that |z|2 + |w|2 = 1.

Let z= x0+x1i and w = x2+x3i. Then x2
0 +x2

1 +x2
2 +x2

3 = 1, x := x0+x1i+x2j +x3k ∈
Sp(1), and Ψ (x)= g. Moreover, the mapping Ψ is clearly continuous. Since Sp(1) (i.e., the
unit sphere S3 in R

4) is compact and SU(2) is a Hausdorff space, the continuous bijection
Ψ is a homeomorphism (see, e.g., [242, p. 167]). That Ψ is a homomorphism, i.e.,

Ψ (xy)= Ψ (x)Ψ (y), (11.61)

can be checked as follows. Notice that

Ψ (1)=
(

1 0

0 1

)
, Ψ (i) =

(
i 0

0 −i

)
, (11.62)

Ψ (j)=
(

0 1

−1 0

)
, Ψ (k) =

(
0 i

i 0

)
. (11.63)

11 Rotations Revisited
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Then (11.61) can be checked easily for x, y ∈ {1, i, j, k}, and its validity for any x, y ∈ Sp(1)
follows from (11.59) and (11.60). Since Ψ is a bijective homomorphism, Sp(1) and SU(2)
are isomorphic. �

In what follows, we identify SU(2) with Sp(1).
Let g ∈ SU(2). Its eigenvalues satisfy the equation

∣∣∣∣∣
z− λ w

−w z− λ

∣∣∣∣∣= λ2 − (z+ z)λ+ 1= λ2 − 2 cos θ1 λ+ 1= 0, (11.64)

where we have used the fact that z + z = 2x0 = 2 cos θ1. Hence the eigenvalues of g are:
eiθ1 , e−iθ1 , where 0≤ θ1 ≤ π .

In fact any g ∈ SU(2) is conjugate to a diagonal matrix h ∈ SU(2) of the form

h(θ)=
(
eiθ 0
0 e−iθ

)
, where 0≤ θ ≤ π ; (11.65)

that is,

g = uh(θ)u−1 (11.66)

for some u ∈ SU(2). Indeed, it is well known140 that there exists w ∈U(2) such that (11.66) is
valid. But we may replace such a w by u= αw with a suitable α ∈ C such that det (αw)= 1.

11.4.2 Convention in Physics

In the physics literature (see, e.g., Biedenharn and Louck [28, p. 18]), instead of (11.58), the
homeomorphic homomorphism Ψ̃ : Sp(1)→ SU(2) is often written as

Ψ̃ (q0 + q1i + q2j + q3k)= q0σ0 − i(q1σ1 + q2σ2 + q3σ3), (11.67)

where σ0 is the 2× 2 identity matrix and σi (i = 1,2,3) are the Pauli matrices given by

σ1 =
(

0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (11.68)

Hence a generic element of SU(2) is written as

g =
(
q0 − iq3 −q2 − iq1

q2 − iq1 q0 + iq3

)
, (11.69)

which should be contrasted with (11.58). Also, the polar coordinates (11.26) on S3 are
rearranged such that the coordinates (q0, q1, q2, q3) of q ∈ S3 are given by

q0 = cos
ω

2
, q1 = sin

ω

2
sinΘ cosΦ,

q2 = sin
ω

2
sinΘ sinΦ, q3 = sin

ω

2
cosΘ, (11.70)

140A complex square matrix A is diagonalizable by the transformation A �→ U−1AU with a unitary matrix

U if and only if A is a normal matrix, i.e., A satisfies AA∗ =A∗A, where A∗ :=AT (see, e.g., Satake [282,
p. 192]). A unitary matrix is clearly normal.

11.4 SU(2)
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where 0≤ ω ≤ 2π , 0≤Θ ≤ π , 0≤Φ < 2π . Note that the correspondence between q ∈ S3

and the “axis-angle parameters” (ω;Θ,Φ) is one-to-one except at points in the singular set
{q ∈ S3 : q2

0 + q2
3 = 1} (cf. the discussions in the paragraph that contains (11.26)). We call

(q0,q)= (cos ω
2 , sin ω

2 n), where 0≤ ω ≤ 2π and n= (sinΘ cosΦ, sinΘ sinΦ, cosΘ) with
n ·n= 1, the Euler-Rodrigues parameters for SU(2), and call (11.69) with q0, q1, q2, and q3

given by (11.70) the parametrization of SU(2) by Euler-Rodrigues parameters.

11 Rotations Revisited
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Chapter 12

12 Texture Analysis Based on the Orthogonal Group

With ODFs defined on SO(3), classical texture analysis suffers from the limitation that the
groups of texture and crystallite symmetry Gtex and Gcr are restricted to be rotational. Thus,
strictly speaking, all polycrystalline materials that have their Gcr being improper, which in-
clude most engineering materials (e.g., metals) with important applications, are not covered
by the theory of classical texture analysis. That in applications of texture analysis substitut-
ing an improper Gcr by its proper peer in the same Laue class seems to have often worked
does not validate such an ad hoc practice. On the contrary, such unexpected “successes”
of the classical theory should be explained, and the conditions which render them possible
delineated.

Bunge and his coworkers [60, 64, 65, 109] were the first to introduce ODFs that are
defined on O(3). However, they stopped pursuing further after giving some basic properties
of the ODF that include the restrictions imposed on it by texture and crystal symmetries and
some discussions that concern its measurement by X-ray diffraction.

In what follows we will adopt the approach initiated by Roe [270, 271] but will assume
that for polycrystalline aggregates of Type II or Type III crystallites orientation probability
measures and orientation distribution functions be defined on O(3). The main references for
our treatment in this chapter are [94, 95, 206].

12.1 Orientation Distribution Functions Defined on O(3)

The Roe approach in classical texture analysis starts with a treatment for aggregates of Type
I triclinic crystallites, i.e., those with Gcr = C1 = {I }. While there is another type of triclinic
crystallites, i.e., those with Gcr = Ci = {I ,I} (Type II; see Table 3), polycrystalline aggre-
gates of such crystallites are treated in classical texture analysis as if the crystallites were of
Type I. To introduce ODFs defined on O(3) in the Roe approach, one option would be to be-
gin with aggregates of Type II triclinic crystallites. However, it is more instructive to begin
by considering a mixture of “right-handed” and “left-handed” Type I triclinic crystallites of
the same substance S, which we will do here.

Let us return to the setting discussed in Sect. 3.1. Consider a manufacturing process
P which produces macroscopically identical samples Pα of polycrystal P, which consist of
Type I triclinic crystallites of substance S. We choose an ideal single crystal C of S with con-
figuration κ0(C) as reference. The triclinic crystals of S, however, can occur in two forms,
namely: crystals whose possible configurations are: (i) rotated versions of κ0(C), which
we call right-handed, and (ii) rotated versions of I ◦ κ0(C), which we call left-handed.
Suppose each of the macroscopically identical polycrystalline samples Pα is a mixture of
right-handed and left-handed crystallites of substance S. Take an ensemble E of polycrys-
talline samples Pα produced in the process P. We measure the crystallite orientation at the
same point X of each sample Pα in the ensemble. From sample Pα we obtain the orienta-
tion Qα with respect to the reference κ0(C), where Qα ∈ O(3) = SO(3) ∪ ISO(3). If Qα

is a rotation (resp. roto-inversion) with respect to κ0(C), then the orientation at X is taken
to that of a right-handed (resp. left-handed) crystal and Qα ∈ SO(3) (resp. Qα ∈ ISO(3)).
In texture analysis we assume that the orientations at X for the ensemble E is characterized
by a probability measure ℘(·;X) on O(3) specific to the process P. We call ℘(·;X) the
orientation (probability) measure at X, which defines the crystallographic texture at X. If the
texture is homogeneous, then ℘ will be independent of X. Even if the texture is inhomoge-
neous, it is customary to suppress the explicit dependence of ℘ on X except at places where
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such dependence should be emphasized. Whether the texture is homogenous or not should
be clear from the context.

For probability measures ℘ which are absolutely continuous with respect to the bi-
invariant group volume VO(3), the ODF, i.e., the Radon-Nikodym derivative of ℘ with respect
to VO(3), is well defined:

w(Q)= d℘

dVO(3)(Q)
(12.1)

so that for a measurable subset A of O(3)

℘(A)=
ˆ

A

w(Q)dVO(3)(Q) (12.2)

gives the probability of finding the crystallite orientation at the sampling point in question
to be in A, and

ˆ

O(3)

w(Q)dVO(3)(Q)= 1; (12.3)

see Sects. 10.5 and 10.6.2 for the definition of VO(3) and of the invariant integral on O(3).
We will work with ODFs w ∈ L2(O(3),R). There is no loss of generality in doing so, as
such ODFs are dense in the space of orientation measures under the vague topology (see
[206] and the references therein).

12.1.1 Series Expansions and Texture Coefficients

Following Esling et al. [109], we introduce wR and wL, the orientation distribution functions
of the right-handed and left-handed crystallites, respectively.

Definition 12.1 Let w :O(3)→ R. Define wR/L : SO(3)→ R by

wR(R)=w(R), wL(R)=w(IR), for R ∈ SO(3). (12.4)

The functions wR and wL are called the right-handed and left-handed parts of w, respec-
tively. �

Regarding wR and wL as functions in L2(SO(3),C), we write down their expansions in
terms of the Wigner D-functions:

w(Q)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wR(R)=
∞∑

l=0

l∑

m=−l

l∑

n=−l
cl,RmnD

l
mn(R(ψ, θ,φ)) for Q=R ∈ SO(3)

wL(R)=
∞∑

l=0

l∑

m=−l

l∑

n=−l
cl,LmnD

l
mn(R(ψ, θ,φ)) for IQ=R ∈ SO(3).

(12.5)
Since the functions wR and wL are real-valued, their texture coefficients satisfy the con-
straints (cf. (4.46)) that

c
l,R
m̄n̄ = (−1)n−mcl,Rmn , c

l,L
m̄n̄ = (−1)n−mcl,Lmn. (12.6)

12 Texture Analysis Based on the Orthogonal Group
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Let λ and 1− λ be the volume fractions of right-handed and left-handed crystallites in the
mixture, respectively. Then we have

c
0,R
00 =

λ

8π2
, c

0,L
00 =

1− λ

8π2
, (12.7)

ˆ

SO(3)

wR(R)dV(R)= λ,

ˆ

SO(3)

wL(R)dV(R)= 1− λ. (12.8)

By Corollary 15.8 of the Peter-Weyl theorem, each orientation distribution function w ∈
L2(O(3),C) can be expanded as an infinite series in terms of the matrix elements Dl,±

mn of
the complete set of irreducible unitary representations D±l of O(3) (cf. Theorem 14.14):

w(Q)=
∞∑

l=0

l∑

m=−l

l∑

n=−l
cl,+mnD

l,+
mn (Q)+

∞∑

l=0

l∑

m=−l

l∑

n=−l
cl,−mnD

l,−
mn (Q) (12.9)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∞∑

l=0

l∑

m=−l

l∑

n=−l
(cl,+mn + cl,−mn )D

l
mn(R(ψ, θ,φ)) for Q=R ∈ SO(3)

∞∑

l=0

l∑

m=−l

l∑

n=−l
(cl,+mn − cl,−mn )D

l
mn(R(ψ, θ,φ)) for Q= IR ∈ ISO(3).

(12.10)

A comparison of (12.10) and (12.5) reveals that

cl,Rmn = cl,+mn + cl,−mn , cl,Lmn = cl,+mn − cl,−mn . (12.11)

Thus we have

cl,+mn =
1

2
(cl,Rmn + cl,Lmn), cl,−mn =

1

2
(cl,Rmn − cl,Lmn). (12.12)

From (12.6) and (12.12) we observe that the texture coefficients cl,±mn satisfy the conditions

c
l,±
m̄n̄ = (−1)n−mcl,±mn , (12.13)

which follows from the fact that w is real-valued. From (12.7) and (12.12) we obtain

c
0,+
00 = 1

16π2
, c

0,−
00 = 2λ− 1

16π2
. (12.14)

Note that c0,−
00 = 0 if and only if λ= 1/2.

Remark 12.2 For aggregates of Type II crystallites, we shall see in (12.25) that λ= 1/2. For
aggregates of Type III crystallites, the same conclusion follows from (12.45), the formula
for the orientation measure of a singe crystal. �

12.2 Discrete Probability Measures on O(3)

Let us return to the substance S, the Type I triclinic crystallites of which can occur in both
the right- and left-handed forms. A single crystal of S whose orientation with respect to the

12.2 Discrete Probability Measures on O(3)
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reference crystal (C,κ0) is specified by Q ∈ O(3) has its orientation measure given by the
Dirac measure δQ, which satisfies

δQ(A)=
{

1 if Q ∈A

0 if Q /∈A,
for each measurable A⊂O(3). (12.15)

In particular, the orientation measures of a right-handed and a left-handed single crystal
whose orientation with respect to the reference is defined by a rotation R and roto-inversion
IR are δR and δIR , respectively.

A probability measure ℘ on O(3) is said to be discrete if it is a convex combination of
Dirac measures, i.e.,

℘ =
N∑

i=1

aiδQi
,

(
N∑

i=1

ai = 1; ai > 0, Qi ∈O(3) for each i

)
(12.16)

In general, say, K and N −K of the Qi are in SO(3) and ISO(3), respectively. Then we
may change the indices so that Qi = Ri ∈ SO(3) for 1 ≤ i ≤K , and Qi = IRi ∈ ISO(3)
for K + 1≤ i ≤N . Thus

℘ =
K∑

i=1

aiδRi
+

N∑

i=K+1

aiδIRi
(12.17)

can be interpreted as the orientation measure of a polycrystalline aggregate of K right-
handed and N −K left-handed crystallites of S, where the one labelled i has volume frac-
tion ai and orientation specified by rotation Ri or roto-inversion IRi with respect to the
reference crystal. Associated with the orientation measure ℘ in (12.17) are its right-handed
and left-handed parts

℘R =
K∑

i=1

aiδRi
, ℘L =

N∑

i=K+1

aiδRi
, (12.18)

which are Radon measures defined on SO(3) and pertain to the right-handed and left-handed
crystallites, respectively, so that (cf. (10.52))

ˆ

O(3)

f (Q)d℘ (Q)=
ˆ

SO(3)

f R(R)d℘R(R)+
ˆ

SO(3)

f L(R)d℘L(R) (12.19)

for each f ∈ C (O(3),R).
Let w : O(3) → R be an ODF, and let wR and wL be its right- and left-handed parts.

Let ℘ be the orientation measure on O(3) defined by w, and let ℘R , and ℘L be the right-
handed and left-handed parts of ℘. Since discrete probability measures are dense under the
vague topology [206] in the metrizable space of orientation measures, there is a sequence
of discrete probability measures ℘d

s (s = 1,2,3, . . .) on O(3) such that ℘d
s → ℘ as s→∞.

For each s, let ℘d,R
s and ℘d,L

s be the right-handed and left-handed parts of ℘d
s , respectively.

Clearly we have ℘d,R
s → ℘R and ℘d,L

s → ℘L as s→∞.

12 Texture Analysis Based on the Orthogonal Group

280



Reprinted from the journal 1 3

12.3 Transformations and Symmetries

12.3.1 Inversion of Reference Placement

Let us continue our discussion on the polycrystal P (see Sect. 12.1), which is a mixture of
right-handed and left-handed (Type I) triclinic crystallites of substance S in volume frac-
tions of λ and 1− λ, respectively. Recall that we have chosen a right-handed crystal C in
placement κ0(C) as reference. Let w : O(3)→ R be the ODF that characterizes the texture
at a material point X of P. Now consider a change of reference to a left-handed crystal,
which is exactly in the placement I ◦ κ0(C), where I =−I is the inversion. Let T̃ Iw be
the ODF at X after the change of reference. Similar to the discussions on (5.9), we arrive at
the conclusion that the transformed ODF is given by

(T̃ Iw)(P )=w(PI)=w(IP ) for each P ∈O(3). (12.20)

It then follows from Definition 12.1 that

(T̃ Iw)R(R)= (T̃ Iw)(R)=w(IR)=wL(R) for R ∈ SO(3), (12.21)

(T̃ Iw)L(R)= (T̃ Iw)(IR)=w(R)=wR(R) for R ∈ SO(3). (12.22)

Hence, if we put w as w = (wR,wL), then

T̃ Iw =
(
(T̃ Iw)R, (T̃ Iw)L

)= (wL,wR). (12.23)

12.3.2 Polycrystalline Aggregates of Type II Crystallites

Consider a polycrystal P that consists of Type II crystallites of some substance S. Let
(C, κ0) be an ideal crystal C of S in the placement κ0. We choose a coordinates system
in κ0(C) so that the origin O is at a center of inversion of the crystal. Then I is an element
of the point group G2 of the ideal crystal, which implies I ◦ κ0(C)= κ0(C). Suppose at the
sampling point X of P the ODF is w : O(3)→ R. Let wR and wL be the right-handed and
left-handed parts of w, respectively. Under an inversion of the reference crystal κ0(C), as
nothing has changed the ODF remains the same, i.e.,

T̃ Iw =w = (wR,wL). (12.24)

On the other hand, by (12.23) we have T̃ Iw = (wL,wR), which together with (12.24) imply
that (wR,wL)= (wL,wR) or wR =wL. Hence we arrive at the following proposition.

Proposition 12.3 The right- and left-handed parts wR and wL of the ODF w of any poly-
crystalline aggregate of Type II crystallites are identical. �

From (12.8) and Proposition 12.3 we immediately obtain for the ODF w of any poly-
crystalline aggregate of Type II crystallites the relations

ˆ

SO(3)

wR(R) dV = 1

2
,

ˆ

SO(3)

wL(R) dV = 1

2
. (12.25)

12.3 Transformations and Symmetries
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In fact (12.25) can also be read off from the consequence of Proposition 12.3 that cl,Rmn = cl,Lmn

for all l, m, and n. For l =m= n= 0, we obtain from (12.12)1 and (12.14)1 that

c
0,R
00 = c

0,L
00 = c

0,+
00 = 1

16π2
. (12.26)

We can gain a deeper understanding of the rationale behind Proposition 12.3 in another
way. Since G2 is of Type II, we have G2 =G1 ∪ IG1, where G1 is the proper point group
in the same Laue class of G2; see Table 3. Let

G1 = {R1, . . . ,RN }, G2 = {R1, . . . ,RN,IR1, . . . ,IRN }. (12.27)

The orientation measure of an ideal crystal of S whose orientation with respect to the refer-
ence configuration κ0(C) can be specified by a rotation R0 is (cf. [95, 206]; see also (8.12))

℘2(R0)= 1

2N

(
N∑

i=1

(δR0Ri
+ δIR0Ri

)

)
. (12.28)

Let ℘R
2 (R0) and ℘L

2 (R0) be the corresponding right-handed and left-handed parts of
℘2(R0), respectively; see Sect. 12.2. We have

℘R
2 (R0)= ℘L

2 (R0)= 1

2N

N∑

i=1

δR0Ri
. (12.29)

It follows from (8.11) and (12.29) that the texture coefficients pertaining to ℘R
2 (R0) and

℘L
2 (R0) are:

cl,Rmn = cl,Lmn =
2l + 1

8π2
· 1

2N

N∑

i=1

Dl
mn(R0Ri ). (12.30)

Consider a generic polycrystalline aggregate of a finite number of crystallites of S, which
are indexed by α ∈ {1,2, . . . ,K}, have volume fractions aα , and have orientations with re-
spect to the reference (C,κ0) specified by the rotations R

(α)

0 . The orientation measure of the
polycrystalline aggregate is the discrete measure

℘d =
K∑

α=1

aα℘2(R
(α)

0 ),

(
K∑

α=1

aα = 1; aα > 0 for each α

)
(12.31)

with corresponding right-handed and left-handed parts

℘d,R :=
K∑

α=1

aα℘
R
2 (R

(α)

0 ), ℘d,L :=
K∑

α=1

aα℘
L
2 (R

(α)

0 ) (12.32)

defined on SO(3). We have

℘d,R = ℘d,L, (12.33)

because ℘R
2 (R

(α)

0 ) = ℘L
2 (R

(α)

0 ) for each α. It follows immediately that the equality cl,Rmn =
cl,Lmn between all corresponding texture coefficients pertaining to ℘R

2 (R
(α)

0 ) and ℘L
2 (R

(α)

0 )

12 Texture Analysis Based on the Orthogonal Group
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remains valid. Let a square-integrable ODF w : O(3) → R be given, and let wR and wL

be its right- and left-handed parts. Let ℘ be the probability measure defined by w, and let
℘R and ℘L be the right-handed and left-handed parts of ℘, respectively. Clearly we have
wR = d℘R/dV and wL = d℘L/dV . Since discrete probability measures are dense under
the vague topology in the metrizable space of orientation measures on O(3) [206], there is
a sequence of discrete probability measures ℘d

s (s = 1,2, . . .) in O(3) with corresponding
right-handed and left-handed parts ℘d,R

s and ℘d,L
s on SO(3), which satisfy ℘d,R

s = ℘d,L
s for

each s, such that ℘d
s → ℘, ℘d,R

s → ℘R , and ℘d,L
s → ℘L, as s→∞. It follows that ℘R = ℘L

and wR =wL.

12.3.3 Texture and Crystallite Symmetries

Let w :O(3)→ R be the ODF that characterizes the texture at a material point X of a given
polycrystal. Let T Qw and T̃ Qw be the ODF of the polycrystal after it undergoes a rota-
tion or roto-inversion and after the configuration of the reference single crystal undergoes a
rotation or roto-inversion Q ∈O(3), respectively. Parallel to (5.3) and (5.9), we have

(T Qw)(P )=w(QT P ) for each P ∈O(3), (12.34)

and

(T̃ Qw)(P )=w(PQ) for each P ∈O(3). (12.35)

The groups of texture symmetry and crystallite symmetry are defined respectively as
follows:

Gtex = {Q ∈O(3) : T Qw =w}, (12.36)

Gcr = {Q ∈O(3) : T̃ Qw =w}. (12.37)

Similar to the findings in Chap. 5, texture and crystallite symmetry will each impose restric-
tions on texture coefficients. See [65] and [94] for details.

12.4 The Reduced ODF

Let P be a polycrystal of Type II or Type III crystallites, and let w :O(3)→ R be the ODF
of P as given by (12.5). The crystallites of P have an improper Gcr. In the Laue class that
contains Gcr, however, there is one rotational member GI

cr. In classical texture analysis the
crystallites of P are treated as if their point group were GI

cr, not Gcr. The crystallographic
texture of polycrystal P is then represented by the reduced ODF wr : SO(3)→ R with the
expansion

wr(R)= 1

8π2
+

∞∑

l=1

l∑

m=−l

l∑

n=−l
clmnD

l
mn(R(ψ, θ,φ)), (12.38)

which satisfies the normalization condition
ˆ

SO(3)

wr(ψ, θ,φ)dV = 1. (12.39)

12.4 The Reduced ODF
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Henceforth we shall call the texture coefficients of P in classical texture analysis, namely
clmn, the reduced texture coefficients of P.

The question that we want to address in this section is [206]: How are the reduced texture
coefficients clmn of wr related to the coefficients cl,Rmn and cl,Lmn of w?

Our analysis in Sect. 12.3.2 has largely provided an answer to this question for polycrys-
talline aggregates of Type II crystallites. If we regard the crystallites of P with Gcr = G2

in (12.27) as having Gcr =G1 in the same equation, then the orientation measure given in
(12.31) for the single crystal with orientation specified by a rotation R0 with respect to the
reference will be replaced by

℘r(R0)= 1

N

N∑

i=1

δR0Ri
= 2℘R

2 (R0) on SO(3), (12.40)

where we have appealed to (12.29). It follows that the discrete measure ℘d given in (12.31)
will be replaced by

℘d
r = 2℘d,R, (12.41)

where ℘d,R is given by (12.32)1. If we go through the analysis in Sect. 12.3.2, we will get
at the end wr = 2wR and

clmn = 2cl,Rmn = cl,Rmn + cl,Lmn. (12.42)

12.4.1 Polycrystalline Aggregates of Type III Crystallites

Let P be a polycrystal of Type III crystallites of a substance S. Let Gcr = G3 and G1 ⊂
SO(3) be the proper point group in the same Laue class as G3. By Theorem 2.35, there is a
normal subgroup H of index 2 in G1 and a rotation P ∈G1 \H such that

G1 =H ∪PH, G3 =H ∪ IPH. (12.43)

Let H have order N , and let Rk (k = 1, . . . ,N ) be the elements of H . Then we have

G1 = {R1, . . . ,RN,PR1, . . . ,PRN }, G3 = {R1, . . .RN,IPR1, . . . ,IPRN }.
(12.44)

To describe the crystallite orientation at a point X in a sample of P, we choose an ideal
crystal C of S in a reference configuration κ0(C). Instead of the polycrystal P, we start
by considering a single crystal (C,κR0) of S whose placement in space is given by κR0 =
R0 ◦κ0, where R0 is a rotation. The orientation measure of the single crystal with placement
κR0 is given by (cf. [95, 206]; see also (8.12))

℘3(R0)= 1

2N

(
N∑

i=1

(δR0Ri
+ δIR0P Ri

)

)
. (12.45)

The corresponding right-handed and left-hand parts of ℘3(R0), namely

℘R
3 (R0)= 1

2N

N∑

i=1

δR0Ri
, ℘L

3 (R0)= 1

2N

N∑

i=1

δR0P Ri
, (12.46)
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respectively, are Radon measures defined on SO(3) such that for f ∈ C (O(3),C) we have
(cf. Sect. 10.6.2)

ˆ

O(3)

f (Q)d℘3(Q)=
ˆ

SO(3)

f R(R)d℘R
3 (R)+

ˆ

SO(3)

f L(R)d℘L
3 (R). (12.47)

The texture coefficients pertaining to ℘R
3 (R0) and ℘L

3 (R0) are

cl,Rmn =
2l + 1

8π2
· 1

2N

N∑

i=1

Dl
mn(R0Ri ), cl,lmn =

2l + 1

8π2
· 1

2N

N∑

i=1

Dl
mn(R0PRi ), (12.48)

respectively. If Gcr of the single crystal in question is taken to be G1, then the orientation
measure of the crystal is

℘r(R0)= 1

2N

2N∑

i=1

(
δR0Ri

+ δR0P Ri

)
, (12.49)

and the corresponding reduced texture coefficients are given by

clmn =
2l + 1

8π2
· 1

2N

N∑

i=1

(
Dl

mn(R0Ri )+Dl
mn(R0PRi )

)
. (12.50)

Note that we have

℘r(R0)= ℘R
3 (R0)+℘L

3 (R0), clmn = cl,Rmn + cl,Lmn. (12.51)

Consider a generic polycrystalline aggregate of a finite number of crystallites of S, which
are indexed by α ∈ {1,2, . . . ,K}, have volume fractions aα , and have orientations with re-
spect to the reference (C,κ0) specified by the rotations R

(α)

0 . The orientation measure of the
polycrystalline aggregate is the discrete measure

℘d =
K∑

α=1

aα℘3(R
(α)

0 ),

(
K∑

α=1

aα = 1; aα > 0 for each α

)
(12.52)

on O(3), which has corresponding right-handed and left-handed parts

℘d,R :=
K∑

α=1

aα℘
R
3 (R

(α)

0 ), ℘d,L :=
K∑

α=1

aα℘
L
3 (R

(α)

0 ) (12.53)

defined on SO(3). In comparison, if we treat the crystallites as if their Gcr is G1, the orien-
tation measure of the polycrystal becomes

℘d
r =

K∑

α=1

aα℘r(R
(α)

0 )=
K∑

α=1

aα

(
℘R

3 (R
(α)

0 )+℘L
3 (R

(α)

0 )
)
= ℘d,R +℘d,L. (12.54)

Let w : O(3)→ R be the square-integrable ODF that defines the texture of a polycrys-
talline aggregate P of Type III crystallites, and let ℘ be the orientation measure on O(3)
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defined by w. Let wR,wL : SO(3)→ R be the right-handed and left-handed parts of w, re-
spectively, and let wr : SO(3)→ R be the reduced ODF pertaining to P. Let ℘R , ℘L, and
℘r be the Radon measures on SO(3) defined by wR , wL, and wr , respectively. Since discrete
probability measures are dense under the vague topology in the metrizable space of orienta-
tion measures on O(3), there is a sequence of discrete probability measures ℘d

s (s = 1,2, . . .)
in O(3) such that ℘d

s → ℘ as s→∞. For each s, the discrete Radon measures ℘d,R
s , ℘d,L

s

and ℘d
r,s are well defined on SO(3) and by (12.54)

℘d
r,s = ℘d,R

s +℘d,L
s . (12.55)

We have ℘d,R
s → ℘R , ℘d,L

s → ℘L, and ℘d
r,s → ℘r , as s→∞. It follows that ℘r = ℘R +℘L

and

clmn = cl,Rmn + cl,Lmn. (12.56)

See [206] for more details.
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PART III. GROUP REPRESENTATIONS

Chapter 13

13 Group Representations

13.1 Preliminaries: Complex Inner-Product Spaces

Let X be a finite-dimensional vector space over the field C of complex numbers, which
we shall simply call complex vector space. A Hermitian inner product on X is a mapping
〈·, ·〉 :X×X→ C that satisfies the following conditions:

1. For all x1, x2, and y ∈X, 〈x1 + x2,y〉 = 〈x1,y〉 + 〈x2,y〉.
2. For all x,y ∈X and α ∈ C, 〈αx,y〉 = α〈x,y〉.
3. For all x,y ∈X, 〈x,y〉 = 〈y,x〉.
4. For all x ∈X, 〈x,x〉 ≥ 0, and 〈x,x〉 = 0 if and only if x = 0.

From conditions 2 and 3 we infer that

〈x, αy〉 = α〈x,y〉 for all x,y ∈X and α ∈ C. (13.1)

A complex vector space equipped with a Hermitian inner product is called a complex inner-
product space (or simply inner product space if no confusion should arise).

13.1.1 Adjoint, Hermitian, Unitary, and Normal Transformations

Let X and Y be complex inner-product spaces. Given a linear transformation A : X→ Y ,
there is a unique linear transformation A∗, called the adjoint of A, such that

〈Ax,y〉Y = 〈x,A∗y〉X for each x ∈X and y ∈ Y ; (13.2)

see, e.g., [40, 105–108], [273, 227–228]. It is easy to verify that adjoint linear transfor-
mations enjoy the following properties: (1) (A + B)∗ = A∗ + B∗; (2) (αA)∗ = αA∗ for
each α ∈ C; (3) (A∗)∗ = A; (4) if A is invertible, so is A∗, and (A∗)−1 = (A−1)∗; (5) for
A :X→ Y and B : Y →Z, (BA)∗ =A∗B∗.

A linear transformation A : X→ X is said to be Hermitian, unitary, and normal if its
adjoint satisfies A∗ =A, A∗ =A−1, and AA∗ =A∗A, respectively. Hermitian and unitary
transformations are clearly normal.

If A is a unitary linear transformation, we have

〈Ax,Ay〉 = 〈x,A∗Ay〉 = 〈x,y〉 for all x,y ∈X. (13.3)

Let dimX = n, and let {e1, . . . , en} be an orthonormal basis in X, i.e., a set of vectors in X

which satisfy

〈ei , ej 〉 = δij . (13.4)

Let A be unitary and let A= [Aij ] be the matrix that represents A with respect to the basis
{ei}. Then we have Aek =∑

j Ajkej , and

〈Aei ,Aej 〉 =
∑

k

∑

l

AkiAlj 〈ek, el〉 =
∑

k

∑

l

AkiAlj δkl

=
∑

k

AkiAkj =
∑

k

AT
ikAkj . (13.5)
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On the other hand, there holds

〈Aei ,Aej 〉 = 〈ei , ej 〉 = δij , (13.6)

because A is unitary. Comparing (13.5) with (13.6), we conclude that

A−1 =A
T
. (13.7)

Similarly, a square matrix A that represents a Hermitian linear transformation A : X→ X

under an orthonormal basis in X satisfies the equation A=A
T

.

13.2 Basic Definitions and Theorems

As far as group representations are concerned, we are mainly interested in their applications
to texture analysis, which serve also as preparations for the study of physics of textured
polycrystals. For these purposes we shall restrict attention to finite and compact topological
groups and focus on the following topics: (1) irreducible unitary representations of SO(3),
O(3), and their subgroups; (2) derivation of the Wigner D-functions as matrix elements of a
complete set of irreducible unitary representations of SO(3); (3) an elementary proof of the
Peter-Weyl theorem, which when applied to the rotation group shows that any continuous
function on SO(3) can be uniformly approximated by linear combinations of the Wigner D-
functions; (4) tensor and pseudotensor representations of SO(3) and O(3). To prepare for our
discussions on these topics, we shall present in this chapter the basics of finite-dimensional
representations of finite and compact groups, as no mention of infinite-dimensional repre-
sentations of compact groups on Hilbert spaces is necessary.141 Our main general references
for this chapter are Naimark and Štern [245] and Serre [296].

The theory of finite-dimensional representations for finite groups and for compact topo-
logical groups are essentially the same. For both, an essential tool is the invariant mean
M(f ) of a function f :G→ C on the group G in question, where

M(f )=
⎧
⎨

⎩

1
|G|

∑
h∈G f (h), for finite group G

´
G
f (h)dg(h) for compact group G.

(13.8)

In (13.8) for finite groups, |G| is the order of G. For compact groups, the integral in (13.8)
denotes the normalized Haar integral (or equivalently, g denotes the normalized Haar mea-
sure).142 For both cases, the invariant mean satisfies

M(f )=Mh(f (gh))=Mh(f (hg)) for each g ∈G, Mh(f (h
−1))=Mh(f (h)).

(13.9)

141On the other hand, note that any irreducible unitary representation of a compact group on a Hilbert space
is finite dimensional; see, e.g., [243], [305, pp. 16–18].
142In this exposition we have derived the existence, uniqueness, and main properties of the normalized Haar
integral only for the groups SO(3) and O(3), and we shall only use those in applications discussed later.
For the general theory of the Haar integral on compact groups, we refer the reader to the literature (see the
references cited in Sect. C.3 of Appendix C.
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13.2.1 Finite-Dimensional Representations of Groups

Definition 13.1 Let G be a group and X �= {0} a finite-dimensional complex vector space.
A (finite-dimensional) linear representation (T ,X) of G is a homomorphism of G into the
group GL(X) of invertible linear transformations on X, i.e., T :G→ GL(X), which satis-
fies

T (g1)T (g2)= T (g1g2) for all g1, g2 ∈G. (13.10)

The linear space X and dimX are called the representation space and the dimension of
representation T , respectively.

When G is a topological group, the representation (T ,X) is said to be continuous if it is
a continuous map from G to GL(X). �

Remark13.2 Let dimX = n. If we choose a basis in X so that each T (g) is represented by an
n× n matrix [Tij (g)], then T (g) can be taken as an operator on C

n and the correspondence
g �→ [Tij (g)] satisfies (13.10). Conversely, suppose a matrix function T from G to the space
Mn(C) of n × n matrices is defined so that (13.10) is observed. Then T : G→ GL(Cn)

is a representation of G. Hence we can view each finite-dimensional representation of G

as a matrix representation. If G is a compact topological group, a representation T of G is
continuous if and only if for each g ∈G the matrix elements Tij (g) are continuous functions
of g. �

Henceforth in this chapter we shall only consider finite-dimensional representations of
groups and shall omit the adjective “finite-dimensional” except at times for emphasis.

It follows from (13.10) that

T (e)= I , T (g−1)= (T (g))−1, (13.11)

where e is the identity element in G, g−1 the inverse of g, and I the identity operator on
X. In what follows, when there should be no confusion on the space X on which the linear
transformations T (g) are defined, we shall often simply refer to (T ,X) as representation T

of G.
Let KerT = {g ∈ G : T (g) = I } be the kernel of the homomorphism T . The repre-

sentation T is said to be faithful if KerT = {e}. For all matrix groups G ⊂ GL(Cn), the
self-representation T s : g �→ g is clearly a faithful representation of G.

A subspace M ⊂X is said to be invariant under a representation T or G-invariant if it is
invariant under all operators T (g) of this representation.

Definition 13.3 Let T : G→ GL(X) be a representation, and let M be a G-invariant sub-
space of X. For each g ∈G, let T (g) |M be the restriction of the operator T (g) to M . The
map T |M :G→GL(M) , g �→ T (g) is a homomorphism, and the representation (T |M,M)

is called the restriction of the representation T to M and a subrepresentation of T . �

Definition 13.4 A representation (T ,X) of group G is said to be irreducible if X contains
no G-invariant subspace except {0} and X itself. A representation that is not irreducible is
called reducible. �

Proposition 13.5 Every finite-dimensional representation has an irreducible subrepresenta-
tion.
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Proof Let (T ,X) be a finite-dimensional representation of group G. If T is irreducible,
then the proof is done. If T is reducible, then there is a G-invariant subspace M1 such that
{0} �M1 � X. If the subrepresentation T

∣∣
M1 is irreducible, the proof is done. If T

∣∣
M1 is

reducible, then there is a G-invariant subspace M2 such that {0} � M2 � M1. By repeat-
ing this argument, we obtain G-invariant subspaces X �M1 �M2 · · · �Mk � {0}, where
dimX > dimM1 > dimM2 > · · · ≥ 1. Since dimX is finite, the process must stop at some
G-invariant subspace Mk such that the subrepresentation T

∣∣
Mk

is irreducible. �

13.2.2 Equivalence of Representations

Definition 13.6 Two representations (T ,X) and (S, Y ) of a group G are said to be equiv-
alent, where we write (T ,X) ∼= (S, Y ) or simply T ∼= S, if there is a linear isomorphism
A :X→ Y such that

AT (g)= S(g)A for each g ∈G. (13.12)

�

Theorem 13.7 Two finite-dimensional representations (T ,X) and (S, Y ) of a group G are
equivalent if and only if (i) dimX = dim Y and (ii) suitable basis can be chosen in X and in
Y such that T (g) and S(g) are represented by the same matrix [Tij (g)] for each g ∈G.

Proof Suppose the finite-dimensional representations (T ,X) and (S, Y ) of the group G are
equivalent. It is obvious that dimX = dimY = n for some positive integer n. Let e1, . . . , en
be an arbitrary basis in X. Let f j = Aej (j = 1, . . . , n). Since A : X→ Y is a linear iso-
morphism, f 1, . . . ,f n constitute a basis in Y . Consider a specific g ∈ G. Let [Tjk(g)] be
the matrix that represents T (g) under the basis {ej : j = 1, . . . , n} in X. Then we have

T (g)ek =
∑

j

Tjk(g)ej . (13.13)

Applying A to both sides of (13.13) and appealing to (13.12), we obtain for each k =
1, . . . , n,

S(g)f k = S(g)Aek =AT (g)ek =
∑

j

Tjk(g)Aej =
∑

j

Tjk(g)f j . (13.14)

Hence T (g) and S(g) are represented by the same matrix.
Conversely, let dimX = dimY = n and, under the basis {ej : j = 1, . . . , n} in X and

{f j : j = 1, . . . , n} in Y , T (g) and S(g) are represented by the same matrix for each g ∈G.
Define a linear mapping A :X→ Y by

Aej = f j (j = 1, . . . , n). (13.15)

Then A is a linear isomorphism that satisfies condition (13.12). �

13.2.3 Irreducible Representations, Schur’s Lemma

Theorem 13.8 (Schur’s lemma) Let T : G → GL(X) and S : G → GL(Y ) be finite-
dimensional irreducible representations of group G. Let A : X→ Y be a linear mapping
such that

AT (g)= S(g)A for each g ∈G. (13.16)
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The two following assertions are valid:

(i) Either A= 0 or A is a linear isomorphism of X onto Y (i.e., the representations T and
S are equivalent).

(ii) If X = Y and T = S, then A= λI for some λ ∈ C.

Proof (i) It is obvious that (13.16) is satisfied if A= 0.
Suppose A �= 0. Let KerA := {x ∈X :Ax = 0} be the kernel of A. It is a subspace of X.

For each x ∈KerA and g ∈G, we have

A(T (g)x)= S(g)Ax = 0, (13.17)

which implies T (g)x ∈ KerA. Hence KerA is an invariant subspace of X under the irre-
ducible representation T of G. It follows that either KerA = {0} or KerA = X. Since by
hypothesis KerA �=X, we conclude that KerA= {0}.

Let ImA := {y ∈ Y : y = Ax for some x ∈X} be the image of X under A. It is a sub-
space of Y . Let y =Ax ∈ ImA, where x ∈X, and let g ∈G. By (13.16) we have

S(g)y = S(g)Ax =A(T (g)x) ∈ ImA, (13.18)

because T (g)x ∈ X. Equation (13.18) is valid for each y ∈ ImA and each g ∈ G. Hence
ImA is an invariant subspace of Y under the irreducible representation S of G. Thus either
ImA= {0} or ImA= Y . As by hypothesis A �= 0, we have ImA= Y .

Since KerA= {0} and ImA= Y , we conclude that A is a linear isomorphism of X onto
Y .

(ii) Consider the case X = Y and T = S. Let λ be an eigenvalue of A; there exists at least
one eigenvalue because X is a complex vector space. Let B =A− λI . Since A commutes
with T (g) for each g ∈G, it is easy to verify that B commutes with T (g) for each g ∈G.
By assertion (i), either B = 0 or B is a linear isomorphism on X. Since λ is an eigenvalue
of A, there is a vector x ∈ X such that Bx = (A− λI )x = 0. Hence B cannot be a linear
isomorphism. It follows that B = 0, i.e., A= λI for some λ ∈ C. �

13.2.4 Unitary Representations, Unitary Equivalence

Definition 13.9 Let X be a finite-dimensional complex inner-product space. A representa-
tion (T ,X) of group G is said to be unitary if for every g ∈ G the linear transformation
T (g) :X→X is unitary, i.e., it satisfies

〈T (g)x,T (g)y〉 = 〈x,y〉, for each g ∈G and x,y ∈X. (13.19)

�

By (13.7), under an orthonormal basis in X, each T (g) is represented by a unitary matrix
[Tij (g)] that satisfies [Tij (g)]−1 = [Tij (g)]T .

Proposition 13.10 Let G be a finite or compact topological group, X be a complex vector
space, and (T ,X) be a finite-dimensional linear representation of G. A Hermitian inner
product can be chosen on X such that the representation T is unitary.

13.2 Basic Definitions and Theorems
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Proof We begin by picking an arbitrary Hermitian inner product 〈·, ·〉1 on X. (For example,
let dimX = n and {f i : 1≤ i ≤ n} be a basis in X. For x =∑

i xif i ,y =
∑

i yif i ∈X, let
〈x,y〉1 =

∑
i xiyi .) For each h ∈G and x,y ∈X, let

f (h;x,y) := 〈T (h)x,T (h)y〉1. (13.20)

Define a new Hermitian inner product on X by

〈x,y〉 =Mh(f (h;x,y)) for x,y ∈X, (13.21)

where Mh is the invariant mean of f on the group G as defined in (13.8). Because 〈·, ·〉1
is a Hermitian inner product on X, and because by definition (13.8) M(αf ) = αM(f ), it
is easily verified that 〈·, ·〉 is a Hermitian inner product on X. Then for each g ∈ G and
x,y ∈X, we have

〈T (g)x,T (g)y〉 =Mh(f (h;T (g)x,T (g)y))

=Mh(〈T (h)T (g)x,T (h)T (g)y〉1)
=Mh(〈T (hg)x,T (hg)y〉1)
=Mh(f (hg;x,y))=Mh(f (h;x,y))= 〈x,y〉, (13.22)

where we have appealed to (13.9)2 at the next-to-last step. Hence under the new Hermitian
form on X, the representation T is unitary. �

Let X and Y be complex inner-product spaces. A linear isomorphism U : X→ Y is
called an isometric isomorphism if it satisfies

〈Ux1,Ux2〉Y = 〈x1,x2〉X for each x1,x2 ∈X. (13.23)

Note that (13.23) implies that

〈x1,U
∗Ux2〉X = 〈x1,x2〉X for each x1,x2 ∈X, (13.24)

where U ∗ is the adjoint of U . Hence we have

U ∗U = IX, (13.25)

where IX denotes the identity operator on X.

Definition 13.11 Let X and Y be complex inner-product spaces. Two finite-dimensional
unitary representations (T ,X) and (S, Y ) of a group G are said to be unitarily equivalent if
there is an isometric isomorphism U :X→ Y such that

UT (g)= S(g)U for each g ∈G. (13.26)

�

Theorem13.12 LetX and Y be complex inner-product spaces. If two finite-dimensional uni-
tary representations (T ,X) and (S, Y ) of a group G are equivalent, they are also unitarily
equivalent.
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Proof Since the two representations (T ,X) and (S, Y ) are equivalent, there is a linear iso-
morphism A :X→ Y such that AT (g)= S(g)A for each g ∈G. By the polar decomposi-
tion theorem (see, e.g., [40, pp. 168–169], where the proof presented is for A :X→X, but
it applies almost verbatim to our present case), we have A=UB , where U :X→ Y is uni-
tary and B :X→X is Hermitian and positive definite. Substituting A= UB into (13.12),
we obtain

UBT (g)= S(g)UB for each g ∈G. (13.27)

It follows that (UBT (g−1))∗ = (S(g−1)UB)∗ or

T (g)BU ∗ =BU ∗S(g), (13.28)

where have appealed to the fact that T (g) is unitary and B is Hermitian. From (13.25),
(13.27), and (13.28) we obtain

T (g)B2 = T (g)BU ∗UB =BU ∗S(g)UB =BU ∗UBT (g)=B2T (g) (13.29)

for each g ∈G. Thus B2 commutes with T (g) for each g. Since B =
√

B2 can be written143

as a polynomial of B2, B commutes with T (g) for each g. Hence it follows from (13.27)
that UT (g)B = S(g)UB or UT (g)= S(g)U for each g ∈G. �

Theorem 13.13 Two unitary representations (T ,X) and (S, Y ) of group G on complex
inner-product spaces are equivalent if and only if there are orthonormal bases in X and
Y with respect to which T (g) and S(g) are represented by the same unitary matrix [Tij (g)]
for each g ∈G.

Proof By Theorem 13.12, if the unitary representations (T ,X) and S, Y ) are equivalent,
there is an isometric isomorphism U : X→ Y such that UT (g) = S(g)U for each g ∈G.
Let dimX = dimY = n. Arbitrarily pick an orthonormal basis {ei : i = 1, . . . , n} in X. Then

T (g)ej =
n∑

i=1

Tij (g)ei for 1≤ j ≤ n and for each g ∈G, (13.30)

where [Tij (g)] is the unitary matrix that represents T (g) under the basis {ei}. Let f i =Uei
(i = 1, . . . , n). Since U is an isometric isomorphism, {f i} constitutes an orthonormal basis
in Y . Moreover, we have for each g ∈G

S(g)f j = S(g)Uej =UT (g)ej =U

(
n∑

i=1

Tij (g)ei

)
=

n∑

i=1

Tij (g)f i . (13.31)

Hence under the orthonormal basis {f i}, S(g) is represented by the same unitary matrix
[Tij (g)]. For the converse of this theorem, the same proof for its counterpart in Theorem 13.7
is applicable here also. �

The following rewording of a part of Theorem 13.13 has a more direct appeal in some
applications.

143See, e.g., [33, p. 299], [66, p. 47]; cf. (2.68) for the special case where dimX = 3.
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Corollary 13.14 Let T :G→ GL(Cn), g �→ [Tij (g)], be a unitary matrix representation of
group G. Let (S, Y ) be a unitary representation of G on a complex inner-product space
Y , and let (S, Y ) ∼= (T ,Cn). There is an orthonormal basis {f 1, . . . ,f n} in Y for which
S(g)f j =

∑n

i=1 Tij (g)f i for 1≤ j ≤ n and for each g ∈G. �

13.2.5 Complete Reducibility

Let (T ,X) be a finite-dimensional representation of group G. Suppose there are G-invariant
subspaces Mk (k = 1, . . . , r) such that X =M1 ⊕ · · · ⊕Mr , where the symbol “⊕” denotes
the direct sum. Then each x ∈X can be uniquely expressed as

x = x1 + · · · + xr , where xk ∈Mk for k = 1, . . . r. (13.32)

Let T k := T
∣∣
Mk

denote the restriction of T to Mk . Clearly for each g ∈G, we have

T (g)x = T 1(g)x1 + · · · + T r (g)xr . (13.33)

We say that the representation T is a direct sum of the representations T k (k = 1, . . . , r) and
write T = T 1 + · · · + T r . If G is a compact topological group and the representation T is
continuous, then all T k are continuous because they are subrepresentations of T .

Definition 13.15 A finite dimensional representation is said to be completely reducible if it
is the direct sum of a finite number of irreducible subrepresentations. �

If a completely reducible representation T is the direct sum of irreducible subrepresenta-
tions, among which there are mk representations equivalent to an irreducible representation
T k for k = 1, . . . , r , we write

T =m1T
1 + · · · +mrT

r , (13.34)

where mk is called the multiplicity of the irreducible representation T k in T . We refer to
(13.34) as the formula that decomposes representation T into its irreducible parts.

We proceed to prove that every finite-dimensional representation of a finite or compact
group is completely reducible. To this end, we start with unitary representations.

Lemma 13.16 Let (T ,X) be a unitary representation of group G, and let M be a G-
invariant subspace of X. Then M⊥, the orthogonal complement of M , is also G-invariant,
and X =M ⊕M⊥.

Proof Let 〈·, ·〉 be the Hermitian inner product on X. By definition, M⊥ = {y ∈X : 〈y,x〉 =
0 for each x ∈M}. That M⊥ is a subspace of X and X =M ⊕M⊥ is a well-known fact in
linear algebra (see, e.g., [40, pp. 72–73]). It remains to show that M⊥ is G-invariant. Let
y ∈M⊥ be given. Since M is G-invariant, we have 〈y,T (g−1)x〉 = 0 for each g ∈G and
x ∈M . On the other hand, since the representation T is unitary, for each g ∈G and x ∈M

〈y,T (g−1)x〉 = 〈T (g)y,T (g)T (g−1)x〉 = 〈T (g)y,x〉. (13.35)

Thus 〈T (g)y,x〉 = 0 for each g ∈ G and x ∈ M , which implies T (g)y ∈ M⊥ for each
g ∈G. Hence M⊥ is G-invariant. �

Theorem 13.17 Every finite-dimensional unitary representation is completely reducible.
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Proof Let (T ,X) be a finite-dimensional unitary representation of group G. By Proposi-
tion 13.5, there is a G-invariant subspace M1 �= {0} of X such that the subrepresentation
T

∣∣
M1 is irreducible. If M1 = X, the proof is done. If M1 �= X, then by Lemma 13.16

X =M1 ⊕M2, where M2 =M⊥
1 �= {0}. If T

∣∣
M2 is irreducible, we are through. If M2 is

reducible, by Lemma 13.16 X = (M1 ⊕M2)⊕M3, where M3 = (M1 ⊕M2)
⊥. If T

∣∣
M3 is

irreducible, then X is completely reducible. If T
∣∣
M3 is reducible, continue the process of

decomposition as before. Since dimX is finite and dimMk ≥ 1 for each k, the process of
decomposition will stop at some k =K ≤ dimX. Then X =M1 ⊕ · · · ⊕MK is a decompo-
sition of X into a direct sum of G-invariant subspaces Mk (k = 1, . . . ,K); on each Mk the
subrepresentation T

∣∣
Mk

is irreducible. �

Corollary 13.18 Every finite-dimensional representation of a finite or a compact topological
group is completely reducible.

Proof Let (T ,X) be a finite-dimensional representation of group G, Since G is finite or
compact, by Proposition 13.10 the complex vector space X can be given a Hermitian inner
product so that the representation T is unitary with respect to the inner product. The rest
follows from Theorem 13.17. �

Remark 13.19 Corollary 13.18 can be proved without the introduction of a Hermitian inner
product in the representation space. See Serre [296, pp. 6–7], where the proof is versed in
the context of finite groups. The same proof, however, goes through for compact groups if
the invariant mean (cf. (13.8)) for finite groups is replaced by its counterpart for compact
groups in the proof. �

13.3 The Space L2(G). The Regular Representations

Let G be a compact topological group with normalized Haar measure g. One important
class of finite-dimensional representations (T ,X) of G that we shall consider are those
where the representation space X is a subspace of L2(G,C), the space of complex-valued
functions which are square-integrable with respect to the normalized Haar measure g. Since
we consider only representations with representation space X being a complex vector space,
subspaces of L2(G,R) will not be used as representation space. For simplicity we will
henceforth write L2(G) for L2(G,C). We define a Hermitian inner product on L2(G) by144

〈f1, f2〉 =
ˆ

G

f1(g)f2(g) dg for f1, f2 ∈ L2(G). (13.36)

For a finite group G, for convenience we denote by L2(G) the linear space of functions
f :G→ C with vector addition and scalar multiplication defined by

(f1 + f2)(g)= f1(g)+ f2(g) for f1, f2 ∈ L2(G), and g ∈G, (13.37)

(αf )(g)= αf (g) for α ∈C, f ∈ L2(G), and g ∈G, (13.38)

144In Parts I and II, we follow Roe [270] and, for SO(3), primarily use V = 8π2g, where g is the normalized
Haar measure, as the volume measure of the group. The number 8π2 arises haphazardly just as a consequence
of Roe’s use of Euler angles for parametrization of SO(3). Here, as we study theorems and formulas that
apply to all compact groups, the only reasonable uniform choice is to assign each group its normalized Haar
measure.

13.3 The Space L2(G). The Regular Representations

295



Reprinted from the journal1 3

respectively. In parallel to (13.36), we define a Hermitian inner product on L2(G) for finite
G by

〈f1, f2〉 = 1

N

∑

g∈G
f1(g)f2(g) for f1, f2 ∈ L2(G), (13.39)

where N = |G|, the number of elements in G.
Let G be a finite or a compact group. For a given h ∈G, let Tr (h) : L2(G)→ L2(G) be

defined by

(Tr (h)f )(g)= f (gh) for all g ∈G and f ∈ L2(G). (13.40)

For finite G, clearly Tr (h)f ∈ L2(G) for each f ∈ L2(G). For compact G, Tr (h)f is mea-
surable as f is measurable. Moreover, for f ∈ L2(G), we have

ˆ

G

|(Tr (h)f )(g)|2dg=
ˆ

G

|f (gh)|2dg=
ˆ

G

|f (g)|2dg<+∞.

Hence Tr (h)f ∈ L2(G) if f ∈ L2(G), and the map Tr (h) is well defined. It is straightfor-
ward to verify that the map Tr (h) is a linear operator on L2(G). For h1, h2 ∈G, we have

(Tr (h1)(Tr (h2)f ))(g)= (Tr (h1)f )(gh2)= f ((gh1)h2)= (Tr (h1h2)f )(g) (13.41)

for any g ∈G. Let e be the identity element in G. Then

(Tr (e)f )(g)= f (ge)= f (g) for all g ∈G and f ∈ L2(G). (13.42)

From (13.41) and (13.42) we observe that the map h �→ Tr (h) defines a representation of G
on any finite-dimensional G-invariant subspace of L2(G).145 This representation is called
the right-regular representation of G.146

Let G be compact. For a given h ∈G and f1, f2 ∈ L2(G), we have

〈Tr (h)f1,Tr (h)f2〉 =
ˆ

G

f1(gh)f2(gh)dg(g)=
ˆ

G

f1(g)f2(g)dg= 〈f1, f2〉. (13.43)

Hence the right-regular representation is unitary. That the same assertion is valid for the case
where G is finite can be proved in the same way.

Similarly we define the left-regular representations for finite or compact groups G. For a
given h ∈G, let Tl (h) : L2(G)→ L2(G) be defined by

(Tl (h)f )(g)= f (h−1g) for all g ∈G and f ∈ L2(G). (13.44)

For both finite and compact groups, we can easily show what follows: (i) Tl (h)f ∈ L2(G) for
each f ∈ L2(G); (ii) the map Tl (h) is a linear operator on L2(G); (iii) the map h �→ T l (h)

defines a unitary representation of G on any finite-dimensional G-invariant subspace of
L2(G).

145In fact this representation is defined on the infinite-dimensional Hilbert space L2(G). As mentioned in the
introductory remarks at the beginning of Sect. 13.2, for our purposes we need not go into the mathematics of
infinite-dimensional representations of compact groups on Hilbert spaces.
146See [245, p. 187] for a proof that the right-regular representation Tr : h �→ Tr (h) of any compact group
G, with L2(G) as the representation space, is continuous. We shall not use this fact in this exposition.
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13.4 Orthogonality Relations

Theorem13.20 Let (T ,X) and (S, Y ) be irreducible, finite-dimensional, continuous unitary
representations of the compact group G. For g ∈ G, let (Tkl(g)) and (Sij (g)) be unitary
matrices that represent T (g) and S(g) under some chosen orthonormal basis in X and in
Y , respectively. Then the following orthogonality relations in L2(G) hold for the matrix
elements of the irreducible representations in question:

〈Sij , Tkl〉 =
ˆ

G

Sij (g)Tkl(g)dg= 0 for all i, j, k, l if T and S are inequivalent,

(13.45)
and

〈Tij , Tkl〉 =
ˆ

G

Tij (g)Tkl(g)dg= 1

n
δikδjl, (13.46)

where n = dimX and the integral on G is defined with respect to the normalized Haar
measure.

Proof Let B ∈ Lin(X,Y ), and let C :=
ˆ

G

S(g)BT (g−1)dg. Clearly C ∈ Lin(X,Y ). More-

over, for each h ∈G we have

CT (h)=
ˆ

G

S(g)BT (g−1h)dg(g)=
ˆ

G

S(hg)BT (g−1)dg(g)= S(h)C, (13.47)

where we have appealed to the left invariance of the Haar measure on G. If the irreducible
representations T and S are inequivalent, we conclude from (13.47) and Schur’s lemma that
C = 0. Hence for all entries Cik of the matrix that represents C under the chosen orthonor-
mal bases in X and Y , we have

Cik =
∑

p

∑

q

ˆ

G

Sip(g)BpqTqk(g
−1)dg= 0. (13.48)

Note that B ∈ Lin(X,Y ) is arbitrary and the matrix [Tkl(g)] is unitary. Putting

Bpq =
{

1 if p = j and q = l

0 otherwise

in (13.48), we obtain
ˆ

G

Sij (g)Tlk(g
−1)dg=

ˆ

G

Sij (g)Tkl(g)dg= 0.

Equation (13.47) remains valid when S = T and Y = X, which by Schur’s lemma dic-
tates that C = λI for some λ ∈ C; here I denotes the identity map in Lin(X,X). Hence we
have

nλ= trC = tr

⎛

⎝
ˆ

G

T (g)BT (g−1) dg

⎞

⎠=
ˆ

G

tr(T (g)BT (g−1))dg= trB, (13.49)
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which gives λ= 1

n
trB and

C =
ˆ

G

T (g)BT (g−1) dg= 1

n
(trB)I , (13.50)

which is valid for any B ∈ Lin(X,X). In components, (13.50)2 reads:

∑

p

∑

q

ˆ

G

Tip(g)BpqTqk(g
−1)dg= 1

n

(
n∑

s=1

Bss

)
δik. (13.51)

Putting

Bpq =
{

1 if p = j and q = l

0 otherwise

in (13.51), we conclude that

ˆ

G

Tij (g)Tkl(g)dg= 1

n
δikδjl,

where we have used the fact that Tlk(g−1)= Tkl(g). �

After replacement of the inner product (13.36) for compact groups by its counterpart
(13.39) for finite groups, the theorem and its proof above carry over almost verbatim for
finite groups G. We record this version of the theorem as a corollary.

Corollary 13.21 Let (T ,X) and (S, Y ) be irreducible, finite-dimensional, unitary represen-
tations of the finite group G. For g ∈G, let [Tkl(g)] and [Sij (g)] be unitary matrices that
represent T (g) and S(g) under some fixed chosen basis inX and in Y , respectively. Then the
following orthogonality relations in L2(G) hold for the matrix elements of the irreducible
representations in question:

〈Sij , Tkl〉 = 1

N

∑

g∈G
Sij (g)Tkl(g)= 0 for all i, j, k, l if T and S are inequivalent,

(13.52)
and

〈Tij , Tkl〉 = 1

N

∑

g∈G
Tij (g)Tkl(g)= 1

n
δikδjl, (13.53)

where n= dimX and N = |G|. �

13.5 Completeness Theorem for Finite Groups

Let G be a finite group of order N . Then L2(G) is a linear space with dimL2(G) = N .
Earlier we have shown that the matrix elements of inequivalent irreducible unitary repre-
sentations of G are orthogonal in L2(G). Hence there can be at most N of such orthogonal
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elements. It follows immediately that the number of inequivalent irreducible unitary repre-
sentations of a finite group G is finite and cannot be larger than the order of G.

A family (T 1,X1), . . . , (T m,Xm) of irreducible unitary representations of finite group
G is said to be complete if it satisfies the following conditions:

1. The representations (T 1,X1), . . . , (T m,Xm) are pairwise inequivalent.
2. Any irreducible representation of G is equivalent to some representation (T l ,Xl) in the

family.

Let a complete family (T 1,X1), . . . , (T m,Xm) of irreducible unitary representations of
the finite group G be given. Let dimXk = nk for k = 1, . . . ,m. Since the matrix elements
of the irreducible unitary representations, say T k

ij (·), constitute an orthogonal set in L2(G)

with n2
1 + n2

2 + · · · + n2
m members, we know that

n2
1 + n2

2 + · · · + n2
m ≤N.

In fact, it turns out that n2
1 + n2

2 + · · · + n2
m =N , which follows immediately as a corollary

of the following completeness theorem.

Theorem13.22 Let (T 1,X1), . . . , (T m,Xm) be a complete family of irreducible unitary rep-
resentations of the finite group G. For g ∈ G and k = 1, . . . ,m, let (T k

ij (g)) be the uni-

tary matrix that represents T k(g) under some chosen orthonormal basis in Xk . The set of
n2

1 + n2
2 + · · · + n2

m matrix elements T k
ij (·) constitutes an orthogonal basis in L2(G).

Proof We have already proved that the matrix elements T k
ij (·) are orthogonal functions in

L2(G). Hence it suffices to show that every function L2(G) can be expressed as a linear com-
bination of these matrix elements. The right-regular representation Tr :G→GL(L2(G)) is
unitary and is thence completely reducible. Let

L2(G)= Y1 ⊕ Y2 ⊕ · · · ⊕ Yp, Tr = T (1)
r + T (2)

r + · · · + T (p)
r

be the decomposition of the right-regular representation of G into its irreducible parts, where
each subspace Ys (s = 1, . . . , p) of L2(G) is invariant under Tr (h) for each h ∈G and each
subrepresentation (T (s)

r , Ys), where T (s)
r is the restriction of Tr to Ys , is irreducible.

Consider a specific irreducible subrepresentation (T (s)
r , Ys). It is equivalent to some

(T l ,Xl). By Corollary 13.14 there is a basis {fβ : β = 1, . . . , nl} in Ys with respect to which
the matrix that represents (T (s)

r , Ys) under this basis in none other than [T l
ij (·)], i.e.,

T (s)
r (h)fβ =

nl∑

α=1

T l
αβ(h)fα for each h ∈G. (13.54)

On the other hand, by definition of the right-regular representation we have

(T (s)
r (h)fβ)(g)= fβ(gh) for each g,h ∈G. (13.55)

Combining (13.54) and (13.55), we obtain

fβ(gh)=
nl∑

α=1

T l
αβ(h)fα(g) for each g,h ∈G. (13.56)

13.4 Orthogonality Relations

299



Reprinted from the journal1 3

Putting g = e and cα = fα(e) in (13.56), we conclude that

fβ(h)=
nl∑

α=1

cαT
l
αβ(h) for each h ∈G. (13.57)

In other words, each basis function fβ(·) in Ys (β = 1, . . . , nl) and thence every function f (s)

in Ys can be expressed as a linear combination of the matrix elements T k
ij (·). Similarly, every

function f (q) in Yq (q = 1, . . . , p) can be expressed as a linear combination of the matrix
elements T k

ij (·). Therefore each function in L2(G) can be written as a linear combination of
the matrix elements T k

ij (·). �

This completeness theorem immediately leads to the following corollary, which is known
as Burnside’s theorem in the literature.

Corollary 13.23 The order N of a finite group G is equal to the sum of the squares of any
complete family of irreducible unitary representations of the group, i.e.,

n2
1 + n2

2 + · · · + n2
m =N. (13.58)

�

By the completeness theorem and the orthogonality relations (13.45) and (13.46), the
functions

Ek
ij (·) :=

√
nk T

k
ij (·) (k = 1, . . . ,m; 1≤ i ≤ nk and 1≤ j ≤ nk for each k) (13.59)

constitute an orthonormal basis in L2(G). Every function f ∈ L2(G) can be expressed as a
linear combination of the orthonormal basis {Ek

ij } as

f =
m∑

k=1

nk∑

i,j=1

〈f,Ek
ij 〉Ek

ij . (13.60)

Hence we have

‖f ‖2 = 〈f,f 〉 =
m∑

k=1

nk∑

i,j=1

|〈f,Ek
ij 〉|2. (13.61)

In anticipation of the parallel formula for compact groups, we call (13.61) Parceval’s equal-
ity for the finite group G.

13.6 Characters of Group Representations

Let G be a finite or a compact group. Let (T ,X) be a finite-dimensional representation of
G. The character of the representation147 T is the function χT :G→ C defined by

χT (g)= tr(T (g)) for each g ∈G. (13.62)

147For brevity, we shall henceforth refer to representation T rather than (T ,X) whenever no confusion should
arise.
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Under any chosen basis in X, where [Tij (g)] is the matrix that represents T (g), χT (g) is the
sum of the diagonal entries of [Tij (g)], i.e., χT (g)= T11(g)+ T22(g)+ · · · + Tnn(g), where
n= dimX.

In what follows, for two representations T and S of a group G, T ∼= S (resp. T � S)
means that representations T and S are equivalent (resp. inequivalent).

13.6.1 Basic Properties

Some basic properties of group characters follow immediately from those of the trace.

Proposition 13.24 LetG be a finite or a compact group. The characters of finite-dimensional
representations of G enjoy the following properties:

(1) If T ∼= S, then χT = χS .
(2) For all g,h ∈G, χT (h)= χT (ghg

−1).
(3) If T is unitary, then χT (g

−1)= χT (g).
(4) If T = T 1 + T 2, then χT = χT 1 + χT 2 .
(5) Let e be the identity in G. Then χT (e)= n, where n is the dimension of the representa-

tion T . �

While the theorems and proofs in this subsubsection are phrased in terms of compact
groups, they hold almost verbatim for finite groups. Just use the appropriate inner product
(13.39) in L2(G) for finite G, i.e.,

〈χT , χS 〉 = 1

|G|
∑

g∈G
χT (g)χS(g), (13.63)

and delete the adjective “continuous”.

Theorem13.25 Let (T ,X) and (S, Y ) be finite-dimensional, continuous, unitary irreducible
representations of compact group G. Then

〈χT , χS 〉 =
{

0 if T � S

1 if T ∼= S.
(13.64)

Proof Suppose dimX = n and dimY = m. For g ∈G, let (Tij (g)) and (Sij (g)) be unitary
matrices that represent T (g) and S(g) under chosen orthonormal basis in X and in Y , re-
spectively. If T � S, we have

〈χT , χS 〉 =
ˆ

G

(
n∑

i=1

Tii(g)

)(
m∑

k=1

Skk(g)

)
dg= 0. (13.65)

On the other hand, if T ∼= S, we obtain

〈χT , χS〉 = 〈χT , χT 〉 =
ˆ

G

(
n∑

i=1

Tii(g)

)(
n∑

k=1

Tkk(g)

)
dg

=
n∑

i,k=1

ˆ

G

Tii(g)Tkk(g)dg=
n∑

i=1

1

n
= 1. (13.66)

�
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Theorem13.26 A finite-dimensional continuous unitary representation (T ,X) of a compact
group G is irreducible if and only if 〈χT , χT 〉 = 1.

Proof Sufficiency. Suppose 〈χT , χT 〉 = 1. Since the representation T is unitary, it is com-
pletely reducible. Let

T =m1T
1 +m2T

2 + · · · +mlT
l (13.67)

be the decomposition of T into its irreducible parts, where mj (j = 1, . . . , l) is the multiplic-
ity that the irreducible subrepresentation T j appears in the decomposition. Without loss of
generality, we may assume that mj ≥ 1 for all j . It follows immediately from decomposition
(13.67) that

χT =m1χT 1 +m2χT 2 + · · · +mlχT l (13.68)

Since the characters χT j (j = 1, . . . , l) are orthonormal, we have

〈χT , χT 〉 =
l∑

j=1

m2
j = 1, (13.69)

which is impossible unless l = 1. Then T = T 1, which is irreducible.
The necessity part of the theorem is already proved in (13.66). �

Since (13.67) implies (13.68) and the characters χT j (j = 1, . . . , l) are orthonormal, we
immediately arrive at the following assertion.

Theorem 13.27 Let T = m1T
1 + m2T

2 + · · · + mlT
l be the decomposition of T into its

irreducible parts. The multiplicities mj can be determined by the formula

mj = 〈χT , χT j 〉 =
ˆ

G

χT (g)χT j (g) dg. (13.70)

�

Theorem 13.28 Two finite-dimensional continuous unitary representations (T ,X) and
(S, Y ) of a compact group G are equivalent if and only if χT = χS .

Proof Sufficiency. Let (13.67) give the decomposition of T into its irreducible parts. Then
we have

〈χS , χT j 〉 = 〈χT , χT j 〉 =mj . (13.71)

It follows that

S ∼=m1T
1 +m2T

2 + · · · +mlT
l = T . (13.72)

The necessity part is already proved earlier. �
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13.6.2 Completeness Theorem on Characters of Finite Groups

Let G be a finite group. Let M = {f ∈ L2(G) : f (h)= f (ghg−1) for all g,h ∈G}; in other
words M consists of those functions which are constant on each conjugacy class of G. It
is clear that M is a linear subspace of L2(G) and dimM = p, where p is the number of
conjugacy classes of G.

Let (T 1,X1), (T 2,X2), . . . , (T m,Xm) be a complete set of irreducible unitary represen-
tations of G, where dimXk = nk (k = 1,2, . . . ,m). Clearly χT k ∈ M for each k. Since
〈χT j , χT k 〉 = 0 for j �= k, the functions χT k are linearly independent in M . It follows that
m≤ p. In fact, we have m= p, which follows from the following completeness theorem.

Theorem 13.29 Let (T 1,X1), (T 2,X2), . . . , (T m,Xm) be a complete set of irreducible uni-
tary representations of G. The characters χT 1 , χT 2 , . . . , χT m constitute an orthonormal ba-
sis in M .

Proof We already know that the characters χT k are orthonormal. It suffices to show that
every function in M can be written as a linear combination of these characters. Let f ∈M

be given. By the completeness theorem on the matrix elements T k
i,j (·) of the given complete

set of irreducible unitary representations, we have for each g,h ∈G

f (h)= f (ghg−1)=
m∑

k=1

nk∑

i,j=1

ckij T
k
ij (ghg

−1)

=
m∑

k=1

nk∑

i,j=1

ckij

nk∑

r,s=1

T k
ir (g)T

k
rs(h)T

k
sj (g

−1) (13.73)

for some coefficients ckij . Let N = |G|. Averaging both sides of the preceding equation with
respect to g over G, we obtain

f (h)= 1

N

∑

g∈G
f (h)= 1

N

∑

g∈G

⎛

⎝
m∑

k=1

nk∑

i,j=1

ckij

nk∑

r,s=1

T k
ir (g)T

k
rs(h)T

k
sj (g

−1)

⎞

⎠

=
m∑

k=1

nk∑

i,j=1

nk∑

r,s=1

ckij T
k
rs(h)

⎛

⎝ 1

N

∑

g∈G
T k
ir (g)T

k
js(g)

⎞

⎠

=
m∑

k=1

nk∑

i,j=1

nk∑

r,s=1

ckij T
k
rs(h)

1

nk

δij δrs

=
m∑

k=1

(
nk∑

i=1

ckii
1

nk

)
χT k (h) (13.74)

for each h ∈G. �

Corollary 13.30 The number of members in a complete set of irreducible unitary represen-
tations of a finite group is equal to the number of conjugacy classes of the group. �
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13.6.3 Example

As illustration we will determine a complete set of irreducible unitary representations for
the dihedral group

D3 = {e, r, r2, s, sr, sr2},
where e= I , r =R(e3,2π/3), and s =R(e1,π). The group D3 has three conjugacy classes,
namely (see Example A.8 in Appendix A)

[e] = {e}, [r] = {r, r2}, [s] = {s, sr, sr2}. (13.75)

By Corollary 13.30 there are three members in any complete set of irreducible unitary rep-
resentations of D3. Let T 1, T 2, T 3 be one such complete set with dimensions n1 ≤ n2 ≤ n3.
By Burnside’s theorem, we have

n2
1 + n2

2 + n2
3 = 6.

The only solution is: n1 = 1, n2 = 1, n3 = 2. We take T 1 to be the trivial representation
defined by T 1(g)= 1 for all g ∈D3. Since T 2 is a 1-dimensional representation, we know
that T 2(e) = 1. Let T 2(r) = χT 2(r) = x, T 2(s) = χT 2(s) = y. Then T 2(r2) = χT 2(r2) =
x2, T 2(sr)= χT 2(sr)= yx. On the other hand, since the character of any finite-dimensional
representation is a class function, we have χT 2(r)= χT 2(r2), χT 2(s)= χT 2(sr). Hence we
obtain

x = x2, y = yx,

which imply either (i) x = 0 and y = 0 or (ii) x = 1. The solution x = 0 and y = 0 must be
rejected because it implies 〈χT 2 , χT 2 〉 = 1/6 �= 1. Therefore x = 1. The remaining unknown
y can then be evaluated by the orthogonality of the characters χT 1 and χT 2 . By (13.63) we
have

〈χT 1 , χT 2 〉 = 1

6

∑

g∈D3

χT 1(g)χT 2(g)= 1

6
(1+ 2× 1+ 3y)= 0,

which gives y =−1.
Representation T 3 is two-dimensional. Hence χT 3(e)= 2. Let χT 3(r)= z, χT 3(s)=w.

By the orthogonality of χT 3 to both χT 1 and χT 2 , we have

〈χT 3 , χT 1〉 = 1

6
(2+ 2z+ 3w)= 0,

〈χT 3 , χT 2〉 = 1

6
(2+ 2z− 3w)= 0,

from which we get z=−1 and w = 0. We summarize our findings in Table 10.
A realization of the two-dimensional irreducible unitary representation of D3 is furnished

by taking R
2 as the representation space, and by taking

T 3(r)=
(−1/2 −√3/2√

3/2 −1/2

)
, T 3(s)=

(
1 0

0 −1

)
. (13.76)
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Table 10 Character table of
group D3

D3 [e] 2[r] 3[s]

χ
T 1 1 1 1

χ
T 2 1 1 −1

χ
T 3 2 −1 0

Remark 13.31 By Theorem 2.35 each point group G of Type III is isomorphic to the proper
point group G+ in the Laue class that contains G. For example, the group C3v is isomorphic
to D3 (see Tables 3 and 4 in Sect. 2.6). Thus C3v and D3 have the same abstract group
structure, and they can be taken as different realizations of the same abstract group. Indeed,
if we interpret the letter s in Table 1 of Sect. 2.1 and in (13.75) as IR(e1,π) rather than
R(e1,π), then Table 1 becomes the multiplication table and (13.75) the list of conjugacy
classes for C3v . Moreover, the derivation above for the characters for a complete set of
irreducible representations T 1, T 2, and T 3 of D3 becomes a derivation of the same for the
group C3v . This example of C3v and D3 illustrates the common assertion that isomorphic
groups have the same character table. In particular a point group of Type III has the same
character table as that of the proper point group in the same Laue class. �

13.7 Tensor Product of Representations

Let X1 and X2 be two complex vector spaces, and let X1 ⊗X2 be their tensor product.148

Let (T 1,X1) and (T 2,X2) be two finite-dimensional representations of group G. Let T :
G→GL(X1 ⊗X2) be the mapping defined by

T (g)(x1 ⊗ x2)= T 1(g)x1 ⊗ T 2(g)x2 (13.77)

for all x1 ∈ X1 and x2 ∈ X2. It is easily checked that T is well defined and is a homo-
morphism. Hence T is a representation of G on the tensor product X1 ⊗ X2. We write
T = T 1 ⊗ T 2 and call it the tensor product of the representations T 1 and T 2.

For k = 1,2, let dimXk = nk , and let f k
1, . . . ,f

k
nk

be a basis in Xk . Then {f 1
i ⊗ f 2

j :
1≤ i ≤ n1,1≤ j ≤ n2} constitutes a basis in X1 ⊗X2. For each g ∈G, let [T k

μν(g)] be the
matrix that represents T k(g) under the given basis in Xk . Note that

T (g)(f 1
i ⊗ f 2

j )= T 1(g)f 1
i ⊗ T 2(g)f 2

j

=
n1∑

p=1

n2∑

q=i
T 1
pi(g)T

2
qj (g)f

1
p ⊗ f 2

q .

We denote the matrix elements of the representation T = T 1⊗T 2 under the basis {f 1
i ⊗f 2

j },
which are complex-valued functions defined on G, by

Tpqij (g)= T 1
pi(g)T

2
qj (g). (13.78)

The character of the representation T is given by

χT (g)= χT 1⊗T 2 =
n1∑

p=1

n2∑

q=1

T 1
pp(g)T

2
qq(g)= χT 1(g)χT 2(g) (13.79)

for each g ∈G.

148See, e.g., [273, Chap. 14], for the definition and basic properties of tensor products of vector spaces.
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The discussion above can be generalized immediately to the tensor product of r rep-
resentations for r > 2. Let (T 1,X1), (T 2,X2), . . . , (T r ,Xr) be finite-dimensional repre-
sentations of group G, where dimXk = nk (k = 1,2, . . . , r). The tensor product T =
T 1 ⊗ T 2 ⊗ · · · ⊗ T r of the representations T 1,T 2, . . .T r is the homomorphism T : G→
GL(X1 ⊗X2 ⊗ · · · ⊗Xr) defined by

T (g)(x1 ⊗ x2 ⊗ · · · ⊗ xr )= T 1(g)x1 ⊗ T 2(g)x2 ⊗ · · · ⊗ T r (g)xr (13.80)

for all xk ∈Xk (k = 1,2, . . . , r). Let f k
1, . . . ,f

k
nk

be a basis in Xk . Then {f 1
i1
⊗f 2

i2
⊗· · ·f r

ir
:

1 ≤ i1 ≤ n1,1 ≤ i2 ≤ n2, . . . ,1 ≤ ir ≤ nr} constitutes a basis in X1 ⊗ X2 ⊗ · · · ⊗ Xr . For
each g ∈ G, let [T k

μν(g)] be the matrix that represents T k(g) under the given basis in Xk .
Then the matrix elements of the representation T = T 1 ⊗ T 2 ⊗ · · · ⊗ T r under the basis
{f 1

i1
⊗ f 2

i2
⊗ · · · ⊗ f r

ir
} are given by

Tp1p2···pr i1i2···ir (g)= T 1
p1i1

(g)T 2
p2i2
· · ·T r

pr ir
(g). (13.81)

The character of the representation T is given by

χT (g)= χT 1(g)χT 2(g) · · ·χT r (g) (13.82)

for each g ∈G.

13.8 Unitary Representations on Spaces of Symmetric Tensors

13.8.1 Symmetric Tensors

Let Sr (r ≥ 2) be the symmetric group of permutations on {1, . . . , r}, and let X be a complex
vector space with dimX = n. For each σ ∈ Sr , let Lσ : X⊗r → X⊗r be the linear mapping
defined by

Lσ (xi1 ⊗ · · · ⊗ xir )= xiσ (1) ⊗ · · · ⊗ xiσ (r) (13.83)

for all xik (ik = 1,2,3; k = 1, . . . , r) in X. An r th-order tensor A in X⊗r is said to be
symmetric if Lσ (A) = A for all σ ∈ Sr .149 We denote the set of all r th-order symmetric
tensors in X⊗r by [X⊗r ].

Let S :X⊗r →X⊗r be the linear mapping defined by

S = 1

r!
∑

σ∈Sr
Lσ . (13.84)

Clearly for any σ ∈ Sr we have

Lσ ◦ S = S ◦Lσ = S, (13.85)

where ◦ denotes the composition of the linear mappings in question.

Proposition 13.32 An r th-order tensor A ∈X⊗r is symmetric if and only if

S(A)= 1

r!
∑

σ∈Sr
Lσ (A)=A. (13.86)

149Backus [15] calls such a tensor A “totally symmetric”.
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Proof If A is symmetric, then

S(A)= 1

r!
∑

σ∈Sr
Lσ (A)= 1

r!
∑

σ∈Sr
A=A.

Conversely, if S(A)=A, then for each σ ∈ Sr ,

Lσ (A)= Lσ (S(A))= (Lσ ◦ S)(A)= S(A)=A.

Hence A is symmetric. �

Note that S ◦ S = S , i.e., S is a projection. Moreover, S(X⊗r )= [X⊗r ], i.e., S projects
the space of r th-order tensors onto the space of r th-order symmetric tensors.

For x1, . . . ,xn ∈X and σ ∈ Sr , since S ◦Lσ = S , the r th-order symmetric tensor

S(xi1 ⊗ · · · ⊗ xir )=
1

r!
∑

σ∈Sr
xiσ (1) ⊗ · · · ⊗ xiσ (r) ,

where ik ∈ {1, . . . , n} for each k, depends only on the number of times pj ≥ 0 that each xj

appears in the tensor product xi1 ⊗ · · · ⊗ xir . Hence we can denote the symmetric tensor
S(xi1 ⊗ · · · ⊗ xir ), without ambiguity, by the symbol

xi1 · · ·xir , where 1≤ i1 ≤ · · · ≤ ir ≤ n,

or by

x
p1
1 · · ·xpn

n , where pk (k = 1, . . . , n) is a non-negative integer and p1 + · · · + pn = r .

Proposition 13.33 Let {f 1, . . . ,f n} be a basis of X. Then

{
1

r!
∑

σ∈Sr
f iσ (1)

⊗ · · · ⊗ f iσ (r)
: 1≤ i1 ≤ · · · ≤ ir ≤ n

}

is a basis of [X⊗r ]. Moreover,

dim [X⊗r ] = Cn+r−1
r = (n+ r − 1)!

r!(n− 1)! . (13.87)

Proof Let B = {f i1
⊗ · · · ⊗ f ir

: 1 ≤ i1 ≤ n, . . . ,1 ≤ ir ≤ n}, which constitutes a basis of
X⊗r . Then, since S(X⊗r )= [X⊗r ],

S(B)= {S(f i1
⊗ · · · ⊗ f ir

) : 1≤ i1 ≤ · · · ≤ ir ≤ n}
= {f p1

1 · · ·f pn
n : pk (k = 1, . . . , n) is a non-negative integer, and p1 + · · · + pn = r}

spans [X⊗r ]. The tensors in S(B) are linearly independent. Indeed, if (p1, . . . , pn) �=
(q1, . . . , qn), then the tensors f

p1
1 · · ·f pn

n and f
q1
1 · · ·f qn

n are linear combinations of two
non-intersecting sets of basis elements in X⊗r , respectively. The number of elements in
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S(B) is none other than the number of partitions of r into a sum of n non-negative inte-
gers or the number of multisets150 of r elements chosen from {1, . . . , n}. This number is151

Cn+r−1
r . �

13.8.2 Characters of Representations on Symmetric Tensors

Let (T ,X) be an n-dimensional unitary representation of group G. For each g ∈G, let ei (g)

(i = 1, . . . , n) be orthonormal eigenvectors of T (g) with corresponding eigenvalues λi , i.e.,
T (g)ei (g) = λi(g)ei (g) for each i, where we have appealed to the spectral theorem for
normal operators [273, p. 236]. The subspace [X⊗2] of symmetric tensors in X⊗2 =X⊗X

is generated by the basis

{1
2

(
ei (g)⊗ ej (g)+ ej (g)⊗ ei (g)

) : 1≤ i ≤ j ≤ n}.

Note that [X⊗2] is invariant under the tensor-product representation T ⊗2 = T ⊗ T , and

dim [X⊗2] = Cn+2−1
2 = (n+ 1)!

2! (n− 1)! =
n(n+ 1)

2
.

Let S(2) be the subrepresentation of T ⊗2 on [X⊗2]. Since

S(2)(g)

(
1

2
(ei (g)⊗ ej (g)+ ej (g)⊗ ei (g))

)

=T ⊗2(g)

(
1

2
(ei (g)⊗ ej (g)+ ej (g)⊗ ei (g))

)

=λi(g)λj (g)

(
1

2
(ei (g)⊗ ej (g)+ ej (g)⊗ ei (g))

)
, (13.88)

the character of the representation S(2) = T ⊗2
∣∣[X⊗2] is given by the formula

χS(2) (g)=
∑

i≤j
λi(g)λj (g). (13.89)

The discussion above can be immediately generalized to the subrepresentation S(r) of
T ⊗r on [X⊗r ] for r > 2. For each (i1, i2, . . . , ir ) that satisfies 1≤ i1 ≤ i2 ≤ · · · ≤ ir ≤ n, let

(ei1 · · · eir )(g) :=
1

r!
∑

σ∈Sr

eiσ (1)(g)⊗ · · · ⊗ eiσ (r)(g).

150Multisets are sets with possible repetition of elements. Some examples of multisets of 3 elements chosen
from {1,2,3,4} are {1,1,2}, {2,2,2}, {1,3,4}.
151To see how to arrive at this number, consider the example of n = 3 and r = 3. Write in a line a pattern
of r = 3 crosses and n − 1 = 2 bars, e.g., ×|| × ×, which pertains to (p1,p2,p3) = (1,0,2), a partition
of 3 into the sum of 3 non-negative integers that corresponds to f 1

1f 0
2f 2

3, or to the multiset {1,3,3} that
corresponds to f 1f 3f 3. Another example is the pattern | × ×|×, which corresponds to (p1,p2,p3) =
(0,2,1), i.e., f 0

1f 2
2f 1

3, or to the multiset {2,2,3}, i.e., f 2f 2f 3. In total there are 5!/(3!2!) = 10 such
patterns. In general the number we want to determine is the number of linear patterns of r crosses and n− 1
bars, or (r + n− 1)!/(r! (n− 1)!).
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As shown in the preceding subsection, the tensors (ei1 · · · eir )(g) form a basis in [X⊗r ],
which is invariant under T ⊗r = T ⊗ · · · ⊗ T (r factors) and is of dimension Cn+r−1

r . Since

S(r)(g)
(
(ei1 · · · eir )(g)

)= T ⊗r (g)
(
(ei1 · · · eir )(g)

)= λi1(g) · · ·λir (g)(ei1 · · · eir )(g),
(13.90)

the character of the representation S(r) = T ⊗r ∣∣[X⊗r ] is given by the formula

χS(r) (g)=
∑

i1≤i2≤···≤ir
λi1(g)λi2(g) · · ·λir (g). (13.91)

13.9 Irreducible Representations of Direct Product of Groups

Let G1 and G2 be two groups and G1 ×G2 be their direct product (see Definition A.26 in
Appendix A). Let (T G1 ,X1) and (T G2 ,X2) be finite-dimensional representations of G1 and
G2, respectively, where dimT G1 = n1 and dimT G2 = n2. Let T :G1×G2 →GL(X1⊗X2)

be defined by

T (g1, g2)(x1 ⊗ x2)= T G1(g1)x1 ⊗ T G2(g2)x2 (13.92)

for all g1 ∈G1, g2 ∈G2, x1 ∈X1, and x2 ∈X2. It is easily verified that (T ,X1 ⊗X2) is an
n1n2-dimensional representation of G1 ×G2 and

χT (g1, g2)= χT G1
(g1)χT G2

(g2) for all (g1, g2) ∈G1 ×G2. (13.93)

We shall denote representation T of G1 ×G2 in (13.92) also by T = T G1 ⊗ T G2 . If T G1

and T G2 are unitary representations of G1 and G2, respectively, it is clear that T G1 ⊗ T G2

is a unitary representation of G1 ×G2.

Proposition 13.34 Let G1 and G2 be compact groups, and let T G1 , T G2 be finite dimen-
sional continuous irreducible unitary representations of G1 and G2, respectively. Then
T G1 ⊗ T G2 is a continuous unitary irreducible representation of G1 ×G2.

Proof It suffices to show that T G1 ⊗ T G2 is irreducible, because its other attributes are
obvious. We will prove that 〈χT G1⊗T G2

, χT G1⊗T G2
〉G1×G2

= 1. Indeed, we have

〈χT G1⊗T G2
, χT G1⊗T G2

〉G1×G2

=
ˆ

G1×G2

χT G1⊗T G2
(g1, g2)χT G1⊗T G2

(g1, g2) d(g1 × g2)

=
ˆ

G1

⎛

⎝
ˆ

G2

χT G1
(g1)χT G2

(g2)χT G1
(g1)χT G2

(g2) dg2

⎞

⎠dg1

=
⎛

⎝
ˆ

G1

χT G1
(g1)χT G1

(g1) dg1

⎞

⎠

⎛

⎝
ˆ

G2

χT G2
(g2)χT G2

(g2) dg2

⎞

⎠

= 〈χT G1
, χT G1

〉G1
〈χT G2

, χT G2
〉G2
= 1. �
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Remark 13.35 The proposition and its proof, with obvious modifications, remain valid if one
or both of the groups G1 and G2 are finite. For instance, if G1 is compact and G2 is finite,
then

〈χT G1⊗T G2
, χT G1⊗T G2

〉G1×G2

=
ˆ

G1

⎛

⎝ 1

|G2|
∑

g2∈G2

χT G1
(g1)χT G2

(g2)χT G1
(g1)χT G2

(g2)

⎞

⎠ dg1.

�

Theorem 13.36 Let {T 1
G1
, . . . ,T

m1
G1
} and {T 1

G2
, . . . ,T

m2
G2
} be complete sets of irreducible

unitary representations of the finite groups G1 and G2, respectively. Then {T i
G1
⊗T

j

G2
: 1≤

i ≤m1,1≤ j ≤m2} is a complete set of irreducible unitary representations of G1 ×G2.

Proof Let A= {T i
G1
⊗ T

j

G2
: 1≤ i ≤m1,1≤ j ≤m2}. Since

〈χ
T i
G1
⊗T

j
G2

, χT
p
G1
⊗T

q
G2
〉G1×G2

= δipδpq,

the representations T i
G1
⊗ T

j

G2
∈A are pairwise inequivalent. To prove completeness of the

set A, we will show that any irreducible unitary representation T of G1 ×G2 is equivalent
to some member of A. We shall prove by contradiction.

Let T be an irreducible unitary representation of G1 × G2 that is inequivalent to any
T i

G1
⊗ T

j

G2
in A. Then we have

〈χT , χT i
G1
⊗ χ

T
j
G2

〉G1×G2

= 1

|G1||G2|
∑

g1∈G1

∑

g2∈G2

χT (g1, g2)χT i
G1
(g1)χT

j
G2

(g2)

= 1

|G1|
∑

g1∈G1

⎛

⎝ 1

|G2|
∑

g2∈G2

χT (g1, g2)χT
j
G2

(g2)

⎞

⎠χT i
G1
(g1)= 0 (13.94)

for all 1≤ i ≤m1,1≤ j ≤m2. Let

f (g1)= 1

|G2|
∑

g2∈G2

χT (g1, g2)χT
j
G2

(g2). (13.95)

Since f is a class function and {χT i
G1
: 1 ≤ i ≤ m1} is a basis in the subspace of class

functions defined on G1, we infer from (13.94) that f (g1) = 0 for all g1 ∈ G1. Hence we
have

1

|G2|
∑

g2∈G2

χT (g1, g2)χT
j
G2

(g2)= 0

for all g1 ∈G1, which, when combined with the fact that {χ
T
j
G2

: 1 ≤ j ≤m2} is a basis in

the subspace of class functions defined on G2, implies that χT (g1, g2) = 0 for all g1 ∈G1

and g2 ∈G2. Then

〈χT , χT 〉G1×G2
= 0,

contradicting the hypothesis that the representation T is irreducible. �
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Table 11 Characters of group Ci
Ci [I ] [I]

χρ+ 1 1

χρ− 1 −1

Remark 13.37 By Corollary 13.30, since the number of basis elements in the complete set
A is m1m2, the number of conjugacy classes of G1 ×G2 is likewise m1m2. �

13.10 Irreducible Representations of Improper Crystallographic Point Groups

As discussed in Sect. 2.6.1, the 32 crystallographic point groups can be classified into three
types. Type I consists of 11 proper groups, i.e., they are subgroups of SO(3). The rest are
improper (i.e., they are subgroups of O(3) but not of SO(3)) and are divided into two types.
As we shall show in this section, once the problem of finding the character table and a
complete set of irreducible unitary representations of each proper point group is solved, the
parallel problem for all improper point groups can be handled easily.

13.10.1 Crystallographic Point Groups of Type II

There are 11 improper point groups of Type II, each of which is of the form H×Ci , where H
is a proper point group and Ci = {I ,I}. Let us now examine the irreducible representations
of improper point groups of Type II.

Since Ci has two elements, by Burnside’s theorem it has only two inequivalent irre-
ducible representations of dimension 1. Let us call these ρ+ and ρ−, with characters given
by Table 11. Without loss of generality, we may take a one-dimensional space X as repre-
sentation space for both ρ+ and ρ−. Let {e} be a unit vector in X. Then we have

ρ+(I )e= e, ρ+(I)e= e; ρ−(I )e= e, ρ−(I)e=−e. (13.96)

Let H ⊂ SO(3) be a proper crystallographic point group, and let (T 1,X1), . . ., (T m,Xm)

be a complete set of irreducible unitary representations of H . For l = 1, . . . ,m, let
dimT l = nl and {f l

1, . . . ,f
l
nl
} be an orthonormal basis in Xl . From what we have learned

in Sect. 13.9, a complete set of irreducible unitary representations of H ×Ci is given by

{T l ⊗ ρ+ : 1≤ l ≤m} ∪ {T l ⊗ ρ− : 1≤ l ≤m}. (13.97)

Let T l
ij (R) be the matrix elements of T l (R) for R ∈H . Then we have

(T l ⊗ ρ+)(R, I )(f l
i ⊗ e)= (T l (R)⊗ ρ+(I ))(f l

i ⊗ e)=
nl∑

p=1

T l
pi(R)(f l

p ⊗ e), (13.98)

(T l ⊗ ρ+)(R,I)(f l
i ⊗ e)= (T l (R)⊗ ρ+(I))(f l

i ⊗ e)=
nl∑

p=1

T l
pi(R)(f l

p ⊗ e), (13.99)

and

(T l ⊗ ρ−)(R, I )(f l
i ⊗ e)= (T l (R)⊗ ρ−(I ))(f l

i ⊗ e)=
nl∑

p=1

T l
pi(R)(f l

p ⊗ e), (13.100)
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Table 12 Characters of
irreducible representations of
group H ×Ci as given in terms
of those of H

H ×Ci R RI

χ
T l⊗ρ+ χ

T l (R) χ
T l (R)

χ
T l⊗ρ− χ

T l (R) −χ
T l (R)

Table 13 Character table of
group D3h =D3 ×Ci

D3h [e] 2[r] 3[s] [i] 2[ri] 3[si]

χ
T 1⊗ρ+ 1 1 1 1 1 1

χ
T 1⊗ρ− 1 1 1 −1 −1 −1

χ
T 2⊗ρ+ 1 1 −1 1 1 −1

χ
T 2⊗ρ− 1 1 −1 −1 −1 1

χ
T 3⊗ρ+ 2 −1 0 2 −1 0

χ
T 3⊗ρ− 2 −1 0 −2 1 0

Table 14 Crystallographic point groups of Type III and their corresponding isomorphic rotational point
groups

Type III Cs S4 C3h C2v C3v C4v D2d C6v D3h Td

Type I C2 C4 C6 D2 D3 D4 D4 D6 D6 O

(T l ⊗ ρ−)(R,I)(f l
i ⊗ e)= (T l (R)⊗ ρ−(I))(f l

i ⊗ e)=
nl∑

p=1

(−T l
pi(R))(f l

p ⊗ e).

(13.101)

Equations (13.98)–(13.101) give the matrix elements of the complete set (13.97) of irre-
ducible unitary representations of H × Ci . Hence once the matrix elements of a complete
set of irreducible unitary representations of H have been ascertained, so are the matrix el-
ements of a complete set of irreducible unitary representations of H × Ci . Likewise, the
characters of the irreducible representations of H × Ci are related to those of H as shown
in Table 12. Using this table, we can immediately write down the character table of H ×Ci

if we already have that of H in hand. In other words, we can easily write down the character
tables of all 11 improper point groups of Type II if we know the character tables of the 11 ro-
tational point groups. As example, we give in Table 13 the character table of D3h =D3×Ci .
To be consistent with our notation for group elements of D3, we write e for I and i for I in
the table.

13.10.2 Crystallographic Point Groups of Type III

Two groups that are isomorphic have the same complete set of irreducible unitary repre-
sentations and the same character table. Each crystallographic point group of Type III is
isomorphic to the rotational point group in its Laue class (see Table 14). Hence, the problem
to find the character table and a complete set of irreducible unitary representations for a Type
III point group reduces to the parallel problem for its isomorphic rotational point group.
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Chapter 14

14 Irreducible Representations of SU(2), SO(3), and O(3)

We will obtain a complete set of finite-dimensional, continuous, irreducible unitary repre-
sentations of SO(3) by seeking a complete set of such representations for SU(2) and then
applying the SU(2) (or Sp(1))→ SO(3) double covering. Once a complete set of irreducible
representations has been determined for SO(3), getting such a set for O(3) will be straight-
forward.

14.1 Irreducible Representations of SU(2)

Our derivation of the irreducible representations of SU(2) and SO(3) largely follows the
presentation of Weyl’s method152 by Sugiura [305, Chapter II]. Recall that

SU(2)=
{(

z w

−w z

)
: z,w ∈ C, |z|2 + |w|2 = 1

}
(14.1)

is the special unitary group of degree 2; see Sect. 11.4.

14.1.1 Construction of a Set of Continuous Unitary Representations

Let Vn be the space of homogeneous polynomials of degree n in two complex variables z1

and z2. Then Vn is a linear space of dimension n + 1, which has a basis given by zn−r1 zr2
(0≤ r ≤ n). For each g ∈ SU(2), let Tn

g : Vn→ Vn be defined by

Tn
gϕ(z)= ϕ(zg) for each ϕ ∈ Vn and z ∈ C2, (14.2)

where z= (z1, z2) ∈ C2 are row vectors and g acts on z from the right. In what follows we
shall also write Tn(g) for Tn

g .

Example 14.1 Consider the case n = 2. Let ϕ2,0 = z2
1, ϕ1,1 = z1z2, and ϕ0,2 = z2

2, which
together constitute a basis in V2. Let

g =
(

a b

−b a

)

be in SU(2). Note that for each ϕ ∈ V2,

(T2
gϕ)(z1, z2)= ϕ(zg)= ϕ(az1 − bz2, bz1 + az2).

By direct computations we obtain

T2
gϕ2,0 = a2ϕ2,0 − 2abϕ1,1 + b

2
ϕ0,2

T2
gϕ1,1 = abϕ2,0 + (aa − bb)ϕ1,1 − abϕ0,2

T2
gϕ0,2 = b2ϕ2,0 + 2abϕ1,1 + a2ϕ0,2.

152The name was coined by Wigner ([340, p. 168], [341, p. 157]).
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Under the given basis, T2
g is represented by the matrix

⎛

⎜⎜⎝

a2 ab b2

−2ab aa − bb 2ab

b
2 −ab a2

⎞

⎟⎟⎠ ,

which is not unitary. However, if we use the basis

ψ2,0 = 1√
2
ϕ2,0, ψ1,1 = ϕ1,1, ψ0,2 = 1√

2
ϕ0,2,

the matrix that represent T2
g under the new basis is

⎛

⎜⎜⎝

a2
√

2ab b2

−√2ab aa − bb
√

2ab

b
2 −√2ab a2

⎞

⎟⎟⎠ ,

which is unitary. �

Proposition 14.2 For each non-negative integer n, the mapTn : SU(2)→GL(Vn), g �→Tn
g

is a continuous representation of SU(2) on Vn.

Proof Note that for any g1, g2 ∈ SU(2) and ϕ ∈ Vn,

(Tn
g1
(Tn

g2
ϕ))(z)= (Tn

g2
ϕ)(zg1))= ϕ(zg1g2)= (Tn

g1g2
ϕ)(z).

Hence the map g �→Tn
g is a representation of SU(2) on Vn.

Under the basis given by ϕn,0 = zn1 , ϕn−1,1 = zn−1
1 z2, . . . , ϕ0,n = zn2 , the linear transforma-

tion Tn
g is represented by the matrix whose entries are polynomial functions of the matrix

elements of g. Hence the given map is continuous. �

Proposition 14.3 For each non-negative integer n, let 〈·, ·〉 be the inner product on Vn de-
fined by

〈
n∑

r=0

αrz
n−r
1 zr2,

n∑

r=0

βrz
n−r
1 zr2〉 =

n∑

r=0

(n− r)!r!αrβr . (14.3)

Then the representation Tn defined in Proposition 14.2 is unitary.

Proof Let C2 be the space of two-dimensional column vectors with complex components.
For z ∈ C2 and a ∈ C

2, let

<z,a> = z1a1 + z2a2. (14.4)
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Let ϕa(z)= (<z,a>)n = (z1a1+ z2a2)
n. Then by definition of the inner product on Vn, we

have

〈ϕa, ϕb〉 = 〈
n∑

r=0

Cn
r a

n−r
1 ar

2z
n−r
1 zr2,

n∑

r=0

Cn
r b

n−r
1 br2z

n−r
1 zr2〉

=
n∑

r=0

r!(n− r)! (Cn
r

)2
an−r

1 ar
2b1

n−r
b2

r

= n!
n∑

r=0

Cn
r (a1b1)

n−r (a2b2)
r

= n!(a1b1 + a2b2)
n = n!(a,b)n, (14.5)

where (a,b)= a1b1 + a2b2 is the Hermitian inner product on C
2.

We claim that

〈Tn
gϕa,T

n
gϕb〉 = 〈ϕa, ϕb〉 (14.6)

for all g ∈ SU(2) and a,b ∈ C
2. To see the validity of this claim, first note that

(Tn
gϕa)(z)= ϕa(zg)= (<zg,a>)n = (<z, ga>)n = ϕga(z). (14.7)

Hence it follows from (14.5) and (14.7) that

〈Tn
gϕa,T

n
gϕb〉 = 〈ϕga(z), ϕgb(z)〉 = n!(ga, gb)n = n!(a,b)n = 〈ϕa, ϕb〉,

where we have appealed to the identity

(ga, gb)= (a,b) for all a,b ∈ C
2

because g ∈ SU(2) is unitary.
By (14.6), Tn

g is unitary on Vn for each g ∈ SU(2) if the set {ϕa : a ∈ C
2} contains a basis

of Vn. One such basis is furnished by the following n+ 1 polynomials:

ϕ(1,ωk) = (z1 +ωkz2)
n (1≤ k ≤ n), and ϕ(0,1) = zn2,

where ω= ei2π/n is a primitive root of unity. Since

(z1 +ωkz2)
n = zn1 +Cn

1ω
kzn−1

1 z2 + · · · +Cn
n−1(ω

k)n−1z1z
n−1
2 + (ωk)nzn2,

to prove that the aforementioned n + 1 polynomials constitute a basis of Vn it suffices to
show that the determinant

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Cn
1ω · · · Cn

l ω
l · · · Cn

n−1ω
n−1 ωn

· · · · · ·
1 Cn

1ω
k · · · Cn

l (ω
k)l · · · Cn

n−1(ω
k)n−1 (ωk)n

· · · · · ·
1 Cn

1ω
n · · · Cn

l (ω
n)l · · · Cn

n−1(ω
n)n−1 (ωn)n

0 0 · · · 0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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is not zero. But, after expanding D by the last row, we observe that

D =
(

n−1∏

l=1

Cn
l

)
·

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ω · · · ωl · · · ωn−1

· · · · · ·
1 ωk · · · (ωk)l · · · (ωk)n−1

· · · · · ·
1 ωn · · · (ωn)l · · · (ωn)n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

(14.8)

=
(

n−1∏

l=1

Cn
l

)
·

∏

1≤k<l≤n
(ωl −ωk) �= 0,

where we have used the fact that the determinant on the right-hand side of (14.8) is the
Vandermonde determinant in ω1, . . . ,ωl, . . . ,ωn, which are all distinct. Hence Tn

g is unitary
for all g ∈ SU(2). �

Remark 14.4 If m �= n, the representations Tm and Tn have different dimensions and thence
are clearly inequivalent. �

Remark 14.5 Under the inner product defined on Vn by (14.3), the set

{
zn−r1 zr2√
(n− r)!r! : 0≤ r ≤ n

}
(14.9)

clearly constitutes an orthonormal basis in Vn. �

14.1.2 Characters and Irreducibility

By (11.66), each g ∈ SU(2) with trg = 2 cos θ (0≤ θ ≤ π) is conjugate to

h(θ)=
(
eiθ 0
0 e−iθ

)
. (14.10)

Hence, to find the character χn(g) := tr(Tn
g)= tr(Tn

h(θ)), we may find the trace of the matrix
that represents Tn

h(θ) under the basis

ϕn,0 = zn1, . . . , ϕn−r,r = zn−r1 zr2, . . . , ϕ0,n = zn2

of Vn. Since (z1, z2)h(θ)= (z1e
iθ , z2e

−iθ ), by (14.2) we have

Tn
h(θ)ϕn−r,r = (eiθ )n−2rϕn−r,r for 0≤ k ≤ n. (14.11)

Hence, if θ �= 0,π (i.e., trg �= 2,−2), then

χn(g)= χn(h(θ))=
n∑

r=0

(eiθ )n−2r = 1

einθ
· 1− ei(2n+2)θ

1− ei2θ

= ei(n+1)θ − e−i(n+1)θ

eiθ − e−iθ
= sin(n+ 1)θ

sin θ
. (14.12)
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Moreover, we have

χn(g)= χn(h(θ))=
{
n+ 1 if θ = 0 (i.e., trg = 2)

(−1)n(n+ 1) if θ = π (i.e., trg =−2).
(14.13)

Since

lim
θ→0

sin(n+ 1)θ

sin θ
= n+ 1, lim

θ→π

sin(n+ 1)θ

sin θ
= (−1)n(n+ 1), (14.14)

χn(h(θ)) is continuous on [0,π ].
Let G be a group. A function f :G→ C is called a class function if

f (ghg−1)= f (h) for any g,h ∈G. (14.15)

Proposition 14.6 Let f : SU(2)→ C be an integrable class function. Then the integral of f
with respect to the normalized Haar measure on SU(2) is given by

ˆ

SU(2)

f (g)dg = 2

π

π̂

0

f (θ) sin2 θ dθ, (14.16)

where f (θ)= f (h(θ)) and h(θ) is given by (14.10).

Proof Since f is a class function, we have f (g(θ1, θ2, θ3)) = f (h(θ1)) = f (θ1), where
(θ1, θ2, θ3) denotes the polar coordinates on S3; cf. (11.26) and Sect. 11.4. It follows then
from (11.33) and (11.34) that

ˆ

SU(2)

f (g)dg = 1

2π2

2πˆ

0

π̂

0

π̂

0

f (θ1) sin2 θ1 sin θ2 dθ1dθ2dθ3

= 1

2π2
· 4π

π̂

0

f (θ1) sin2 θ1 dθ1 = 2

π

π̂

0

f (θ) sin2 θ dθ,

where we have written the dummy variable in the integral as θ . �

Proposition 14.7 The representations Tn : SU(2)→ GL(Vn) (n = 0,1,2, . . .) are irre-
ducible.

Proof The characters χn of the representations Tn (see (14.12)–(14.14)) are continuous
class functions. By appealing to (14.16), we obtain

〈χn,χn〉 = 2

π

π̂

0

sin2(n+ 1)θ

sin2 θ
sin2 θ dθ

= 2

π

π̂

0

sin2(n+ 1)θ dθ = 2

π

π̂

0

1

2
(1− cos 2(n+ 1)θ) dθ = 1. (14.17)

Therefore the representations Tn (n= 0,1,2, . . .) are irreducible. �
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14.1.3 Completeness

Definition 14.8 Let G be a compact topological group and J be an index set. A set
{T α : α ∈ J } of pairwise inequivalent, finite-dimensional, continuous, irreducible unitary
representations of G is said to be complete if every finite-dimensional continuous irreducible
representation of G is equivalent to one of the representations T α . �

In this section we shall prove that {Tn : n = 0,1,2, . . .} constitutes a complete set of
pairwise-inequivalent, finite-dimensional, continuous, irreducible unitary representations of
SU(2).

By (14.12)–(14.14), the characters χn are even functions of θ . This fact can also be seen
from the identity

(
0 −1

1 0

)(
eiθ 0

0 e−iθ

)(
0 −1

1 0

)−1

=
(
e−iθ 0

0 eiθ

)
,

which indicates that h(θ) is conjugate to h(−θ).
In what follows, we consider the characters χn both as functions defined on SU(2) and as

even functions in L2[−π,π ]. For brevity we shall use the symbol X to denote L2[−π,π ],
particularly in subscripts. We shall write 〈·, ·〉 and ‖ · ‖ for the inner product and norm on
L2(SU(2),C), and write 〈·, ·〉X and ‖ · ‖X for the inner product and norm on L2[−π,π ].
Recall from the theory of Fourier series that the functions

en(θ)= 1√
2π

einθ (n= 0,±1,±2, . . .)

form an orthonormal basis in L2[−π,π ], and that for f ∈ L2[−π,π ], there holds the Par-
seval equality

‖f ‖2
X =

∞∑

n=−∞
|〈f, en〉|2X. (14.18)

Theorem 14.9 Any irreducible finite-dimensional continuous representation of SU(2) is
equivalent to one of the representations Tn constructed in Sect. 14.1.1.

Proof Let ρ be an irreducible finite-dimensional continuous representation of SU(2), and
let χρ be its character. From the discussions above, we know that χρ(θ), as a function in
L2[−π,π ], is even. Let ξ ∈ L2[−π,π ] be defined by ξ(θ)= χρ(θ) sin θ . Clearly ξ is odd.

For n= 1,2, . . ., we have

〈ξ, e±n〉X = 1√
2π

π̂

−π
ξ(θ)e∓inθ dθ

= 1√
2π

π̂

−π
ξ(θ)(cosnθ ∓ i sinnθ)dθ

=∓i
√

2

π

π̂

0

ξ(θ) sinnθ dθ =∓i
√

2

π

π̂

0

χρ(θ) sinnθ sin θ dθ
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=∓i
√

2

π

π̂

0

χρ(θ)χn−1(θ) sin2 θ dθ =∓i
√

2

π
· π

2
〈χρ,χn−1〉

= ∓i
√
π

2
〈χρ,χn−1〉. (14.19)

By (14.18), (14.19), and the fact that 〈ξ, e0〉X = 0, we obtain

‖ξ‖2
X = π

∞∑

n=1

|〈χρ,χn−1〉|2. (14.20)

On the other hand,

‖ξ‖2
X =

π̂

−π
(χρ(θ))

2 sin2 θ dθ = π · 2

π

π̂

0

(χρ(θ))
2 sin2 θ dθ = π‖χρ‖2. (14.21)

Comparing (14.20) and (14.21), we conclude that

‖χρ‖2 =
∞∑

n=0

|〈χρ,χn〉|2. (14.22)

Suppose the irreducible representation ρ is inequivalent to any of the Tn. Then

〈χρ,χn〉 = 0 for any n= 0,1,2, . . .,

which by (14.22) implies ‖χρ‖ = 0, contradicting the hypothesis that χρ is irreducible,
which implies 〈χρ,χρ〉 = 1. Hence ρ must be equivalent to one of the Tn. �

Gathering Propositions 14.2, 14.3, and 14.7, Theorem 14.9, and Remark 14.4, we have
proved the following theorem.

Theorem 14.10 The representations Tn : SU(2)→ GL(Vn) (n = 0,1,2, . . .) form a com-
plete set of pairwise-inequivalent, finite-dimensional, continuous, irreducible unitary repre-
sentations of SU(2). �

14.1.4 A Simple Criterion for Irreducibility

For later use in Chap. 17 we present in this subsection a simple criterion for a finite-
dimensional unitary representation of SU(2) to be irreducible.

Proposition 14.11 Let (T ,X) be a finite-dimensional unitary representation of SU(2), where
dimX = n+ 1. A necessary and sufficient condition for (T ,X) to be equivalent to (Tn,Vn)

is that exp(inθ) is an eigenvalue of T (h(θ)), where h(θ) ∈ SU(2) is given by (14.10).

Proof Necessity of the given condition is obvious from (14.11). To prove sufficiency, let

T = n1T
α1 + · · · + npT

αp (14.23)
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be a decomposition of T as a direct sum of multiples of irreducible unitary representa-
tions Tα1 , . . . ,Tαp of SU(2). Clearly αi ≤ n for each i = 1, . . . , p; otherwise there must
hold dimX > n + 1, contradicting the hypothesis that dimX = n + 1. If αi < n for all
i = 1, . . . , p, then all the eigenvalues of T (h(θ)) are of the form exp(imθ) with |m| < n,
which contradicts the hypothesis that exp(inθ) is an eigenvalue of T (h(θ)). Therefore at
least one of the αi ’s must be equal to n. Since dimX = n+ 1 = dimVn, we conclude that
the representation (T ,X) is equivalent to the irreducible representation (Tn,Vn). �

14.2 TheWigner D-Functions

The Wigner D-functions are matrix elements of the representations Tn (n = 0,1,2, . . .)
under a chosen basis in Vn (to be specified below) orthonormal with respect to the inner
product (14.3). In what follows we will modify our notation to conform with that commonly
used in the physics literature.

For each ordered pair of non-negative integers (n, r), where 0≤ r ≤ n, we define (j,m)

by n= 2j and r = j −m. Then we have

j = n/2, j ≥m≥−j, j +m= n− r, j −m= r. (14.24)

We rename Tn as Dj and Tn
g as Dj (g), where j = 0, 1

2 ,1, 3
2 ,2, . . ., and g ∈ SU(2) is given

by

g =
(

a b

−b a

)
. (14.25)

For each V2j = Vn, consider the orthonormal basis—with inner product defined by (14.3)—
given in (14.9), which after a change of labeling from (n, r) to (j,m) reads (cf. [274, Ap-
pendix II], [336, Sect. 8.1]):

ejm(z1, z2)= z
j+m
1 z

j−m
2√

(j +m)!(j −m)! . (j ≥m≥−j) (14.26)

By (14.2), we have

Dj (g)ejm(z1, z2)= ejm(z1a − z2b, z1b+ z2a)

= (z1a − z2b)
j+m(z1b+ z2a)

j−m
√
(j +m)!(j −m)!

=
j+m∑

k=0

j−m∑

k′=0

C
j+m
k C

j−m
k′√

(j +m)!(j −m)! (z1a)
j+m−k(−z2b)

k(z1b)
j−m−k′(z2a)

k′

=
j+m∑

k=0

j−m∑

k′=0

(−1)k
√
(j +m)!(j −m)!

k!(j +m− k)!k′!(j −m− k′)!

× aj+m−kbj−m−k
′
ak′b

k
z

2j−k−k′
1 zk+k

′
2 .

(14.27)
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Note that in (14.27) the double summation extends over all integer values of the indices
k and k′ under which the factorial arguments in the denominator are non-negative.153 Let
m′ = j − k − k′. Then 2j − k − k′ = j +m′, k+ k′ = j −m′, and we recast (14.27) as

Dj (g)ejm(z1, z2)=
j∑

m′=−j

∑

k

(−1)k
√
(j +m)!(j −m)!(j +m′)!(j −m′)!

k!(j +m− k)!(j −m′ − k)!(m′ −m+ k)!

× aj+m−kbm
′−m+kaj−m′−kb

k
e
j

m′(z1, z2), (14.28)

where the summation index k runs over all integer values such that the factorial arguments
in the denominator are non-negative. It follows from (14.28) that the elements of the matrix
which represents Dj (g) under the orthonormal basis {ejm : j ≥m≥−j} are given by154

D
j

m′m(g)=
∑

k

(−1)k
√
(j +m)!(j −m)!(j +m′)!(j −m′)!

k!(j +m− k)!(j −m′ − k)!(m′ −m+ k)!

× aj+m−kbm
′−m+kaj−m′−kb

k
, (14.29)

where the summation is over integer values of k that satisfy

k ≥ 0, k ≤ j +m, k ≤ j −m′, k ≥m−m′. (14.30)

Expressions of the Wigner D-functions appear in many equivalent forms. For example,
if (14.27)3 is written in the form

Dj (g)ejm(z1, z2)=
j+m∑

k′=0

j−m∑

k=0

C
j+m
k′ C

j−m
k√

(j +m)!(j −m)! (z1a)
j+m−k′(−z2b)

k′(z1b)
k(z2a)

j−m−k

=
j−m∑

k=0

j+m∑

k′=0

(−1)k
′

√
(j +m)!(j −m)!

k′!(j +m− k′)!k!(j −m− k)!

× aj+m−k′bkaj−m−kb
k′
z
j+m+k−k′
1 z

j−m−k+k′
2 , (14.31)

then by putting m′ = m − k′ + k in (14.31) we obtain, instead of (14.28), the following
expression:

Dj (g)ejm =
j∑

m′=−j

∑

k

(−1)m−m
′+k

√
(j +m)!(j −m)!(j +m′)!(j −m′)!

k!(j −m− k)!(j +m′ − k)!(m−m′ + k)!

× aj+m′−kbkaj−m−kb
m−m′+k

e
j

m′ , (14.32)

where the summation index k extends over all integer values such that the factorial argu-
ments in the denominator are non-negative. We then read off from (14.32) the following

153As pointed out by Rose [274, p. 232], another option is to define 1/n! = 0 for n < 0. Then the summation
indices k and k′ can go from −∞ to ∞.
154Cf. Biedenharn and Louck [28, p. 217, Eq. (5.44)], where u11 = a, u12 = b, u21 =−b, and u22 = a.
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expression for the Wigner D-functions:

D
j

m′m(g)=
∑

k

(−1)m−m
′+k

√
(j +m)!(j −m)!(j +m′)!(j −m′)!

k!(j −m− k)!(j +m′ − k)!(m−m′ + k)!

× aj+m′−kbkaj−m−kb
m−m′+k

,

(14.33)

where the summation extends over integer values of k that satisfy

k ≥ 0, k ≤ j −m, k ≤ j +m′, k ≥m′ −m. (14.34)

Obviously there are still other expressions of the Wigner D-functions that are equiva-
lent to (14.29) and (14.33). Let us give one more example. Equation (14.27)2 can also be
expanded as

Dj (g)ejm(z1, z2)=
j+m∑

k=0

j−m∑

k′=0

C
j+m
k C

j−m
k′√

(j +m)!(j −m)! (z1a)
k(−z2b)

j+m−k(z1b)
j−m−k′(z2a)

k′

=
j+m∑

k=0

j−m∑

k′=0

(−1)j+m−k
√
(j +m)!(j −m)!

k!(j +m− k)!k′!(j −m− k′)!

× akbj−m−k
′
ak′b

j+m−k
z
j−m+k−k′
1 z

j+m−k+k′
2 .

(14.35)

Then by putting m′ = −m+ k− k′ in (14.35) so that

z
j−m+k−k′
1 z

j+m−k+k′
2 =√

(j +m′)!(j −m′)! ej
m′ ,

we obtain, for the matrix elements of Dj (g) under the basis {ejm}, the expression

D
j

m′m(g)=
∑

k

(−1)j+m−k
√
(j +m)!(j −m)!(j +m′)!(j −m′)!

k!(j +m− k)!(j +m′ − k)!(k −m−m′)!

× akbj+m
′−kak−m−m′b

j+m−k
,

(14.36)

where the summation index k extends over all integer values such that the factorial argu-
ments in the denominator are non-negative.

In this section we have followed Weyl’s method and derived three general formulas that
express the Wigner D-functions in terms of the entries of a generic SU(2) matrix (14.25).
Various explicit expressions of the Wigner D-functions are obtained when formulas for
various parametrizations of SU(2) are substituted into (14.29), (14.33), (14.36), and other
expressions equivalent to them. In the next section we will write down some explicit expres-
sions of Wigner D-functions in Euler Angles.

14.2.1 Wigner D-Functions in Euler Angles

We begin by expressing the Euler-Rodrigues parameters (q0, q1, q2, q3) of a rotation R

in terms of its Euler angles (ψ, θ,φ). Since R(ψ, θ,φ) = R(e3,ψ)R(e2, θ)R(e3, φ), the
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quaternion pertaining to R(ψ, θ,φ) can be expressed as

q =
(

cos
ψ

2
+ sin

ψ

2
k

)(
cos

θ

2
+ sin

θ

2
j

)(
cos

φ

2
+ sin

φ

2
k

)

=
(

cos
ψ

2
cos

θ

2
+ cos

ψ

2
sin

θ

2
j + cos

θ

2
sin

ψ

2
k− sin

ψ

2
sin

φ

2
i

)(
cos

φ

2
+ sin

φ

2
k

)

= q0 + q1i + q2j + q3k, (14.37)

where

q0 = cos
θ

2
cos

ψ + φ

2
, q1 = sin

θ

2
sin

φ −ψ

2
,

q2 = sin
θ

2
cos

ψ − φ

2
, q3 = cos

θ

2
sin

ψ + φ

2
. (14.38)

For SO(3), the domain of the Euler angles is defined by ψ ∈ [0,2π), θ ∈ [0,π ], φ ∈ [0,2π).
From (14.38), we observe that if (ψ, θ,φ) pertains to the quaternion x, then (ψ, θ + 2π,φ)
delivers −x. Hence a domain of the Euler angles that will cover S3 is given by:

0≤ψ < 2π, 0≤ θ ≤ π or 2π ≤ θ ≤ 3π, 0≤ φ < 2π. (14.39)

The correspondence between the Euler angles (ψ, θ,φ) and q ∈ S3 is not one-to-one when
θ = 0,π,2π,3π , which correspond to the sets V1 = {(q0, q1, q2, q3) ∈ S3 : q2

0 + q2
3 = 1} and

V2 = {(q0, q1, q2, q3) ∈ S3 : q2
1 + q2

2 = 1}. It is one-to-one on U = S3 \ (V1 ∪ V2).
Substituting (14.38) into (11.69), we have

g =
(
e−iψ/2 cos θ

2 e
−iφ/2 −e−iψ/2 sin θ

2 e
iφ/2

eiψ/2 sin θ
2 e
−iφ/2 eiψ/2 cos θ

2 e
iφ/2

)
, (14.40)

where the domain of the Euler angles is given by (14.39).
Substituting a = e−iψ/2 cos θ

2 e
−iφ/2 and b = −e−iψ/2 sin θ

2 e
iφ/2 into (14.29), we obtain

the following formula for the Wigner D-functions in Euler angles:

D
j

m′m(ψ, θ,φ)= e−im
′ψdj

m′m(θ)e
−imφ; (14.41)

here ψ ∈ [0,2π), θ ∈ [0,π ] ∪ [2π,3π ], φ ∈ [0,2π), and

d
j

m′m(θ)=
∑

k

(−1)m
′−m+k

√
(j +m)!(j −m)!(j +m′)!(j −m′)!

k!(j +m− k)!(j −m′ − k)!(m′ −m+ k)!

×
(

cos
θ

2

)2j+m−m′−2k (
sin

θ

2

)m′−m+2k

,

(14.42)

where the summation runs over all integer values of index k that satisfy (14.30). Note that the
function d

j

m′m is real-valued. When (14.42) is substituted in (14.41), we obtain the formula

for Dj

m′m(ψ, θ,φ) given in the book by Rose [274, p. 234]; see also [325, p. 77, equation
(5)].
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Similarly, if a = e−iψ/2 cos θ
2 e
−iφ/2 and b = −e−iψ/2 sin θ

2 e
iφ/2 are substituted into

(14.33) and (14.36), respectively, we obtain (14.41) but, instead of (14.42), we get the ex-
pressions155

d
j

m′m(θ)=
∑

k

(−1)k
√
(j +m)!(j −m)!(j +m′)!(j −m′)!

k!(j −m− k)!(j +m′ − k)!(m−m′ + k)!

×
(

cos
θ

2

)2j+m′−m−2k (
sin

θ

2

)m−m′+2k

,

(14.43)

and

d
j

m′m(θ)=
∑

k

(−1)j+m
′−k

√
(j +m)!(j −m)!(j +m′)!(j −m′)!

k!(j +m− k)!(j +m′ − k)!(k −m′ −m)!

×
(

cos
θ

2

)2k−m′−m (
sin

θ

2

)2j+m′+m−2k

,

(14.44)

respectively, where the summation index k extends over all integer values such that the
factorial arguments in the denominator are non-negative. A collection of explicit expressions
of the Wigner D-functions in terms of Euler angles has been compiled by Varshalovich et al.
[325, Sect. 4.3]. In particular, formulas (14.42), (14.43), and (14.44) are listed as equations
(5), (4), and (3), respectively, in [325, pp. 76–77].

14.2.2 Wigner D-Functions in Euler-Rodrigues Parameters

Formulas (14.29), (14.33), and (14.36) are valid for any parametrizations of SU(2). As il-
lustration, let us put (14.29) in Euler-Rodrigues parameters (see Sect. 11.4.2). Substituting
(11.70) into (11.69), we observe that a generic element g of SU(2) is given by the formula

g =
(

cos ω
2 − i sin ω

2 cosΘ −i sin ω
2 sinΘ e−iΦ

−i sin ω
2 sinΘ eiΦ cos ω

2 + i sin ω
2 cosΘ

)
. (14.45)

Substituting a = cos ω
2 − i sin ω

2 cosΘ , b = −i sin ω
2 sinΘ e−iΦ into the general formula

(14.29) for Dj

m′m(g), we obtain156

D
j

m′m(ω;Θ,Φ)

=
∑

k

√
(j +m)!(j −m)!(j +m′)!(j −m′)!

k!(j +m− k)!(j −m′ − k)!(m′ −m+ k)!a
j+m−kbm

′−m+k(−b)kaj−m′−k

= (−iv)m′−m(1− v2)j+ma−(m
′+m)e−i(m

′−m)Φ

×
∑

k

√
(j +m)!(j −m)!(j +m′)!(j −m′)!

k!(j +m− k)!(j −m′ − k)!(m′ −m+ k)!
(

v2

1− v2

)k

, (14.46)

155Messiah [230, p. 1072] calls (14.43) “the Wigner formula”.
156Cf. Biedenharn and Louck [28, p. 54, Eq. (3.89)].
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where v := sin ω
2 sinΘ and the summation index k extends over all integer values such that

the factorial arguments in the denominator are non-negative. Note that all the exponents of
each summand in (14.46)1 are non-negative integers. Hence D

j

m′m : S3 → C is continuous.

It should be emphasized that there are many expressions for D
j

m′m(ω;Θ,Φ), not only

because there are different equivalent general expressions for D
j

m′m(g), but also because
there are different ways to parametrize SU(2) with axis-angle parameters. For example,
Carmeli ([69]; see also [70, pp. 25–39]) also uses Weyl’s method to derive an expression
for Dj

m′m(ω;Θ,Φ). But the general expression for Dj

m′m(g) that he adopts is different than
those we have derived, and his (a, b) is, in our notation, (a, b). Varshalovich et al. [325, p.
81] briefly outline several methods to derive expressions for Dj

m′m(ω;Θ,Φ), one of which
is the method we have presented above. They write down two explicit expressions under this
method, one of which is clearly related to the general formula (14.36). But their (a, b) is, in
our notation, (a,−b). In our presentation we have followed the convention adopted in the
treatise of Biedenharn and Louck [28].

Remark 14.12 In 2008–2009 Mason and Schuh [212, 213] and Mason [211] promoted us-
ing series expansion of the ODF in hyperspherical harmonics157 in texture analysis so that
“the analysis of crystallographic information may be performed entirely in the axis-angle
parametrization” [211]. The benefits of using axis-angle parameters over using Euler angles
as arguments of the ODF, particularly for texture data from single-orientation measurements,
are amply supported by references cited in their papers. The hyperspherical harmonics are
defined on S3, the polar coordinates of which are the (re-ordered) Euler-Rodrigues param-
eters, and they constitute an orthogonal basis in L2(S3,C). These properties of the hyper-
spherical harmonics might have drawn the attention of Mason and Schuh, who, however,
seem to have overlooked the fact that the Wigner D-functions enjoy the same properties.
In his famous 1931 book, Wigner ([340]; see also the 1959 English edition [341]) follows
the method suggested by Weyl and derives a complete set of irreducible representations of
SU(2) as the first step to do the same for the rotation group. Thus he starts by obtaining a
general explicit formula (see [340, p. 176, Eq. (21)] or [341, p. 164, eq. (15.21)]) for what
we now call the Wigner D-functions D

j

m′m : SU(2)→ C, expressed in terms of the entries
a, b, −b, and a of a generic element g in SU(2)∼= Sp(1) or S3; cf. our (14.29), (14.33), and
(14.36). Such general formulas are valid for all parametrizations of S3. Putting a and b in
Euler-Rodrigues parameters here will, in the next step, lead to Wigner D-functions Dl

mn for
SO(3) with the axis-angle parameters (ω;Θ,Φ) as independent variables.

Commenting on two other derivations of an explicit formula for Dl
mn(ω;Θ,Φ) by Moses

[239, 240], Carmeli [69], who obtains the same formula derived by Moses by using Weyl’s
method, points out that “the present method is much easier for the interested physicist to
follow than the previous works [i.e., the derivations by Moses] since it is most closely related
to the usual derivation of the representation, such as Wigner’s, when the Euler angles are
used”. By the same token practitioners of texture analysis are familiar with the Wigner D-
functions or the generalized spherical harmonics as functions of the Euler angles. It will be
easier for them to use these same functions with the axis-angles parameters as independent
variables than to learn about hyperspherical harmonics anew. �

157Here hyperspherical harmonics mean polynomial solutions of the Laplace equation in R
4 which are matrix

elements of a complete set of irreducible representations of SO(4). Cf. e.g., Talman [309, Chap. 10].
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14.3 Irreducible Unitary Representations of SO(3)

Recall that Ad : SU(2)→ SO(3) is a smooth homomorphism and local diffeomorphism with
Ker(Ad)= {±I }. It follows that we can obtain a complete set of irreducible unitary repre-
sentations of SO(3) from the irreducible unitary representations Tn of SU(2) constructed in
Sect. 14.1, as shown in the following theorem.

Theorem 14.13 For each non-negative integer l, there is an irreducible unitary representa-
tion Dl of SO(3) defined by

Dl ◦Ad=T2l , (14.47)

where T2l is the irreducible representation Tn of SU(2) (see Sect. 14.1) with n = 2l. Any
irreducible unitary representation D of SO(3) is equivalent to Dl for some non-negative
integer l, and {Dl : l = 0,1,2, . . .} provides a complete set of finite-dimensional, continuous,
irreducible unitary representations of SO(3).

Proof Let I be the identity matrix in SU(2). For the basis ϕn−r,r = zn−r1 zr2 (0≤ r ≤ n) in Vn,
we have

(Tn(−I )ϕn−r,r )(z1, z2)= ϕn−r,r (−z1,−z2)= (−1)nϕn−r,r (z1, z2) (14.48)

for each 0≤ k ≤ n. It follows that

Tn(−I )= (−1)nIVn , (14.49)

where IVn is the identity on Vn. Hence, if n= 2l (l = 0,1,2, . . .), then Ker(Ad)⊂Ker(T2l ).
In fact, it can be seen from (14.10)–(14.13) that Ker(T2l ) = Ker(Ad) = {I ,−I }. Clearly
there exists a homomorphism Dl : SO(3) → GL(V2l ) such that equation (14.47) is valid.
Indeed the matrix that represents Dl under the orthonormal basis elm (see (14.26)) in V2l ,
where−l ≤m≤ l, is exactly that which represents T2l . Hence Dl is a (2l+1)-dimensional,
continuous, irreducible unitary representation of SO(3) on V2l .

Let D be an irreducible representation of SO(3). Then T := D ◦ Ad is an irreducible
representation of SU(2) and is thence equivalent to Tn for some non-negative integer n.
Since

Tn(−I )=D(Ad(−I ))=D(I SO(3))= IVn , (14.50)

we conclude by a comparison of (14.49) and (14.50) that n = 2l for some non-negative
integer l. Hence D is equivalent to Dl for some non-negative integer l. For l �= l′, we clearly
have Dl

�Dl′ because they are of different dimensions.
Gathering what we have proved, we conclude that {Dl : l = 0,1,2, . . .} provides a com-

plete set of finite-dimensional, continuous, irreducible unitary representations of SO(3). �

The matrix elements Dl
mn(R) (l = 0,1,2, . . . ;−l ≤m≤ l,−l ≤ n≤ l) of the irreducible

unitary representations Dl play a central role in texture analysis. From (14.41), (14.42), and
(14.47), we obtain

Dl
mn(ψ, θ,φ)= e−imψdl

mn(θ)e
−inφ, (4.18)

14 Irreducible Representations of SU(2), SO(3), and O(3)
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where ψ ∈ [0,2π), θ ∈ [0,π ], φ ∈ [0,2π),

dl
mn(θ)=

∑

k

(−1)m−n+k
√
(l +m)!(l −m)!(l + n)!(l − n)!

k!(l + n− k)!(l −m− k)!(m− n+ k)!

×
(

cos
θ

2

)2l+n−m−2k (
sin

θ

2

)2k+m−n
,

(4.19)

and the summation in (4.19) extends over integer values of k that satisfy

k ≥ 0, k ≤ l + n, k ≤ l −m, k ≥ n−m. (14.51)

We call (4.19) our first explicit formula for the reduced matrix element dl
mn(θ); cf. Foot-

note 62 in Sect. 4.2. Note that the function dl
mn is real-valued and the inequalities (14.51)

guarantee that the power of cos(θ/2) and of sin(θ/2) in (4.19) are non-negative. If we use
(14.41), (14.43), and (14.47), we obtain (4.18) but, instead of (4.19), we get our second
explicit formula for dl

mn(θ):

dl
mn(θ)=

∑

k

(−1)k
√
(l +m)!(l −m)!(l + n)!(l − n)!

k!(l − n− k)!(l +m− k)!(n−m+ k)!

×
(

cos
θ

2

)2l−n+m−2k (
sin

θ

2

)2k+n−m
,

(14.52)

where the summation extends over integer values of k that satisfy

k ≥ 0, k ≤ l − n, k ≤ l +m, k ≥m− n. (14.53)

Comparing (4.19) with (14.52), we obtain the identity

dl
mn(θ)= (−1)m−ndl

nm(θ). (14.54)

Let (ψ, θ,φ) be the Euler angles of a rotation R. By (1.94), (4.18), and (14.54), we have

Dl
mn(R

−1)=Dl
mn(π − φ, θ,π −ψ)= e−im(π−φ)dl

mn(θ)e
−in(π−φ)

= einψ
(
(−1)m−ndl

mn(θ)
)
eimφ = e−inψdl

nm(θ)e
−imφ =Dl

nm(R), (14.55)

which verifies that the matrix [Dl
mn] is unitary.

Likewise, if we put in (14.46) j = l = 0,1,2, . . . and write (m,n) for (m′,m), where
−l ≤ m ≤ l and −l ≤ n ≤ l, and if we restrict the range of ω to [0,π ], then (14.46) re-
duces to an explicit formula for Dl

mn(n(Θ,Φ),ω), i.e., the Wigner D-functions of SO(3) in
axis-angle parameters. Other equivalent formulas for Dl

mn(n(Θ,Φ),ω) can be derived in a
similar way.

14.4 Irreducible Representations of O(3)

Theorem 14.14 ([95, Theorem 2], [232, p. 248]) A complete set of finite-dimensional, con-
tinuous, irreducible unitary representations of O(3) is given by Dl,± of dimension 2l + 1

14.4 Irreducible Representations of O(3)
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(l = 0,1,2, . . .), which are defined by Dl,± :Q �→ [Dl,±
mn (Q)] (−l ≤ m ≤ l,−l ≤ n ≤ l),

where Q ∈O(3), and

Dl,+
mn (Q)=

{
Dl

mn(R), if Q=R ∈ SO(3);
Dl

mn(R), if Q= IR ∈ ISO(3).
(14.56)

Dl,−
mn (Q)=

{
Dl

mn(R), if Q=R ∈ SO(3);
−Dl

mn(R), if Q= IR ∈ ISO(3).
(14.57)

Proof Let I be the identity in O(3) and I = −I . Let D̃ : O(3) → GL(X) be a finite-
dimensional irreducible unitary representation of O(3). Since D̃(I)D̃(Q)= D̃(Q)D̃(I) for
each Q ∈O(3), by Schur’s lemma (see Theorem 13.8) we conclude that

D̃(I)= λIX for some λ ∈ C, (14.58)

where IX is the identity on X. On the other hand, we have

(D̃(I))2 = (D̃(I))(D̃(I))= D̃(I2)= D̃(I )= IX. (14.59)

From (14.58) and (14.59) we obtain λ2 = 1, which implies λ=±1.
We claim that D̃

∣∣
SO(3) is irreducible. Indeed, suppose there is a non-trivial proper

subspace W ⊂ X such that D̃(R)W ⊂ W for each R ∈ SO(3). Then for each w ∈ W ,
D̃(IR)w = ±D̃(IR)w ∈ W for each R ∈ SO(3). Thus W is invariant under D̃(Q) for
each Q ∈O(3), contradicting the hypothesis that the representation (D̃,X) is irreducible.

Hence D̃|SO(3)
∼=Dl for some l = 0,1,2, . . ., because {Dl : l = 0,1,2, . . .} is a complete

set of finite-dimensional, continuous, irreducible unitary representation of SO(3). With the
fact that D̃(I)=±IX , we have D̃(R)=Dl (R) and D̃(IR)=±Dl (R) for any R ∈ SO(3).
It follows that for each l = 0,1,2, . . ., there are two irreducible representations of O(3),
namely Dl,+ and Dl,−, which are defined by (14.56) and (14.57), respectively.

The argument above shows also that any finite-dimensional, continuous, irreducible rep-
resentation of O(3) must be equivalent to one of the representations in the set Dl,+, Dl,−
(l = 0,1,2, . . .). That the representations Dl,± are also pairwise-inequivalent follows im-
mediately from (14.56), (14.57), and the fact that the representations Dl are pairwise-
inequivalent. �

Definition 14.15 We call Dl,±
mn : O(3) → C (l = 0,1,2, . . . ;−l ≤ m ≤ l,−l ≤ n ≤ l) the

Wigner D-functions of O(3). �

14 Irreducible Representations of SU(2), SO(3), and O(3)
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Chapter 15

15 The Peter-Weyl Theorem

In this chapter we present an elementary proof (cf. Talman [309, pp. 92–102]) of the Peter-
Weyl theorem for the special case where the compact group has a faithful representation.
Recall that a representation ρ : G→ GL(X) of G on complex vector space X is faithful
if it is injective. Every matrix group G⊂ GL(Cn) has a faithful representation as the self-
representation g �→ g is faithful. In this exposition we are concerned only with matrix groups
such as SO(3), O(3), etc., so the elementary proof suffices for our purpose here.158

In the rest of this chapter G always denotes a compact group with normalized Haar
measure g, and L2(G) := L2(G,C).

15.1 Preliminaries

Lemma 15.1 Let (T ,X) be a finite-dimensional unitary representation of compact group G

and χ be its character. For each g ∈ G, let Tij (g) be elements of the unitary matrix that
represents T under some orthonormal basis in X. The following assertions are valid:

(a) For any g,h ∈G,

χ(h−1g)=
∑

i,j

Tij (h)Tij (g). (15.1)

(b) Let e be the identity in G. Then

|χ(g)| ≤ χ(e) for each g ∈G. (15.2)

(c) For each g ∈G, let T ′(g) ∈ GL(X) be defined by T ′(g)= T (g) for each g ∈G. Then
T ′ :G→ GL(X) is a representation of G on X and its character χ ′ satisfies χ ′(g) =
χ(g) for each g ∈G. Moreover, T ′ is irreducible if and only if T is irreducible.

Proof (a) Because the matrix [Tij (g)] is unitary for each g ∈G, we have
∑

i,j

Tij (h)Tij (g)=
∑

i,j

Tji(h
−1)Tij (g)=

∑

j

Tjj (h
−1g)= χ(h−1g)

for each g,h ∈G.
(b) Substituting h= g in (15.1), we obtain

χ(e)=
∑

i,j

|Tij (g)|2 for each g ∈G.

Appealing to the Cauchy-Schwarz inequality, we observe that

|χ(h−1g)|2 = |
∑

i,j

Tij (h)Tij (g)|2

≤
⎛

⎝
∑

i,j

|Tij (h)|2
⎞

⎠

⎛

⎝
∑

i,j

|Tij (g)|2
⎞

⎠= (χ(e))2

158For proofs without invoking the additional assumption that the compact group in question has a faithful
representation, see, e.g., [55, Chap. 4], [245, pp. 186–194].
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for each g,h ∈G. Putting h= e in the preceding inequality, we obtain

|χ(g)| ≤ χ(e) for each g ∈G.

(c) It is easy to verify that T ′ is a representation of G and that χ ′(g)= χ(g) for each g ∈G.
The last assertion of the lemma follows from the fact that

´
G
|χ ′(g)|2dg = ´

G
|χ(g)|2dg.

�

We call T ′ in Lemma 15.1(c) the representation contragredient to T .
Henceforth we adopt the following notation. Let G be a compact topological group, and

let {T α : α ∈ J }, be a complete set (cf. Definition 14.8) of pairwise inequivalent, finite-
dimensional, continuous, irreducible unitary representations of G. Let dimT α = nα , and let
T α
ij (·) (1≤ i, j ≤ nα) be the matrix elements of the representation T α under some orthonor-

mal basis in the representation space of T α . For each α ∈ J , the character of T α will be
denoted by χα .

Next we show that if G has a faithful representation, then a set of real-valued non-
negative functions on G, which are finite linear combinations of the characters χα , can
be constructed so that these functions are the densities of probability measures which ap-
proximate the Dirac measure at e arbitrarily closely in the sense specified in the following
proposition.

Proposition 15.2 Let G be a compact topological group with a faithful finite-dimensional
continuous representation T f , and let {T α : α ∈ J }, where J is an index set, be a complete
set of finite-dimensional, continuous, irreducible unitary representations ofG. Then there is
a sequence of functions ψN :G→ R which satisfies the following conditions:

(a) Each ψN is a finite linear combination of characters χl , i.e.,

ψN(g)=
∑

α∈JN
cαNχ

α(g), (15.3)

where the index set JN is finite.
(b) Each ψN satisfies

ψN(g)≥ 0 for each g ∈G, and
ˆ

G

ψN(g)dg= 1. (15.4)

(c) For any ε > 0, and any open neighborhood U of e, there is an N such that

ψN(g) < ε for each g ∈G \U . (15.5)

Proof Since T f is a finite-dimensional faithful representation of G, for g �= h ∈G we have

∑

i,j

(T
f

ij (g)− T
f

ij (h))(T
f

ij (g)− T
f

ij (h))=
∑

i,j

|T f

ij (g)− T
f

ij (h)|2 > 0. (15.6)

By (15.1), we can recast inequality (15.6) as

2χf (e)− χf (h−1g)− χf (h−1g) > 0 for any g �= h ∈G. (15.7)

Let T f ′ be the representation contragredient to the faithful representation T f . Then
χf ′(g) = χf (g) for each g ∈ G. Let T r be the direct sum of T f and T f ′ , i.e., T r =

15 The Peter-Weyl Theorem
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T f +T f ′ . Then χr(g)= χf (g)+χf (g) for each g ∈G. Note that χr(g) is real for each g.
By (15.2) and (15.7), we see that

−χr(e)≤ χr(g) < χr(e) (15.8)

for any g �= e ∈G. Let m= dimT r , and let T 0 be the 1-dimensional identity representation
(i.e., T 0(g) = 1 for each g ∈G). Let T = mT 0 + T r , which is a finite-dimensional repre-
sentation of G with character χ given by χ(g) = m + χr(g) for each g ∈ G. Clearly the
character χ satisfies

0≤ χ(g) < χ(e) for each g �= e ∈G. (15.9)

Let

ψN(g)= cN(χ(g))
N , (15.10)

where cN > 0 is to be determined by the condition
´
G
ψN(g)dg = 1. Let T ⊗N be the N -

fold tensor product of representation T . Since the set {T α} of finite-dimensional irreducible
unitary representations of G is complete, by decomposing T ⊗N into its irreducible parts (cf.
(13.34)), we observe that (χ(·))N , the character of T ⊗N , can be written as a finite linear
combination of the characters χα , i.e.

(χ(g))N =
∑

α∈JN
bαNχ

α(g), (15.11)

where JN is a finite index set and bαN are positive integers; cf. (13.68). Let ε > 0, and let an
open neighborhood U of e be given. Since χ is continuous on G, there is an a ∈G \U such
that

χ(a)≥ χ(g) for each g ∈G \U .

Since a �= e, by (15.9) we have

χ(e) > χ(a)≥ χ(g) for each g ∈G \U . (15.12)

It follows from the continuity of χ that there is a neighborhood V of e such that

χ(g) >
χ(e)+ χ(a)

2
for each g ∈ V . (15.13)

By (15.13) clearly we have

ˆ

G

(χ(g))Ndg≥
ˆ

V

(χ(g))Ndg> g(V )

(
χ(e)+ χ(a)

2

)N

,

which implies

cN := 1´
G
(χ(g))Ndg

<
1

g(V )

(
2

χ(e)+ χ(a)

)N

. (15.14)
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Hence for g ∈G \U and a sufficiently large N , we have

ψN(g)= cN(χ(g))
N <

1

g(V )

(
2χ(g)

χ(e)+ χ(a)

)N

<
1

g(V )

(
2χ(a)

χ(e)+ χ(a)

)N

< ε. (15.15)

By (15.10) and (15.11), ψN(g)=∑
α∈JN cαNχ

α(g), where cαN = cNb
α
N . �

Remark 15.3 Both in the statement and the proof of Proposition 15.2 we have closely fol-
lowed Talman [309, Theorem 7-1, pp. 96–98], who also asserts that “[t]he proof of Theorem
7-1 is essentially that given by Wigner [342] in his notes on this subject”. The mimeographed
notes (by Talman) of Wigner’s 1955 lectures at Princeton, while unpublished, are included
in the holdings of many university libraries in the United States. �

Definition 15.4 Let G be a topological group. A function f :G→ C is continuous at a ∈G

if for any ε > 0 there is a neighborhood Va of a such that for each g ∈ Va , |f (g)−f (a)|< ε;
f is continuous on G if it is continuous at each a ∈G.

A function f : G→ C is left (reps. right) uniformly continuous on G if for any ε > 0
there is an open neighborhood V of e such that for all g,h ∈ G which satisfy h−1g ∈ V

(resp. gh−1 ∈ V ), there holds |f (g)− f (h)|< ε. A function f is uniformly continuous on
G if it is both left and right uniformly continuous on G. �

Proposition 15.5 Let G be a compact group. If f : G→ C is continuous on G, it is uni-
formly continuous on G.

Proof Let ε > 0 be given. Since f is continuous on G, for each a ∈ G there is an open
neighborhood Ua of a such that if g ∈ Ua , then |f (g) − f (a)| < ε/2. Since ae = a and
the operation of group multiplication from G × G to G is continuous, there is an open
neighborhood Wa of a and an open neighborhood Va of e such that WaVa ⊂ Ua . Note that
Wa ⊂ Ua . Since G is compact and

⋃
a∈GWa is an open covering of G, there is a finite

subcovering
⋃n

i=1 Wai =G for some ai ∈G (i = 1,2, . . . , n).
Let V =⋂n

i=1 Vai . Let g,h ∈G with h−1g ∈ V . Then h ∈Wai for some i, and g ∈ hV ,
which implies g ∈WaiVai because V ⊂ Vai . Since g ∈WaiVai ⊂Uai and h ∈Wai ⊂Uai , we
have

|f (g)− f (h)| ≤ |f (g)− f (ai)| + |f (ai)− f (h)|< ε/2+ ε/2= ε.

Hence f is left uniformly continuous on G. That f is also right uniformly continuous on G

can be proved similarly. �

15.2 Proof of the Peter-Weyl Theorem

Theorem 15.6 (The Peter-Weyl theorem [258]) Let G be a compact topological group with
a faithful finite-dimensional representation, and let {T α : α ∈ J }, where J is an index set, be
a complete set of finite-dimensional, continuous, irreducible unitary representations of G.
A function continuous on G can be uniformly approximated by finite linear combinations of
matrix elements T α

ij (·) of the irreducible unitary representations T α (α ∈ J ).

Proof Let ε > 0 be given. First we shall show there is an N such that
∣∣∣∣∣∣

ˆ

G

ψN(h
−1g)f (h)dg(h)− f (g)

∣∣∣∣∣∣
< ε for each g ∈G. (15.16)

15 The Peter-Weyl Theorem
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Indeed by (15.4) and the bi-invariance of the Haar measure, we have
∣∣∣∣∣∣

ˆ

G

ψN(h
−1g)f (h)dg(h)− f (g)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

ˆ

G

ψN(h
−1g)(f (h)− f (g)) dg(h)

∣∣∣∣∣∣

≤
ˆ

G

ψN(h
−1g) |f (h)− f (g)| dg(h). (15.17)

Since f is uniformly continuous on G, there is an open neighborhood V of e such that for
all g,h ∈ G which satisfy h−1g ∈ V , we have |f (h) − f (g)| < ε/2. Consider a specific
g ∈G. Let Ω = {h ∈G : h−1g ∈ V }. The integral on the right-hand side of (15.17) can be
written as a sum of two term as follows:ˆ

G

ψN(h
−1g) |f (h)− f (g)| dg(h)=

ˆ

Ω

ψN(h
−1g) |f (h)− f (g)| dg(h)

+
ˆ

G\Ω
ψN(h

−1g) |f (h)− f (g)| dg(h).

(15.18)

On Ω , we have h−1g ∈ V and thence |f (h)− f (g)|< ε/2. Thus
ˆ

Ω

ψN(h
−1g) |f (h)− f (g)| dg(h) < ε

2

ˆ

Ω

ψN(h
−1g)dg(h)≤ ε

2
. (15.19)

Since f is continuous on G, which is compact, there is an A> 0 such that |f (h)− f (g)|<
A for all g,h ∈G. By part (c) of Proposition 15.2, given an open neighborhood V of e, there
is an N such that

ψN(h
−1g) <

ε

2A
if h−1g /∈ V . (15.20)

For this N , we have
ˆ

G\Ω
ψN(h

−1g) |f (h)− f (g)| dg(h) < A

ˆ

G\Ω
ψN(h

−1g)dg(h) < A · ε

2A
= ε

2
. (15.21)

Substituting (15.19) and (15.21) into (15.18), we have proved (15.16).
By (15.10), (15.11), and (15.1), we have

ψN(h
−1g)=

∑

α∈JN
cNb

α
Nχ

α(h−1g)=
∑

α∈JN
cNb

α
N

∑

i,j

T α
ij (h)T

α
ij (g). (15.22)

It follows that

ˆ

G

ψN(h
−1g)f (h)dg(h)=

∑

α∈JN
cNb

α
N

∑

i,j

⎛

⎝
ˆ

G

T α
ij (h)f (h)dg(h)

⎞

⎠T α
ij (g)

=
∑

α∈JN

∑

i,j

c
α,N
ij T α

ij (g), (15.23)

15.2 Proof of the Peter-Weyl Theorem
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where

c
α,N
ij = cNb

α
N

ˆ

G

T α
ij (h)f (h)dg(h). (15.24)

We observe from (15.16) and (15.23) that f (·) is uniformly approximated by finite linear
combinations of the matrix elements T α

ij (·). �

Corollary 15.7 The set {√nα T
α
ij (·) : α ∈ J, 1≤ i, j ≤ nα} constitutes a complete orthonor-

mal basis in L2(G).

Proof That {√nα T
α
ij (·) : α ∈ J, 1≤ i, j ≤ nα} is an orthonormal set in L2(G) follows from

the orthogonality relations pertaining to matrix elements of irreducible unitary representa-
tions. To prove completeness, it suffices to show that the set of finite linear combinations of√
nα T

α
ij is dense in L2(G). Let f ∈ L2(G) be given. Since the set of continuous functions

is dense in L2(G), there is a continuous function f̃ such that ‖f − f̃ ‖L2 < ε/2. By Theo-
rem 15.6, there is a finite linear combination sN of

√
nα T

α
ij such that ‖f̃ − sN‖L2 < ε/2 and

‖f − sN‖L2 ≤ ‖f − f̃ ‖L2 + ‖f̃ − sN‖L2 < ε. �

Corollary 15.8 Every function f ∈ L2(G) can be written in the form

f (g)=
∑

α∈J

nα∑

i,j=1

cαij T
α
ij (g), (15.25)

where the series converges in L2(G) and the expansion coefficients are given by

cαij = nα〈f,T α
ij 〉. (15.26)

�

If the compact group G has a countable base, then the set of orthonormal functions
{√nα T

α
ij (·)} ⊂L2(G) is countable [261, p. 213]. Hence we infer that the complete set {T α}

of finite-dimensional, continuous, irreducible unitary representations of G is also countable.

Remark 15.9 In Theorem 14.13, we have proved that {Dl : l = 0,1,2, . . .} provides a com-
plete set of finite-dimensional, continuous, irreducible unitary representations of SO(3) and
that the elements of the (2l+ 1)× (2l+ 1) matrix which represents Dl can be selected to be
the Wigner D-functions Dl

mn(·) (−l ≤m ≤ l,−l ≤ n ≤ l). Since the ODF w ∈ L2(SO(3)),
by (15.25) we can expand it as an infinite series as follows:

w(R)=
∞∑

l=0

l∑

m=−l

l∑

n=−l
clmnD

l
mn(R) for each R ∈ SO(3), (15.27)

which justifies (4.45) in Chap. 4. That w is real-valued results in constraint (4.46) on the
texture coefficients clmn. �

15 The Peter-Weyl Theorem

334



Reprinted from the journal 1 3

15.3 The Right-Regular Representation

We consider the case159 where the compact topological group G has a countable base so that
the index set J can be written as J = {0} ∪N, where N denotes the set of natural numbers.
Then by (15.25) each f ∈ L2(G) can be expanded as an infinite series as

f (g)=
∞∑

α=0

nα∑

i,j=1

cαij T
α
ij (g). (15.28)

Let Xα be the finite-dimensional subspace of L2(G) spanned by the basis functions T α
ij

(i, j = 1, . . . , nα). Consider the restriction of the right-regular representation (cf. Sect. 13.3)
to Xα , namely T r |Xα . For each h ∈G, we have

(T r (h))T
α
ij (g)= T α

ij (gh)=
nα∑

k=1

T α
ik(g)T

α
kj (h)=

nα∑

k=1

T α
kj (h)T

α
ik(g). (15.29)

Hence Xα is a G-invariant subspace of L2(G) under the right-regular representation. Look-
ing at (15.29) more carefully, we observe that

(T r (h))T
α
ij (·)=

nα∑

k=1

T α
kj (h)T

α
ik(·) for each fixed i. (15.30)

Thus if we denote by Xα
i the subspace generated by the basis functions T α

i1, . . . , T
α
inα

, then Xα
i

is a G-invariant subspace of L2(G) under the right-regular representation and dim Xα
i = nα .

Moreover, the nα × nα matrix that represents T r (h)

∣∣∣Xα
i

under the basis T α
i1, . . . , T

α
inα

is

[T α
kj (h)]. Therefore the representation T r (h)

∣∣∣Xα
i

is equivalent to T α . Because of the orthog-

onality relations between the matrix elements T α
ij (·), the subspaces Xα are orthogonal to

each other. Likewise the subspaces Xα
p and Xα

q are orthogonal if p �= q .
Let the Hilbert-space direct sum (see, e.g., [75, p. 24]) of the finite-dimensional subspaces

Xα ⊂L2(G) (α = 0,1,2, . . .) be denoted by

∞⊕

α=0

Xα =
{ ∞∑

α=0

f α : f α ∈Xα,

∞∑

α=0

‖f α‖2 <∞
}
. (15.31)

Clearly we have

L2(G)=
∞⊕

α=0

Xα. (15.32)

159This includes the instances that G= SO(3) and G=O(3), which are compact metric spaces. Every com-
pact metric space has a countable base [242, p. 194].
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Chapter 16

16 Tensor and Pseudotensor Representations of SO(3), O(3), and Their
Finite Subgroups

16.1 Mathematical Preliminaries

16.1.1 Tensor Algebra

Let V be the translation space of the three-dimensional physical space E3, and let V r =
V × · · · × V (r copies). A mapping H : V r → R is multilinear if it is linear with respect to
each of its vector arguments, i.e.,

H [v1, . . . ,vi + αv′i , . . . ,vr ] =H [v1, . . . ,vi , . . . ,vr ] + αH [v1, . . . ,v
′
i , . . . ,vr ] (16.1)

for each vi (1 ≤ i ≤ r), v′i ∈ V and α ∈ R. In mathematics such multilinear mappings are
called r th-order tensors. Let u1, . . . ,ur be in V . The tensor product of u1, . . . ,ur is the
r th-order tensor u1 ⊗ · · · ⊗ ur : V r → R defined by

u1 ⊗ · · · ⊗ ur [v1, . . . ,vr ] = (u1 · v1) · · · (ur · vr ) for each (v1, . . . ,vr ) ∈ V r . (16.2)

We call tensor products of vectors simple tensors. Under the usual definition of addition and
of scalar multiplication of mappings, the set of r th-order tensors clearly forms a linear space
over R, which we denote by V ⊗r and call the space of r th-order tensors.

Let e1, e2, and e3 constitute a right-handed orthonormal basis in V , and let H ∈ V ⊗r .
For any vectors u(1), . . . ,u(r) ∈ V , we have

H [u(1), . . . ,u(r)] =H [u(1)
i1

ei1 , . . . , u
(r)
ir

eir ]
=H [ei1 , . . . , eir ]u(1)

i1
· · ·u(r)

ir

=H [ei1 , . . . , eir ](u(1) · ei1) · · · (u(r) · eir )
=Hi1···ir (u

(1) · ei1) · · · (u(r) · eir )
= (Hi1···ir ei1 ⊗ · · · ⊗ eir )[u(1), . . . ,u(r)], (16.3)

where the Einstein summation convention is in force, and

Hi1i2···ir =H [ei1 , ei2 , . . . , eir ]. (16.4)

Thus every H ∈ V ⊗r can be written in the form

H =Hi1i2···ir ei1 ⊗ ei2 ⊗ · · · ⊗ eir . (16.5)

We define an inner product 〈·, ·〉 on V ⊗r by requiring that

〈u1 ⊗ · · · ⊗ ur ,w1 ⊗ · · · ⊗wr〉 = (u1 ·w1) · · · (ur ·wr ). (16.6)

Clearly simple tensors of the form ei1 ⊗ ei2 ⊗ · · · ⊗ eir , where each suffix runs over the
indices 1, 2, and 3, constitute an orthonormal basis in V ⊗r . Hence dimV ⊗r = 3r . For

H =Hi1i2···ir ei1 ⊗ ei2 ⊗ · · · ⊗ eir and K =Kj1j2···jr ej1 ⊗ ej2 ⊗ · · · ⊗ ejr , (16.7)
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we have

〈H ,K〉 =Hi1i2···ir Ki1i2···ir . (16.8)

Each orthogonal linear transformation Q on V induces an orthogonal linear transforma-
tion Q⊗r : V ⊗r → V ⊗r defined by

Qu1 ⊗ · · · ⊗Qur =Q⊗ru1 ⊗ · · · ⊗Q⊗rur , (16.9)

for all u1, . . . ,ur ∈ V . Let Qij = ei ·Qej . Then Qej = (ei ·Qej )ei = Qijei . For each
H ∈ V ⊗r , we have

Q⊗rH =Hj1···jrQej1 ⊗ · · · ⊗Qejr

=Hj1···jr (Qk1j1ek1)⊗ · · · ⊗ (Qkr jr ekr )

=Hj1···jrQk1j1 · · ·Qkrjr ek1 ⊗ · · · ⊗ ekr , (16.10)

and

(Q⊗rH )[ei1 , . . . , eir ] =Hj1···jrQk1j1 · · ·Qkrjr δi1k1 · · · δir kr
=Qi1j1 · · ·QirjrHj1···jr (16.11)

16.1.2 Complexification of Vector and Tensor Spaces

Let V be the translation space of the three-dimensional Euclidean space, and let {e1, e2, e3}
be a right-handed orthonormal basis in V . Let

Vc =
{
∑

i

aiei : ai ∈ C

}
=

{
u+√−1v : u ∈ V,v ∈ V

}
(16.12)

be the complexification160 of V , with vector addition and scalar multiplication defined re-
spectively by

(u+√−1v)+ (u′ +√−1v′)= (u+ u′)+√−1(v+ v′), (16.13)

(α1 +
√−1α2)(u+

√−1v)= (α1u− α2v)+
√−1(α2u+ α1v) (16.14)

for u,v,u′,v′ ∈ V and α1, α2 ∈ R. We equip Vc with the (Hermitian) inner product induced
by the dot product in V for real vectors as follows: Let w = u+√−1v, z = x +√−1y,
where u,v,x,y ∈ V . Then the inner product of w and z is defined by

〈w,z〉 = 〈u+√−1v,x +√−1y〉
:= u · x + v · y +√−1(v · x − u · y). (16.15)

Under the chosen orthonormal basis e1, e2, e3 in V (and thence also in Vc), we have w =
(w1,w2,w3) and z = (z1, z2, z3) in Vc , where wi = ui +

√−1vi , zi = xi +
√−1yi for i =

160Cf. e.g., Roman [273, pp. 53–55].
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1,2,3. It is easily checked by direct computation that, in terms of components, the inner
product (16.15) of w and z is given by the formula

〈w,z〉 =w1z1 +w2z2 +w3z3. (16.16)

An orthogonal transformation Q on V has a natural extension to a linear transformation
on Vc (called the complexification of Q [273, pp. 82–83]), which we still denote by Q,
defined as follows:

Q(u+√−1v) :=Qu+√−1Qv (16.17)

for each u, v in V . In what follows whether Q really denotes an orthogonal transformation
on V or its extension on Vc should be clear from the context. By (16.15) we have, for any
two vectors w = u+√−1v, z= x +√−1y ∈ Vc ,

〈Qw,Qz〉 =Qu ·Qx +Qv ·Qy +√−1(Qv ·Qx −Qu ·Qy)

= u · x + v · y +√−1(v · x − u · y)= 〈w,z〉. (16.18)

Hence Q : Vc→ Vc is unitary.
Let (V ⊗r )c be the complexification of V ⊗r , and let V ⊗rc := Vc ⊗ · · · ⊗ Vc (r factors) be

the r-fold tensor product of Vc with itself. Since both (V ⊗r )c and V ⊗rc are linear spaces
over the field C and both have {ei1 ⊗ · · · ⊗ eir : 1≤ ik ≤ 3,1≤ k ≤ r} as basis, we see that
(V ⊗r )c = V ⊗rc . Henceforth we denote the complexification of V ⊗r by V ⊗rc and still call its
elements r-th order tensors. We equip V ⊗rc with the (Hermitian) inner product induced by
that on Vc (see (16.15)), which satisfies

〈w1 ⊗ · · · ⊗wr ,z1 ⊗ · · · ⊗ zr 〉 =
r∏

j=1

〈wj ,zj 〉 (16.19)

for all w1, . . . ,wr and z1, . . . ,zr in Vc; in (16.19), as no confusion should arise, we have
used the same symbol to denote the inner product on V ⊗rc and that on Vc . Under this inner
product, for two r th-order tensors A=Ai1...ir ei1 ⊗ · · · ⊗ eir and B = Bj1...jr ej1 ⊗ · · · ⊗ ejr ,
where the Einstein summation convention is in force, we have

〈A,B〉 = Ai1···ir Bi1···ir , (16.20)

and ‖A‖ :=√〈A,A〉 defines the norm of A. The inner product on V ⊗rc reduces to an inner
product on V ⊗r when it is restricted to V ⊗r × V ⊗r .

Each orthogonal transformation Q on V induces a linear transformation Q⊗r on V ⊗r
and its namesake on V ⊗rc defined by

Q⊗r (w1 ⊗ · · · ⊗wr )=Qw1 ⊗ · · · ⊗Qwr (16.21)

for all w1, . . . ,wr in V and in Vc , respectively. It is easily seen that Q⊗r : V ⊗rc → V ⊗rc is a
unitary transformation on V ⊗rc . Indeed, by (16.18), (16.19) and (16.21), we have

〈Q⊗r (w1 ⊗ · · · ⊗wr ),Q
⊗r (z1 ⊗ · · · ⊗ zr )〉 = 〈Qw1 ⊗ · · · ⊗Qwr ,Qz1 ⊗ · · · ⊗Qzr〉

=
r∏

j=1

〈Qwj ,Qzj 〉 =
r∏

j=1

〈wj ,zj 〉

16.1 Mathematical Preliminaries
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= 〈w1 ⊗ · · · ⊗wr ,z1 ⊗ · · · ⊗ zr〉 (16.22)

for all w1, . . . ,wr and z1, . . .zr in Vc .

16.2 Material Tensors and Pseudotensors

In continuum physics, many attributes of material points are characterized by multilinear
mappings. Let a physical attribute Π of a given material point P be described by an r th-
order tensor H . When the material point P undergoes a rotation or a roto-inversion defined
by Q ∈ O(3), the multilinear mapping that characterizes its attribute Π changes from H to
TQH . We say that Π is characterized by a material tensor H if

TQH =Q⊗rH , (16.23)

and by a material pseudotensor H if

TQH = (detQ)Q⊗rH . (16.24)

When we restrict Q in TQ to rotations, we will write T R , where R denotes a rotation.
The following simple observation will play a crucial role in our proofs of the decompo-

sition theorem in Sect. 16.5.2 and Proposition 16.17 in Sect. 16.6.2.

Remark 16.1 Both material tensors and pseudotensors are “tensors" in the sense of multilin-
ear mappings as defined by (16.1). An r-th order material tensor (resp. pseudotensor) is an
“r-th order tensor" that obeys transformation law (16.23) (resp. (16.24)) under TQ . �

Lemma 16.2 For an r th-order material tensor (resp. pseudotensor) H , T IH = (−1)rH
(resp. T IH = (−1)r+1H ).

Proof For an r th-order material tensor H ,

T IH = I⊗rH = I⊗r (Hi1···ir ei1 ⊗ · · · ⊗ eir )

=Hi1···irIei1 ⊗ · · · ⊗ Ieir

=Hi1···ir (−ei1)⊗ · · · ⊗ (−eir )= (−1)rH . (16.25)

For an r th-order pseudotensor H ,

T IH = (detI)I⊗rH =−I⊗r (Hi1···ir ei1 ⊗ · · · ⊗ eir )

= (−1)r+1H . (16.26)

�

The mappings Φ (r) : SO(3) → GL(V ⊗rc ), R �→ R⊗r , and Ψ (r) : O(3) → GL(V ⊗rc ),
Q �→Q⊗r , are clearly representations of SO(3) and O(3), respectively, on representation
space V ⊗rc . Likewise, Θ (r) : O(3) → GL(V ⊗rc ), Q �→ (det Q)Q⊗r , is a representation of
O(3) on V ⊗rc . To see this, let Q1,Q2 ∈ O(3). Then we have det (Q1Q2)(Q1Q2)

⊗r =
(detQ1)(detQ2)Q

⊗r
1 Q⊗r

2 = (detQ1)Q
⊗r
1 (detQ2)Q

⊗r
2 . Moreover, the representations

Φ (r), Ψ (r) and Θ (r) are clearly unitary and continuous. The representations Φ (r), Ψ (r) are
examples of (material) tensor representations, and Θ (r) of (material) pseudotensor represen-
tations.

16 Tensor and Pseudotensor Representations of SO(3), O(3), and Their ...
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Definition 16.3 Let G be a subgroup of O(3) and X an O(3)-invariant subspace of V ⊗rc .
If G � SO(3), a representation T : G→ GL(X), Q �→ TQ is called an r-th order (mate-
rial) tensor and pseudotensor representation of G, respectively, if TQ obeys transformation
law (16.23) and (16.24), respectively. If G ⊂ SO(3), the map R �→ T R is called a tensor
representation of G. �

To specify the various types of tensorial representation spaces, we adopt a system of
notation slightly modified from that advocated by Jahn [164] and Sirotin [299]. In this nota-
tion, V ⊗2 stands for the tensor product V ⊗ V , [V ⊗2] the space of symmetric second-order
tensors, V ⊗ [V ⊗2] the tensor product of V and [V ⊗2], [[V ⊗2]⊗2] the symmetric square of
[V ⊗2] (i.e., the symmetrized tensor product of [V ⊗2] and [V ⊗2]), [[V ⊗2]3] the symmetric
cube of [V ⊗2], [V ⊗2] ⊗ [[V ⊗2]⊗2] the tensor product of [V ⊗2] and [[V ⊗2]⊗2], . . . , etc. In
the same spirit, we denote by [V ⊗2]0 the space of traceless, symmetric second-order tensors,
[[V ⊗2]⊗2

0 ] the symmetric square of [V ⊗2]0 (i.e., the symmetrized tensor product of [V ⊗2]0
and [V ⊗2]0), [[V ⊗2]30] the symmetric cube of [V ⊗2]0, . . . , etc. In this notation, for instance,
the fourth-order elasticity tensor is of type [[V ⊗2]⊗2], the sixth-order acoustoelastic tensor
[200, 205, 255] of type [[V ⊗2]⊗2] ⊗ [V ⊗2], and if we write [201] the plastic potential of an
orthorhombic sheet metal as a Taylor expansion in the deviatoric stress σ , the cubic term is
of type [[V ⊗2]30].

When V is replaced by its complexification Vc , the same procedure to construct tensor
space Z will result in its complexification Zc . Thus V ⊗2

c is the complexification of V ⊗2,
[[V ⊗2

c ]⊗2] is the complexification of [[V ⊗2]⊗2], etc.

16.3 Decomposition of Representations on Tensor and Pseudotensor Spaces into
Irreducible Parts

In continuum mechanics it is well known that V ⊗ V , the space of second-order tensors,
can be written as a direct sum of three subspaces, namely: the 1-dimensional subspace of
spherical tensors Sph= {αI : α ∈ R}, the 3-dimensional subspace Skw of skew tensors, and
the 5-dimensional subspace Sym0 of traceless symmetric tensors:

V ⊗2 = Sph⊕ Skw⊕ Sym0. (16.27)

All the spaces in the preceding equation are invariant under the action of the rotation
group.161 Moreover, none of the subspaces in the decomposition formula (16.27) contains
any non-trivial proper invariant subspace of R⊗2. In other words, the restrictions of the rep-
resentation Φ (r) : SO(3) → GL(V ⊗2), R �→ R⊗2, to Sph, Skw, and Sym0 are irreducible
subrepresentations, which are equivalent to the irreducible representations D0, D1, and D2,
respectively. In what follows, we shall focus only on the problem of writing tensor and pseu-
dotensor representations as direct sums of their irreducible subrepresentations. Thus instead
of (16.27), we will present algorithms by which we can derive the formula

V ⊗2
c =D0 +D1 +D2. (16.28)

Strictly speaking, the symbol Φ (2) (i.e., the name of the representation in question) should
appear on the left-hand side of (16.28) instead of the name of the representation space,
because mathematically it is the decomposition of representation ρ into its irreducible parts.
However, we elect to use the name of the representation space for the following reasons:

161A space Z of r th-order tensor is said to be invariant under the action of the rotation group (or rotationally
invariant) if R⊗rZ ⊂ Z for all R ∈ SO(3).
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– In what follows we shall only consider, for some r ≥ 0, representations R �→ R⊗r of
SO(3), and Q �→Q⊗r or Q �→ (det Q)Q⊗r of O(3), on complexified spaces of r th-order
tensors or pseudotensors. The irreducible representations in each decomposition formula
will reveal whether the formula pertains to representations of SO(3) or of O(3). Moreover,
for representations of O(3), whether material tensors or pseudotensors are in question
will be spelled out at the outset. Hence, specifying the tensor or pseudotensor space of
the representation is sufficient for providing all the information on the representation.
For example, from the irreducible subrepresentations on the right-hand side of (16.28)
we learn that the formula pertains to representations of SO(3), which together with the
representation space given on the left-hand side let us know that the formula concerns the
representation which maps SO(3) into GL(V ⊗2

c ).
– Formula (16.28), as it stands, can be interpreted as saying that the space V ⊗2

c is a direct
sum of three SO(3)-invariant subspaces, the subrepresentations on which are equivalent
to the irreducible representations D0, D1, and D2, respectively.

In applications, the goal is often formulas for decomposition of tensor and pseudotensor
spaces such as (16.27), not those such as (16.28) on decomposition of group representations
into irreducible parts. Nevertheless, obtaining the group-theoretic decomposition formulas
could be the first step in arriving at corresponding formulas for decomposition of tensor
and pseudotensor spaces. See for example [95, 203], where group-theoretic decomposition
formulas such as (16.28) are used in the derivation of representation theorems that delineate
the effects of weak crystallographic texture on the material tensors and pseudotensors of
polycrystals.

We have already learned in Theorem 13.27 how group characters can be used for de-
composition of finite-dimensional representations into irreducible parts. Here we will detail
the specifics of applying the method of characters to decompose tensor and pseudotensor
representations of SO(3) and O(3).

16.3.1 Method of Characters

As a glance at the complete set of finite-dimensional unitary representations of O(3) given in
Theorem 14.14 may suggest, formulas for decompositions of representations of O(3) would
just be slight modifications of the corresponding decomposition formulas for representations
of SO(3). That hunch turns out to be correct. In describing the method of characters in this
section, we will simply restrict attention to decomposition of representations of SO(3) as
prime example.162

Let GL(V ⊗rc ) be the set of non-singular linear transformations on V ⊗rc . It is easily
checked that the mappings Φ (r) : SO(3) → GL(V ⊗rc ), R �→ R⊗r are representations of
SO(3) on V ⊗rc . Moreover, the representations Φ (r) are unitary and continuous. Indeed, by
(16.22) the functions R⊗r : V ⊗rc → V ⊗rc are unitary. As for continuity of the representations
ρr , note that the matrix elements of R⊗r under the basis {ei1 ⊗ ei2 ⊗ · · · ⊗ eir : 1 ≤ ik ≤
3 for k = 1, . . . r} are polynomial functions of Rij , the matrix elements of R under the basis
e1, e2, e3.

A subspace Z ⊂ V ⊗r is said to be invariant under the action of the rotation group SO(3) if
it remains invariant under R⊗r for each R ∈ SO(3). If Z is an invariant subspace of V ⊗r un-
der the action of SO(3), then its complexification Zc is an invariant subspace of V ⊗rc . Since

162Decomposition of representations of SO(3) into irreducible parts has been well documented in the physics
and mechanics literature. See, e.g., [164, 317, 356] and [299, 357] for decomposition by the method of
characters and by other methods, respectively.
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every finite-dimensional continuous unitary representation of a compact group is completely
reducible, each tensor representation of the rotation group Φ (r)|Zc :R �→R⊗r |Zc can be de-
composed as a direct sum of irreducible subrepresentations, each of which is equivalent to
some Dk (k := 0,1,2, . . . , r):163

Zc =m0D0 +m1D1 + · · · +mkDk + · · · +mrDr , (16.29)

where mk is the multiplicity of Dk in the decomposition. Note that here and henceforth we
denote the tensor representation R �→R⊗r |Zc also by the notation Zc of the tensor space in
question. Whether we really mean the tensor space or the corresponding tensor representa-
tion should be clear from the context; cf. the comments at the beginning of Sect. 16.3.

Let χ be the character of the representation R �→R⊗r on Zc , and let χk be the character
of the irreducible representation Dk . It follows immediately from decomposition formula
(16.29) that

χ =m0χ0 +m1χ1 + · · · +mkχk + · · · +mrχr . (16.30)

By Theorem 13.27, the multiplicity mk can be determined by the formula

mk = 〈χ,χk〉 =
ˆ

SO(3)

χ(R)χk(R) dg(R). (16.31)

To proceed further, we need: (i) formulas for χl(R) for R ∈ SO(3) and l = 0,1,2, . . .; (ii)
for the tensor space Zc in question, at least one method to determine the character χ of
representation R �→R⊗r on Zc .

16.4 Decomposition of Tensor Representations of SO(3)

16.4.1 Characters of Irreducible Representations of SO(3)

By definition, χl(R)= tr [Dl
mn(R(n,ω)]. For ω = 0, R = I and [Dl

mn(I )] is the (2l + 1)×
(2l+1) identity matrix. Hence χl(I )= 2l+1. For 0 <ω ≤ π , under a Cartesian coordinate
system where n = e3, the Euler angles of R is (ω,0,0), Dl

mm(ω,0,0) = e−imω (no sum),
and

χl(R)= tr[Dl
mn(R(n,ω))] =

l∑

m=−l
eimω = 1+ 2

l∑

m=1

cosmω. (16.32)

The sum in (16.32)2 is a geometric progression with first term e−ilω , common factor eiω ,
and a total of (2l + 1) terms. Hence the sum is

l∑

m=−l
eimω = ei(l+1)ω − e−ilω

eiω − 1
= ei(l+

1
2 )ω − e−i(l+

1
2 )ω

eiω/2 − e−iω/2
= sin(l + 1

2 )ω

sin 1
2ω

(16.33)

In summary, we have

χl(R)=

⎧
⎪⎨

⎪⎩

sin(l + 1
2 )ω

sin 1
2ω

for ω �= 0

2l + 1 for ω= 0

(16.34)

163It suffices to consider k ≤ r ; see Proposition 16.4 below.
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From the orthogonality relation (4.21) of the Wigner D-functions, we obtain

〈χl,χl′ 〉 =
ˆ

SO(3)

(
l∑

m=−l
Dl

mm(R)

)(
l′∑

n=−l′
Dl′

nn(R)

)
dg(R)

=
l∑

m=−l

l′∑

n=−l′

ˆ

SO(3)

Dl
mm(R)Dl′

nn(R) dg(R)

=
l∑

m=−l

l′∑

n=−l′

1

2l + 1
δll′δmn = δll′ . (16.35)

That the characters of the representations Dl (l = 0,1,2, . . .) are orthonormal verifies that
the representations Dl of SO(3) are irreducible and are pairwise inequivalent.

Consider the self-representation Φ (1) : SO(3)→ GL(Vc), R �→ R. As a linear transfor-
mation on Vc , R(n,ω) has three eigenvalues

λ1 = e−iω, λ2 = 1, λ3 = eiω. (16.36)

It follows immediately that

χΦ (1) = e−iω + 1+ eiω = 1+ 2 cosω. (16.37)

Consider the tensor representation Φ (r) : SO(3)→GL(V ⊗rc ), R �→R⊗r . By (13.82), the
character of Φ (r) is given by the formula

χΦ (r) = (e−iω + 1+ eiω)r . (16.38)

Note that the highest power of eiω in χV⊗rc
and in χl =∑l

m=−l e
iω are r and l, respectively,

and the coefficient of eirω in (16.38) is 1. Hence Φ (r) does not have a subrepresentation
equivalent to Dl with l > r . Moreover, when the tensor-product representation Φ (r) is de-
composed into its irreducible parts, the multiplicity of Dr in the decomposition formula is
1. We record this simple observation as the following proposition.

Proposition 16.4 Let Zc be a subspace of V ⊗rc invariant under the action of SO(3), and let
Φ (r)|Zc be the restriction of the tensor representation Φ (r) : SO(3)→GL(V ⊗rc ), R �→R⊗r ,
to Zc . When Φ (r)|Zc is decomposed into its irreducible parts, the decomposition formula is
of the form

Zc =m0D0 +m1D1 + · · · +mrDr , (16.39)

where some of the multiplicities mj in (16.39) may be equal to zero and mr is either 0 or 1.
Moreover, when Zc = V ⊗rc , mr = 1. �

There is a formula, known as the Clebsch-Gordan series, for the decomposition of the
tensor product of irreducible representations Dl and Dk .

Proposition 16.5 For k ≥ 0 and l ≥ 0,

Dl ⊗Dk =D|l−k| +D|l−k|+1 + · · · +Dl+k−1 +Dl+k. (16.40)
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Proof Without loss of generality, say k ≤ l. For r ≥ 0 and R ∈ SO(3), by (16.32)2 and
(16.33)1 we have

χr(R)=
r∑

m=−r
eirω =

⎧
⎪⎨

⎪⎩

ei(r+1)ω − e−irω

eiω − 1
, for ω �= 0;

2r + 1, for ω= 0.
(16.41)

Using (16.41), we obtain for ω �= 0

χl · χk = ei(l+1)ω − e−ilω

eiω − 1
·
(

1+
k∑

m=1

(
eimω + e−imω

)
)

= χl +
k∑

m=1

ei(l+m+1)ω − e−i(l−m)ω + ei(l−m+1)ω − e−i(l+m)ω

eiω − 1

= χl +
k∑

m=1

ei(l+m+1)ω − e−i(l+m)ω

eiω − 1
+

k∑

m=1

ei(l−m+1)ω − e−i(l−m)ω

eiω − 1

= χl +
k∑

m=1

χl+m +
k∑

m=1

χl−m

= χl−k + χl−k+1 + · · · + χl−1 + χl + χl+1 + · · · + χl+k−1 + χl+k; (16.42)

for ω = 0, χl · χk = (2l + 1)(2k + 1), which is equal to
∑l+k

m=|l−k|(2m + 1), the sum of
characters on the right-hand side of (16.42). �

As a simple application of (16.40), we have

V ⊗2
c = Vc ⊗ Vc =D1 ⊗D1 =D0 +D1 +D2, (16.43)

which is none other than (16.28). We shall present another example later.

16.4.2 Examples

In what follows we shall present several examples where unitary representations which are
restrictions of Φ (r) :R �→R⊗r (for some r ≥ 2) to various subspaces Zc of V ⊗rc are decom-
posed in their irreducible parts. In all the examples the main tool will be formula (13.91).

As discussed at the beginning of Sect. 16.3, since all the representations in question will
be restrictions of Φ (r), we shall, for convenience, write Zc for Φ (r)|Zc whenever no confu-
sion should arise. For example, we shall write χZc for the character of the representation
Φ (r)|Zc .

Example 16.6 Let χ[V⊗2
c ] be the character of the representation R �→ R⊗2|[V⊗2

c ]. Since the

tensor space [V ⊗2
c ] is the symmetric square of Vc , we can use formula (13.89), a special

case of (13.91); see also [296, 317]. Note that X and T in (13.89) are here Vc and Φ (1) :
SO(3)→GL(Vc), R �→R, respectively. Hence we have

χ[V⊗2
c ] =

∑

1≤i≤j≤3

λiλj , (16.44)
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where λi (i = 1,2,3) are given in (16.36). Substituting the values of λi into (16.44), we
obtain

χ[V⊗2
c ] = λ1λ1 + λ1λ2 + λ1λ3 + λ2λ2 + λ2λ3 + λ3λ3

= e−i2ω + e−iω + 1+ 1+ eiω + ei2ω = χ0 + χ2. (16.45)

Hence we have the following decomposition of the representation R �→R⊗2|[V⊗2
c ]:

[V ⊗2
c ] =D0 +D2. (16.46)

�

Example 16.7 The fourth-order elasticity tensor in linear elasticity is of type [[V ⊗2
c ]⊗2]. The

inner [·] in [[V ⊗2
c ]⊗2] accounts for the minor symmetry, i.e., the fact that we are building

fourth-order tensors with second-order symmetric tensors, and the outer [·] the major sym-
metry, which refers to the symmetric square of the 6-dimensional vector space [V ⊗2

c ]. It
is easy to check that [[V ⊗2

c ]⊗2] is invariant under R⊗4 for each R ∈ SO(3). As shown in
(16.46), the representation R �→R⊗2|[V⊗2

c ] is equivalent to the direct sum of the irreducible

unitary representations D2 and D0. Hence it is equivalent to a 6× 6 matrix representation
which, for each rotation Q, has a diagonal 5×5 block given by the matrix [D2

mn(Q(n,ω))],
the remaining diagonal element equal to 1, and the other entries equal to zero. In fact under
the Kelvin notation (see, e.g., [202, 228]), [V ⊗2] is treated as a 6-dimensional vector space
X. An orthonormal basis is chosen in [V ⊗2], or equivalently in X, so that each element in
X is a 6× 1 column vector. Let Â and B̂ in X correspond to A and B in [V ⊗2], respec-
tively. For each R(n,ω) ∈ SO(3), R⊗2|[V⊗2] corresponds to an orthogonal transformation R
on X. Let Xc be the complexification of X. Under a suitable Cartesian coordinate system.
R :Xc→Xc is given by the 6× 6 diagonal matrix with elements λ1, . . . , λ6 as follows:

λ1 = e−i2ω, λ2 = e−iω, λ3 = 1, λ4 = eiω, λ5 = ei2ω, λ6 = 1. (16.47)

Let χ[[V⊗2
c ]⊗2] be the character of the representation R �→ R⊗4|[[V⊗2

c ]⊗2] or R �→R⊗2. Then
we have

χ[[V⊗2
c ]⊗2] =

∑

1≤i≤j≤6

λiλj = 5+ 6 cosω+ 6 cos 2ω+ 2 cos 3ω+ 2 cos 4ω

= 2χ0 + 2χ2 + χ4. (16.48)

The multiplicities m0 = 2, m1 = 0, m2 = 2, m3 = 0, and m4 = 1 can be obtained by integra-
tion, or by inspection, or by using a counting formula [356]. The decomposition formula for
[[V ⊗2

c ]⊗2] then follows easily:

[[V ⊗2
c ]⊗2] = 2D0 + 2D2 +D4. (16.49)

By formula (13.87), as here n= 6 and r = 2, we have

dim
([[V ⊗2

c ]⊗2])= C6+2−1
2 = 7!

2!5! = 21.

The sum of the dimensions of the invariant subspaces in the decomposition (16.49) is 2×
1+ 2× 5+ 1× 9= 21. �

16 Tensor and Pseudotensor Representations of SO(3), O(3), and Their ...

346



Reprinted from the journal 1 3

Example 16.8 In classical acoustoelastic theory (see [321] and the references therein), where
the initial stress is caused by a deformation of an elastic material from a stress-free natural
configuration, the acoustoelastic constants are determined by tensor of type [[V ⊗2

c ]⊗3]. With
reference to the discussions in Example 16.7, the representation R �→ R⊗6|[[V⊗2

c ]⊗3] can be

taken as the representation R �→R⊗3. By formula (13.91), the character of the representa-
tion is given by

χ[[V⊗2
c ]⊗3] =

∑

1≤i≤j≤k≤6

λiλjλk

= 10+ 14 cosω+ 14 cos 2ω+ 8 cos 3ω+ 6 cos 4ω+ 2 cos 5ω+ 2 cos 6ω

= 3χ0 + 3χ2 + χ3 + 2χ4 + χ6. (16.50)

Hence we obtain the decomposition formula

[[V ⊗2
c ]⊗3] = 3D0 + 3D2 +D3 + 2D4 +D6. (16.51)

By formula (13.87), as here n= 6 and r = 3, we have

dim
([[V ⊗2

c ]⊗3])= C6+3−1
3 = 8!

3!5! = 56.

The sum of the dimensions of the invariant subspaces in the decomposition (16.51) is 3×
1+ 3× 5+ 1× 7+ 2× 9+ 1× 13= 56. �

Example 16.9 The third-order term of the Taylor expansion of the plastic potential is de-
termined by a tensor of the type [X⊗3], where X = [V ⊗2

c ]0 is a 5-dimensional vector
space [201]. A rotation R induces a linear transformation R⊗2|X on X, and the map
Φ

(2)
X : R �→ R⊗2|X is a representation of SO(3). For each rotation R(n,ω), R⊗2|X has five

eigenvalues, namely:

λ1 = e−i2ω, λ2 = e−iω, λ3 = 1, λ4 = eiω, λ5 = ei2ω. (16.52)

The character of representation Φ
(6)

[[V⊗2
c ]⊗3

0 ] is given by

χ[[V⊗2
c ]⊗3

0 ] =
∑

1≤i≤j≤k≤5

λiλjλk

= 5+ 8 cosω+ 8 cos 2ω+ 6 cos 3ω+ 4 cos 4ω+ 2 cos 5ω+ 2 cos 6ω

= χ0 + χ2 + χ3 + χ4 + χ6. (16.53)

Hence we have the decomposition formula

[[V ⊗2
c ]⊗3

0 ] =D0 +D2 +D3 +D4 +D6. (16.54)

By formula (13.87), as here n= 5 and r = 3, we obtain

dim
([[V ⊗2

c ]⊗3
0 ]

)= C5+3−1
3 = 7!

3!4! = 35.

The sum of the dimensions of the invariant subspaces in the decomposition (16.51) is 1+
5+ 7+ 9+ 13= 35. �
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Example 16.10 We use formula (16.40) to decompose [[Vc]⊗2]⊗2] ⊗ [V ⊗2
c ] as a direct sum

of its irreducible parts. In the theory of acoustoelasticity proposed by Man and Paroni
[200, 205, 255], the acoustoelastic tensor is of this type. Since [[Vc]⊗2]⊗2] = 2D0 + 2D2 +
D4 and [V ⊗2

c ] =D0+D2, by assertion 4 of Proposition 13.24, formulas (13.79) and (16.40)
we obtain

[[V ⊗2
c ]⊗2] ⊗ [V ⊗2

c ] = (2D0 + 2D2 +D4)⊗ (D0 +D2)

= (2D0 + 2D2 +D4)+ 2D2 + 2(D0 +D1 +D2 +D3 +D4)

+ (D2 +D3 +D4 +D5 +D6)

= 4D0 + 2D1 + 7D2 + 3D3 + 4D4 +D5 +D6. (16.55)

�

16.5 Decomposition of Tensor and Pseudotensor Representations of O(3)

16.5.1 Characters of Irreducible Representations of O(3)

In Theorem 14.14, we have derived a complete set of finite-dimensional, continuous, irre-
ducible unitary representations of O(3), namely: Dl,+, Dl,− for l = 0,1,2, . . .. For each l

and Q ∈ O(3), Dl,± :Q �→ [Dl,±
mn (Q)] (−l ≤ m ≤ l,−l ≤ n ≤ l), where the entries of the

two (2l + 1)× (2l + 1) matrices are given in terms of the Wigner D-functions by (14.56)
and (14.57), respectively. It follows that the character of representation Dl,+ is given by

χ+l (Q)= tr[Dl,+
mn (Q)] = tr[Dl

mn(R)] = χl(R) for Q=R or Q= IR, (16.56)

and that of representation Dl,− by

χ−l (Q)= tr[Dl,−
mn (Q)] =

{
tr[Dl

mn(R)] = χl(R) for Q=R

−tr[Dl
mn(R)] = −χl(R) for Q= IR,

(16.57)

where χl(R(n,ω)) is given by (16.34).
By Definition 10.3 and (16.56) we have

(χ+l χ
+
l′ )

R(R)= χ+l (R)χ+
l′ (R)= χl(R)χl′(R), (16.58)

(χ+l χ
+
l′ )

L(R)= χ+l (IR)χ+
l′ (IR)= χl(R)χl′(R). (16.59)

It follows from (10.53) that

〈χ+l , χ+l′ 〉 =
ˆ

O(3)

χ+l (Q)χ+
l′ (Q) dg(Q)

= 1

16π2

( ˆ

SO(3)

(χ+l χ
+
l′ )

R(R) dV(R)+
ˆ

SO(3)

(χ+l χ
+
l′ )

L(R) dV(R)
)

= 1

16π2
· 2
ˆ

SO(3)

χl(R)χl′(R) dV(R)= δll′ . (16.60)
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By the same token, we observe that

(χ+l χ
−
l′ )

R(R)= χ+l (R)χ−
l′ (R)= χl(R)χl′(R), (16.61)

(χ+l χ
−
l′ )

L(R)= χ+l (IR)χ−
l′ (IR)= χl(R) (−χl′(R)) (16.62)

which imply

〈χ+l , χ−l′ 〉 =
ˆ

O(3)

χ+l (Q)χ−
l′ (Q) dg(Q)

= 1

16π2

( ˆ

SO(3)

(χ+l χ
−
l′ )

R(R) dV(R)+
ˆ

SO(3)

(χ+l χ
−
l′ )

L(R) dV(R)
)

= 1

16π2

( ˆ

SO(3)

(
χl(R)χl′(R)− χl(R)χl′(R)

)
dV(R)

)
= 0. (16.63)

Similarly, we find 〈χ−l , χ−l′ 〉 = δll′ .
The orthonormality relations 〈χ+l , χ+l′ 〉 = δll′ , 〈χ−l , χ−l′ 〉 = δll′ , and 〈χ+l , χ−l′ 〉 = 0 verify

that the representations Dl,+ and Dl,− (l = 0,1,2, . . .) are each irreducible and are pairwise
inequivalent.

16.5.2 Decomposition Theorem

A subspace Z ⊂ V ⊗r is said to be invariant under the action of the orthogonal group O(3) if it
remains invariant under Q⊗r for each Q ∈ O(3). If Z is an invariant subspace of V ⊗r under
the action of the orthogonal group, then its complexification Zc is an invariant subspace of
V ⊗rc . Since every finite-dimensional continuous unitary representation of a compact group
is completely reducible, each tensor representation of the orthogonal group Ψ (r)|Zc :Q �→
Q⊗r |Zc can be decomposed as a direct sum of irreducible subrepresentations, each of which
is equivalent to some Dk,± (k := 1,2, . . . , r):164

Zc =m+0 D
0,+ +m+1 D

1,+ + · · · +m+r D
r,+ +m−0 D

0,− +m−1 D
1,− + · · · +m−r D

r,−, (16.64)

where m±k is the multiplicity of Dk,± in the decomposition. Let χZc be the character of
the representation Ψ (r)|Zc , which decomposes into the direct sum given in (16.64). This
decomposition dictates that we have

χZc =m+0 χ
+
0 +m+1 χ

+
1 + · · · +m+r χ

+
r +m−0 χ

−
0 +m−1 χ

−
1 + · · · +m−r χ

−
r . (16.65)

By the orthonormality of the characters χ±l , we obtain the following formula for the multi-
plicities m±k (k = 0,1, . . . , r) in the decomposition (16.64): for brevity, we shall write

m±k = 〈χρ,χ
±
k 〉 =

ˆ

O(3)

χρ(Q)χ±k (Q)dg(Q). (16.66)

Hence, once the character χZc of a representation Ψ (r)|Zc :Q �→Q⊗r |Zc is obtained, the
decomposition formula for the representation follows immediately.

164It suffices to consider k ≤ r ; see Proposition 16.4.
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In what follows we will sharpen the decomposition formula (16.64) for tensor represen-
tations and its counterpart for pseudotensor representations of the orthogonal group through
the following lemma and theorem.

Lemma 16.11 For k ≥ 1, let Z be a (2k+ 1)-dimensional subspace of the tensor space V ⊗r
invariant under R⊗r for each R ∈ SO(3), and let Zc be its complexification. Suppose the
representation R �→R⊗r |Zc is equivalent to the irreducible unitary representation Dk . Then
Zc is invariant under TQ : V ⊗rc → V ⊗rc for each Q ∈ O(3), where TQ =Q⊗r for material
tensors and TQ = (det Q)Q⊗r for material pseudotensors, respectively. For material ten-
sors, the representation Q �→ TQ|Zc is equivalent to Dk,+ if r is even and to Dk,− if r is odd.
For material pseudotensors, the representation Q �→ TQ|Zc is equivalent to Dk,+ if r is odd
and to Dk,− if r is even.

Proof Under both transformation laws (16.23) and (16.24), by Lemma 16.2 we have
T IH = ±H for any H ∈ Zc , irrespective of whether H is a material tensor or pseu-
dotensor. Since Zc is invariant under R⊗r , it is also invariant under (IR)⊗r = I⊗rR⊗r

and (det (IR))(IR)⊗r =−I⊗rR⊗r . It follows that Zc is invariant under TQ for each Q ∈
O(3) for both transformation laws (16.23) and (16.24).

Consider first the case of material tensors, which obey the transformation law TQ =Q⊗r .
Let Ψ (r)|Zc : O(3)→ GL(Zc) be the representation Q �→Q⊗r |Zc . By the hypothesis that
the representation R �→ R⊗r |Zc is equivalent to the irreducible unitary representation Dk

of SO(3), there exists in Zc an orthonormal basis Aj (−k ≤ j ≤ k) under which R⊗r is
represented by the (2k + 1)× (2k + 1) matrix [Dk

mn]. By Lemma 16.2, we obtain for each
R ∈ SO(3),

I⊗r (R⊗rAj )= (−1)rR⊗rAj for each −k ≤ j ≤ k, (16.67)

which implies that (IR)⊗r is represented by the matrix (−1)r [Dk
mn]. Thus we have

χρ(Q)=
{
χk(R) for Q=R

(−1)rχk(R) for Q= IR
=

{
χ+k (Q) if r is even
χ−k (Q) if r is odd.

(16.68)

Thus we conclude that for material tensors the representation Q �→ TQ|Zc is equivalent to
Dk,+ if r is even and to Dk,− if r is odd.

For pseudotensors, which observe the transformation law TQ = (detQ)Q⊗r , instead of
(16.67) we derive from Lemma 16.2 the formula that for each R ∈ SO(3),

(det (IR))(IR)⊗rAj = (−1)r+1R⊗rAj for each −k ≤ j ≤ k, (16.69)

from which it follows that the representation TQ|Zc is equivalent to Dk,+ if r is odd and to
Dk,− if r is even. �

The following theorem is an immediate consequence of (16.64), (16.65), and
Lemma 16.11.

Theorem 16.12 ([95]) Let Z ⊂ V ⊗r be a subspace invariant under the action of the orthog-
onal group O(3), and let Zc be its complexification. For material tensors (resp. pseudoten-
sors), which obey transformation law (16.23) (resp. (16.24)), Zc is decomposed into its
irreducible parts under O(3) as

Zc =
{
m0D0,+ +m1D1,+ + · · · +mrDr,+ if r is even (resp. odd)
m0D0,− +m1D1,− + · · · +mrDr,− if r is odd (resp. even),

(16.70)
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where the multiplicities mk (k = 0,1, . . . , r) are exactly those that appear in the decompo-
sition

Zc =m0D0 +m1D1 + · · · +mrDr (16.71)

under the rotation group SO(3); here some of the mk’s may be zero but
∑r

k=0 mk(2k+ 1)=
dimZc . In the decomposition formula (16.70), mr ≤ 1; when Zc = V ⊗rc , mr = 1.

Proof Since SO(3)⊂O(3), Zc is invariant under SO(3). Under SO(3), the decomposition of
Zc into its irreducible parts is of the form (16.71) (cf. Proposition 16.4), where the multiplic-
ity mk (k = 0,1, . . . , r) is the number of times that the irreducible representation Dk appears
in the representation R �→R⊗r |Zc . By applying Lemma 16.11 to each irreducible invariant
subspace of Zc under SO(3), we obtain decomposition (16.70) of Zc under O(3) for material
tensors (resp. pseudotensors). The last assertion follows from Proposition 16.4. �

In summary, a subspace Zc of V ⊗r is invariant under the action of SO(3) if and only if it
is invariant under the action of O(3). By Theorem 16.12, once we have in hand the decom-
position formula for the tensor representation of SO(3) with representation space Zc (i.e.,
the representation R �→ R⊗r |Zc ), we can immediately write down the parallel decomposi-
tion formulas for the tensor representation (Q �→Q⊗r |Zc ) and pseudotensor representation
(Q �→ (detQ)Q⊗r ∣∣

Zc ) of O(3) with the same representation space. For example, consider
the space Zc = [[V ⊗2

c ]⊗3] of sixth-order tensors. The decomposition formula (16.51) for the
representation R �→R⊗6|Zc of SO(3) reads (cf. Example 16.8):

[[V ⊗2
c ]⊗3] = 3D0 + 3D2 +D3 + 2D4 +D6.

Then the decomposition formula for the tensor representation Q �→Q⊗6|Zc of O(3) is:

[[V ⊗2
c ]⊗3] = 3D0,+ + 3D2,+ +D3,+ + 2D4,+ +D6,+. (16.72)

The decomposition formula for the pseudotensor tensor representation Q �→ (detQ)Q⊗6|Zc

of O(3) is:

[[V ⊗2
c ]⊗3] = 3D0,− + 3D2,− +D3,− + 2D4,− +D6,−. (16.73)

16.6 Point-Group Symmetry of Tensors and Pseudotensors

16.6.1 Proper Point Groups (Type I)

Consider a crystal C which belongs to the crystal class defined by some proper point group
Gcr. Some physical property of C is characterized by an r th-order tensor A in some SO(3)-
invariant (and thence also O(3)-invariant) subspace Z of V ⊗r . (For example, the elastic re-
sponse is defined by the fourth-order elasticity tensor in [[V ⊗2]⊗2].) How many independent
material constants will be required to specify the material tensor A? Here we will present a
general group-theoretical method ([26]; see also [27, Chapter XIII]) to obtain (at least) an
upper bound on the number of independent material constants required for the specification
of A.

A fundamental postulate in crystal physics is Neumann’s principle,165 which may be
stated as follows [252, p. 20]:

165Given the history [173, 184] of this postulate, it should more properly be called the Neumann–
Minnigerode–Curie principle; see [47], [297, p. 334].
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The symmetry elements of any physical property of a crystal must include the sym-
metry elements of the point group of the crystal.

Given A ∈ Z, let G(A)= {Q ∈ O(3) :Q⊗rA=A} be the symmetry group of A.166 In our
present context, Neumann’s principle can be succinctly expressed as (cf. [47], [297, p. 334])

Gcr ⊂G(A). (16.74)

Let M = {B ∈ Z :Q⊗rB = B for each Q ∈G(A)}. Each B ∈M is said to be a fixed
point of Z under the action of the group G(A). Clearly the set of fixed points M is a
subspace of Z, and A ∈ M . Let N(A) be the number of independent material constants
required to specify a material tensor A ∈M . Clearly N(A)= dim M . To determine N(A),
the group G(A) must be ascertained first, which does not seem to be amenable to a general
procedure that easily delivers solutions for various types of material tensors A.

On the other hand, let M = {B ∈ Z :Q⊗rB = B for each Q ∈Gcr}. Then M is deter-
mined by the equation

Q⊗rA=A for each Q ∈Gcr, (16.75)

where A ∈ Z. There is, however, a group-theoretical method by which dimM can be deter-
mined easily for any Gcr and any material tensor A. By Neumann’s principle (16.74), M is
a subspace of M , which implies167

dimM ≥ dim M =N(A). (16.76)

In the rest of this chapter we shall present the general group-theoretical method [26] men-
tioned earlier to determine dimM for various groups Gcr and material tensors A. The same
method will deliver dim M =N(A) if we have ascertained G(A) and use it in place of Gcr.

Since dimM = dimMc , where Mc = {A ∈ Zc :Q⊗rA = A for each Q ∈Gcr}, we can
work with the complexified spaces Mc and Zc and rephrase the problem at hand as that of
determination of dimMc .

The general group-theoretical method in question is well illustrated by the following
simple example.

Example 16.13 Let Gcr = D3, Zc = V ⊗2
c , and Φ (2) : SO(3) → GL(V ⊗2

c ). By (16.38), we
have

χΦ (2) (R(n,ω))= (1+ 2 cosω)2. (16.77)

Let T :D3 →GL(V ⊗2) be the restriction of Φ (2) to D3, i.e.,

T (R)=R⊗R for each R ∈D3. (16.78)

The representation T is unitary because Φ (2) is unitary. Hence T is completely reducible.
Let us decompose T into its irreducible parts under D3, as doing so will lead to the answer

166Or, let G(A)= {R ∈ SO(3) : R⊗rA = A} in contexts (e.g., in classical texture analysis) where attention
is restricted to rotations.
167In the literature the tacit assumption that N(A) can be inferred from (16.75) is often made. That this
assumption is not generally valid can be seen from a counter-example. Let A ∈ [[V⊗2]⊗2] be the elasticity
tensor of a tetragonal crystal C with Gcr = C4. Equation (16.75) leads to the finding that dimM = 7 (see,
e.g., [252, p. 139]). On the other hand, it can be shown that G(A)=D4h and N(A)= 6; see [77, 118, 175].
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Table 15 Characters of
representation T :R �→R⊗2 for
R ∈D3 and those of the
irreducible representations of D3

D3 [e] 2[r] 3[s]

χ
T 1 1 1 1

χ
T 2 1 1 −1

χ
T 3 2 −1 0

χT 9 0 1

Table 16 Characters for
computing the number of
material constants required to
specify a material tensor in V⊗rc

that has D3 symmetry

D3 [e] 2[r] 3[s]

χ
T 1 1 1 1

χ
Φ(r)|D3

3r 0 (−1)r

we seek. To this end, we compute the characters of T . See Table 15, where we have, for
convenience of computations below, also reproduced from Table 10 of Sect. 13.6.3 the char-
acters of the complete set of irreducible unitary representations T 1, T 2 and T 3 of D3. Using
(13.63), Theorem 13.27, and Table 15, we obtain

T = 〈χT , χT 1〉T 1 + 〈χT , χT 2〉T 2 + 〈χT , χT 3〉T 3

= 2T 1 + T 2 + 3T 3. (16.79)

For our purpose the crucial information carried by the decomposition (16.79) is as follows:
As T 1 is the one-dimensional identity representation, the first term 2T 1 means that there
are two non-zero tensors Ai ∈ V ⊗2

c (i = 1,2) such that R⊗2Ai = Ai for each R ∈D3 and
A1 ⊥A2. Moreover, let W1 and W2 be the one-dimensional spaces spanned by A1 and A2,
respectively. Then for each A ∈ (W1 ⊕ W2)

⊥, R⊗2A �= A for some R ∈ D3. Hence the
dimension of the subspace Mc = {A ∈ V ⊗2

c :R⊗2A=A for each R ∈D3} is 2. �

It should now be clear that in the case where the material tensor A in question is of
r th-order and Zc = V ⊗rc , the number of independent material constants required to specify
A with D3 symmetry is given by 〈χΦ (r)|D3

, χT 1 〉; recall that the symbol Φ (r)|D3 means the

representation which is the restriction of Φ (r) to D3. The values of χΦ (r) (R) for R ∈D3 can
be determined by using (16.38), i.e.,

χΦ (r) = (1+ 2 cosω)r .

They are listed with the character χT 1 in Table 16. Using this table, we obtain

〈χΦ (r)|D3
, χT 1 〉 = 1

6
(3r + 3(−1)r )= 1

2

(
3r−1 + (−1)r

)
,

which is precisely the number of independent parameters required to specify, for any finite
r , a material tensor A ∈ V ⊗r that has D3 symmetry.

In practice, many material tensors are characterized by special classes of tensors which
enjoy some intrinsic symmetries. For instance, dielectric tensors are second-order symmetric
tensors, and elasticity tensors are fourth-order tensors which carry the major and minor
symmetries. We will consider these two classes of tensors in the next example.
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Table 17 Characters for
computing the number of
material constants required to
specify a material tensor in
[V⊗2

c ] with D3 symmetry

D3 [e] 2[r] 3[s]

χ
T 1 1 1 1

χ[V⊗2
c ] 6 0 2

Table 18 Characters for
computing the number of elastic
constants required to specify an
elasticity tensor with D3
symmetry

D3 [e] 2[r] 3[s]

χ
T 1 1 1 1

χ[[V⊗2
c ]⊗2] 21 0 5

Example 16.14 Let A ∈ [V ⊗2
c ]. To use the method above to determine the number of material

constants required to specify A with D3 symmetry, we need information on the character
of the representation Φ⊗2|D3 :D3 →GL([V ⊗2

c ]). In other words, we have to determine the
values of χ[V⊗2

c ](R) for R ∈D3. In formula (16.45), i.e.,

χ[V⊗2
c ] =

∑

1≤i≤j≤3

λiλj = 2+ 2 cosω+ 2 cos 2ω,

we have already had the formula for any R in SO(3). In Table 17 we list the values of
χ[V⊗2

c ](R) for R ∈D3 together with the character χT 1 . Using the table, we get

〈χ[V⊗2
c ], χT 1 〉 = 1

6
(6+ 3× 2)= 2.

Hence the number of material constants required to specify A ∈ [V ⊗2
c ] is 2.

Elasticity tensors belong to the tensor space [[V ⊗2
c ] ⊗ [V ⊗2

c ]] = [[V ⊗2
c ]⊗2], i.e., the sym-

metric square of second-order symmetric tensors. In (16.48) we have already obtained a
formula for χ[[V⊗2

c ]⊗2], i.e., the character of the representation Φ (4)|[[V⊗2
c ]⊗2]:

χ[[V⊗2
c ]⊗2] = 5+ 6 cosω+ 6 cos 2ω+ 2 cos 3ω+ 2 cos 4ω.

To answer the question of how many elastic constants are required to specify an elasticity
tensor with D3 symmetry, we determine the values of χ[[V⊗2

c ]⊗2](R) for R ∈D3, which are
listed with χT 1 of D3 in Table 18. Using this table, we get

〈χ[[V⊗2
c ]⊗2], χT 1 〉 = 1

6
(21+ 3× 5)= 6.

Hence an elasticity tensor with D3 symmetry has 6 undetermined elastic constants. �

In general, let G be a rotational point group, and let Z ⊂ V ⊗r be a subspace invariant un-
der R⊗r for all rotations R. Suppose that a physical property Π of a crystal is characterized
by tensors A ∈ Z, and that A is symmetric under rotations R ∈G (i.e., R⊗rA=A for each
R ∈G). To determine N(A), the minimum number of material parameters to specify A ∈Z,
the group in question should be G=G(A). In the absence of information on G(A), how-
ever, we take G=Gcr, which is generally a subgroup of G(A). Then the method described
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Table 19 Characters for
computing the number of elastic
constants required to specify an
elasticity tensor with D2
symmetry

D2 [e] [r] [s] [sr]

χ
T 1 1 1 1 1

χ[[V⊗2
c ]⊗2] 21 5 5 5

in this section can be used to determine168 the number of independent material parameters
required to specify A under symmetry group G if:

(1) We have ascertained the conjugacy classes of G.
(2) We know the values of the character χZc (R) of the subrepresentation (Φ (r),Zc) for

R ∈G.

For example, because we know [118] that for elasticity tensors A of orthorhombic crystals
G(A) = Gcr = D2, and because we have already determined in (16.48) χ[[V⊗2

c ]⊗2](R) for
all rotations R, we need only to find out the structure of the conjugacy classes of D2 to
determine the number of elastic constants for an orthorhombic elastic material. It is easy
to see that D2 has 4 conjugacy classes, each of which is a singleton, namely: {e}, {r}, {s},
and {rs}, where e = I , r = R(e3,π), and s = R(e2,π). All the information needed for
finding the number in question is given in Table 19, where χT 1 denotes the character of the
one-dimensional identity representation. The answer is:

〈χ[[V⊗2
c ]⊗2], χT 1 〉 = 1

4
(21+ 5+ 5+ 5)= 9.

We will work out one more example, to which we shall refer when we study tensorial
texture coefficients in Chap. 17.

Example 16.15 Let Z ⊂ V ⊗l be a subspace of dimension 2l + 1 such that Φ (l)|Zc
∼= Dl . It

turns out that there is a unique subspace of V ⊗lc , called the space H l of harmonic tensors of
order l (see Remark 17.12), which enjoys the specified property. In what follows, we shall
refer to the elements of Zc harmonic tensors, and we shall write τ (l) :=Φ (l)|H l . Let Mc =
{A ∈Zc :R⊗lA=A for each R ∈G}. Here we will determine dimMc for the orthorhombic
and the cubic symmetry, i.e., G=D2 and G=O , respectively. Recall that the character of
the irreducible unitary representation Dl is given by formula (16.34):

χl(R(n,ω))=

⎧
⎪⎨

⎪⎩

sin(l + 1
2 )ω

sin 1
2ω

for ω �= 0

2l + 1 for ω= 0.

The point group D2 has four conjugacy classes, namely [e], [r], [s], and [sr], each of
which contains only one element, i.e., the identity e, r =R(e3,π), s =R(e2,π), and sr =
R(e1,π). It is straightforward to compute from the displayed formula of χl the values of
χτ (l)|D2

for the four conjugacy classes of D2, which are given in Table 20. Hence we obtain

dimMc(l)= 1

4

(
(2l + 1)+ 3(−1)l

)=
{

l
2 + 1 if l is even (i.e., l = 0,2,4, . . .)
l−1

2 if l is odd (i.e., l = 1,3,5, . . .).
(16.80)

168The mathematical procedure is the same while the physical meaning of the resulting number for G =
G(A) is different from that for G = Gcr. If G = G(A), the number delivered by the computations will be
N(A); if G=Gcr, it will generally be an upper bound of N(A).
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Table 20 Characters for
computation of dimMc for l-th
order harmonic tensors with
orthorhombic (D2) symmetry

D2 [e] [r] [s] [sr]

χ
T 1 1 1 1 1

χτ (l)|D2
2l + 1 (−1)l (−1)l (−1)l

Table 21 Characters for computation of dimMc(l) for l-th order harmonic tensors with cubic (O) symmetry

O [e] 6C2 8C3 6C4 3C2
4

χ
T 1 1 1 1 1 1

χτ l |O 2l + 1 (−1)l sin((2l+1)π/3)
sin(π/3) sin(lπ/2)+ cos(lπ/2) (−1)l

By the preceding formula, dimMc clearly satisfies the recursion formula dimMc(l + 2) =
dimMc(l)+ 1.

The point group O has five conjugacy classes, namely [e], C2, C3, C4, and C
2
4. The class

[e] has the identity as the only element. The class C2 contains 6 rotations of angle π about
six 2-fold axes, C3 8 rotations of angle±2π/3 about four 3-fold axes, C4 6 rotations of angle
±π/2 about three 4-fold axes, and C

2
4 6 rotations of angle π about three 4-fold axes. The

values of χτ (l)|O for these five classes are displayed in Table 21. It follows that

dimMc(l)= 1

24

(
(2l + 1)+ 9(−1)l + 8 · sin((2l + 1)π/3)

sin(π/3)
+ 6

(
sin(lπ/2)+ cos(lπ/2)

))
.

(16.81)
In Table 22 we display the values of dimMc for l = 0,1,2, . . . ,15. In fact it is easily shown
that dimMc(l + 12) = dimMc(l) + 1, which together with Table 22 delivers the value of
dimMc(l) for each l ≥ 0. �

Remark16.16 A comparison of Table 22 with Table 7 of Section 5.4.3 reveals that for a given
l in the two tables the value of dimMc is the same as the number of independent texture
coefficients clmn for a fixed m. This finding, however, is expected. Equation (5.20), which
describes the restrictions on texture coefficients clmn imposed by the group of crystallite
symmetry Gcr, can be interpreted as follows: For a fixed l and m, let [el] = (1,0, . . . ,0)T ,
[el−1] = (0,1, . . . ,0)T , . . . , [el̄] = (0,0, . . . ,1)T be column vectors which form the standard
orthonormal basis in C

2l+1, and let [x] =∑l

p=−l c
l
mp[ep]. Then (5.20) is none other than the

equation [x] = [Dl(R)][x] for each R ∈Gcr; here [Dl(R)] is the (2l+ 1)× (2l+ 1) matrix
with the Wigner D-functions Dl

mn(R) as matrix elements (cf. Sect. 4.2). Since τ (l) ∼= Dl ,
we can choose an orthonormal basis in H l such that τ (l)(R) is represented by the matrix
[Dl(R)] for each R ∈G=Gcr. Under the chosen orthonormal basis, the equation R⊗lA=
A for R ∈G and A ∈H l becomes [Dl(R)][A] = [A] for R ∈G, where [A] is the column
vector in C

2l+1 that represents A under the chosen orthonormal basis in H l . Hence dimMc

is equal to the number of independent texture coefficients in {clmn : −l ≤ n≤ l} for a fixed l

and m. �

16.6.2 Improper Point Groups (Type II)

Let G be a point group of Type II. Then G = H ∪ IH , where H is a proper subgroup of
G; see Theorem 2.35 and Table 3 in Sects. 2.5.3 and 2.6.1, respectively. For r ≥ 1, let Zc

be a subspace of V ⊗rc invariant under the action of O(3). Let each A ∈ Zc be a material
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Table 22 Values of dimMc(l) for various l for restrictions imposed by cubic (O) symmetry on harmonic
tensors of order l

l 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

dimMc(l) 1 0 0 0 1 0 1 0 1 1 1 0 2 1 1 1

tensor (resp. pseudotensor) that characterizes the physical property Π of a crystal in the
geometric class defined by point group G. Here our objective is to determine dimMc , where
for TQ =Q⊗r for material tensors (resp. TQ = (detQ)Q⊗r for material pseudotensors)

Mc = {A ∈Zc :A= TQA for each Q ∈G}.

Let MH
c = {A ∈Zc :R⊗rA=A for each R ∈H }. Since H ⊂G, clearly we have

dimMc ≤ dimMH
c . (16.82)

Let A ∈MH
c . Then R⊗rA=A for each R ∈H . For Q ∈G \H , we have Q= IR for

some R ∈H , and for material tensors

TQA=Q⊗rA= (IR)⊗rA= I⊗rR⊗rA= I⊗rA= (−1)rA, (16.83)

where we have appealed to Lemma 16.2 at the last step. For material pseudotensors, (16.83)
is replaced by

TQA= (detQ)Q⊗rA= (−1)r+1A. (16.84)

For material tensors (resp. pseudotensors), if r is even (resp. odd), then TQA = A for
each Q ∈G and each A ∈MH

c , which implies MH
c ⊂Mc and dimMH

c ≤ dimMc . Combin-
ing the preceding inequality with (16.82), we conclude that dimMc = dimMH

c for material
tensors (resp. pseudotensors) if r is even (resp. odd),.

On the other hand for material tensors (resp. pseudotensors), if r is odd (resp. even) and
TQA = A for Q ∈ G \ H and A ∈MH

c , by (16.83) (resp. (16.84)) we have A = 0, i.e.,
dimMc = 0.

We summarize our findings in the following proposition.

Proposition 16.17 Let G=H ∪ IH , where H is proper, be a crystallographic point group
of Type II. For r ≥ 1, let Zc be a subspace of V ⊗rc invariant under the action of O(3). Suppose
that the property Π of a material is characterized by an r th-order material tensor (resp.
pseudotensor) A ∈ Zc . Let Mc = {A ∈ Zc : TQA = A for each Q ∈G}, where TQ =Q⊗r

(resp. TQ = (detQ)Q⊗r ) for material tensors (resp. pseudotensors), and MH
c = {A ∈ Zc :

R⊗A=A for each R ∈H }. For material tensors (resp. pseudotensors) we have

dimMc =
{

dimMH
c if r is even (resp. odd)

0 if r is odd (resp. even)
. (16.85)

The number dimMH
c can be determined by the method presented in Sect. 16.6.1.

16.6 Point-Group Symmetry of Tensors and Pseudotensors
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Table 23 Characters for
computation of dimMc for
lth-order harmonic tensors with
C3v symmetry

C3v [e] 2[r] 3[ıs]

χ
T 1 1 1 1

χ(·;Ψ (l)|
H l ), even l 2l + 1 sin((2l+1)π/3)

sin(π/3) (−1)l

χ(·;Ψ (l)|
H l ), odd l 2l + 1 sin((2l+1)π/3)

sin(π/3) (−1)l+1

16.6.3 Improper Point Groups (Type III)

By Theorem 2.35 each point group G of Type III is isomorphic to the proper point group
G+ in the Laue class that contains G; e.g., the group C3v is isomorphic to D3 (see Tables 3
and 4 in Sect. 2.6). Then G and G+ have the same abstract group structure. Those of their
properties which depend only on abstract group structure are the same. If the same symbol
is used to represent the two corresponding elements under the isomorphism, then they have
the same multiplication table, the same conjugacy classes, and the same character table (cf.
Remark 13.31). For example, if the symbol s in Table 1 of Sect. 2.1 and in (13.75) stands
for IR(e1,π) rather than R(e1,π), then Table 1 and (13.75) become the multiplication
table and the list of conjugacy classes for C3v . Under this interpretation, Table 10 of Sect.
13.6.3 becomes the character table of C3v . On the other hand, D3 and C3v are different as
transformation groups. In particular, dimMc = dim{A ∈Zc :Q⊗rA=A for Q ∈G}, where
Zc is some SO(3)- and O(3)-invariant subspace of V ⊗rc , need not be the same for G =D3

and G= C3v .

Example 16.18 As illustration, let us compute dimMc for the tensor representations Ψ (l)|C3v

on the spaces of lth-order harmonic tensors H l (l = 0,1,2, . . .) and compare them with the
dimMc of the representations τ (l)|D3 :D3 →GL(H l ). To this end, the first step is to write
down the conjugacy classes of group C3v . They are (cf. Remark 13.31):

[e] = {e}, [r] = {r, r2}, [ıs] = {ıs, ısr, ısr2}, (16.86)

where e = I , r = R(e3,2π/3), ı = I , and s = R(e1,π). Next we need to determine the
characters of the subrepresentations Ψ (l)|H l as restricted to the subgroup C3v of O(3). By
Lemma 16.11, we should distinguish two cases:

(i) l is even. We have Ψ (l)|H l
∼= Dl,+, with character169 χ(·;Ψ (l)|H l )(·)= χ+l (·), where

χ+l (Q)= χl(R) for Q=R or Q= IR.
(ii) l is odd. Then Ψ (l)|H l

∼= Dl,−, with character χ(·;Ψ (l)|H l )(·) = χ−l (·), where
χ−l (Q)= χl(R) for Q=R and χ−l (Q)=−χl(R) for Q= IR.

The information required for the computation of dimMc for l-th order harmonic tensors
with C3v symmetry, where

Mc = {A ∈H l :Q⊗lA=A for Q ∈ C3v},
169To avoid the staggering of subscripts, here we use χ(·;Ψ (l)|

H l ) to denote the character of the represen-

tation Ψ (l)|
H l .

16 Tensor and Pseudotensor Representations of SO(3), O(3), and Their ...
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Table 24 Values of dimMc for various l for restrictions imposed by D3 and C3v symmetry on harmonic
tensors of order l

l 0 1 2 3 4 5 6 7 8 9 10 11

D3 dimMc 1 0 1 1 2 1 3 2 3 3 4 3

C3v dimMc 1 1 1 2 2 2 3 3 3 4 4 4

Table 25 Characters for
computing the number of elastic
constants required to specify an
elasticity tensor with C3v
symmetry

C3v [e] 2[r] 3[ıs]

χ
T 1 1 1 1

χ(·;Θ(2)|[[V⊗2
c ]⊗2]) 21 0 −5

is given in Table 23. Hence we obtain for harmonic tensors that enjoy C3v symmetry:

dimMc =
⎧
⎨

⎩

1
6

(
(2l + 1)+ 2 · sin((2l+1)π/3)

sin(π/3) + 3(−1)l
)

for even l

1
6

(
(2l + 1)+ 2 · sin((2l+1)π/3)

sin(π/3) + 3(−1)l+1
)

for odd l.
(16.87)

On the other hand, for harmonic tensors that observes D3 symmetry, and for Mc = {A ∈
H l : R⊗lA = A for each R ∈D3}, we get for all l the formula in (16.87) for even l. The
values of dimMc for l = 0,1, . . . ,11 that pertain to harmonic tensors with D3 and C3v sym-
metry, respectively, are listed in Table 24. The values for D3 symmetry satisfy the recursion
relation dimMc(l+6)= dimMc(l)+2, whereas those for C3v symmetry observe the recur-
sion relation dimMc(l + 3)= dimMc(l)+ 1. �

Before we end this section, we give one example on pseudotensors.

Example 16.19 Consider the pseudotensor representation Θ (4) : O(3) → GL(V ⊗4
c ) and its

restriction to the subgroup C3v and to the subspace [[V ⊗2
c ]⊗2], i.e., the representation

(Θ (4)|C3v)|[[V⊗2
c ]⊗2]. Let

Mc = {A ∈ [[V ⊗2
c ]⊗2] : (detQ)Q⊗4A=A for each A ∈ C3v}.

By (16.48) and Theorem 16.12, we see that the representation Θ (4)|[[V⊗2
c ]⊗2] decomposes

into its irreducible parts as follows:

Θ (4)|[[V⊗2
c ]⊗2] = 2D0,− + 2D2,− +D4,−.

Since χ−l (Q)= χl(R) for Q=R and χ−l (Q)=−χl(R) for Q= IR, a glance at Table 18
allows us to write down immediately the entries in Table 25. It follows that

dimMc = 1

6
(21− 3× 5)= 1. �

16.6 Point-Group Symmetry of Tensors and Pseudotensors
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Chapter 17

17 Harmonic Tensors and Tensorial Texture Coefficients

The purpose of this chapter is to introduce the tensorial Fourier expansion of the ODF and
the tensorial texture coefficients [1, 34, 132, 190, 355] in Sect. 17.6. As preparations we will
go over some preliminaries on harmonic tensors in Sects. 17.1–17.3. In Sect. 17.4 we derive
formulas for the harmonic decomposition of (totally) symmetric tensors. In Sect. 17.5 we
show that in each space of harmonic tensors there is a special orthonormal basis, which, as
we shall show in Sect. 17.6.2, plays a crucial role in expressing the classical ODF expansion
as a tensorial Fourier series. Our main references for the preliminaries and Sect. 17.4 are:
Backus [15] and Sternberg [304, pp. 185–188].

17.1 Symmetric Tensors and Homogeneous Polynomials

In what follows we shall write the Cartesian coordinates of the position vector x inter-
changeably as (x, y, z) or (x1, x2, x3).

Definition 17.1 A complex-valued polynomial f (x, y, z) on R
3 is homogeneous of degree

r ≥ 0 if it is a linear combination of monomials xpyqzk with p + q + k = r (p, q, k ≥ 0),
i.e.,

f (x, y, z)=
∑

p+q+k=r
cpqkx

pyqzk, where the coefficients cpqk ∈ C. (17.1)

�

Let P r be the set of all homogeneous polynomials of degree r . It is a linear space over
the complex numbers, with the monomials xpyqzk (p + q + k = r) serving as a basis. The
dimension of P r is equal to the number of such monomials. By the same argument as that
which we use to determine the dimension of the space [V ⊗r ] of symmetric tensors (see
Proposition 13.33), we obtain

dim P r = Cr+2
r = (r + 2)(r + 1)

2
, (17.2)

which is equal to dim [V ⊗r ]. In fact there is an even more intimate relationship between P r

and the complexification of [V ⊗r ], which is the same as [V ⊗rc ].
Given a symmetric tensor A in [V ⊗rc ], we can write it as

A=Ai1i2···ir ei1 ⊗ ei2 ⊗ · · · ⊗ eir , where Ai1i2···ir ∈ C. (17.3)

Then we have

A(x,x, . . . ,x)=Ai1i2···ir (ei1 · x)(ei2 · x) · · · (eir · x)
=Ai1i2···ir xi1xi2 · · ·xir , (17.4)

which is a homogeneous polynomial in P r . Moreover, the map L r : [V ⊗rc ] → P r , A �→
A(x,x, . . . ,x) is linear and is injective, because it maps each basis tensor of [V ⊗rc ] in the
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set
{

1

r!
∑

σ∈Sr
eiσ (1) ⊗ · · · ⊗ eiσ (r) : 1≤ i1 ≤ · · · ≤ ir ≤ n

}

to the corresponding monomial in P r . It is surjective, because dim [V ⊗rc ] = dim P r . Hence
L r is a linear isomorphism. For brevity, henceforth we will write pA(x) := L r (A) =
A(x,x, . . . ,x).

A rotation R on V induces the linear transformation R⊗r on [V ⊗rc ] and a linear transfor-
mation T

(r)

R on P r defined by

(T (r)

R f )(x)= f (R−1x). (17.5)

It is easy to verify that L r ◦R⊗r = T (r)

R ◦L r . Indeed we have

T (r)

R ◦L r (A)=T (r)

R pA(x)= pA(R
T x)

=A(RT x, . . . ,RT x)=Ai1i2···ir (ei1 ·RT x) · · · (eir ·RT x)

=Ai1i2···ir (Rei1 · x) · · · (Reir · x)= (R⊗rA)(x, . . . ,x)

=L r ◦R⊗r (A) (17.6)

for each A in [V ⊗rc ].

17.2 Homogeneous Harmonic Polynomials

17.2.1 Trace of a Symmetric Tensor

Let r ≥ 2. For an r-th order tensor A in V ⊗rc , the (r − 1, r) trace of A is the (r − 2)-th order
tensor tr(r−1,r)A defined by the condition

(tr(r−1,r)A)(u1, . . . ,ur−2)=A(u1, . . . ,ur−2, ej , ej ) for any u1, . . . ,ur−2 ∈ V , (17.7)

where the summation convention on repeated indices is in force. Let A=Ai1...ir ei1 ⊗ · · · ⊗
eir . Then for any u1, . . . ,ur−2 ∈ V ,

(tr(r−1,r)A)(u1, . . . ,ur−2)=Ai1···ir ei1 ⊗ · · · ⊗ eir (u1, . . . ,ur−2, ej , ej )

=Ai1···ir (ei1 · u1) · · · (eir−2 · ur−2)(eir−1 · ej )(eir · ej )
=Ai1···ir (ei1 · u1) · · · (eir−2 · ur−2)δir−1j δir j

=Ai1···ir−2jj (ei1 · u1) · · · (eir−2 · ur−2). (17.8)

Hence we have

tr(r−1,r)A=Ai1···ir−2jjei1 ⊗ · · · ⊗ eir−2 . (17.9)

For 1≤ p < q ≤ r , the (p, q) trace of the r-th order tensor A is defined similarly. In partic-
ular for 1 <p < q < r we have

tr(p,q)A=Ai1···ip−1j ip+1···iq−1j iq+1···ir ei1 ⊗ · · · ⊗ eip−1 ⊗ eip+1 · · · ⊗ eiq−1 ⊗ eiq+1 · · · ⊗ eir .

(17.10)

17 Harmonic Tensors and Tensorial Texture Coefficients
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When the r-th order tensor A is symmetric, all its (p, q) traces are the same, which we
denote by trA without subscript. In particular, from (17.9) we observe that for an r-th order
symmetric tensor A=Ai1i2···ir ei1 ⊗ ei2 ⊗ · · · ⊗ eir , we may express L r−2(trA) ∈ P r−2 as

L r−2(trA)= (trA)(x, . . . ,x)=Ai1i2···ir−2jj xi1xi2 · · ·xir−2 . (17.11)

17.2.2 Laplace Equation and Homogeneous Harmonic Polynomials

The differential operator

! := ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(17.12)

and the differential equation

!f = 0 (17.13)

are called the Laplace operator and the Laplace equation, respectively. The function !f is
called the Laplacian of f .

Definition 17.2 A homogeneous polynomial f is said to be harmonic if it satisfies the
Laplace equation !f = 0. �

Homogeneous polynomials in P0 and P1 clearly satisfy the Laplace equation and are har-
monic. We shall derive a formula for !pA for the homogeneous polynomial pA =L r (A)

that corresponds to a symmetric r-th order tensor A. The logic behind the computations for
the general formula is laid bare in the special case of r = 3.

Example 17.3 Let A=Aijkei ⊗ ej ⊗ ek ∈ [V ⊗3
c ]. Then pA =Aijkxixj xk . We have

∂pA

∂xm
=Aijkδmixjxk +Aijkxiδmjxk +Aijkxixj δmk

=Amjkxjxk +Aimkxixk +Aijmxixj

= 3Aijmxixj , (17.14)

where at the last step we have renamed dummy indices and appealed to the fact that A is
(totally) symmetric. Thus the Laplacian of pA is given by the formula

!pA = ∂

∂xm

(
∂pA

∂xm

)
= ∂

∂xm

(
3Aijmxixj

)

= 3
(
Aijmδmixj +Aijmxiδmj

)

= 6Aimmxi = 6L 1(trA). (17.15)

�

Proposition 17.4 For r ≥ 2, let A=Ai1i2···ir ei1⊗ei2⊗· · ·⊗eir ∈ [V ⊗rc ] and pA =L r (A) ∈
P r . There holds the formula

!pA = r(r − 1)L r−2(trA). (17.16)

17.2 Homogeneous Harmonic Polynomials
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Proof The following derivation of the formula is entirely analogous to that of the special
case for r = 3. By the definition of pA, we have

∂pA

∂xm
= ∂

∂xm

(
Ai1i2···ir xi1xi2 · · ·xir

)

=Ai1i2···ir δmi1xi2 · · ·xir +Ai1i2···ir xi1δmi2 · · ·xir + · · · +Ai1i2···ir xi1xi2 · · · δmir

=Ami2···ir xi2 · · ·xir +Ai1m···ir xi1xi3 · · ·xir + · · · +Ai1i2···ir−1mxi1xi2 · · ·xir−1

= r Ai1i2···ir−1mxi1xi2 · · ·xir−1 , (17.17)

where at the last step we have renamed dummy indices and appealed to the fact that A is
(totally) symmetric. Thus the Laplacian of pA is given by the formula

!pA = ∂

∂xm

(
∂pA

∂xm

)
= ∂

∂xm

(
r Ai1i2···ir−1mxi1xi2 · · ·xir−1

)

= r
(
Ai1i2···ir−1mδmi1xi2 · · ·xir−1 +Ai1i2···ir−1mxi1δmi2 · · ·xir−1

+· · · +Ai1i2···ir−1mxi1xi2 · · · δmir−1

)

= r
(
Ami2···ir−1mxi2 · · ·xir−1 +Ai1m···ir−1mxi1xi3 · · ·xir−1

+· · · +Ai1i2···ir−2mmxi1xi2 · · ·xr−2

)

= r(r − 1)Ai1i2···ir−2mmxi1xi2 · · ·xr−2, (17.18)

where we have again used the total symmetry of A and renamed some dummy indices. A
comparison of (17.9) with the right-hand side at the end of the preceding equation delivers
the required formula. �

From formula (17.16) we can immediately write down the following corollary.

Corollary 17.5 Let A be a symmetric tensor of order r ≥ 2. A homogeneous polynomial pA

is harmonic if and only if the symmetric tensor A is traceless, i.e., trA= 0.170 �

17.3 Spaces of Harmonic Tensors

Definition 17.6 An r-th order tensor (with r ≥ 2) is said to be harmonic if it is symmetric
and traceless. �

For r ≥ 0, let Hr := {f ∈ P r :!f = 0} be the set of homogeneous harmonic polynomials
of degree r . It clearly constitutes a linear subspace of P r . In particular, H0 = P0 = C;
H1 = P1 =∑

i cixi . For r ≥ 2, the inverse image L −1
r (Hr ) :=H r ⊂ [V ⊗rc ] of Hr under

the linear isomorphism L r : [V ⊗rc ] → P r is the space of harmonic tensors. The restriction
of L r on H r , which for simplicity we still denote by L r , is a linear isomorphism from H r

onto Hr . In particular, they have the same dimension, which is given in the next proposition.

Proposition 17.7 For r ≥ 2, dim H r = dimHr = 2r + 1.

170Backus [15] calls such a symmetric tensor A “totally traceless”.

17 Harmonic Tensors and Tensorial Texture Coefficients
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Proof A glance at (17.18) reveals that the linear map ! : P r → P r−2, f �→!f , is surjective.
Since

dim(Ker!)+ dim(Im!)= dimP r , (17.19)

we have

dimHr = dimP r − dimP r−2 = (r + 2)(r + 1)

2
− r(r − 1)

2
= 2r + 1. (17.20)

�

For each rotation R and r ≥ 2, the space of harmonic tensors H r = {A ∈ [V ⊗rc ] : trA=
0} is clearly invariant under R⊗r . By (17.6) we see that Hr is invariant under T (r)

R , a fact
which can alternatively be demonstrated through the invariance of the Laplace equation un-
der rotations. At any rate we can legitimately ask whether the representation R �→ R⊗r of
SO(3) on H r is irreducible. We will give an affirmative answer by examining the represen-
tation R �→ T (r)

R of SO(3) on Hr .

Theorem 17.8 The representation σ (r) : SO(3)→GL(Hr ), R �→ T (r)

R , is irreducible.

Proof Since dim Hr = 2r + 1, by Proposition 14.11 and Theorem 14.13 it suffices to show
that exp(i2rθ) is an eigenvalue of σ (r) ◦Ad(h(θ)), where h(θ) ∈ SU(2) is defined in (14.10).
Note that

Ad(h(θ))=
⎛

⎝
cos 2θ − sin 2θ 0
sin 2θ cos 2θ 0

0 0 1

⎞

⎠=R(e3,2θ). (17.21)

Let f (x)= f (x, y, z)= (x− iy)r . Clearly f is a homogeneous polynomial of degree r , and
it is easy to check by direct computations that  f = 0. Hence we have f ∈Hr . Since

R(e3,2θ)−1x = (x cos 2θ + y sin 2θ,−x sin 2θ + y cos 2θ, z), (17.22)

the homogeneous polynomial f ∈Hr transforms under the rotation Q :=R(e3,2θ) as

T (r)

Q f (x)= f (R(e3,2θ)−1x)

= (x cos 2θ + y sin 2θ − i(−x sin 2θ + y cos 2θ))r

= (x(cos 2θ + i sin 2θ)− iy(cos 2θ + i sin 2θ))r

= exp(i2rθ)f (x). (17.23)

Hence f (x) = (x − iy)r ∈ Hr is an eigenvector of σ (r) ◦ Ad(h(θ)) with eigenvalue
exp(i2rθ). �

Corollary 17.9 The representations τ (r) : SO(3)→ GL(H r ), R �→R⊗r , is irreducible and
is equivalent to the representation Dr .

Proof By (17.6) the representations τ (r) and σ (r) are equivalent. Hence τ (r) is an irreducible
representation of SO(3). By Proposition 17.7 both τ (r) and σ (r) are equivalent to the irre-
ducible representation Dr . �

17.3 Spaces of Harmonic Tensors
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17.4 Harmonic Decomposition of Symmetric Tensors

Let r ≥ 2 and ρ2 = x2 + y2 + z2. The mapping

ϑ : P r−2 → P r , pA �→ ρ2pA, for A ∈ [V ⊗r−2
c ]

is clearly linear and injective. Moreover, dim(Imϑ)= dim P r−2 = r(r − 1)/2. When [V ⊗rc ]
(i.e., the space of r-th order symmetric-tensors) is decomposed into its irreducible parts
under SO(3):

[V ⊗rc ] = n0D0 + n1D1 + · · · + nr−1Dr−1 + nrDr , (17.24)

where nk ≥ 0 (k = 0,1, . . . r) and
∑r

k=0 nk(2k + 1)= (r + 2)(r + 1)/2, we know that nr =
1. Indeed, since [V ⊗rc ] is a subspace of V ⊗rc , there holds nr ≤ 1. On the other hand, the
harmonic tensors H r constitute an invariant subspace of [V ⊗rc ] and the representation τ (r)

of SO(3) on H r is equivalent to Dr . Therefore the only possibility is nr = 1.
If we write the decomposition of [V ⊗rc ] as

[V ⊗rc ] =H r ⊕ (H r )⊥, (17.25)

then (H r )⊥ contains invariant subspaces, on each of which the subrepresentation of τ (r)

is equivalent to some Dk with k < r . We can choose an inner product in P r such that the
decomposition of P r parallel to (17.25) takes the form

P r =Hr ⊕ (Hr )⊥. (17.26)

It follows from the definition of the mapping ϑ that

Imϑ = {ρ2pA :A ∈ [V ⊗r−2
c ]} := ρ2P r−2. (17.27)

Since L −1
r (ρ2P r−2)= [{I }⊗ [V ⊗r−2

c ]], which cannot contain H r as an invariant subspace,
because the irreducible representations pertaining to [{I }⊗ [V ⊗r−2

c ]] can be equivalent only
to Dk with k ≤ r−2. Thus we infer that ρ2P r−2 ⊂ (Hr )⊥. But dim(ρ2P r−2)= r(r−1)/2=
dim(Hr )⊥. Hence we conclude that (Hr )⊥ = ρ2P r−2. Hence we obtain a decomposition of
P r into the following direct sum:

P r =Hr ⊕ ρ2P r−2. (17.28)

Repeating the same decomposition for P r−2, we have

P r =Hr ⊕ ρ2(Hr−2 ⊕ ρ2P r−4)=Hr ⊕ ρ2Hr−2 ⊕ ρ4P r−4. (17.29)

Repeating the decomposition procedure iteratively until it stops, we arrive at the theorem on
harmonic decomposition of homogeneous polynomials.

Theorem 17.10 The space P r (r ≥ 0) of homogeneous polynomials can be written as a
direct sum of subspaces in terms of harmonic polynomials as follows:

– for r = 2p, P2p =H2p ⊕ ρ2H2p−2 ⊕ · · · ⊕ ρ2p−2H2 ⊕ ρ2pH0;
– for r = 2p+ 1, P2p+1 =H2p+1 ⊕ ρ2H2p−1 ⊕ · · · ⊕ ρ2p−2H3 ⊕ ρ2pH1. �
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Rewriting the preceding theorem for symmetric and harmonic tensors, we obtain the
following corollary171 on harmonic decomposition of symmetric tensors. In what follows,
H 0 := C, and H 1 := Vc .

Corollary 17.11 The space [V ⊗rc ] (r ≥ 0) of (totally) symmetric tensors can be written as a
direct sum of subspaces in terms of harmonic tensors as follows:

– for r = 2p, [V ⊗2p
c ] =H 2p ⊕ [I ⊗H 2p−2] ⊕ · · · ⊕ [I⊗p−1 ⊗H 2] ⊕ [I⊗p];

– for r = 2p + 1, [V ⊗2p+1
c ] =H 2p+1 ⊕ [I ⊗H 2p−1] ⊕ · · · ⊕ [I⊗p−1 ⊗H 3] ⊕ [I⊗p ⊗

H 1]. �

It follows from Corollary 17.11 that [V ⊗rc ] decompose into its irreducible parts as fol-
lows:

[V ⊗2p
c ] =D0 +D2 + · · · +D2p−2 +D2p, for r = 2p; (17.30)

[V ⊗2p+1
c ] =D1 +D3 + · · · +D2p−1 +D2p+1, for r = 2p+ 1. (17.31)

Remark17.12 By Proposition 16.4, when the tensor representation Φ (l) : SO(3)→GL(V ⊗l )
is decomposed into its irreducible parts, there is a unique subrepresentation of dimension
2l + 1, say Φ (l)|W , such that Φ (l)|W ∼= Dl . Since [V ⊗lc ] is a subspace of V ⊗lc and Φ (l)|[V⊗lc ]
contains also one irreducible subrepresentation of dimension 2l + 1, namely Φ (l)|H l , such
that Φ (l)|H l

∼= Dl , the equality W =H l necessarily holds. Hence the space H l of har-
monic tensors of order l may be defined as the subspace of V ⊗lc such that Φ (l)|H l

∼=Dl . �

Remark 17.13 Any tensor in V ⊗rc can be expressed [302] in terms of symmetric tensors of
orders not higher than r , the second-order identity tensor I , and the third-order alternating
tensor ε = εijkei ⊗ ej ⊗ ek , where

εijk =

⎧
⎪⎨

⎪⎩

1 if (i, j, k) is a cyclic permutation of (1,2,3)

−1 if (i, j, k) is a non-cyclic permutation of (1,2,3)

0 if i, j, k are not distinct.

(17.32)

Combining this assertion with Corollary 17.11, we see that any tensor A in V ⊗r can be
expressed in terms of harmonic tensors of orders not higher than r , the second-order identity
tensor I , and the third-order alternating tensor ε. Such an expression is called a harmonic
decomposition of tensor A. While the harmonic decomposition of a symmetric tensor by
Corollary 17.11 is unique, expressing a tensor in terms of symmetric tensors and isotropic
tensors I , ε is generally not. Moreover, harmonic decomposition of a tensor which is not
totally symmetric need not go through Corollary 17.11 as an immediate step; this fact is well
illustrated by the example of harmonic decompositions of the elasticity tensor [16, 76, 233].
As far as decomposing a tensor into its irreducible parts for some specific application is
concerned, some harmonic decomposition may be more convenient than another; cf. [233].

�

171Cf. [356] for an alternate derivation.
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17.5 Irreducible Tensor Basis in Space of Harmonic Tensors

Consider the space H l (l = 1,2,3, . . .). Since the representation τ (l) : SO(3)→ GL(H l ),
R �→R⊗l , is equivalent to Dl :R �→ [Dl

mn(R)], by Corollary 13.14 there is an orthonormal

basis Al
m (−l ≤ m ≤ l) such that R⊗lAl

m =
∑

p D
l
pm(R)Al

p . Let B l
m = Al

m (−l ≤ m ≤ l).
Thus there is an orthonormal basis B l

m (−l ≤m≤ l) in H l such that

R⊗lB l
m =

l∑

p=−l
Dl

pm(R)B l
p =

l∑

p=−l
Dl

mp(R
T )B l

p. (17.33)

By Schur’s Lemma and Theorem 13.12, any orthonormal basis B̃
l

m (−l ≤ m ≤ l) in H l

that satisfies (17.33) can differ from B l
m only by a common multiplicative factor λ ∈ C

with |λ| = 1, i.e., B̃
l

m = λB l
m for each m. In what follows, we present a procedure (cf. [203,

Sect. 5.1]) by which an explicit orthonormal basis in H l that satisfies (17.33) and the further
condition

B l
m = (−1)mB l

m̄ (−l ≤m≤ l) (17.34)

can be generated. Since condition (17.34) requires that B l
0 be real, an orthonormal basis in

H l that satisfies (17.33) and (17.34) is uniquely determined up to a common multiplicative
factor λ=±1.

For A ∈H l and −l ≤m≤ l, let F l
m :H l →H l be defined by

F l
m(A)=

ˆ

SO(3)

R⊗lADl
m0(R)dg(R), (17.35)

where g denotes the normalized Haar measure on SO(3); cf. (3.42). We determine an explicit
orthonormal basis B l

m in H l that satisfies (17.33) and (17.34) as follows:

Step 1: Determination of B l
0. Note that the existence of an orthonormal basis B l

m which
satisfies (17.33) is already guaranteed by the general theory. When we write B l

m (−l ≤m≤
l) without specification, we mean members of one such basis. By (17.33) and (17.35) we
observe that

F l
0(B

l
m)=

ˆ

SO(3)

R⊗lB l
m Dl

00(R)dg(R)=
ˆ

SO(3)

(∑

p

Dl
mp(R

T )B l
p

)
Dl

00(R)dg(R)

=
∑

p

( ˆ

SO(3)

Dl
pm(R)Dl

00(R) dg(R)
)
B l

p =
∑

p

1

2l + 1
δp0δm0B

l
p =

1

2l + 1
δm0B

l
0.

(17.36)

Equation (17.36) indicates that F l
0(B

l
m)= 0 if m �= 0, and (2l + 1)F l

0(B
l
0)=B l

0.
In what follows a tensor is said to be real if its imaginary part is zero. Let A ∈H l be

non-zero and real. Since Dl
00(R) is real for each rotation R, by (17.35) F l

0(A) is real. By
(17.36) we observe that F l

0(A) is non-zero if A has a non-zero B l
0-component. Take an

arbitrary real basis in H l . If we let F l
0(·) runs over, one-by-one, the members of this real

basis, we will certainly hit upon one member, which we now call Ã such that F l
0(Ã) �= 0.

We take

B l
0 =F l

0(Ã)/‖F l
0(Ã)‖; (17.37)
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Clearly B l
0 is real and ‖B l

0‖ = 1.

Step 2: Computation of B l
m for m �= 0. The other members of the basis we seek are computed

from the formula

B l
m =F l

m((2l + 1)B l
0), where −l ≤m≤ l. (17.38)

Note that the preceding formula remains valid for m= 0.

Step 3: Verifications. We claim that for each Q ∈ SO(3) and A ∈H l there holds

Q⊗lF l
m(A)=

l∑

p=−l
Dl

mp(Q
T )F l

p(A). (17.39)

Indeed we have

Q⊗lF l
m(A)=Q⊗l

ˆ

SO(3)

R⊗lADl
m0(R)dg(R)=

ˆ

SO(3)

(QR)⊗lADl
m0(R)dg(R)

=
ˆ

SO(3)

Q̃
⊗l

ADl
m0(Q

T Q̃)dg(QT Q̃), where Q̃ :=QR

=
ˆ

SO(3)

Q̃
⊗l

A

(
∑

p

Dl
mp(Q

T )Dl
p0(Q̃)

)
dg(Q̃)=

∑

p

Dl
mp(Q

T )F l
p(A).

(17.40)

By putting A= (2l+ 1)B l
0 in the preceding formula, we see that the tensors B l

m (−l ≤m≤
l), as defined by (17.38) satisfy the requirement (17.33).

Next we show that the tensors B l
m (−l ≤m≤ l) as defined by (17.38) are orthonormal.

Since R⊗l is unitary for each rotation R, we have for m �= p

〈B l
m,B

l
p〉 =

ˆ

SO(3)

〈R⊗lB l
m,R

⊗lB l
p〉dg(R)

=
ˆ

SO(3)

〈∑

s

Dl
ms(R

T )B l
s ,

∑

q

Dl
pq(R

T )B l
q

〉
dg(R)

=
∑

s,q

( ˆ

SO(3)

Dl
ms(R

T )Dl
pq(R

T )dg(R)
)
〈B l

s ,B
l
q〉

= 1

2l + 1

∑

s,q

δsqδmp〈B l
s ,B

l
q〉 = 0. (17.41)

By construction, ‖B l
0‖ = 1. We proceed to prove that ‖B l

m‖ = 1 for each m. By (17.41) we
observe that

〈R⊗lB l
m,B

l
0〉 =

〈 l∑

q=−l
Dl

mq(R
T )B l

q ,B
l
0

〉
=Dl

m0(R
T )‖B l

0‖2 (17.42)
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for each m and for each rotation R. On the other hand, we have

〈R⊗lB l
m,B

l
0〉 = 〈B l

m, (R
T )⊗rB l

0〉 =
〈
B l

m,

l∑

q=−l
Dl

0q(R)B l
q

〉

=Dl
0m(R)‖B l

m‖2 =Dl
m0(R

T )‖B l
m‖2. (17.43)

It follows from (17.42) and (17.43) that

‖B l
m‖ = ‖B l

0‖ = 1 for each − l ≤m≤ l. (17.44)

Hence the 2l + 1 tensors B l
m (−l ≤m≤ l) constitute an orthonormal basis in H l .

Finally we prove that the basis tensors B l
m satisfy the condition (17.34). Indeed we have

B l
m̄ = (2l + 1)F l

m̄(B
l
0)= (2l + 1)

ˆ

SO(3)

R⊗lB l
0D

l
m̄0(R)dg(R)

= (2l + 1)
ˆ

SO(3)

R⊗lB l
0

(
(−1)mDl

m0(R)
)
dg(R)

= (−1)m(2l + 1)
ˆ

SO(3)

R⊗lB l
0D

l
m0(R)dg(R)= (−1)mB l

m, (17.45)

where we have appealed to (4.40)2 and the fact that B l
0 is real.

The preceding findings about a special orthonormal basis in H l remain valid in a slightly
more general context, which we record as the following theorem (cf. [203, Theorem 1]).

Theorem17.14 For k ≥ 0, let Z be a (2k+1)-dimensional subspace of the tensor space V ⊗r
invariant under Q⊗r for each rotation Q, and let Zc be the complexification of Z. Suppose
the restriction of the representation Q �→Q⊗r on Zc is equivalent to the irreducible unitary
representation Dk . There exists an orthonormal basis Bm (−k ≤m≤ k) in Zc , unique up to
a common multiplicative factor λ=±1, which satisfies the conditions that

Q⊗rBm =
k∑

p=−k
Dk

mp(Q
T )Bp, for each Q ∈ SO(3), (17.46)

Bm = (−1)mBm̄, (17.47)

for each −k ≤m≤ k. �

The case r = 0 is trivial for Theorem 17.14. For r ≥ 1 and Zc =H l , we have already
proved the theorem and presented a procedure by which a set of explicit orthonormal basis
tensors Bm that satisfy conditions (17.46) and (17.47) can be determined. The proof and
the procedure, after obvious changes in notation (e.g., with k and Zc replacing l and H l ,
respectively) remain applicable to the setting described in the theorem; cf. [203, Theorem 1
and Sects. 5.1–5.2].

Definition 17.15 A set of tensors Bm (−k ≤m≤ k) in a complexified (2k+1)-dimensional
subspace Zc of V ⊗rc is said to constitute an irreducible tensor basis of Zc if it satisfies (17.46)
and (17.47). �
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In general, let the subspace Zc ⊂ V ⊗rc be decomposed into its irreducible parts (see
Proposition 16.4) as Zc =∑r

k=0 nkDk =X0 ⊕X1 ⊕ · · · ⊕Xr , where Xk = nkDk and terms
with nk = 0 are dropped in the summation. A procedure is given in [203] to determine an
orthonormal basis H k,s

m (0≤ k ≤ r and nk �= 0; −k ≤m≤ k, 1≤ s ≤ nk) in Zc such that for
each k and s the set of orthonormal tensors H k,s

m (−k ≤ m ≤ k) constitutes an irreducible
tensor basis in X

(s)
k and Xk =X

(1)
k ⊕ · · · ⊕X

(nk)

k .

17.5.1 Cartan Decomposition

Under the setting of Theorem 17.14, there is a useful decomposition of Zc . Since the tensors
Bm (−k ≤m≤ k) constitute an orthonormal basis in Zc , every A ∈ Zc can be written as

A=
k∑

m=−k
αmBm = α0B0 +

k∑

m=1

(αmBm + αm̄Bm̄), (17.48)

where αm ∈ C for each −k ≤m≤ k. For A ∈Z, A is real; the condition A=A implies that
the coefficients αk satisfies the restriction

αm = (−1)mαm̄ for −k ≤m≤ k. (17.49)

Let the subspaces Wm (0≤m≤ k) of Zc be defined by

W0 := span{B0}, Wm := span{Bm,Bm̄} for 1≤m≤ k. (17.50)

Then the space Zc can be written as the direct sum

Zc =W0 ⊕W1 ⊕ · · · ⊕Wk, (17.51)

where W0 is 1-dimensional and each Wm (1≤m≤ k) is 2-dimensional. Following Golubit-
sky et al. [131, p. 110], who examine the case Zc =H k , we call (17.51) the Cartan decom-
position of Zc .172 Unlike [118, 131], where decomposition (17.51) is derived for harmonic
tensors through the properties of homogeneous harmonic polynomials, here its validity is
based on the premise that the representation SO(3)→GL(Zc), Q �→Q⊗r |Zc , is equivalent
to the irreducible unitary representation Dk (see Theorem (17.14)).

Since [Dk
mp(R(e3,−Θ))] = diag(eikΘ, . . . , eiΘ,1, e−iΘ, . . . , e−ikΘ), by (17.46) we have

(R(e3,Θ))⊗rBm = eimΘBm for −k ≤m≤ k. (17.52)

For m = 0, (17.52) indicates that (R(e3,Θ))⊗r keeps every tensor in W0 unchanged. For
1 ≤ m ≤ k, let sm := ImBm and tm := ReBm. The real tensors sm and tm constitute a
basis in the subspace Wm. By direct computations, we obtain from (17.52) the following
equations:

(R(e3,Θ))⊗rsm = (cosmΘ)sm + (sinmΘ)tm, (17.53)

(R(e3,Θ))⊗r tm = (− sinmΘ)sm + (cosmΘ)tm. (17.54)

172See also Forte and Vianello [118], where the Cartan decomposition of H 4, which appears in the harmonic
decomposition of the elasticity tensor, is discussed in detail.
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Hence the restriction of (R(e3,Θ))⊗r on Wm is a rotation of angle mΘ .
Another two useful formulas are as follows:

(R(e2,π))
⊗rBm = (−1)kBm, (17.55)

(R(e1,π))
⊗rBm = (−1)k+mBm. (17.56)

To prove (17.55), note that by (4.33)1 we have Dk
mp(R(e2,π)) = (−1)k+mδmp̄ . Hence, by

(17.46), we see that

(R(e2,π))
⊗rBm =

∑

p

(−1)k+mδmp̄Bp = (−1)k+mBm̄ = (−1)kBm. (17.57)

Formula (17.56) follows from (17.52), (17.55), and the fact that R(e1,π) =
R(e3,π)R(e2,π).

17.6 Tensorial Fourier Expansion of the ODF

17.6.1 Harmonic Tensor Basis and Tensorial Fourier Expansion

Let L2(SO(3)) := L2(SO(3),C) be the space of square-integrable complex-valued functions
defined on SO(3); cf. Sects. 3.6, 4.2, and 13.3.173 Applying the discussion in Sect. 15.3
to L2(SO(3)), we see that L2(SO(3)) is a Hilbert-space direct sum of pairwise-orthogonal
subspaces Xl (l = 0,1,2, . . .), each of which is spanned by the (2l+1)2 Wigner D-functions
Dl

mn(·) as basis. Moreover, each Xl is a direct sum of 2l+1 subspaces Xl
m (−l ≤m≤ l) with

basis Dl
mn (−l ≤ n≤ l), on each of which the restriction of the right-regular representation

T r to Xl
m, namely T r

∣∣∣Xl
m

, satisfies (cf. (15.30)

(T r (P )Dl
mn)(·)=

l∑

k=−l
Dl

kn(P )Dl
mk(·) for each fixed m and for each P ∈ SO(3).

(17.58)

Hence the representation T r

∣∣∣Xl
m

is equivalent to the irreducible representation Dl . For a

given l, a function f (l) ∈Xl ⊂L2(SO(3)) can be written as

f (l)(R)=
l∑

m=−l

l∑

n=−l
clmnD

l
mn(R), (17.59)

where the expansion coefficients are given by

clmn =
2l + 1

8π2

ˆ

SO(3)

f (l)(R)Dl
mn(R)dV(R).

In what follows we will show that we can recast the decomposition of L2(SO(3)) described
above in terms of harmonic tensors in H l (l = 0,1,2, . . .).

173In Sect. 17.6 we shall use 〈·, ·〉 to denote only the Hermitian product on V⊗rc . The Hermitian product on
L2(SO(3)), as defined by (4.13), will be written out explicitly.
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For each l = 0,1,2, . . ., choose an orthonormal basis Ĥ
l

1, . . . , Ĥ
l

2l+1 in H l .174 By Corol-
lary 17.9, for each l the mapping τ (l) : SO(3)→ GL(H l ), R �→R⊗l , is an irreducible rep-
resentation equivalent to Dl . By Theorem 13.20 the elements of the matrices that represent

τ (l)(R) (l = 0,1,2, . . .) under the orthonormal basis Ĥ
l

β (β = 1, . . . ,2l + 1), namely

τ l
αβ(R)= 〈Ĥ l

α,R
⊗lĤ

l

β 〉, (1≤ α,β ≤ 2l + 1) (17.60)

satisfy the orthogonality relations

ˆ

SO(3)

τ l
αβ(R)τ l′

α′β ′(R) dV(R)= 8π2

2l + 1
δll′δαα′δββ ′ . (17.61)

Moreover by the Peter-Weyl theorem and its corollaries (see Sects. 15.2 and 15.3),
L2(SO(3)) =⊕∞

l=0 X
l and the matrix elements τ l

αβ(·) constitute a basis in Xl . Thus each
f (l) ∈Xl can be expressed as

f (l)(R)=
∑

α,β

V l
αβτ

l
αβ(R)=

∑

α,β

V l
αβ

〈
Ĥ

l

α,R
⊗lĤ

l

β

〉

=
∑

β

〈∑

α

V l
αβĤ

l

α,R
⊗lĤ

l

β

〉=
∑

β

〈
V l

β ,R
⊗lĤ

l

β

〉
, (17.62)

where the expansion coefficients V l
αβ are given by the formula

V l
αβ =

2l + 1

8π2

ˆ

SO(3)

f (l)(R)τ l
αβ(R)dV(R), (17.63)

and for each β

V l
β :=

2l+1∑

α=1

V l
αβĤ

l

α (17.64)

is a harmonic tensor.
Thus for a function f ∈ L2(SO(3)), we obtain the following tensorial Fourier series of f

[1, 34, 132, 190, 355]:

f (R)=
∞∑

l=0

f (l)(R)=
∞∑

l=0

2l+1∑

β=1

〈
V l

β ,R
⊗lĤ

l

β

〉
. (17.65)

The harmonic tensors V l
β , which are written out explicitly in (17.64), are called the tensorial

Fourier coefficients of the expansion.

17.6.2 Classical ODF Expansion as Tensorial Fourier Series

Consider an ODF w ∈ L2(SO(3)) that pertains to a triclinic aggregate of triclinic crystallites.
Comparing the tensorial Fourier series of w (cf. (17.65)) and its classical expansion (4.45)

174In what follows, Ĥ0
1 := 1; R⊗0 := 1, and τ0

00(R)= 1 for all R ∈ SO(3).
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in Wigner D-functions, i.e.,

w(R)=
∞∑

l=0

w(l)(R)=
∞∑

l=0

2l+1∑

β=1

〈
V l

β ,R
⊗lĤ

l

β

〉=
∞∑

l=0

l∑

m=−l

l∑

n=−l
clmnD

l
mn(R), (17.66)

we see that

2l+1∑

β=1

〈
V l

β ,R
⊗lĤ

l

β

〉=
l∑

m=−l

l∑

n=−l
clmnD

l
mn(R). (17.67)

The harmonic tensors V l
β in (17.66)2 or (17.67) are called the tensorial texture coefficients

of the ODF w, a name that we shall justify in the next section. Starting from (17.67), Lobos
Fernández and Böhlke [190, equation (44)] write down two general equations involving the
classical and tensorial texture coefficients, which, after a specific set of harmonic tensor

basis {Ĥ l

β} is chosen in H l , express clmn in terms of V l
β and vice versa, respectively.175 In

what follows we choose a special orthonormal basis in H l under which the classical ODF
expansion directly becomes a tensorial Fourier series.

Since the representation τ (l) : SO(3)→ GL(H l ), R �→ R⊗l , is equivalent to Dl : R �→
[Dl

mn(R)], an orthonormal basis B l
n (−l ≤ n ≤ l), unique up to a common multiplicative

factor λ=±1, can be determined in H l (see Sect. 17.5) such that

R⊗lB l
n =

l∑

p=−l
Dl

pn(R)B l
p =

l∑

p=−l
Dl

np(R
T )B l

p, for each R ∈ SO(3), (17.68)

B l
n = (−1)nB l

n̄. (17.69)

Note that (17.68)1 implies that

〈B l
m,R

⊗lB l
n〉 =Dl

mn(R). (17.70)

For an ODF w, we have

w(l)(R)=
l∑

n=−l

l∑

m=−l
clmnD

l
mn(R)=

l∑

n=−l

l∑

m=−l
clmn

〈
B l

m,R
⊗lB l

n

〉

=
l∑

n=−l

〈 l∑

m=−l
clmnB

l
m,R

⊗lB l
n

〉
. (17.71)

Comparing (17.71)3 with (17.67), we observe that under the basis {B l
n : −l ≤ n ≤ l}, the

tensorial texture coefficients are given by

V l
n =

l∑

m=−l
clmnB

l
m, which implies clmn = 〈V l

n,B
l
m〉. (17.72)

175Lobos Fernández and Böhlke adopt a convention and notation different than ours. Here we have rewritten
theirs in our notation and convention. In their paper the authors also provide, for orthorhombic aggregates of
cubic crystallites and l = 4, a formula to convert between the independent classical coefficients c4

00, c4
20, c4

40
and their counterparts in the corresponding tensorial Fourier expansion.
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Thus under the orthonormal basis {B l
n} in H l (l = 0,1,2, . . .), the classical ODF expansion

assumes the form

w(R)=
∞∑

l=0

l∑

n=−l

l∑

m=−l
clmn

〈
B l

m,R
⊗lB l

n

〉=
∞∑

l=0

l∑

n=−l

〈
V l

n,R
⊗lB l

n

〉
, (17.73)

where we have appealed to (17.70), (17.71)3, and (17.72)1.

17.6.3 Texture and Crystallite Symmetries

Consider an ODF w which observes texture symmetry defined by the proper point group
Gtex. Then for each Q ∈Gtex, we have

w(l)(R)=w(l)(QT R)=
∑

n

〈
V l

n, (Q
T R)⊗lB l

n

〉=
∑

n

〈
Q⊗lV l

n,R
⊗lB l

n

〉
. (17.74)

We claim that the condition176

Q⊗lV l
n = V l

n for each Q ∈Gtex and −l ≤ n≤ l (17.75)

is equivalent to the restriction (5.19) imposed by Gtex on clmn. Indeed, since

Q⊗lV l
n =

∑

m

clmnQ
⊗lB l

m =
∑

m

clmn

(∑

p

Dl
mp(Q

T )B l
p

)
, (17.76)

the equation V l
n =Q⊗lV l

n is equivalent to

∑

m

clmnB
l
m =

∑

m

clmn

(∑

p

Dl
mp(Q

T )B l
p

)
=

∑

m

(∑

p

clpnD
l
pm(Q

T )
)
B l

m, (17.77)

where we have renamed indices on the right-hand side of (17.77)2. It is obvious that (17.77)2

is equivalent to (5.19). Hence the condition Q⊗lV l
n = V l

n for each Q ∈Gtex and −l ≤ n≤ l

describes texture symmetry, which justifies calling the harmonic tensors V l
n tensorial texture

coefficients. Each tensorial texture coefficient V l
n lies in a subspace V

l of H l defined by

V
l = {V l ∈H l :Q⊗lV l = V l for each Q ∈Gtex}. (17.78)

Henceforth we write nlV = dimV
l .

On the other hand, since the index “n” in V l
n is restricted by crystallite symmetry, the

number of independent V l
n is given by nlH = dimH

l , where

H
l = {H l ∈H l : P⊗lH l =H l for each P ∈Gcr}. (17.79)

The problem to determine nlV and nlH , respectively, is of the same type. In fact, we have
already studied this problem in Examples 16.15 and 16.18, where we pose the problem as
follows:

176Note that in the presence of crystallite symmetry some of the V l
n may be 0 or may be equal to a linear

combination of a selected set of independent ones. Nevertheless (17.75) remains valid.
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– Let G be a crystallographic point group, and let

Mc(l)= {A ∈H l :Q⊗lA=A for each Q ∈G},
Determine dimMc(l), the dimension of the subspace Mc of H l .

As illustrated in Examples 16.15 and 16.18, by using group-theoretic methods we can find
Mc(l) for any of the 32 point groups G and any l = 0,1,2, . . ..

For instance, for sixth-order harmonic tensors that observe cubic symmetry (i.e., G=O),
from Table 22 we see that dimMc(6)= 1. That means: we can choose an orthonormal basis
Aβ (β = 1,2, . . . ,13) in H 6 such that only A1 is invariant under the action of the point
group O . For sixth-order harmonic tensors that enjoy orthorhombic symmetry (i.e., G =
D2), from formula (16.80) we obtain dimMc(6) = 4. Thus we can choose an orthonormal
basis Aβ (β = 1,2, . . . ,13) in H 6 such that only A1,A2,A3, and A4 are invariant under
the action of the point group D2.

In the presence of texture and/or crystallite symmetry, we can recast the classical expan-
sion of the ODF as a tensorial Fourier series, i.e.,

w(R)=
∞∑

l=0

l∑

n=−l

l∑

m=−l
clmnD

l
mn(R)=

∞∑

l=0

nH∑

β=1

〈V l
β ,R

⊗lH l
β 〉, (17.80)

where V l
β ∈V

l and H l
β ∈ H

l are harmonic tensors that satisfy

Q⊗lV l
β = V l

β for each Q ∈Gtex, and P⊗lH l
β =H l

β for each P ∈Gcr,

(17.81)
respectively. For each l, we can determine V l

β and H l
β in terms of clmn and the special or-

thonormal basis {B l
n} in H l by the following steps: (1) Determine the special orthonormal

basis {B l
n} described in (17.68) by the method [203, Sect. 5] presented in Sect. 17.5. (2)

Replace Dl
mn(R) by 〈B l

m,R
⊗lB l

n〉, and impose the restrictions imposed by texture symme-
try and crystallite symmetry on clmn as given in Chap. 5. (3) Gather terms according to the
independent texture coefficients clmn, and identify the harmonic tensors V l

β and H l
β . A more

detailed discussion with examples on these procedures will be presented elsewhere.177

See [1, 34, 132, 190, 275, 355] for further details and applications of tensorial Fourier
expansions under various crystallite and sample symmetries.

177[Note added in proof] See Man C.-S., Du, W.: Recasting classical expansion of orientation distribution
function as tensorial Fourier expansion. J. Elast., submitted.
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APPENDICES

Appendix A

A Basics of Abstract Group Theory

Readers of Part I are presumed to be acquainted with matrix algebra and advanced multi-
variate calculus. In Sect. A.1 we go over the fundamental concepts of sets, relations, and
functions, the main purpose of which is to specify terminology and notation. In the rest of
this appendix, we briefly present some basics of abstract group theory. Our main references
are: Armstrong [6] and Miller [232, Chap. 1], where the reader will find more details and
examples.

A.1 Sets, Relations, and Functions

A set is a collection of objects, which are its members or elements. Let X be a set. We write
x ∈X for the assertion that x is an element in X. If x is not a member of X, we write x /∈X.
To specify a set, we may either list its elements or put a defining statement of its elements
within braces. For example, X = {1,−1} is a set with the numbers 1 and −1 as elements;
S = {θ ∈ R : cos θ = 0} is the set of real solutions of the equation cos θ = 0. Two sets X and
Y are equal, i.e., X = Y , if they have the same elements.

A set X is a subset of set Y , written X ⊂ Y , if every element of X is an element of Y ; Y
is then a superset of X, written Y ⊃X. If X ⊂ Y and X �= Y , X is said to be a proper subset
of Y , written X � Y . Clearly X = Y if and only if X ⊂ Y and Y ⊂X.

Let X and Y be sets. The union X ∪ Y (resp. intersection X ∩ Y ) of sets X and Y is
defined by the statement: s ∈ X ∪ Y (resp. z ∈ X ∩ Y ) if and only if s ∈ X or (resp. and)
s ∈ Y . If X and Y have no element in common, we write X ∩ Y = ∅, where ∅ denotes the
empty set or the set with no element. Let J (e.g., the natural numbers N) be an index set and
{Xj : j ∈ J } be a family of sets. The union

⋃
j∈J Xj (resp. intersection

⋂
j∈J Xj ) is the set

specified by the statement: x ∈⋃
j∈J Xj (resp. x ∈⋂

j∈J Xj ) if and only if x ∈Xj for some
(resp. for all) j ∈ J . We define the set difference X \ Y := {x ∈X : x /∈ Y }.

Given two sets X and Y , we define their Cartesian product X×Y as the set of all ordered
pairs (x, y), where x ∈X and y ∈ Y , i.e., X× Y := {(x, y) : x ∈X and y ∈ Y }. A relation R
between X and Y is a subset of X× Y . To say that x is R-related to y, it is more convenient
to write x Ry for (x, y) ∈ R.

A relation R between X and itself (i.e., R ⊂ X × X) is said to be a relation on X. A
relation R on set X is an equivalence relation if (i) it is reflexive: x Rx for all x ∈X; (ii) it
is symmetric: x Ry implies y Rx; (iii) it is transitive: x Ry and y R z imply x R z. Given an
equivalence relation R on X, for each x ∈X the set R[x] = {y ∈X : y Rx} is the collection
of points in X which are R-related to x; it is called the equivalence class of x. Note that for
each x ∈ X, R[x] �= ∅, because x ∈ R[x]. It is easy to show (see, e.g., [6, pp. 61–63]) that
X =⋃

x∈X R[x] and, for x, y ∈X, either R[x] = R[y] or R[x]∩R[y] = ∅. We say that the set
X is partitioned into a disjoint union of the equivalence classes R[x], called the equivalence
class determined by x, which we will simply write [x] when no confusion should arise
on the equivalence relation at issue. The set of all these equivalence classes is denoted by
X/R= {[x] : x ∈X} and is called the quotient set of X by R.

A function (or mapping, map) f from X to Y , written as f : X→ Y , is a relation f ⊂
X × Y which satisfies the following requirement: For each x ∈X, there is a unique y ∈ Y ,
denoted by y = f (x), such that (x, y) ∈ f . The sets X and Y are called the domain and
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range (or codomain) of the function f , respectively. The equation y = f (x) is also written
as f : x �→ y, or simply as x �→ y if the name of the function is already specified or not
important.

Let f : X→ Y be a function, and let A⊂ X. The restriction of f to A, written as f |A
or f |A, is the function f |A : A→ Y defined by f |A(x)= f (x) for x ∈ A. The image of A
under f is the set f (A)= {y ∈ Y : y = f (x) for some x ∈A}. In particular, f (A) is called
the image of f . The function f is said to be surjective or to map X onto Y if f (X)= Y . The
function f is said to be injective or one-to-one if any two distinct points in X are mapped
onto distinct points in Y , i.e., f (x) = f (x ′) implies x = x ′. The function f is said to be
bijective if f is injective and surjective.

Let B ⊂ Y . The set f −1(B)= {x ∈X : f (x) ∈ B} is called the inverse image of B under
f . When B is a singleton, say B = {b}, it is customary to write the inverse image as f −1(b)

instead of f −1({b}).
Given two functions f :X→ Y and g : Y → Z, their composition g ◦ f is the function

g ◦ f : X→ Z defined by (g ◦ f )(x) = g(f (x)) for each x ∈ X. When f : X→ Y is
bijective, the inverse function f −1 : Y → X of f is well defined, which satisfies (f −1 ◦
f )(x)= x for each x ∈X and (f ◦ f −1)(y)= y for each y ∈ Y .

A.2 Groups and Subgroups

Definition A.1 A group G is a set of objects together with a binary operation called multi-
plication which associates any ordered pair (g,h) of elements in G a third element gh and
satisfies the following requirements:

– Associative law. For all g,h, k ∈G, (gh)k = g(hk).
– Existence of identity. There is an element e ∈G such that eg = ge = g for each element

g ∈G.
– Existence of inverses. For each element g ∈G, there is an element h ∈G such that gh=

hg = e. �

It is easy to prove that the inverse of any element in a group G is unique. Indeed let g ∈G

have two inverses, say h1 and h2. Then gh1 = e. Multiplying both sides of the preceding
equation on the left by h2. By the associative law, we obtain h2(gh1) = (h2g)h1 = h2 or
h1 = h2, because h2g = e. Henceforth we denote the inverse of g ∈ G by g−1. Also, it is
straightforward to show that (gh)−1 = h−1g−1. Similarly, the identity is unique: suppose
there is another identity e′ ∈G. Then e′g = g for g ∈G, which implies e′gg−1 = gg−1, i.e.,
e′e= e or e′ = e, because e is an identity element.

A group G is said to be finite or of finite order if it has a finite number of elements. The
number of elements in a finite group G is denoted by |G| and called the order of G.

A subset X of a finite group G is said to generate G if each element of G can be expressed
as a product of the form g

m1
1 g

m2
2 · · ·gmk

k , where g1, . . . , gk ∈ X (they need not be distinct)
and m1, . . . ,mk are integers. Such an X ⊂G is said to be a set of generators for G, and the
elements of X are called generators for G.

If the set of generators for the finite group G is a singleton {g}, we say that G is a
cyclic group. As G is finite, there is a smallest positive integer n such that gn = e and
G= {e, g, g2, . . . , gn−1}.

Definition A.2 A subset H of a group G is said to be a subgroup of G if it is a group under
the group multiplication defined in G. �
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Proposition A.3 A non-empty H ⊂ G is a subgroup of G if it satisfies the following two
conditions:

(1) If h, k ∈H , then hk ∈H .
(2) If h ∈H , then h−1 ∈H .

Proof Suppose H satisfies the two given conditions. The elements of H are elements of G,
which observe the associative law under the group multiplication defined in G. Since H

is non-empty, there is some h ∈ H . By (1) and (2), hh−1 = e ∈ H , where e is the identity
in G, but it serves also as the identity in H . Conversely, if H �= ∅ is a group, its elements
obviously satisfy conditions (1) and (2). �

Let G be a finite group and g ∈G. The order of the element g is the order of the cyclic
subgroup generated by {g}.
A.3 Cosets, Conjugacy Classes, and Normal Subgroups

A.3.1 Coset Decomposition

Definition A.4 Let H be a subgroup of the group G and let g ∈G. The set gH = {gh : h ∈
H } (resp. Hg = {hg : h ∈H }) is called a left coset (resp. right coset) of H . �

Since each element of gH is an element of G,
⋃

g∈G gH ⊂G. Conversely, as the identity
e ∈H , g = ge ∈ gH for each g ∈G. Hence we have G=⋃

g∈G gH . We claim that two left
cosets g1H and g2H of H are either disjoint or equal. Indeed, suppose g1H ∩ g2H �= ∅. Let
k = g1h1 = g2h2 ∈G. Then g1 = g2(h2h

−1
1 ) ∈ g2H , which implies g1H ⊂ g2H . Similarly,

we can prove that g2H ⊂ g1H . Hence we have g1H = g2H . Therefore G =⋃
g∈G gH is

the decomposition of G into a disjoint union of left cosets of H . Similarly, we can show that
G=⋃

g∈GHg is the decomposition of G into a disjoint union of right cosets of H .
Let G be a finite group and let H be a subgroup of G. It is easy to verify that the mapping

h �→ gh is a bijection of H onto gH . Hence all the left cosets of H have the same number
of elements as H . Let (G :H) be the number of left cosets of H in G. By the properties of
left cosets listed above, we observe that

|G| = (G :H)|H |, (A.1)

where (G :H) is called the index of H in G. With (A.1) we have proved Lagrange’s theo-
rem:

Theorem A.5 The order of a subgroup of a finite group divides the order of the group. �

A.3.2 Conjugacy

Definition A.6 Let G be a group. An element h ∈G is said to be conjugate to k ∈G if there
is some g ∈ G such that ghg−1 = k. Let C ⊂ G×G be the conjugacy relation defined as
follows: hC k if and only if h is conjugate to k. �

It is straightforward to verify that the conjugacy relation C is reflexive, symmetric, and
transitive; hence C is an equivalence relation. The equivalence classes under C are called
conjugacy classes. The conjugacy class determined by h ∈ G is [h] = {ghg−1 : g ∈ G}.
Note that the conjugacy class determined by the identity e is the singleton {e}, and that the
set G is a disjoint union of the conjugacy classes.
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Example A.7 Let us consider the conjugacy class in the rotation group SO(3) that contains
the rotation R(n,ω), where n is a unit vector and ω ∈ [0,π); see Sect. 1.6 for explanation
of the notation. By Euler’s theorem (1.82), we have QR(n,ω)Q−1 = R(Qn,ω) for each
Q ∈ SO(3). Hence the conjugacy class [R(n,ω)] consists of all rotations with rotation angle
ω. �

Example A.8 Consider the group D3 = {e, r, r2, s, sr, sr2}, where e = I , r = R(e3,2π/3),
and s = R(e1,π), which is the symmetry group of an equilateral triangle in the 1-2 plane
with centroid at the origin; see Examples 2.1, 2.31, and Table 3 of Sect. 2.6.1. By the discus-
sion in Example A.7, all the rotations in the same conjugacy class necessarily have the same
rotation angle ω ∈ [0,π). Hence there are at least three conjugacy classes, namely [e], [r]
(ω = 2π/3), and [s] (ω = π). Indeed, because s−1 = s, r−1 = r2, from the multiplication
table of group D3 (see Table 1 of Sect. 2.1) we observe that srs−1 = srs = r2, sr2s−1 = r ,
rsr−1 = rsr2 = sr , r(sr)r−1 = rs = sr2, and r(sr2)r−1 = rsr = s. Thus the group D3 has
three conjugacy classes:

[e] = {e}, [r] = {r, r2}, [s] = {s, sr, sr2}. (A.2)

Note that r2 =R(−e3,2π/3). �

The conjugacy relation can be similarly defined on the set of all subgroups of G.

Definition A.9 A subgroup H of the group G is said to be conjugate to a subgroup K of G
if there is some g ∈G such that gHg−1 =K as sets (i.e., gH =Kg). �

It is easy to verify that the conjugacy relation as specified in Definition A.9 is an equiv-
alence relation on the set of all subgroups of G. Hence we can talk about conjugacy classes
of subgroups of G. In particular, the conjugacy class determined by the subgroup H is
[H ] = {gHg−1 : g ∈G}.

Remark A.10 Each conjugacy class [G] of space groups as subgroups of the Euclidean group
E(3) can be taken as describing one type of crystal symmetry. Two space groups G and G ′ in
the same conjugacy class can be interpreted as pertaining to the same ideal crystal under two
right-handed affine coordinate systems. Likewise, the crystallographic point groups K and
K′ of two conjugate space groups G and G ′, respectively, are in the same conjugacy class of
subgroups of O(3). They can be taken as describing the point-group symmetry of the same
ideal crystal under two Cartesian coordinate systems and are of the same point-group type.
Cf. Sects. 2.3.5 and 2.3.7. �

A.3.3 Normal Subgroups

Let G be a group, and let X,Y ⊂G. We define the product of the subsets X and Y of G by

XY = {hk : h ∈X and k ∈ Y }. (A.3)

Definition A.11 A subgroup H of the group G is said to be a normal subgroup of G if
gHg−1 =H or equivalently gH =Hg for each g ∈G. �

Proposition A.12 Let H be a normal subgroup of the group G. The left cosets of H form a
group under the multiplication defined by (A.3).

APPENDICES

380



Reprinted from the journal 1 3

Proof Let g1H and g2H be left cosets of H , where g1 and g2 are any two elements of G.
Since H is a normal subgroup of G, we have gH =Hg for each g ∈G. By (A.3), we obtain
for multiplication of left cosets:

(g1H)(g2H)= g1(Hg2)H = g1g2HH = g1g2H, (A.4)

as HH = H . Under (A.4), associative law follows from its counterpart in G; the coset
eH =H serves as the identity, and g−1H is the inverse of gH . �

The group of left cosets with multiplication defined by (A.4) is called the quotient group
of G by H and is denoted by G/H .

Proposition A.13 Let G be a finite group and H be a subgroup of index 2 in G. Then H is a
normal subgroup of G and the quotient group G/H is cyclic of order 2.

Proof To prove that H is a normal subgroup of G, it suffices to show that gH = Hg for
each g ∈G. We distinguish two cases: (i) g ∈H ; (ii) g ∈G \H . For (i) g ∈H , clearly we
have gH =Hg. For (ii) g ∈G \H , since H is a subgroup of index 2 in G, there are only
two left cosets, namely H and gH . Then G = H ∪ gH , where H ∩ gH = ∅. Similarly,
G=H ∪Hg, where H ∩Hg = ∅. Hence we have gH =Hg for g ∈G \H .

As the quotient group has only two elements, it is cyclic of order 2. �

A.4 Homomorphisms, Isomorphisms, and Automorphisms

Definition A.14 Let G and G′ be groups. A mapping ϕ : G→ G′ is called a homomor-
phism if it preserves multiplication, i.e., ϕ(gh) = ϕ(g)ϕ(h) for any g,h ∈ G. A bijective
homomorphism is called an isomorphism. �

Let e and e′ be the identity in G and in G′, respectively, and ϕ :G→G′ be a homomor-
phism. Since ϕ(e)= ϕ(ee)= ϕ(e)ϕ(e), multiplying both sides of the equation on the left by
(ϕ(e))−1 yields ϕ(e)= e′.

Similarly, for any g ∈ G, we have ϕ(g)ϕ(g−1) = ϕ(gg−1) = ϕ(e) = e′, which implies
ϕ(g−1)= (ϕ(g))−1.

Definition A.15 Let ϕ :G→G′ be a homomorphism. The kernel and image of ϕ are defined
as

Kerϕ := ϕ−1(e′)= {g ∈G : ϕ(g)= e′}, (A.5)

Imϕ := ϕ(G)= {g′ ∈G′ : g′ = ϕ(g) for some g ∈G}, (A.6)

respectively. �

Lemma A.16 Let ϕ :G→G′ be a homomorphism. Then Kerϕ is a normal subgroup of G,
and Imϕ a subgroup of G′.

Proof Since ϕ(e) = e′, by definition Kerϕ and Imϕ are non-empty subsets of G and G′,
respectively. If g,h ∈ Kerϕ, then ϕ(g)= ϕ(h)= e′. Hence ϕ(gh)= ϕ(g)ϕ(h)= e′e′ = e′.
Also, we have ϕ(g−1)= (ϕ(g))−1 = (e′)−1 = e′. By Proposition A.3, Kerϕ is a subgroup of
G.
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Similarly, if g′, h′ ∈ Imϕ, then g′ = ϕ(g) and h′ = ϕ(h) for some g,h ∈G. Since gh ∈G

and ϕ(gh)= ϕ(g)ϕ(h)= g′h′, g′h′ ∈ Imϕ. Moreover, if g′ ∈ Imϕ and g′ = ϕ(g) for some
g ∈G, then g′−1 = (ϕ(g))−1 = ϕ(g−1) ∈ Imϕ, because g−1 ∈G.

To prove that Kerϕ is a normal subgroup of G, it suffices to show that gkg−1 ∈ Kerϕ
for all k ∈ Kerϕ. Since ϕ(gkg−1)= ϕ(g)ϕ(k)ϕ(g−1) = ϕ(g)e′ϕ(g)−1 = e′, the conclusion
follows. �

Theorem A.17 Let ϕ : G→ G′ be a homomorphism. Then the quotient group G/Kerϕ is
isomorphic to Imϕ.

Proof For brevity, write K :=Kerϕ. Let g,h ∈G. First we prove the following assertion:

gK = hK if and only if ϕ(g)= ϕ(h).

Suppose gK = hK . Then gk1 = hk2 for some k1, k2 ∈ K . Hence ϕ(gk1) = ϕ(gk2), which
implies ϕ(g)ϕ(k1)= ϕ(h)ϕ(k2) or ϕ(g)= ϕ(h), as ϕ(k1)= ϕ(k2)= e′. Conversely, suppose
ϕ(g)= ϕ(h). Then ϕ(h−1g)= ϕ(h−1)ϕ(g)= (ϕ(h))−1ϕ(g)= e′, which implies h−1g ∈K

or g ∈ hK . Since g ∈ gK and different left cosets are disjoint, we have gK = hK .
Let ϕ̃ : G/K → G′ be defined by ϕ̃(gK) = ϕ(g). By the assertion proved above, the

map ϕ̃ is well defined. We claim that it is one-to-one. Indeed, suppose ϕ̃(gK) = ϕ̃(hK).
Then ϕ(g) = ϕ(h), which implies gK = hK . Thus ϕ̃ is one-to-one. It follows that ϕ̃ is a
bijective mapping from the quotient group G/K to the subgroup Imϕ of G′. Moreover, ϕ̃ is
a homomorphism, because

ϕ̃((gK)(hK))= ϕ̃(ghK)= ϕ(gh)= ϕ(g)ϕ(h)= ϕ̃(gK)ϕ̃(hK).

Hence ϕ̃ is an isomorphism from G/Kerϕ to Imϕ. �

Definition A.18 An automorphism of a group G is an isomorphism from G to G. The set
of all automorphisms on G, with multiplication defined by the composition of mappings,
forms a group called the automorphism group of G and denoted by Aut(G). �

A.5 Permutations, Transformation Groups, and Orbits

Definition A.19 Let X be a non-empty set. The bijective mappings f : X→ X are called
permutations on X. The set of all permutations on X is denoted by SX . �

Proposition A.20 The set SX of permutations on X, with multiplication defined by the com-
position of mappings, forms a group called the full symmetric group on X.

Proof The composition of mappings clearly observes both the closure requirement and the
associative law. The identity map iX : X→ X defined by iX(x) = x, which is clearly a
bijection, serves as the identity of the group. For each permutation f , its inverse in the
group is the inverse function f −1. �

Definition A.21 A transformation group on X is a subgroup of SX . �

Let G be a transformation group on X and g ∈ G. Henceforth, for simplicity, we shall
write gx for g(x) when no confusion should arise. We define a relation G on X as follows.
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Definition A.22 An element x ∈ X is said to be G-equivalent to y (i.e., x Gy) if there is a
g ∈G such that gx = y. �

It is easy to verify that G is an equivalence relation on X. Indeed, we have (i) x Gx
for each x ∈X, because iX is the identity in G. (ii) If x Gy, then there is a g ∈G such that
gx = y, which implies g−1y = x, i.e., y Gx, as g−1 ∈G. (iii) If x Gy and y G z, then g1x = y

and g2y = z for some g1, g2 ∈G. Then (g2g1)x = z and g2g1 ∈G, which implies x G z.
We denote the G-equivalence class by

G(x)= {gx ∈X : g ∈G}
and call it the G-orbit of x in X. By the property of equivalence relations, we can immedi-
ately write down the following lemma.

Lemma A.23 X is a disjoint union of G-orbits. �

Let Gx = {g ∈G : gx = x}. Clearly Gx constitutes a subgroup of G, which we call the
isotropy subgroup of G at x or the stabilizer of x.

Lemma A.24 Let the transformation group G on X be finite. If x and y lie in the same
G-orbit, then |Gx | = |Gy |.
Proof Since x and y lie in the same G-orbit, there is some g ∈ G such that gx = y. Let
h ∈Gx . Then ghg−1 ∈Gy , because ghg−1(y)= ghg−1(gx) = gh(x)= gx = y. We claim
that the mapping f : Gx −→ Gy defined by f (h) = ghg−1 is a bijection. In fact, that f
is injective is obvious. To show that f is surjective, consider s ∈ Gy . Since g−1sg(x) =
g−1s(y) = g−1(y) = x, we see that g−1sg ∈ Gx . Since f (g−1sg) = g(g−1sg)g−1 = s, we
finish our proof. �

Proposition A.25 Let the transformation group G on X be finite, and let |G(x)| be the num-
ber of elements in the G-orbit of x in X. We have |G(x)| = |G|/|Gx |.
Proof Consider the mapping f : gx �→ gGx from G(x) to the set of left cosets of Gx in
G. First we show that f is well defined. Indeed, if g1x = g2x, then g−1

2 g1 ∈ Gx . Hence
g2Gx = g2(g

−1
2 g1)Gx = g1Gx . The mapping f is clearly surjective. Let us now proceed to

show that f is injective. If f (g1x)= f (g2x), then g1Gx = g2Gx , which implies g1 = g2h

for some h ∈ Gx . Therefore g−1
2 g1 ∈ Gx . It follow that g−1

2 g1x = x or g1x = g2x. Since
f is bijective, we conclude that |G(x)| = number of left cosets of Gx in G = (G : Gx) =
|G|/|Gx |, where we have appealed to (A.1). �

A.6 Direct Products and Semidirect Products

Definition A.26 Let G1 and G2 be groups. The direct product G1 × G2 of G1 and G2 is
the set of ordered pairs (g1, g2) endowed with group structure as follows. Multiplication is
defined by

(g1, g2)(h1, h2)= (g1h1, g2h2) for g1, h1 ∈G1 and g2, h2 ∈G2. (A.7)

Associativity of multiplication in G1 ×G2 follows from that in G1 and G2. The identity in
G1 ×G2 is (e1, e2), where e1 and e2 are the identity in G1 and G2, respectively. For each
(g1, g2) ∈G1 ×G2, its inverse is (g−1

1 , g−1
2 ). �
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The groups G1 and G2 can be identified with the subgroups of G1 ×G2 that consist of
pairs of the form (g1, e2) and (e1, g2), respectively. Under this identification, the elements
of G1 commute with those of G2.

Conversely, suppose G1 and G2 are subgroups of group G that satisfy what follows:
(i) G1G2 =G; (ii) G1 ∩G2 = {e}, where e is the identity of G; (iii) for each g1 ∈G1 and
g2 ∈G2, g1g2 = g2g1. Then the map

ϕ :G1 ×G2 →G, (g1, g2) �→ g1g2

is an isomorphism. Indeed, for all (g1, g2), (h1, h2) ∈G1 ×G2,

ϕ((g1, g2)(h1, h2))= ϕ(g1h1, g2h2)= g1h1g2h2 = g1g2h1h2 = ϕ(g1, g2)ϕ(h1, h2);
hence ϕ is a homomorphism. If ϕ(g1, g2)= e, then g1g2 = e, which implies g1 = g−1

2 . But
g1 ∈G1 and g−1

2 ∈G2. It follows then from (ii) that g1 = g2 = e. Hence ϕ is injective. By
(i), it is clear that ϕ is surjective. Therefore ϕ is an isomorphism. Thus we can identify G

with G1 ×G2 and say that G is the direct product of its subgroups G1, G2.

ExampleA.27 Consider the orthogonal group O(3) and its subgroups SO(3) and Ci = {I ,I},
where I =−I . Clearly O(3)= SO(3)×Ci . �

When we discuss the Euclidean group in Sect. 2.2 and the symmorphic space groups in
Sect. 2.10.3, we mention the notion of semidirect product of two groups. Here we give a
formal definition.

Definition A.28 Let G be a group with subgroups H and K that satisfies the following
requirements:

(i) All g ∈G can be written as g = hk for some h ∈H and k ∈K .
(ii) For each k ∈K , kHk−1 =H .

(iii) H ∩K = {e}, where e is the identity in G.

Then G is said to be the semidirect product of H and K , and we write G=H ∧K . �

Remark A.29 We adopt Definition A.28 for semidirect product from Bradley and Cracknell
[42, p. 14]. There is another definition for semidirect product of two groups in the literature,
where the semidirect product G of two groups H and K is constructed from the given
groups and a homomorphism from K to the automorphism group Aut(H). See, e.g., [6, p.
133–134], [232, 14–15], where the reader will also find discussions on how one can arrive
at Definition A.28 from the constructive approach. �
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Appendix B

B Topology, Group Actions, and Strict Fundamental Domains

B.1 Basic Definitions in Topology

Definition B.1 A topology T on a set X is a collection of subsets of X which has the
following three properties:

(i) ∅ ∈ T and X ∈ T .
(ii) If {Uα} is an arbitrary collections of members of T , then

⋃
α Uα ∈ T .

(iii) If Ui ∈ T for i = 1, . . . , n, then Ui ∩ · · · ∩Un ∈ T .

A set X for which a topology T has been specified is called a topological space. The mem-
bers of T are called the open sets in X. �

Let x ∈ X. A neighborhood U of x is an open set that contains x. A subset E of X is
said to be closed if X \E is open.

Definition B.2 A family B ⊂ T is called a base of the topological space (X,T ) if every
non-empty open set in X can be written as a union of a subfamily of sets in B. �

It is easily verified that B is a base for (X,T ) if and only if for any x ∈ X and any
neighborhood U of x there is a V ∈B such that x ∈ V ⊂U .

Definition B.3 Let X and Y be topological spaces. A function f :X→ Y is said to be con-
tinuous if f −1(V ) is an open set in X for each open set V in Y . If the function f is bijective,
and if both f and f −1 : Y →X are continuous, then f is said to be a homeomorphism. �

Remark B.4 Let p :X→ Y , where X is a topological space and Y a set, be surjective. Con-
sider the collection Q := {V ⊂ Y : p−1(V ) is open in X} of subsets of Y . Since p−1(∅)= ∅,
p−1(Y )=X, and

p−1

(
⋃

α

Vα

)
=

⋃

α

p−1 (Vα) , p−1

(
n⋂

i=1

Vi

)
=

n⋂

i=1

p−1 (Vi) ,

Q is a topology on Y , which is called the quotient topology induced by p. When Y is
endowed with the quotient topology, the map p is continuous and is called the quotient
map. �

Definition B.5 A topological space X is called a Hausdorff space if for each pair x1 and x2

of distinct points in X, there are neighborhoods U1 of x1 and U2 of x2 such that U1 ∩U2 =
∅. �

A collection U= {Uα} of open subsets of a topological space X is said to cover X, or to
be an open covering of X, if

⋃
α Uα =X.

Definition B.6 A topological space X is said to be compact if every open covering U of X
contains a finite subcollection that also covers X. �
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Remark B.7 There are two definitions of “compact topological space”, which are extensively
used in the mathematics literature. Definition B.6 is one, and the other requires the addi-
tional condition that the space in question satisfies the Hausdorff condition, i.e., X is com-
pact if and only if it satisfies both Definitions B.5 and B.6. For the references cited in this
exposition, e.g., Definition B.6 for compactness is adopted in [96, 116, 186, 242, 278],
whereas Definition B.6 and the Hausdorff condition are required for compactness in
[24, 25, 97, 102, 318]. �

B.1.1 Metric and Metrizable Spaces

Let X be a set. In Sect. 1.10 we have presented the definition of a distance function d(·, ·)
on X. For x, y ∈ X, d(x, y) gives the distance between x and y. Given x ∈ X and a real
number ε > 0, the set

Bd(x, ε)= {y ∈X : d(x, y) < ε} (B.1)

is called the ball centered at x with radius ε.

Definition B.8 Let X be a set endowed with a distance function d . The metric topology T d

induced by the distance function d on X is defined as follows: A set U ⊂X is open if and
only if for each x ∈U there is an ε > 0 such that the Bd(x, ε)⊂U . �

By the triangle inequality for d , it is easily verified that each ball Bd(x, ε), as defined in
(B.1), is an open set in X. It follows then from the comment that follows Definition B.2 that
the collection Bd of balls Bd(x, ε), where x ∈X and ε > 0, constitutes a base for the metric
topology T d on X.

Definition B.9 A topological space X is said to be metrizable if a distance function d can be
defined on X such that the metric topology induced by d is the same as the initial topology
on X. A metric space is a metrizable space X with a specified distance function d that gives
the topology of X. �

The next assertion is essentially the Urysohn metrization theorem (see, e.g., [97, p. 195],
[242, p. 217]), as every compact Hausdorff space is regular (see, e.g., [97, p. 223], [242, p.
198]).

Theorem B.10 Every compact Hausdorff space with a countable base is metrizable. �

B.2 Action of a Finite Group on a Topological Space

In what follows we assume that Gtex is a finite rotation group and Gcr is a Type I crystallo-
graphic point group.

Definition B.11 Let X be a topological space and K = {k1, . . . , kN }, where N is the order
of K , be a finite group. A mapping T :X×K→X (resp. T :K ×X→X) is said to be a
right (resp. left) action of the finite group K on X if the mapping T satisfies what follows:

(i) If e is the identity element of K , then

T (x, e)= x (resp. T (e, x)= x) for all x ∈X.
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(ii) For each k ∈K , the function Tk : X→ X defined by Tk(x) := T (x, k) (resp. Tk(x)=
T (k, x)) is continuous.

(iii) If ki, kj ∈K , then

Tkj ◦ Tki = Tkikj (resp. Tkj ◦ Tki = Tkj ki ) for all x ∈X. �

By condition (iii), we observe for any right-action that Tkj ◦ Tki = Tkikj , which implies
Tk ◦ Tk−1 = Tk−1 ◦ Tk = Te , i.e., the identity map on X by (i). Hence we have

Tk−1 = (Tk)
−1 for each k ∈K . (B.2)

Clearly (B.2) can be shown to be valid for any left-action by a similar argument. It follows
that for both right and left actions the map Tk is a bijection on X for each k ∈K . Moreover,
by condition (ii) and (B.2), (Tk)−1 is continuous for each k ∈ K , and thence each Tk is a
homeomorphism (i.e., Tk is bijective, and both Tk and (Tk)

−1 are continuous).
For x ∈ X, let x/K = {Tk(x) : k ∈ K} be the orbit of x under the (right or left) action

of K . Let X/K = {x/K : x ∈ X} be the quotient set (i.e., the set of orbits), and let π :
X→X/K , x �→ x/K , be the natural surjection (or projection). We give X/K the quotient
topology (see Remark B.4) that U ⊂X/K is open if and only if π−1(U) is open in X. Then
the projection π is continuous, and we call X/K the quotient space.

Proposition B.12 The projection π : X→ X/K is an open mapping (i.e., π(U) is open in
X/K for each open U ⊂X).

Proof Let U ⊂X be open. Note that π−1(π(U))=⋃
k∈K Tk(U). Since Tk is a homeomor-

phism, Tk(U) is open in X and so is π−1(π(U)). Therefore π(U) is open in X/K . �

In this exposition we are primarily interested in one right action and one left action:

1. X = SO(3), K =Gcr = {P 1, . . . ,PNcr }, and the right action in question is T (cr) : SO(3)×
Gcr → SO(3) defined by

T (cr)(R,P )= T (cr)
P (R)=RP for each R ∈ SO(3) and P ∈Gcr. (B.3)

In this case the orbit of R under the action T (cr) is the left coset RGcr = {RP 1, . . . ,

RPNcr}. Hence we will simply denote the orbits by RGcr instead of the generic
notation R/Gcr. The quotient space is the orientation space SO(3)/Gcr. Note (see
Sect. 1.10) that SO(3) is a metric space with distance function dSO(3)(·, ·) which satis-
fies dSO(3)(RP ,QP )= dSO(3)(R,Q) for all R,P ,Q ∈ SO(3). Hence for each P i ∈Gcr

the map T (cr)
P i
: SO(3)→ SO(3) is an isometry and an homeomorphism.

2. X = SO(3)/Gcr, K =Gtex = {Q1, . . . ,QNtex
}, and we are concerned with the left action

T (tex) :Gtex ×M→M , where M := SO(3)/Gcr, defined by

T (tex)(Q,RGcr)= T (tex)
Q (RGcr)=QRGcr for each RGcr ∈M and Q ∈Gtex.

(B.4)
We denote by [RGcr] and by M/Gtex the Gtex-orbit of RGcr and the space of Gtex-orbits
in M , respectively. The orientation space M is a metric space with distance function dM
defined in (6.35). It follows easily from this definition of dM that for each Qi ∈Gtex the
map T (tex)

Qi
:M→M is an isometry and an homeomorphism.
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B.3 Existence of Strict Fundamental Domain

Let X be a topological space, K a finite group, and T a right or left action of K on X. Let
X/K be the space of K-orbits, and π :X→X/K the natural surjection.

Definition B.13 A right or left action T of K on X is said to be properly discontinuous178 if
it satisfies the following condition:

– Each element x ∈ X has a neighborhood Ux of x such that Tk(Ux) ∩ Ux = ∅ for each
k ∈K except k = e, the identity in K . �

Lemma B.14 If the action T of finite group K on X is properly discontinuous, then the
natural surjection π is a local homeomorphism.

Proof Let x ∈X. By hypothesis and Definition B.13, there is a neighborhood Ux of x such
that Tk(Ux) ∩ Ux = ∅ for k �= e ∈ K . We claim that the restriction π |Ux : Ux → X/K be
injective. To see this, let x1, x2 ∈ Ux and π(x1) = π(x2). Then x2 ∈ π−1(π(x1)), which
implies x2 ∈ Tk(x1) for some k ∈K . Since x2 ∈ Ux , we conclude that x2 ∈ Te(x1) and x2 =
x1.

By abuse of language, let us still denote by π |Ux the map that results when the range of
π |Ux is restricted to its image π(Ux). Then the map π |Ux is bijective. Since π is continuous,
π |Ux is continuous. That (π |Ux )

−1 is continuous is a consequence of Proposition B.12. �

The following definition is adapted from [179, p. 96].

Definition B.15 A subset F ⊂X is said to be a strict fundamental domain in X for X/K if

(i) the restriction π |F : F →X/K is bijective;
(ii) F is a Borel set in X. �

The proof of the following theorem is adapted from that of a similar theorem in [179, pp.
96–97].

Theorem B.16 Let the topological space X be compact. If the action T of finite group K on
X is properly discontinuous, there exists a strict fundamental domain F in X for the orbit
space X/K .

Proof By Lemma B.14, each x ∈ X has a neighborhood Ux such that π |Ux : Ux → π(Ux)

is bijective. The family {Ux : x ∈X} provides an open covering of X. Since G is compact,
there is a finite subfamily, which we denote by {Ui : i = 1, . . . ,N} such that

⋃N

i=1 Ui =G.
For i = 1, . . . ,N , let

Fi =Ui \Ui ∩ π−1(π(U1 ∪ · · · ∪Ui−1)). (B.5)

Writing out (B.5) for i = 1,2, . . ., and N , we have

F1 =U1, F2 =U2 \U2 ∩ π−1(π(U1)), . . . , FN =UN \UN ∩ π−1(π(U1 ∪ · · · ∪UN−1)).

(B.6)

178Cf. [50, p. 98], [71, p. 22].
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We claim that F := F1∪· · ·∪FN is a strict fundamental domain in G for G/K . To prove
this claim, we have to show that (i) the restriction π |F : F →G/K is bijective and (ii) F is
a Borel set (see Definition C.2). Let us start with (ii), as proving it is straightforward. Note
that each Fi is the set difference of two open sets; hence it is a Borel set. It follows that F ,
which is the union of a finite number of Borel sets, is itself a Borel set.

Let us proceed to prove (i). Since π |Ui
is injective and Fi ⊂Ui , from (B.5) we have

π(Fi)= π(Ui) \ π(Ui)∩ π(U1 ∪ · · · ∪Ui−1)= π(Ui) \ π(Ui)∩ (π(U1)∪ · · · ∪ π(Ui−1)).

(B.7)
Given two sets A and B , there holds the identity A∪B =A∪ (B \ (B ∩A)). Applying the
preceding set identity repeatedly and using (B.7) for various i, we obtain

π(F1)∪ π(F2)= π(U1)∪ (π(U2) \ (π(U2)∩ π(U1))

= π(U1)∪ π(U2),

(π(F1)∪ π(F2))∪ π(F3)= (π(U1)∪ π(U2))∪ (π(U3)

\ (π(U3)∩ (π(U1)∪ π(U2)))

= (π(U1)∪ π(U2))∪ π(U3),

etc., which can be written as

π(F1)∪ π(F2)∪ · · · ∪ π(Fi)= π(U1)∪ π(U2)∪ · · · ∪ π(Ui) (B.8)

for i = 1,2, . . . ,N . In particular, equation (B.8) for i =N implies

π(F)= π(F1 ∪ F2 ∪ · · · ∪ FN)= π(U1 ∪U2 ∪ · · · ∪UN)= π(G)=G/K. (B.9)

Hence the function π |F : F →G/K is surjective.
Substituting (B.8) into (B.7), we see that for i = 2, . . . ,N ,

π(Fi)= π(Ui) \ π(Ui)∩ (π(F1)∪ · · · ∪ π(Fi−1)). (B.10)

Hence π(Fi) ∩ (π(F1) ∪ · · · ∪ π(Fi−1)) = ∅ for i = 2, . . . ,N , which implies that the sets
π(Fi) are pairwise disjoint. Since π |Fi is injective for all i, the map π |F is injective. Thus
π |F is bijective, and F is a strict fundamental domain. �

In what follows we assume that Gtex is a finite rotation group and Gcr a Type I crystallo-
graphic point group. Let Gtex = {Q1,Q2, . . . ,QNtex

} and Gcr = {P 1,P 2, . . . ,PNcr}, where
Q1 = I , P 1 = I , Ntex = |Gtex|, and Ncr = |Gcr|.

Lemma B.17 The actions T (cr) and T (tex), as defined by (B.3) and (B.4), respectively, are
properly discontinuous.

Proof Consider first the right action T (cr) : SO(3)×Gcr → SO(3). The rotation group SO(3)
is a metric space with distance function dSO(3) defined by (1.137), and the map T (cr)

P i
:R �→

RP i is an isometry of SO(3) for each P i ∈Gcr.
Let R ∈ SO(3). Consider the set A := {RP i : i = 1, . . . ,Ncr} of points in SO(3). Choose

ε > 0 such that 2ε is smaller than the shortest of the distances between R and RP i for
P i �= I . Let UR ⊂ SO(3) be the open ball of radius ε centered at R. Then URP i is a ball of
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radius ε centered at P i . Hence URP i ∩ UR = ∅ for all P i �= I . Therefore the right action
T (cr) is properly discontinuous.

The orientation space M := SO(3)/Gtex is a metric space with distance function dM
defined by (6.35), and the map T (tex)

Qi
:RGcr �→QiRGcr is an isometry on M for each Qi ∈

Gtex. Hence we can similarly prove that the left action T (tex) is properly discontinuous. �

Gathering Theorem B.16 and Lemma B.17, we immediately obtain the following propo-
sition.

PropositionB.18 There exists a strict fundamental domain in SO(3) for the orientation space
M := SO(3)/Gcr and in M for the space of Gtex-orbits M/Gtex, respectively. �

A slight modification of the argument given in the proof of Lemma B.17 leads to a proof
of the following proposition.

Proposition B.19 Let M = SO(3)/Gcr be the orientation space. The space M/Gtex of Gtex-
orbits of orientations is a Hausdorff space.

Proof Let RGcr and R′Gcr be two orientations in M such that R′Gcr /∈ [RGcr]. We claim
that there are neighborhoods URGcr and UR′Gcr of RGcr and R′Gcr, respectively, such that
URGcr ∩QUR′Gcr = ∅ for all Q ∈ Gtex. To prove the claim, choose ε > 0 such that 2ε <
minQ∈Gtex{dM(RGcr,QR′Gcr)}. Let URGcr (resp. UR′Gcr ) be the open ball with center RGcr

(resp. R′Gcr) and radius ε. Then URGcr ∩QUR′Gcr = ∅ for all Q ∈Gtex.
Note that π̂ :M →M/Gtex, RGcr �→ [RGcr], is a continuous open surjection. Hence

π̂(URGcr) and π̂(UR′Gcr) are neighborhoods of [RGcr] and [R′Gcr], respectively. Moreover,
we have π̂(URGcr)∩ π̂(UR′Gcr)= ∅. �
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Appendix C

C Measures and Quotient Measures

C.1 Basic Definitions in Measure Theory and Probability

Definition C.1 A collection M of subsets of a set X is called a σ -algebra in X if it has the
following three properties:

(i) X ∈M.
(ii) If A ∈M, then Ac :=X \A ∈M.

(iii) If A=⋃∞
n=1 An and if An ∈M for n= 1,2,3, . . ., then A ∈M.

If a σ -algebra M in X has been specified, then X (or the ordered pair (X,M)) is called a
measurable space, and the members of M are the measurable sets in X. �

What follows are immediate consequences of properties (i) through (iii) of M:

(a) ∅ =X \X ∈M.
(b) Putting Am = ∅ for m ≥ n + 1 in (iii), we see that A1 ∪ · · · ∪ An ∈M if Ai ∈M for

1≤ i ≤ n.
(c) Since

⋂∞
n=1 An =

(⋃∞
n=1 A

c
n

)c
, by (ii), (iii) and (b) we see that the σ -algebra M is closed

under countable and finite intersections.
(d) If A ∈M and B ∈M, then A \B =A∩Bc ∈M.

Let H be any collection of subsets of X. There exists (see, e.g., [278, p. 12]) a smallest
σ -algebra M in X such that H⊂M. The adjective “smallest” here means that if M∗ is any
σ -algebra in X which satisfies H⊂M

∗, then M⊂M
∗.

Definition C.2 Let X be a topological space. We denote by B the smallest σ -algebra in X

that contains all the open sets in X. The members of B are called the Borel sets of X. �

In Part I we are mainly interested in the orientation spaces SO(3) (Gtex = {I }, Gcr =
{I }), SO(3)/Gcr (Gtex = {I }, Gcr �= {I }), and the space of Gtex-orbits of orientations
(SO(3)/(Gcr)/Gtex (Gtex �= {I }), which are all topological spaces. For each of these spaces,
we take its Borel sets as the measurable sets.

Definition C.3 Let X be a measurable space and M the σ -algebra of its measurable sets. A
finite positive measure on X is a map μ :M→ [0,∞) which is countably additive: if {Ai}
is a disjoint countable collection of members of M, then

μ

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

μ(Ai). (C.1)

The ordered triple (X,M,μ) (or simply X when the σ -algebra and measure in question is
understood) is called a measure space. �

Note that according to Definition C.3 a map μ :M→ [0,∞) defined by μ(A) = 0 for
each A ∈M is a finite positive measure.

The following properties of measure μ follow easily from its definition:

(a) In (C.1), put A1 =A and Ai = ∅ for i ≥ 2. It follows that μ(∅)= 0.
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(b) In (C.1), put Ai = ∅ for i > n. Then (C.1) reduces to the form

μ(A1 ∪ · · · ∪An)= μ(A1)+ · · · +μ(An) if A1, . . . ,An ∈M are pairwise disjoint.
(C.2)

(c) Let A ∈M, B ∈M, and A⊂ B . Then B =A∪ (B \A) and A∩ (B \A)= ∅. It follows
from (b) that μ(B)= μ(A)+μ(B \A)≥ μ(A).

(d) It follows from (c) that μ(A)≤ μ(X) for each A ∈M.

In this exposition we are mainly interested in the special case where X is a compact
Hausdorff space.

Definition C.4 A finite positive measure defined on the Borel σ -algebra B in a compact
Hausdorff space X is called a Borel measure on X. �

Definition C.5 Let λ and μ be two positive finite measures on a measurable space X with
σ -algebra M. The measure λ is said to be absolutely continuous with respect to the measure
μ if λ(A)= 0 for each A ∈M for which μ(A)= 0. �

Definition C.6 A finite positive measure μ on a set X is said to be a probability measure if
μ(X)= 1. �

Definition C.7 A measure space (Ω,M,P ) is called a probability space if P is a probability
measure. The set Ω is called a sample space, and each measurable set in M is called an
event. �

C.2 RadonMeasures and the Riesz Representation Theorem

Let X be a compact metric or metrizable space, and let C (X) := C (X,R) be the space
of real-valued continuous functions defined on X. A function μ : C (X)→ R is called a
positive linear functional on C (X) if it satisfies the following conditions: (i) μ(f ) ≥ 0 if
f ≥ 0; (ii) μ(c1f1+c2f2)= c1μ(f1)+c2μ(f2) for any c1, c2 ∈ R and f1, f2 ∈ C (X). While
we are working in a much simpler context, we follow the French school (cf. [38, 89, 318])
and call positive linear functionals on C (X) Radon measures.

The name “Radon measure”, however, has also been used in another sense in the litera-
ture. These two usages are related through the Riesz representation theorem.

Theorem C.8 (Riesz representation theorem I) Let X be a compact metric or metrizable
space. For each positive linear functional μ on C (X), there is a unique finite, positive Borel
measure μ̆ on X such that

μ(f )=
ˆ

X

f dμ̆ for each f ∈ C (X). (C.3)

Proof See Taylor [311, p. 183] and Remark C.10. This version of the Riesz representation
theorem was first derived by Banach [17]. Saks [281] gave an elementary proof of this
theorem in 1938. See Diestel and Spasbury [88, Chap. 4] for an exposition of Banach’s
approach to the Lebesgue integral in abstract spaces, which includes also a presentation of
Saks’s proof. �
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Remark C.9 In (C.3) we call μ on the left-hand side the Radon measure and μ̆ on the right-
hand side the representing Borel measure. But it is also common to call Borel measures
which satisfy various regularity conditions179 “Radon measures” (see, e.g., [25, p. 155],
[116, p. 212]) or “regular Borel measures” (see, e.g., [278, p. 47], [311, p. 183]). On a
compact metrizable space, every finite Borel measure is regular and is a Radon measure
in this sense [25, p. 158]. Hence, according to this nomenclature, the representing Borel
measure μ̆ on the right-hand side of (C.3) is the Radon measure that represents the positive
linear functional μ on the left-hand side. �

Theorem C.8 indicates that the map μ �→ μ̆ from Radon measures (or positive linear
functionals on C (X)) to the representing Borel measures is a bijection. But more can be
said about the relationship. Since X is compact, the linear space C (X) is a Banach space
under the supremum norm ‖f ‖ = sup{|f (x)| : x ∈X}. Moreover, by C.3 we have |μ(f )| ≤
μ̆(X)‖f ‖ for f ∈ C (X). Hence each positive linear functional μ on C (X) is bounded, i.e.,
μ ∈ C (X)∗, the dual space of C (X).

Theorem C.8 can be extended so that for each ρ ∈ C (X)∗ there is a unique finite, signed
Borel measure ρ̆ on X such that (C.3) holds with ρ and ρ̆ replacing μ and μ̆, respectively;
see Taylor [311, p. 185]. Moreover, C (X)∗ is a Banach space with the operator norm ‖ρ‖ :=
sup{|ρ(f )| : ‖f ‖ = 1, f ∈ C (X)}. The linear space M (X) of finite signed Borel measures
is a Banach space with the norm ‖ρ̆‖ := |ρ̆|(X), where |ρ̆| is the total variation of ρ̆. The
map ρ �→ ρ̆ from C (X)∗ to M (X) is an isometric isomorphism.

When X is a metric or metrizable space, we shall generally identify each positive linear
functional μ ∈ C (X)∗ with its representing Borel measure μ̆ ∈M (X), rewrite (C.3) as

〈μ,f 〉 =
ˆ

X

f dμ for each f ∈ C (X), (C.4)

and call μ on both sides of (C.4) a Radon measure. For example, the Dirac measure δx ,
where x ∈ X, stands both for the element in C (X)∗ such that 〈δx, f 〉 = f (x) for each f ∈
C (X) and for the Borel measure defined by δx(A)= 1 if x ∈ A and δx(A)= 0 if x /∈ A for
each Borel set A⊂ X. Whether a Radon measure μ stands for an element of C (X)∗ or its
representing Borel measure on X should be clear from the context. On occasions, however,
for historical reasons or for clarity (e.g., when we talk about Haar functionals) we shall use
different symbols to denote a positive linear functional and its representing (regular) Borel
measure.

RemarkC.10 The restrictive context of Riesz representation theorem I, which covers the spe-
cific cases that concern us (i.e., X = SO(3), O(3), SO(3)/Gcr, or (SO(3)/Gcr)/Gtex), makes
the theorem much simpler both in its statement and in its proof than the more general ver-
sion commonly presented in graduate texts (see, e.g., [25, 116, 278]), where X is a locally
compact Hausdorff space and the space C (X) is replaced by C c(X), the space of continu-
ous functions with compact support. Bauer [25, pp. 184–185], however, presents a theorem
which shows that the representing Borel measure is unique if the locally compact Hausdorff
space X has a countable base. That theorem clearly covers Theorem C.8 as a special case, as
every compact Hausdorff space with a countable base is metrizable (cf. Theorem B.10). �

179The regularity conditions required for a Borel measure to be called “Radon measure” could differ from one
author to another. For definiteness, in our present contexts (where X is a compact metric space in Theorem
C.8 and a compact Hausdorff space in Theorem C.11) we equate “Radon measure” in this sense to “regular
Borel measure”, where “regular” means “inner regular” and “outer regular”; see Bauer [25, pp. 153–154] or
Rudin [278, p. 47] for definitions of “inner regular” and “outer regular”.
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When we discuss Haar measure on compact groups in Sect. C.3, we shall appeal to a
version of Riesz representation theorem as follows.

Theorem C.11 (Riesz representation theorem II) Let X be a compact Hausdorff space. For
each positive linear functional μ on C (X), there is a unique finite positive, regular Borel
measure μ̆ on X such that

μ(f )=
ˆ

X

f dμ̆ for each f ∈ C (X). (C.5)

Proof See Bauer [25, Theorem 29.1, 29.3, and Corollary 29.7]. While Bauer focuses on
a more general setting (cf. Remark C.10), the cited theorems and corollary together cover
what we call Riesz Representation Theorem II. �

When X is a compact Hausdorff space, there is at least one but may be more than one
finite positive Borel measure on X that represents a positive linear functional μ on X in
the sense of (C.5). The set of representing finite positive Borel measures, however, always
contains one and only member that is regular.

C.3 Topological Groups, Compact Groups, and Haar Measure

Definition C.12 Let G be a set that is both a group and a topological space. We call G a
topological group if it satisfies the following requirements:

(i) the mapping (g,h) �→ gh of G×G (with the product topology) onto G is continuous;
(ii) the mapping g �→ g−1 of G onto G is continuous;

(iii) G is a Hausdorff space. �

Condition (iii) is often replaced by some other requirement which is weaker than (iii) for
general topological spaces but is equivalent to it for topological groups (see, e.g. [227, p.
111], [261, pp. 52, 96]). Some authors (e.g., [149], [279, p. 128]) keep only conditions (i)
and (ii) in their definition of topological groups but add a general requirement equivalent to
(iii) for the classes of topological groups they consider.

It follows immediately from (i) that for a ∈ G the left and right translations by a, i.e.,
the maps g �→ ag and g �→ ga, are homeomorphisms on G. Likewise by (ii) the inversion
g �→ g−1 is a homeomorphism on G.

Definition C.13 A topological group G which is compact as a topological space is called a
compact topological group or, simply, a compact group. �

Let G be a compact group, and let C (G) be the space of real-valued continuous functions
defined on G. Let L s : C (G)→ C (G) (resp. Rs : C (G)→ C (G)) be defined for each
s ∈G by

L sf (g)= f (s−1g) (resp. Rsf (g)= f (gs)) for each f ∈ C (G) and g ∈G.
(C.6)

Let J :G→G be defined by J (g)= g−1.

Theorem C.14 Let G be a compact group. There is a unique positive linear functional I :
C (G)→ R which satisfies the normalization condition I (1)= 1 and is:
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(1) left-invariant, i.e., I (L sf )= I (f ), for each s ∈G and f ∈ C (G);
(2) right-invariant, i.e., I (Rsf )= I (f ), for each s ∈G and f ∈ C (G);
(3) inverse-invariant, i.e., I (f ◦J )= I (f ), for each f ∈ C (G).

The positive linear functional I is called the normalized Haar functional on C (G). �

In 1935 von Neumann [328] published an elementary proof of Theorem C.14. See [88,
Chap. 5] and [261, pp. 192–199] for expositions. The proof presented by Rudin [279, pp.
130–132] is “essentially that of von Neumann” [279, p. 403] but is shorter because more
advanced tools are used.

Let A⊂G. We define A−1 := {g−1 ∈G : g ∈A}. For s ∈G, let sA := {sg ∈G : g ∈A},
and As := {gs : g ∈ A}. The following corollary follows immediately from Theorem C.11
(i.e., Riesz representation theorem II) and Theorem C.14.

Corollary C.15 On each compact group G there is a unique finite positive regular Borel
probability measure g which satisfies the normalization condition g(G)= 1 and is:

(i) left-invariant, i.e., g(sA)= g(A) for each s ∈G and each Borel set A⊂G;
(ii) right-invariant, i.e., g(As)= g(A) for each s ∈G and each Borel set A⊂G;

(iii) inverse-invariant, i.e., g(A−1)= g(A) for each Borel set A⊂G.

This measure g is called the normalized Haar measure of G. �

C.4 Quotient Measure

The definition of quotient measure is based on the following proposition.

Proposition C.16 Let X and Y be topological spaces with Borel σ -algebras BX and BY ,
respectively. Let μ be a finite positive measure on X, and let p : X→ Y be a continuous
surjective map.

(i) Let E be a Borel set in Y . Then p−1(E) is a Borel set in X.
(ii) Let ν : BY → [0,∞) be defined by ν(E) = μ(p−1(E)) for each Borel set E in BY .

Then ν is a finite positive measure on Y .

Proof (i) Let Ω = {A ⊂ Y : p−1(A) ∈BX}. We claim that Ω is a σ -algebra in Y . Indeed
we have p−1(Y ) = X ∈ BX , which implies Y ∈ Ω . Let A ∈ Ω . Then p−1(Y \ A) = X \
p−1(A) ∈ BX . Hence Y \ A ∈ Ω . Finally, let {Aα} be a family of subsets of Y such that
each Aα ∈Ω . Then p−1(

⋃
α Aα)=⋃

α p
−1(Aα) ∈BX . Therefore

⋃
α Aα ∈Ω .

For each open set V in Y , p−1(V ) is open in X as p is continuous, so p−1(V ) ∈BX and
thence V ∈Ω . Therefore Ω is a σ -algebra in Y that contains all the open sets in Y , which
implies BY ⊂Ω . Let E ∈BY . Then E ∈Ω and, by definition of Ω , p−1(E) ∈BX .

(ii) It suffices to show that ν is countably additive. Let {En} be a family of disjoint Borel
sets in Y . Then {p−1(En)} is a family of disjoint Borel sets in X. Since

ν

( ∞⋃

n=1

En

)
= μ

(
p−1

( ∞⋃

n=1

En

))
= μ

( ∞⋃

n=1

p−1 (En)

)
=

∞∑

n=1

μ
(
p−1 (En)

)=
∞∑

n=1

ν (En) ,

ν is countably additive. �

Let G be a Type I crystallographic point group and Gtex a finite rotation group. We are
primarily interested in two specific cases covered by Proposition C.16 as follows:
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1. X = SO(3), Y is the orientation space SO(3)/Gcr, and p is the natural surjection
π : SO(3)→ SO(3)/Gcr, R �→ RGcr. The measure on SO(3) (denoted by μ in Propo-
sition C.16) is the bi-invariant volume measure V . We denote by V̂ (in place of ν) the
measure on the quotient space SO(3)/Gcr delivered by Proposition C.16, and we call it
the quotient measure. Note that

V̂(Â)= V(π−1(Â)) for each Borel set Â⊂ SO(3)/Gcr. (C.7)

For each continuous function f̂ : SO(3)/Gcr → R and f = f̂ ◦ π , we have
ˆ

Â

f̂ (RGcr) dV̂(RGcr)=
ˆ

π−1(Â)

f (R) dV(R). (C.8)

2. X = SO(3)/Gcr, Y is the texture-symmetrized orientation space (SO(3)/Gcr)/Gtex, and
p is the natural surjection π̂ : SO(3)/Gcr → (SO(3)/Gcr)/Gtex, RGcr �→ [RGcr], where
[RGcr] = {QRGcr :Q ∈ Gtex}. The measure on SO(3)/Gcr is V̂ . We denote by Ṽ the
quotient measure on the quotient space (SO(3)/Gcr)/Gtex.

Similar to (C.7) and (C.8), we have

Ṽ(Ã)= V̂(π̂−1(Ã)) for each Borel set Ã⊂ (SO(3)/Gcr)/Gtex, (C.9)

and for a continuous function f̃ : (SO(3)/Gcr)/Gtex → R and f̂ = f̃ ◦ π̂ ,
ˆ

Ã

f̃ ([RGcr]) dṼ([RGcr])=
ˆ

π̂−1(Â)

f̂ (RGcr) dV̂(RGcr). (C.10)

Moreover, by (C.8) and (C.10) we obtain in particular
ˆ

(SO(3)/Gcr)/Gtex

f̃ ([RGcr]) dṼ([RGcr])=
ˆ

SO(3)/Gcr

f̂ (RGcr) dV̂(RGcr)

=
ˆ

SO(3)

f (R)dV(R). (C.11)

Since Gcr is a subgroup of SO(3), more can be said of the quotient measure V̂ on the
orientation space SO(3)/Gcr.

Consider a polycrystal P with Gcr = {P 1, . . . ,PNcr}, where P i ∈ SO(3) for each i. Let
R ∈ SO(3). Suppose at a sampling point X in a sample P of P, the crystallite orientation is
RGcr = {RP 1, . . . ,RPNcr}. After the sample P undergoes a rotation Q, the crystallite ori-
entation at X becomes QRGcr = {QRP 1, . . . ,QRPNcr}. In other words, the rotation oper-
ation Q induces a mapping LQ : SO(3)/Gcr → SO(3)/Gcr such that LQ(RGcr)=QRGcr.
Under LQ, we have LQ(Â)=QÂ for each Â⊂ SO(3)/Gcr.

Definition C.17 A finite positive measure ν̂ on SO(3)/Gcr is said to be left SO(3)-invariant
if it satisfies

ν̂(QÂ)= ν̂(Â) (C.12)

for each Q ∈ SO(3) and for each Borel set Â⊂ SO(3)/Gcr. �
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Proposition C.18 The quotient measure V̂ on SO(3)/Gcr is left SO(3)-invariant.

Proof For brevity, let us denote SO(3) and Gcr by G and K , respectively. We claim that for
each h ∈G and Borel set Â⊂G/K

π−1(hÂ)= hπ−1(Â). (C.13)

Indeed we have for each g ∈G,

g ∈ π−1(hÂ)⇐⇒ π(g) ∈ hÂ⇐⇒ gK ∈ hÂ

⇐⇒ h−1gK ∈ Â⇐⇒ π(h−1g) ∈ Â

⇐⇒ h−1g ∈ π−1(Â)⇐⇒ g ∈ hπ−1(Â).

It follows from (C.13) and the left invariance of V that

V̂(hÂ)= V(π−1(hÂ))= V(hπ−1(Â))

= V(π−1(Â))= V̂(Â) for each h ∈G, (C.14)

i.e., V̂ is left G-invariant. �

Proposition C.19 The left SO(3)-invariant measure on SO(3)/Gcr is unique up to a multi-
plicative positive constant.

Proof Let Gcr = {P 1, . . . ,PNcr}. For each f ∈ C (SO(3)), let f $ ∈ C (SO(3)/Gcr) be given
by

f $(RGcr)= 1

Ncr

Ncr∑

i=1

f (RP i ), (C.15)

which is clearly well defined. We claim that the map f �→ f $ from C (SO(3)) to
C (SO(3)/Gcr) is surjective. Indeed, let ĥ ∈ C (SO(3)/Gcr). Then h := ĥ ◦ π , where
π : SO(3)→ SO(3)/Gcr is the natural surjection, is in C (SO(3)) and

1

Ncr

Ncr∑

i=1

h(RP i )= 1

Ncr

Ncr∑

i=1

ĥ ◦ π(RP i )= ĥ(RGcr). (C.16)

Let ν̂ be a left SO(3)-invariant measure on SO(3)/Gcr. We proceed to show that ν̂ determines
a Haar measure on SO(3). Let I : C (SO(3))→ R be defined by

I (f )=
ˆ

SO(3)/Gcr

f $(RGcr) dν̂(RGcr), (C.17)

which is a positive linear functional on C (SO(3)). By the Riesz representation theorem C.8,
there is a unique finite, positive Borel measure μ on SO(3) such that

I (f )=
ˆ

SO(3)

f (R) dμ(R). (C.18)
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By (C.17), (C.18), and the hypothesis that ν̂ is left SO(3)-invariant on SO(3)/Gcr, it fol-
lows immediately that μ is a left-invariant measure on SO(3) and thence a bi-invariant Haar
measure there (see Footnote 53 in Chap. 3). Thus each left SO(3)-invariant measure on
SO(3)/Gcr determines a Haar measure on SO(3).

Let ν̂1 and ν̂2 be two left SO(3)-invariant measures on SO(3)/Gcr, which determine Haar
measures μ1 and μ2 on SO(3), respectively. By Corollary 3.6, there is a real number c > 0
such that μ1 = cμ2. Since the map f �→ f $ from C (SO(3)) to C (SO(3)/Gcr) is surjective,
we conclude that ν̂1 = c ν̂2, where c > 0. �
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Appendix D

D X-Ray Diffraction by Crystals

X-rays are electromagnetic waves with wavelengths in the range from 0.1 Å to 100 Å, while
those with wavelengths within the interval from 0.4 Å to 2 Å are most useful in crystallogra-
phy.180 For measurement of crystallographic texture, the X-ray beams that are used as probe
should be monochromatic.

Conventional X-ray tubes generate unpolarized waves with a line spectrum superimposed
on a continuous spectrum. Crystal monochromators can be applied ([234, pp. 309–311],
[277, pp. 182–184]) to obtain an effectively monochromatic beam, which also becomes
partially polarized. In what follows we shall always assume that the X-ray beam which we
use as probe be monochromatic.

When X-rays fall on a substance, in general they are partly scattered elastically, partly
scattered inelastically, and partly absorbed by the atoms of the target. In elastic (or coher-
ent, unmodified) scattering, the scattered radiation has the same wavelength as that of the
incident radiation. In inelastic (or incoherent, modified) scattering, which results from the
Compton effect, the scattered radiation has a longer wavelength than the incident one. Ab-
sorption results in rise of temperature, ionization, and may lead to emission of fluorescent
X-rays. Structure determination of materials by X-ray diffraction is mainly based on the
interaction process of elastic scattering.181

As background for our discussions on X-ray measurements of texture, we summarize in
this Appendix several main ingredients of the kinematical (or geometrical) theory182 of X-
ray diffraction by crystals [4, 114, 127, 165, 334]. Much of this theory was developed in the
early days of X-ray crystallography (1912–1917) before the creation of quantum mechan-
ics.183 Within the context of the phenomena it is meant to describe, however, the kinematical
theory with improvements at places where the use of quantum mechanics is necessary (e.g.,
in the evaluation of the atomic scattering factor; see Sect. D.3) has stood the test of time as
a first approximation.

D.1 Thomson Scattering

Radiation from air through which X-ray was passing was first noticed by Röntgen. When
X-rays fall on a solid or liquid surface, there is a diffuse radiation from the surface. Such
diffuse radiations induced by primary X-rays are called secondary (Röntgen) radiations or
secondary X-rays. Depending on the wavelength of the primary X-ray, the mass density
of the target, and the atomic number of the target atoms, the secondary radiation can be
predominantly resulting from coherent and/or incoherent scattering. For example, in his
experimental study on secondary radiation from gases subject to X-rays, Barkla [18, p. 697]

180As W.L. Bragg remarked [45, p. 374] in an expository article in 1913, “The atoms of a crystal are regularly
arranged and on the whole the intervals between them bear about the same relation to the wave length [of
X-rays] as does the ‘constant’ of a diffraction grating to the wave length of visible light. To these waves a
crystal is really a most perfectly ruled grating.”
181“In X-ray crystallography, Compton scattering is a parasitic phenomenon which increases the background
noise.” [277, p. 140]
182The kinematical theory, in contrast to the dynamical theory, ignores multiple scattering of X-rays.
183See Authier [10] for a definitive account of the birth and early developments of X-ray crystallography.
With an exhaustive bibliography it serves also as a valuable guide for readers interested in the original litera-
ture.
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found that “the primary and secondary radiations only differ appreciably in intensity”, and
he concluded that “the radiation proceeding from gases subject to X-rays is due to scattering
of the primary radiation.”

Thomson proposed ([314, pp. 268–273], [315, pp. 321–327]) a theory of the secondary
X-rays that arise from elastic scattering. He summarized the physics behind his theory as
follows:

The secondary radiation is readily explained if we take the view ... that the Röntgen
rays consist of exceedingly thin pulses of very intense electric and magnetic force.
[314, p. 268]
Let us suppose that such a pulse is travelling through a medium containing corpuscles
[i.e., electrons]—it is not necessary that the corpuscles should be free: when the pulse
reaches a charged corpuscle the corpuscle will be acted on by a very intense force and
its motion accelerated. Now when the velocity of a charged body is changing pulses
of electric and magnetic force proceed from the body, the magnitude of these forces
being proportional to the acceleration of the body: thus while the primary Röntgen
pulse is passing over the corpuscle and accelerating its motion, the corpuscle gives
out a pulse of electric and magnetic force—the second Röntgen pulse—the second
pulse ceasing as soon as the acceleration of the primary pulse has passed over. [315,
p. 323]

He wrote down the formulas on “the distribution of the electric and magnetic forces in the
pulse” when “the velocity of the particle is small compared with that of light”.

Remark D.1 The two quotations above are taken from the first (1903) and second edition
(1906) of Thomson’s book. There, in the sections in question, he uses classical electro-
magnetic theory to treat the elastic scattering of X-rays by a free electron. Two questions
naturally arise, namely: (i) Should quantum mechanics be used for the problem at hand? (ii)
In reality atomic electrons are bounded. Would formulas pertaining to scattering by a free
electron be of any use? For the first question, it turns out that the full quantum mechanical
treatment yields ([115, §12], [208, pp. 18–20], [230, pp. 1045–1049]) the same intensity for-
mula for scattering as that of the classical Thomson scattering. We shall address the second
question in Sect. D.3. �

We now proceed to go over the theory of Thomson scattering. For later use, instead of an
electron we consider scattering by a particle with arbitrary charge q .

Let a particle with charge q be moving (e.g., oscillating) within a bounded region Ω in
space E3. Pick a point O ∈Ω as the origin to define position vectors for locations in E3.
Let r(t) be the position vector of the charged particle at time t . Let P ∈ E3, R = ‖OP‖,
and n=OP/R. We are interested in the electric field E(Rn, t) and magnetic field B(Rn, t)

of the charged particle at location P and time t . Let x(t) = Rn − r(t); clearly ‖x(t)‖ is
the distance between P and the charged particle at time t . Let v(t) and v̇(t) be the velocity
and acceleration of the particle at time t . We assume the motion of the charged particle be
non-relativistic so that terms with factor ‖v‖/c, where c here denotes the speed of light,
can be dropped. Moreover, we adopt the dipole approximation and consider locations P

in the far field so that (i) ‖r(t)‖ � R and ‖x(t)‖ ≈ R for all t ; (ii) terms with factors of
1/R of order higher than 1 are dropped. Then by classical electromagnetic theory (see, e.g.,
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[4, Appendix B], [181, pp. 173–175]) we have

E(Rn, t)= q

4πε0c2R

(
n× (n× v̇(t −R/c))

)
, (D.1)

B(Rn, t)= q

4πε0c3R

(
v̇(t −R/c)× n

)
, (D.2)

B = 1

c
n×E, E = cB × n, (D.3)

where ε0 is the permittivity of free space. The Poynting vector (i.e., the electromagnetic
energy-flux vector) is given by

S = 1

μ0
E ×B = cε0(E ·E)n, (D.4)

where μ0 is the permeability of free space and we have appealed to the formula ε0μ0 = 1/c2.
Consider a monochromatic, linearly polarized, electromagnetic plane wave with wave

vector k0:184

E0 =E0e
i(k0·x−ωt)ε̂0, B0 = 1

c
s0 ×E0, (D.5)

k0 ·E0 = 0, k0 ·B0 = 0, E0 ·B0 = 0; (D.6)

here E0 is the amplitude of E0, ε̂0 is a unit vector that defines the polarization of E0, ω
is the angular frequency, s0 = k0/‖k0‖, and ‖k0‖ = 2π/λ, where λ is the wavelength. The
electromagnetic wave falls on a particle with charge q , which is at rest at x = 0 at t = 0, and
sets it in motion. The equation of motion of the charged particle is:

mv̇ = q(E0 + v ×B0)= q

(
E0 + v× 1

c
(s0 ×E0)

)
≈ qE0e

−iωt ε̂0, (D.7)

where we have dropped the magnetic force whose magnitude is of order ‖v‖/c times the
magnitude of the electric force. Note that after dropping the magnetic term, the particle
moves in the plane k0 · x = 0. Thus we obtain the acceleration of the particle

v̇(t)= q

m
E0e

−iωt ε̂0. (D.8)

Substituting (D.8) into (D.1), we obtain for the secondary radiation

E(Rn, t)= q2

4πε0mc2
· E0e

−iω(t−R/c)

R

(
n× (

n× ε̂0

) )

= q2

4πε0mc2
· E0e

−iω(t−R/c)

R

(− (ε̂0 − (ε̂0 · n)n)
)

= q2

4πε0mc2
· E0e

−iω(t−R/c)

R
sinϕ ε̂, (D.9)

184We follow the real-part convention in physics. Physical quantities are sometimes complexified to facilitate
computations. Only the real part of the complexified quantity has physical significance. For example, (D.5)
may be written as E0 =E0 cos(k0 · x −ωt)ε̂0.
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where ϕ ∈ [0,π ] is the angle between the two unit vectors ε̂0 and n, and ε̂ is the unit
vector in the direction of n× (n× ε̂0). Let us derive (D.9)3 from (D.9)1. For ϕ ∈ (0,π),
n × ε̂0 is a vector normal to the plane Π subtended by n and ε̂0 and has its magnitude
‖n × ε̂0‖ = sinϕ. It follows that n × (n × ε̂0) is a vector in Π and is orthogonal to n;
moreover, ‖n× (n× ε̂0)‖ = sinϕ. Thus we have n× (n× ε̂0)= (sinϕ)ε̂.

For ϕ = 0 or ϕ = π , both (D.9)3 and (D.9)1 give E = 0. For ϕ = π/2, a comparison of
(D.9)2 and (D.9)3 clearly yields ε̂ =−ε̂0. For a general ϕ, since

ε̂0 · (sinϕ)ε̂ = ε̂0 · (n× (n× ε̂0))

= (ε̂0 × n) · (n× ε̂0)=−‖n× ε̂0‖2 =− sin2 ϕ, (D.10)

we obtain

ε̂0 · ε̂ =− sinϕ. (D.11)

Note that by (D.9) the scattered wave observed at P , which is in the far field, can be taken
as a plane wave with wave vector k = 2π

λ
n. In the physics literature of X-ray diffraction, it is

common to write (see, e.g., [4, 127, 128, 334]) the unit vector parallel to k as s. Henceforth
we shall also write k = 2π

λ
s and use n and s interchangeably.

For the case of scattering by an electron, q =−e. Henceforth in this Appendix, we shall
often encounter the quantity

r0 = e2

4πε0mc2
≈ 2.82× 10−5 Å, (D.12)

which is called the Thomson scattering length, or classical radius, of the electron.
We adopt the definition that the (average) intensity of X-rays as electromagnetic waves

is the time-average of the Poynting flux S · n. For the incident electromagnetic wave (D.5),
by (D.4) the intensity is

I0 = 1

T

T̂

0

c ε0E
2
0 cos2(k0 · x −ωt)dt = 1

2
c ε0E

2
0 , (D.13)

where T = 2π/ω is the period. For the scattering by an electron, the intensity of the scattered
wave is given by

Ie = r2
0 c ε0E

2
0 sin2 ϕ

2R2
. (D.14)

Comparing (D.14) with (D.13), we obtain

Ie = r2
0 sin2 ϕ

R2
I0. (D.15)

Equation (D.15) is often called the Thomson scattering equation. The expression sin2 ϕ is
called the polarization factor of the intensity.

In quantum mechanical treatments of scattering, one works with transition probabilities
and differential cross sections. In our present context, the differential cross section dσ/dΩ
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is the power scattered into the solid angle dΩ normalized by the incident flux. In terms of
the differential cross section, the Thomson scattering equation (D.15) reads:

dσ

dΩ
= IeR

2

I0
= r2

0 sin2 ϕ = r2
0 |ε̂0 · ε̂|2, (D.16)

where we have used (D.11) to put sinϕ = |ε̂0 · ε̂|. See [208, pp. 18–19] or [230, pp.
1045–1049] for a quantum mechanical derivation of (D.16)3.

D.2 Classical Scattering by a Finite Number of Electrons

To prepare for our discussion of X-ray scattering by atoms, we consider classical scattering
by a finite number N electrons. The setting is basically the same as that of the preceding
section, except that instead of one electron oscillating about the origin under the action of
a monochromatic linearly-polarized electromagnetic plane wave there are N free electrons,
which oscillate about the locations rn = rn(0) (n= 1, . . . ,N) they occupy at t = 0. We shall
express the electric field En of the secondary radiation from the n-th electron in relation
to that of an imaginary electron oscillating about the origin, which is given by equation
(D.9). We assume that for each n the distance ‖rn‖ of the n-th electron from the origin is
sufficiently small as compared with R that the approximations used below be valid.

Let us choose a Cartesian coordinate system such that the wave vector of the incident
plane electromagnetic wave is k0 = 2π

λ
s0 = 2π

λ
e1. Suppose rn · e1 > 0. Consider a wavefront

that hits the first electron at the origin O at t = 0. It reaches the n-th electron after a further
path length of rn · e1 = rn · s0. The path length of the scattered wave from the n-th electron
is

‖Rn− rn‖ =
(
(Rn− rn) · (Rn− rn)

)1/2 = (R2 − 2Rn · rn + rn · rn)
1/2

=R
(

1− 2
n · rn

R
+ rn · rn

R2

)1/2 ≈R − n · rn. (D.17)

Hence when the wave front in question arrives at the point of observation P , its path length
is rn · s0 + R − s · rn, where we have put n as s. It is easily checked that this expression
remains valid for rn · e1 ≤ 0. Clearly the expression for path length is independent of the
Cartesian coordinate system chosen. Note that the path difference between the scattered
waves from the n-th and the imaginery electron oscillating about the origin is (s0 − s) · e1,
which is equivalent to a phase difference of

ω

c
(s − s0) · rn = 2π

λ
(s − s0) · rn = (k − k0) · rn. (D.18)

It is now easy to write down, in parallel to (D.9)2 the electric field of the scattered radia-
tion from the n-th electron:

En(Rn, t)= r0 · E0e
−iω(t−R/c)

‖Rn− rn‖ ei(k−k0)·rn(− (ε̂0 − (ε̂0 ·m)m)
)
, (D.19)

where r0 is the Thomson scattering length and m= (Rn− rn)/‖Rn− rn‖. We now apply
the following approximations, the rationale of which is that for each factor we keep only
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terms of the lowest order in 1/R. For the factor 1/‖Rn− rn‖, we have

‖Rn− rn‖−1 = (R2 − 2Rn · rn + rn · rn)
−1/2

= 1

R
·
(

1− 2n · rn

R
+ rn · rn

R2

)−1/2

≈ 1

R

(
1+ n · e1

R
+ · · ·

)
≈ 1

R
. (D.20)

For the unit vector m, we get

m= Rn− rn

‖Rn− rn‖ ≈
Rn− rn

R
≈ n− rn

R
. (D.21)

It follows that (ε̂0 ·m)m ≈ (ε̂0 · n)n. After these approximations, the electric field of the
scattered radiation from the n-th electron is

En(Rn, t)= r0 · E0e
−iω(t−R/c)

R
ei(k−k0)·rn(− (ε̂0 − (ε̂0 · n)n)

)
,

= r0 · E0e
−iω(t−R/c)

R
ei(k−k0)·rn sinϕ ε̂, (D.22)

which differs from (D.9) only in the presence of the factor ei(k−k0)·rn . The resultant electric
field of secondary radiations from all N electrons is the linear superposition of all En, i.e.,

E(Rn, t)= r0 · E0e
−iω(t−R/c)

R

( N∑

n=1

ei(k−k0)·rn
)

sinϕ ε̂. (D.23)

It follows that the intensity of the secondary radiation is given by

I = Ie

∣∣∣
N∑

n=1

ei(k−k0)·rn
∣∣∣
2
. (D.24)

D.3 Scattering by an Atom

Let us compare the Thomson scattering intensity of a free proton with that of a free electron
under the same setting described in Sect. D.1. Let mp and me be the mass of a proton and of
an electron, respectively, and let Ip and Ie be the corresponding scattering intensity. By the
Thomson scattering equation (D.15) for the electron and its analog for the proton, we have

Ip

Ie
= m2

e

m2
p

≈ 1

(1836)2
. (D.25)

Hence in the scattering of X-rays by a hydrogen atom, the contribution of the proton to the
secondary radiation can be ignored if the Thomson scattering equation is applicable. By the
same token, the same can be said of the scattering of X-rays by the atoms of other elements.
Indeed a motto since the early days of X-ray crystallography is that “it is the electrons in
atoms which scatter X-rays.” [74] Henceforth we shall consider only scattering of X-rays by
atomic electrons.
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One assumption in the derivation of the Thomson scattering equation is that the electron
in question be subject to no forces other than the Lorentz force of the incident electromag-
netic wave. How does this assumption fare with atomic electrons? The answer is long and
complicated, which for our present purpose we need not bother with. Here are some rough
guidelines [277, p. 141] in lieu of a reply:

Electrons of light atoms and external electrons of heavy atoms behave towards X-rays
as free electrons, since their binding energy with the nucleus corresponds to natural
frequencies very much lower than those of the incident radiation. For inner shell elec-
trons of heavy atoms, the binding energy is comparable to that of the radiation, and
coupling, giving rise to [anomalous] scattering, may result.

We will proceed to treat atomic electrons as free electrons as far as X-ray scattering is
concerned and add some comments on corrections of this treatment in Remark D.4 at the
end of this section.

In his 1915 Bakerian Lecture to the Royal Society, W.H. Bragg [46] discussed “the rapid
diminution of intensities” with increasing order of X-ray reflection.185 To give an ample
explanation of the phenomenon, he proposed “the highly probable hypothesis that the scat-
tering power of the atom is not localized at one central point in each, but is distributed
through the volume of the atom.” Moreover, “[w]e should expect the scattering centres of
the atom to be not only diffused through its volume, but also to be less dense at the edges
than at the centre”. After the advent of quantum mechanics, Bragg’s picture of atomic elec-
trons as a diffuse distribution of charge around the nucleus had its first precise expression
in Schrödinger’s use of the wave function to describe charge distribution or charge density
[285, 287]. While Schrödinger’s interpretation of charge distribution was not widely ac-
cepted (cf. e.g., Born’s critical remarks [14, p. 426] at the 1927 Solvay Conference), it did
lead to a correct formula for the atomic scattering factor (see [165, Chap. 3] and the refer-
ences therein), Hartree’s computations [141] of the charge distributions in the He atom and
the Rb+, Na+, Cl− ions by the method of self-consistent fields that he developed, and other
interesting findings (see, e.g., [166]). Over the years the Schrödinger distribution of charge
has been superseded by electron density, a refined version of the Schrödinger charge den-
sity divided by the charge of the electron −e, which has become a basic concept in various
subfields of physics and chemistry. In particular, electron density plays a central role in the
definition of the atomic scattering factor.

D.3.1 Electron Density

Consider two distinguishable particles in space. Suppose the probability density Θ : R3 ×
R

3 −→ [0,∞) is given such that

Θ(r, r ′) dV(r)dV(r ′) (D.26)

is the probability of finding particle 1 at r and particle 2 at r ′. Let Ω be a region in space.
Then

ˆ

Ω

ˆ

R
3

Θ(r, r ′) dV(r ′)dV(r) and
ˆ

Ω

ˆ

R
3

Θ(r, r ′) dV(r)dV(r ′) (D.27)

185See Sect. D.4.2 for definition of the term “order of X-ray reflection”. There we shall also explain the
physical basis behind the rapid diminution of intensities with increasing order of X-ray reflection.
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are the probabilities of finding particle 1 and particle 2 in Ω , respectively. If the probability
density Θ is symmetric, i.e., Θ(r, r ′)=Θ(r ′, r) for all r, r ′ ∈ R

3, then the two expressions
given in (D.27) are equal. If the two particles are indistinguishable, then the probability
density Θ is symmetric and the function

ρ(r)= 2
ˆ

R
3

Θ(r, r ′) dV(r ′) (D.28)

is called the particle density of the two-particle system.
The electron is a particle with spin 1/2. In non-relativistic quantum mechanics, the state

space of an electron can be described (see, e.g., [232, p. 267], [323, p. 125]) as follows. Let
K be the Hilbert space of vector-valued wave functions

Ψ (r)=
(
ψ1(r)

ψ2(r)

)
=ψ1

(
1

0

)
+ψ2

(
0

1

)
=ψ1e1 +ψ2e2, (D.29)

where the components functions ψi (i = 1,2) are square integrable (i.e.,
´
R

3 ψiψidV =´
R

3 |ψi |2dV <∞), and the inner product of two wave functions Φ and Ψ is defined by

ˆ

R
3

〈
Φ(r),Ψ (r)

〉
dV(r)=

ˆ

R
3

(
φ1(r)ψ1(r)+ φ2(r)ψ2(r)

)
dV(r). (D.30)

Each state of the electron is defined by a wave function Ψ that satisfies the normalization
condition

ˆ

R
3

〈
Ψ (r),Ψ (r)

〉
dV(r)=

ˆ

R
3

(|ψ1|2 + |ψ2|2) dV= 1. (D.31)

Physically for a region Ω ⊂ R
3, the components ψ1 and ψ2 of Ψ are wave functions such

that
ˆ

Ω

|ψ1(r)|2 dV(r) and
ˆ

Ω

|ψ2(r)|2 dV(r) (D.32)

are the probabilities of finding the electron in Ω with “spin up” and “spin down”, respec-
tively, and

ˆ

Ω

〈
Ψ (r),Ψ (r)

〉
dV(r) (D.33)

is the probability of finding the electron in Ω irrespective of spin. For the one-electron
system the function

ρ(r)= |ψ1(r)|2 + |ψ2(r)|2 (D.34)

is called the electron density.
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Let K ⊗K be the Hilbert space of tensor-valued wave functions of the form

Ψ (r1, r2)=
2∑

i,j=1

ψij (r1, r2)ei ⊗ ej , (D.35)

where the component wave functions ψij are square integrable, and the inner product of two
wave functions Φ and Ψ is defined by

ˆ

R
3

ˆ

R
3

〈
Φ(r1, r2),Ψ (r1, r2)

〉
dV(r1)dV(r2)

=
ˆ

R
3

ˆ

R
3

( 2∑

i,j=1

φij (r1, r2)ψij (r1, r2)
)
dV(r1)dV(r2). (D.36)

For a two-electron system, the state space is a proper closed subspace of K ⊗ K , the
elements of which satisfy two further conditions:

ˆ

R
3

ˆ

R
3

‖Ψ (r1, r2)‖2dV(r1)dV(r2)=
ˆ

R
3

ˆ

R
3

〈
Ψ (r1, r2),Ψ (r1, r2)

〉
dV(r1)dV(r2)

=
ˆ

R
3

ˆ

R
3

( 2∑

i,j=1

|ψij (r1, r2)|2
)
dV(r1)dV(r2)

= 1, (D.37)

and, as required by the Pauli exclusion principle,

ψij (r1, r2)=−ψji(r2, r1) for all i, j ∈ {1,2}. (D.38)

Note that by (D.38) the function
∑2

i,j=1 |ψij (r1, r2)|2 is symmetric, and it is the probability
density of finding one electron at r1 and one electron at r2 irrespective of spin. Hence it
is a special case of the function Θ discussed in the paragraph containing (D.26) for two
indistinguishable particles (with no internal degree of freedom). It follows from (D.28) that
the electron density is given by

ρ(r)= 2
ˆ

R
3

( 2∑

i,j=1

|ψij (r, r2)|2
)
dV(r2). (D.39)

The preceding discussion on systems of two electrons can be easily extended to systems
of N > 2 electrons. Let K ⊗N be the Hilbert space of tensor-valued wave functions of the
form

Ψ (r1, . . . rN)=
2∑

i1,...,iN=1

ψi1···iN (r1, . . . , rN)ei1 ⊗ · · · eiN , (D.40)
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where the component wave functions ψi1···iN are square integrable, and the inner product of
two wave functions Φ and Ψ is defined by

ˆ

R
3

· · ·
ˆ

R
3

〈
Φ(r1, . . . , rN),Ψ (r1, . . . , rN)

〉
dV(r1) · · ·dV(rN)

=
ˆ

R
3

· · ·
ˆ

R
3

( 2∑

i1,...,iN=1

φi1···iN (r1, . . . , rN)ψi1···iN (r1, . . . , rN)
)
dV(r1) · · ·dV(rN). (D.41)

For an N -electron system, the state space is a proper closed subspace of K ⊗N , the elements
of which satisfy the normality condition

ˆ

R
3

· · ·
ˆ

R
3

‖Ψ (r1, . . . , rN)‖2dV(r1) · · ·dV(rN)

=
ˆ

R
3

· · ·
ˆ

R
3

( 2∑

i1,...,iN=1

|ψi1···iN (r1, . . . , rN)|2
)
dV(r1) · · ·dV(rN)= 1, (D.42)

and the condition imposed by the Pauli exclusion principle. Let Sn be the group of permuta-
tions of the set {1,2, . . . , n}. The Pauli exclusion principle requires that for each permutation
τ ∈ Sn, the component wave functions of Ψ satisfy

ψiτ(1)···iτ (N)
(rτ(1), . . . , rτ(N))= sgn(τ )ψi1···iN (r1, . . . , rN), (D.43)

where sgn(τ ) is the sign of permutation τ .186 By (D.43) the function ‖Ψ (r1, r2, . . . , rN)‖2

is symmetric, and physically it gives the probability density of finding one electron at r1,
one electron at r2, . . . , and one electron at rN irrespective of their states of spin. It follows
that the function

ρ(r)=N

ˆ

R
3

· · ·
ˆ

R
3

‖Ψ (r, r2, . . . , rN)‖2dV(r2) · · ·dV(rN)

=N

ˆ

R
3

· · ·
ˆ

R
3

( 2∑

i1,...,iN=1

|ψi1···iN (r, r2, . . . , rN)|2
)
dV(r2) · · ·dV(rN) (D.44)

is the electron density of the N -electron system.

D.3.2 Atomic Scattering Factor

Consider an atom with atomic number Z, which has its nucleus “clamped” [306] at the ori-
gin. The electrons in the atom are governed by quantum mechanics. Let ρ(·) be the density

186There are many ways to write a permutation τ ∈ Sn as a product of transpositions, i.e., two-cycles of the
form (ij) which sends i to j and j to i. However, no matter how one writes τ as such a product, the number
of transpositions is either always odd or always even. We define the sign of τ as 1 (resp. −1), i.e., sgn(τ )= 1
(resp. sgn(τ )=−1) if τ can be represented as the product of an even (resp. odd) number of transpositions.
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of the atomic electrons. The value ρ(r) gives the number density of electrons at the location
specified by the position vector r . By (D.42) and (D.44), clearly we have

ˆ

R
3

ρ(r) dV(r)= Z. (D.45)

We are interested in the elastic scattering of X-rays by the electrons of the atom in ques-
tion under the setting specified in Sect. D.1. A semi-classical treatment of the problem (with-
out the quantization of the electromagnetic field) was developed independently by Wentzel
and Waller in 1927 (see [165, Chap. 3] and the references therein), while the foundations of
a full quantum mechanical analysis was laid down in the same year by Dirac [92, 93] (see
also [115]). Going into the quantum mechanical analysis, however, is beyond the scope of
this Appendix. We are content just to reproduce the formula for the differential cross section,
which is of utmost interest to us.

Suppose the atomic electrons are in the ground state defined by the wave function Ψ 0. A
parallel beam of X-ray photons with wave vector k0 and polarization ε̂0 falls upon the atom.
Elastic scattering in the direction k involves the annihilation of incident photons and the
simultaneous creation, one for one, of photons with wave number k and polarization ε̂, while
there is no change in the state of the atomic electrons. The transition probability from the
state of the system (i.e., atomic electrons plus electromagnetic field) before scattering and
the state after scattering can be computed, and the differential cross section of the scattering
determined (see [114, equation (49)]):

dσ

dΩ
= r2

0 |ε̂0 · ε̂|2
∣∣∣
ˆ

R
3

ρ(r)ei(k−k0)·rdV(r)
∣∣∣
2
. (D.46)

It follows that the intensity of the scattered beam is

I = Ie

∣∣∣
ˆ

R
3

ρ(r)ei(k−k0)·rdV(r)
∣∣∣
2
. (D.47)

In the semi-classical treatment [165, Chap. 3], the electric field of the secondary radiation
at the point of observation Rn is:

E(Rn, t)= r0 · E0e
−iω(t−R/c)

R

(ˆ

R
3

ρ(r)ei(k−k0)·rdV(r)
)

sinϕ ε̂, (D.48)

which also delivers the intensity formula (D.47). The expression

f (q)=
ˆ

R
3

ρ(r)eiq ·rdV(r), where q := k− k0, (D.49)

is called the atomic scattering factor and q the scattering vector. As indicated by (D.49), the
atomic scattering factor f is mathematically the Fourier transform of the electron density
ρ. Indeed much of what we shall present in the rest of this Appendix can be couched more
generally and more elegantly in the language of Fourier transforms. We will, however, fol-
low an approach which makes use of Laue’s argument in his theoretical part of the 1912
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joint paper [120] with Friedrich and Knipping, a paper that marks the beginning of X-ray
crystallography.187

We end this section by presenting two mathematical properties of the atomic scattering
factor f .

LemmaD.2 Let the electron density ρ(·) be centrally symmetric, i.e., ρ(r)= ρ(−r) for each
r ∈ R

3. Then f (·) is real-valued.

Proof Let r ′ = −r . Then by hypothesis ρ(r ′)= ρ(r). Since

f (q)=
ˆ

R
3

ρ(r)e−iq ·rdV(r)=
ˆ

R
3

ρ(r ′)eiq ·r
′
dV(r ′)= f (q), (D.50)

the conclusion follows immediately. �

Lemma D.3 Let the electron density ρ(·) be isotropic, i.e., ρ(Rr)= ρ(r) for each rotation
R and each r ∈ R

3. Then f (·) is isotropic and real-valued.

Proof Let r ′ =R−1r . Then r =Rr ′. For each rotation R and each q ∈ R
3, we have

f (Rq)=
ˆ

R
3

ρ(Rr ′)eiRq ·rdV(Rr ′)=
ˆ

R
3

ρ(r ′)eiq ·r
′
dV(r ′)= f (q). (D.51)

Hence the function f (·) is isotropic and f (q)= f (‖q‖) for each q .
If ρ is isotropic, then f (r)= f (‖r‖)= f (−r). Hence it is also centrally symmetric. By

Lemma D.2, f (·) is real-valued. �

Remark D.4 Under the assumption that atomic electrons can be treated as free electrons, the
atomic scattering factor f is given by formula (D.49). For some atoms (e.g., the helium
atom), the electron density ρ in (D.49) is found to be isotropic (or spherically symmetric).
For many other atoms, the isotropy of ρ can be taken as a good first approximation. Under
this fact or approximation on ρ, f as given by (D.49) is isotropic and real-valued. Indeed
tables that list numerical values of f versus ‖q‖/4π (cf. Remark D.5) for free atoms of 98
elements and for many chemically significant ions, as computed from ab initio methods, are
available [210].

When the frequency ω of the incident radiation is much higher than the natural absorp-
tion frequencies of the scattering atom (e.g., for lighter atoms), the assumption that atomic
electrons be treated as free electrons is a good approximation. But, when ω is of the same
order of the absorption frequencies, dispersion corrections should be made. Then the atomic
scattering factor is given by

f = f 0 + f ′ + if ′′; (D.52)

here f 0 is the part defined by (D.49) and is given in the tables; f ′ and f ′′ are the real and
imaginary parts of the dispersion correction, respectively. An atom is said to undergo anoma-
lous scattering if its atomic scattering factor becomes complex because dispersion correction

187Cf. Ewald [112, Chaps. 4–5] for his vivid descriptions of Laue’s discovery of X-ray diffraction by crystals
and the contributions of W.L. Bragg and W.H. Bragg in the origin of crystal structure analysis.
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is necessary. We shall refrain from making dispersion corrections and shall henceforth set
them aside, except to note that Friedel’s rule (see Sect. D.6) breaks down when the unit cell
contains more than one type of atoms and at least one atom in the cell undergoes anomalous
scattering. �

D.4 Diffraction by a Crystallite

We consider polycrystalline materials, the crystallites of which have an average grain size188

which is small as compared with the length of the wave path of the reflected X-ray beam
from the sample to the detector (in the range of 150–450 mm for most laboratory θ/2θ
diffractometers189), but is huge as compared with the size of the unit cell of the crystalline
sample. For example, for commercial O-temper aluminum alloys, the average grain size is
typically in the range of 5 to 20 microns (10−6 m), whereas the fcc unit cell of aluminum
has cell parameter a ≈ 4× 10−10 m.

Let us return to the setting discussed in Sect. D.2, except that the electrons are replaced by
atoms with their nuclei located at r1, . . . , rN and electron densities ρ1, . . . , ρN , respectively.
By (D.48), at the point Rn in the far field the electric field of the secondary radiation due to
the atom with nucleus located at rn is given by

E(Rn, t)= r0 · E0e
−iω(t−R/c)

‖Rn− rn‖
(ˆ

R
3

ρn(r − rn)e
i(k−k0)·rdV(r)

)
sinϕ ε̂, (D.53)

Let r ′ = r − rn. By a change of variables, the integral in (D.53) can be written as

ˆ

R
3

ρn(r − rn)e
i(k−k0)·rdV(r)= ei(k−k0)·rn

ˆ

R
3

ρn(r
′)ei(k−k0)·r ′dV(r ′)= ei(k−k0)·rn fn,

(D.54)
where fn is the atomic scattering factor of the atom with nucleus located at rn. Under the
approximation that ‖Rn− rn‖ ≈ ‖Rn‖ =R, the electric field at Rn is

E(Rn, t)= r0 · E0e
−iω(t−R/c)

R

( N∑

n=1

fne
i(k−k0)·rn

)
sinϕ ε̂. (D.55)

Note that (D.55) reduces to (D.23) if fn = 1 or ρn(r) = δ(r − rn), where δ(·) denotes the
delta function, for each n.

Let (C,κ0) be an ideal crystal with lattice L, primitive sublattice L(p)(0) = {m1a1 +
m2a2+m3a3 :mi ∈ Z for i = 1,2,3} (see (2.118)), and conventional unit cell Π [a1,a2,a3],
where the lattice vectors ai (i = 1,2,3) constitute a conventional basis of lattice L that
serves also as the chosen primitive basis of the sublattice L(p)(0). Let M1,M2, and M3 be
positive integers, all of which are of the order of 104. Let Lc be the set of translations defined

188“Grain size” is a technical term. For our present purpose, however, a rough idea will suffice. For simplicity
and definiteness, consider statistically equiaxed grains, for which “grain size” can be taken as the diameter.
189See [30, pp. 15–16] for a brief description of such diffractometers.
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by190

Lc = {(u, I ) ∈ G : u ∈ L(p),−Mi ≤mi ≤Mi − 1 for i = 1,2,3}. (D.56)

In what follows we consider a thought-experiment of X-ray diffraction that has as target a
small crystallite

C =
⋃

h∈Lc

hΠ [a1,a2,a3], (D.57)

which is in the shape of a parallelepiped of sides 2Mi‖ai‖ (i = 1,2,3) that consists of
8M1M2M3 translates of the unit cell.

The setting of the thought-experiment is similar to that described in Sect. D.1, now with
the crystallite C placed so that the corner (0,0,0) of the unit cell Π [a1,a2,a3] is at the
origin which defines the starting point of all position vectors in the diffraction experiment.
Let there be N basis atoms in the unit cell, which have electron densities ρ1, . . . , ρN and
their nuclei located at r1, . . . , rN , respectively. In the crystallite C, the atoms with electron
density ρn have their nuclei located at

rn +m1a1 +m2a2 +m3a3, (D.58)

where the integers mi runs from−Mi to Mi−1 for i = 1,2,3. We assume that the crystallite
C is sufficiently small that ‖Rn − (rn + m1a1 + m2a2 + m3a3)‖ ≈ R for all n and mi .
Replacing rn in (D.54) by the expression given in (D.58) and summing the contributions
from all atoms in C, we observe that the electric field of the secondary radiation at Rn in the
far field is:

E(Rn, t)= r0 · E0e
−iω(t−R/c)

R

( N∑

n=1

fne
i(k−k0)·rn

)( 3∏

i=1

Mi−1∑

mi=−Mi

ei(k−k0)·miai
)

sinϕ ε̂. (D.59)

Let ηi = (k−k0) ·ai . The sum
∑Mi−1

mi=−Mi
ei(k−k0)·miai =∑Mi−1

mi=−Mi
eimiηi is a finite geometric

series. Its sum is

Mi−1∑

mi=−Mi

eimiηi = sin(Miηi)
1
2 i(1− eiηi )

. (D.60)

Hence the intensity of the secondary radiation at Rn is given by the formula

I = Ie

∣∣∣
N∑

n=1

fne
i(k−k0)·rn

∣∣∣
2 ·

3∏

i=1

∣∣∣
sin(Miηi)

1
2 i(1− eiηi )

∣∣∣
2

= Ie

∣∣∣
N∑

n=1

fne
i(k−k0)·rn

∣∣∣
2 · sin2 M1η1

sin2 1
2η1

· sin2 M2η2

sin2 1
2η2

· sin2 M3η3

sin2 1
2η3

. (D.61)

190Cf. [120], where Laue let mi run from −Mi to Mi . That Laue made a trivial error is clear when one sums
the finite geometric series in (D.60). Ewald [112, p. 49] repeated Laue’s error when he asserted that “Laue
assumes the (finite) crystal to form a block of [(2M1 + 1)(2M2 + 1)(2M3 + 1)] cells”. Here we have used
our notation to write M1, M2, and M3 for Laue’s M , N , and P , respectively.

APPENDICES

412



Reprinted from the journal 1 3

The equation on intensity in [120] that shows

I ∝ sin2 M1η1

sin2 1
2η1

· sin2 M2η2

sin2 1
2η2

· sin2 M3η3

sin2 1
2η3

, (D.62)

in the words of Authier [10, p. 110], “is the basis of the geometrical, or kinematical, theory
of diffraction.”

Intensity formula (D.61) can be taken as the product of two factors: one gives the scat-
tering intensity due to the atoms in the unit cell, and the other is the function

I(η1, η2, η3)= sin2 M1η1

sin2 1
2η1

· sin2 M2η2

sin2 1
2η2

· sin2 M3η3

sin2 1
2η3

, (D.63)

which gives the multiplicative effect of interference among contributions from 8M1M2M3

translates of the unit cell that are arranged orderly according to the pattern of the crystal
sublattice L(p)(0) to form a parallelepiped of the given dimensions. We call I the Laue
interference function.

D.4.1 The Laue Equations

For i = 1,2,3, let ξi = 1
λ
(s− s0) · ai and Ni = 2Mi . For later convenience, we recast Laue’s

interference function as follows:

I(ξ1, ξ2, ξ3)= sin2 N1πξ1

sin2 πξ1
· sin2 N2πξ2

sin2 πη2
· sin2 N3πξ3

sin2 πξ3
. (D.64)

For i = 1,2,3, let Ai(ξi) = sin2 Niπξi/ sin2 πξi , and let Ni be all of order 104. Each Ai

assume their maximum value of N2
i at ξi = hi , for each hi ∈ Z. In the vicinity of each

maximum, the value of Ai drops precipitously to zero at ξi = hi ± 1/Ni , rises to a sec-
ondary maximum of magnitude about 5% (resp. 2%, 1%, 0.5%) of N2

i in the intervals
(hi + 1/Ni,hi + 2/Ni) and (hi − 2/Ni,hi − 1/Ni) (resp. (hi + r/Ni, hi + (r + 1)/Ni)

and (hi − (r + 1)/Ni, hi − r/Ni) for r = 2,3,4), respectively, drops to zero again at
ξi = hi ± 2/Ni (resp. ξi = hi ± (r + 1)/Ni for r = 2,3,4), and is negligibly small as com-
pared with N2

i everywhere else away from another maximum. Hence each Ai may be taken
as zero outside the immediate vicinity of the sharp maxima at ξi = hi , where hi ∈ Z. Thus
the Laue interference function will attain its maximum value of N2

1N
2
2N

2
3 when the three

equations ξi = hi for some integer hi are satisfied for all i = 1,2,3. As ξi = 1
λ
(s − s0) · ai ,

these three equations can be recast as

s − s0

λ
· a1 = h,

s − s0

λ
· a2 = k,

s − s0

λ
· a3 = l for some h, k, l ∈ Z, (D.65)

which are called the Laue equations. In (D.65) we have silently written h, k, and l for
h1, h2, and h3, respectively, to conform with the usual notation in the literature of X-ray
crystallography. In what follows we shall use (h, k, l) and (h1, h2, h3) interchangeably.

We can put the Laue equations in a more compact form. Let a∗1, a∗2, and a∗3 be the triad of
reciprocal basis vectors corresponding to the primitive basis {ai : i = 1,2,3} of the primitive
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sublattice L(p)(0). Then by (1.40)2 we have

s − s0

λ
=

( s − s0

λ
· a1

)
a∗1 +

( s − s0

λ
· a2

)
a∗2 +

( s − s0

λ
· a3

)
a∗3

= ha∗1 + ka∗2 + la∗3

=Hhkl, (h, k, l ∈ Z) (D.66)

where Hhkl = ha∗1 + ka∗2 + la∗3 ∈ L∗ is a reciprocal lattice vector with coordinates (h, k, l).
Hence the three Laue equations are equivalent to the requirement that 1

λ
(s − s0) be a recip-

rocal lattice vector.
Since (ξ1, ξ2, ξ3) simply gives the coordinates of the vector 1

λ
(s − s0) with respect to the

reciprocal basis {a∗i }, the Laue interference function I and its three factors Ai can be taken
as functions of 1

λ
(s − s0). Let

Πhkl =
{
(ξ1, ξ2, ξ3) : hi − 5

Ni

≤ ξi ≤ hi + 5

Ni

for i = 1,2,3

}
(D.67)

be the parallelepiped centered at (h, k, l) and sides of length 10‖a∗i ‖/Ni parallel to the re-
ciprocal basis vectors a∗i for i = 1,2,3, respectively. From our discussions on the properties
of the functions Ai at the beginning of this subsection, we observe that not only does the
Laue interference function assume sharp maxima at (h, k, l) ∈ L∗, but there also holds

I

( s − s0

λ

)
≈ 0 for

s − s0

λ
/∈

⋃

h,k,l

Πhkl . (D.68)

D.4.2 Bragg’s Law

W.L. Bragg first heard [139, p. 410] about the news of Laue’s discovery [120] from his
father W.H. Bragg, who learned of it himself through a letter dated 26 June 1912 from the
Norwegian physicist Lars Vegard; see [312]. “Walking along the Backs in Cambridge one
day in the autumn” [259] W.L. Bragg, then a 22-year old graduate student, had an idea
that led to the publication of two seminal papers [43, 44] by December 2012. While Laue
saw in the crystal a three-dimensional diffraction grating, Bragg realized [44] that “Laue’s
crystallographs can be shown to be due to partial reflection of the incident beam in sets of
parallel planes in the crystal on which the atom centres may be arranged, the simplest of
which are the actual cleavage planes of the crystal.” In an experiment, “[a] narrow pencil of
X-rays ... was allowed to fall at an angle of incidence of 80◦ on a slip of mica ... Variation of
the angle of incidence and of the distance of plate from mica left no doubt that the laws of
reflection were obeyed.” But Bragg also knew well that what he called partial reflection “is
merely another way of looking at the diffraction.” In fact Bragg reflections, where the angle
of incidence is equal to the angle of reflection (cf. Fig. 2), will not occur unless the equation

2d sin θ = nλ (n= 1,2,3, . . .) (D.69)

is observed; here d is the distance between the parallel lattice planes that serve as sheets of
atomic mirrors; θ is the glancing angle of the incident X-ray beam; λ is the X-ray wave-
length; the natural number n is called the order of the reflection. Equation (D.69), now
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called Bragg’s law or the Bragg equation, first appeared in [43], where the angle of inci-
dence π/2− θ was used instead of the glancing angle or Bragg angle θ .191

The Bragg equation can be derived from the Laue equations. Indeed, taking the norm on
both sides of (D.66), we obtain

‖s − s0‖ = λ‖Hhkl‖, or 2 sin θ = λ

dhkl
. (D.70)

If the integers h, k, and l have no common factor larger than 1, then d = dhkl and (D.702)
reduces to the Bragg equation for a first-order reflection. If the highest common factor of
h, k, and l is n > 1, i.e., h= nh′, k = nk′, and l = nl′, then dhkl = dh′k′l′/n and d = dh′k′l′ ,
under which (D.702) gives the Bragg equation for an n-th order reflection.

Remark D.5 As a first approximation the electron density ρ in the integrand of the atomic
scattering factor f is often taken as isotropic or spherical symmetric. It follows then from
(D.49), the definition of the atomic scattering factor, that f is isotropic, i.e.,

f (k − k0)= f (‖k− k0‖), (D.71)

and is real-valued. Since ‖k − k0‖ = 2π
λ
‖s − s0‖ = 4π sin θ/λ, the atomic scattering factor

is a function of sin θ/λ. For the elements, tables of the values of f as a function of sin θ/λ,
as computed by ab initio methods, are available. For further discussion on the Bragg re-
flections, let us present some general observations and copy a few numbers from the table
reprinted in [334, pp. 369–371]. The table lists the values of atomic scattering factor f at

some values of sin θ/λ (in units of Å
−1

) for the elements with atomic numbers Z from
1 to 92. For each element, f (0) = Z, which is the maximum value of f , and the func-
tion f is monotonic decreasing as sin θ/λ increases. For example, for Al, f (0) = 13.000,
f (0.2)= 9.158, f (0.4)= 6.766, f (0.6)= 4.713; for Ti, f (0)= 22.000, f (0.2)= 16.044,
f (0.4)= 10.852, f (0.6)= 8.007.

Consider an X-ray diffraction experiment (cf. Fig. 2) in which both the target, say an
aluminum sample, and the X-ray wavelength λ are fixed, but we can vary θ to get differ-
ent orders of Bragg reflections. Suppose we get first-order reflection at sin θ/λ = 0.2. By
Bragg’s law, we shall obtain second-order and third-order reflections at sin θ/λ = 0.4 and
0.6, respectively. However, from the values of the atomic scattering factor given in the pre-
ceding paragraph, for Al the intensity of the second-order and third-order reflections are
(6.766/9.158)2 ≈ 0.55 and (4.713/9.158)2 ≈ 0.26 times the intensity of the first-order re-
flection. For Ti the drops in intensity of the higher-order reflections are similar. In fact the
decline of intensity with increasing order of reflection is a general phenomenon already
noted independently by W.H. Bragg [46] and by Compton [74] in 1915. Hence as far as
(hkl) X-ray pole figures for measurement of texture are concerned, those (hkl) that pertain
to first-order reflections may enjoy an advantage of higher intensity over those of higher-
order reflections. �

191We shall write the Bragg angle as θB when we want to emphasize that θB satisfies the Bragg equation
(D.69) for specific measurements.
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D.4.3 Integrated Intensity from a Crystallite

As explained in Sect. D.4.1, the Laue interference function I in the intensity formula (cf.
(D.61))

I = Ie

∣∣∣
N∑

n=1

fne
i(k−k0)·rn

∣∣∣
2
I

( s − s0

λ

)
(D.72)

attains its sharp peak value when the incident and diffracted beams are such that 1
λ
(s− s0) is

exactly equal to a reciprocal lattice vector. In practice, however, the incident beam cannot be
made perfectly parallel and, as real crystals have imperfections, the set of reflecting planes
are not exactly parallel throughout the entire crystallite. In an experiment where a roughly
collimated beam falls on a crystallite oriented such that the incident beam makes roughly
the correct Bragg angle θB for the set of (hkl) planes, the tip of 1

λ
(s − s0) will cover a range

of values around Hhkl . As discussed in Sect. D.4.1, there will still be appreciable intensity
in a diffracted beam with 1

λ
(s − s0) ∈ Πhkl even if condition (D.66) is not satisfied. To

overcome these difficulties, methods are designed to scan the entire region Πhkl , where I is
not negligible, to measure a method-dependent quantity called “integrated intensity”.

In what follows we will describe one of the simplest of such methods, namely the rotating
crystal method.192 In a θ/2θ scan, where the incident beam is effectively monochromatic and
the crystallite set so that the incident beam is at the correct Bragg angle θB to the chosen
(hkl) planes,

[t]he crystal is then slowly rotated with a uniform angular velocity [θ̇ ] about a line
that is parallel to the reflecting planes and perpendicular to the plane containing the
incident and diffracted beams. This rotation is normally begun, say 1◦ before the ideal
Bragg-angle value and terminated 2◦ later, so that every irradiated part of the crystal
has an equal opportunity to reflect every nonparallel ray incident on it. During the
rotation of the crystal the intensity of the diffracted beam is continuously recorded by
a detector large enough to intercept every diffracted ray. [11, p. 194].

Let us start with a Cartesian coordinate system usually adopted in θ/2θ scans, under
which the following specifications hold: the top reflecting plane of the crystallite is in the
1-2 plane; the center of the incident beam hits at the origin of the coordinate system; the
vector (0,0,1) is normal to the reflecting planes; the incident and diffracted rays with the
correct Bragg angle have s0 = (cos θB,0,− sin θB) and s = (cos θB,0, sin θB); the crystallite
is rotating with uniform angular velocity θ̇ about the (0,1,0) axis. For our discussion, how-
ever, it is more convenient to use the coordinate system obtained by rotating the original
system by the Bragg angle θB about the (0,1,0) axis. Let î, ĵ , and k̂ be the orthonormal
basis of the new Cartesian coordinate system. Then s0 = î, s = cos 2θB î+ sin 2θB k̂, and the
axis defined by ĵ remains the axis of rotation of the crystallite.

Instead of having the X-ray source fixed and letting the sample rotate, let us consider
the equivalent arrangement where the sample is fixed and at time t the direction of the
incident beam is s ′0(t) = cos!θ(t) î − sin!θ(t) k̂, with !θ(t) running from −|!θ |max to
|!θ |max (e.g., |!θ |max = 1◦ as stated in the quoted description above). Because of the slight
deviations from parallelism in the incident beam and of the imperfections in the crystallite,
the rays of the diffracted beam have directions s ′ that cover some narrow solid angle Ω .

192See Zachariasen [351, pp. 86–89] for a classification and general discussion of “all conceivable methods”
in this regard.
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Let dS be a surface area element of the detector which is reached by the diffracted ray with
propagation direction s ′, and let R be the distance of dS from the origin. Let dE be the
radiant energy received by dS from the instant t to t + dt . Then by (D.72) we have

dE = IdS dt = IeR
2

θ̇

∣∣∣
N∑

n=1

fne
i(k′−k′0)·rn

∣∣∣
2
I

( s ′ − s ′0
λ

)
dΩ dθ, (D.73)

where k′ = 2πs ′/λ and k′0 = 2πs ′0/λ.
In the reciprocal space, draw the vector s0/λ such that its tip is at O , the origin of the

reciprocal lattice. Let C be the starting point of s0/λ. With C as starting point, draw the
vector s/λ, the tip of which by (D.66) must end at the tip (h, k, l) of the reciprocal vector
Hhkl . Let D = (h, k, l). With C as center, draw a sphere SE with 1/λ as radius. This sphere
is called the Ewald sphere. Clearly the points C, D, and O lie in the same circular cross-
section of the Ewald sphere SE . Let TDSE be the tangent plane to the Ewald sphere at the
point D. Note that D is also the center of the small parallelepiped Πhkl .

The argument 1
λ
(s ′ − s ′0) of the Laue interference function I can be written as

s ′ − s ′0
λ

= s − s0

λ
+ (s ′ − s)+ (s0 − s ′0)

λ

=Hhkl + !S

λ
, where !S = (s ′ − s)+ (s0 − s ′0). (D.74)

Let us consider the difference 1
λ
(s ′ − s) first. The direction s ′ is within the narrow cone Ω

of directions of diffracted rays that are slightly different from s because of various imper-
fections. The vector s ′/λ is within Ω and, as a position vector, s ′/λ ∈ SE is close to D.
On the other hand, s/λ = CD. Hence, as an approximation, we may replace 1

λ
(s ′ − s) by

its orthogonal projection onto the tangent plane TDSE . Likewise, we approximate the cap
Ω ∩ SE by its orthogonal projection, say D, onto TDSE .

We choose a Cartesian coordinate system in the reciprocal space with D as the origin
and orthonormal basis

î
′ = − sin 2θB î + cos 2θB k̂, ĵ ′ = ĵ , k̂

′ = − cos 2θB î − sin 2θB k̂, (D.75)

where î
′

and ĵ
′

lie in the tangent plane TDSE and k̂
′

is normal to the tangent plane. The
Cartesian coordinates of a point under this system will be written as (x ′, y ′, z′). With this
preparation we turn to examine the term 1

λ
(s0 − s ′0). We have

s0 − s ′0
λ

= (1− cos!θ) î − sin!θ k̂

λ
≈−!θ

λ
k̂, (D.76)

where the approximation is based on the fact that |!θ | ≤ 1◦ ≈ 0.0175 radian. The compo-

nent of 1
λ
(s0 − s ′0) in the direction of k̂

′
is

!z′ = −dθ

λ
k̂ · k̂′ = −!θ

λ
k̂ · (− cos 2θB î − sin 2θB k̂)= sin 2θB

λ
!θ. (D.77)

Let d = 1
λ

sin 2θB|!θ |max. We assume that the cylinder D × [−d, d] is large enough that it
covers Πhkl . Clearly this assumption will become invalid when θB is too close to 0 or π/2.
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We claim that dΩdθ in (D.73) can be written as

dΩdθ = λ3

Vuc sin 2θB
dξ1dξ2dξ3, (D.78)

where Vuc = a1 · (a2 × a3) is the volume of the unit cell of the primitive sublattice in direct
space. Indeed, as dΩ is an element of solid angle within the narrow cone Ω , we have

dΩ

λ2
= dx ′dy ′ (D.79)

as an approximation. By (D.77), we observe that

dz′ = sin 2θB

λ
dθ. (D.80)

Combining (D.79) and (D.80), we obtain

dΩdθ = λ3

sin 2θB
dx ′dy ′dz′. (D.81)

The volume elements dx ′dy ′dz′ (of the Cartesian coordinate system with basis î
′
, ĵ

′
, k̂
′
)

and dξ1dξ2dξ3 (of the affine coordinate system with basis a∗1,a
∗
2,a

∗
3) are related by

dx ′dy ′dz′ =
∣∣∣∣
∂(x ′, y ′, z′)
∂(ξ1, ξ2, ξ3)

∣∣∣∣dξ1dξ2dξ3 =V∗ucdξ1dξ2dξ3 = 1

Vuc
dξ1dξ2dξ3, (D.82)

where V∗uc = a∗1 · (a∗2 × a∗3)= 1/Vuc is the volume of the unit cell in reciprocal space. Sub-
stituting (D.82) into (D.81) leads to (D.78).

We write the Laue interference function I as a function of the coordinates of 1
λ
(s ′ − s ′0)

under the reciprocal basis {a∗i }, i.e., (cf. (D.74))

ξi = s ′ − s ′0
λ

· ai =Hhkl · ai + !S

λ
· ai , for (i = 1,2,3). (D.83)

For convenience, let us put (h, k, l)= (h1, h2, h3) and

!S

λ
= p = p1a

∗
1 + p2a

∗
2 + p3a

∗
3,

!S

λ
· ai = pi. (D.84)

Since hi ∈ Z, we have

sin2(Niπξi)= sin2(Niπ(hi + pi))= sin2(Niπpi),

sin2(πξi)= sin2(π(hi + pi))= sin2(πpi). (D.85)

It follows that the Laue interference function is given by

I(ξ1, ξ2, ξ3)= I(h1 + p1, h2 + p2, h3 + p3)=
3∏

i=1

sin2(Niπpi)

sin2(πpi)
. (D.86)
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Since ξi = hi + pi , we have dξi = dpi and dξ1dξ2dξ3 = dp1dp2dp3. By (D.78), we may
recast (D.73) as

dE = IeR
2

θ̇

∣∣∣
N∑

n=1

fne
i(k′−k′0)·rn

∣∣∣
2( 3∏

i=1

sin2(Niπpi)

sin2(πpi)

) λ3

Vuc sin 2θB
dp1dp2dp3. (D.87)

Under the assumption that the region scanned in the reciprocal space Ω × [−d, d] ⊃Πhkl ,
the total energy received by the detector in one scan is

E = IeR
2

θ̇
· λ3

Vuc sin 2θB
·
˚

Πhkl

∣∣∣
N∑

n=1

fne
i(k′−k′0)·rn

∣∣∣
2( 3∏

i=1

sin2(Niπpi)

sin2(πpi)

)
dp1dp2dp3. (D.88)

Since k′ − k′0 = 2π
λ
(s ′ − s0), we use (D.84) to recast the expression that involves k′ − k′0 in

the integrand of (D.88) as

F :=
N∑

n=1

fne
i(k′−k′0)·rn =

N∑

n=1

fne
i2π(Hhkl+p)·rn . (D.89)

Over the domain of integration Πhkl , the slow-varying function F can be replaced by its
value at p = 0, i.e.,

Fhkl :=
N∑

n=1

fne
i2πHhkl ·rn . (D.90)

The energy received by the detector in one scan is then given by

E = IeR
2

θ̇
· λ3

Vuc sin 2θB
· |Fhkl |2

˚

Πhkl

( 3∏

i=1

sin2(Niπpi)

sin2(πpi)

)
dp1dp2dp3. (D.91)

By (D.67), in terms of the variables pi (i = 1,2,3),

Πhkl = {(p1,p2,p3) : −5/Ni ≤ pi ≤ 5/Ni, for i = 1,2,3}. (D.92)

Hence the triple integral in (D.91) is a product of three single integrals:

˚

Πhkl

( 3∏

i=1

sin2(Niπpi)

sin2(πpi)

)
dp1dp2dp3 =

3∏

i=1

5/Niˆ

−5/Ni

sin2(Niπpi)

sin2(πpi)
dpi. (D.93)

As Ni is of order 104, we observe that on the interval [−5/Ni,5/Ni], sin2(πpi) ≈ π2p2
i .

Therefore we have

5/Niˆ

−5/Ni

sin2(Niπpi)

sin2(πpi)
dpi ≈

5/Niˆ

−5/Ni

sin2(Niπpi)

π2p2
i

dpi ≈
∞̂

−∞

sin2(Niπpi)

π2p2
i

dpi =Ni, (D.94)
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where we have extended the domain of integration of the third integral to the entire real
line.193 Let N =N1N2N3, which is the number of translates of the unit cell contained in the
crystallite. As the triple integral in (D.91) is equal to N , we obtain the formula

E = I0r
2
0 |ε̂0 · ε̂|2
θ̇

· Nλ3

Vuc sin 2θB
· |Fhkl |2 . (D.95)

We define the integrated intensity pertaining to the rotating crystal method as194

Ihkl = E θ̇ = I0r
2
0 |ε̂0 · ε̂|2 · Vcrλ

3

V2
uc

· 1

sin 2θB
· |Fhkl |2 ; (D.96)

here we have put N = Vcr/Vuc, where Vcr is the volume of the crystallite in question.
For each method of measurement, the integrated intensity has a specific factor called the
Lorentz factor. The expression 1/ sin 2θB in (D.96) is the Lorentz factor for the rotating
crystal method. So far we have restricted our discussion on incident beams which are lin-
early polarized. The expression |ε̂0 · ε̂|2 in (D.96), called the polarization factor, has its
present form because the incident beam is assumed to be linearly polarized. If the incident
beam is unpolarized, the polarization factor is 1

2 (1+ cos2 2θB).

Remark D.6 Formula (D.96) is meant to describe the integrated intensity of coherent X-
ray scattering from a small single crystal as measured by the rotating crystal method. Even
within this specific context, the formula is still incomplete as it stands. There should be a few
more multiplicative correction factors (cf. [85, Sect. 12.3.1], [127, pp. 178–179], [277, pp.
158–159]), which include: (i) the temperature factor that accounts for the effect of thermal
motion of the atoms on the intensity (see, e.g., Warren [334, Sect. 3.4]); (ii) the multiplicity
factor, which depends on crystallite symmetry Fhkl of (hkl) planes in question; (iii) the
absorption correction. For our present purpose all the important ingredients for the integrated
intensity, namely Vcr and |Fhkl |2, are already included in (D.96); see Remark D.8 for further
discussion. �

193It is standard practice (see, e.g., [11, p. 198], [334, p. 44], [351, p. 106]) to make this extension to get
the final formula (D.95). Doing so adds an extraneous number M := 2

´∞
5/Ni

sin2(Niπpi)/(π
2p2

i
)dpi to the

original integral. Let us estimate M . On each interval [m/Ni, (m + 1)/Ni ] of pi , there holds N2
i
/((m +

1)2π2)≤ 1/(π2p2
i
)≤N2

i
/(π2m2). Hence we have

M < 2
∞∑

m=5

N2
i

π2m2

(m+1)/Niˆ

m/Ni

sin2(Niπpi)dpi = Ni

π2

∞∑

m=5

1

m2

= Ni

π2

(
π2

6
−

(
1+ 1

22
+ 1

32
+ 1

42

))
≈ 0.0224Ni .

Similarly we obtain the estimate M > (Ni/π
2)

∑∞
m=6 1/m2 ≈ 0.0184Ni . Thus the error introduced in ex-

tending the domain of integration is about 2%.
194There are three different definitions of “integrated intensity” in the literature. Here we follow Zachariasen
[351, p. 108] and Als-Nielsen & Morrow [4, p. 182]. Note that Ihkl in (D.96) has the dimensions of energy
(received by the detector) per unit time. Some authors (e.g., Azároff [11, p. 198], Warren [334, p. 44]) take
the energy received E as the “integrated intensity”. Others define Eθ̇/I0 = Ihkl , which has the dimensions
of area, as “integrated intensity” (Authier [9, p. 65]) or “integrated reflection” as an alternate name (James
[165, pp. 41–43 and p. 657 of Index]).
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Remark D.7 The expression Fhkl in (D.96) is called the structure factor, a term coined by
Ewald [111]. Even if we include in (D.96) the factor that accounts for thermal motion, the
structure factor is the only place in the integrated-intensity formula where the locations of
the atoms appear—see (D.90)—and thence is the only factor in the formula that carries
structural information on the crystal in question. Under the kinematical theory of X-ray
diffraction, |Fhkl |2 appears as a multiplicative factor in integrated-intensity formulas of all
measurement methods [351, pp. 86–89 and 103–110]. �

Remark D.8 As far as XRD is concerned, we are primarily interested in the role of X-ray
pole figures as records of quantitative texture information on polycrystalline materials. In
this regard, Vcr and |Fhkl |2 are the two most significant factors in the intensity formula
(D.96) and its fully-corrected version:

1. Each pole figure Phkl is defined by a chosen family of real or fictitious195 (hkl) planes for
Bragg reflection. In the XRD experiment to obtain a Phkl pole figure by Bragg reflection,
while all the parameters of the diffractometer are fixed, the sample (e.g., a small piece of
sheet metal) is measured at a number of its orientations, each of which is specified by a
pair of angles (αi, βi) (i = 1, . . . , n), and the angles are chosen so that they are the nodes
of an (almost) equal-area grid196 which partitions the (α,β) space; cf. Sect. 9.2. At each
orientation of the sample, the (hkl) planes of a different set C(αi, βi) of crystallites in the
sampling volume serve as Bragg mirrors. The corrected197 integrated intensity I (αi, βi)

of the reflected beam received by the detector is proportional to V(C(αi, βi)),198 the total
volume of crystallites in the sampling volume which contribute to I (αi, βi). Hence the
normalized (integrated) intensity

p(αi, βi)= I (αi, βi)
n∑

i=1

I (αi, βi)

(D.97)

gives an estimate of the volume fraction of the crystallites in C(αi, βi) in the sampling
volume.

2. As determined by the crystal structure, the value of |Fhkl | generally depends on (h, k, l)

and may be zero for some (h, k, l). For example, F100 = 0 for the fcc structure. Hence
aluminum, the single crystal of which is of fcc structure, does not have a (100) pole
figure. This phenomenon, which is called the systematic absence of the pole figure in
question, will be discussed in more detail in the next section. Also, Friedel’s rule, which
has important implications on determination of texture by XRD, is versed in terms of the
structure factor. We will examine Friedel’s rule and its implications in Sect. D.6. �

195Cf. Sect. 7.4 for definition of real and of fictitious (hkl) planes.
196See Engler and Randle [104, Sect. 4.3.3] and the references therein.
197The integrated intensity received by the detector in pole figure measurements requires corrections. See
Remark 9.5 for more details. There we write the corrected intensity as I (α,β;Θ,Φ), where Θ and Φ are
the spherical coordinates of the unit normal h of the (hkl) planes. Both here and there we are listing only the
independent variables that affect the problem being studied. Here for example, as we are concerned with one
specific pole figure, the dependence of I on Hhkl , the reciprocal lattice vector that defines the (hkl) planes,
is suppressed.
198Note that V(C(αi , βi )) for the polycrystal replaces Vcr for a single crystallite in (D.96).
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D.5 Structure Factor and Systematic Absences

Because of possible destructive interference between secondary radiations from different
atoms in the unit cell, it may occur that the structure factor Fhkl = 0 for some (h, k, l).
When that happens, the intensity of the reflected beam in question is zero. Such extinctions
are called systematic absences or systematic extinctions.

Remark D.9 In his first published paper W.L. Bragg [43] began by describing Laue’s ex-
planation of the diffraction pattern in the crystallograph of zinc blende (ZnS) [120, Fig. 5],
which he deemed “unsatisfactory”. Laue was not able to provide a satisfactory explanation
for the absence of some spots in the aforementioned crystallograph which should have ap-
peared if the lattice of zinc blende were simple cubic as he assumed. Bragg showed that he
could account for the “absences” in the spot pattern should the atoms of zinc blende occupy
the lattice nodes of a face-centered cubic structure. Bragg was the first to apply the concept
of systematic absences in explaining diffraction patterns. �

In the rest of this section, we shall examine systematic absences in three common metal
structures: bcc, fcc, and hcp.

D.5.1 Systematic Absences in Body-Centered and Face-Centered Cubic Structures

For both the body-centered and face-centered cubic structures, we may choose a Cartesian
coordinate system such that the primitive lattice vectors for the sublattice L(p) are ai =
aei for i = 1,2,3, where a > 0 is the length of an edge of the cubic unit cell. Then the
corresponding reciprocal basis vectors are a∗i = ei/a.

Body-centered cubic structure

There are two atoms in the unit cell of the body-centered cubic structure, the nuclei of
which are located at r1 = (0,0,0) and r2 = a( 1

2 ,
1
2 ,

1
2 ), respectively. By (D.90) the structure

factor is given by

Fhkl = f

2∑

n=1

ei2πHhkl ·rn = f
(
1+ ei(h+k+l)π

)= f
(
1+ (−1)h+k+l

)

=
{

2f, if h+ k+ l is even,

0, if h+ k+ l is odd,
(D.98)

where we have made use of the fact that the two atoms are of the same type and we put
f1 = f2 = f . Since the atomic structure factor f is real, we have

|Fhkl |2 =
{

4f 2, if h+ k + l is even,

0, if h+ k + l is odd.
(D.99)

If pole figures are to be prepared for measurement of texture in a polycrystalline material
of bcc crystallites, we should use (hkl) pole figures with h+ k + l even, e.g., (110), (211),
(310), etc.
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Face-centered cubic structure

There are four atoms in the unit cell of the face-centered cubic structure, the nuclei of
which are located at r1 = (0,0,0), r2 = a(0, 1

2 ,
1
2 ), r3 = a( 1

2 ,0, 1
2 ), and r4 = a( 1

2 ,
1
2 ,0)

respectively. By (D.90) the structure factor is given by

Fhkl = f

4∑

n=1

ei2πHhkl ·rn

= f
(
1+ ei(k+l)π + ei(l+h)π + ei(h+k)π

)

= f (1+ (−1)k+l + (−1)l+h + (−1)h+k). (D.100)

The integers h, k, and l are said to be unmixed if they are all odd or all even, otherwise they
are said to be mixed. It can be easily checked from (D.100) directly that

Fhkl =
{

4f, for unmixed h, k, l,

0, for mixed h, k, l.
(D.101)

For X-ray measurement of texture in polycrystalline materials of fcc crystallites, (hkl) pole
figures with unmixed h, k, l, e.g., (111), (200), (220), (311), etc. should be used.

D.5.2 Systematic Absences in Hexagonal Close-Packed Structure

There are two atoms in the unit cell. For convenience in the present calculations, we choose
the primitive hexagonal lattice such that the nuclei of the atoms are located at r1 = (0,0,0)
and r2 = 2

3a1 + 1
3 a2 + 1

2a3 = ( 2
3 ,

1
3 ,

1
2 ), respectively; cf. Sect. 2.10.2, where r1 and r2 are

called A and B, respectively. By (D.90) the structure factor is given by

Fhkl =
2∑

n=1

fne
i2πHhkl ·rn = f

(
1+ e

i2π
(

2h+k
3 + l

2

))
, (D.102)

where we have put f1 = f2 = f as the atomic scattering factors of the two atoms are the
same.

Let q = (
2h+k

3 + l
2

)
. Then we have Fhkl = f (1+ ei2πq), and

|Fhkl |2 = f 2(1+ ei2πq)(1+ e−i2πq)= f 2(2+ 2 cos(2πq))

= 4f 2 cos2
[(2h+ k

3
+ l

2

)
π
]
. (D.103)

It is easily checked from (D.103) that |Fhkl |2 can have four different values as follows:

|Fhkl |2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if 2h+ k = 3m and l is odd,

4f 2, if 2h+ k = 3m and l is even,

3f 2, if 2h+ k = 3m± 1 and l is odd,

f 2, if 2h+ k = 3m± 1 and l is even,

(D.104)

where m is an arbitrary integer. Note that a different choice of the unit cell and the basis
vectors a1 and a2 yields r1 = (0,0,0) and r2 = ( 1

3 ,
2
3 ,

1
2 ) (see, e.g., [35, p. 25], [334, p. 34],
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[335, pp. 99–101]). Then in (D.103) we have

|Fhkl |2 = 4f 2 cos2
[(h+ 2k

3
+ l

2

)
π
]
, (D.105)

which leads to the replacement of 2h+k by h+2k in (D.104). However, if 2h+k = 3m, then
h+2k = 3(2m−h)= 3m′, where m′ ∈ Z. If 2h+k = 3m+1, then h+2k = 3(2m−h+1)−
1= 3m′ −1, where m′ ∈ Z; if 2h+k = 3m−1, then h+2k = 3(2m−h−1)+1= 3m′ +1,
where m′ ∈ Z. Hence 2h+ k and h+ 2k can be used interchangeably in (D.103).

D.6 Friedel’s Rule

Friedel [119], in a short 1913 paper, presented verbal arguments to refute Laue’s belief then
that a difference between right and left quartz could be discovered in X-ray radiograms of
quartz. He concluded from his arguments that “in no case can [X-ray] radiograms reveal
the absence of a center”, and “whatever the structure, the radiograms can only reveal eleven
symmetries”, namely those of what we now call the eleven Laue classes. We shall show in
this section that these conclusions of Friedel can be derived mathematically provided that
the equality199

|Fhkl | = |Fh̄k̄l̄ | for each (h, k, l) ∈ Z
3, (D.106)

where Fhkl is the structural factor given by (D.90), is valid. Assertion (D.106) is commonly
called “Friedel’s law” or “Friedel’s rule”. Ewald and Hermann [113] were the first to ques-
tion the general validity of Friedel’s rule, albeit in the context of the dynamical theory of
X-ray diffraction. Before we examine how Friedel’s conclusions can be derived from asser-
tion (D.106), we present some common conditions under which Friedel’s rule will be valid
in the kinematical theory.

Let (C,κ0) be an ideal crystal and G be its space group. Let a Cartesian coordinate system
be chosen in the Euclidean space E3 such that each symmetry operation in G is an ordered
pair (v,Q) = (v, I )(0,Q), where (v, I ) is a translation of κ0(C) and (0,Q) a rotation,
inversion, or roto-inversion of κ0(C) about the origin of the coordinate system. Let L and K
be the lattice group and crystallographic point group of G , respectively, and let L= L(0) be
the lattice chosen to represent L. Let {ai : i = 1,2,3} be a right-handed triad of conventional
lattice vectors; they also constitute the primitive basis of the primitive sublattice L(p)(0). Cf.
Sects. 2.2, 2.3.1, 2.3.3, and 2.8.

Let a∗1, a∗2, and a∗3 be the right-handed triad of basis vectors reciprocal to the direct lattice
basis {ai : i = 1,2,3} (of the primitive sublattice L(p)(0)). Let L∗ = {Hhkl ∈ τ(V ∗) :Hhkl =
ha∗1 + ka∗2 + la∗3 : h, k, l ∈ Z} be the reciprocal lattice; cf. Sect. 7.2 for definition of τ(V ∗).
Note that for each Q ∈ K, QL = L (see Sect. 2.3.3), which implies QL∗ = L∗ (see, e.g.,
[277, pp. 87–90]).

In what follows we shall write H for a generic reciprocal lattice vector when it serves no
purpose to spell out its components.

Proposition D.10 Let (C,κ0) be an ideal crystal, G be its space group, and K be the point
group of G . Then |FH| = |FQH| for each Q ∈K.

199See, e.g., [127, p. 170]. In the words of Zachariasen [351, p. 137], “[t]his is the theoretical explanation of
the empirical rule due to G. Friedel.”
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Proof Let (v,Q) ∈ G . The configuration κ0(C) remains invariant under the rigid tansplace-
ment x �→Qx + v. Hence we have

FH =
N∑

n=1

fne
i2πH·rn =

N∑

n=1

fne
i2πH·(Qrn+v)

= ei2πH·v
N∑

n=1

fne
i2πQT H·rn = ei2πH·vFQT H. (D.107)

Hence we obtain |FH| = |FQT H|. As (v,Q) runs over G , QT runs over K. �

From Proposition D.10, we immediately obtain the following corollary.

Corollary D.11 If (0,I) ∈ G , then |FH| = |F−H|. �

Corollary D.11 asserts that |Fhkl | = |Fh̄k̄l̄ | if the ideal crystal in question has an inversion
center. In the next proposition we give some conditions under which Friedel’s rule is valid
even if (0,I) /∈ G .

Proposition D.12 Let Fhkl be the structure factor given by (D.90). Then |Fhkl | = |Fh̄k̄l̄ | if at
least one of the following conditions holds: (i) all fn (n= 1, . . . ,N) are real-valued; (ii) all
fn are equal.

Proof (i) Let all fn be real-valued, and let a∗1, a∗2, and a∗3 be the chosen triad of reciprocal
basis vectors. Since Hhkl = ha∗1 + ka∗2 + la∗3, we have Hh̄k̄l̄ =−Hhkl and thence

Fh̄k̄l̄ =
N∑

n=1

fne
i2πHh̄k̄l̄ ·rn =

N∑

n=1

fne
−i2πHhkl ·rn = Fhkl . (D.108)

Hence we conclude that

|Fh̄k̄l̄ |2 = Fh̄k̄l̄Fh̄k̄l̄ = FhklFhkl = |Fhkl |2. (D.109)

(ii) Let fn = f for all n. Then we have

Fhkl = f

N∑

n=1

ei2πHhkl ·rn , Fh̄k̄l̄ = f

N∑

n=1

e−i2πHhkl ·rn , (D.110)

which imply

FhklFhkl =
(
f

N∑

n=1

ei2πHhkl ·rn
)(

f

N∑

n=1

e−i2πHhkl ·rn
)
, (D.111)

Fh̄k̄l̄Fh̄k̄l̄ =
(
f

N∑

n=1

e−i2πHhkl ·rn
)(

f

N∑

n=1

ei2πHhkl ·rn
)
. (D.112)

A comparison of (D.111) and (D.112) leads to the conclusion that |Fhkl |2 = |Fh̄k̄l̄ |2. �
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RemarkD.13 By Corollary D.11, Friedel’s rule is valid when the ideal crystal in question has
an inversion center (i.e., (0,I) ∈ G), which includes the cases where the crystal has face-
centered cubic, body-centered cubic, or hexagonal close-packed structure. Even if the crystal
does not have an inversion center, by Proposition D.12 Friedel’s rule is observed when (i) all
the atoms in the unit cell have their scattering factors fn real-valued or (ii) when the atoms
are of the same species (irrespective of whether their atomic scattering factor f is real or
complex). Condition (i) is a good approximation when X-ray scattering is predominantly
elastic. Friedel’s rule breaks down when absorption and anomalous scattering cannot be
ignored; see Remark D.4 of Sect. D.3.2.200 �

To see how “Friedel’s rule” leads to the conclusions in Friedel’s 1913 paper, let us con-
sider a simple example.

Example D.14 Consider the point groups C2 = {I ,R(e3,π)}, Cs = {I ,IR(e3,π)}, and
C2h = {I ,R(e3,π),I,IR(e3,π)}, which are in the same Laue class. The C2, Cs , and
C2h crystal classes are all in the monoclinic system. Let the reciprocal basis vectors a∗1
and a∗2 be in the 1-2 plane, and a∗3 = ‖a∗3‖e3. It is easy to verify that R(e3,π)Hhkl =Hh̄k̄l ,
IHhkl =Hh̄k̄l̄ , and IR(e3,π)Hhkl =Hhkl̄ .

For a crystal whose space group has C2h as its point group, by Proposition D.10 its
structure factor satisfies |FH| = |FQH| for each Q ∈K, i.e.,

|Fhkl | = |Fh̄k̄l | = |Fh̄k̄l̄ | = |Fhkl̄ | for all h, k, l ∈ Z. (D.113)

For a crystal whose space group has C2 (resp. Cs ) as its point group, by Proposition D.10
its structure factor satisfies |Fhkl | = |Fh̄k̄l | (resp. |Fhkl | = |Fhkl̄ |). Addition of Friedel’s rule
that |Fhkl | = |Fh̄k̄l̄ | for all h, k, l ∈ Z leads to (D.113) as the equation satisfied by the struc-
ture factor of both the Type I and Type III crystals. Thus, as far as the structure factor is
concerned, Friedel rule in effect adds an inversion center to the point group in question. �

For point groups in other Laue classes, similar analyses lead to the conclusion that if
Friedel’s rule is valid, the structure factor of a Type I or Type III crystal in a Laue class
satisfies all the relations observed by a Type II crystal in the same Laue class. Since the
structure factor contains all information on crystal structure delivered by X-ray diffraction,
we arrive at the conclusions of Friedel cited at the beginning of this section if “Friedel’s
rule” is valid.

200Note also that electron diffraction is exempt from Friedel’s rule. Hence in principle electron backscatter
diffraction could be used for identification of the point groups of crystals that goes beyond their Laue classes.
Indeed Baba-Kishi and Dingley [12] report that “[s]tudies carried out on bulk specimens selected from the
32-point groups indicate that 27 of the 32-point groups can be determined unambiguously using BKPs [i.e.,
EBSD patterns]”. But using this technique to determine the point group of a crystal “becomes increasingly
difficult and complex as the symmetry of the crystal decreases” [231, p. 83]. See also [90, 91].
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